
•

"

NASA Technical Memorandum 87649

IMPROVED MEMORY LOADING TECHNIQUES
FOR THE TSRV DISPLAY SYSTEM

Wesley C. Easley
WilliamA. Lynn
David G. McLuer

JANUARY 1986

NI\5/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

NASA-TM-8764919860009858

f I,i",:"';\ j \ f (,;: I" ;,{

. - j

\.': ;~ ri 'j ()
, l .. t) ~ (\

Er.ITER:
:jt.LECT ------_ .. - ..

U1(.; i -1 Uf\!HX\'
===~=======~~==~~====~==~=

SELECT -----_ ... _..
Ll 1C ~ 1()r~RK'{

===~=~====================

i RN/NASA-TM-87~4922

ijTTL~

.;

1
DISPLAY 22/6/1

86Ni9329** ISSUE 10

H.3n·~~~t{}r1~ '"ld:
H{: A(}3/~i:{1F A() i

-:u
'-' ~ F'AGES.

---_. --
~ i£Jt<At-it/NIN::i:

AKA~

COl: UNITED STATES
MAJS: /*CHANNELS. (DATA TRANSMISSION)/*OATH STORAGE/*OISPLAY DEVICES/*FLIGHT

CONTROL/~MEMORY (COMPUTERS)
/ COMPUTER PROGRAMS; "MAGNETIC

TABLE OF CONTENTS

Summary

List of Figures

. iii

v

I.

II.

III.

Introduction •

List of Abbreviations

ADEDS General Description

1

2

3

IV. ADEDS BOOTSTRAP Loading

A.

B.

C.

D.

E.

Introductory Discussion
1. General Description
2. Tape Loading Technique.

EPROM Replacement of Tape

Creation of EPROM Tape Image •

Software Description •

BOOTSTRAP Loader Hardware

3
3-4

4

4-8

8

9

V. Improved Applications Software Loading Methods

A.

B.

Introductory Discussion
1. Memory Loading Requirements
2. Original ADEDS Memory Loading Method •
3. Cassette Loading Method

Floppy Disk Loading Method •
1. Memory File Capture
2. Memory Image File Configuration
3. Use of SPBP Bus in Memory Loading
4. Algorithm for Loader Data Word Configuration
5. VT-180 Software
6. Software Functional Description
7. Loader Hardware

10
10
10

11
11
11-12
12
12-14
14-16
16-17
17-19

VI.

VII.

Concluding Remarks •

References •

i

20

• 21

Summary

The efforts described in this report were performed to improve the memory
loading methods for the display computer used in the TSRV experimental
aircraft at Langley Research Center. Enhanced operation and improved
reliability of the display system were achieved without costly changes to its
internal electronics.

Display software to be loaded into memory consists of a BOOTSTRAP, a
short control program, and larger applications programs. Previously, the
BOOTSTRAP was loaded via paper tape and applications software was loaded by
means of a cassette tape, methods which are outdated and unreliable. Paper
and cassette tape generation and duplication are significant problems. Also,
continuously increasing difficulty is encountered in maintaining transport
mechanisms for these media.

The BOOTSTRAP data are in the form of ASCII characters punched along the
tape. In this effort the same characters were written into successive
addresses of an EPROM which was then installed in the display control unit.
Then, rather than move the characters past the optical reader via a punched
tape, a counter was implemented which stepped through the EPROM addresses in
turn and presented identical data to latches in the display loader
circuitry. Thus, the existing electronic latches could be used resulting in
no design changes in the display loader circuitry.

Application software loading via cassette utilized a display input data
bus for transferring an image from tape to memory. The improved technique
developed during this effort consists of transferring the same memory image to
a VT-180 disk and loading it via a VT-180 terminal installed in the TSRV as
part of the recent upgrade. Software was written for the VT-180 to duplicate
the function of the cassette tape loader. Thus, no changes were required in

-either loader circuitry or the display internal loader software (a component
of the BOOTSTRAP). In addition, the same input data bus is used for transfer
of the disk resident image into memory.

iii

ADEDS Cassette Loading Method

ADEDS Memory File Transfer for Disk Loader •

Figure

Display System Interface Signals •••

ADEDS EPROM BOOTSTRAP Loader Circuitry •

•

No.

1

2

3

4

5

6

7

8

List of Figures

SPBP Word Structure

Sample of Cyber Memory File

Display Loader Word Configuration

Loader Circuitry • • • • • • • • • •

v

.

Page

22

23

24

25

26

27

28

29

I. INTRODUCTION

The initial upgrade of the TSRV experimental system did not contain a new
avionics display system. Instead, the old Advanced Electronic Display System
(ADEDS) was retained with the intent to upgrade a color system later.

Several changes in the operation and support of the ADEDS were required
with the new experimental system. Significant among these were the required
interface to the new DATAC bus and a different method of memory loading due to
elimination of cassette tape units. Both of these changes were accomplished
by in-house design and development efforts. The DATAC interface utilizes a
Display Interface Unit (DIU), and this report describes the new memory loading
techniques.

ADEDS memory loading is a two step process, first a BOOTSTRAP, then the
applications programs. BOOTSTRAP loading was previously accomplished using
paper tape while applications software loading utilized the discontinued
cassette tape unit. New methods developed use an EPROM for BOOTSTRAP loading
and a VT-180 microprocessor terminal for loading the applications programs
from disk.

The ADEDS system is a unique prototype developed using technology of the
late 1960's for short term use and not much documentation was ever prepared.
In addition, the system contains many unique parts which are no longer
available. Therefore, modifications mostly require functional redesign which
proves very difficult since most hardware and software functions must be
determined by purely empirical means (i.e., electrical schematics and assemhly
software listings prepared years earlier with few narrative comments). Thus,
it is important that all changes be kept to a minimum with any new external
interface units requiring a design which meets the existent ADEDS interface.
This philosophy was followed in developing the techniques described herein.

1

ADEDS

ACD

ASCII

BOOS

CP/M

DATAC

DTU

EOF

GS

H

ILS

INS

LOC

LSB

MLS

MSB

MTU

RAD ALT

RTN

SPB?

TSRV

UART

II. LIST OF ABBREVIATIONS

Advanced Electronic Display System

Analysis and Computation Division, LaRC

American Standard for Computer Information Interchange

Basic Disk Operating System, CP/M

Control Program for Microcomputers

Digital Autonomous Terminal Access Communication

Data Translation Unit

End of File

Glide Slope

Hexadecimal Number

Instrument Landing System

Inertial Navigation System

Localizer

Least Significant Bit

Microwave Landing System

Most Significant Bit

Magnetic Tape Unit

Radio Altitude

RETURN

Split Phase Bipolar (Data Modulation)

Transport Systems Research Vehicle

Universal Asynchronous Receiver Transmitter

2

•

III. ADEDS GENERAL DESCRIPTION

The Advanced Electronic Display System (ADEDS) in the Research Flight
Deck of the TSRV aircraft is required to support all research flying. It is
the means through which real time attitude and navigation information is
presented to the research pilot. Reference 1 contains a description of the.
ADEDS and its interfacing in the TSRV upgraded system. Figure 1 outlines the
general nature of the ADEDS interfaces.

ADEDS has no terminal interface, due to limitations in memory and
computing time, and adding such would require almost total redesign of the
memory addressing methods. A system control unit integral to ADEDS contains a
paper tape transport and keypad. It serves as a crude terminal and is the
prime means of operational troubleshooting and memory loading. The improved
memory loading techniques described herein using the VT-180 terminal still
interfaces with the integral system control unit as did the paper tape loader.

IV. ADEDS BOOTSTRAP LOAQJNG

A. Introductory Discussion

1. General Description. The ADEDS memory is a magnetic core consisting
of 8000 locations, each 24-bits. To make the ADEDS operational a
short BOOTSTRAP must first be loaded into the lower memory
locations. Logic residing in firmware in the ADEDS computer is used
for this BOOTSTRAP loading. Principally, the BOOTSTRAP is a small
operating system with very limited capability whose main functions are
configuration of the main loader program (a software unit which allows
the remainder of memory to be loaded with varied and larger
applications programs) and activation of the keys on the system
control unit panel. Paper tape has always been used for BOOTSTRAP
loading, and although this method has been reasonably reliable, aging
irreplaceable mechanical parts in the ADEDS tape transport mechanism
are making it less so. Also paper tape creation and use are no longer
routine. Therefore, to help insure usability of the ADEDS until it is
replaced by a new color display system, it has been necessary to
develop a backup method for BOOTSTRAP loading.

Development of a BOOTSTRAP loading technique Ilsing a disk file was
considered but not chosen due to lack of physical room and power for
the RS-232 conversion circuitry required. Instead, it was necided to
place the BOOTSTRAP data into an EPROM and configure its output to
interface with the ADEDS loading circuitry existing beyond the tape
output. Development of this method is described in subsequent
sections of this report. The resulting technique has not been
installed, as of the date of this report, due to extended downtime
required; but is has been shown to function and will be available
should the paper tape loader become unusable.

2. Tape Loading Technique. BOOTSTRAP data on the paper tape consists of
a series of 7-bit characters, each with even parity, punched along the
length o.f the tape. This is a byte serial, bit parallel

3

arrangement. In use the tape is pulled past an optical reader and
when a character position is in front of the reader, light penetrates
the punched holes and activates photodiodes whose outputs are i.n turn
converted to TTL data for latching into registers. In this
application a punched hole is a one and blank tape is a zero.

B. EPROM Replacement of Tape

The method chosen to replace the tape consists of writing an exact image
of the characters on the tape into sequential locations of an EPROM. Then,
instead of moving a physical tape, a counter is used to sequentially step
through the EPROM addresses placing the data into the same ADEDS latches that
received the TTL version of the tape data. In this way no circuit changes
were required in the ADEDS loader, and the manual key that starts the tape
transport now is used to start the address counter.

C. Creation of EPROM Tape Image

For creation of an EPROM image of the BOOTSTRAP tape, it was necessary to
transfer the tape file into a VT-180 disk file which could, in turn, be
written into the EPROM. At the time the task was performed the only reliable
means of accomplishing this was to read the tape and dump the contents into a
file. Unfortunately, no means was available to read the paper tape directly
into the VT-180, but a PDP II/55 with such a reader is part of the ground
based TSRV support equipment. Thus, the tape could be read into a file on the
II/55 and then downloaded to the VT-180. Two significant problems existed in
the resulting VT-180 file: (1) the II/55 inserted newline characters
(carriage return/line feed) at regular intervals in its file and (2) the
parity bit of each tape character (which was actually punched on the tape) was
eliminated by the transfers. Thus, the file required correcting before it was
an exact tape image. To accomplish this, a VT-180 file utility program was
written which performs four functions including stripping newline characters
and adding proper parity bits to each file byte. The program was written in
the "c" language to run under the CP/M operating system.

Detailed description of the "c" language is contained in
references 2 and 3. A brief discussion is included here to aid in
understanding the software described in this report. In "c" statements are
terminated by a semicolon, and may be grouped into executable blocks by braces
"{" and "}." Arrays are indicated by their name and index enclosed in square
brackets (i.e., "list [5]"). Comments begin and end with the character pairs
"/*" and "*/." Test conditions for "while" and "if" loops are enclosed in
parentheses, with any non-zero value heing considered true. If the test is an
assignment statement, (a single "=") the assignment is made and then the value
assigned is tested for non-zero. For example:

H(a=bH
/* group of statements */
}

first assigns the value of "b" to the variable "a," then executes the group of
statements enclosed by the braces if "a" is non-zero. Relational operators

4

•

p = getchar();getchar();

H(p == 'X' I I
P -- 'x') exitO;I I

else{
H(p == 'c' I I p 'c'){I I

•

...

"==" (equality) and "1=" (inequali.ty) perform the test but do not modify
either operand. For example:

H(a==b){
*/group of statements */
}

leaves "a" and "b" unchanged.

The operator "++" causes a variable to be incremented after use. For
example:

while (a[1++] {
/* group of statements */
}

will use the index "i" to choose elements of the array "a[1" and increment
the value of "i" after each use, thus stepping through the array and executing
the group of statements until an element is found whose value is not zero.

The source listing and functional description of the file utility written
for this effort follows. Line numbers have been added as an aid in
description and are not part of the actual source file. (Line numbers are not
used in "C.")

1: {Iinclude "libc.h"
2: mainO
3: {
4: FILE *fopen(), *fo;
5: char k, m, ct, sfile [20], dfile[20];
6: FILE *fopen(), *fp
7: int ne, no, nt, dc, sc, i, j, p, nb, nnl;
8: i = 0;
9: j = 0;

10:
11: printf("\n\n\t\t MENU");
12: printf("\n S Strip 'new-line' chars from file.");
13: printf("\n E Create a file with EVEN parity.");
14: printf("\n a Create a file with ODD parity.");
15: printf("\n C Check parity of all characters in a file. ");
16: printf("\n X Exit to CPM.");
17: printf("\n\nEnter your selection. (Upper or lower case ok.) ");
18:
19:
20:
21 :
22:
23:
24:
25: /*Name the source file*/
26: printf("\n\n Enter the filename to undergo parity checking.\n");
27: while«sfile[i++] = get char (» 1= \n
28:
29: /*Check for file opening prob~ems*/

5

30: H«fp = fopen(sfile, "r")) == NULL){
31: printf("\n Can't open source file.");}
32: else{
33: nb = 0; ne = 0; no = 0, nt = 0
34: while«sc = getc(fp)) != EOF){
35: ++nb;
36: k = 0; m = 1;
37: for(ct = 0; ct (= 7; ++ct) {
38: if(m & sc){k++;}
39: m = m « 1; } /*End of for* /
40: if(k & 1)++no; else ++ne;
41: k = 0; m =1;} /*End of while */
42: fclose(fp);
43: printf("\nTotal II bytes in file %s is %d", sfile, nb);
44: printf("\n II bytes found with EVEN parity: %d", ne);
45: printf("\n II bytes found with ODD parity: %d\n\n", no);
46: nt = no + ne;
47: H(nt != nb){
48: printf("\n\n ERROR; Total hytes not equal total of");
49: printf("\n EVEN parity bytes + ODD parity bytes !!");
50: } /*End of else*/
51: } /*End of it */
52: else{
53:
54: /*Name the source file*/
55: printf("\n Enter the source filename.");
56: while«sfile[i++] = getchar()) != "\n";
5 7:
58: /*Name the destination file*/
59: printf("\n Enter the destination filename.");
60: while«dfile[j++] = getchar()) != "\n";
61:
62: /*Cheek for file opening problems*/
63: if«fp = fopen(sfile, "r")) == NULL){
64: printf(=\n Can't open source file.");
65: }
66:
67: else ff«fo = fopen(dfile, "w")) == NULL){
68: printf("\n Can't open source file.");
69: }
70:
71: else{ H(p == '0'" II p == 'o'){
72: nb = 0;
73: while«sc = gete(fp)) != EOF){
74: ++nb
75: de = opar(sc);
76: putc(dc, fo);} /*End of while */
77: fclose(fp, fo);
78: }
79 :
80: H(p == 'E' II p == 'e'){
81: nb = 0;
82: while «sc = getc(fp)) != EOF {
83: ++nb;

6

•

•

..

84:
85:
86:
87:
88:
89:
90:
91 :
92:
93:
94:
95:
96:
97:
98:
99:

100:
101 :
102 :
103 :
104 :
105 :
106 :
107:
108 :
109 :
11 0:
111 :
112:
113 :
114:
115 :
116 :
11 7:
118 :
119 :
120:
121 :
122:
123:
124:
125:
126:
127:
128:
129:
130:
131 :
132:
133:
134:

de = epar(sc);
putc(dc, fa;}
fclose(fp, fa);
}

if (p -- ..s" II p == .. s ..){
ob = 0; onl = 0 ;
while«sc = agetc(fp)) != EOF){
++nb;
H(sc == "\n")++onl; else {aputc(sc, fa);}
} /*End of while*/
fclose(fp, fa);
printf("\n II of newline chars found = %d t nnl);
} /*End of if*/
} /*End of else*/

priotf("\n\nThe source file was: %S"t sfile):
printf("\nTotal bytes in source file was %d \n lit nb);
}
}
}

/*Even parity setting functioo*/
epar(s)
iot s;
{
char mt n, k;
s = s & Ox7f;
m = 1;
k = 0;

for(n = 0; n < 7; ++n){
H(m & s){
k++; }
m = m « 1;
}
if(k & 1)

s = s I Ox80
return(s);

/* Odd parity setting function*/
opar(s)
int s;
{
char mt n, k;
s s & OxlE;
m = 1; k = 0

for(n = 0; n < 7; ++n) {
if(m & s) ++k;
m=m«l;}

7

•
Ox80}if (~ & l)s - s; else{s = s

returnCs);

135:
136 :
137:
138: }

D. Software Description

This program is a small utility which performs four menu selectable
operations on a file: (1) strip newline characters, (2) create a file with
even parity, (3) create a file with odd parity, and (4) check the parity of
all characters in a file. The menu is produced upon program execution by
lines 11 through 17.

After menu selection is made, the program (line 19) fetches the entered
character, tests to determine what it is, and branches accordingly. If an X
was entered, the program immediately exits to the CP/M operating system.
Otherwise, it continues checking using lines 23, 71, 80, and 89 to determine
what function is desired. The first operation needed herein is stripping
newline characters from the file, the S option in the menu. After S is
selected, the source and destination filenames will be requested by lines 55
and 59. (A new destination filename is requested since a new file is creat~d

with newline characters missing rather than overwriting the file operated
on.) All further tests will be false until line 89 is reached. The true
condition here will cause the program to execute lines 90 through 96. The
while statement of line 91 will be true until the end of file (EOF) character
is encountered, thus, resulting in a loop through the file. Upon reaching the
EOF, the program will close both source and destination files and exit to CP/M
(line 95). In addition to writing the new file to disk, the program indicates
the number of newline characters found (line 96), verifies that the desired
source file was used (line 99), and states the total number of bytes found in
the source file (line 100).

The file resulting from the newline stripping operation was in turn
operated upon with the same program, this time with E selected from the menu
since even parity is required for a proper tape image. (It was determined by
empirical examination that the ADEDS BOOTSTRAP tape contained even parity
punched into each character.) Upon selection of E, the program will again
request filenames in lines 55 and 59. Then the test in line 80 will be true
resulting in execution of lines 81 through 86. Once again the while statement
of line 91 will cause a loop through the entire file. 1ine 84 calls the
function EPAR for each file character. This function is shown in lines 105
through 121 and contains logic necessary to count the ones in each character
then configure the most significant bit as required for even parity. The
parity correct byte is returned by line 121 to the calling program. As before
when the EOF character is encountered in line 82, the file~ will be closed and
execution will end. The destination file from this operation will be on the
VT-180 disk and is an exact image of the original tape file. It can then be
written directly into an EPROM.

•

The "c" program also will generate a file with all odd parity as well as
check the parity of all bytes in a file. These two functions were not used in
the present application but give the software a slightly increased capability.

8

E. Bootstrap Loader Hardware

Figure 2 contains a schematic of the circuitry designed to load the EPROM
BOOTSTRAP data into the ADEDS. A counter composed of U 1, U 2, U 3, and U 4
steps through the EPROM addresses with the contents of each location being
read into U 7, an inverting buffer. The output from U 7 goes into the same
data latches in the ADEOS which receive the inverted tape data. An inverting
buffer is necessary because the photodiode output of the optical tape reader,
in addition to being converted to TTL, is inverted before being placed into
AOEDS data latches. Thus, the EPROM data must be inverted after being read
since it was not complemented before writing.

Buffer U 7 is a three state device and is used to perform another
function required to make the EPROM data match that from the tape. Between
each character punched in the tape is a section of blank tape which will yield
all zeros at the reader output, or all ones when inverted and presented to the
ADEOS latches. Thus, alternate bytes from the EPROM loader must have all bits
set yielding FFH as the value. Rather than write FFH at alternate locations
in the EPROM, the tri-state feature of U 7 is used. To accomplsh this, the
least significant bit of the counter, pin 3 of U 1, is inverted by U 5 then
fed into pins 1 and 19 (the enable controls) of U 7. When disabled U 7 will
have all output bits high, thus, presenting FFH to the ADEDS data latches.
Since the LSB of the counter toggles with every counter step, FFH will appear
as data for alternate bytes. The next most significant bit of the counter,
pin 2 of U 1 is the least significant bit of the EPROM address, pin 8 of
U 6. This bit will toggle only on alternate step counter pulses and will
occur coincident with the enabling of U 7. Thus, each time the EPROM address
is incremented, U 7 will present its inverted data byte to the latches in the
ADEDS loader circuitry.

Control of the circuitry of figure 2 is accomplished by the clock pulses
and the LOAD BOOTSTRAP gate shown. The clock is obtained from the AOEDS
loader circuitry. Its frequency is 1 Khz and its use assures synchronization
with the existent loader data handling logic. The LOAD BOOTSTRAP signal is
activated manually via a key on the ADEDS control unit which starts the tape
transport in the original hardware. Here this signal enables loader circuitry
so that BOOTSTRAP data will be accepted and resets the counter to all zeros,
thus, directing it to the first EPROM address. Simultaneously, the light
emitting diode 01 lights because pin 6 of U 4, the counter most significant
bit, (MSB) goes low, thus, forward biasing DI. This serves as indication that
BOOTSTRAP loading is in progress. When the counter has finished stepping,
pin 6 of U 4 will go high, thus, resetting the counter and removing the
forward bias from 01 and turning it off. This is the indication that
BOOTSTRAP loading is complete.

When the above described BOOTSTRAP loading functions have been
accomplished, the ADEDS applications software loader is in place, the key
switches on the control unit are activated, and the system is ready to accept
memory image data representing applications software, loading of which is
described in following sections of this report.

9

V. IMPROVED APPLICATIONS SOFTWARE LOADING METHODS

A. Introductory Discussion

1. Memory Loading Requirements. As previously stated, ADEDS memory is a
magnetic core consisting of 8000 locations, each 24-bits. After
BOOTSTRAP LOADING, the system is made fully operational by loading the
applications software into the remainder of memory. This applications
software which undergoes continual change depending upon the
experiments to be supported is used to create the various attitude and
horizontal display formats necessary for TSRV flight research.

2. Ori ina1 ADEDS Memor Method. Originally all memory loading
(BOOTSTRAP and application software was accomplished via paper tape
using the paper tape reader integral to the ADEDS system control
unit. The memory image file used to create the paper tape was
generated by software modules created by the assembler and placed on
the Cyber in ACD. Loading by this means, while reasonably reliable,
was archaic and very slow.

3. Cassette Loading Method. A change made in 1979 allowed use of a
cassette for loading ADEDS applications software into memory. The
same Cyber image file generation method was used, but a new method for
transfer of memory image data into ADEDS was necessary since the paper
tape reader (an optical device) was not compatible with cassette
tape. The method developed used Split Phase Bipolar (SPBP) bus 1, an
existent ADEDS interface described in reference 1, to load cassette
resident memory image data. Figure 1 illustrates the use of the SPBP
buses and figure 3 shows the configuration of the 32-bit SPBP words.
Use of SPBP bus 1 for memory loading required revision of the ADEDS
software loader to accept memory image data from the new source. The
operational method of the revised loader will be discussed in the
following sections, but its technical details are not covered herein.

Figure 4 illustrates the path of data flow used in the cassette
loading technique. Data read from a tape by the Ma~netic Tape Unit
(MTU) is transmitted via the RS-232 serial bus to the Microwave
Landin~ System (MLS) Data Translation Unit (OTU) which contains a
microprocessor and associated software for formatting the memory image
data into SPBP serial words properly packed to meet ADEDS loader
requirements (described in subsequent sections). An SPBP transmitter
resident in the DTU hardware is used for data output to the bus 1 SPBP
receiver in the ADEDS computer unit. It is seen in figure 4 that the
ADEDS SPBP bus 1 receiver is manually switched to receive data from
the DTU transmitter for loading, then returned to the host computer
transmitter for normal operation. (Reference 1)

This method of ADEDS memory loading, while an improvement over the
paper tape method, proved very cumbersome operationally due to the
distribution in the TSRV of the required electronic equipment shown in
figure 4. Also, reliable MTU operation and cassette production and
duplication were constant problems.

10

•

B. Floppy Disk Loading Method

The TSRV upgraded system retained the ADEDS but replaced all cassette
media with floppy disks used in VT-180 terminals. Hence, it was necessary to
develop a method of loading the ADEDS applications software from the disk
medium. Major requirements for the disk loader development (dictated by the
necessity of not modifying incompletely documented hardware and software)
were:

1. Use of the existent ADEDS loader software, thus, continuing utilization of
the SPBP bus 1.

2. Leave the Cyber software which generates the memory image file unchanged.

3. Develop the capability to download the Cyber image memory file directly to
the VT-180 disk.

1. Memory File Capture. Figure 5 illustrates the technique used to
transfer a memory image from the Cyber to the ADEDS computer on board
the TSRV. The process can be roughly divided into two steps:

(1) Downloading the file from the Cyber to the VT-180 and storing it
on diskette. This is done remotely and replaces the cassette tape
recording which was created in a similar manner.

(2) Transferring this disk to an on-board VT-180 which reformats the
file and sends it over an RS-232 link to the circuitry (described
later) which converts the RS-232 data to the serial SPBP format
(reference 1) for input to the ADEDS loader. This is done by
specifically written VT-180 software (described below) which
replaces the function previously performed by the on-board
Magnetic Tape Unit (MTU) and Microwave Landing System Data
Translator Unit (MLS DTU).

Cyber .files are downloaded in the following manner: MODEM?, a
public domain communications program, is used in the VT-180 to
retrieve and store the ADEDS file. In "text capture" mode the VT­
180 is used as a standard computer terminal while also saving on
disk all information being received from the host system, in this
case the Cyber. The operator runs the MODEM? program in text
capture mode and logs on the Cyber in normal fashion. Copying the
ADEDS file to the terminal will result in it's being stored on the
VT-180 diskette. The logging-on dialogue is also saved; it
provides a convenient tag of Cyber filename, date, and time. No
special commands are given to the Cyber other than the normal
copy-to-terminal commands and it is unaware that it's output is
being saved. Also, it is not required that the Cyber control the
starting of the device which receives the file as is the case for
creating a paper tape or cassette.

2. Memory Image File Configuration. Figure 6 shows a sample of the file
as it exists on the Cyber and, hence, on the VT-180 disk after
downloading. The data are shown in hinary form with the corresponding
ASCII character appearing at the right. The display loader resident

11

in ADEDS fills each 24-bit memory location by storing serially 12 bits
in each of two consecutive words. However, the Cyber software takes
ADEDS 12 bit binary memory image data, splits it into two groups of
six bits and adds 64 to each group to make all characters printable
alphabetics. Thus, bit 6 of each byte shown in figure 6 is set. This
Cyber implementation was done in the past, probably to circumvent some
problem with paper tape equipment handling data that could have been
interpreted as commands. It was not changed in this application, and
loader software was written in the VT-lBO to reconstruct proper image
words from the existent Cyber output.

3. Use of SPBP Bus in Memory Loading. Since the ADEDS software loader
uses SPBP bus 1 for memory loading, it must be written to conform to
normal SPBP operation. In normal operation the SPBP receiver in the
ADEDS places input data into pre-allocated locations in 32 word
blocks, each word being 32-bits with the least significant 8 bits
constituting an address label (figure 3). When the 32 word block
(buffer) is filled, an interrupt signal is generated by the SPBP
receiver. The processor in the ADEDS then uses this interrupt as a
command to begin reading the buffer. For memory loading the buffer is
still used, and the data placed therein contains both address and
memory image information extracted from the cyber file. The same
interrupt signal is also used, but the processor now follows
instructions found in the loader program and places the buffer data
into memory locations rather than using the data for display
production. Upon completion of loading control is transferred to the
main display program (whose instructions were contained in the file
just loaded) and the system is operational.

4. Algorithm for Loader Data Word Construction. Figure 6 and figure 7
will be used to describe the algorithm required for loader word
configuration. Since exact documentation for the content of the Cyber
file was not available, the file was inspected and its charactersitics
determined empirically.

A 64 work SPBP buffer is used by the loader to load 30 ADEDS memory
locations, thus, requiring two normal 32 word buffers with 15
locations being loaded from each half. The first word encountered
(word 1 in figure 7) contains the word count in bits 6 through 11, and
the high order address data in bits 0 through 5. In moving through
the Cyber file (figure 6) when the "Device Control 1" (lIH) is
encountered, data usage for loading will begin. This character, which
is marked in figure 6, was likely used originally to start a paper
tape punch. Its use herein to begin data usage eliminated any need to
change the Cyber function. The next character is seen to be 4GH, or
01000000 binary, and will be used to derive the word count for the
block that follows. As has been stated, only the lower 6 bits of the
character are used; thus, the effective value will be 000000 binary,
or OOH, yielding a word count of zero for the first block. The loader
will fill no locations until a non-zero word count is found. Since
the date is contained in the first block, it appears that the Cyber
file was constructed this way to allow inclusion of the date in the
tape for identification purposes without introducing bad data into the
memory. For some reason no filename was included in this

12

•

I

identification, but such is easily added to the dowloaded disk file
simply by using a text editor. Examination of figure 7 shows that 12
bits are required to fill each display loader word, thus, using two
characters from the Cyber file (figure 6) per word. This means that
128 characters in figure 6 are used to fill the 64 word buffer used to
construct the word configuration shown in figure 7. Concident with
use of the 64th word will occur an SPBP interrupt which will signal
the loader to start a new block. Counting 128 characters beyond the
DCl (1IH) character in figure 6 yields a value of SEH which will be
interpreted as another word count character. Its value is 01011110
binary yielding 011110 when only the lowest order six bits are used.
Thus, the effective value is lEH or 30 decimal which will be placed in
bits 6-11 of word 1 in figure 7, thus, setting the word count of the
block to 30.

The next character in the Cyber file must be used to construct the
high order address data, bits o-S in word 1. This character
(figure 6) is 40H, or 01000000 binary, and the lower 6 bits yield
OOH. The next two characters form the low order address bits to fill
word 2, bits 0 through 11. These characters are 4GH and 7CH or,
repectively, 01000000 and 01111100 binary. Taking the lowest 6 bits
of each and combining the result yields 000000111100 binary, or
03CH. Combining this with the high order address value yields 003CH
as the first address to be loaded. The next two characters of the
Cyber file are used to fill the lowest 12 bits of word 3, the high
order data bits to be placed at location 003CH. These characters
contain 40H and 41H, or 01000000 and 01000001 hinary. Again using the
lower 6 bits of each and combining, the result is: 000000000001
binary, or 001H for the high order data. To complete formation of the
data for location 003CH, the next two characters are used to fill word
4 in figure 7, the low order data bits. Once again examination of
figure 6 yields 60H and S2H for these characters or, respectively,
01100000 and 01010010 binary. Combining the lowest 6 bits of both the
result is 100000010010 binary, or 812H. Further combination of this
data field with the high order data field derived above yields a value
of 001812H being loaded at address 003CH in ADEDS memory.

From this point, the address value is incremented and two more data
words identical to words 3 and 4 are formed, a process which continues
until the 32 SPBP words are all used, thus, filling IS ADEDS 24-bit
memory locations. Address incrementation then continues through the
second half of the 64 word buffer with all words formed being data
words identical to words 3 and 4 of the first half. Since no address
words are necessary in the second half, the last two words are not
needed and are ignored by the loader. They are present with all zero
data in the Cyber file. Their absence would result in blocks of
characters not equal to 64. Although the Cyber software was probably
not written with SPBP buffers being considered, the 64 word block
implementation made the task of using the ADEDS SPBP data bus much
easier. (As stated earlier, due to lack of complete documentation for
the Cyber software implementation, empirical means were required in
developing this loader to match it.) When 64 loader words of figure 7
have been filled, 128 characters in the Cyber file, figure 6, have
been used and the following character is once again SEH, the data from

13

which the word count of 30 decimal is derived. Thus, the cycle
repeats.

The VT-180 software written for this effort performs the data
manipulation described in the above paragraph. When either a "Device
Control 4" character (l4H) or an "End of Transmission" character
(17H), both of which are found in the Cyber memory image file and
marked in figure 6, is encountered the loader terminates the loading
process and transfers control to the main ADEDS processor. Normal
display symbology produced by the applications program just loaded
then occurs.

It should be mentioned that all the loader words shown in figure 7
contain zeros in the upper 12 bits. The ADEDS loader was written in
this manner, probably because bit 23 is parity and is controlled by
hardware. This means that one loader word would be one bit short of
the 24 bits needed to fill a 24-bit memory location. The VT-180
software, in addition to packing the loader words of figure 7, must
place the required zeros in the upper 12 bits of each word.

5. VT-180 Software. The display loader program (DISPLOAD), like the file
utility previously described, was written in the "c" language
(references 2 and 3) to run under the CP/M operating system. Its
specific purpose is to take a specially formatted file of characters
previously downloaded from the Cyber computer system, translate them
into binary data, and send this binary data to the RS-232-to-SPBP
conversion circuitry (figure 5) through one of the VT-180's serial
ports. The source program listing follows. Once again, the line
numbers were added for documentation purposes and are not found in the
original file.

1: /finclude "b:libc.h";
2: #define CTLC 3
3: #define DC1 17
4: #define DC4 23
5: /fdefine ETB 23
6: mainO {
7: FILE *fopen(),*fp;
8: char c,d;
9: int null,pfn,ntemp,l,m;

10: static char filnam[20]; /* display program filename to be loaded */
11: static char spbp[4]; /* 4 bytes to be made into 32 bit spbp word */
12: static int br=O; /* nested loop break flag */
13: printf("filename ? (example a:dascas2.dsp) ");
14: /*
15: --- main loop
16: /*
17: while(l){
18: /* accept filename ,read,process,send to DIU */
19: pfn=O; /* init the filename pointer */
20: while((filnam[pfn++] =getchar(» !-"\n"; /*collect filename*/
21: H((fp=fopen(fUnam, "r"))==NULL) {
22: printf("can\'t open file\n);
23: break: /* if file not found */

14

•

•

}
else {

1*' open the filet type out its contents until a DC1 is found *1
while«c=getc(fp))!-DC1)putc(c t stdout);
m=O;
br=O;
1* read 64 pairs of ascii characters

and make 64 spbp words t of which 2 are word count and address t
60 are memory image for display computer and 2 are zeros. *1

while(br==O){
printf("\nblock II %d\n" tm);
for(ntemp=O;ntemp<64;ntemp++){

/* check for " punch off" or "end transmission block" */
if«(c=getc(fp))==DC4)1 I «d=getc(fp))==DC4)) {br=l;break;}
if« c==ETB) II (d==ETB)){br=l; break; }
1* check spbp word count *1
if«ntemp==0)&&(c!=Ox5e))

printf("block count not 30 in block %d \n"tm);
/*(the CYBER pads with Ox40 to make it printable ascii)*1
1* spbp label counts up to 31 twice in a block *1
spbp[O]=(ntemp & Ox1f);
/* take low 6 bits of each ascii and make 12 bit word *1
spbp[l]=c;
spbp[1]=(spbp[1]«6)1 (d & Ox3f);
spbp[2]=(c»2)& Oxf;
spbp[3] =0;
1* printf("ascii = %x %x " tct d); *1
1* printf(" spbp = "); *1
1* for(l=0;1<4;1++)printf("%x " tspbp[l]); *1
1* printf("disp mem = %x%x: t (spbp[2]&OxO t spbp[l]; *1
1* printf("\n");*1
1* send the reconstituted spbp word to the DIU *1
sndstr(spbPt 4);

24 :
25:
26:
27:
28:
29:
30:
31 :
32 :
33:
34:
35:
36:
37:
38:
39:
40:
41:
42 :
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57: }
58: m=m+1;
59: if(br==l)break;
60: } 1* end of file processing loop *1
61: printf("processed %d blocks\n"tm);
62: break;
63: }
64: } 1* end of file processing loop *1
65: printf(" terminated \n");
66:} 1* end of main() *1
67: 1*
68: */
69: sndstr(strtp) /* send p bytes out to the DC1: port */
70:. /* use bios to aviod tab expansion etc. */
71 : int p;
72: char str[];{
73: lnt 1z;
74: iz=O;
75: toucl();
76: while (iz<p) bios(4tstr[iz++] to);
77: tocon();

·4

15

}

/*
*/
toucl(){ */ switch console output to ucl: */

char iosave,null;
/* get the IOBTYE, bdos call 7 */
iosave=bdos(7,null);
/* set the lsb's to 11 and send console output to UCl: */
iosave=iosaveIOx3;
/* send the modified IOBYTE back to CP/M, bdos call 8 */
bdos(8,iosave);
/* now console output will go to the general purpose
port and thence to the DIU */

}
/*
*/
1* switch the iobyte back so console output goes to the screen */
tocon(){

char iosave,null;
iosave=bdos(7,null);
iosave=iosave & Oxfc;
iosave=iosave OxOl;
bdos(8,iosave);

78 :
79 :
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101: }
102 :

6. Software Functional Description. Lines 1 through 12 declare data
types and initializations. Line 13 prompts for the filename of the
characters to be processed and line 20 concatenates the operator's
keystrokes into an array to be used as the filename. Lines 17 through
64 form an endless loop. (The value 1 will always be true.) It will
be iterated only once, however, being terminated from line 23 if the
file specified does not exist or from line 62 at the end of
processing. In line 21 the file is opened for read only and the
pointer "fp" is set to point to the first character of the file. The
file is then scanned and its contents (the log-on dialogue with the
Cyber) displayed to the operator until the "Device Control 1" (11 H)
chara'cter is encountered in line 27, signaling the beginning of active
data. Lines 33 through 60 form a loop which is iterated until either
a "Device Control 4" (14H) or "End Transmission Block" (17H) character
(both of which exist at the end of the ADEDS files) is found by lines
37 and 38. Sixty-four pairs of characters are read by the "for" loop
which starts on line 35 and continues to line 57. It is seen that
line 37 reads two characters from the file and assigns them to two
variables "c" and "d" as well as testing their value. In
lines 37 and 38, if a character is found, the "br" variable is set.
This group of statements is nested within two "while" loops, and the
"break" can force exit of only the first enclosing loop. The break
flag "br" breaks the second loop in line 59. Line 40 tests the very
first character of a 64 pair group for a value of 94 decimal (5EH),
equivalent to a word count of 30 plus 64 added by the Cyber as
mentioned above. If the word count is not 30, the operator is
notified, but processing continues. This provides a check for lost
characters in the Cyber download process. In operation, the first

•

16

...

group and last two groups of the ADEDS file are usually found to
contain word counts of zero, but, nevertheless, contain the proper 64
pairs of characters.

The ADEDS loader expects to see the SPBP label increment from 0 to 31
twice during each block for a total of 64 loader words, each composed
of a character pair. However, only 60 character pairs contain memory
image data. Of the remaining four, two are used for word count and
address data at the beginning and two are filled with zeros at the
end. Lines 44 through 49 reassemble the two printable characters into
12 bit binary data, add a word count (SPBP label) and zeros (highest
12 bits) to fill the "spbp[]" array. The four bytes of this array at
this point make up the 32 bit word which will be sent to the VT-180
serial output, then to the RS-232-to-SPBP conversion circuitry
(described later). The output stage of this conversion circuitry is
an SPBP transmitter which sends the data to the corresponding receiver
in the ADEDS.

During program development, lines 50 through 54 displayed data in its
various forms as it went through these processes. Output is done by
passing the "spbp[]" array to the "sndstr" function from line 56.
Lines 58 through 61 keep a running total of blocks processed and
terminate the program when the break flag ("br") is set. DISPLOAD
terminates and returns to the CP/M operating system from line 66.

The "sndstr" function, line 69, is presented with an array and a
number of bytes to be sent out through the VT-180's console device.
It uses "tocon" and "touc1" to manipulate CP/M's IOBYTE, (reference 5)
directing console output through the "UCl" serial port, which is
connected to the RS-232-to-SPBP conversion circuitry, rather than the
"CON" port (the keyboard and screen.) Because the ADEDS data is
binary, BIOS (Basic Input Output System) call (reference 5) must be
used to keep data from being interpreted as screen formatting commands
by the BDOS (Basic Disk Operating System) (reference 5).
Lines 71 through 74 declare data types and initializations; output
occurs in the "while" loop of line 76.

Functions "touc1" and "tocon" perform mirror image bit manipulation on
the two least significant bits of the IOBYTE, lines 85 through 88 and
98 through 100.

7. Loader Hardware. The software described packs words conforming to
ADEDS loader requirements. These words are then sent one byte at a
time to the proper VT-180 serial port and then by an RS-232 link to
the conversion circuitry shown in figure 5. This circuitry comprises
the hardware designed and constructed for the loader task. A
description of RS-232 is contained in reference 4 and is not covered
in detail herein •

The basic function of the conversion is to accept serial RS-232 input,
separate this data into bytes, arrange four consecutive bytes into one
32-bit SPBP word, and transfer this word to the input of an SPBP
transmitter. The resulting circuitry shown in figure 8 was placed in
the Display Interface Unit (DIU) which is described in reference 1.

17

This is advantageous because the bus 1 SPBP transmitter existent in
the DIU can be used. A schematic of the conversion circuitry is shown
in figure 8 and a description is contained in the following
paragraphs.

Serial data bits are received by U41 and sent into U39 t a Universal
Asynchronous Receiver Transmitter (UART). The data bits are placed in
a parallel register in the UART t and when eight bits (1 byte) have
arrived t the data bits are on pins 5 through 12 of U 39 and are
available to the 8-bit latches t U 33 t U 32 t U 29 t and U 33. All four
of these latches must be filled using four consecutive bytes to form
one 32-bit word for the SPBP transmitter. The first byte must go into
U 33 t the second in U 32 t third in U 29 t and the fourth in U 31.

Routing of the data bytes into proper latches is accomplished by the
circuit elements shown at the right in figure 8. Pr~ncipal elements
are the counter t U 34 t and the decoder t U 35. The counter is
configured with two output bits t pins 2 and 3 t which will yield four
states t the number of bytes needed to fill the four latches. The
decoder has four outputs t pin 4 t 5 t 6 t and 7t which are connected
through inverters to pin lIt the ENABLE gate of each latch
(54LS373). The following paragraph traces a byte of data through the
chain.

Serial data bits entering the UART (U 39) are placed sequentially into
a parallel register represented by pins 5 through 12. When 8 bits
(1 byte) have entered t an output pulse occurs at pin 19 t the DATA
READY ilne. This pulse enters U 37 t a monostable mulitvibrator (one
shot) on pin 2 resulting in an output pulse at pin 4 which in turn
enables the decoder t U 35. The decoder in response activates one of
its outputs on pins 4 t 5 t 6 t and 7 with the particular output
activated being controlled by the state of the input lines at pins 2
and 3. In the case of the first data byte t pins 2 and 3 will both be
low (logic zero) causing the output on pin 4 to be enabled t thus t

latching this byte (byte 1) into U 33 t the least significant byte of
the SPBP word. Returning to U 37 t it is seen that another output
exists at pin 12. This output is controlled by an input on pin 10
which is connected to pin 4 t the decoder enabling signal just
described. In effect this means that pin 12 is controlled indirectly
by the input to pin 2 with a delay equal to the pulse width at
pin 4. This delayed signal serves two functons: (1) stepping the
counter t pin 5 of U 34 and (2) resetting the DATA RECEIVED RESET input
(pin 18) of U 39. These pulses render the circuitry ready to receive
the next byte of data and place it into U 32; thus t they must be
delayed until after the previous byte is latched~

This process continues until byte four is latched at which time one
32-bit SPBP word is contained in the latches and ready for
transmission to the ADEDS loader t a task accomplished by sending the
byte 4 latch pulse to the SPBP transmitter as a start pulse. Once
started the transmitter will serially send all data bits in the
latches to the loader t then stop and wait for the next start pulse.
This process will continue until the VT-180 software has sent the
entire image memory file to the loader circuitry. Then the functions
end and the ADEDS computer jumps to its main processing routines.

18

•

•

To activate the loader hardware in the DIU, a means must he provided
to switch the SPBP bus 1 data source from normal operation (host
computer) to the loader. This is accomplished by SW 1 of figure 8,
which alternatively activates the output control of the loader latches
and another identical set of DIU latches (not shown) which are enabled
during normal operation (reference 1). When SW 1 is open, the loader
latches have a high state on pin 1 thus disabling them. At the same
time, the inverter U 30 will supply a low state to the normal DIU
bus 1 latches. When SW 1 is closed, a low state will exist on pin 1
of each of the loader latches, thus enabling them, and the same
inverter, U 30, will supply a high state to the normal bus 1 latches,
thus, disabling them. It is also seen from figure 8 that closing SW 1
triggers the monos table multivibrator D 36 causing a pulse from pin 13
which resets both the counter (U 34) and the MASTER RESET of the DART
(D 39). This initializes all the loader circuitry in preparation for
receiving data. Switch SW 1 corresponds to the LOAD/NORMAL switch
shown in figure 4 for the cassette loader, but in this instance it is
more advantageous since the actual SPBP line does not require
breaking.

The hardware and software described above has been implemented and is
fully operational. Its use has resulted in significant improvements
in ADEDS operation •

19

VII. CONCLUDING REMARKS

New techniques with increased reliability and user convenience have been
developed for loading the core memory of the ADEDS, the TSRV monochrome
display system which was retained as part of the initial upgrade.

The BOOTSTRAP loading function can now be accomplished using an EPROM
created as an exact image of the original paper tape BOOTSTRAP file. Loading
applications software into memory is done from a VT-180 disk onto which the
memory file is written from the Cyber. Very significant improvements in
operational reliability and creation of backup files has resulted.

These improvements were accomplished entirely by in-house effort. For
the most part empirical means were required to determine ADEDS hardware and
software functions since complete documentation was never prepared for this
prototype system.

The changes described herein and the new interface to the DATAC data
communication bus (reference 1) are the last interrded modifications to the
ADEDS and should improve its usability until it is replaced by a color system
to complete the TSRV upgrade.

20

•

•

•

VII. REFERENCES

1. Herzog, H. K.: Commercial Airplane Data Bus Requirements and DATAC.
SAE-A-2K High Speed Data Bus Subcommittee, Dayton, Ohio, WPAFB/ASD,
May 22, 1981.

2. Kernighan, Brian W.; Ritchie, Dennis M.: The C Programming Language.
Prentice-Hall, Inc., 1978.

3. Purdum, Jack: C Programming Guide. Que Corporation, 1983.

4. Seyer, Martin D.: RS-232 Made Easy. Prentice-Hall, Inc., 1984.

5. Cortesi, David E.: Inside CP/M, A Guide for Users and pr9grammers. Holt,
Rinehart, and Winston, 1982 •

21

TO
DISPLAY
UNITS

FROM HOST
(VIA DIU)

N

N TO HOST
(VIA DIU)

4

SPBP BUS 1

,
SPBP BUS 2 INS PITCH & ROLL

DISPLAY
SPBP BUS 3 SYSTEM ILS GS & LOC

SPBP RTN BUS RAD ALT

FROM NOSE TV

FROM
AIRCRAFT
SENSORS

FIGURE 1. DISPLAY SYSTEM INTERFACE SIGNALS

.. ..

.$V

OM ADEDS
PE LOADERJCLllC TR LOBSTR l:OArr BOOnTRAP FR

TA
CARA (""ARE>.

~
CARC

~
--rL.-

~ <&I

Tl
.51/ ·51/ ·51/ .51/ .51/ .51/

IITllI t I -& t I t J -& t I I I t
16 15 14 13 12 " 10 9, 16 15 14 13 12 " 10 9 16 15 14 13 12 11 10 9 16 1514 13 12 11 10 9

U 1 U 2 U 3 U 4
:'~LS193 54LS193 54LS193 54LS193

2 3 4 S 6 7 8 1 2 3 4 5 6 7 8 1 2 3 456 7 8 1 2 3 4 5 678

& i & ~ .L .& .& .L .& ~
I .&.51/ .5V

11. \4
330.1\.

I' 4 ,;>

D1
.---

CLOCK FROM ADEDS
TAPE LOADER

DATENA

DATENA lit

~~
- '" M ...

<!l '"
t- ID C1'

0 T'Eil ~ lSl 61 Q Q lSl '" 61 Q ;:.; .« « « « « « « « « « «

12 8 7 6 5 4 3 2 1 23 22 19 21 14 10 11 8

U 6 U 5
EPROM 2732 • 54LS04

9 10 11 13 14 15 16 17 24 1 7

2 ;; "- M ... <!l
'" t- 1 JQ Q Q Q Q Q

~ 2l dl dl dl dl dl I1lo 0 o 0 o 0
.5V

t
I

20 19 2 4 6 8 11 13 15 17

U 7
54L£240

1 3 5 7 9 12 14 16 1810

I

~lQ ;:; "- M ... "' '"n ., lSl Eil Eil '"ill <Il ill <Il <Il dl ill
0 0 0 0 0 0 0 0

FIGURE 2 ADEDS EPROM BOOTSTRAP LOADER CIRCUITRY

rSTART OFI SERIAL WORD

-T-rT'-
I I I I
I I I I

_L.J._L..1._

WORD
SYNC

BIT POSITIONS

I ADDRESS/LABEL
I

LSB,
DATA FIELD

INFORMATION FIELD l\

P ~ \
3 3 3 2 21 2

21
2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 12 1 0 9 8 7 6 5 4 3 2 1 0 1 2 7 6 5 4 3 2 1 0

I
"V-I --

NOTE:

P = PARITY

FIGURE 3. SPBP WORD STRUCTURE

..

MAGNETIC
TAPE UNIT

(MTU)

RS-232 LINK

MLS DATA
TRANSLATOR

UNIT
(DTU)

SPBP BUS

LOAD

~ SPBP BUS 1 ADEDS
COMPUTER

LAY ~ A NORMALTER
TO DISP

HOST COMPU

•

,
FIGURE 4. ADEDS CASSETTE LOADING METHOD

25

ACD CYBER
(BLDG 1268)

TRAN LINE

OUTPUT ON
BLDG 1244 VT -180 1FLOPPY DI

VT-180
SK

•

TSRV

CONVERSION
CIRCUITRY -

RS-232 TO
SPBP

SPBP BUS 1

.RS-232

ADEDS
COMPUTER

VT-180

FIGURE 5. ADEDS MEMORY FILE TRANSFER FOR DISK LOADER

26

,

00 OA 2F 72 65 77 69 6E-64 2C 2A 00 OA 20 20 20
33 20 46 49 4C 45 28 53-29 20 50 52 4F 43 45 53
53 45 44 2E 00 OA 2F 63-6F 70 79 2C 64 61 73 63
61 73 00 OA 00 OA 20 20-44 53 50 4C 59~ 43 41
53 53 45 54 54 45 20 54-41 50 45 00 OA 11 40 40
40 40 20 20 20 20 20 20-20 20 20 20 20 20 20
20 20 38 34 2F 30 32 2F-31 30 20 00 OA 20 20 20 84/02/10 •.
20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20

~40 41 5E 50 40 41-5F 50 40 40 40 40~~ az@AAP@A_P@@@@A@

40 7C ~g ;PC6O $7) 40 40-72 7E 40 40 7E 7E 0 @1@A'R@@r~@@~~@A

77 50 7A 40 40 41-40 40 40 41 40 60 40 41 wP@Az@@A@@@A@'@A
41 60 40 41 40 60 40 41-41 60 40 41 42 60 40 41 A'@A@'@AA'@AB'@A
40 40 40 41 40 60 40 41-41 60 40 41 40 40 40 41 @@@A@'@AA'@A@@@A
40 60 40 41 41 60 40 40-40 40 40 40 40 40 40 40 @'@AA'@@@@@@@@@@
5C 40 40 40 5C 40 40 40-40 40 40 40 40 40 40 41 \@@@\@@@@@@@@@@A
45 74 40 40 40 40 40 40-40 43 40 40 40 64 40 47 Et@@@@@@@C@@@d@G

7F 7F 40 40 40 40 40 40-40 40 40 40 40 40 5E 40 •• @@@@@@@@@@@@A@
41 5A 40 40 40 40 40 40-40 40 40 40 40 40 40 40 AZ@@@@@@@@@@@@@@
40 40 40 40 40 40 40 40-40 40 40 40 4E 4E 40 40 @@@@@@@@@@@@NN@@
40 40 40 40 40 40 40 40-40 40 40 40 40 40 40 40 @@@@@@@@@@@@@@@@
50 40 40 40 54 40 40 40-40 40 40 40 40 40 40 40 P@@@T@@@@@@@@@@@
40 40 40 40 40 40 40 40-40 40 40 41 40 40 40 40 @@@@@@@@@@@A@@@@
6B 78 40 40 40 40 40 48-40 46 40 40 40 40 40 40 kx@@@@@H@F@@@@@@
40 40 40 40 40 40 40 40-40 40 40 40 40 40 40 40 @@@@@@@@@@@@@@@@'

40 40 40 40 40 40 40 40-40 40 40 40 40 :~@~ @@@@@@@@@@@@@@ •.
00 OA 20 20 20 14 00 OA-13 00 OA 20 43
45 54 54 45 20 52 45 43-4F 52 44 49 4E 47 20 43
4F 40 50 4C 45 54 45 OO-OA 1C 20 20 20 20 20 1C
20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20-20 20 20 20 20 15 20 45
4F 49 20 45 4E 43 4F 55-4E 54 45 52 45 44 2E 00
OA 2F 62 79 65 00 OA QO-OA 34 31 34 31 30 33 4E

FIGURE 6. SAMPLE OF CYBER MEMORY FILE

27

FIRST

WORD

COUNT----

--LOW ORDER ADDRESS BITS (12) ---....

~-- HIGH ORDER DATA BITS (12) --___

I~

CP

WORD 4

___--- LOW ORDER DATA BITS (12) -----.I

WORDS 5 THRU 32 ARE WORD PAIRS IDENTICAL TO WORDS 3 AND 4

SECOND HALF OF 64 WORD BUFFER

WORDS 1- 30 ARE DATA WORDS IDENTICAL TO WORDS 3 AND 4 IN
FIRST HALF OF BUFFER

WORDS 31 AND 32: ZERO

•

FIGURE 7 DISPLAY LOADER WORD CONFIGURATION

. ;

II
..

u , •.~"
.. ---""L.t....-••.~~--u...--•.--.­
.--u,t--o-•.~..,.............. ,..

T 'b
CI.C•• ,.......

T '6 ~ '~.
I u.o ~ u ~a l. I U17 I u ,. I u •• Il ...~10 ""'''ll o~c 54LS'll 54L$12J I 54L5121 546. $181

r ~ FT-r r ClUj 1'bT D -",sw I

r-1 :-~ =:'\ .J,.t=I
. ----.

T
u •• Il'.'60

0 j u ., I. '-Y U IS)

~ .. 05148$ r ...L.... ~
I 1 u ••

f ~li6i ~~~~_,,} I J-v."7412
«

r
L

'rnll TIIII TIT TIIII I ~ ;. .
r un I un u o. I I '" 1t54l.Sl7) ~4LS111 54LU1) ~LUJJ

~.. !I 11 IT
--

Ln.- 1.0<>. _II' 18,.,.

8

A

- 3

FIGURE 8. LOAf): CUITRY

2

Standard Bibliographic Page

1. Report No. 12. Government Accession No. 3. Recipient's Catalog No.

NASA TM-87.649
4. Title and Subtitle 5. Report Date

Improved Memory Loading Techniques for the TSRV Display January 1986
System 6. Performing Organization Code

505-66-41-22
7. Author(s)

8. Performing Organization Report No.

Wesley C. Easley, William A. Lynn, David G. McLuer
9. Performing Organization Narne and Address

10. Work Unit No.

NASA Langley Resea rch Center
Hampton, VA 23665-5225 11. Contract or Grant No.

12. Sponsoring Agency Narne and Address
13. Type of Report and Period Covered

Techni cal Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546
15. Supplementary Notes

William A. Lynn and David G. r~cLuer , PRC-Kentron, Hampton, Virginia.

16. Abstract

A recent upgrade of the TSRV research flight system at NASA Langley Research
Center retained the original monochrome display system. However, the display
memory loading equipment was replaced requiring design and development of new
methods of performing this task.

This paper describes the new techniques developed to load memory in the
display system. An outdated paper tape method for loading the BOOTSTRAP
contro1 program was replaced by EPROM storage of the characters contained on
the tape. Rather than move a tape past an opt i ca1 reader, a counter was
implemented which steps sequentially through EPROM addresses and presents the
same data to the loader circuitry. A cumbersome cassette tape method for
loading the applications software was rep 1aced with a floppy disk method using
a microprocessor terminal installed as part of the upgrade. The cassette
memory image was transferred to disk and a specific software loader was
written for the terminal which duplicates the function of the cassette loader.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

flight operational improvements Unclassified - Unlimited
flight display systems
airborne display computer Subject Category 09
experimental flight displays

19. Security Classif. (of this report) 120. Security Classif.(of this page) 21. No. of Pages 122. Price
Unclassified Unclassified 35 A03

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)

,

