WASH R 177 237

NASA Contractor Report 177939

NASA-CR-177939
19860010477

The Develophent of An Interim
Generalized Gate Logic
Software Simulator

J.G. McGough and S. Nemeroff

Allied/Bendix Aerospace
Flight Systems Div.
Teterboro, New Jersey

Contract NAS1-15946
December 1985

MA KPS SO UL RO STNTER
. CETLIEIY, AL

National Aeronautics and RO, VHGHEDA
Space Administration

Langley Ressarch Center
Hampton, Virginia 23685

\\I\\\\l\\\ll\\l\!ﬂ\\(\}!)\\\!!\\\g\\\\\l\\\\\l\\



1.0

2.0

3.0

4.0
5.0

6.0

TABLE OF CONTENTS

SUMMARY AND CONCLUSIONS

1.1 SUMMARY

1.2 CONCLUSIONS
INTRODUCTION

2.1 OBJECTIVES OF GGLOSS

2.2 REQUIREMENTS OF GGLOSS

2.3 DESIGN SPECIFICATION OF GGLOSS
IGGLOSS

3.1 OBJECTIVES OF IGGLOSS

3.2 REQUIREMENTS OF IGGLOSS

3.3 DESIGN SPECIFICATIONS OF IGGLOSS
PERFORMANCE OF IGGLOSS
TASKS REMAINING TO COMPLETE GGLOSS

REFERENCES

APPENDIX A. THE SOFTWARE STRUCTURE OF IGGLOSS

APPENDIX B. BLISS-CODED PRIMITIVES

APPENDIX C. USER'S MANUAL

MW NSNS N O ONPd P WWw

—t
o

17
21
23

1

W A X

27>



LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
1 Test Circuit 162
2 Arithmetic Logic Unit (ALU) 163
(Functional Equipment Logic Diagram)

3 4-BIT Down Counter 164
(Functional Equipment Logic Diagram)

4 BCD Adder 165
(Functional Equivalent Logic Diagram)

5 Memory Circuit 166
A-1 Structure of IGGLOSS 167
B-1 Faulted Buffer 168
B-2 Faulted Inverter 169
B-3 Faulted AND Gate 170
B-4 Faulted NAND Gate 171
B-5 Faulted OR Gate 172
B-6 Faulted NOR Gate ) 173
B-7 Faulted EXCLUSIVE OR Gate 174
B-8 D-FLIP FLOP with PRESET and CLEAR 175
B-9 Structure of Memory Device 176



1.0 SUMMARY AND CONCLUSIONS

1.1 Summary

An interim version of GGLOSS (called IGGLOSS) was developed and
tested for the purpose of obtaining an early assessment of the predicted
performance of GGLOSS. IGGLOSS omitted only those features of GGLOSS
which have 1ittle or no affect on the essential performance capabilities
of GGLOSS. Five circuits were simulated and IGGLOSS performed exactly
as anticipated.

IGGLOSS was hosted on a VAX 11/780 computer and was programmed in
Fortran and Bliss, the latter being used exculsively for high speed
logic computations.

Memory Requirements

IGGLOSS required 3504 Bytes of VAX memory including the 1library of
Bliss-coded primitive macros.

Simulation Speed

Non-Faulted

9.5 x 10**6 Gates/Sec of VAX 11/780 CPU time
Faulted oo 4.4 x

1
10**6 Gates/Sec of VAX 11/780 CPU time
1.2 Conclusions

IGGLOSS performed exactly as anticipated.
The simulation techniques of GGLOSS, as described in (Ref. 3),
appear to be sound.
The memory requirements of IGGLOSS (3504 Bytes) are modest.
The simulation speed of IGGLOSS is at least comparable to that
of BGLOSS.

e It is recommended that GGLOSS be completed. The additional
tasks required to transform IGGLOSS into GGLOSS are given in
Section 5.0.



2.0 INTRODUCTION

In the Fall of 1979 Bendix was awarded a contract by NASA Langley
Research Center to perform a fault simulation study to determine fault
latency in a digital avionics processor (ref. 1). Prior to the award,
Bendix had developed a gate logic software simulator (BGLOSS) for its
BDX-930 digital computer. The study provided the opportunity to not
only establish fault latency statistics but to test BGLOSS in a variety
of scenarios, not the least of which included the simulation of software
programs and their interaction with hardware faults. Prior simulation
experience lead to the conclusion that, next to reasonable accuracy,
simulation speed was the most important characteristic of a simulator.
Current, commercially available varieties are too slow for the types of
fault experiments envisioned, being of the order of 1000 gates/sec of
host computer cpu time. The impact of such speeds can readily be appre-
ciated by considering the application in which it is desired to deter-
mine the detectability of a fault by a self-test program consisting,
typically, of 1000 assembly language instructions. In the BDX-930, an
assembly 1language instruction requires, on the average, four passes
through the cpu, which consists of 5000 equivalent gates. Thus, a
single fault, together with a complete execution of self-test, requires
the simulation of 20 million gates. At 1000 gates/sec it would require
5.55 hours of cpu time! Subsequently, after thousands of simulated
faults, the speed of BGLOSS was established at 2.86 million gates/sec on
a Vax 11/780 host computer. As a consequence of the success of BGLOSS
in the context of the Fault Latency Study, NASA Langley Research Center
awarded Bendix a follow-on contract to determine the feasibility of
developing a generalized gate logic software simulator (GGLOSS) based
upon the BGLOSS model (ref. 3)..

As a result of this contract it was concluded that a GGLOSS simula-
tor, which was at least comparable in speed to BGLOSS, was definitely
feasible. As a consequence, NASA Langley Research Center awarded Bendix
a contract to develop an interim version of GGLOSS (hence forth referred
to a "IGGLOSS") for the purpose of validating the predicted performance
of the final version before initiating a full-scale development program.
This report describes the subsequently developed IGGLOSS and its
performance.

Because IGGLOSS is an interim version of GGLOSS it is appropriate
to include here an overview of GGLOSS (a detailed description is given
in (ref. 3)). : '

2.1 Objectives of GGLOSS

GGL03S is a fault simulator to be used for the purpose of:

Conducting failure modes and effects analyses

Designing and validating self-test programs

Obtaining fault latency data for use in advanced reliability
prediction programs such as CARE III.



It
circuit

quently,

is important to emphasize that GGLOSS was never intended as a
design tool. Consequently the reader will observe, subse-
that it lacks many of the features normally contained in a

commercially available simulator.

The objectives of GGLOSS are:

Gate level software simulator

Generalized to the extent necessary to simulate virtually any
representable by gate logic

Reasonably transportable

Very high speed, comparable to that of BGLOSS

User-friendly

Employs “"standard" circuit specifications

2.2 Requirements of GGLOSS

Based on previous and extensive fault injection experiments
(ref. 1,2) with BGLOSS the following requirements for GGLOSS were
established:

a.

The simulator must be capable of simulating software. This was
a basic requirement since the objectives include the design and
validation of self-test and the evaluation of fault latency,
when comparison-monitoring is the method of fault detection.

The simulator must yield.results in a timely manner. The
simulation of self-test and flight control applications pro-
grams requires many passes through the CPU. Considering the
quantity of faults that were to be simulated it was the judge-
ment of the BGLOSS design team that the simulation time, on
whatever computer BGLOSS was hosted on, should not exceed 25000
times real time. Assuming 5000 gates in the CPU, at a clock
cycle of 250 nanoseconds, this would be equivalent to simulat-
ing 801,753 gates/second (In any event, BGLOSS, simulated on a
VAX 11/780, did not exceed 7000 times real time, which was
equivalent to 2.86x10**6 gates/second).

The simulator must be capable of simulating multiple CPU's,
with different software programs, concurrently. Because many
of the envisioned simulation experiments involved redundant
channels of a flight control system, it was desired that the
simulation should be capable of modeling the concurrent opera-
tion of synchronous and asychronous channels,. i.e., processors
whic?, effectively, execute different software programs concur-
rently.

In summary, the simulator must be capable of simulating software.
The simulator must yield results in a timely manner and the simulator
must be capable of simulating multiple CPU's, operating synchronously or
asynchronously with each, possibly executing different software
programs.



2.3 Design Specifications of GGLOSS -

In order to meet the objectives and satisfy the requirements of

GGLOSS,

the following specifications were established (ref. 3):

Programmed in FORTRAN and BLISS

Control and executive functions programmed in FORTRAN

Hosted on a VAX 11/780

Arithmetic and logic functions programmed in Bliss

Employs a reasonably standard circuit specification syntax

User - interactive

Parallel mode simulation, exclusively

(i.e., 32 circuits in parallel)

Fixed order of node evaluations

Orders combinational networks (P-ordered)

2-valued logic, exclusively

Accommodates functional-Tlevel modules, e.g., memories,
flip-flops

User must initialize the network

Stuck-at faults, exclusively

Automatic fault selection if desired

Simulates multiple faults in a single circuit

Simulates ROM and RAM memories, 32 different copies of each, if
required

Simulates a fictitious clock and multiples thereof, in any
desired quantity

Simulates faults in ROM and RAM

Simulates intermittent faults

Collapses faults

High speed of the order of 2 million gates/second of VAX 11/780
CPU time.



3.0 IGGLOSS

IGGLOSS was intended as a scaled-down version of GGLOSS for the
purpose of obtaining an early assessment of the predicted performance of
GGLOSS. IGGLOSS omitted those features of GGLOSS which were judged to
have little or no affect on the essential performance capability of
GGLOSS. Moreover, anticipating the success of IGGLOSS and to preclude a
rework of the IGGLOSS software, IGGLOSS was designed to be the "core"
element of the future GGLOSS. Thus, GGLOSS would be the result of
adding the omitted features to IGGLOSS.

3.1 Objectives of IGGLOSS

An interim version of GGLOSS for the purpose of obtaining an early
assessment of the essential performance of GGLOSS.

3.2 Requirements of IGGLOSS

IGGLOSS must comprise the “core" element of GGLOSS
IGGLOSS must employ the identical simulation techniques of
GGLOSS

e IGGLOSS must be capable of simulating a variety of circuits,
including memories, of sufficient complexity to allow an assess-
ment of GGLOSS performance capabilities

3.3 Design Specifications of IGGLOSS

IGGLOSS incorporates all of _design features of GGLOSS with the
following exceptions:

IGGLOSS interacts with the User to a limited extent
IGGLOSS does not contain automatic fault insertion features
IGGLOSS can only simulate 31 faults at a time. The User is
required to recompile IGGLOSS for each set of 31 faults

o Although IGGLOSS allows for an arbitrary number of clocked nets,
the clocks must have the same frequency. GGLOSS can accommodate
clocks (i.e. fictitious) which are multiples of a basic clock
and in any desired quantity

o IGGLOSS did not partition the network, i.e. all gates were

replaced by their corresponding fault models at the start of

each run

Hierarchical networks could not be constructed

IC's could only be set to logic Os

IGGLOSS could not simulate intermittent faults

IGGLOSS could not simulate multiple faults in the same circuit

IGGLOSS could not collapse faults

IGGLOSS could simulate 32 different RAM's .. parallel but could

only simulate 32 identical ROM's.



4.0 PERFORMANCE OF IGGLOSS

4 The simulation techniques employed by IGGLOSS are identical to

those of GGLOSS (ref. 3). Indeed, it was not found necessary to change
or modify a single design specification. As indicated previously, a
detailed description of GGLOSS is given in (ref. 3). However, as an aid
to the reader, we give here an overview of these simulation techniques
and the User-procedures in setting up a simulation.

1)

2)

3)

)

4.1 Overview of an IGGLOSS Simulation

The User creates a Partslist for the circuit (see User's
Manual). For illustrative purposes, the circuit could be the
4-BIT downcounter of Figure 3. The User may specify the parts
in any order whatsoever.

In the Partslist the User must identify the location of ficti-
tious clocks, in effect, by treating them as special buffer
oates.

Fictitious clocks are placed in order to break feedback paths.
In the case of the downcounter, the User should break the cir-
cuit at the D-inputs of the 4 flip flops. Thereafter, IGGLOSS
assumes that the resultant circuit is a collection of disjoint,
combinational circuits. It treats the inputs to a clock gate
as an external output and the output of the clock gate as an
external input. :

By prompts IGGLOSS will request

identity of faulted components and the type of fault
contents of ROM memory

identity of memory faults

number of clock cycles in a run

input as a function of clock cycle

output options

Co0oO0OO0OOo

IGGLOSS is now ready to compile.

IGGLOSS reorders the circuit, placing all gates in ranks: the
first rank containing gates whose only inputs are external
inputs. The second rank containing gates whose only inputs are
outputs from gates in the first rank. This ordering continues
until all gates are assigned to a rank. If IGGLOSS discovers a
feedback path it will print an error message and stop. If the
ordering 1is successful, IGGLOSS will convert the reoyie od
partslist into a Bliss-coded program and print the results.

IGGLOSS is now ready to execute.



5) IGGLOSS simulates, in parallel, 32 circuits, one of which is
always non-faulted. IGGLOSS makes a single pass through the
network, simulating every gate as it does sc. At the end of
each pass IGGLOSS compares the values of all test pins with
those of their counterparts in the non-faulted circuit. If
there is a difference the test pin, the fault and the clock
cycle are noted. The "detected" fault, however, is no longer
tracked. Thus, if subsequently another test pin "detects" this
fault the fact will be ignored.

6) IGGLOSS repeats the above process for the next input vector.
However, before executing the next pass, IGGLOSS transfers the
input of all clock gates to the outputs. Effectively, the
clock gates are treated as if they were D-flip flops.

4.2 Test Circuits

IGGLOSS simulated 5 circuits

Test Circuit (Figure 1)
Arithmetic Logic Unit (Figure 2)
4-Bit Downcounter (Figure 3)

BCD Adder (Figure 4)

Memory Circuit (Figure 5)

The corresponding partslists, P-ordering, test pin Tlocations,
faults, input sequences and results are described in the User's Manual.
The partslists for the ALU and the BCD adder were already contained in
the Bendix Circuit Library and only required the addition of test pin
locations to be compatible with IGGLOSS.

The responses of IGGLOSS were manually checked in both the faulted
and non-faulted runs.

4.3 Simulation Results

Memory Required

The IGGLOSS compiler, including the Library of Bliss-coded macros
required only 3504 bytes of host computer memory.

Simulation Speed

To estimate the simulation speed of IGGLOSS the downcounter was
simulated with and without faults. In the non-faulted case, IGGLOSS
made 1000 passes through the circuit; in the faulted case 31 gates were
faulted and IGGLOSS made another 1000 passes through the network. The
results were:



0.34 seconds
0.74 seconds

Non-faulted, 1000 passes CPU time
Faulted, 1000 passes CPU time

The CPU times were measured from the start to finish of the BLISS
program and did not include compile time.

We estimated the number of gates per second of CPU time as follows:

Non-Faulted Circuit

The downcounter contains 101 gates. Since 32 circuits are executed
in parallel, the total number of gates simulated were:

1000 x 32 x 101 in 0.34 seconds

9.5 x 10**6 gates/sec of VAX 11/780 CPU time

Faulted Circuit

As indicated previously, IGGLOSS replaced every gate by its fault
model. This was a very inefficient procedure since only 31 gates were
faulted. Without counting these additional gates, the total number of
gates simulated was taken to be, conservatively,

1000 x 32 x 101 in  0.74 seconds

= 4.4 x 10**6 gates/sec of VAX 11/780 CPU time.

ROM/RAM Circuit Timing

The introduction of memory elements in a circuit significantly
reduces simulation speed since these devices cannot be simulated in
paralletl. Moreover, each execution of a memory requires two
transformations:

1) A transformation from parallel to serial
2) A transformation from serial back to parallel

IGGLOSS simulated the memory circuit of Figure 5, which contained a
ROM and RAM memory.

IGGLOSS made 1000 passes through the circuit, which required a
total of 2.79 seconds of VAX 11/780 CPU time, exclusive of compile time.
Since the transformations used in IGGLOSS are identical to those used in
BGLOSS (the simulation of the Bendix BDX-930) including the BLISS code,
it can be expected that the simulation speed of IGGLOSS, with respect to
memory, is comparable to that of BGLOSS.

10



5.0 TASKS REMAINING TO COMPLETE GGLOSS

As indicated previously, IGGLOSS was developed as an interim ver-
sion of GGLOSS and, consequently, lacks many features which were inten-
ded to be included in GGLOSS. Since IGGLOSS was essentially designed as
the "core" element of GGLOSS, IGGLOSS can be transformed into GGLOSS by
adding those omitted features. The additional features are:

1) Network partitioning

2) IC specifications

3) Extended test pin coverage

4) Identification of device pins

5) Simulation of intermittent faults

6) Simulation of multiple faults in a single circuit
7) Fault collapsing

8) Simulation of 32 different ROMS

9) Simulation of RAM faults

10) Accommodation of multiple fault models
11) Addition of multiple, fictitious clocks
12) Interfacing with circuit capture programs
13) Expanded library of Bliss-coded primitive circuits
14) Hierarchial network construction

15) Error diagnostic routines

16) Output options

17) Menu option

18) Graphical displays

19) Expanded user's manual ;
20) Automatic selection of faults
21) Automatic statistical analysis

1. Network Partitioning

In order to simulate a faulted gate IGGLOSS replaces the gate by a
fault model (Figure B-3) which contains several gates, the quantity
depending upon the type of gate and the number of nodes.

Since IGGLOSS simulates 32 circuits in parallel, one of which is
always the non-faulted circuit, replacing more than 31 gates during a
run could be inefficient. In fact, IGGLOSS simultaneously replaces all
gates by their fault models, irrespective of the number and location of
the faults actually simulated. This increased the simulation time pro-
portionately. On the other hand, there is a real time penalty associa-
ted with the replacement of gates during a simulation. Consequently,
there is a trade-off between the number of faulted gates in each run
versus the overhead penalty. GGLOSS should provide the option of opti-
mally partitioning the network into faulted and non-faulted gates during
=ach run.

11



2. IC Specifications

IGGLOSS automatically sets all nodes to logic 0's at the start of a
simulation run. GGLOSS should allow the User to specify the IC's and
provide default modes which set the IC's to either all logic 0's or all
logic 1's.

3. Extended Test Pin Coverage

IGGLOSS tracks each fault until the fault is detected, at which
time it identifies the test pin and the clock cycle. Thereafter it no
longer tracks the coverage of the fault (possibly by different test
pins). GGLOSS should continuing tracking the fault, identifying all
test pins which detected the fault and, of course, the clock cycle
during which the fault was detected.

4., Identification of Device Pins

GGLOSS should provide the capability of restricting faults to
device pins. It should, therefore, allow the User to identify device
pins, preferably in the Partslist.

5. Simulation of Intermittent Faults

IGGLOSS can only simulate permanent faults; i.e., a fault must
remain in place for the duration of the run. GGLOSS should provide for
the insertion of intermittent faults.

6. Simulation of Multiple Faults In A Single Circuit

IGGLOSS can only simulate one fault at a time in the same circuit.
GGLOSS should provide the option of inserting multiple faults in the
same circuit.

7. Fault Collapsing

IGGLOSS simulates every fault designated by the User. This is
somewhat inefficient because different faults of the same gate could
produce identical effects at the output; e.g., a s-a-o of an input to an
AND gate produces the same effect as a s-a-o of the output. It would be
more efficient to simulate only one and these "equivalent" faults and
multiply the results by the number of equivalent faults. GGLOSS should
identify such faults and eliminate their redundant simulation.

8. Simulation of 32 Different ROMS

While IGGL2SS Lan simulate 32 ROMS in parallel it requires that all
of the ROMS have the same contents. GGLOSS should provide the option of
32 different ROMS.

12



9, Simulation of RAM Faults

IGGLOSS simulates 32 RAMS in parallel but does permit the simula-
tion of faults in the RAMS. GGLOSS should provide this option.

10. Accommodation of Multiple Fault Models

It is well known (ref. 3) that a single, gate-equivalent circuit
cannot model all faults of a real device by single stuck-at faults. In
general, several models of the circuit are required. GGLOSS should
allow the User to define several different fault models for the same
device.

11. Addition of Multiple, Fictitious Clocks

Fictitious clocks are placed in order to break feedback paths.
IGGLOSS allows the placement of an arbitrary number of fictitious clocks
but requires that they have the same frequency and phase. The User
should have the option of specifying fictitious clocks and different
frequencies derived from a master clock.

12. Interfacing With Existing Circuit Capture Program

There are several commercially available circuit capture programs
which allow the User to create a circuit on a CRT screen, which is then
translated into a Partslist. GGLOSS should have the capability of
interfacing with one or more of these Partslists.

13. Expanded Library of Bliss-Coded Primitive Circuits

As noted previously, IGGLOSS contains a library of Bliss-coded
primitive macro; e.g., AND gates, OR gates, etc. (see Appendix B). The
existing library should be expanded to include a greater variety of
primitives. In this connection, it is important to observe that the
only time a knowledge of Bliss is required is in the creation of these
primitives. It is entirely possible to eliminate even this dependence
by allowing the User to define primitives via PartsLists (see the Hier-
archical Network Construction Feature).

14. Hierarchical Network Construction

IGGLOSS does not allow a Partslist to contain another Partslist;
i.e., a component device cannot be defined by a Partsiist. When it is
desired to combine circuits the User must manually create a single
Partslist for the combined circuits.

GGLOSS should provide the sption of defining a circuit component by

a Partslist. This provision would, in addition, allow the User, without
any knowledge of Bliss, to create new primitives.

13



15. Error Diagnostic Routines

IGGLOSS provides almost no clues to the source of errors committed
by the User in setting up a simulation. GGLOSS should provide a reason-
able level of error diagnosis. A "Help" routine could also be added.

16. OQutput Options

GGLOSS should provide the User with a variety of selectable out-
puts, including, as a minimum:

¢ Number of s-a-o, s-a-1 faults detected in each User-designated
circuit component or test pin versus clock cycle
Identification and location of undetected faults
Fault Tist
Output vector of any User-designated component as a function of
clock cycle*

e Input vector as a function of clock cycle*

e Failure detection coverage of s-a-o, s-a-1 and combined faults
for any User-designated component
Directory of the library of Bliss-coded primitives
Contents of memories at a User-designated clock cycle or as a
function of clock cycle*

*Caution should be exercised when outputting vectors as func-
tions of clock cycle since this could significantly increase
simulation time. ]

17. Menu Option

While GGLOSS is intended to be interactive with the User (e.g., by
prompts), it would be desirable to provide the option of a graphically
displayed menu. This would provide the User with a more compact and
comprehensive overview of the data required. A "Help" menu would also
be desirable.

18. Graphical Displays

If a graphics screen is available, the User should have the option
of receiving output data in graphical formats. The formats would
include:

* Histograms of latency, perhaps dynamically changing as a func-
tion of clock cycle*

Input vector as a function of clock cycle*

Output vector as a function of clock cycle*

Histograms of test pin coverage

Graphical representation of the circuit, including location of
faults, coverage of components, etc.

*See note in "Output Options”

14



19, Expanded User's Manual

The existing User's Manual for IGGLOSS should be greatly expanded.

20, Automatic Selection of Faults

IGGLOSS requires that the User select each fault manually. For
large-scale fault insertion experiments, in which the objective is to
determine coverage, a manual selection of faults is not practical. In
these cases the User should have the option of specifying only the num-
ber of faults, with GGLOSS making the actual selection. The method of
selection would be based on:

e (Qutput data requirements
Distribution of failure rates over the gat-s
e Sampling strategy, e.g., stratified samplinrg

Automatic selection of faults requires that the Partslist be
expanded to include failure rates of components.

21. Automatic Statistical Analysis

GGLOSS will have the capability of producing large quantities of
data. To be useful, the data must be analyzed and reduced and the
results presented to the User in a comprehensible form. The statistical
analysis of data 1is inseparable from the sampling strategy employed.
Given a sampling strategy (e.g., stratified sampling), statistical
analysis would provide the following data: .

Histograms of latency by components

Combined histograms

Detection coverage

Confidence levels of detectfon coverage

(confidence 1levels vs. quantity of faults presented to User
during set-up)

e Maximum 1ikelihood estimates of time to detection

e Most efficient set of test pins

Statistical analysis could conceivably be used to automatically
design an efficient self-test program with perhaps some User interven-
tion and prompts.

15



6.0 REFERENCES

1. McGough, J., Swern, F., "Measurement of Fault Latency in a Digital
Avionic Mini Processor," NASA CR-3462, NASA Langley Research Center,
Hampton, Va., October, 1981.

2. McGough, J., Swern, F., "Measurement of Fault Latency in a Digital
Avionic Mini Processor," NASA CR-3651, NASA Langley Research Center,
Hampton, Va., January, 1983.

3. McGough, J., "Feasibility Study for a Generalized Gate Logic Soft-
ware Simulator," NASA CR-172159, NASA Langley Research Center,
Hampton, Va., July, 1983.

ER13A

16



APPENDIX A

THE SOFTWARE STRUCTURE OF IGGLOSS

The Software Structure of IGGLOSS is shown in Figure A-1.
sub-programs are:

Inquire. Com
GLOSS. For

The basic

17



dure

18

INQUIRE.COM

INQUIRE.COM is the executive for IGGLOSS. It is a command proce-
which does the following:

1)

2)

3)

4)
5)

6)
7)
8)

Asks the User for the name of the Partslist and copies it into
the appropriate file for use with the GGLOSS program.

Asks the User for the name of the file containing the inputs to
the circuit, if any such file exists, and copies it into the
appropriate file for use with the GGLOSS program. All I.C.'s
are initialized to zero.

Asks the User for the name of the file containing the faulted
input data. It then copies this data into the file FLTVAL.DAT
which is read in by SET_FLT.

Executes GLOSS.FOR

Compiles each of the modules created by GLOSS.FOR:

- EXEC.FOR - PASPIN.FOR
- MAIN.B32 - PASADD.FOR
- DWN.B32 - FLTPRN.FOR
- ZND.B32 - DETECT.B32
- TIM2.FOR . - RWN.B32
- PRINT.FOR (optional) - PRM.B32
- TIM3.FOR - MEM.B32

Links together the modules just compiled.
Starts the simulation by running EXEC.FOR

Prints the results of the simulation on the terminal.
(optionatl)



GLOSS.FOR

GLOSS.FOR creates the sub-program which does the actual simulation
of the circuit. GLOSS.FOR is considered the 'preprocessor' part of
IGGLOS, because it prompts for all the inputs, creates the necessary
Bliss modules and sets up the result and output files. GLOSS.FOR accom-
plishes this in the following way:

1)
2)
3)

4)
5)
6)
7)

8)

9)
10)

11)

12)

13)

14)

Reads in and stores LIBRARY.DAT

Reads in and stores the Partslist.

Parses the Partslist, extracting the following information:
- types of gates used in the circuit

- external inputs to the circuit

- external outputs from the circuit

Associates a gate type to each component in the Partslist.
Determines the input nets for each component.

Determines the output nets for each component.

Reads in and stores fault data. Substitutes faulted types for
gates to be faulted.

For each component, substitutes the componrent name, its input
nets and its output nets into the logical equation for its
type as found in the library.

P-orders the list created in step (8).

Creates EXEC.FOR, which prints out the output column headings
and calls MAIN.B32.

Creates MAIN.B32, with the information received interactively
with the User.MAIN.B32 is a Bliss-coded sub-program which sets
up the parameters and calls DWN.B32 and PRINT.FOR

Creates DWN.B32, a Bliss-coded sub-program containing the
P-ordered list. This sub-program does the actual simulation
of the circuit.

Creates PRINT.FOR, a FORTRAN sub-program which prints the
results of the simulation in a file named OUTPUT.DAT

Creates MEM.B32, a Bliss routine which loads the contents of
the User-specified memory input file into the simulated mem-
ories. If the circuit has a RAM, then the routine INTRAM
(contained in MEM.B32) makes 32 copies of the RAM in a
"scratch pad" memory.

19



20

15)

16)

17)

18)

19)

20)

Creates PASPIN.FOR and PASADD.FOR, two routines which copy the
Bliss "fault detection" vectors into fortran arrays so that
the detected data may be printed out.

Creates FLTPRN.FOR, a fortran routine to print the results of
the fault detection routines.

Creates PRM.B32, a Bliss module which emulates a "read only"
memory.

Creates RWM.B32, similar to PRM.B32 this module emulates a
random access memory.

Creates ZND.B32, a Bliss routine to load the faulted inputs
for the expanded gates in memory so that they can be substi-
tuted for unfaulted inputs during emulation.

Creates DETFLT.B32, a Bliss module that contains the routine
DETECT which checks the specified "detect points" to see if
any faults can be detected.



APPENDIX B
BLISS-CODED PRIMITIVES

The Bliss-Coded Library contains Bliss Macros for the following
devices:

DEVICE _ INPUTS

Buffer

Inverter

AND Gate 2
NAND Gate 2
OR Gate 2
NOR Gate 2
Exclusive OR Gate

D-Flip Flop

RAM User-Specified
ROM User-Specified

The Bliss Library also contains the fault model for each of the

above devices. The primitive devices and their fault models are shown
in Figures B-1 through B-9.

21



22

THIS PAGE INTENTIONALLY LEFT BLANK



APPENDIX C
USER'S MANUAL

23



24

SECTION

1.0
1.1
1.2
2.0
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.0
4.1
4.2
4.3

4.4

4.5

TABLE OF CONTENTS

TITLE

SOFTWARE ORGANIZATION
INQUIRE.COM
GLOSS.FOR

RUNNING IGGLOSS

INPUT FILES
LIBRARY .DAT
RTNES.R32
PARTSLIST
MEMORY PARTS
DETECT POINT LIST
FAULT INPUT LIST
DETECTED FAULTS OUTPUT LIST
FICTITIOUS CLOCKS
MEMORY DATA FILE
P-ORDERING

ARITHMETIC LOGIC UNIT
PARTSLIST
P-ORDERING -- ALU
OUTPUT <NON-FAULTED) -- ALU
INPUT -- ALU
EXAMPLES

PAGE

26
26
27
29
33
33
39
49
51
52
53
54
55
56
57
58
58
61
64
66
67



5.0
5.1
5.2
5.3
5.4
5.5
6.0
6.1
6.2
6.3
6.4
7.0
7.1
7.2
7.3
7.4
8.0
.8.1
8.2
8.3
8.4
8.5
8.6
8.7
9.0

BCD ADDER

PARTSLIST

P-ORDERING -- BCD ADDER

OUTPUT (NON-FAULTED) -- BCD ADDER
INPUT -- BCD ADDER

EXAMPLES

DOWNCOUNTER

TEST

PARTSLIST

P-ORDERING -- DOWNCOUNTER

OUTPUT (NON-FAULTED) -- DOWNCOUNTER
EXAMPLES

PARTSLIST
P-ORDERING TEST
INPUT TEST
EXAMPLES

MEMORY CIRCUIT

PARTSLIST -- MEMORY CIRCUIT
P-ORDERING -- MEMORY CIRCUIT
INPUT -- MEMORY CIRCUIT
INITIAL MEMORY DATA
FAULTLIST -- MEMORY CIRCUIT
OUTPUT -- MEMORY CIRCUIT
MEMORY DETECTION RESULT

SUBROUTINES, MODULES & VARIABLES

75
75
78
81
82
83
91
91
94
96
98
106
106
108
110
111
119
119
121
122
123
124
125
127
128

25



26

1.0 SOFTWARE ORGANIZATION

1.1 INQUIRE.COM

INQUIRE.COM is the executive for IGGLOSS. It is a command procedure
which does the following:

(1)

(2)

(3)

(5)

(6)

(7)
(8)

Asks the user for the name of the partslist and copies
it into the appropriate file for use with the GLOSS
program.

Asks the user for the name of the file containing the
inputs to the circuit, if any such file exists, and
copies it into the appropriate file for use with the
GLOSS program. All I.C.'s are initialized to zero.

Asks the user for the name of the file containing the
faulted input data . It then copies this data into
the file FLTVAL.DAT which is read in by SET_FLT.

Executes GLOSS.FOR ( see GLOSS ).

Compiles each of the modules created by GLOSS.FOR:

- EXEC.FOR - PASPIN.FOR
- MAIN.B32 - PASADD.FOR
- DWN.B32 ' - FLTPRN.FOR
- ZND.B32 - DETECT.B32
- TIM2.FOR - RWM.B32
- PRINT.FOR (optional) - PRM.B32
- TIM3.FOR - MEM.B32

Links together the modules just compiled.
Starts the simulation by running EXEC.FOR

Prints the results of the simulation on the terminal.
(optional)



1.2 GLOSS.FOR

GLOSS.FOR creates the subprogram which does the actual simulation of
the circuit.GLOSS is considered the ‘'preprocessor' part of IGGLOS,
because it prompts for all the inputs, creates the necessary bliss
modules and sets up the result and output files. GLOSS accomplishes
this in the following way:

(1)
(2)
(3)

(4)
(5)
(6)
(7)

(8)

(9)
(10)

(11)

(12)

(13)

Reads in and stores LIBRARY.DAT
Reads in and stores the partslist.

Parses the partslist, extracting the following
information:

- types of gates used in the circuit

- external inputs to the circuit

- external outputs from the circuit

Associates a gate type to each component in the partsiist.
Determines the input nets for each component.

Determines the output nets for each component.

Reads in and stores fault data. Collapseé faults
and subtitutes faulted types for gates to be faulted.

For each component, substitutes the component name,
its input nets and its output nets into the logical
equation for its type as found in the library.

P-orders the list created in step (8).

Creates EXEC.FOR, which prints out the output column
headings and calls MAIN.B32.

Creates MAIN.B32, with the information received
interactively with the user (see RUNNING IGGLOSS).
MAIN.B32 is a BLISS coded subprogram which sets up the
parameters and calls DWN.B32 and PRINT.FOR.

Creates DWN.B32, a BLISS coded subprogram containing the
P-ordered 1list. This subprogram does the actual
simulation of the circuit.

Creates PRINT.FOR, a FORTRAN subprogram which prints the
results of the simulation in a file named OUTPUT.DAT.

27



28

(14)

(15)

(16)

(17)

(18)

(19)

- (20)

Creates MEM.B32 a bliss routine which loads the contents
of the user specified memory input file into the simulator
memories. If the circuit has a RAM, then the routine
INTRAM (contained in MEM.B32) makes 32 copies of the RAM
in a 'scratch pad' memory.

Creates PASPIN.FOR and PASADD.FOR, two routines which
copy the bliss 'fault detection' vectors into fortran
arrays so that the detected data may be printed out.

Creates FLTPRN.FOR ,a fortran routine to print the
results of the fault detection routines.

Creates PRM.B32, a bliss module which emulates a read
only memory.

Creates RWM.B32, similar to PRM.B32 this module emulates
a random access memory.

Creates ZND.B32 , a bliss routine to load the faulted
inputs for the expanded gates in memory so that they
can be substituted for unfaulted inputs during emulation.

Creates DETFLT.B32 ,a bliss module that contains the
routine DETECT which checks the specified 'detect
points'(see fault detect list page ) to see if any
faults can be detected.



. 2.0 RUNNING IGGLOSS

INQUIRE.COM is the command file which executes the program.
To execute, type:

$ GINQUIRE
The program will then prompt the user with:

Enter full name of file containing partslist:

The partslist must be supplied by the user. The partslists presently
on file are:

ALU.PRT (Arithmetic Logic Unit)

BCD.PRT (BCD Adder)

DWN.PRT (Downcounter)

DWNOCN.PRT (Downcounter, reordered, clocked)
MEM3.PRT (Memory circuit, Rom and Ram)

Respond with the name of one of the partslists.
The program will then prompt the user with:

Enter full name of file containing input data, if any:

Input data is on file for the ALU and the BCD circuits. The data must
be input manually for the DWN circuit. Data on file is:

ALU.DAT (Arithmetic Logic Unit)
BCD.DAT (BCD Adder)
MM3INP.DAT (Memory circuit)

If the user wishes to enter the data manually he should hit the
RETURN key. If he wishes to use a file, he should enter the file name.

The program will next prompt as follows:
Enter full name of file containing fault input if any:

Fault input data is on file for the ALU, DOWNCOUNTER and the MEMORY
circuits. Data on file is:

ALUFLT.DAT (ALU)
DWNFLT.DAT (Downcounter)
MEM2FLT.DAT (Memory circuit)

If the user wishes to enter the faulted data by file he should
enter the file name. Otherwise hit the return key.

29



30

The program will then prompt as follows:
DO YOU WISH A FAULTED RUN ? (Y OR N)

If you do not want a faulted run type {N> otherwise type <Y)> and the
program will then ask:

FAULT TABLE INPUT MANUAL OR FROM A FILE (M OR F) ?
If you specified a file of faults before and you wish to run those
faults then type ¢ F D. If you want to enter your faults manually,
you should type { M >. The program then asks you to enter the faults
as you would in the partslist.
The program will next prompt you:

What are the output column headings?
Type a '*' if they are to be the same:

It will then list each of the external outputs to the circuit and
wait while the user either types a '*' or the new name of the output
column. If the user hits the {RETURN)> key without typing anything
that output column heading will be blank.
The program then asks:

Do you wish to load contents of memory(s) Y/N ?
If 'Y' is typed the program will respond with:

Enter the name of the memo;y input file.
The user should respond with the full file-name of the file

containing the data which is to set up the memory(s).
(see: MEMORY DATA FILE, page 56).

The program next prompts:
Do you wish a print out of the output? (Y or N):

If the response is { Y > then an output file will be created and
can be printed out.



Next the program will prompt the user with:

Input manually or from a file? ( MorF )
If an input data file name was entered previously, type an <{F),
otherwise type an {M)> to indicate that data will be entered by hand.
If the data is to be entered via a data file the program will then
complete without any more prompts.

If the input is to be entered manually, the program will prompt the
user with the following:

How many cycles do you want to simulate?
Respond with an integer greater than zero.
What are the initial values for the inputs? ( O or 1)
Each external input pin to the circuit will then be printed on the

screen and the user will be able to assign a value of <0> or 1) to it.

The program then asks:

Do you want to change the input data for any cycle? (Y or N)
If the user responds with a {Y>, the next prompt will be:

Which cycle do you want to ﬁpdate?

Enter an integer between 2 and the total number of cycles to be
simulated, as entered previously. The first cycle will use the
initial data already entered.

What are the input values? (O or 1or 9)
( 9 indicates no change in the value )

Each external input pin name to the circuit will once again be printed
on the screen and the user will be able to assign a value of <0) or {1D
to it. If the user does not want to change the value of the input pin
from the last value entered, he should type a <9).

Again, the user will be prompted as to whether or not he wants to
change the input pin values for any cycle. If yes, he must choose

a cycle between the last cycle chosen and the final cycle. All other
choices will be declared inappropriate.

31



32

When there are no more cycles whose inputs values may be changed, or
when the user does not want to change the input values on any more
cycles the program will then run to termination.

If a print out was desired then the output of the simulation

will be printed on the screen. This output will also be

placed in a file named OUTPUT.DAT for future reference.

The faulted data (ie whether a fault was detected, and in what
machine and what cycle) is not printed out on the terminal, but

is stored in a file named DETECTED.DAT.



3.0 INPUT FILES

3.1 LIBRARY.DAT

The Bliss-coded Library contains Bliss macros for the following
devices:

Device Inputs
Buffer 1
Inverter 1

AND Gate 2,3,3

NAND Gate 2,3,4

OR Gate 2,3

NOR Gate 2,3,4,5
EXCLUSIVE OR Gate 2

D-Flip Flop 4

RAM User-Specified
ROM User-Specified

The Bliss Library also contains the fault model for each of the
above devices. The primitive devices are shown in Figures B-1
through B-9.

The library contains a description of the gates used in the circuits
to be simulated with GLOSS. For each gate, the library contains

the name of the gate, the logical name associated with it, those pins
which will be identified as inputs to the gate, and those pins which
will be identified as outputs to the gate(pin names in the partslist
must be identical.to the names in the Library). The library has the
following format:

NAME : POOOM;

LOGIC: BUF(%Y,%A);
INPUTS: .A;
OUTPUTS: .Y;

NAME : TOOOM; :
LOGIC: NAND2(%Y,%A,%B);
INPUTS: .A,.B:
QUTPUTS:.Y;

33



NAME:T260M;

LOGIC: NOR5(%Y,%A,%B,%C,%D,%E);
INPUTS: .A,.8,.C,.D,.E;
OUTPUTS: .Y;

NAME :ALUMAC;

LOGIC: ALU(%XX,%YY,%AA,%BB,%CC,%DD,%EE, %FF,%GG);
INPUTS: .AA,.BB,.CC,.DD,.EE,.FF,.GG;

OUTPUTS: .XX,.YY;

NAME:CLK;

LOGIC: CLK(%Y,%A,.K+$);
INPUTS: .A;

OUTPUTS: .Y;

The "%" sign precedes the pin names into which GLOSS will be
substitute the appropriate net.

GLOSS will substitute an integer where a "$" is found, to be
used as an index variable in array within the BLISS modules.

The contents of the library as of now are as follows:

NAME : POOOM;

LOGIC: BUF(%Y,%A); { BUF is a non-inverting
INPUTS: .A; i buffer. }

QUTPUTS: .Y;

NAME : TOOOM;

LOGIC: NAND2(%Y,%A,%B): { NAND2 is a two-input
INPUTS: .A,.B; nand. }

QUTPUTS: .Y;

NAME : POO2M;

LOGIC: NINV(%Y,%A); { NINV is a non-inverting
INPUTS: .A; buffer. }

OUTPUTS: .Y;

NAME:TOO2M;

LOGIC: NOR2(%Y,%A,%B);
INPUTS: .A,.B;
OUTPUTS: .Y;

NAME : TOO4M;
L.OGIC: NOTT(%Y,%A):; { NOTT is an inverter. }
INPUTS: .A;
OUTPUTS: .Y;



NAME : TO08M;
LOGIC: AND2(%Y,%A,%B);
INPUTS: .A,.B;
QUTPUTS: .Y;

NAME:TO10M;

LOGIC: NAND3(%Y,%A,%B,%C);
INPUTS: .A,.B,.C;

QUTPUTS: .Y:

NAME:TO11M;

LOGIC: AND3(%Y,%A,%B,%C);
INPUTS: .A,.B,.C;
OUTPUTS: .Y;

NAME : TO20M;

LOGIC: NANDA(%Y,%A,%B,%C,%D);
INPUTS: .A,.B,.C,.D;

OUTPUTS: .Y;

NAME:TO21M;

LOGIC: AND4(%Y,%A,%B,%C,%D);
INPUTS: .A,.B,.C,.D;
OUTPUTS: .Y;

NAME : TO25M;

LOGIC: NOR4(%Y,%A,%B,%C,%D);
INPUTS: .A,.B,.C,.D;
OUTPUTS: .Y;

NAME:TO27M;

LOGIC: NOR3(%Y,%A,%B,%C);
INPUTS: .A,.B,.C;
QUTPUTS: .Y;

NAME : T032M;

LOGIC: OR2(%Y,%A,%B);
INPUTS: .A,.B;
OUTPUTS: .Y;

NAME : CO50F;
LOGIC: FNIB(%Y,%A);
INPUTS: .A;
OUTPUTS: .Y;

NAME : CO50L; _
LOGIC: LNIB(%Y,%A};
INPUTS: .A;
OUTPUTS: .Y;

{ NAND3 is a three input nand.}

{ AND3 is a three input AND. }

{ AND4 is a four input
AND. }

{ NOR4 is a four input
NOR. }

{ FNIB is a non-inverting
buffer. }

{ LNIB is a non-inverting
buffer. }

35



36

NAME:T074M; { OFF is a D-flip flop. }
LOGIC: DFF(%Q,%QB,%CK,%D,%PR,%CLR, .K+$);

INPUTS: .CK,.D,.PR,.CLR;

ouUTPUTS: .Q,.QB;

NAME : CO75M;
LOGIC: OR3(%Y,%A,%B,%C);
INPUTS: .A,.B,.C;

OUTPUTS: .Y;

NAME : TO86M;

LOGIC: XOR2(%Y,%A,%B): { XOR2 is a two input
INPUTS: .A,.B; exclusive OR. }

OUTPUTS: .Y;

NAME : T260M;
LOGIC: NOR5(%Y,%A,%B,%C,%D,%E); { NOR5 is a five input NOR. }
INPUTS: .A,.B,.C,.D,.E;

OUTPUTS: .Y;
NAME:FTO02M; { NAND2F is a faulted two input
LOGIC: NAND2F(%Y,%A,%B,%FA,%FB,%F0,%FP); - nand. }

INPUTS: .A,.B,.FA,.FB,.FO,.FP;
OUTPUTS: .Y;

NAME: FTO02M;

LOGIC: NOR2F(%Y,%A,%B,%FA,%FB,%F0,%FP);

INPUTS: .A,.B,.FA,.FB,.FO,.FP; { NOR2F is a faulted two input
QUTPUTS: .Y; i NOR. }

NAME:FTOO8M;

LOGIC: AND2F(%Y,%A,%B,%FA,%FB,%F0,%FP);
INPUTS: .A,.B,.FA,.FB,.FO,.FP;

OUTPUTS: .Y;

NAME: FT032M;

LOGIC: OR2F(%Y,%A,%B,%FA,%FB,%F0,%FP);
INPUTS: .A,.B,.FA,.FB,.FO,.FP;
OUTPUTS: .Y;

NAME:FTO27M;

LOGIC: NOR3F(%Y,%A,%B,%C,%FA,%FB,%FC,%F0,%FP);
INPUTS: .A,.B,.C,.FA,.FB,.FC,.FO,.FP;

OUTPUTS: .Y;

NAME :FT025M:

LOGIC: NOR4F(%Y,%A,%B,5C,%D%FA,%FB,%FC,%FD,%F0,%FP);
INPUTS: .A,.B,.C,.D,.FA,.FB,.*Z,.FD,.FO,.FP;
OUTPUTS: .Y;



NAME:FT260M;

LOGIC: NORSF(%Y,%A,%B,%C,%D,%E,%FA,%FB,%FC,%FD,%FE,%F0,%FP);
INPUTS: .A,.B,.C,.D,.E,.FA,.FB,.FC,.FD,.FE,.FO,.FP;

QUTPUTS: .Y;

NAME:FTO11M;
LOGIC: AND3F(%Y,%A,%B,%C,%FA,%FB,%FC,%FO0,%FP);
INPUTS: .A,.B,.C,.FA,.FB,.FC, .FO, .FP;

OUTPUTS: .Y;

NAME:FT021M;

LOGIC: AND4F(%Y,%A,%B,%C,%D,%FA,%FB,%FC,%FD,%F0,%FP);
INPUTS: .A,.B,.C,.D,.FA,.FB,.FC,.FD,.FO,.FP;

OUTPUTS: .Y;

NAME:FTO10M;

LOGIC: NAND3F(%Y,%A,%B,%C,%FA,%FB,%FC,%F0,%FP);
INPUTS: .A,.B,.C,.FA,.FB,.FC,.FO,.FP;

OUTPUTS: .Y;

NAME:FT020M; :

LOGIC: NAND4F(%Y,%A,%B,%C,%D,%FA,%FB,%FC,%FD,%F0,%FP);
INPUTS: .A,.B,.C,.D,.FA,.FB,.FC,.FD,.FO,.FP;

OUTPUTS: .Y;

NAME : FCO75M;

LOGIC: OR3F(%Y,%A,%B,%C,%FA,%FB,%FC,%FO0,%FP);
INPUTS: .A,.B,.C,.FA,.FB,.FC,.FO0, .FP;
OUTPUTS: .Y; ]

NAME:FTOB6M;

LOGIC: XOR2F(%Y,%A,%B,%FA,%FB,%F0,%FP);
INPUTS: .A,.B,.FA,.FB,.FO,.FP;

OUTPUTS: .Y;

NAME : FPOOOM;

LOGIC: FBUFF(%Y,%A,%FO,%FP);
INPUTS: .A,.FO,.FP;

OQUTPUTS: .Y; :

NAME : FPOO2M;
LOGIC: NINVF(%Y,%A,%FO0,%FP);
INPUTS .A,.FO, .FP;

OUTPUTS: .Y;

NAME:FT004M;

LOGIC: NOTTF(%Y,%A,%F0,%FP);
INPUTS: .A,.FO,.FP;

OUTPUTS: .Y;

37



38

NAME: FCO50F;

LOGIC: FNIBF(%Y,%A,%F0,%FP);
INPUTS: .A,.FO,.FP;

OUTPUTS: .Y;

NAME : FCO50L;

LOGIC: LNIBF(%Y,%A,%F0,%FP);
INPUTS: .A,.FO,.FP;

OUTPUTS: .Y;



3.2 RTNES.R32

RTNES.R32 contains the macro for each gate defined in the library.
The macro expansion occurs during the compilation of the BLISS coded
programs created by the GLOSS.FOR (The variables in this file do

not need to exactly match those in the Library, but the partslist
and Library names must match exactly. The order of the variables is
pertinent).

The macros are formatted as follows:

MACRO

BUF(R1,11)=
R1= .I1 %,

NAND2(R1,11,12)
.I

R1= NOT (.I1 AND .I2 ) %,

NOR5(R1,11,12,13,14,15)=
R1= NOT ((((.I1 OR .I2) OR .I3) OR .I4) OR .I5) %,

ALU(X,Y,A,B,C,D,E,F,G)= { ALU is a macro to
BEGIN simulate the logic of
LOCAL OR1Y,0R2Y,0R3Y,0R4Y; an ALU device. }
OR3(OR1Y,A,B,C);
OR3(OR2Y,D,B,E);
OR2 (OR3Y,D,F);
OR2(OR4Y,A,G);
NAND2 (X,0R1Y,0R2Y);
NAND3(Y,OR3Y,B,0R4Y);
ENDZ%,

CLK(R1,I1,L)=
ST[L]= .11 %;

39



These are the Bliss macros that are used by the
routines.

MACRO
BUF(R1,I1)=
R1= .I1 %,

NAND2(R1,11,12)=
R1= NOT (.I1 AND .I2 ) %,

NINV(R1,I1)=
R1= .I1 %,

NOR2(R1,1I1,12)=
Ri= NOT (.I1 OR .I2) %,

NOTT(R1,11)=
R1= NOT .I1 %,

AND2(R1,11,12)=
R1= .I1 AND .I2 %,

NAND3(R1,11,12,13)=
R1= NOT ((.I1 AND .I2) AND .I3) %,

NAND4(R1,11,12,13,14)=
R1= NOT ((.I1 AND .I2) AND .I3) AND .I4 %,

AND3(R1,11,12,13)=
R1= (.I1 AND .I2) AND .I3 %,

AND4(R1,11,12,13,14)=
Ri1= ((.I1 AND .I2) AND .I3) AND .I4 %,

NOR4(R1,11,12,13,14)=
R1= NOT (((.I1 OR .I2) OR .I3) OR .I4) %,

NOR3(R1,11,12,13)=
R1= NOT ((.I1 OR .I2) OR .I3) %,

OR2(R1,11,12)=
R1= .I1 OR .I2 %,

FNIB(R1,I1)=
R1= .I1 %,

LNIB(R1,11)=
Rl= .IT %,

40

Bliss



DFF(R1,R2,11,12,13,14,L)=
R1= (((.ST[L] AND (NOT .I1) OR .I2) AND .I1) AND .I4) OR (NOT .I3) ;
R2= (NOT .R1) OR (NOT .I4) ;
ST[L]= .RI ;
ST[L*1]= .R2 &,

OR3(R1,11,12,13)=
R1= .I1 OR .I2 OR .I3 %,

XOR2(R1,11,12)=
R1= (.I1 AND (NOT .I2)) OR (.I2 AND (NOT .I1)) %,

NOR5(R1,I1,I

2,13,14,15)=
R1= NOT (

I

I

I
((.I1 OR .I2) OR .I3) OR .I4) OR .I5) %,

(
2,FA,FB,FO,FP)=
1

AND2F (R1,I1,
OR .FA) AND (.I2 OR .FB)) AND NOT .FO) OR .FP %,

I1
R1= (((.
1

OR2F (R1,11,12,FA,FB,FO,FP)=
Ri= (((.I1 AND NOT .FA) OR (.I2 AND NOT .FB)) AND NOT .FO) OR .FP %,

NAND2F (R1,11,12,FA,FB,FO,FP)=
R1=((NOT((.I1 OR .FA) AND (.I2 OR .FB))) AND NOT .FO) OR .FP %,

NOR2F(R1,11,12,FA,FB,FO,FP)=
R1=((NOT (( .I1 AND NOT .FA) OR (.I2 AND NOT .FB))) AND NOT .FO)
OR .FP %,

NOR3F(R1,11,12,13,FA,FB,FC,FO,FP)= -
R1=((NOT (( .I1 AND NOT .FA) OR ( .I2 AND NOT .FB) OR
(.I3 AND NOT .FC))) AND NOT .FO) OR .FP %,

NOR4F(R1,11,12,13,14,FA,FB,FC,FD,FO,FP)=
R1= ((NOT ({ .I1 AND NOT .FA) OR ( .I2 AND NOT .FB)
OR (.I3 AND NOT .FC) OR ( .I4 AND NOT .FD))) AND NOT .FO) OR .FP%,

NORSF(R1,11,12,13,14,15,FA,FB,FC,FD,FE,FO,FP)=
R1= ((NOT (( .I1 AND NOT .FA) OR (.I2 AND NOT .FB)
OR (.I3 AND NOT .FC) OR ( .I4 AND NOT .FD) OR (.I5 AND NOT .FE)))
AND NOT .FO) OR .FP%,

AND3F(R1,I1,12,13,FA,FB,FC,FO,FP)=

R1= ((( .I1 OR .FA) AND ( .I2 OR .FB) AND ( .I3 OR .FC)) AND NOT .FO)
OR .FP%,

41



AND4F(R1,11,12,13,14,FA,FB,FC,FD,FO,FP)=
Rl1= (( .I1 OR .FA) AND ( .I2 OR .FB) AND ( .I3 OR .FC) AND
( .14 OR .FD)) AND NOT .FO OR .FP %,

NAND3F(R1,11,12,13,FA,FB,FC,FO,FP)=
R1= ((NOT (( .I1 OR .FA) AND (.I2 OR .FB) AND (.I3 OR .FC)))
AND NOT .FO) OR .FP%,

NAND4F(R1,11,12,13,14,FA,FB,FC,FD,FO,FP)=
R1= ((NOT (( .I1 OR .FA) AND (.I2 OR .FB) AND (.I3 OR .FC)
AND ( .I4 OR .FD))) AND NOT .FO) OR .FP%,

OR3F(R1,I1,12,13,FA,FB,FC,FO,FP)=
R1= (( .I1 AND NOT .FA) OR ( .I2 AND NOT .FB)
OR (.I3 AND NOT .FC)) AND NOT .FO OR .FP%,

XOR2F (R1,11,12,FA,FB,FO,FP)=
R1= ((( .I1 AND NOT .FA) AND NOT ( .I2 AND NOT .
(( .I2 AND NOT .FB) AND NOT ( .I1 AND NOT .
AND NOT .FO OR .FP%,

mm
> m
S Naaat?
St t?
Ss”

FBUFF (R1,11,FO,FP)=
R1= (.I1 AND NOT .FO) OR .FP%,

NINVF(R1,I1,FO,FP)= |
R1= (.I1 AND NOT .FO) OR .FP%,

i

NOTTF(R1,11,FO,FP)=
R1= NOT ((.I1 AND NOT .FP) OR .FO) %,

FNIBF(R1,I1,FO,FP)=
Rl1= (.I1 AND NOT .FO) OR .FP%,

LNIBF(R1,11,FO,FP)=
R1= (.I1 AND NOT .FO) OR .FP%,

ALU(X,Y,A,B,C,D,E,F,G)=

BEGIN
LOCAL OR1Y,OR2Y,OR3Y,0R4Y;
OR3(OR1Y,A,B,C);
OR3(OR2Y,D,B,E);
OR2(OR3Y,D,F);
OR2(OR4Y,A,G);
NAND2(X,OR1Y,0R2Y) ;
NAND3 (Y,OR3Y,B, Cr4Y)

END%,

CLK(R1,I1,L)=
ST[L]= .11 %;

42



This is a keyword macro to simulate memory devices. It accepts from 1 to 16
address parameters, from 1 to 16 output parameters and from 1 to 16 data
parameters. Unused address,data,or output parameters are set to 'NINE'
(which equals 99) and are later set to 0 for the computations involving
full word values.

KEYWORDMACRO

MEMR(YO=NINE, Y1=NINE,Y2=NINE, Y3=NINE, Y4=NINE, Y5=NINE, Y6=NINE, Y7=NINE, Y8=NINE,
Y9=NINE,Y10=NINE,Y11=NINE, Y12=NINE, Y13=NINE, Y14=NINE, Y15=NINE, Y16=NINE,
AO=NINE,A1=NINE,A2=NINE,A3=NINE,A4=NINE,A5=NINE,A6=NINE,A7=NINE,
A8=NINE,A9=NINE,A10=NINE,A11=NINE,A12=NINE,A13=NINE,A14=NINE,A15=NINE,
A16=NINE,EN=NINE,RW=NINE,DO=NINE,D1=NINE,D2=NINE,D3=NINE,D4=NINE,
D5=NINE,D6=NINE,D7=NINE,D8=NINE,D9=NINE,D10=NINE,D11=NINE,D12=NINE,
D13=NINE,D14=NINE,D15=NINE,D16=NINE) =
BEGIN

LOCAL JJ,KK;
KK = 0;
IF (.A0 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .AO;
KK = .KK + 1;
END;
IF (.A1 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .Al;
KK = KK + 1
END;
IF (.A2 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .A2;
KK = KK + 1
END;
IF (.A3 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .A3;
KK = KK +1
END;
IF (.A4 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .A4;
KK = KK + 1
END;
IF (.A5 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .A5;
KK = KK + 1
END;
IF (.A6 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .A6:
KK = KK + 1
END;

43



44

IF (.A7 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK +1
END;
IF (.A8 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1
END;
IF (.A9 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1
END;
IF (.A10 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1
END;
IF (.A11 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = .KK + 1
END;
IF (.A12 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1
END;
IF (.A13 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1
END:;
IF (.A14 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1
END;
IF (.A15 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1
END;
IF (.A16 NEQ 99) THEN
BEGIN
ADDARY[.KK] = .
KK = KK + 1;
END;

A7:

Al10;

All;

Al2;

Al3;

Al4;

Al5;

Al6;



NAB
RWB .
ENB = .
KK = 0;

nwon n

IF (.DO
BEGIN

END;
IF (.D1
BEGIN

END;
IF (.D2
BEGIN

END;
IF (.D3
BEGIN

END;
IF (.D4
BEGIN

END;

IF (.D5
BEGIN

END;
IF (.D6
BEGIN

END;
IF (.D7
BEGIN

END;
IF (.D8
BEGIN

END;

KK - 1;

RW;

EN;

NEQ 99) THEN

DATARY[.KK] = .
KK = .KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = .KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = .KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = KK + 1;

NEQ 99) THEN

DATARY[.KK] = .
KK = KK + 1;

D3;

45



46

IF (.D9 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = KK + 1;
END;
IF (.D10 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = KK + 1;
END;
IF (.D11 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = KK + 1;
END;
IF (.D12 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = .KK + 1;
END;
IF (.D13 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = KK + 1;
END;
IF (.D14 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = KK + 1;
END;
IF (.D15 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = KK + 1;
END;
IF (.D16 NEQ 99) THEN
BEGIN
DATARY[.KK] =
KK = KK + 1;
END;
IF .KK EQL O THEN
NDB = .KK
ELSE
NDB

KK - 1;

IF .RWB NEQ 99 THEN
BEGIN
RWMEM() ;
END
ELSE
BEGIN
PRMS() ;
END;

KK = 0;

.D10;

.D11;

.D12;

.D13;

.D14;

.D15;

.D16;



IF (.Y0 NEQ 99) THEN
BEGIN

YO

KK

.OUTARY[.KK];
KK + 1;

END;
IF (.Y1 NEQ 99) THEN
BEGIN
Y1
KK

LOUTARY[.KK]:
KK + 1;

END;
IF (.Y2 NEQ 99) THEN
BEGIN
Y2 = .OUTARY[.KK];
= KK + 1;

IF (.Y3 NEQ 99) THEN

.OUTARY[.KK];
KK + 1;
END;
IF (.Y4 NEQ 99) THEN
BEGIN
Y4
KK

.OUTARY[.KK];
KK + 1;

END;
IF (.Y5 NEQ 99) THEN
BEGIN
Y5
KK

.OUTARY[.KK];
KK+ 1;

END;

IF (.Y6 NEQ 99) THEN
BEGIN

Y6

KK

-OUTARY[.KK];
KK + 1;

END;
IF (.Y7 NEQ 99) THEN
BEGIN
Y7
KK

.OUTARY[.KK];
KK + 1;

END;
IF (.Y8 NEQ 99) THEN
BEGIN
Y8
KK

+OUTARY[.KK];
KK + 1;

END;
IF (.Y9 NEQ 99) THEN
BEGIN '
Y9

KK

.OUTARY[.KK];
KK + 1;

nou

END;



48

IF (.Y10 NEQ 99) THEN
BEGIN

Y10 = .OUTARY[.

KK = .KK + 1;
END;
IF (.Y11 NEQ 99) THEN
BEGIN

Y11 = ,OUTARY[.

KK = .KK + 1;
END;
IF (.Y12 NEQ 99) THEN
BEGIN

Y12 = .OUTARY[.

KK = KK + 1;
END;
IF (.Y13 NEQ 99) THEN
BEGIN

Y13 = .OUTARY[.

KK = KK + 1;
END;
IF (.Y14 NEQ 99) THEN
BEGIN

Y14 = ,OUTARY[.

KK = KK + 1;
END;
IF (.Y15 NEQ 99) THEN
BEGIN

Y15 = .OUTARY[.

KK = .KK + 1;
END;
IF (.Y16 NEQ 99) THEN
BEGIN

Y16 = .OUTARY[.

END
END%;

KK];

KK];

KKI1;

KK]:

KK];

KK];

KK]



3.3 PARTSLIST

The partslist describing the circuit must be of the following format:

(* preliminary declarations *)
(The declarations must be given in the following order)

USER: “NEMEROFF";
(Every partslist is required to have a user name)
NAME: DWNCNTG;

(A name is required for every circuit)
PURPOSE: TEGATE;
(The purpose declaration is optional)
LEVEL: CHIP;
(The level declaration is optional)
(* declare logical types *)
TYPES: NAND, INV;
(Every component is required to have a logical type)
(* declare the external connectors *)
EXT:: X, Y, D3, D2, D1, DO;
INPUTS: X, .Y;
OUTPUTS: .DO, .D1, .D2, .D3;
(* declare components *)
NAND: NAND1, NAND2, NAND3, NAND4;
INV: NOT1, NOT2;
(Every component must be identified as a logical type)
END; .
(* End of preliminary declaration section *)
COMPSEGMENT;
(This segment defines the circuit connectivity)
(* declare main components with input and output buffers *)
= X*N1, Y*N2, DO*NDO
DI*ND1;
(* declare inner components *)

NAND1 = A*N2, B*N4, Y*NDO;

NAND2 = A*N2, B*N3, Y*NDI;

NAND3 = A*N4, B*N1, Y*ND2; (* order is not important *)
NAND4 = A*N1, B*N3, Y*ND3;

NOT1 = A*N1, Y*N2;

NOT2 = A*N3, Y*N4;

ENDCOMPS;

(* End of COMPSEGMENT *)

(* Enter fault detection pins or memory locations *)

DETECTSEGMENT;

PINS;

(These two declarations are not optional even if no
faults are to be simulated. If there are no fauits to
be entered in the fault 1list, then type:)

ENDC;

END OF FILE;

(Otherwise see detect Point List, page 52)

49



50

Comments:

The order in which the circuit components are listed in the
COMPSEGMENT is arbitrary.

Net names must be legal Bliss variables.
Each component of the compsegment is defined as follows:
component = pin*net {, pin*net, ...> .

Names of input and output pins of a component must be identical to
the corresponding names, as defined in LIBRARY.DAT, pages 8-13.
The pins are identified as either input pins or output pins by
referring to the specific part in the library.

The partslist does not distinguish between upper and lower case
characters.

The external connectors have input or output buffers, the nets of
which connect to the other parts of the circuit. Every input and
output pin is required to be associated with a buffer. If real
buffers do not exist, then fictitious buffers must be inserted.



3.4 MEMORY PARTS

If you have memory devices to be included into the partslist, they
are to be entered in this format:

1. Under the 'TYPES' declaration "MEMR" is the memory type.

2. In the 'COMPSEGMENT', declaration of the part number (for this
example let us choose 'U3') is declared as follows:
u3s = AO*U7Y, A1*U43Y, A'n'*U15Y,
EN*U9Y, RW*U77Y, DO*U64Y,
D1*U90Y, D'n'*UY2Y, YO*U3YO,
Y1*U3Y1l, Y'n'*U3Y'n';

where AO0...A'n' = Address bits.

EN = Enable bit.

RW = Read/Write bit(For RAM, only).
DO...D'n' = Data bits.

Y0...Y'n' = Qutput bits.

The output nets of the part (U3) become:
U3yo...u3y'n'.

51



52

3.5 DETECT POINT LIST

The user has the ability to declare certain pins or memory addresses
as 'detect points'. These detect points are locations which are
watched by IGLOSS and tested at the end of each cycle to determine
if a fault was detected. A detected fault is defined as a dis-
crepancy between the 0 bit (the unfaulted machine) and any of the
other 31 bits (possibly faulted machines).

The declaration of 'detect points' is done in the partslist.
Following the 'ENDCOMPS;' the detect list is described using this
format:

DETECTSEGMENT;
PINS; (* declare the pins to be watched *)
u1y;
u20Y;
U33y;
u3ay;
ADDRESSES; (* declare hex memory addresses to be
watched *)
00002;
00010;
00016;
00018;
ENDDET; ; i

The pins that are declared, are the output nets of the part number.
The addresses declared are any location in user defined memories.
The file is then closed in this manner :

ENDC;
END_OF FILE;



them

3.6 FAULT INPUT LIST

If the user wishes to choose the gates to be faulted, he must enter

in a file which he names. When IGGLOSS is run it will ask for the
filename and copy it into a file called {FLTVAL.DAT).

To declare the faultlist use the following format:
First delcare the parts to be faulted:

(* declare faults *)

PINFLTS;

u3z: Y* 0;
Ul14: A* 1;
NOR54: B* 0;
NOT1: Y* 0;
NOT4: Y* 1;
u22: A*  1;
ENDPINS:

Then if a fault in ROM is desired, declare the words in memory
and the bits to be faulted like this:

MEMFLTS;

000001* 4;

000235* 25;

000236* 16;

ENDMEM;
(The memory addresses are in hex; bit positions, in decimal)

Then the file is ended in this manner:

ENDC;
END_OF_FILE;

In this form 'U32' is the part name, 'Y' is the pin name, and 0 or 1
is the stuck at zero or stuck at one fault.

In this form '000001' is the word in ROM which will be faulted.

4 is the bit of this word which will be flipped from 0 to 1 or
from 1 to 0 in order to create the memory fault. Since '000001'
appears as the first word in this memory fault list, it becomes
the faulted value of that word in the first faulted machine. The
faulted value of '000235' becomes the fault in the second faulted
machine and the rest follow consecutively.

53



54

3.7 DETECTED FAULTS OUTPUT LIST

Once the user has chosen test points, faults and input sequence,
IGGLOSS will, at each cycle, identify the first detect point in the
list at which the fault is detected.

Only the first detect point at which the fault is discovered is printed
out by IGGLOSS.

example:
ALU -- page 75
FAULT NAME TEST PIN # CYCLE #
INV3 INV3Y 1
INV35 NOR51Y 1
INV4 INV4Y 1
INV5 XOR49 9

(* Fault INV3 is detected at detect point INV3Y on the first cycle. *)

Further modification of IGGLOSS to identify all detect points

corresponding to a given fault is a relatively easy task.



3.8 FICTITIOUS CLOCKS

In the event that the circuit to be simulated has a feedback loop,
the partslist will be unorderable. In this case, the user must choose
which nets in the circuit to "break" in order to eliminate all the

loops.

Fictitious clocks must be inserted on each net which is to be

broken. The following procedure should be followed to add the
fictitious gates to the partslist.(It is noted that fictitious clocks
are treated like devices in their interconnections in the partslist).

(1)

(2)

(3)

In the section of the partslist where the logical types are
declared, add type CLK to the list.
ex: TYPES: NAND, INV,CLK;

In the section in which the components are declared, add type
CLK and enough components to correspond to the number of
"ficticious" gates needed.
ex: .

INV: NOT1, NOTZ2;
CLK: C1, c2, ... Cn;

In the section of the partslist between the words "COMPSEGMENT;"
and "ENDCOMPS;", for each "ficticious gate", choose an "output
net" to correspond to the "broken net" and list:
component = A*"broken.net", Y*"output net";

ex: COMPSEGMENT;

C1 = A*U35Y, Y*C1Y;
c2 = A*U36Y, Y*C2Y;
Cn = A*U45Y, Y*CnY;
ENDCOMPS;

For an actual example of "fictitious gates", see the example of
the Downcounter.

55



56

3.9 MEMORY DATA FILES

The data which controls the contents,size and range of the
memory devices in the partslist is stored in a file and entered
in by the user in response to the prompt:

Enter name of Memory Input File.

The memory input file is to be formatted in the following manner:

0,15,0,15,100,000; (* 1 %)
( * "100,000" not used but must be present * )

RADIX,DECIMAL; (* 2 *)
000,000003,000004,000005,000006,000007,000008; (* 3 *)
006,000009,000010,000011,000012,000013,000014; (* 4 *)
012,000015,000000,000001,000002; (* 5 %)

END

The data on line (* 1 *) represents:
Low data address (i.e., starting decimal location for ROM)
High data address (i.e., ending decimal location for ROM)
Low writeable address (i.e., starting decimal Tocation for RAM)
High writeable address (ie. ending decimal location for RAM)
“100,000" are not used but must be present

Line (* 2 *) sets the radix to decimal.

Lines (* 3 *)- (* 5 *) consist of the data to be stored in

memory with the first number in the line being the address of the
piece of data which directly follows it(the line header), and the rest
of the data on that line is stored in consecutive addresses (Memory
addresses and contents are in decimal format).

When memory is read, the routines will rely on the line headers as the
displacement (to be compensated for),when searching for non-consecutive
locations in memory.

ex. 000 is the address for the data 000003. then
001 will be the address for 000004

therefore since:
012 is the address for 000015 then
013 is the address for 000000 and

014 is the address for 000001 and
015 is the address for 000002.

The file must close with the word 'END’'.



VARS:

INPUT:

(1)

(2)
(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
(12)

3.10 P-ORDERING

LIST1 = unordered list

LIST2 ordered list
MAIN = position of externals in partslist
NUM = number of components in partslist

Equate input nets to external input pins and add them to LIST2.
Set FIN = true.
Find the next statement in LIST1 which has not yet been

placed in LIST2 (not DONE). If all statements are DONE
then go to (10)

.Set FIN = false.

Check if the values of all inputs to the statement are known.
If not, go to (8).

Check if statement is a ficticious clock. If so, add it
to the list of ficticious clocks (LISFC) and go to (8).

Add statement to LIST2.

Set statement = DONE.

Add statement output to_list of knowns (KNOWN).
Increment NUM.

If loop was executed more than NUM times, then print an
error message and go to (11).

If FIN = true then go to (2).
Add list of ficticious clocks (LISFC) to LIST2.

-
Equate external output pins to output nets.

57



4.0 ARITHMETIC LOGIC UNIT

USER INPUT
4.1 PARTSLIST -- ALU(Fig.2)
(ALU.PRT)
USER: "DEUTSCH";
NAME : ALU;
PURPOSE: TESTING;
LEVEL:  SUBCHIP;
TYPES:  T004M,ALUMAC, POOOM, POO2M, TOBEM, TO32M,TO02M, TO10M,
T260M, T025M, TO20M, TOOOM, CO75M;
EXT: : SEL1,SEL2,SEL3,SEL4,A1,A2,A3,A4,B1,B2,B3,B4,
CONTROL, CARIN,
0UT1,0UT2,0UT3,0UT4,COMPARE,CAROUT, LACO1,LACOZ;
INPUTS: .SEL1,.SELZ2,.SEL3,.SEL4,.Al,.A2,.A3,.A4,.B1,.B2,.B3,
.B4, .CONTROL, .CARIN;
QUTPUTS: .0UT1,.0UT2,.0UT3,.0UT4,.COMPARE, .LACO1, .LACO2, .CAROUT;
TOO4M: INV1, INV2, INV3, INV4, INV5, INV6, INV7,INV8, INV9, INV1O, INV11, INV12,
INV13,INV14,INV15,INV16,INV17,INV18, INV35, INV83, INV82, INV8B4, INVS5,
INV74,INV75,INV76,INV77,INV78,INV73,INV79, INV8BO, INV8];
ALUMAC: ALUMACI,ALUMACZ2,ALUMAC3,ALUMACS;
pOOOM:  SEL1,SEL2,SEL3,SEL4,A1,A2,A3,A4,B1,B2,B3,B4,CONTROL,CARIN;
PO0O2M:  QUT1,0UT2,0UT3,0UT4,COMPARE,CARQUT,LACO1,LACO2;
T086M:  XOR49,XOR54,X0R58,X0R61,X0R68,X0R69,X0R70,X0R71;
T032M:  OR46,0R53,0R57,0R60;
TO02M:  NOR62,NOR67;
TO10M:  NANDG65;
TO20M:  NAND63,NAND64;
TOOOM:  NANDG66;
C075M: OR45,0R52,0R56,0R59;
TO25M:  NOR44,NOR48,NOR51,NOR55,NOR72;
T260M:  NOR47,NOR50;
END;
COMPSEGMENT;
= SEL1*ISEL1,SEL2*ISEL2,SEL3*ISEL3,SEL4*ISEL4,A1*IAL1,A2*IA2,
A3*IA3,A4*1A4,B1*1B1,B2*IB2,B3*IB3,B4*IB4,CONTROL*ICONTROL,
CARIN*ICARIN,OQUT1*I0UT1,0UT2*I0UT2,0UT3*I0UT3,0UT4*I0UT4,
COMPARE*ICOMPARE, LACO1*ILACOL,LACO2*ILACO2,CAROUT*ICAROUT;
INV1 = A*ISEL4,Y*INV1Y;
INV2 = A*ISEL3, Y*INV2Y;
INV3 = A*ISELZ2,Y*INV3Y;
INV4 = A*ISEL1,Y*INV4Y;
INV5 = A*IB4,Y*INV5SY;
INV6 = A*IA4,Y*INVeY;
INV7 = A*IB3,Y*INV7Y; >
INVS = A*IA3,Y*INV8Y;
INV9 = A*IB2,Y*INVOY;
INV10 = A*IA2,Y*INV1OY;
INV11 = A*IB1,Y*INV11Y;
INV12 = A*IALl,Y*INV12Y;
INV13 = A*INVSY, Y*INV13Y;

58



INV14
INV15
INV16
INV17
INV18
INV35
ALUMAC1

ALUMACZ
ALUMAC3
ALUMACA

NOR44
INV83
OR45
OR46
NOR47
NOR48
XO0R49
NOR50
INV82
NOR51
INV84
OR52
OR53
XOR54
NORS5
INVB5
OR56
OR57
XOR58
OR59
OR60
XOR61
NOR62
NANDG63
NAND64
NAND65
NAND66
NOR67
XOR68
XOR69
XOR70
XOR71
NOR72
INV73
INV74
INV75
INV76
INV77
INV78
INV79

nouw w wouounon

A*INV7Y,Y*INV14Y;

A*INVOY, Y*INV15Y;

A*INV11Y,Y*INV16Y;

A*ICONTROL, Y*INV17Y;

A*ICARIN,Y*INV18Y;

A*INV17Y,Y*INV35Y;
AA*INV13Y,BB*INV6Y,CC*INV2Y,DD*INVSY, EE*INV1Y,FF*INV4Y,
GG*INV3Y,XX*ALUMAC1X, YY*ALUMAC1Y;

= AA*INV14Y,BB*INV8Y,CC*INV2Y,DD*INV7Y,EE*INV1Y, FF*INV4Y,

GG*INV3Y,XX*ALUMAC2X, YY*ALUMAC2Y;
AA*INV15Y,BB*INV10Y,CC*INV2Y,DD*INVIY,EE*INV1Y, FF*INV4Y,
GG*INV3Y,XX*ALUMAC3X, YY*ALUMAC3Y;

= AA*INV16Y,BB*INV12Y,CC*INV2Y,DD*INV11Y,EEXINV1Y, FF*INV4Y,

L | T | O | | A 1 {7 S I | N | N | I { Y | O ¥ | (| { I | N 1 ¥ | I { O N T | | I T [ B 1

GG*INV3Y, XX*ALUMAC4X, YY*ALUMAC4Y;

Y*NOR44Y,A*ALUMAC1X, B*ALUMAC2X, C*ALUMAC3X,D*ALUMAC4Y;
Y*INV8B3Y,A*NOR44Y;
Y*OR45Y,A*ALUMAC1X, B*ALUMAC2X, C*ALUMAC3Y;
Y*OR46Y,A*ALUMAC1X, B*ALUMAC2Y;

Y*NOR47Y ,A*ALUMAC1X,B*ALUMAC2X,C*ALUMAC3X,D*ALUMAC4X, E*XINV18Y;
Y*NOR48Y,A*ALUMACIX, BXALUMAC2X, C*ALUMAC3X, D*ALUMACAX;
Y*XOR49Y,A*ALUMAC1X, B*ALUMAC1Y;
Y*NOR50Y,A*ALUMAC2X, B*ALUMAC3X, C*ALUMAC4X,D*INV18Y, E*INV35Y;
Y*INV82Y,A*NOR50Y;
Y*NOR51Y,A*ALUMAC2X, B*ALUMAC3X, C*ALUMAC4Y,D*INV35Y;
Y*INV84Y,A*NOR51Y;
Y*OR52Y,A*ALUMAC2X,B*ALUMAC3Y,C*INV35Y;
Y*OR53Y,A*ALUMAC2Y,B*INV35Y;

Y*XOR54Y,A*ALUMAC2X, B*ALUMAC2Y;

Y*NOR55Y, A*ALUMAC3X, B*ALUMAC4X, C*INV18Y,D*INV35Y;
Y*INV8B5Y,A*NORS5Y;

Y*OR56Y,A*ALUMAC3X, B*ALUMAC4Y, C*INV35Y;
Y*OR57Y,A*ALUMAC3Y,B*INV35Y;

Y*XOR58Y,A*ALUMAC3X, B*ALUMAC3Y;
Y*OR59Y,A*ALUMAC4Y,B*INV18Y,C*INV35Y;
Y*OR60Y,A*INV35Y,B*ALUMACAY;

Y*XOR61Y,A*ALUMACA4X, B*ALUMACAY;
Y*NOR62Y,A*INV18Y,B*INV35Y;
Y*NAND63Y,A*INV83Y,B*0R45Y,C*0R46Y,D*ALUMACLY;
Y*NAND64Y,A*INV82Y,B*INV84Y, C*0R52Y,D*0R53Y;
Y*NAND65Y,A*INV8B5Y,B*0R56Y,C*0R57Y;
Y*NAND66Y,A*OR59Y, B*0R60Y;
Y*NOR67Y,A*NAND63Y,B*NOR47Y;

Y*XOR68Y,A*XOR49Y, B*NAND64Y;
Y*XOR69Y,A*XOR54Y,B*NAND6SY;

Y*XOR70Y,A*XOR58Y, B*NAND66Y;
Y*XOR71Y,A*XOR61Y,B*NOR62Y;
Y*NOR72Y,A*XOR68Y,B*XOR69Y,C*XOR70Y,D*X0R71Y;
Y*INV73Y,A*NOR72Y;

Y*ILACO1,A*NAND63Y;

Y*ICAROUT,A*NOR67Y;

Y*ILACO2,A*NOR48Y;

Y*I0UT4,A*XOR68Y;

Y*IQUT3,A*X0R69Y;

Y*ICOMPARE,A*INV73Y;

59



Y*I0UTZ,A*X0R70Y;
Y*IOUT1,A*XOR71Y;

INV80
INV81
ENDCOMPS;
DETECTSEGMENT;
PINS;
INV2Y;
INV3Y;
INVaY;
XOR49Y;
NOR50Y;
INV1OY;
INVB2Y;
NOR47Y;
NOR48Y;
NOR51Y;
OR52Y;
OR53Y;
NAND63Y;
NAND64Y;
NAND65Y;
NAND66Y;
XOR68Y;
XOR69Y;
XOR70Y;

ENDDET;
ENDC;
END_OF_FILE;

60



PROGRAM OUTPUT
4.2 P-ORDERING -- ALU

ISELL -
ISEL2 =
ISEL3 -
ISEL4 _ -
IAL -
IA2 -
IA3 -
IA4 -
181 -
1B2 -
183 -
184 -
ICONTROL -
ICARIN -

NOTT(INV1Y,ISEL4);

NOTT(INV2Y,ISEL3);

NOTTF (INV3Y, ISEL2,ZAND[0000000001],ZERO) ;
NOTTF (INV4Y, ISEL1,ZAND[0000000003],ZERO) ;
NOTTF(INV5Y,IB4,ZAND[0000000004],ZERO);
NOTTF(INV6Y, IA4,ZAND[0000000005] ,ZERO) ;
NOTTF(INV7Y,1B3,ZAND[0000000006],ZERO);
NOTTF(INV8Y,IA3,ZAND[0000000007],ZERQ);
NOTTF(INV9Y, IB2,ZAND[0000000008]},ZERO);
NOTTF (INV10Y, IA2,ZAND[0000000009],ZERO);
NOTTF(INV11Y,IB1,ZAND[0000000010],ZERO);
NOTTF(INV12Y,IA1,ZAND[0000000011],ZERO);
NOTTF(INV13Y, INV5Y,ZAND[0000000012],ZERO) ;
NOTTF(INV14Y,INV7Y,ZAND[0000000013],ZERO);
NOTT(INV15Y, INVIY);

NOTT(INV16Y,INV11Y);

NOTT(INV17Y,ICONTROL);

NOTT(INV18Y, ICARIN);

NOTTF (INV35Y, INV17Y,ZAND[0000000002],ZERO) ;
ALU(ALUMAC1X,ALUMAC1Y, INV13Y, INV6Y, INV2Y, INV5Y, INV1Y, INV4Y, INV3Y);

. .CONTROL;
..CARIN;

61



ALU(ALUMACZX,ALUMACZY,INV14Y,INV8Y,INV2Y,INV7Y,INV1Y,INV4Y,INV3Y);
ALU(ALUMAC3X,ALUMAC3Y, INV15Y, INV1OY, INV2Y, INVOY, INV1Y, INV4Y, INV3Y);
ALU(ALUMAC4X,ALUMAC4Y,INV16Y,INVlZY,INVZY,INVllY,INVlY,INV4Y,INV3Y);
NOR4F (NOR44Y,ALUMAC1X,ALUMAC2X,ALUMAC3X,ALUMAC4Y, ZERO, ZERO, ZERO, ZERO,
ZAND[0000000014],ZERO) ;

NOTT(INV83Y,NOR44Y):
0R3F(0R45Y,ALUMACIX,ALUMACZX,ALUMAC3Y,ZERO,ZERO,ZERO,ZAND[OOOOOOOOIS],
ZERO);

OR2F (OR46Y, ALUMAC1X,ALUMAC2Y, ZERO, ZERQ, ZAND[0000000016] , ZERO) ;

NOR5F (NOR47Y, ALUMAC1X, ALUMAC2X, ALUMAC3X, ALUMAC4X, INV18Y, ZERO, ZERO,
ZERO, ZERO, ZERO, ZAND[0000000017] , ZERO) ;

NOR4F (NOR48Y,ALUMAC1X,ALUMAC2X,ALUMAC3X,ALUMAC4X,ZERO, ZERO, ZERO, ZERO,
ZAND[0000000018], ZERO) ;
XORZF(XOR49Y,ALUMACIX,ALUMACIY,ZERO,ZERO,ZAND[0000000019],ZERO);
NOR5F (NOR50Y, ALUMAC2X, ALUMAC3X, ALUMAC4X, INV18Y, INV35Y,ZERO,ZERO, ZERO,
ZERO, ZERO, ZAND[0000000020] , ZERO) ;

NOTT (INV82Y,NOR50Y);

NOR4F (NOR51Y,ALUMAC2X,ALUMAC3X,ALUMAC4Y, INV35Y, ZERO, ZERO, ZERO, ZERO,
ZAND[0000000021], ZERO) ;

NOTT(INV84Y,NOR51Y);
0R3F§0R52Y,ALUMACZX,ALUMAC3Y,INV35Y,ZERO,ZERO,ZERO,ZAND[OOOOOOOOZZ],
ZERO);

OR2F (OR53Y,ALUMAC2Y, INV35Y,ZERO, ZERO, ZAND[0000000023] , ZERO) ;

XOR2F (XOR54Y, ALUMAC2X,ALUMAC2Y, ZERO, ZERO, ZAND[0000000024] , ZERO) ;
NOR4F (NOR55Y ,ALUMAC3X,ALUMAC4X, INV18Y, INV35Y,ZERO,ZERO,ZERO, ZERO,
ZAND[0000000025],ZERO) ;

NOTTF (INV85Y,NOR55Y, ZAND[0000000031],ZERO) ;
0R3F§0R56Y,ALUMAC3X,ALUMAC4Y,INV35Y,ZERO,ZERO,ZERO,ZAND[0000000026],
ZERO) ;

0R2F(0R57Y,ALUMAC3Y,INV35Y,ZERO,ZERO,ZAND[0000000027],ZERO);

XOR2F (XOR58Y, ALUMAC3X,ALUMAC3Y,ZERO, ZERO, ZAND[0000000028] , ZERO) ;
0R3F§0R59Y,ALUMAC4Y,INV18Y,INV35Y,ZERO,ZERO,ZERO,ZAND[OOOOOOOOZQ],
ZERO);

OR2F (OR60Y, INV35Y, ALUMAC4Y, ZERO, ZERO, ZAND[0000000030] , ZERO) ;

XOR2 (XOR61Y, ALUMACAX, ALUMACAY) ;

NOR2(NOR62Y,INV18Y, INV35Y);

NAND4 (NAND63Y, INV83Y,0R45Y,0R46Y,ALUMACLY);

NAND4 (NAND64Y, INV82Y, INV84Y,0R52Y,0R53Y);

NAND3 (NAND65Y, INV85Y,0R56Y,0R57Y) ;

NAND2 (NAND66Y,0R59Y, 0R60Y) ;

NOR2 (NOR67Y,NAND63Y,NOR47Y);

XOR2 (XOR68Y, XOR49Y, NAND64Y) ;

XOR2 (XOR69Y, XOR54Y, NAND65Y) ;

XOR2 (XOR70Y, XOR58Y, NAND66Y) ;

XOR2 (XOR71Y,X0R61Y,NOR62Y) ;

NOR4 (NOR72Y, XOR68Y, XOR69Y, XOR70Y, XOR71Y) ;

NOTT(INV73Y,NOR72Y);

NOTT (ILACO1,NAND63Y);

MOT { (ICAROUT,NOR67Y);

NOTT(ILACOZ2,NOR48Y);

NOTT(I0UT4,XOR68Y):

NOTT(IOUT3,XO0R69Y);

NOTT(ICOMPARE, INV73Y);

NOTT(IOUT2,XOR70Y);

NOTT(IOUT1,XOR71Y);

62



.0UT1 = LI0UTT;

.0UT2 = . I0UT2;
.0UT3 = .I0UT3;
.0UT4 = .I0UT4;
.COMPARE = . ICOMPARE;
.LACO1 = .ILACO1;
.LACO2 = .ILACOZ;
.CAROUT = . ICAROUT

63



64

ouT1

PROGRAM QUTPUT -
4.3 OUTPUT (NON-FAULTED) -- ALU

o0uT3 0UT4 cHP
0 0 0
1 1 1
0 0 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0
1 1 0
0 1 0
1 1 0
1 1 0
1 1 0
0 1 0
1 1 0
1 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

L1

L2



NOTE:

0
0

IIOII
lllll

1
1

"00000000"
“FFFFFFFF"

65



USER INPUT

INPUT -- ALU

4.4

(ALU.DAT)

Variable

—ANMSTWODONOO

Column

desired cycles. }

lllllllllllllllllllllllllllll

lllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllll

MO0 O N OO N+ ON1 OO ON AN ON OO OO~

66



4.5 EXAMPLES

USER INPUT
EXAMPLE 1

FAULTLIST ALU

(ALUFLT.DAT)

(output stuck at 0)

PINFLTS;

INV3: Y* 0;
INV35: Y* 0;
INV4: Y* 0;
INV5S: Y* 0;
INV6: Y* 0;
INV7: Y* 0;
INVS: Y* 0;
INVO: Y* 0;
INV1O: Y* 0;
INV11: Y* 0;
INV12: Y* 0;
INV13: Y* 0;
INV14: Y* 0;
NOR44: Y* 0;
OR45: Y* 0;
OR46: Y* 0;
NOR47: Y* 0;
NOR48: Y* 0;
X0R49: Y* 0;
NOR50: Y* 0;
NOR51: Y* 0;
OR52: Y* 0;
OR53: Y* 0;
XO0R54: Y* 0;
NOR55: Y* 0;
OR56: Y* 0;
OR57: Y* 0;
XOR58: Y* 0;
OR59: Y* 0;
OR60: Y* 0;
INV85: Y* 0;
ENDPINS;

ENDC;

END_OF_FILE;



(output stuck at 0)
PIN FAULTS DETECTED :
FAULT NAME

INV3
INV35
INV4
INV5
INV7
INV12
NOR44
OR45
OR46
NOR48
XOR49
NOR51
OR52
OR53
XOR54
OR56
OR57-
XOR58
OR59
OR60
INV85

ADDRESS LOCATION

68

PROGRAM QUTPUT
EXAMPLE 1

ALU

(DETECTED.DAT)

TEST PIN #

INV3Y
NORS51Y
INV4Y
XOR49Y
XOR69Y
NAND63Y
NAND63Y
NAND63Y
NAND63Y
NOR48Y
XOR49Y
NOR51Y
0R52Y
OR53Y
XOR69Y
NAND65Y
NAND65Y
XOR70Y
NAND66Y
NAND66Y
NAND65Y

MACHINE #

CYCLE #

CYCLE #

b ek b b b b b b b DN b b Q) QD b ek (O D b b



USER INPUT
EXAMPLE 2

FAULTLIST ALU

(ALUFLT.DAT)

(output stuck at 1)

PINFLTS;

INV3: Y* 1;
INV35: Y* 1;
INV4: Y* 1;
INVS: Y* 1;
INVG: Y* 1;
INV7: Y* 1;
INV8: Y* 1;
INV9: Yy* 1;
INV1O: Y* 1;
INV11: Y* 1;
INV12: Yy* 1;
INV13: Y 1;
INV14: Y* 1;
NOR44: Y* 1;
OR45: Y* 1;
OR46: Yy* 1;
NOR47: Y* 1;
NOR48: Yx* 1;
XOR49: Y* 1;
NOR50: Y* 1;
NOR5S1: Y* 1;
OR52: Y* 1;
OR53: Y* 1;
XOR54: Yy* 1;
NOR55: Y* 1;
0OR56: Y* 1;
OR57: Y 1;
XOR58: Y* 1;
OR59: Y* 1;
0OR60: Y* 1;
INV85: Y* 1;
ENDPINS;

ENDC;

END_OF_FILE;



(output stuck at 1)

PIN FAULTS DETECTED :

70

FAULT NAME

INV3
INV35
INV4
INV6
INV8
INV9
INV10
INV11
INV13
INV14
NOR44
NOR47
NOR48
XOR49
NOR50
NOR51
XOR54
NORS5
OR56
XOR58
OR60

ADDRESS LOCATION

PROGRAM OUTPUT
EXAMPLE 2

ALU

(DETECTED.DAT)

TEST PIN # CYCLE #

INV3Y
NOR51Y
INV4Y
XOR49Y
XOR69Y
XOR70Y
INV10Y
NAND63Y
XOR49Y
XOR69Y
NAND63Y
NOR47Y
NOR48Y
XOR49Y
NOR50Y
NOR51Y_
XOR69Y
NAND65Y
NAND65Y
XOR70Y
NAND66Y

MACHINE # CYCLE #

[y
NNNHF O PR OO WOOWEOEREEEWNO



(input pin A stuck at 0)

PINFLTS;

INV3: A* 0;
INV35: A* 0;
INV4: A* 0;
INV5: A* 0;
INV6: A* 0;
INV7: A* 0;
INVS: A* 0;
INVO: A* 0;
INV10: A* 0;
INV11: A* 0;
INV12: A* 0;
INV13: A* 0;
INV14: A* 0;
NOR44: A* 0;
OR45: A* 0;
OR46: A* 0;
NOR47: A* 0;
NOR48: A* 0;
XOR49: A* 0;
NOR50: A* 0;
NOR51: A* 0;
OR52: A* 0;
OR53: A* 0;
XOR54: A* 0;
NOR55:: A* 0;
OR56: A* 0;
OR57: A* 0;
XOR58: A* 0;
0R59: A* 0;
0R60: A* 0;
INV85: A* 0;
ENDPINS;

ENDC;

END_OF _FILE;

USER INPUT
EXAMPLE 3

FAULTLIST ALU

(ALUFLT.DAT)

71



(input pin A stuck at 0)

PIN FAULTS DETECTED :

72

FAULT NAME

INV5
INV7
OR45
OR46
XO0R49
NOR51

"OR53

XOR54
OR56
OR57
XOR58
OR60

ADDRESS LOCATION

PROGRAM OUTPUT
EXAMPLE 3

ALU

(DETECTED.DAT)

TEST PIN #

XOR49Y
XOR69Y
NAND63Y
NAND63Y
XOR49Y
NOR51Y
OR53Y
XOR69Y
NAND65Y
NAND65Y
XOR70Y
NAND66Y

MACHINE #

CYCLE #

CYCLE #

—

—

p—
RS NPROOWOWNOWLWWYY



(input pin A stuck
PINFLTS;

INV3: A* 1;
INV35: A* 1;
INV4: A* 1;
INV5: A* 1;
INVG: A* 1;
INV7: A* 1;
INVS: A* 1;
INVO: A* 1;
INV10: A* 1;
INV11: A* 1;
INvi12: A* 1;
INV13: A* 1;
INV14: A* 1;
NOR44: A* 1;
OR45: A* 1;
OR46: A* 1;
NOR47: A* 1;
NOR48: A* 1;
XO0R49: A* 1;
NOR50: A* 1;
NOR51: A* 1;
OR52: A* 1;
OR53: A* 1;
XOR54: A* 1;
NOR55: A* 1;
OR56: A* 1;
OR57: A* 1;
XOR58: A* 1;
OR59: A* 1;
OR60: A* 1;
INV85: A* 1:
ENDPINS;

ENDC;

END_OF_FILE;

at 1)

USER INPUT
EXAMPLE 4

FAULTLIST ALU

(ALUFLT.DAT)

73



(input pin A stuck at 1)
PIN FAULTS DETECTED :

74

FAULT NAME

INV3
INV35
INV6
INV8
NOR44
NOR47
NOR48
XOR49
NOR51
OR53
XOR54
OR56
OR57
XOR58
OR60

ADDRESS LOCATION

PROGRAM OUTPUT
EXAMPLE 4

ALY

(DETECTED.DAT)

TEST PIN #

INV3Y
NOR51Y
XOR49Y
XOR69Y
NAND63Y
NOR47Y
NOR48Y
XOR49Y
NOR51Y
OR53Y
XOR69Y
NAND65Y
NAND65Y
XOR70Y
NAND66Y

MACHINE # CYCLE #

CYCLE #

—

[ouy

—
HNPOOONOOQUOUUOURFRHEEEFRNE



5.0 BCD ADDER

USER INPUT
5.1 PARTSLIST -- BCD ADDER (FIG. 4)

(BCD.PRT)

USER:“DEUTSCH";

NAME : BCDADD;

PURPOSE : TESTING;

LEVEL:CHIP;

TYPES:TOOOM, TOO2M,TO04M, TOO8M, TO10M, TO11M, TO21M, TO25M, TO27M, TO86M, POOOM,
POO2M;

EXT:: Al,A2,A3,A4,8B1,B2,B3,B4,CARIN,CAROUT,SUM1,SUM2,SUM3,SUM4;

INPUTS: .Al,.A2,.A3,.A4,.B1,.B2,.B3,.B4, .CARIN;

OUTPUTS: .CARQOUT, .SUM1,.SUM2,.SUM3, .SUM4;

TOOOM: NAND1,NANDZ2,NAND3,NAND4,NAND30;

T0O02M: NOR15,NOR16,NOR17,NOR18,NOR31,NOR41,NOR45,NOR46,NOR6G2Z,NOR63;

TOO4M: INV7,INV10,INV19,INV20,INV21,INV42,INV47,INV48, INVES;

T008M: AND5,AND6,AND8,AND9,AND11,AND12,AND13,AND14,AND22,AND25,AND29,AND34,
AND35,AND40,AND44 ,AND50,AND51,AND52 ,AND53,AND54 ,AND55,AND57 ,AND59;

TO10M: NAND38;

TO11M: AND24,AND28,AND39,AND43,AND49,AND56,AND58;

T021M: AND27;

T025M: NOR60;

T027M: NOR32,NOR33,NOR61;

TO86M: XOR36,X0R37; i

POOOM: PA1,PA2,PA3,PA4,PB1,PB2,PB3,PB4,PCARIN,AND23,AND26;

PO02M: PSUM1,PSUM2,PSUM3,PSUM4, PCAROUT;

END;

COMPSEGMENT;

= A1*IA1,A2*IA2,A3*IA3,A4*1A4,B1*IB1,B2*1B2,B3*1B3,B4*1B4, CARIN*ICARIN,
CAROUT*PCAROUTY, SUM1*PSUM1Y, SUM2*PSUM2Y, SUM3*PSUM3Y, SUM4*PSUM4Y;

NAND1= A*PA1Y,B*PB1lY,Y*NAND1Y;

NAND2= A*PA2Y,B*PB2Y,Y*NAND2Y;

NAND3= A*PA3Y,B*PB3Y,Y*NAND3Y;

NAND4= A*PA4Y,B*PB4Y, Y*NAND4Y;

NAND30= A*PCARINY,B*NOR15Y,Y*NAND30Y;

NOR15= A*AND5Y,B*AND6Y, Y*NOR15Y;

NOR16= A*AND8Y,B*ANDI9Y, Y*NOR16Y;

NOR17= A*AND11Y,B*AND12Y,Y*NOR17Y;

NOR18= A*AND13Y,B*AND14Y,Y*NOR18Y;

NOR31= A*AND22Y,B*AND23Y, Y*NOR31Y;

NOR41= A*AND34Y,B*AND35Y,Y*NOR41Y;

NOR45= A*AND39Y,B*AND40Y, Y*NOR45Y;

NOR46= A*AND43Y,B*AND44Y,Y*NOR46Y;

NOR62= A*AND56Y,B*AND57Y,Y*NOR62Y;

NOR63= A*AND58Y,B*AND59Y, Y*NOR63Y;

INV7= A*NAND1Y,Y*INV7Y;

INV10= A*NAND2Y,Y*INV1OY;

INV19= A*NOR15Y,Y*INV19Y;

INV20= A*NOR16Y,Y*INV20Y;

75



INV21= A*NOR17Y,Y*INV21Y;

AND23= A*INV7Y,Y*AND23Y;

AND26= A*INV10Y,Y*AND26Y;

INV42= A*XOR36Y,Y*INV42Y;

INV47= A*NOR46Y,Y*INV47Y;

INV48= A*NOR45Y, Y*INV48Y;

INV64= A*NOR62Y,Y*INV64Y;

AND5= A*PA1Y,B*NAND1Y,Y*AND5Y;

AND6= A*NAND1Y,B*PB1Y,Y*AND6Y;

AND8= A*PA2Y,B*NAND2Y,Y*AND8Y;

AND9= A*NAND2Y,B*PB2Y,Y*AND9Y;

AND11= A*PA3Y,B*NAND3Y,Y*AND11Y;

AND12= A*NAND3Y,B*PB3Y, Y*AND12Y;

AND13= A*PA4Y,B*NAND4Y,Y*AND13Y;

AND14= A*NANDAY,B*PB4Y,Y*AND14Y;

AND22= A*PCARINY,B*INV19Y,Y*AND22Y;

AND25= A*INV7Y,B*INV20Y,Y*AND25Y;

AND29= A*INV10Y,B*INV21Y,Y*AND29Y;

AND34= A*PCARINY,B*NAND30Y,Y*AND34Y;

AND35= A*NAND30Y,B*NOR15Y,Y*AND35Y;

AND40= A*NOR18Y,B*NAND4Y, Y*AND4OY;

AND44= A*NAND38Y,B*NOR18Y, Y*AND44Y;

AND50= A*INV42Y,B*INV47Y,Y*AND50Y;

AND51= A*XOR37Y,B*INV47Y,Y*ANDS1Y;

AND52= A*INV42Y,B*NOR45Y,Y*AND52Y;

AND53= A*XOR37Y,B*INV48Y,Y*ANDS3Y;

AND54= A*XOR36Y,B*INV47Y,Y*AND54Y;

AND55= A*INV42Y,B*NOR45Y,Y*AND55Y;

AND57= A*INV42Y,B*NOR45Y,Y*AND57Y;

AND59= A*INV48Y,B*NOR46Y, Y*AND59Y;

NAND38= A*NOR33Y,B*NAND3Y,C*NOR18Y, Y*NAND38Y;
AND24= A*PCARINY,B*INV19Y,C*INV20Y,Y*AND24Y;
AND28= A*INV7Y,B*INV20Y,C*INV21Y, Y*AND28Y;
AND39= A*NOR33Y,B*NAND3Y,C*NAND4Y,Y*AND39Y;
AND43= A*NAND3Y,B*NOR33Y,C*NAND38Y, Y*AND43Y;
AND49= A*XOR36Y,B*NOR46Y,C*INV48Y,Y*AND49Y;
AND56= A*XOR36Y,B*XOR37Y,C*INV47Y,Y*ANDS6Y;
AND58= A*XOR36Y,B*XOR37Y,C*INV48Y,Y*AND58Y;
AND27= A*PCARINY,B*INV19Y,C*INV20Y,D*INV21Y,Y*AND27Y;
NOR60= A*AND49Y,B*AND50Y,C*AND51Y,D*AND52Y, Y*NOR60OY;
NOR32= A*AND24Y,B*AND25Y,C*AND26Y,Y*NOR32Y;
NOR33= A*AND27Y,B*AND28Y,C*AND29Y, Y*NOR33Y;
NOR61= A*AND53Y,B*AND54Y,C*AND55Y, Y*NOR61Y;
PAl= A*IA1,Y*PAlY;

PA2= A*IA2,Y*PA2Y;

PA3= A*IA3,Y*PA3Y;

PA4= A*IA4 Y*PA4Y;

PB1= A*IB1,Y*PB1Y;

PB2= A*IB2,Y*PB2Y;

PB3= A*IB3,Y*PB3Y;

PB4= A*IB4,Y*PB4Y;

PCARIN= A*ICARIN, Y*PCARINY;

PSUM1= A*NOR41Y,Y*PSUM1Y;

PSUM2= A*NOR60Y, Y*PSUM2Y;

76



PSUM3= A*NOR61Y,Y*PSUM3Y;
PSUM4= A*INV64Y,Y*PSUMA4Y;
PCAROUT= A*NOR63Y, Y*PCAROUTY;
XOR36= A*NOR31Y,B*INV20Y,Y*XOR36Y;
XOR37= A*NOR32Y,B*INV21Y,Y*XOR37Y;
ENDCOMPS ;
DETECTSEGMENT;
PINS;
ANDSY;
ANDGY ;
AND8Y;
ANDOY;
NOR31Y;
NOR41Y;
NOR45Y;
NOR62Y;
INV42Y;
INV64Y;
AND50Y;
AND51Y;
AND52Y;
AND53Y;
AND55Y;
AND57Y;
ENDDET;
ENDC;
END_OF FILE;

77



PROGRAM OUTPUT
5.2 P-ORDERING -- BCD ADDER

(DWN.B32)

1Al = ..Al;
1A2 = A2
IA3 = +.A3;
IA4 = . Ad;
IB1 = ..Bl;
182 = .B2;
183 = .B3;
1B4 = .B4:
ICARIN = . .CARIN;
BUF (PA1Y,IAl);

BUF (PA2Y,IA2);

BUF (PA3Y, IA3); ;

BUF (PA4Y, IA4);

BUF(PB1Y,1IB1);

BUF (PB2Y,1B2);

BUF (PB3Y,IB3);

BUF (PB4Y, IB4);

BUF (PCARINY , ICARIN) ;

NAND2F (NANDLY, PALY, PB1Y, ZERO, ZERO, ZAND[0000000001] , ZERO) ;
NAND2F (NAND2Y, PA2Y, PB2Y, ZERO, ZERO, ZAND [0000000002] , ZERD) ;
NANDZF (NAND3Y . PA3Y . PB3Y . ZERO, ZERO, ZAND[0000000003] , ZERO) :
NAND2F (NANDAY, PA4Y, PBA4Y, ZERO, ZERO, ZAND[0000000004] , ZERO) ;
NOTTF (INV7Y,NAND1Y, ZAND[0000000007], ZERO) ;

NOTTF (INV10Y, NAND2Y, ZAND[0000000009] , ZERO) ;

FBUFF (AND23Y, INV7Y, ZAND[0000000013], ZERO) ;

FBUFF (AND26Y . INV10Y, ZAND[0000000016] , ZERO) ;

AND2F (AND5Y, PALY, NANDLY, ZERO, ZERO, ZAND [0000000005] , ZERO)-
ANDZF (AND6Y . NANDLY, PB1Y , ZERO, ZERO, ZAND[ 0000000006 , ZERO) ;
AND2 (ANDSY , PA2Y , NAND2Y) ;

AND2F (AND9Y , NAND2Y, PB2Y, ZERO, ZERO, ZAND[0000000008] , ZERO) ;
AND2F (AND11Y, PA3Y, NAND3Y, ZERO, ZERO, ZAND[0000000010] , ZERO) ;
AND2 (AND12Y,NAND3Y, PB3Y) ;

AND2F { \ND13Y, PA4Y, NAND4Y , ZERO, ZERO, ZAND[0000000011] , ZERO) ;
AND>+ ‘NC14Y,NAND4Y, PB4Y, ZERO, ZERO, ZAND[0000000012] , ZERO) ;
NOR2 (NOR15Y, AND5Y, AND6Y) ;

NORZ (NOR16Y , AND8Y , ANDIY) »

NOR2 (NOR17Y,AND11Y,AND12Y);

NOR2 (NOR18Y, AND13Y,AND14Y) ;

NOTT(INV19Y,NOR15Y);

78



NOTT(INV20Y,NOR16Y);

NOTT(INV21Y,NOR17Y);

AND2 (AND22Y, PCARINY, INV19Y);
ANDZF(ANDZSY,INV7Y,INV20Y,ZERO,ZERO,ZAND[OOOOOOOOIS],ZERO):

AND2F (AND29Y, INV10Y, INV21Y, ZERO, ZERO, ZAND[0000000017] , ZERO) ;

AND2F (AND40Y,NOR18Y,NAND4Y, ZERO, ZERO, ZAND[0000000023] , ZERO) ;
AND3F(ANDZ4Y,PCARINY,INV19Y,INVZOY,ZERO,ZERO,ZERO,ZAND[0000000014],
ZERO) ;

AND3 (AND28Y, INV7Y, INV20Y, INV21Y);

AND4 (AND27Y, PCARINY, INV19Y, INV20Y, INV21Y);

NOR3 (NOR32Y,AND24Y,AND25Y,AND26Y) ;
NOR3§(NOR33Y,ANDZ7Y,AN028Y,AN029Y,ZERO,ZERO,ZERO,ZAND[OOOOOOOOIQ],
ZERO);

XOR2(XOR37Y,NOR32Y, INV21Y);

NAND2F (NAND30Y, PCARINY,NOR15Y, ZERO, ZERO, ZAND[0000000018] , ZERO) ;
NOR2 (NOR31Y,AND22Y,AND23Y);

AND2F (AND34Y, PCARINY, NAND30Y, ZERO, ZERO, ZAND[0000000020] , ZERO) ;
AND2F (AND35Y, NAND30Y, NOR15Y, ZERO, ZERO, ZAND[0000000021] , ZERO) ;
NAND3 (NAND38Y,NOR33Y,NAND3Y,NOR18Y) ;
AND3§(AND39Y,NOR33Y,NAND3Y,NAND4Y,ZERO,ZERO,ZERO,ZAND[OOOOOOOOZZ],
ZERQ);

AND3 (AND43Y,NAND3Y,NOR33Y, NAND38Y) ;

XOR2 (XOR36Y,NOR31Y, INV20Y);

NOR2 (NOR41Y,AND34Y,AND35Y);

NOR2F (NOR45Y, AND39Y, AND40OY, ZERO, ZERO, ZAND[0000000024] , ZERO) ;

NOTT (INV42Y,XOR36Y);

NOTT (INV48Y,NOR45Y);

AND2 (AND44Y,NAND38Y,NOR18Y) ;

AND2F (AND52Y, INV42Y,NOR45Y, ZERO, ZERO, ZAND[0000000026] , ZERO) ;

AND2F (AND53Y, XOR37Y, INV48Y, ZERO, ZERO, ZAND[0000000027] , ZERO) ;

ANDZ (AND55Y, INV42Y,NOR45Y) ;

ANDZ (AND57Y, INV42Y,NOR45Y) ;
AND3§(ANDS8Y,XOR36Y,XOR37Y,INV48Y,ZERO,ZERO,ZERO,ZAND[OOOOOOOOZQ],
ZERO):

NINV(PSUM1Y,NOR41Y);

NOR2 (NOR46Y,AND43Y,AND44Y) ;

NOTT (INV47Y,NOR46Y);

AND2 (AND50Y, INV42Y, INV47Y);
ANDZF(ANDSIY,XOR37Y,INV47Y,ZERO,ZERO,ZAND[OOOOOOOOZS],ZERO);

ANDZ (AND54Y, XOR36Y, INV4T7Y);

ANDZ2 (AND59Y, INV48Y,NOR46Y) ;

AND3 (AND49Y, XOR36Y,NOR46Y, INV4BY) ;
AND3§(ANDS6Y,XOR36Y,XOR37Y,INV47Y,ZERO,ZERO,ZERO,ZAND[0000000028],
ZERO) ;

NOR4F(?ORGOY,AND49Y,ANDSOY,ANDSlY,ANDSZY,ZERO,ZERO,ZERO,ZERO,ZAND[0000000030],
ZERO);
NOR3§(NOR61Y,AN053Y,I”DS4*,ANDSSY,ZERO,ZERO,ZERO,ZAND[0000000031],

ZERO);

NINV(PSUM2Y,NOR60Y);

NINV(PSUM3Y,NOR61Y);

NOR2 (NOR62Y,AND56Y,AND57Y) ;

NOR2 (NOR63Y,AND58Y,AND59Y) ;

NOTT(INV64Y,NOR62Y);

79



NINV(PSUM4Y, INV64Y);
NINV(PCAROUTY,NOR63Y);
.CAROUT = .PCAROUTY;
.SUM1 = .PSUM1Y;

.SUM2 = .PSUM2Y;
.SUM3 = .PSUM3Y;
.SUM4 = .PSUMAY

80



NOTE:

PROGRAM OUTPUT
5.3 OUTPUT (NON-FAULTED) -- BCD ADDER

CAROUT  SUMI SUM2 SUM3 SuM4
0 0 0 0 0
0 1 0 0 0
0 1 1 1 0
0 0 0 0 1
1 1 0 0 0
1 0 1 0 0
1 1 1 0 0
1 0 0 1 0
1 1 0 0 1

“0" = "00000000"

“1" = "FFFFFFFF"

81



PROGRAM INPUT

INPUT-- BCD ADDER

5.4

(BCD.DAT)

}

{ number of desired cycles.

(o)}

Variables
Al
A2
A3
A4
B1

Column

OO~ O =00~

lllllllll
lllllllll
lllllllll
lllllllll
lllllllll
lllllllll
lllllllll

lllllllll

OCOOOCO OO O

NGO WOUNOO

82



5.5 EXAMPLES

USER INPUT
EXAMPLE 1

FAULTLIST BCD ADDER

(BCDFLT.DAT)

(output stuck at 0)

PINFLTS:

NAND1: Y* O0;
NAND2: Y* 0;
NAND3: Y* O0;
NAND4 : Y* 0;
AND5: Y* 0;
AND6: Y* 0;
INV7: Y* 0;
AND9: Y* 0;
INV10: Y* 0;
AND11: Y* 0;
AND13: Y* 0;
AND14: Y* 0;
AND23: Y* 0;
AND24: Y* 0;
AND25: Y* 0;
AND26: Y* 0;
AND29: Y* 0;
NAND30: Y* 0;
NOR33: Y* 0;
AND34: Y* 0;
AND35: Y* 0;
AND39: Y* 0;
AND4O: Y* 0;
NOR45: Y* 0;
AND51: Y* 0;
AND52: Y* 0;
AND53: Y* 0;
AND56: Y* 0;
AND58: Y* 0;
NOR60: Y* 0;
NOR61: Y* 0;
ENDPINS;

ENDC;

END_OF_FILE;



(output stuck at 0)

PIN FAULTS DETECTED :

84

FAULT NAME

NAND1
NAND2
NAND3
NAND4
ANDS
AND6
INV7
AND9
AND11
AND14
AND23
AND24
NAND30
NOR33
AND34
AND35
AND39
AND40O
NOR45
AND51
AND52
AND53
AND56

ADDRESS LOCATION

PROGRAM QUTPUT
EXAMPLE 1

BCD

(DETECTED.DAT)

TEST PIN # CYCLE #

NOR31Y
AND53Y
NOR62Y
NOR45Y
ANDSY

AND6Y

NOR31Y
AND9Y

AND53Y
AND50Y
NOR31Y
NOR62Y
NOR41Y
NOR62Y
NOR41Y
NOR41Y .
NOR45Y
NOR45Y
NOR45Y
AND51Y
AND52Y
AND53Y
NOR62Y

MACHINE # CYCLE #

P OPLPOPANF B RO0WWOWOO -



USER INPUT
EXAMPLE 2

FAULTLIST BCD ADDER

(BCDFLT.DAT)

(output stuck at 1)

PINFLTS:

NAND1 ¢ Y* 1;
NAND2: Y* 1;
NAND3: Y* 1;
NAND4 : Yy* 1;
ANDS5:: Yx 1;
AND6: Y* 1;
INV7: Y* 1;
AND9: Y* 1;
INV1O: Y* 1;
AND11: Y* 1;
AND13: Yy* 1;
AND14: Y* 1;
AND23: Y* 1;
AND24 : Y* 1;
AND25: Yx* 1;
AND26: Y* 1;
AND29: Y* 1;
NAND30: Y* 1:
NOR33: Y* 1;
AND34: Y* 1;
AND35: Yy* 1;
AND39: Yyx 1;
AND40: Y 1;
NOR45: Y* 1:
AND51: Yx 1;
AND52: Y* 1;
AND53: Y 1;
AND56¢ Yy 1;
AND58: Yyx 1;
NOR60: Y* 1;
NOR61 : Y* 1;
ENDPINS;

ENDC;

END_OF FILE;



PROGRAM QUTPUT
EXAMPLE 2

BCD
(DETECTED.DAT)
(output stuck at 1)

PIN FAULTS DETECTED :

FAULT NAME TEST PIN # CYCLE #
NAND1 AND5Y
NAND3 ANDSOY
NAND4 NOR45Y
AND5 ANDSY
AND6 AND6Y
INV7 NOR31Y
AND9 ANDIY
INV10 AND53Y
AND11 AND53Y
AND13 NOR62Y
AND14 NOR62Y
AND23 NOR31Y
AND24 AND53Y
AND25 AND53Y
ANDZ26 ANDS3Y
AND29 NOR62Y .
NAND30 NOR41Y
NOR33 NOR62Y
AND34 NOR41Y
AND35 NOR41Y
AND39 NOR45Y
AND40 NOR45Y
NOR45 NOR45Y
AND51 AND51Y
AND52 AND52Y
AND53 AND53Y
AND56 NOR62Y
ADDRESS LOCATION MACHINE # CYCLE #

86

=W = O W RN R £ N bt b = e e e e e (D O WO



USER INPUT
EXAMPLE 3

FAULTLIST BCD ADDER

(BCDFLT.DAT)

(input stuck at 0)

PINFLTS:

NAND1: A* 0;
NAND2: A* O0;
NAND3: A* 0;
NAND4 : A* 0;
AND5: A* 0;
ANDG6: A* 0;
INV7: A* 0;
AND9: A* 0;
INV10: A* 0;
AND11: A* 0;
AND13: A* 0;
AND14: A* 0;
AND23: A* 0;
AND24: A* 0;
AND25: A* 0;
AND26: A* 0;
AND29: A* 0;
NAND30: A* 0;
NOR33: A* 0;
AND34: A* 0;
AND35: A* 0;
AND39: A* 0;
AND4O: A* 0;
NOR45: A* O0;
AND51: A* 0;
AND52: A* 0
AND53: A* 0;
AND56: A* 0;
AND58: A* 0;
NOR6O: A* 0;
NOR61: A* 0;
ENDPINS;

ENDC;

END_OF FILE;



PROGRAM QUTPUT
EXAMPLE 3

BCD

(DETECTED.DAT)
(input stuck at 0)
PIN FAULTS DETECTED :

FAULT NAME TEST PIN # CYCLE #
NAND1 AND6Y
NAND2 ANDIY
NAND3 NOR45Y
NAND4 NOR45Y
AND5 AND5Y
ANDG6 ANDGY
AND11 . AND53Y
AND13 NOR62Y
AND14 AND50Y
AND23 NOR31Y
AND24 AND53Y
AND25 AND53Y
AND29 AND50Y
NAND30 NOR41Y
NOR33 NOR62Y
AND34 NOR41Y.
AND35 NOR41Y
NOR45 NOR45Y
AND51 ANDS1Y
AND53 AND53Y
AND56 NOR62Y
ADDRESS LOCATION MACHINE # CYCLE #

88

NMWOASNNWRARSWWWOOE OO0 NWW



USER INPUT
EXAMPLE 4

FAULTLIST BCD ADDER

(BCDFLT.DAT)

(input stuck at 1)

PINFLTS:

NAND1: A* 1;
NAND2: A* 1;
NAND3: A* 1;
NAND4 : A* 1;
AND5: A* 1;
ANDG6 : A* 1;
INV7: A* 1;
AND9: A* 1;
INV10: A* 1;
AND11: A* 1;
AND13: A* 1.
AND14: A* 1;
AND23: A* 1;
AND24: A* 1;
AND25: A* 1;
AND26: A* 1:
AND29: A* 1;
NAND30: A* 1;
NOR33: A* 1;
AND34: A* 1;
AND35: A* 1;
AND39: A* 1;
AND40: A* 1;
NOR45: A* 1;
AND51: A* 1;
AND52: A* 1;
AND53: A* 1;
AND56: A* 1;
AND58: A* 1;
NOR60: A* 1;
NOR61: A* 1;
ENDPINS;

ENDC;

END OF FILE;



PROGRAM OUTPUT
EXAMPLE 4

BCD
(DETECTED.DAT)
(input stuck at 1)

PIN FAULTS DETECTED :

FAULT NAME TEST PIN # CYCLE #
NAND1 ANDSY
NAND2 AND9Y
NAND3 NOR62Y
NAND4 NOR45Y
AND5 AND5Y
AND6 AND6Y
INV7 NOR31Y
AND9 AND9Y
AND11 AND53Y
AND13 NOR62Y
AND14 AND50Y
AND24 AND53Y
AND25 AND53Y
AND26 AND53Y
AND29 AND50Y
NAND30 NOR41Y .
NOR33 NOR62Y
AND34 NOR41Y
AND35 NOR41Y
NOR45 NOR45Y
AND51 AND51Y
AND53 AND53Y
AND56 NOR62Y
ADDRESS LOCATION MACHINE # CYCLE #

90

WO =N W W WO = 0= WO



USER:
NAME :
PURPOSE:
LEVEL:
TYPES:

EXT::

INPUTS:

OUTPUTS:

CO50F:
Co50L:
POOOM:

POO2ZM:
TOO0ZM:

TO04M:
TOO8M:

TO27M:
T032M:
TO74M:
CLK:

END;

COMPSEGMENT;
P05
P04
P03
P02
PO1
u48
u47
u4e6
uas
u4a

wononow o owouwonounnn

6.0 DOWNCOUNTER

USER INPUT
6.1 PARTSLIST - DOWNCOUNTER (FIG. 3)
(DWN.PRT)
IISWD " :
DWNCNTG;
TEGATE;
CHIP;
CO50F, cos0L, POOOM, POO2M, TOO2M,
TO04M, TOO8M, TO27M, TO32M, TO74M,
CLK;
CARRYIN, CLEAR, CLOCK, PO,
P1, P2, P3, PRELOAD,
SSET, CARRYQUT, Qo, Q1,
Qz, Q3;
.CARRYIN, .CLEAR, .CLOCK, .PO,
.P1, .P2, .P3, .PRELOAD,
.SSET;
.CARRYOQUT, .Qo0, .Q1, .Q2,
.Q3;
u48, U46;
ua7; :
PI2, PI4, P13, PI1, P18,
P19, PI6, P17, PI5;
po1, P03, P02, PO5, PO4;
u19, uaq, u20, U3, uz,
U1, uz21, u22;
usg, uz6, u7, uzs, u24,
ue, uz3, ug;
u29, ull, u1o, u1s, u3s,
u34, ule, ul7, uz28, u1s,
uz7, us, u14, U3z, us3l,
u3o, u13, u4s;
u4, u43;
U35, u3e, u37, u3s;
uaz, ual, u4o0, U39;
C1, Cz, C3, C4;
A*U45Y, Y*XCARRYQOUT;
A*U42Q, Y*XQ3;
A*U41qQ, Y*XQ2;
A*U40Q, Y*XQ1;
A*U39Q, Y*XQ0;
A*PI5Y, Y*LD;
A*U46Y, Y*CK;
A*PI3Y, Y*U46Y;
A*U43Y, B*U44Y, Y*U45Y;
A*U39qQ, B*CI, Y*U44yY;

91



92

£ T T { T { T (¥ | | {1 U | ¥ [ | T | | | N | A I Y | T I 1 N | A 1 N [

A*U42Q,
Y*Ua3Y;
D*U38Y,
Q*u4a2q,
D*U37Y,
Q*u41q,
D*U36Y,
Q*u40q,
D*U35Y,
Q*Uu39q,
A*U33Y,
A*U31Y,
A*U29Y,
A*U27Y,
A*U26Y,
A*U22Y,
A*U25Y,
A*U21Y,
A*U24Y,
A*U20Y,
A*U23Y,
A*U19Y,
A*LD,

A*LD,

A*LD,

A*LD,

A*U17Y,
A*U15Y,
A*U13Y,

B*U41Q,

CK*CK,
QB*U42QB,

CK*CK,
QB*U39QB,
B*U34Y,
B*U32Y,
B*U30Y,
B*U28Y,
B*LD3,
B*LD,
B*LD2,
B*LD,
B*LDI1,

C*u40q,

CLR*CLR,
PR*STT;
CLR*CLR,
PR*STT;
CLR*CLR,
PRESTT;
CLR*CLR,
PR*STT;
Y*U38Y;
Y*U37Y;
Y*U36Y;
Y*U35Y;
Y*U34Y;
Y*U33Y;
Y*U32y;
Y*U31Y;
Y*U30Y;
Y*U29Y;
Y*U28Y;
Y*U27Y;

Y*u22yY;
Y*U21Y;
Y*U20Y;
Y*U19Y;
Y*U18Y;
Y*U17Y;
Y*Ul6Y;
Y*U15Y;
Y*U14yY;
Y*U13Y;
Y*Ul11Y;
Y*U10Y;

Y*U5Y;
C*U40Q,

Y*U3Y;
Y*U2yY;



Ul = A*CI,
PI9 = A*XP3,
P18 = A*XP2,
PI7 = A*XP1,
PI6 = A*XPO,
PI5 = A*XPRELOAD
P14 = A*XCARRYIN,
PI3 = A*XCLOCK,
PI2 = A*XSSET,
PI1 = A*XCLEAR,
C1 = A*U35Y,
C2 = A*U36Y,
C3 = A*U37Y,
C4 = A*U38Y,
ENDCOMPS;
DETECTSEGMENT;
PINS;

uly;

uzy;

u3y;

u1sy;

ule6yY;

uizy;

u20Y;

u30y;

U3ly;

u3zy;

U33y;

U34y;
ENDDET;
ENDC;
END_OF FILE;

CARRYIN*XCARRYIN,
CLOCK*XCLOCK,

SSET*XSSET,

B*U39Q, Y*U1Y;
CLEAR*XCLEAR,
PO*XPO,
P2*XP2,
PRELOAD*XPRELOAD,
CARRYOUT*XCARRYOUT,
Q1*XQ1,
Q3*XQ3;

Y*LD3;

Y*LD2;

Y*LD1;

Y*LDO;

Y*PI5Y;

Y*CI;

Y*PI3Y;

Y*STT;

Y*CLR;

Y*T1;

Y*T2;

Y*T3;

Y*T4;

93



PROGRAM QUTPUT
6.2 P-ORDERING -- DOWNCOUNTER

(DWN.B32)

XCARRYIN = . .CARRYIN;
XCLEAR = ..CLEAR;
XcLOCK = ..CLOCK;
XPO = ' ..PO;
XP1 = ..P1;
XP2 = ..P2;
XP3 = ..P3;
XPRELOAD = ! . .PRELOAD;
XSSET = ..SSET:

BUF (LD3,XP3);

BUF (LD2,XP2) ;

BUF(LD1,XP1);

BUF (LDO, XPO) ;

BUF (PI5Y, XPRELOAD) ;

BUF (CI,XCARRYIN);

BUF (PI3Y,XCLOCK);

BUF (STT, XSSET);

BUF (CLR, XCLEAR) ;

FNIB(LD,PI5Y);

FNIB(U46Y,PI3Y);

NOTTF(U26Y, LD, ZAND[0000000014] , ZERO) ;

NOTTF (U25Y, LD, ZAND[0000000030] , ZERO) ;

NOTT(U24Y,LD);

NOTTF(U23Y,LD,ZAND[0000000015],ZERO);

NOTTF (U6Y,CI,ZAND[0000000005],ZERO);

LNIB(CK,U46Y);

DFF (U42Q,U42QB,CK,T4,STT,CLR, .K+1);
DFF(U41Q,U41QB,CK,T3,STT,CLR, .K+3);

DFF (U40Q,U40QB,CK,T2,STT,CLR, .K+5);
DFF(U39Q,U39QB,CK, T1,STT,CLR, .K+7);

AND2F (U34Y,U26Y,LD3,ZERO, ZERO, ZAND[0000000007] , ZERO) ;
AND2(U32Y,U25Y,LD2);

AND2F (U30Y,U24Y,LD1,ZERO, ZERU, ZA%G{0000000009] , ZERO) ;
AND2F (U28Y,U23Y, LDO, ZERO, ZERO, ZAND[0000000031] , ZERO) ;
AND2F(U11Y,CI,U39QB,ZERO, ZERO, ZAND[0000000016],ZERO) ;
AND2F (U10Y,U39Q, U6Y, ZERO, ZERO, ZAND[0000000026] , ZERO) ;
NOR3F (U4Y,CI,U39Q,U40Q, ZERO, ZERO, ZERO, ZAND[0000000010] , ZERO) ;
NOR2(U3Y,U39Q,CI);

94



NORZ (U2Y,U40Q,U41Q) ;

NORZF (U1Y, CI,U39Q, ZERO, ZERO, ZAND[0000000003] , ZERO) ;
NINV(XQ3,U42Q);

NINV(XQ2,U41Q);

NINV(XQ1,U40Q);

NINV(XQO,U39Q);

NOR2F (U44Y,U39Q, CI, ZERO, ZERO, ZAND[0000000012] , ZERO) ;

NOR3F (U43Y,U42Q, U41Q, U40Q, ZERO, ZERO, ZERO, ZAND[0000000020] , ZERO) ;
NOR2F (U19Y,U10Y,U11Y, ZERO, ZERO, ZAND[0000000001], ZERO) ;

AND2F (U15Y,U41Q, U4Y, ZERO, ZERO, ZAND[0000000002] , ZERO) ;

AND2F (U13Y,U40Q, U3Y, ZERO, ZERO, ZAND[0000000019] , ZERO) ;

NOTTF (USY, U4Y, ZAND[0000000004] , ZERO) ;

NOTTF (U7Y,U3Y, ZAND[0000000024] , ZEROD) ;

AND2F (U5Y,U1Y,U2Y,ZERO, ZERO, ZAND [0000000018] , ZERO) ;

AND2F (U45Y,U43Y, U44Y, ZERO, ZERO, ZAND[0000000029] , ZERO) ;

AND2F (U27Y,U19Y, LD, ZERO, ZERO, ZAND[0000000008] , ZERO) ;

AND2F (U17Y,U42Q, U5Y, ZERO, ZERO, ZAND[0000000027] , ZERO) ;

AND2F (U16Y,U8Y, U41QB, ZERO, ZERO, ZAND[0000000017] , ZERO) ;

AND2F (U14Y,U7Y,U40Q8B, ZERO, ZERO, ZAND[0000000028] , ZERO) ;
NOTTF(U9Y,U5Y,ZAND[0000000025] , ZERO) ;

NINV(XCARRYOUT, U45Y);

OR2F (U35Y,U27Y,U28Y, ZERO, ZERO, ZAND[0000000011] , ZERO) ;

NOR2F (U21Y, U15Y,U16Y, ZERO, ZERO, ZAND[0000000013] , ZERO) ;

NOR2F (U20Y, U13Y,U14Y, ZERO, ZERO, ZAND[0000000022] , ZERO) ;

AND2 (U18Y,U9Y, U42QB) ;

ANDZ (U31Y,U21Y,LD);

AND2F (U29Y , U20Y, LD, ZERO, ZERO, ZAND[0000000006] , ZERO) ;

NOR2F (U22Y,U17Y,U18Y, ZERO, ZERO, ZAND[0000000023] , ZERO) ;
OR2(U37Y,U31Y,U32Y); ]

OR2F (U36Y,U29Y, U30Y, ZERO, ZERO, ZAND[0000000021] , ZERO) ;

AND2 (U33Y,U22Y,LD);
OR2 (U38Y,U33Y,U34Y);
CLK(T1,U35Y, .K+9):

CLK(T2,U36Y,.K+10);
CLK(T3,U37Y,.K+11);
CLK(T4,U38Y, .K+12);
.CARRYOUT =
.Qo0 =
.Q1 =
.Q2 =
.Q3 =

.XCARRYOUT;

.XQ0:;
.XQ1;
.XQ2;

.XQ3

g5



96

CARRYOUT

o O O o o

o O O O O O o o o o

—

c O o o o o

PROGRAM OUTPUT
6.3 OUTPUT (NON-FAULTED) -- DOWNCOUNTER

Qo Q1 Q2 Q3
0 0 0 0
1 1 1 1
0 1 1 1
1 0 1 1
0 0 1 1
1 1 0 1
0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0
0 1 1 0
1 0 1 0
0 0 1 0
1 1 0 0
0 1 0 0
1 o 0 0
0 0 0 0
1 1 1 1
0 1 1 1
1 0 1 1
0 0 1 1
1 1 0 1
0 1 0 1



NOTE:

o O o

o O O o =~ O O o o

o O o©

lloll
" 1 L]

"00000000"
"FFFFFFFF"

O O = = O O

o o O

O O O o o o o o

b

97



6.4 EXAMPLES

USER INPUT
EXAMPLE 1

FAULTLIST DOWNCOUNTER

(output stuck at 0)

PINFLTS;

Uu19: Y* 0;
Ul5: Y* 0;
Ul: Y* 0;
us: Y* 0;
ueG: Y* 0;
u29: Y* 0;
U34: Y* 0;
uz27: Y* 0
u3o: Y* 0;
us: Y* 0;
U35: Y* 0;
ui4: Y* 0;
uz21: Y* 0;
uz26: Y* 0;
u23: Y* 0;
ull: Y* 0;
ulte: ~ Y* 0;
U5: Y* 0;
ui3: Y* O0;
U43: Y* 0;
U36: Y* 0;
u20: Y* 0;
uz2: Y* 0
u7: Y* 0;
u9: Y* 0;
U10: Y* 0;
Uu17: Y* 0;
Ul4: Y* 0;
U4s: Y* 0; !
uz2s: Y*  0;
uz8: Y* 0;
ENDPINS;

ENDC;

END_OF FILE;

98



PROGRAM QUTPUT

FOR
EXAMPLE 1
DOWNCOUNTER
(DETECTED.DAT)
(output stuck at 0)
PIN FAULTS DETECTED :

FAULT NAME TJEST PIN # CYCLE #
ui9 : uly

Ul15 ulsy

Ul uly

us uley

ué uly

u29 uz20Y

uz7 uly

u4 uliey

U35 uly

uz21 u3ly

ul6 uley

us U33y

u13 uz20y

U36 uz20yY

U20 uz20Y

u22 u33y

u7 u20Y

U9 u33y

u1o0 uly

u17 u1izy

ui4 u20Y

ADDRESS LOCATION MACHINE # CYCLE #

—
POWORBHENWHEHEOHFENENPNWOHRSOIN



(output stuck at 1)

PINFLTS;
U19: y*
uls: y*
Ul: y*
us: y*
Ué: y*
U29: y*
uU3a: y*
ua27: y*
U30: y*
ua: y*
u3s: y*
Ud4: y*
uz21: y*
U26: y*
u23: y*
Ull: Y*
Ul6: y*
Us: y*
u13: y*
ua3: y*
U36: y*
u20: y*
u22: y*
u7: Y*
ug: Y*
u10: y*
uiz: y*
Ul4: y*
u4s: y*
u2s: y*
uz8: y*
ENDPINS;
ENDC;

END_OF FILE;

100

“-e Wme wo Wa Wo W We wo wp wa

b b b ped ek b b b pd b b ek e b pmd fed b (b b ok b bk b b b b b b ped b b

USER INPUT
EXAMPLE 2

FAULTLIST DOWNCOUNTER



PROGRAM QUTPUT

EXAMPLE 2
DOWNCOUNTER

(output stuck at 1)

PIN FAULTS DETECTED :
FAULT NAME TEST PIN # CYCLE #
U19 U1y 3
uls u1syY 1
Ul uly 2
us uley 1
u29 uz20y 4
u34 u3ay 1
u27 utly 3
u30 u3oy 1
U4 u1sYy 2
U35 ' U1y 3
u21 u3ly 5
U26 u34y 1
uz23 uly 3
U1l uly 2
uié uley 1 N
us u1zy 2
ui3, u20Y 1
U36 y20y 4
u20 ’ 20y 3
y22 U33y 9
u7 u20Y 1
U9 Uu33y 1
u10 U1y 2
1y u1zy 1
ui4 u20Y 1
u25 u3z2y 1
u28 U1y 3
ADDRESS LOCATION MACHINE # CYCLE #

101



USER INPUT
EXAMPLE 3

FAULTLIST DOWNCOUNTER

(input stuck at 0)

PINFLTS;

U19: A* 0;
Ul5: - A*  0;
Ul: A* 0;
us8: A* 0;
uéG: A*  0;
u29: A* 0;
U34: A*  0;
uz7: A* 0;
U30: A* 0;
u4: A* 0;
u3s: A*  0;
usa: A* 0;
u21: A* 0;
U26: A*  0;
u23: A* 0;
Ull: A* 0;
Ul6: A* 0;
Us: A*  0;
U13: A* 0;
U43: A* 0;
U36: A*  0;
u20: A* 0;
u22: A* 0;
u7: A* 0;
ug: A*  0:
ulo: A*  0;
ui7: A*  0;
uis: A*  0;
U45: A* 0;
u25: A*  0;
u28: A* 0;
ENDPINS;

ENDC;

END_OF FILE;

102



PROGRAM OUTPUT

EXAMPLE 3
DOWNCOUNTER
(input stuck at 0)
PIN FAULTS DETECTED :

FAULT NAME TEST PIN # CYCLE #

u19 uly 3
u15 u1sy 1
u29 u20Y 4
u34 u34y 1
uz27 uly 2
u3o0 u3oy 1
U35 uly 2
U21 u3ly 5
Uil uly 2
ui6 uley 1
us u1z7y 8
u13 u20Y 1
U36 u20Y 2
u20 u20y 3
u22 u33y 9
u1o0 uly 2
ul7 u17y 1
ul4 20y 1
uz28 U1y 3
ADDRESS LOCATION MACHINE # CYCLE #

103



USER INPUT
EXAMPLE 4

FAULTLIST DOWNCOUNTER

(input stuck at 1)

PINFLTS;

ui9: A* 1;
Ul5: A* 1;
Ul: A*  1;
us: A* 1;
Ub: A* 1;
U29: A*  1;
u3g: A*  1;
v27: A* 1;
u30: A* 1;
us: A* 1;
U35: A*  1;
Ui4: A*  1;
uz21: A*  1;
U26: A* 1;
u23: A*  1;
U11: A* 1;
Ul6: A*  1;
us:~ A 1;
U13: A* 1;
U43: A*  1;
U36: A* 1;
U20: A* 1;
u22: A*  1;
u7: A* 1;
u9: A*  1;
U1o0: A* 1;
ui7: A* 1;
Uig: A* 1;
u4s: A*  1;
u25: A* 1;
u28: A* 1;
ENDPINS;

ENDC;

END_OF_FILE;

104



PROGRAM QUTPUT

EXAMPLE 4
DOWNCOUNTER
(input stuck at 1)
PIN FAULTS DETECTED :

FAULT NAME TEST PIN # CYCLE #

u19 uly 3
u15 U15Y 1
u29 uz20yY - 2
u34 u3ay 1
u27 uly 3
u3s U1y 2
uz21 u3ly 5
uz23 U1y 3
Ull U1y 2
U16 uleY 1
us u17y 8
u13 u20Y 1
u36 u20Y 2
u20 u20y 3
u22 u33y 9
u10 U1y 2
ui7 uizy 1
ui4 u20Y 1
u25 u3a2y 1
ADDRESS LOCATION MACHINE # CYCLE #

105



7.0 TEST

USER INPUT
7.1 PARTSLIST TEST (FIG. 1)

(TEST.PRT)

USER: "MCGOUGH"
NAME: TEST;
PURPOSE: TESTING;
LEVEL: SUBCHIP;
TYPES: T004M,T0O08M,T002M,TOOOM, T032M,CO50MF;
EXT :: A1,B1,A2,B2,A3,B3,A4,B4,A5,B5,C5,P1,P2,P3,P4,P5;
INPUTS: .Al1,.B1,.A2,.B2,.A3,.B3,.A4,.B4,.A5,.B5,.C5;
OUTPUTS: .P1,.P2,.P3,.P4,.P5;
POOOM: IA1,IA2,IA3,IA4,1B1,I1B2,1B3,IB4,IA5,1B5,IC5;
PoO2M: PO1,P02,P03,P04,P05;
T004M: INVI,INV2,INV3,INV4,INVS;
TOO8M: ANDI1;
T0O02M: NOR1;
T027M: NORZ;
TOOOM: NANDI1;
T032M: OR1;
CO50F: PA1,PA2,PA3,PA4,PA5,PA6;
END;
COMPSEGMENT;
= A1*XA1,A2*XA2,A3*XA3,A4*XA4,B1*XB1,B2*XB2,B3*XB3,B4*XB4,
A5*XA5,B5*XB5,C5*XC5,P1*XP1,P2*XP2, P3*XP3, P4*XP4, P5*XP5;

IAl = A*XAl,Y*IAlY;
IA2 = A*XA2,Y*IA2Y;
IA3 = A*XA3,Y*IA3Y;
IA4 = A*XA4,Y*IA4Y;
IA5 = A*XA5,Y*IA5Y;
IB1 = A*XB1,Y*IB1Y;
IB2 = A*XB2,Y*IB2Y;
IB3 = A*XB3,Y*IB3Y;
IB4 = A*XB4,Y*IB4Y;
IB5 = A*XBS5,Y*IB5Y;
IC5 = A*XC5,Y*IC5Y;

INV1 = A*IALY,Y*INV1Y;
PA1 = A*IB1Y,Y*PAlY;
AND1 = A*INV1Y,B*PAlY,Y*AND1Y;
PA2 = A*IA2Y,Y*PA2Y;

INV2 = A*IB2Y,Y*INV2Y;
NOR1 = A*PA2Y,B*INV2Y,Y*NOR1Y;
INV3 = A*IA3Y,Y*INV3Y; :

PA3 = A*IB3Y,Y*PA3Y;

NAND1 = A*INV3Y,B*PA3Y,Y*NAND1Y;
INV4 = A*IA4Y,Y*INV4Y;

PA4 A*IB4Y,Y*PA4Y;

OR1 A*INV4Y,B*PA4Y,Y*OR1Y;
INV5 = A*IAS5Y,Y*INV5SY;

106



PA5 = A*IB5Y, Y*PA5Y;
PA6 = A*IC5Y,Y*PA6Y;
NOR2 = A*INVSY,B*PA5Y,C*PA6Y, Y*NOR2Y;
P01 = A*AND1Y,Y*XP1;
P02 = A*NOR1Y, Y*XP2;
P03 = A*NAND1Y,Y*XP3;
P04 = A*QOR1Y,Y*XP4;
P05 = A*NOR2Y,Y*XP5;
ENDCOMPS;
DETECTSEGMENT;
PINS;

INV1Y;

AND1Y;

PA2Y;

NOR1Y;

PA3Y;

NAND1Y;

INV4Y;

OR1Y;

NOR2Y;
ENDDET;
ENDC;

END_OF FILE;

107



XAl

.XAZ

XA3

XA4

XB1

XB2

XB3

XB4

XA5

XB3

XC5
BUF (IA1Y,XAl);
BUF (IA2Y,XA2);
BUF (IA3Y,XA3);

BUF (IA4Y,XA4);
BUF (IA5Y,XA5);

108

PROGRAM QUTPUT
7.2 P-ORDERING TEST

o.Al;

..A2;

A3;

..A4;

..Bl;

..B2;

..B3;

..B4;

..A5;

..B5;

..C5;



BUF (IB1Y,XB1);

BUF (IB2Y,XB2);

BUF (IB3Y,XB3):

BUF (1B4Y,XB4);

BUF (IB5Y,XB5) ;

BUF (IC5Y,XC5);

NOTTF (INV1Y, IA1Y,ZERO, ZAND[0000000001]);

FNIBF(PA1Y, IB1Y,ZERO,ZERO);

AND2F (AND1Y, INV1Y, PA1Y, ZAND[0000000007] , ZERO, ZERO, ZERO) ;
FNIBF (PA2Y, IA2Y,ZERO, ZERO) ;

NOTTF (INV2Y, IB2Y, ZERO, ZAND[0000000009] ) ;

NORZ2F (NOR1Y, PA2Y, INV2Y, ZAND[0000000010], ZERO, ZERO, ZERO) ;
NOTTF (INV3Y, IA3Y, ZAND[0000000011], ZERO) ;

FNIBF (PA3Y, IB3Y,ZERO, ZAND[0000000012]);

NAND2F (NAND1Y, INV3Y, PA3Y, ZERO, ZERO, ZAND[0000000013] , ZERO) ;
NOTTF (INV4Y, IA4Y, ZERO, ZERO) ;

FNIBF (PA4Y, IB4Y,ZERO, ZAND[0000000015] ) ;

OR2F (ORLY, INV4Y, PA4Y, ZERO, ZERO, ZAND[0000000016] , ZERO) ;
NOTTF (INV5Y, IA5Y, ZAND[0000000002] , ZERO) ;

FNIBF (PA5Y, IB5Y, ZAND[0000000003], ZERO) ;

FNIBF (PA6Y, IC5Y,ZERO, ZERO) ;

NOR3F (NOR2Y, INV5Y, PASY, PAGY, ZAND[0000000005] , ZERO, ZERO, ZERO, ZERO) ;
NINV(XP1,AND1Y);

NINV(XP2,NOR1Y):

NINV(XP3,NAND1Y):

NINV(XP4,0R1Y);

NINV(XP5, NOR2Y) ;

.P1 = .XP1;

P2 = XP2;

.P3 ’ = .XP3;

‘P4 = .XP4:

.P5 = .XP5

END;

END
ELUDOM

109



USER INPUT

INPUT TEST

7.3

(TEST.DAT)

{ number of desired cycles. }

Variables

Column

O
—ANNTDWN0 O

110



7.4 EXAMPLES

USER INPUT
EXAMPLE 1

FAULTLIST TEST

(TESTFLT.DAT)

(output stuck at 0)

PINFLTS;

INV1: Y* 0;
INVS: Y* 0;
PA5: Y* 0;
PAG: y* 0:
NOR2:  Y* 0;
PAl: Y* 0;
AND1: Y* 0;
PA2: Y* 0;
INV2: Y* 0;
NOR1: Y* 0;
INV3: .Y* 0;
PA3: Yy* 0;
NAND1: Y* 0;
INV4: Y% 0;
PA4: Y* 0;
OR1: Y* 0;
PA7: y* 0;
INV6:  Y* 0;
PA8: Y* 0;
OR2: Y* 0;
PA9: Y* 0;
INV7: Y* 0;
PA10: Y* 0;
INV8:  Y* 0;
NOR3: Y* 0;
ENDPINS;

ENDC;

END_OF FILE;

111



PROGRAM QUTPUT

EXAMPLE 1
TEST
(DETECTED.DAT)
(output stuck at 0)
PIN FAULTS DETECTED :
FAULT NAME TEST PIN # CYCLE #
INV1 INV1Y
INV5S NOR2Y
NOR2 NOR2Y
PAl AND1Y
AND1 AND1Y
PA2 PA2Y
NOR1 NOR1Y
INV3 NAND1Y
PA3 PA3Y
NAND1 NAND1Y
INV4 INV4Y
PA4 OR1Y
OR1 OR1Y
ADDRESS LOCATION MACHINE-# CYCLE #

112

N e GO N b b P



USER INPUT
EXAMPLE 2

FAULTLIST TEST

(TESTFLT.DAT)
(output stuck at 1)

PINFLTS;

INVI: Y* 1;
INVS:  Y* 1;
PA5: Y* 1;
PAG: Y* 1;
NOR2:  Y* 1;
PAl: Y* 1;
AND1:  Y* 1;
PA2: y* 1;
INV2: Y* 1;
NORl: Y* 1;
INV3:  Y* 1;
PA3: y* 1;
NAND1: Y* 1;
INV4: Y* 1;
PA4: Y* 1;
OR1: Y* 1;
PA7: Y* 1;
INV6: y* 1;
PA8: Yy* 1;
OR2: y* 1;
PA9: Y* 1;
INV7: Y* 1; .
PA10: Y* 1;
INVB: Y* 1;
NOR3: Y* 1;
ENDPINS;

ENDC;

END_OF FILE;

113



PROGRAM OUTPUT

EXAMPLE 2
TEST
(DETECTED.DAT)
(output stuck at 1)
PIN FAULTS DETECTED :
FAULT NAME TEST PIN # CYCLE #
INV1 INV1Y
INV5 NOR2Y
PA5 NOR2Y
PAG6 NOR2Y
NOR2 NOR2Y
PAl AND1Y
AND1 AND1Y
PA2 PA2Y
INV2 NOR1Y
NOR1 NOR1Y
INV3 NAND1Y
PA3 PA3Y .
NAND1 NAND1Y
INV4 INV4Y
ADDRESS LOCATION MACHINE # CYCLE #

114

HWRN NN RN S S D W



(input” stuck at 0)

PINFLTS;

INV1: A* 0;
INVS:  A* 0;
PAS: A* 0:
PA6: A* 0;
NOR2: A* 0;
PAl: A* 0;
AND1: A* 0;
PA2: A* 0;
INV2: A* 0;
NOR1: A* 0;
INV3: A* 0;
PA3: A* 0;
NAND1: A* 0;
INV4: A* 0;
PA4: A* 0;
OR1: A* 0;
PA7: A* 0;
INV6: A* 0;
PA8: A* 0:
OR2: A* 0;
PA9: A* 0;
INV7: A* 0;
PA10: A* 0;
INV8: A% 0;
NOR3: A* 0;
ENDPINS;

ENDC;

END_OF FILE;

USER INPUT
EXAMPLE 3

FAULTLIST TEST

(TESTFLT.DAT)

115



(inpu

t stuck at 0)

PIN FAULTS DETECTED :

116

FAULT NAME

NOR2
NAND1
INV4
OR1

ADDRESS LOCATION

PROGRAM OUTPUT
EXAMPLE 3

TEST

(DETECTED.DAT)

TEST PIN #

NOR2Y
NAND1Y
INV4Y
OR1Y

MACHINE #

CYCLE #

CYCLE #

NN -~



(input stuck at 1)

PINFLTS;

INVi: A* 1;
INVS: A* 1;
PA5: A* 1:
PAG6: A* 1;
NOR2: A* 1;
PAl: A* 1;
AND1: A* 1;
PA2: A* 1;
INV2: A% 1:
NOR1: A* 1;
INV3: A* 1;
PA3: A* 1;
NAND1: A* 1;
INV4: A* 1;
PA4: A* 1;
OR1: A* 1;
PA7: A* 1;
INV6:  A* 1;
PA8: A* 1;
OR2: A* 1;
PAS: A* 1;
INV7: A* 1;
PA10: A* 1:
INV8: A% 1;
NOR3: A* 1;
ENDPINS;

ENDC;

END_OF FILE;

USER INPUT
EXAMPLE 4

FAULTLIST TEST

(TESTFLT.DAT)

117



(input stuck at 1)

PIN FAULTS DETECTED :

118

FAULT NAME

INV1
INV5
NOR2
INV2
INV3
PA3
NAND1
OR1

ADDRESS LOCATION

PROGRAM OUTPUT
EXAMPLE 4

TEST

(DETECTED.DAT)

TEST PIN #

INV1Y
NOR2Y
NOR2Y
NOR1Y
NAND1Y
PA3Y
NAND1Y
OR1Y

MACHINE #

CYCLE #

CYCLE #

= N WN) =W



8.0 MEMORY CIRCUIT

USER INPUT
8.1 PARTSLIST -- MEMORY CIRCUIT (FIG. 5)

USER: “NEMEROFF";
NAME : MEMRYRW;
PURPOSE: PRAC;
LEVEL: CHIP;
TYPES: MEMR, CO50F, POOOM,
T004M, POO2M;
EXT:: EOQ, El, E2, E3, E4,
ES, PO, P1, P2, P3;
INPUTS: EO, El, E2, E3, E4, E5;
OUTPUTS: PO, P1, P2, P3;
POOOM: uo u1, uz, U3, u4;
T004M: Uu10;
CO50F: U6, U7, us, Ug;
MEMR: U5, ull;
POO2M: PO1, P02, PO3, PO4;
END;
COMPSEGMENT;
= EQ*XEOQ, E1*XE1, E2*XE2, E3*XE3,
E4*XE4, E5*XE5, PO*XPO, P1*XP1,
p2*Xxp2, P3*XP3;.
PO1 = A*U11Y1, Y*XPO;
P02 = A*U11Y2, Y*XP1;
P03 = A*U11Y3, Y*XP2;
PO4 = A*U11Y4, Y*XP3;
uo = A*XES, Y*UoY;
Ul = A*XEQ, Y*U1Y;
U2 = A*XE1, Y*U2Y;
u3 = A*XE2, Y*U3yY;
U4 = A*XE3, Y*U4Y;
u10 = A*XE4, Y*U10Y;
ué = A*USY1, Y*U6Y;
u7 = A*U5Y2, Y*U7Y;
us = A*U5Y3, Y*U8Y; ’
U9 = A*U5Y4, Y*U9yY;
us = AO*U1Y, A1*U2Y, A2*U3Y, A3*U4Y,
EN*XE4, Y1*U5Y1, Y2*U5Y2, Y3*U5Y3,
Y4*U5Y4;
Uil = AO*U6Y, A1*U7Y, A2*U8Y, A3*U9Y,
EN*U10Y, RW*UOY, Do*uUlyY, D1*U2Y,
D2*U3Y, D3*U4Y, Y1*U11Y1l, Y2*ul1iyz,

Y3*U11Y3, Y4*U11Y4,

119



ENDCOMPS;
DETECTSEGMENT;
PINS:

uly;

uzy;

u3y;

uay;
ADDRESSES;
0001;
0003;
0012;
0013;
0014;
0015;
0002;
0010;
0011;
ENDDET;
ENDC;
END_OF_FILE;

120



PROGRAM OUTPUT
8.2 P-ORDERING -- MEMORY CIRCUIT

(DWN.B32)

XE
XEl
XE2

..E0;
..E1l;
..E2;

XE3 = ..E3;

XE4 = | .E4;

XES = ..E5;

BUF (UOY, XE5) ;
BUF(U1Y,XEQ):
BUF (U2Y,XE1);
BUF (U3Y, XE2);
BUF (U4Y,XE3);
NOTT(U10Y,XE4);

wnununno

MEMR(A0=U1Y,A1=U2Y,A2=U3Y,A3=U4Y, EN=XE4, Y1=U5Y1,Y2=U5Y2, Y3=U5Y3, Y4=U5Y4);

FNIB(U6Y,U5Y1);

FNIB(U7Y,U5Y2);

FNIB(U8Y,U5Y3);

FNIB(U9Y,U5Y4);
MEMR(AO=U6Y,A1=U7Y,A2=U8Y,A3=U9Y,EN=U10Y,RW=U0Y,D0=U1Y,D1=U2Y,D2=U3Y,
D3=U4Y,Y1=U11Y1,Y2=U11Y2,Y3=U11Y3,Y4=U11Y4);
NINV(XPO,U11Y1);

NINV(XP1,U11Y2);

NINV(XP2,U11Y3);

NINV(XP3,U11Y4);

. = . XPO;

.XP1;

.XP2;

XP3

-
N
nwowono

121



USER INPUT

INPUT -- MEMORY CIRCUIT

8.3

VARIABLES

— N MO

COLUMN

-- NUMBER OF DESIRED CYCLES --

[oR NeNeR  loloR NeNoll NoeloeN RoeloR NoNoR_NeoloR NoNoR Nolel Rojlol_ NeloB o NloNol NeNaR  NoNoR HoleRa Ko

lllllllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllll

TOOOITTAINOINNINOODNITO T NOODNROTNONTANE NN AN Nt OO NN NN NN OO

122



8.4 INITITAL MEMORY DATA

0,15,0,15,100,000,000;

RADIX,DECIMAL;
000,000003,000004,000005,000006,000007,000008;
006,000009,000010,000011,000012,000013,000014;
012,000015,000000,000001,000002;

END

123



8.5 FAULTLIST -- MEMORY CIRCUIT

PINFLTS;
ENDPINS;
MEMFLTS;
000000*
000002*
000010*
000011*
000012*
000013*
000014*
000015*
ENDMEM;
ENDC;
END_OF FILE;

WA N =W

124



PO
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

8.6 OUTPUT -- MEMORY CIRCUIT

P1
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

P2

00000000
00000000
00000000
00000000
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

_FFFFFFFF

FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

P3
00000000
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF

125



126

00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFEFFFFF

FFFFFFFF
00000000
00000000
00000000
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000

. 00000000

00000000
00000000
00000000
00000000
FFFFFFFF

FFFFFFFF

FFFFFFFF
FFFFFFFF
FFFFFFFF

FFFFFFFF
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000
00000000
00000000
FFFFFFFF
FFFFFFFF



8.7 MEMORY DETECTION RESULT

ADDRESS LOCATION MACHINE # CYCLE #
000000 0003 2
000010 0013 17
000011 0012 41
000012 0015 11
000014 0001 23
000015 0002 47

127



PROGRAM :

9.0 SUBROUTINES, MODULES & VARIABLES

GLOSS.FOR

MAIN VARIABLES:

128

INTEGER:

BOOLEAN:
CK

CHARACTER:

EXTNAM
NAME
NET
PIN

I
TOKEN
T1

Index variable.

Index variables used to find
corresponding types for components.

Column position of parser.

Index to reference knowns in p-ordered list.

Call to function INOUT.

1.

Sets cursor to a specified position.

Length of variable ITOK.

Index variable.

Index variable for OUT(NUM,J1,0).

Index variable for IN (NUM,J2,0).

Position of Main component in partslist.

Number of characters read into NCARD.

Number of ficticious clocks.

Number of external inputs in main circuit.

Number of nets whose values are known.

Number of external outputs in main circuit.

Number of types.

Number of components on partslist.

Constant set to zero for fault 1nput.

Index variable.

Number of faults.

Index variable.

True if part is a ficticious clock.

External pins name.

Name of circuit.

Net being examined.

Pin being examined.

Temporary variable for TYPE(I1,I2).
Token returned by parser ( =ITOK ).
Temporary variable for FLT(NF,1).



BYTE:

ITOK
NCARD

Token returned by parser.
80 character line read in to be parsed.

nun

INTEGER ARRAY:

(100) NETIN = Number of inputs to a particular component.
(100) NETOUT = Number of outputs to a particular component.
(100) NIN = Position of last input in LIB.
(100) NOUT = Position of last output in LIB.
( 20) NPARTS = Number of parts for each type.

BOOLEAN ARRAY:
(100) DONE

False if part is not yet in p-ordered 1ist

CHARACTER ARRAY:

(0:20) CH_NUM = Character equivalents of integers.

(20, 2) CLOCK = List of input and output nets of the ficticious
clocks.

(100, 20, 0:1) 1IN = Array of inputs to a particular component.

(100) INPIN = Array of inputs to main circuit.

(500) KNOWN = List of known external inputs and clock outputs.

( 50, 0:10) LIB = Library.

(150) LIST1 = Unordered list.

(150) LIST2 = P-ordered list.

(100) LOG = Array of logical equations for each component.

( 50) LOGIC = Array of logical equations for each type.

(100, 20, 0:1) oOUT = Array of outputs to a particular component.

(100) OQUTPIN = Array of outputs to main circuit.

(100, 2) PART = Array of all components on partslist.

( 30, 0:50) TYPE = Array of all types associated w/ parts on partslist.
(100,0:5) FLT = Array of all faults and their values.

SUBROUTINES CALLED:

CREATE_DWN
CREATE_EXEC
CREATE_MAIN
CREATE_PRINT

Creates bliss coded P-ordered program.
Creates fortran coded executive program.
Creates bliss coded control program.
Creates fortran coded program to print
results.

GETOK = Parses a given line.

INIT_CH Rus = Converts integers to characters.

LIRARY = Reads in library of cells and their logic.

SUBSTITUTE = Substitutes parts, their inputs and their
outputs into the proper logical macro
equation.

SET_FLT = Reads faults from partslist and stores them

in array FLT.

129



CLPS_FLT
FAULT SUB

SET_MEM
CREATE_MEM

CR_FLTPRN
CREATE_RWM
RWMEM

CREATE_PAS

CREATE_DET

FUNCTIONS CALLED:

(INTEGER)
(INTEGER)

130

IFORM
INOUT

Collapses faults.

Substitutes faulted parts,their inputs and
their outputs into the proper logical macro
equation.

= reads in memory input data.

parses memory input data and stores in array
FLT.

creates subroutine for printing results of
fault detection.

creates bliss module for simulating random
access memories.

creates bliss module for simulating read
only memories.

creates routine for passing results from
the bliss module DETFLT (DETECT) to the
routine FLTPRN.

creates a bliss module for detecting whether
or not a fault has been injected. The module
routine called DETECT is performed after
every cycle.

Determines format of a line in the partslist.
Determines whether a net is an input or
an output net.



This routine reads in the contents of the standard library of

components .

VARIABLES:
INTEGER:

I
(main) ICOL
(main) ITKLN

J

K
(main) NC
CHARACTER:

(main) TOKEN
BYTE:

(main) ITOK
(main) NCARD

INTEGER ARRAY:
(main) NIN
~ (main) NOUT

CHARACTER ARRAY:
(main) LIB
(main) LOGIC

nmuw 0 uwunu

Index variable.

Column position of parser.

Length of variable ITOK.

Index variable.

Index variable for read statement.
Number of characters read into NCARD.

Token returned by parser ( =ITOK ).

Token returned by parser.
80 character line read in to be parsed.

Position of last input in LIB.
Position of last output in LIB.

Library.

Array of logical equations for each type.

SUBROUTINES CALLED:

GETOK

= Parses a given line.

131



GETOK :

This routine parses an 80 column line and returns the first word

of characters stripped of all punctuation marks. It's length is
stored in ITKLN, and the length of the line to be parsed is stored
in NC. Words are separated by any of the following punctuation marks
or characters: lISll' IISSII' Il;ll' lI'll' II:II' Il*ll' II=II' ll.‘ll' where IISII
and "SS" denote single and double spaces, respectively.

VARIABLES:

132

INTEGER:

(main) ICOL
(main) ITKLN
J

Column position of parser.
Length of variable ITOK.
Index variable.

BYTE:

(main) ITOK
(main) NCARD

Token returned by parser.
80 character line read in to be parsed.



IFORM :

Used with GETOK to determine format of word currently being parsed.

VARIABLES:
INTEGER:

IPOS

Column position of IFORM parser in string.
BYTE:
(main) NCARD

80 character line read in to be parsed.

133



INOUT :

Determines whether a pin is an input or output pin and returns 0
if an output pin and 1 if an input pin.

VARIABLES:
INTEGER:
I
IN1
IN2
I0UT1
I0UT2
J
(main) NI
(main) NO
(main) NUM
CHARACTER:
(main) EXTNAM
L
PIN
(main) TOKEN
TYPE
BYTE:
(main) ITOK

134

(main) NCARD

INTEGER ARRAY:

(main)
(main)

CHARACTER ARRAY:

(main)
(main)
(main)
(main)
(main)

NIN
NOUT

INPIN
LIB
LOG
LOGIC
OUTPIN

Index variable.

Position of a component's first input pin in LIB.
Position of a component's last input pin in LIB.
Position of a component's first output pin in LIB.
Position of a component's last output pin in LIB.
Index variable

Number of inputs in main circuit.

Number of outputs in main circuit.

Number of components on partslist.

External pins name.

Temporary for LIB(I,J).

The pin to be checked.

Token returned by parser ( =ITOK ).

The type of the part which the pin belongs to.

Token returned by parser.
80 character line read in to be parsed.

Position of last input in LIB.
Position of last output in LIB.

Array of inputs to main circuit.

Library.

Array of logical equations for each component.
Array of logical equations for each type.
Array of outputs to main circuit.



INIT_CH _NUM :
This routine finds the ASCII equivalents of integers.

VARIABLES:
CHARACTER ARRAY:

(main) CH_NUM = Character equivalents of integers.

135



SET_FLT :
Parses the fault data file. Fault data is stored in the array

FLT. :
VARIABLES:
INTEGER:
I Index variable.
J Index variable.
K Index variable.
NF Number of faults.

(main) ITKLN
(main) ICOL

Length or variable ITOK.
Column position of parser.

(main) NC Number of characters read into NCARD.
CHARACTER:

ANS = Temporary variable.
(main) CHNM = Character equivalent of integer.

T = Temporary variable.

TEMP = Temporary variable.

TOKN1 = Token returned by parser (= ITOK).

BYTE ARRAYS:

(80)  ITOK1
(80)  NICARD

Token returned by parser.
80 character line read in to be parsed.

CHARACTER ARRAYS:

(0:20) (main) CH_NUM = Character equivalent of integer.
(100,0:5) (main) FLT = Array of all faults and their values.

SUBROUTINES REFERENCED:

GETOK.
IN_CH_NM.

136



CLPS_FLT :

Used to find unique faults.

VARIABLES:

INTEGER:
NM = Number of faults.
NZ = Number of faults.

CHARACTER:
T = Temporary variable.
T1 = Temporary variable.
L = Logic of gate.

CHARACTER ARRAYS:

(100,0:5) (main) FLT = Array of faults and their values.

137



IN_CH NM :

For finding ASCII equivalents of integers. Uses data stored
in INIT_CH_NM.

VARIABLES:

INTEGER:
P1 = Temporary variable.
P2 = Temporary variable.
P3 = Temporary variable.
P4 = Temporary variable,
NF = Number of faults.

CHARACTER:
C1 = Temporary character variable.
c2 = Temporary character variable.
c3 = Temporary character variable.
C4 = Temporary character variable.

CHARACTER ARRAYS:
(0:20) (main) CH_NUM = Character equivalent of integer.

138



CREATE_ZND :

Sets input fault values into bliss arrays for substitution in place

of non-faulted inputs, it creates the bliss module ZND.B32.

VARIABLES:
INTEGER:
NF = Number of faults.

ZND.B32 :

ZAND = vector containing the input vaules for
the expanded (faulted) gates.

139



SUBSTITUTE :

Substitutes inputs and outputs of each part(except for faulted
and memory parts) into the bliss 1og1ca1 phrase for its type.

VARIABLES:
INTEGER:

(main)

(main) NCLOCKS

(main) NI
(main) NUM
CHARACTER:
IIN
(main) L
* NO
N1
00uT
(main) PIN
(main) PRINT
T
INTEGER ARRAY:
(main) NETIN
(main) NETOUT
(100) NINP
(100) NOUTP
CHARACTER ARRAY:
(main) CH_NUM
(main) CLOCK
clocks.
(main) 1IN
(100, 10) INP
(main) LIST1
(main) OUT
(100, 10) QuTP

140

I

IC
1J
IK
IPOS
J

LN
LPIN
M

Index variable.

Column position.

Length of line to be printed.

Index to reference knowns in p-ordered list.
Index variable for OOUT and IIN.

Index variable.

Length of net.

Length of pin to be replaced by a net.
Index variable.

Number of ficticious clocks.

Number of external inputs in main circuit.
Index number of "part" being substituted

Input string being parsed and substituted.
Logical phrase from library.

Output net.

Input net.

Output string_ being parsed and substituted.
Pin being replaced.

Variable containing line to be printed.
Temporary variable.

Number of inputs to a particular component.
Number of outputs to a particular component.
Number of inputs for each part.
Number of outputs for each part.

Character equivalents of integers.
List of input and output nets of the ficticious

Array of inputs to a particular component.
Array of inputs to a particular component.
Unordered list.

Array of outputs to a particular component.
Array of outputs to a particular component.



FAULT SUB :

Substitutes the inputs and outputs of faulted parts into
the faulted logic for its type.

VARIABLES:

INTEGER:

I

IC

1J
(main) IK

IPOS

J

LN

LPIN

M
(main) NCLOCKS
(main) NI
(main) NUM
(main) NF

TK
CHARACTER:

IIN
(main) L

NO

N1

00uT
(main) PIN
(main) PRINT

T

NPT

NPN

T1

N2

N3
INTEGER ARRAY:
(main) NETIN
(main) NETOUT

(100) NINP
(100) NOUTP

Index variable.
Column position.
Lenth of line to be printed.

Index to reference knowns in p-ordered list.

Index variable for OOUT and IIN.

Index variable.

Length of net.

Length of pin to be replaced by a net.
Index variable.

Number of ficticious clocks.

Number of external inputs in main circuit.
Index number of “part" being substituted.
Number of faults.

Temporary variable.

Input string being parsed and substituted.
Logical phrase from library.

Output net.

Input net.

Output string being parsed and substituted.
Pin being replaced.

Variable containing line to be printed.
Temporary variable.

Name of faulted part.

Name of faulted pin.

Temporary variable.

Temporary variable.

Temporary variable.

Number of inputs to a particular component.

Number of outputs to a particular component.

Number of inputs for each part.
Number of outputs for each part.

141



CHARACTER ARRAY:

(main) CH NUM

|| Character equivalents of integers.
(main) CLOCK

List of input and output nets of the ficticious

clocks.

(main) IN = Array of inputs to a particular component.
(100, 10) INP = Array of inputs to a particular component.

(main) LIST1 = Unordered list.

(main) oOUT = Array of outputs to a particular component.
(100, 10) QuTP = Array of outputs to a particular component.

(100,0:5) (main) FLT Array of faults and their values.

142



CREATE_DWN :

This routine creates the bliss emulation module DWN.B32. It
calls the bliss macros which represent the gates and memories.

VARIABLES:
INTEGER:
I = Index variable.
J = Index variable.
K = Number of knowns at beginning of execution.
MAIN = Position of Main component in partslist.
(main) NI = Number of inputs in main circuit.
(main) NO = Number of outputs in main circuit.
(main) NUM = Index number of "part" being substituted
CHARACTER:
(main) L = Logical phrase from library.

INTEGER ARRAY:

(main) NETIN
(substitute) NOUTP

Number of inputs to a particular component.
Number of outputs for each part.

CHARACTER ARRAY:

Array of inputs to a particular component.
Array of inputs to main circuit.

Unordered 1ist.

List of variables in ST array (in DWN.B32).
Array of outputs to a particular component.
Array of outputs to main circuit.

(main) IN
(main) INPIN
(main) LIST1
(150) LIST3
(main) OUTP
(main) OUTPIN

SUBROUTINES CALLED:
P_ORDER = P_orders LISTI.

143



P_ORDER

VARIAB

( 80)

~ (subst
(subst

144

This routine (called from CREATE_DWN) sets up the macro calls
so that they may be performed in the order required by
the circuit and writes them into DWN.B32.

LES:
INTEGER:
I
IX1
IX2
IX3
X4
IX5
IX6
J
K
(main) MAIN
MNO
NFC
(main) NK
(main) NUM
(main) NUM
CHARACTER:
(main) L
T
T1
BOOLEAN:
FIN

INTEGER ARRAY:

LISFC
(main) NETIN
(main) NETOUT
itute) NINP
itute) NOUTP

Index variable.

Index variable.

Index variable.

Index variable.

Index variable.

Index variable.

Index variable.

Index variable.

Index variable.

Position of Main component in partslist.
Number of passes made while p_ordering.
Number of ficticious clocks.

Number of nets whose values are known.
Index number of "part" being substituted
Number of components on partslist.

Logical phrase from library.
Temporary variable for INP(IX1,IX2).
Temporary variable for IN(MAIN,I,1).

True when Tist is successfully p_ordered.

List of ficticious clocks.

Number of inputs to a particular component.
Number of outputs to a particular component.
Number of inputs for each part.

Number of outputs for each part.



CHARACTER ARRAY:

(main) IN
(substitute) INP
(main) LIST1
(main) LIST2
(main) oUT
(substitute) OUTP

BOOLEAN ARRAY:
(main) DONE

L L T [ { N [ B |

n

Array of inputs to a particular component.
Array of inputs to a particular component.
Unordered 1list.
P-ordered list.

Array of outputs to a particular component.
Array of outputs to a particular component.

False if part is not yet in p-ordered list

145




CREATE_EXEC :

Creates the subprogram EXEC.For which sets up the output headings in
OUTPUT.DAT and calls the bliss moduie CTRL which controls the
execution of the circuit,

VARIABLES:
INTEGER:
I = Index variable.
(main) NO = Number of outputs in main circuit.

CHARACTER ARRAY:

(100) NAME

Qutput column headings.
(main) OUTPIN

Array of outputs to main circuit.

146



CREATE_MAIN :

Creates MAIN.B32 ,the main bliss module which contains the routine
CTRL . CTRL keeps track of cycles, changes in input ,calls ZND.B32
and MEM.B32 to load their data, calls DWN.B32 to run the actual
emulation, calls detect to determaine if any faults were detected,
calls PASPIN.FOR and PASADD.FOR to pass in detected results and
calls PRINT.FOR and FLTPRN.FOR to print the results of the emulation
and the fault detection.

VARIABLES:
INTEGER:
I
IBEG
IEND

(100)

(main) IONE
(main) ISTAT
J
K
M
NCYCLE
(main) NI
(main) NO

CHARACTER:
ANS
QU
INTEGER ARRAY:
NUM

CHARACTER ARRAY:

(main) INPIN
(main) OUTPIN

L LU | T S | O | R [ T R { B TR ||

Index variable.

Start index for cycle in MAIN.B32.
End index for cycle in MAIN.B32.
1.
Sets cursor to a specified position.

Index variable.

Index variable.

Total number of cycles to be simulated.

Cycle in which input values are to be changed.
Number of external inputs in main circuit.
Number of external outputs in main circuit.

Update input?.Y or N
Input manually or from a file? M or F

Initial input valuas for circuit.

Array of inputs to main circuit.
Array of outputs to main circuit.

147



MAIN.B32 :
(for explanation see CREATE_MAIN page )

VARIABLES:

AMACH = contains values of machines in which address
faults were detected.

ACYCLE = contains values of cycles in which address
faults were detected.

PMACH = contains values of machines in which pin
faults were detected.

PCYCLE = contains values of cycles in which pin
faults were detected.

MFTADD = contains values of addresses of words to
be faulted in ROM.

MFTBIT = contains values of the bits of the words
in MFTADD which are to be flipped,thus
faulting ROM.

ST = contains values of temporary variables used
in emulation (ie ficticious clocks).

ROUTINES CALLED:

PRINT = fortran routine to print the results of
emulation.

IND = loads the faulted gate input data into the
vector ZAND.

PRMS = read only memory simulation routine.

RWMEM = random access memory simulation routine.

DETFLT = routine to detect injected faults. Stores
results in AMACH,ACYCLE,PMACH and PCYCLE.
FLTPRN = prints data in AFINF and PFINF to file named

DETECTED.DAT.

148



PASADD = passes data in AMACH and ACYCLE to the fortran
array AFINF used by FLTPRN.

PASPIN = passes data in PMACH and PCYCLE to the fortran
array PFINF used by FLTPRN.

INTRAM = makes 32 copies of RAM.

MEM = loads data into memory, calls INTRAM.

149



CREATE_PRINT :

This routine creates a fortran subroutine PRINT.FOR to print
out the results of the emulation.

VARIABLES:
INTEGER:
I = Index variable.
(main) NO = Number of external outputs in main circuit.

CHARACTER ARRAY:

(main) INPIN
(main) OUTPIN

Array of inputs to main circuit.
Array of outputs to main circuit.

150



SET_MEM :
Parses the memory data file (FOR006.DAT).
VARIABLES:
CHARACTER:

(main) TOKEN
LIB*10

Q1

Token returnes by parser ( = ITOK ).
Temporary variable.
Temporary variable.

CHARACTER ARRAY:

(main) LIB = Library.
(main) LOGIC = Arrary of logical equations for each type.
TMP1 = temporary array of memory data.

INTEGER ARRAY:

(main) NIN
(main) NOUT

Position of last input in Lib.
Position of last output in Lib.

BYTE:

Token returned by parser.
80 character line read in to be parsed.

(main) ITOK
(main) NCARD

151



152

RWMEM

Creates PRM.B32, the bliss module that emulates a read-only
memory. If ROM is to be faulted it makes 32 copies of ROM
in a scratchpad memory. In the fault 1ist (see page ) the
user specifies the word in memory and the bit to be faulted
and faults are injected by flipping the bit of the chosen
word of memory to 0 if it was 1 ,or to 1 if it was O.

VARIABLES:

MACRO

MASK1 =

ADDARY=

ENB =
OUTARY
MFTADD

MFTBIT

IMIM =

ISTART=

MN1

MN2

MNN

o

XLATE =

vector containing the bit mask for
the serial to paralliel conversion.

vector containing the address in memory
to be read from or written to.

into memory.
enable bit. If 1 then read ROM else end.
= vector containing memory output data.

= vector containing the addresses of the words
in memory to be faulted (if ROM faults are
desired).

= vector containing the value of the bits to

be flipped (from 0 to 1 or 1 to 0) in ROM thus
causing the chosen words of memory to be
faulted.

vector containing 32 copies of ROM with the
faults injected.

if ISTART = 1 then fault ROM else no ROM faults
are desired.

vector containg the displacement to be comp-
ensated for if the given addresses in memory
are not consecutive.

vector containing the addresses in bliss memory

to be used after the displacement is taken into
account.

ontains the nuui > of entries in MNI1.

bliss macro to convert from serial to
parallel and vice versa.



CREATE_RWM :

Create RWM.B32 , the bliss module that reads or writes from
RAM. If the read/write bit is 1 (on), the write routine is
called else the read routine is done.

VARIABLES:

MACRO

MASK1 =

ADDARY=

DATARY=

ENB
RWB

WMACMEM

MN1

MN2

MNN

vector containing the bit mask for
the serial to Qaral]e] conversion.

vector containing the address in memory
to be read from or written to.

vector containing the data to be written
into memory.

enable bit. If 1 then proceed else end.
read/write bit. If 1 then write else read.

= RAM scratch-pad memory. loaded in module
MEM.B32, it is copied 32 times so it can
be faulted.

vector containg the displacement to be comp-
ensated for if the given addresses in memory
are not consecutive.

vector céntaining the addresses in bliss memory
to be used after the displacement is taken into
account,

contains the number of entries in MNI1.

OUTARY = vector containing memory output data.

XLATE =

bliss macro to convert from serial to
parallel and vice versa.

153



154

CREATE_PAS :

This routine creates two fortran modules PASPIN.FOR
and PASADD.FOR. These routines pass the detected fault information
contained in the bliss vectors PCYCLE ,PMACH ,ACYCLE and AMACH to
to the fortran arrays PFINF and AFINF so that it can be formatted
and printed out by the routine FLTPRN.FOR

VARIABLES : -

PFINF = character array containing detected pin
faults and the cycle in which they were
discovered.

AFINF = character array containing detected address

faults and the cycle in which they were
discovered.



FLTPRN.FOR

This routine prints out the fault detection data contained
in the arrays PFINF and AFINF. The output file which then contains
the information is-named DETECTED.DAT. This routine is created by
CR_FLTPRN a GLOSS.FOR subroutine.

VARIABLES :

PFINF = character array containing detected pin
faults and the cycle in which they were
discovered.

AFINF = character array containing detected address

faults and the cycle in which they were
discovered.

155



CH_IN_NM :

Uses IN_NUM to convert characters to integers.

VARIABLES:
CHARACTER:
CH = Holds value to be returned.
TEMP = Temporary variable.

FUNCTIONS REFERENCED:

IN_NUM.

156



FUNCTION IN_NUM :
(returns an integer equivalent of a character)

VARIABLES:
CHARACTER:

C = Character that is input parameter.

157



CREATE_MEM :

This routine creates a bliss module to store the memory input data
that is read in from the user input file. The bliss module created
is named MEM.B32

VARIABLES:

INTEGER:
RADIX = Value of memory index(octal or decimal).
NUMLOC = Place of current storage for memory data.
LRW = Integer equivalent of LRWMEM.
HIW = Integer equivalent of HIWMEM.
LoD = Integer equivalent of LODMEM.
HIADD = Integer equivalent of HIDMEM.

CHARACTER:
CH_NUM = Character equivalents of integers.
NUMR = Temporary variable.
TEMP2 = Temporary variable.
LODMEM = Starting address for read only memory.
HIDMEM = Ending address for read only memory.
LRWMEM = Starting address for read/write memory.
HIWMEM = Ending address for read/write memory.
ENDPC = Ending address for program counter.
WMEMBS = Base address for read/write memory.
TOKEN = Token returned by parser( = ITOK ).
CHNM = Character equivalents of integers.
CHEM = Character equivalents of integers.

SUBROUTINES CALLED:

GETOK = Parses a given line.

IN_CH_NM = Returns a character equivalent of an integer.
NUMDEC = Sets radix for decimal memory data.
NUMOCT = Sets radix for octal memory data.

CH_IN_NM= Returns an integer equivalent of a character.

158



MEM.B32 :
(for explanation see CREATE_MEM above)
VARIABLES :

MNN = number of displacement for nonconsecutive
addresses in memory.

MN1 = vector containing the address line headers
supplied by the user (the first number in
each the memory input file line)

MN2 = vector containing the values of the actual

position in bliss memory . MN1 - MN2 gives
the displacement used to the desired word in
memory.

MACMEM = vector containing the memory data.
ROUTINES CALLED :

INTRAM = routine which makes 32 copies of the
RAM portion of MACMEM.

159



MEM_SUB :

Substitutes the proper memory logic for the memory devices.

VARIABLES:
CHARACTER:
T1 = Temporary variable.
NO = Qutput net.
N1 = Input net.
IIN = Input string being parsed and substituted.
oout = Qutput string being parsed and substituted.
(main) PIN = Pin being replaced.
PRINT = Variable containing line to be printed.
T = Temporary variable.

CHARACTER ARRAY:

Unordered list.

Array of inputs to a particular component.
Array of outputs to a particular component.
List of input and output nets of ficticious
clocks.

(main) LIST1
(main) IN
(main) OUT
(main) CLOCK

INTEGER ARRAY:

(main) NETOUT

(main) NETIN
INP
ouTp

Number of outputs to a particular component.
Number of inputs to a particular component.
Number of inputs for each part.
Number of outputs for each part.

160



FLTDET.B32

This is a bliss module that contains the routine DETECT.

The purpose of DETECT is to determine whether there were any
differences between the output of the unfaulted machine and that of
the 31 faulted machines. If so, it stores the results of the
machine and the cycle in which the fault was detected.

FLTDET.B32 is created by CREATE_DET.

VARIABLES :

AMACH = contains values of the machines in which
address faults were detected.

ACYCLE = contains values of the cycles in which
address faults were detected.

PMACH = contains values of the machines in which
pin faults were detected.

PCYCLE = contains values of the cycles in which
pin faults were detected.

ER343A

.161



A1l

B1

A2

B2

83

A4

#1)

ot INvVT T
DO—x——o— N1 i
oAl #2) 100 ¥ o P1
S-a-1 /
1000 \'/ | TP (#2)
A
(#4)
PA2
S-a2-0
1011 N~ Vo NORT )
l/ TP #3) | 101 Sa0 010
\/ n
{#s) 101 7a) O P2
V2 s | TP (#4)
0100 v/
>& ¥
\ ALSO s
INV3 s‘_ﬂ
1000
\/
>G % oin NAND1 (#9)
S-a-1 110
PA3 {(#8) 101 X _— P3
S-a0
1011 N o : TP (H6)
/\ e 4
/ T (#5)
TP = TEST POINT
INva B0 X = FAULT
1000 3;71 OR1
7AY o 001 #12)
TP (#7) S-a2-0
/ ~
PAG #11) 101 X O P4
1011 [\ s\‘;“ 101 TP (48)
L~ -
(#13)
INVE
0101 .,
N
{1010)  NOR2
PAS (#14) ‘ (#16)
S-a-0
0110 \ C 0110) i"f’ )
/ N A O
(0100) 0001 TP (#9)
(#15)
PAG
0100 \ s:,-o

162

FIGURE 1 TEST CIRCUIT’



SEL4 o——Do—J‘L——
INV2
sEL3 O—-DO————

sEL2 INV 3

V4
SEL 1. N

INVS INV 13

i

%

iHve

- FIGURE 2

ARITHMETIC LOGIC UNIT (ALU)
FUNCTIONAL EQUIVALENT LOGIC DIAGRAM

i

INVZ INV 14

[
[~

Y

4

vy

INVY

AL3x

1

INV 15
B2 o—{>o—<

INV 10
A2 o——Dc

INVI1 INVIS
81 o—Do-4 O

INV 12

Al

ALUMAC 4

ALdx

v

CONTROL O—

S

INV 17

D ALy

INV 3S

CARIN O—

INV 18

NAND
65

INVT3

INV 83
NOR
“
— oR INV 74
18 NAND
a3 Do—o LACO1
OR
) 1
ALUMAC 1 V75
NOR
ut
INOR 67 CARO
- 47
/s INV 76
X
ANOR
co2
] 2
) NV 77
XOR A
X9 out
ALUMAC 2
! AL2x
.
1 N
INV T8
A\
) XOR ouT 3
: > 69 { >° °©
ALUMAC 3 INV 85
\nOR

INV 79

O COMPARE
INV 80
{ >0—0 0uT2
INV 81

163



FIGURE 3

ey 4-BIT DOWN COUNTER
.40; FUNCTIONAL EQUIVALENT LOGIC DIAGRAM
CLEAR
—_— Py r_J _ .
Poy
L
SSET 5 o N o0
Pya u27 e |
ug7- o POOZM
4& u23 b Yo (LEAST SIG. BIT)
. CK Qs
‘F——D)— .
u46 u2s T
CLOCK
P1a
¢ u13 [ Poz
u3 u20 —
CARRYIC b a {> o
P1a U U4
b TO74M POOZM
u24
J cK QB
u30 T
PRELOAD .
Pis
r_—T Pm
Fo ) Q {> a2
16 U4t
u3? TO74M POOZM
cK Qo j
Py
2}
3
l 04
P, D [} S a3
P1g ua2
POO
v26 uss To7m (MOST SIG. BIT)
cx o [
TOo02M
U L
P Pos
- F Tozm CARRYOU!
u4s
1 — "u“ﬂ TO08M
POO21

TOoO2M




CARIN O

INV.

AND
35
AND
— D
AND
23

6ot

— AND
L 2]
NAND
S o>

INV
42

AND

4 | v
T S e—{'s P
AND
“
AND
39
™
D s
AND
40
FIGURE 4
BCD AUDER

FUNCTIONAL EQUIVALENT LOGIC DIAGRAM




R/W

991

A0

Al

A2

A3

'\UB

L~

[\U7

v

N

P03

Qo
a1
ROM
us
Q2
a3

L
N

iENABLE

L

A4

DO

v

D1

D2

D3

v .V Vv ¥

FIGURE 5 MEMORY CiR<:T

V V Y



L91

— — 71

[ compiLer | _}_ i i }_ &
- — LIBBARYO? ™ memory ! M faur LIBRARY OF
| PARTS LIST | | STANDARD | INPUT | | INPUT | BLISS CODED
| | COMPONENTS | | DATA | |_DATA | MACROS
GLOSS. FOR N
PREPROCESSOR |——g>
PROGRAM GLOSS-
CREATED
- NODE BLISS 'COMPILED
| evaLuation [T compier [ program [P EXEC. FOR [
MODULES
e CALLS
. BLISS EXECUTIVE
Mi"“ EMULATION
OGRAM
OUTPUTS PR
FORTRAN
COMPILER
PASPIN. FOR | MAIN. b32
BLISS EMULATION
POSTPROCESSOR :
g FLTPRN. PRINT. FOR |t <1 rrocram T E—— CONTROL
FOR MODULE
PASADD. FOR (SEE PAGE 2)
o PRINTS o OPTIONAL :
RESULTS OF PASS
FAULT DETECTION EMULATION RESULTS r—=— 1
RESULTS OF FAULT DETECTION
- IF DESIRED TO FLTPRN. FOR | EXISTING
- DATA BASE
Lo

FIGURE A-1 STRUCTURE OF IGGLOSS



891

FA=FO

N
L

NON-FAULTED BUFFER

9

= )_J

FIGURE B-1 FAULTED BUFFER



691

FP

__A_{>o__

-NON-FAULTED INVERTER

v

FO

FIGURE B-2 FAULTED INVERTER



0.1

; R
L/

A — :
:

" )

) O>—— )

FIGURE B-3 FAULTED AND GATE



141

FA

]

FC

NON-FAULTED NAND GATE

FO

T )
_/

—

FIGURE B-4 FAULTED NAND GATE

FP|



¢l

Olo | >

:A ——\

Q /
: N
FC O ’

)
—LO_J

FIGURE B-5 FAULTED OR GATE

FP

NON-FAULTED OR GATE



€L1

FB

FC

Olo |»

NON-FAULTED NOR GATE

— )
FO __J

FIGURE B-6 FAULTED NOR GATE

FP



174}

] >

- Y
- -/
B T\
FB _d /
- R
FA *C_—/
= q}

FIGURE B-7 FAULTED EXCLUSIVE OR GATE

NON-FAULTED EXCLUSIVE-OR GATE

FP-



G/1

I

CLK
<

12

5T CLOCKED BRANCH

S
>

= FWULTED GATES
(FICTITIOUS)

// = NEW GATES

FOR
PRESET/CLEAR

.%".

I3

PRESET = 1
NOMINALLY

S

"CLEAR = 1, NOMINALLY'

14

PRESET =0 AND CLEAR =0 NOT PERMISSIBLE

FIGURE B-8 D-FLIP FLOP WITH PRESET AND CLEAR



9/1

ADDRESS
BITS

DATA
INPUT
BITS

=1 Ao,

=1 An.
MEMORY

B DEVICE
ROM/RAM

Q “MEMR"

RW
Lo
ENABLE
-

FIGURE B-9 STRUCTURE OF MEMORY DEVICE

OUTPUT
8ITS



1. Report No. 2. Government Accession No.

NASA CR-177939

3. Recipient’s Catatog No.

4. Titte and Subtitle
The Development of an Interim Generalized Gate Logic
Software Simulator

5. Report Date

December 1985

6. Performing Organization Code

7. Author(s)
J. G. McGough and S. Nemeroff

8. Performing Organization Report No.

9. Performing Organization Name and Address

Allied/Bendix Aerospace
Flight Systems Division
Teterboro, New Jersey

10. Work Unit No.

11. Contract or Grant No.

NAS1-15946

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration

Washington, DC 20546

13. Type of Report and Period Covered
Contractor Report

14, Sponsoring Agency Code
505-34~-13-30

15. Supplementary Notes
NASA Langley Senior Project Engineer:

Salyvatore J, Bavuso

16. Abstract

A proof-of-concept computer program called IGGLOSS (Interim Generalized Gate.Logic

Software Simulator) was developed and is discussed in this report.

The simulator

engine was designed to perform stochastic estimation of self-test coverage (fault-
detection latency times) of digital computers og systems. A major attribute of the

IGGLOSS is its high—sgeed simulation:

9.5 x 10 gates/cpu sec. for nonfaulted

circuits and 4.4 x 10° gates/cpu sec. for faulted circuits on a VAX 11/780 host

computer.

See NASA Contractor Report 172159, April 1983 for design principles.

17. Key Words (Suggested by Author(s))

Emulation Self-test

Gate-level Comparison~monitoring
Fault detection Coverage

Fault latency

18. Distribution Statement

Unclassified -~ Unlimited

Subject Category 59

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price
Unclassified Unclassified
n-308 For sale by the National Technical Information Service, Springfield. Virginia 22161

177



THIS PAGE INTENTIONALLY LEFT BLANK

178



End of Document



