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Czochralski (Cz) crystal pulling has been the predominant method used for pre-
paring for silicon single crystal for the past twenty years. The fundamental
technology used has changed little for 25 to 30 years. However, great strides
have been made in learning how to make the crystals bigger and of better qual-
ity at ever increasing productivity rates. The question that exists today is
whether this technology has reached a mature stage. Are limits in crystal size
and productivity being reached? The answers at this point are not clear yet.

Currently charge sized of SO0Kg of polycrystal silicon are being used for pro-
duction and crystals up to ten inches in diameter have been grown without
major difficulty. The largest material actually being processed in silicon
wafer form is 150mm (6 inches) in diameter.

Recent efforts in Cz silicon development have concentrated on continuing the
increase in wafer size and in higher productivity for lower costs. Alsoc much
effort has been extended in regard to the macroscopic and microscopic control
of impurities in Cz crystals. Oxygen content is a special challenge for con-
trol as one must balance the dissolution rate of the quartz crucible, the free
and forced convection in the silicon melt and the rate of surface evaporation.
Much has been done here by programming changes in the crystal growth parameters
throughout the process.

For control of dopant incorporation one must look for ways to balance natural
segregation effects. The use of programmed reduced pressure (for a volatile
element), the double crucible method and recharging have aided in this regard.
Growing of crystals in a magnetic field has proved to be particularly useful
for microscopic impurity control. Major developments in past years on equip-
ment for Cz crystal pulling have included the automatic growth control of the
diameter as well as the starting core of the crystal, the use of magnetic
fields around the crystal puller to supress convection, various recharging
schemes for dopant control and the use of continuous liquid feed 1in the
crystal puller. ‘

Continuous liquid feed, while far from being a reliable production process, is
ideal in concept for major improvement in Cz crystal pulling. It combines a
high theoretical productivity with the dopant leveling characteristics of the
double crucible method. The buildup of unwanted_ impurities is much slower
than for the use of recharging. It would seem that enough future promise
exists for this method that further development is definitely warranted.

What other major breakthroughs exist for Cz crystal pulling are not certain,
but what is clear is that this process will maintain its dominance of silicon

crystal production for a number of years.
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Cz Process

@ LITTLE CHANGE IN FUNDAMENTAL TECHNOLOGY
FOR 25 TO 30 YEARS

@ JusT
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BIGGER
BETTER
@ ARE REASONABLE LIMITS BEING REACHED?
- 1S PROCESS REACHING MATURITY?

@ NOT CLEAR YET

Silicon Wafer Diameter Trend (Area Gain)
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Silicon wafer diameter trend (area gain). 20Qmm
diameter wafers are expected as next generation IC
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Cz/FZ Crystal Diameters and Cz Charge Sizes
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Crystal Production Costs Dependent
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Orientation: <1iil>
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Growth Velocity: 63.5 mm/hr
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Goals of Silicon Cz Development

LOWER COST / HIGHER PRODUCTIVITY
LARGER WAFER SIZE

IMPURITY CONTROL

@ DOPANTS

@  XYGRN

@ OTHERS

® DEFECT CONTROL
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Reduce Cost, Increase Productivity

@ [INCREASE YIELD

@ [INCREASE PULL SPEED

® IHCREASE CHARG.E/BATCH SIZE
@ DECREASE SUPPLY COST / UNIT

Current Production Process

® 30 - 50 K CHARGE
® 150MM DIAMETER CRYSTAL

@ 12 - 16 INCH HOT ZONE

DEVELOPMENT PROCESS

® UP T0 100Ke
UP TO 250+ MM DIAMETER

@ 16 - 18 INCH HOT ZONE
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Impurity Control

@ OXYGEN - MAJOR IMPURITY

@ CONTINUOUS ADDITION FROM
CRUCIBLE DISSOLUTION

@ SEGREGATION COEFF == 1.0
MUST CONSIDER:

DISSOLUTION RATE
FREE CONVECTION
FORCED CCMVECTION

SURFACE EVAPORATION
@ DOPANTS
MUST COMBAT SEGREGATION EFFECTS

AND KEEP AT DESIRED LEVEL

@ OTHER IMPURITIES (imcr. C )
MUST COMBAT SEGREGATION EFFECTS
AND KEEP AS LOW AS POSSIBLE
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Czochralski single
crystal pulling; advanced
stage of the process

REF (4)

Czochralski single
crystal pulling; final stage
of the process. If the crystal
would have the shape of the
dashed lines, it could not be
finished dislocation-free
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Dopant Control

@ PRESSURE CONTROL
(FOR VOLATILE ELEMENT)

@  DOUBLE CRUCIBLE
@  RECHAKGE

@ MAGHETIC FIELD
- MICROSCOPIC CONTROL
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Improved Sb Concentration Distribution
by Pressure Control
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Schematic Representation of a
Double-Crucible Growth Arrangement
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Axial Resistivity Profile of Double-Crucible-Grown Crystal
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Recharging method. The tigh% resistivity ranged crystal
is pulled with leaving Si melt in a crucible and then
feed material together with dopant impurity are melted

to grow the second crystal.
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Recharging the Hot Crucible With Polysilicon Chips
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ve between furnace and front opening chamber, FD' = front
opening door, S¢ = screen, OS = optical system for automa-
tic diameter control, VP =view port. PM = pulling mechan-
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Defect Control

CONSISTENT
THERMAL ENVIRONMENT
NEEDED THROUGHOUT
CRYSTAL GROWTH CYCLE.

Major Equipment Developments

@ AUTOMATIC GROWTH CONTROL
@ DIAMETER
@ CONE

@ MAGNETIC CZ

@ RECHARGIRG

@ CONTINUOUS LIQUID FEED
- IDEAL IN CONCEPY
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ORIGINAL PAGE 1S
Concept of CLF Furnace OF POOR QUALITY

ADC Sensor Feedback to Pull Rate & lemp.

Crystal Pull Rate Feedback to Control Pressure
in Meltdown Chamber

- Melt Level Sensor. o
/ Feedback to Control Pressure

in Heltdown Chamber
F Proportional Control
Valve
@ O A—
Argon
Exhaust —%5_
Inle

. Liguid Transfer
’ / Assembly

%

auartz | 3
Baffle oLy
S| sl
% |
N
Growth Chamber i Meltdown Chamber ‘

REF. 2

47



Arrangement for Continuous Melting and Solidification
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Doping Concentration Relationship, CLF Furnace

C .. = initial melt dopant

1 oncentration
Cr = incoming melt
replenishment
concentration

k = dopant segregation
coefficient.

Ref. 2
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Axial Resistivity Profile, CLF Furnace
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Impurity Buildup, Continuous vs Batch'
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Crystal Production Costs, Batch vs Continuous
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What is the Future of the Cz Process?

@ MAIN EFFORTS NOW
STILL

HORE
BIGGER
BETTER

OF SAME PRODUCT
AKD -PROCESS

@  WHAT 1S NEXT???
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DISCUSSION

LESK: Do you feel that 70% production yield is a good practical figure?

MATLOCK:

On a standard Czochralski process, yes.

STORTL: What are the primary sources of the heavy-metal impurities?

MATLOCK:

MORRISON:

MATLOCK:

One of the sources is the polycrystal itself, particularly as it is
enriched through the process. The reactors where the polycrystals
are grown have a lot of silver in the environment, and nickel
parts. The Czochralski chamber and the seed holder have metal parts
where some evolution of that metallic impurity is bound to occur.

We are led to understand that a very open dialogue exists between
producers and users in Japan and that part of the success of the
industry in Japan is due to that open dialogue. Do you see any kind
of a dialogue opening up in this country that is going to help the
users and the producers reach some state of excellence and
understanding?

Yes, I certainly do, and I think that a number of companies have

become very intimately involved in that kind of interactive dialogue
to maximize material effects on device performance.
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