
t - ~-

NASA Contractor Report 177939 

NASA-CR-177939 
19860010477 

The Development of An Interim 
Generalized Gate Logic 
Software Simulator 

J.G. McGough and S. Nemeroff 

Allied/Bendix Aerospace 
Flight Systems Div. 
Teterboro, New Jersey 

Contract NAS 1-15946 

December 1985 

NI\5/\ 
National Aeronautics and 
Spae. Administration 

Lanilley Rawc:h Centla' 
Hampton, Virginia 23685 

I IUIII\I \IU IIII UIII UII\ \111\ 1\11\ 1\11 lUI 
NF00699 

J' = r 



TABLE OF CONTENTS 

1.0 SUMMARY AND CONCLUSIONS 3 

1.1 SUMMARY 3 
1.2 CONCLUSIONS 3 

2.0 INTRODUCTION 4 

2.1 OBJECTIVES OF GGLOSS 4 
2.2 REQUIREMENTS OF GGLOSS 5 
2.3 DESIGN SPECIFICATION OF GGLOSS 6 

3.0 IGGLOSS 7 

3.1 OBJECTIVES OF IGGLOSS 7 
3.2 REQUIREMENTS OF IGGLOSS 7 
3.3 DESIGN SPECIFICATIONS OF IGGLOSS 7 

4.0 PERFORMANCE OF IGGLOSS 8 

5.0 TASKS REMAINHIG TO COMPLETE GGLOSS 11 

6.0 REFERENCES 15 

APPENDIX A. THE SOFTWARE STRUCTURE OF IGGlOSS 17 

APPENDIX B. BLISS-CODED PRIMITIVES 21 

APPENDIX C. USER'S MANUAL 23 



LIST OF ILLUSTRATIONS 

FIGURE TITLE PAGE 

1 Test Ci rcuit 162 
2 Arithmetic Logic Unit (ALU) 163 

(Functional Equipment Logic Diagram) 
3 4-8IT Down Counter 164 

(Functional Equipment Logic Diagram) 
4 8CD Adder 165 

(Functional Equivalent Logi c Di agram) 
5 Memory Circuit 166 

A-I Structure of IGGLOSS 167 
8-1 Faulted 8uffer 168 
8-2 Faulted Inverter 169 
8-3 Faulted AND Gate 170 
8-4 Faulted NAND Gate 171 
8-5 Faulted OR Gate 172 
8-6 Faulted NOR Gate 173 
8-7 Faulted EXCLUSIVE OR Gate 174 
8-8 D-FLIP FLOP with PRESET and CLEAR 175 
8-9 Structure of Memory Device 176 

2 



1.0 SUMMARY AND CONCLUSIONS 

1.1 Summary 

An intel-im version of GGLOSS (called IGGLOSS) was developed and 
tested for the purpose of obtaining an early assessment of the predicted 
performance of GGLOSS. IGGLOSS omitted only those features of GGLOSS 
which have little or no affect on the essential performance capabilities 
of GGLOSS. Five ci rcuits were simul ated and IGGLOSS performed exactly 
as anticipated. 

IGGLOSS was hosted on a VAX 11/780 computer and was programmed in 
Fortran and Bliss, the latter being used exculsively for high speed 
logic computations. 

Memory Requirements 

IGGLOSS required 3504 Bytes of VAX memory including the library of 
Bliss-coded primitive macros. 

Simulation Speed 

Non-Faulted 
Faulted 

9.5 x 10**6 Gates/Sec of VAX 11/780 CPU time 
4.4 x 10**6 Gates/Sec of VAX 11/780 CPU time 

1.2 Conclusions 

• IGGLOSS performed exactly as anticipated. 
• The simulation techniques of GGLOSS, as described in (Ref. 3), 

appear to be sound. 
• The memory requirements of IGGLOSS (3504 Bytes) are modest. 
• The simulation speed of IGGLOSS is at least comparable to that 

of BGLOSS. 
• It is recommended that GGLOSS be completed. The additional 

tasks requi red to transform IGGLOSS into GGLOSS are gi ven in 
Section 5.0. 

3 



2.0 INTRODUCTION 

In the Fall of 1979 Bendix was awarded a contract by NASA langley 
Research Center to perform a fault simulation study to determine fault 
latency in a digital avionics processor (ref. 1). Prior to the award, 
Bendix had developed a gate logic software simulator (BGlOSS) for its 
BDX-930 digital computer. The study provided the opportunity to not 
only establish fault latency statistics but to test BGlOSS in a variety 
of scenarios, not the least of which included the simulation of software 
programs and their interaction with hardware faults. Prior simulation 
experi ence 1 ead to the conc 1 us i on that, next to reasonab 1 e accuracy, 
simulation speed was the most important characteristic of a simulator. 
Current, commercially available varieties are too slow for the types of 
fault experiments envisioned, being of the order of 1000 gates/sec of 
host computer cpu time. The impact of such speeds can readily be appre
ciated by considering the application in which it is desired to deter
mine the detectability of a fault by a self-test program consisting, 
typically, of 1000 assembly language instructions. In the BDX-930, an 
assembly language instruction requires, on the average, four passes 
through the cpu, which consists of 5000 equivalent gates. Thus, a 
single fault, together with a complete execution of self-test, requires 
the simulation of 20 million gates. At 1000 gates/sec it would require 
5.55 hours of cpu timel Subsequently, after thousands of simulated 
faults, the speed of BGlOSS was established at 2.86 million gates/sec on 
a Vax 11/780 host computer. As a consequence of the success of BGlOSS 
in the context of the Fault latency Study, NASA langley Research Center 
awarded Bendix a follow-on contract to determine the feasibil ity of 
developing a generalized gate logic software simulator (GGlOSS) based 
upon the BGlOSS model (ref. 3). 

As a result of this contract it was concluded that a GGLOSS simula
tor, which was at least comparable in speed to BGlOSS, was definitely 
feasible. As a consequence, NASA langley Research Center awarded Bendix 
a contract to develop an interim version of GGLOSS (hence forth referred 
to a IIGGlOSS") for the purpose of validating the predicted performance 
of the final version before initiating a full-scale development program. 
This report describes the subsequently developed IGGlOSS and its 
performance. 

Because IGGLOSS is an interim version of GGLOSS it is appropriate 
to include here an overview of GGlOSS (a detailed description is given 
in (ref. 3)). 

4 

2.1 Objectives of GGLOSS 

GGlCJSS is a fault simulator to be used for the purpose of: 

• Conducting failure modes and effects analyses 
• Designing and validating self-test programs 
• Obtaining fault latency data for use in advanced reliability 

prediction programs such as CARE III. 



It is important to emphasize that GGLOSS was never intended as a 
circuit design tool. Consequently the reader will observe, subse
quently, that it lacks many of the features normally contained in a 
commercially available simulator. 

The objectives of GGLOSS are: 

• Gate level software simulator 
• Generalized to the extent necessary to simulate virtually any 

representable by gate logic 
• Reasonably transportable 
• Very high speed, comparable to that of BGLOSS 
• User-friendly 
• Employs "standard" circuit specifications 

2.2 Requirements of GGLOSS 

Based on previous and extensive fault injection experiments 
(ref. 1, 2) ~/ith BGLOSS the fo 11 owi ng requi rements for GGLOSS were 
establi shed: 

a. The simulator must be capable of simulating software. This was 
a basic requirement since the objectives include the design and 
validation of self-test and the evaluation of fault latency. 
when comparison-monitoring is the method of fault detection. 

b. The simulator must yield. results in a timely manner. The 
simulation of self-test and flight control applications pro
grams requires many passes through the CPU. Considering the 
quantity of faults that were to be simulated it was the judge
ment of the BGLOSS design team that the simulation time, on 
whatever computer BGLOSS was hosted on, should not exceed 25000 
times real time. Assuming 5000 gates in the CPU, at a clock 
cycle of 250 nanoseconds, this would be equivalent to simulat
ing 801,753 gates/second (In any event, BGLOSS, simulated on a 
VAX 11/780, did not exceed 7000 times real time, which was 
equivalent to 2.86xl0**6 gates/second). 

c. The simulator must be capable of simulating multiple CPU's, 
with different software programs, concurrently. Because many 
of the envisioned simulation experiments involved redundant 
channels of a flight control system, it was desired that the 
simulation should be capable of modeling the concurrent opera
tion of synchronous and asychronous channels,. i.e., processors 
which, effectively, execute different software programs concur
rently. 

In summary, the simulator must be capable of simulating software. 
The simulator must yield results in a timely manner and the simulator 
must be capable of simulating multiple CPU's, operating synchronously or 
asynchronously with each, possibly executing different software 
programs. 

5 



2.3 Design Specifications of GGLOSS . 

In order to meet the objectives and satisfy the requirements of 
GGLOSS, the following specifications were established (ref. 3): 

6 

• Programmed in FORTRAN and BLISS 
• Control and executive functions programmed in FORTRAN 
• Hosted on a VAX 11/780 
• Arithmetic and logic functions programmed in Bliss 
• Employs a reasonably standard circuit specification syntax 
• User - interactive 
• Parallel mode simulation, exclusively 

(i.e., 32 circuits in parallel) 
• Fixed order of node evaluations 
• Orders combinational networks (P-ordered) 
• 2-valued logic, exclusively 
• Accommodates functional-level modules, e.g., memories, 

flip-flops 
• User must initialize the network 
• Stuck-at faults, exclusively 
• Automatic fault selection if desired 
• Simulates multiple faults in a single circuit 
• Simulates ROM and RAM memories, 32 different copies of each, if 

required 
• Simulates a fictitious clock and multiples thereof, in any 

desired quantity 
• Simulates faults in ROM and.RAM 
• Simulates intermittent faults 
• Collapses faults 
• High speed of the order of 2 million gates/second of VAX 11/780 

CPU time. 



3.0 IGGLOSS 

IGGLOSS was intended as a scaled-down vers i on of GGLOSS for the 
purpose of obtaining an early assessment of the predicted performance of 
GGLOSS. IGGLOSS omitted those features of GGLOSS which were judged to 
have 1 ittl e or no affect on the essenti a 1 performance capabil ity of 
GGLOSS. Moreover. anticipating the success of IGGLOSS and to preclude a 
rework of the IGGLOSS software. IGGLOSS was designed to be the "core" 
element of the future GGLOSS. Thus. GGLOSS would be the result of 
adding the omitted features to IGGLOSS. . 

3.1 Objectives of IGGLOSS 

An interim version of GGLOSS for the purpose of obtaining an early 
assessment of the essential performance of GGLOSS. 

3.2 Requirements of IGGLOSS 

• IGGLOSS must comprise the "core" element of GGLOSS 
• IGGLOSS must employ the identical simulation techniques of 

GGLOSS 
• IGGLOSS must be capable of simulating a variety of circuits. 

including memories. of sufficient complexity to allow an assess
ment of GGLOSS performance capabilities 

3.3 Design Specifications of IGGLOSS 

IGGLOSS incorporates all of desi gn features of GGLOSS with the 
following exceptions: 

o IGGLOSS interacts with the User to a limited extent 
o IGGLOSS does not contain automatic fault insertion features 
o IGGLOSS can only simulate 31 faults at a time. The User is 

required to recompile IGGLOSS for each set of 31 faults 
• Although IGGLOSS allows for an arbitrary number of clocked nets. 

the clocks must have the same frequency. GGLOSS can accommodate 
clocks (i .e. fictitious) which are multiples of a basic clock 
and in any desired quantity 

• IGGLOSS did not partition the network. i.e. all gates were 
replaced by their corresponding fault models at the start of 
each run 

• Hierarchical networks could not be constructed 
• leis could only be set to logic Os 
• IGGLOSS could not simulate intermittent faults 
• IGGlOSS could not simulate multiple faults in the same circuit 
• IGGLOSS could not collapse faults 
• IGGLOSS could simulate 32 different RAMls ;.i Jlara11el but could 

only simulate 32 identical ROMls. 

7 



4.0 PERFORMANCE OF IGGLOSS 

The simulation techniques employed by IGGLOSS are identical to 
those of GGLOSS (ref. 3). Indeed, it was not found necessary to change 
or modify a single design specification. As indicated previously, a 
detailed description of GGLOSS is given in (ref. 3). However, as an aid 
to the reader, we give here an overview of these simulation techniques 
and the User-procedures in setting up a simulation. 

8 

4.1 Overview of an IGGLOSS Simulation 

I} The User creates a Partslist for the circuit (see User's 
Manual). For illustrative purposes, the circuit could be the 
4-BIT downcounter of Figure 3. The User may specify the parts 
in any order whatsoever. 

2} In the Partslist the User must identify the location of ficti
tious clocks, in effect, by treating them as special buffer 
oates. 

Fictitious clocks are placed in order to break feedback paths. 
In the case of the downcounter, the User should break the cir
cuit at the D-inputs of the 4 flip flops. Thereafter, IGGLOSS 
assumes that the resultant circuit is a collection of disjoint, 
combinational circuits. It treats the inputs to a clock gate 
as an external output and the output of the clock gate as an 
external input. 

3} By prompts IGGLOSS will request 

o identity of faulted components and the type of fault 
o contents of ROM memory 
o identity of memory faults 
o number of clock cycles in a run 
o input as a function of clock cycle 
o output options 

IGGLOSS is now ready to compile. 

4} IGGLOSS reorders the circuit, placing all gates in ranks: the 
first rank containing gates whose only inputs are external 
inputs. The second rank containing gates whose only inputs are 
outputs from gates in the first rank. This ordering continues 
until all gates are assigned to a rank. If IGGLOSS discovers a 
feedback path it will print an error message and stop. If the 
orderi ng is successful, IGGLOSS wi 11 convert the reo:· .~c. ~d 
partslist into a Bliss-coded program and print the result5. 

IGGLOSS is now ready to execute. 



5) IGGLOSS simulates, in parallel, 32 circuits, one of which is 
always non-faulted. IGGLOSS makes a single pass through the 
network, simulating every gate as it does so. At the end of 
each pass IGGLOSS compares the values of all test pi ns with 
those of their counterparts in the non-faulted circuit. If 
there is a difference the test pin, the fault and the clock 
cycle are noted. The "detected" fault, however, is no longer 
tracked. Thus, if subsequently another test pin "detects" this 
fault the fact will be ignored. 

6) IGGLOSS repeats the above process for the next input vector. 
However, before executing th"e next pass, IGGLOSS transfers the 
input of all clock gates to the outputs. Effectively, the 
clock gates are treated as if they were D-flip flops. 

4.2 Test Circuits 

IGGLOSS simulated 5 circuits 

• Test Circuit (Figure 1) 
• Arithmetic Logic Unit (Figure 2) 
• 4-Bit Downcounter (Figure 3) 
• BCD Adder (Figure 4) 
• Memory Circuit (Figure 5) 

The corresponding partslists, P-ordering, test pin locations, 
faults, input sequences and results are described in the User's Manual. 
The partslists for the ALU and the BCD adder were already contained in 
the Bendix Circuit Library and only required the addition of test pin 
locations to be compatible with IGGLOSS. 

The responses of IGGLOSS were manually checked in both the faulted 
and non-faulted runs. 

4.3 Simulation Results 

Memory Required 

The IGGLOSS compiler, including the Library of Bliss-coded macros 
required only 3504 bytes of host computer memory. 

Simulation Speed 

To estimate the simul ation speed of IGGLOSS the downcounter was 
simulated with and without faults. In the non-faulted case, IGGLOSS 
made 1000 passes through the circuit; in the faulted case 31 gates were 
faulted and IGGLOSS made another 1000 passes through the network. The 
results were: 

9 



Non-faulted. 1000 passes 
Faulted. 1000 passes 

CPU time = 0.34 seconds 
CPU time = 0.74 seconds 

The CPU times were measured from the start to finish of the BLISS 
program and did not include compile time. 

We estimated the number of gates per second of CPU time as follows: 

Non-Faulted Circuit 

The downcounter contains 101 gates. Since 32 circuits are executed 
in parallel. the total number of gates simulated were: 

1000 x 32 x 101 in 0.34 seconds 

= 9.5 x 10**6 gates/sec of VAX 11/780 CPU time 

Faulted Ci rcuit 

As indicated previously. IGGLOSS replaced every gate by its fault 
model. This was a very inefficient procedure since only 31 gates were 
faulted. Without counting these additional gates. the total number of 
gates simulated was taken to be. conservatively. 

1000 x 32 x 101 in 0.74 seconds 

= 4.4 x 10**6 gates/se~ of VAX 11/780 CPU time. 

ROM/RAM Circuit Timing 

The introduction of memory elements in a circuit significantly 
reduces simulation speed since these devices cannot be simulated in 
parallel. Moreover. each execution of a memory requires two 
transformations: 

1) A transformation from parallel to serial 
2) A transformation from serial back to parallel 

IGGLOSS simulated the memory circuit of Figure 5. which contained a 
ROM and RAM memory. 

IGGLOSS made 1000 passes through the ci rcuit. whi ch requi red a 
total of 2.79 seconds of VAX 11/780 CPU time. exclusive of compile time. 
Since the transformations used in IGGLOSS are identical to those used in 
BGLOSS (the simulation of the Bendix BDX-930) including the BLISS code. 
it can be expected that the simulatJon speed of IGGLOSS. with respect to 
memory. is comparable to that of BGLOSS. 

10 



5.0 TASKS REMAINING TO COMPLETE GGLOSS 

As indicated previously. IGGLOSS was developed as an interim ver
sion of GGLOSS and. consequently. lacks many features which were inten
ded to be included in GGLOSS. Since IGGLOSS was essentially designed as 
the "core" element of GGLOSS. IGGLOSS can be transformed into GGLOSS by 
adding those omitted features. The additional features are: 

1) Network partitioning 
2) IC specifications 
3) Extended test pin coverage 
4) Identification of device pins 
5) Simulation of intermittent faults 
6) Simulation of multiple faults in a single circuit 
7) Fault collapsing 
8) Simulation of 32 different ROMS 
9) Simulation of RAM faults 

10) Accommodation of multiple fault models 
11) Addition of multiple. fictitious clocks 
12) Interfacing with circuit capture programs 
13) Expanded library of Bliss-coded primitive circuits 
14) Hierarchial network construction 
15) Error diagnostic routines 
16) Output options 
17) Menu option 
18) Graphical displays 
19) Expanded user's manual _ 
20) Automatic selection of faults 
21) Automatic statistical analysis 

1. Network Partitioning 

In order to simulate a faulted gate IGGLOSS replaces the gate by a 
fault model (Figure B-3) which contains several gates. the quantity 
depending upon the type of gate and the number of nodes. 

Since IGGLOSS simulates 32 circuits in parallel. one of which is 
always the non-faulted circuit. replacing more than 31 gates during a 
run could be inefficient. In fact. IGGLOSS simultaneously replace3 all 
gates by their fault models. irrespective of the number and location of 
the faults actually simulated. This increased the simulation time pro
portionately. On the other hand. there is a real time penalty associa
ted with the replacement of gates during a simulation. Consequently. 
there is a trade-off between the number of faulted gates in each run 
versus the overhead penalty. GGLOSS should provide the option of opti
~I~lly partitioning the network into faulted and non-faulted gates during 
f:ad. run. 

11 



2. IC Specifications 

IGGLOSS automatically sets all nodes to logic O's at the start of a 
simulation run. GGLOSS should allow the User to specify the IC's and 
provide default modes which set the IC's to either all logic O's or all 
logic l's. 

3. Extended Test Pin Coverage 

IGGLOSS tracks each fault until the fault is detected, at which 
time it identifies the test pin and the clock cycle. Thereafter it no 
longer tracks the coverage of the fault (possibly by different test 
pins). GGLOSS should continuing tracking the fault, identifying all 
test pins which detected the fault and, of course, the clock cycle 
during which the fault was detected. 

4. Identification of Device Pins 

GGLOSS should provide the capability of restricting faults to 
device pins. It should, therefore, allow the User to identify device 
pins, preferably in the Partslist. 

5. Simulation of Intermittent Faults 

IGGLOSS can only simul ate permanent faul ts; i.e., a faul t must 
remain in place for the duration of the run. GGLOSS should provide for 
the insertion of intermittent faults. 

6. Simulation of Multiple Faults In A Single Circuit 

IGGLOSS can only simulate one fault at a time in the same circuit. 
GGLOSS should provide the option of inserting multiple faults in the 
same ci rcuit. 

7. Fault Collapsing 

IGGLOSS simulates every fault designated by the User. This is 
somewhat i neffi ci ent because different faults of the same gate coul d 
produce identical effects at the output; e.g., a s-a-o of an input to an 
AND gate produces the same effect as a s-a-o of the output. It would be 
more efficient to simulate only one and these "equivalent" faults and 
multiply the results by the number of equivalent faults. GGLOSS should 
identify such faults and eliminate their redundant simulation. 

8. Simulation of 32 Different ROMS 

While I(jGL~~~ ~dn simulate 32 ROMS in parallel it requires that all 
of the ROMS have the same contents. GGLOSS should provide the option of 
32 different ROMS. 

12 



9. Simulation of RAM Faults 

IGGLOSS simulates 32 RAMS in parallel but does permit the simula
tion of faults in the RAMS. GGLOSS should provide this option. 

10. Accommodation of Multiple Fault Models 

It is well known (ref. 3) that a single, gate-equivalent circuit 
cannot model all faults of a real device by single stuck-at faults. In 
general, several models of the circuit are required. GGLOSS should 
allow the User to define several different fault models for the same 
device. 

11. Addition of Multiple, Fictitious Clocks 

Fictitious clocks are placed in order to break feedback paths. 
IGGLOSS allows the placement of an arbitrary number of fictitious clocks 
but requi res that they have the same frequency and phase. The User 
should have the option of specifying fictitious clocks and different 
frequencies derived from a master clock. 

12. Interfacing With Existing Circuit Capture Program 

There are several commercially available circuit capture programs 
which allow the User to create a circuit on a CRT screen, which is then 
translated into a Partslist. GGLOSS should have the capability of 
interfacing with one or more of these Partslists. 

13. Expanded Library of Bliss-Coded Primitive Circuits 

As noted previously, IGGLOSS contains a library of Bliss-coded 
primitive macro; e.g., AND gates, OR gates, etc. (see Appendix B). The 
existing library should be expanded to include a greater variety of 
primitives. In this connection, it is important to observe that the 
only time a knowledge of Bliss is required is in the creation of these 
primitives. It is entirely possible to eliminate even this dependence 
by all~wing the User to define primitives via PartsLists (see the Hier
archical Network Construction Feature). 

14. Hierarchical Network Construction 

IGGLOSS does not allow a Partslist to contain another Partslist; 
i.e., a component device cannot be defined by a Partslist. When it is 
desired to combine circuits the User must manually create a single 
Partslist for the combined circuits. 

GGLOSS should provide the ;~t~un of defining a circu~t component by 
a Partslist. This provision would, in addition, allow the User, without 
any knowledge of Bliss, to create new primitives. 

13 



15. Error Diagnostic Routines 

IGGLOSS provides almost no clues to the source of errors committed 
by the User in setting up a simulation. GGLOSS should provide a reason
able level of error diagnosis. A "Help" routine could also be added. 

16. Output Options 

GGLOSS should provide the User with a variety of selectable out
puts, including, as a minimum: 

• Number of s-a-o, s-a-1 faults detected in each User-designated 
circuit component or test pin versus clock cycle 

• Identification and location of undetected faults 
• Fault list 
• Output vector of any User-designated component as a function of 

clock cycle* 
• Input vector as a function of clock cycle* 
• Failure detection coverage of s-a-o, s-a-1 and combined faults 

for any User-designated component 
• Directory of the library of Bliss-coded primitives 
• Contents of memories at a User-designated clock cycle or as a 

function of clock cycle* 

*Cauti on shoul d be exerci sed when outputti ng vectors as func
tions of clock cycle since this could significantly increase 
simulation time. 

17. Menu Option 

While GGLOSS is intended to be interactive with the User (e.g., by 
prompts), it would be desirable to provide the option of a graphically 
d i sp 1 ayed menu. Th is would provi de the User with a more compact and 
comprehensive overview of the data required. A "Help" menu would also 
be desirable. 

18. Graphical Displays 

If a graphics screen is available, the User should have the option 
of receiving output data in graphical formats. The formats would 
include: 

14 

• Histograms of latency, perhaps dynamically changing as a func-
tion of clock cycle* 

• Input vector as a function of clock cycle* 
• Output vector as a function of clock cyc1€+ 

• Histograms of test pin coverage 
• Graphical representation of the circuit, including location of 

faults, coverage of components, etc. 

*See note in "Output Options" 



19. Expanded User's Manual 

The existing User's Manual for IGGLOSS should be greatly expanded. 

20. Automatic Selection of Faults 

IGGLOSS requires that the User select each fault manually. For 
large-scale fault insertion experiments, in which the objective is to 
determine coverage, a manual selection of faults is not practical. In 
these cases the User should have the option of specifying only the num
ber of faults, with GGLOSS making the actual selection. The method of 
selection would be based on: 

• Output data requirements 
• Distribution of failure rates over the gat~s 
• Sampling strategy, e.g., stratified samplirg 

Automatic selection of faults requires that the Partslist be 
expanded to include failure rates of components. 

21. Automatic Statistical Analysis 

GGLOSS will have the capability of produci ng 1 arge quantiti es of 
data. To be useful, the data must be analyzed and reduced and the 
results presented to the User in a comprehensible form. The statistical 
analysis of data is inseparable from the sampling strategy employed. 
Given a sampling strategy (e.g., stratified sampling), statistical 
analysis would provide the following data: 

• Histograms of latency by components 
• Combined histograms 
• Detection coverage 
• Confidence levels of detection coverage 

(confidence levels vs. quantity of faults presented to Use:-
during set-up) 

• Maximum likelihood estimates of time to detection 
• Most efficient set of test pins 

Statistical analysis could conceivably be used to automatically 
design an efficient self-test program with perhaps some User interven
tion and prompts. 

15 



6.0 REFERENCES 

1. McGough, J., Swern, F., "Measurement of Fault Latency in a Digital 
Avionic Mini Processor," NASA CR-3462, NASA Langley Research Center, 
Hampton, Va., October, 1981. 

2. McGough, J., Swern, F., "Measurement of Fault Latency in a Digital 
Avionic Mini Processor," NASA CR-3651, NASA Langley Research Center, 
Hampton, Va., January, 1983. 

3. McGough, J., "Feasibility Study for a Generalized Gate Logic Soft
ware Simulator," NASA CR-172159, NASA Langley Research Center, 
Hampton, Va., July, 1983. 

ER13A 

16 



APPENDIX A 

THE SOFTWARE STRUCTURE OF IGGLOSS 

The Software Structure of IGGLOSS is shown in Figure A-I. The basic 
sub-programs are: 

• Inquire. Com 
• GLOSS. For 

17 



I NQU I RE. COM 

INQUIRE. COM is the executive for IGGLOSS. It is a command proce
dure which does the following: 

18 

1) Asks the User for the name of the Partslist and copies it into 
the appropriate file for use with the GGLOSS program. 

2) Asks the User for the name of the file containing the inputs to 
the ci rcuit, if any such fil e exi sts, and copi es it into the 
appropri ate fi 1 e for use wi th the GGLOSS program. All I. C. IS 
are initialized to zero. 

3) Asks the User for the name of the file containing the faulted 
input data. It then copies this data into the file FLTVAL.DAT 
which is read in by SET_FLT. 

4) Executes GLOSS. FOR 

5) Compiles each of the modules created by GLOSS.FOR: 

- EXEC. FOR - PASPIN.FOR 
- MAIN.B32 - PASADD.FOR 
- DWN.B32 - FLTPRN.FOR 
- ZND.B32 - DETECT.B32 
- TIM2.FOR - RWN.B32 
- PRINT.FOR (optional) - PRM.B32 
- TIM3. FOR - MEM.B32 

6) Links together the modules just compiled. 

7) Starts the simulation by running EXEC.FOR 

8) Prints the results of the simulation on the terminal. 
(opti ona 1) 



GLOSS. FOR 

GLOSS. FOR creates the sub-program which does the actual simulation 
of the circuit. GLOSS.FOR is considered the Ipreprocessorl part of 
IGGLOS, because it prompts for all the inputs, creates the necessary 
Bliss modules and sets up the result and output files. GLOSS.FOR accom
plishes this in the following way: 

1) Reads in and stores LIBRARY.DAT 

2) Reads in and stores the Partslist. 

3) Parses the Partslist, extracting the following information: 

- types of gates used in the circuit 
- external inputs to the circuit 
- external outputs from the circuit 

4) Associates a gate type to each component in the Partslist. 

5) Determines the input nets for each component. 

6) Determines the output nets for each comp'onent. 

7) Reads in and stores fault data. Substitutes faulted types for 
gates to be faulted. 

8) For each' component, substitutes the component name, its input 
nets and its output nets into the logical equation for its 
type as found in the library. 

9) P-orders the list created in step (8). 

10) Creates EXEC. FOR, which prints out the output column headings 
and calls MAIN.B32. 

11) Creates MAIN.B32, with the information received interactively 
with the User.MAIN.B32 is a Bliss-coded sub-program which sets 
up the parameters and calls DWN.B32 and PRINT.FOR 

12) Creates DWN.B32, 
P-ordered 1 i st. 
of the circuit. 

a Bliss-coded sub-program containing the 
This sub-program does the actual simulation 

13) Creates PRINT. FOR, a FORTRAN sub-program whi ch pri nts the 
results of the simulation in a file named OUTPUT.DAT 

14) Creates MEM.B32, a Bliss routine which loads the contents of 
the User-specified memory input file into the simulated mem
ori es. If the ci rcui t has a RAM, then the routi ne INTRAM 
(contained in MEM.B32) makes 32 copies of the RAM in a 
"scratch pad" memory. 

19 



20 

15) Creates PASPIN.FOR and PASADD.FOR, two routines which copy the 
Bliss "fault detection" vectors into fortran arrays so that 
the detected data may be printed out. 

16) Creates FLTPRN.FOR, a fortran routine to print the results of 
the fault detection routines. 

17) Creates PRM.B32, a Bliss module which emulates a "read only" 
memory. 

18) Creates RWM.B32, similar to PRM.B32 this module emulates a 
random access memory. 

19) Creates ZND.B32, a Bliss routine to load the faulted inputs 
for the expanded gates in memory so that they can be substi
tuted for unfaulted inputs during emulation. 

20) Creates DETFLT.B32, a Bliss module that contains the routine 
DETECT whi ch checks the speci fi ed "detect poi nts" to see if 
any faults can be detected. 



APPENDIX B 

BLISS-CODED PRIMITIVES 

The Bliss-Coded Library contains Bliss Macros for the following 
devices: 

DEVICE 

Buffer 
Inverter 
AND Gate 
NAND Gate 
OR Gate 
NOR Gate 
Exclusive OR Gate 
D-Flip Flop 
RA~I 
Rml 

INPUTS 

1 
1 

2,3,4 
2,3,4 
2,3 
2,3,4,5 

2 
4 

User-Sped fi ed 
User-Sped fi ed 

The Bliss Library also contains the fault model for each of the 
above devices. The primitive devices and their fault models are shown 
in Figures B-1 through B-9. 

21 



THIS PAGE INTENTIONALLY LEFT BLANK 

22 



APPENDIX C 

USER'S MANUAL 

23 



TABLE OF CONTENTS 
-----------------

SECTION TITLE PAGE 

1.0 SOFTWARE ORGANIZATION 26 

1.1 INQUIRLCOM 26 

1.2 GLOSS. FOR 27 

2.0 RUNNING IGGLOSS 29 

3.0 INPUT FILES 33 

3.1 L1BRARY.DAT 33 

3.2 RTNES.R32 39 

3.3 PARTS LIST 49 

3.4 MEMORY PARTS 51 

3.5 DETECT POINT LIST 52 

3.6 FAULT INPUT LIST 53 

3.7 DETECTED FAULTS OUTPUT LIST 54 

3.8 FICTITIOUS CLOCKS 55 

3.9 MEMORY DATA FILE 56 

3.10 P-ORDERING 57 

4.0 ARITHMETIC LOGIC UNIT 58 

4.1 PARTSLIST 58 

4.2 P-ORDERING -- ALU 61 

4.3 OUTPUT (NON-FAULTED) -- ALU 64 

4.4 INPUT -- ALU 66 

4.5 EXAMPLES 67 

24 



5.0 BCD ADDER 75 

5.1 PARTS LIST 75 

5.2 P-ORDERING -- BCD ADDER 78 

5.3 OUTPUT (NON-FAULTED) -- BCD ADDER 81 

5.4 INPUT -- BCD ADDER 82 

5.5 EXAMPLES 83 

6.0 DQWNCOUNTER 91 

6.1 PARTSLIST 91 

6.2 P-ORDERING -- DOWNCOUNTER 94 

6.3 OUTPUT (NON-FAULTED) -- DOWN COUNTER 96 

6.4 EXAMPLES 98 

7.0 TEST 106 

7.1 PARTSLIST 106 

7.2 P-ORDERING TEST 108 

7.3 INPUT TEST 110 

7.4 EXAMPLES 111 

8.0 MEMORY CIRCUIT 119 

.8.1 PARTSLIST -- MEMORY CIRCUIT 119 

8.2 P-ORDERING -- MEMORY CIRCUIT 121 

8.3 INPUT -- MEMORY CIRCUIT 122 

8.4 INITIAL MEMORY DATA 123 

8.5 FAULTLIST -- MEMORY CIRCUIT 124 

8.6 OUTPUT -- MEMORY CIRCUIT 125 

8.7 MEMORY DETECTION RESULT 127 

9.0 SUBROUTINES, MODULES & VARIABLES 128 

25 



26 

1.0 SOFTWARE ORGANIZATION 

1.1 INQUIRE.COM 

INQUIRE.COM is the executive for IGGLOSS. It is a command procedure 
which does the following: 

(1) Asks the user for the name of the parts11st and copies 
it into the appropriate file for use with the GLOSS 
program. 

(2) Asks the user for the name of the file containing the 
inputs to the circuit. if any such file exists. and 
copies it into the appropriate file for use with the 
GLOSS program. All I.C.'s are initialized to zero. 

(3) Asks the user for the name of the file containing the 
faulted input data. It then copies this data into 
the file FLTVAL.DAT which is read in by SET_FLT. 

(4) Executes GLOSS.FOR ( see GLOSS ). 

(5) Compiles each of the modules created by GLOSS. FOR: 

- EXEC.FOR - PASPIN.FOR 
- MAIN.B32 - PASADD.FOR 
- DWN.B32 - FLTPRN.FOR 
- ZND.B32 - DETECT.B32 
- TIM2. FOR - RWM.B32 
- PRINT.FOR (optional) - PRM.B32 
- TIM3.FOR - MEM.B32 

(6) Links together the modules just compiled. 

(7) Starts the simulation by running EXEC. FOR 

(8) Prints the results of the simulation on the terminal. 
(optional) 



1.2 GLOSS. FOR 

GLOSS. FOR creates the subprogram which does the actual simulation of 
the circuit.GLOSS is considered the 'preprocessor' part of IGGLOS, 
because it prompts for all the inputs, creates the necessary bliss 
modules and sets up the result and output files. GLOSS accomplishes 
this in the following way: 

(1) Reads in and stores LIBRARY.DAT 

(2) Reads in and stores the partslist. 

(3) Parses the partslist, extracting the following 
information: 

- types of gates used in the circuit 
- external inputs to the circuit 
- external outputs from the circuit 

(4) Associates a gate type to each component in the partslist. 

(5) Determines the input nets for each component. 

(6) Determines the output nets for each component. 

(7) Reads in and store~ fault data. Collapses faults 
and subtitutes faulted types for gates to be faulted. 

(8) For each component, substitutes the component name, 
its input nets and its output nets into the logical 
equation for its type as found in the library. 

(9) P-orders the list created in step (8). 

(10) Creates EXEC. FOR, which prints out the output column 
headings and calls MAIN.B32. 

(11) Creates MAIN.B32, with the information received 
interactively with the user (see RUNNING IGGLOSS). 
MAIN.B32 is a BLISS coded subprogram which sets up the 
parameters and calls DWN.B32 and PRINT.FOR. 

(12) Creates DWN.B32, a BLISS coded subprogram containing the 
P-ordered list. This subprogram does the actual 
~imulation of the circuit. 

. (13) Creates PRINT.FOR, a FORTRAN subprogram which prints the 
results of the simulation in a file named OUTPUT.DAT. 

27 



28 

(14) Creates MEM.B32 a bliss routine which loads the contents 
of the user specified memory input file into the simulator 
memories. If the circuit has a RAM, then the routine 
INTRAM (contained in MEM.B32) makes 32 copies of the RAM 
in a 'scratch pad ' memory. 

(15) Creates PASPIN.FOR and PASADD.FOR, two routines which 
copy the bliss 'fault detection ' vectors into fortran 
arrays so that the detected data may be printed out. 

(16) Creates FLTPRN.FOR ,a fortran routine to print the 
results of the fault detection routines. 

(17) Creates PRM.B32, a bliss module which emulates a read 
only memory. 

(18) Creates RWM.B32, similar to PRM.B32 this module emulates 
a random access memory. 

(19) Creates ZND.B32 , a bliss routine to load the faulted 
inputs for the expanded gates in memory so that they 
can be substituted for unfaulted inputs during emulation • 

. (20) Creates DETFLT.B32 ,a bliss module that contains the 
routine DETECT which checks the specified 'detect 
points'(see fault detect list page) to see if any 
faults can be detected. 



2.0 RUNNING IGGLOSS 

INQUIRE.CO~I is the command file which executes the program. 

To execute, type: 

$ @INQUIRE 

The program will then prompt the user with: 

Enter full name of file containing partslist: 

The partslist must be supplied by the user. The partslists presently 
on file are: 

ALU.PRT 
BCD.PRT 
DWN.PRT 
DWNOCN.PRT 
MEM3.PRT 

(Arithmetic Logic Unit) 
(BCD Adder) 
(Downcounter) 
(Downcounter, reordered, clocked) 
(Memory circuit, Rom and Ram) 

Respond with the name of one of the partslists. 
The program will then prompt the user with: 

Enter full name of file containing input data, if any: 

Input data is on file for the ALU and the BCD circuits. The data must 
be input manually for the OWN cjrcuit. Data on file is: 

ALU.DAT (Arithmetic Logic Unit) 
BCD. OAT (BCD Adder) 
MM3INP.DAT (Memory circuit) 

If the user wishes to enter the data manually he should hit the 
RETURN key. If he wishes to use a file, he should enter the file name. 

The program will next prompt as follows: 

Enter full name of file containing fault input if any: 

Fault input data is on file for the ALU, DOWNCOUNTER and the MEMORY 
circuits. Data on file is: 

ALUFLT.DAT (ALU) 
DWNFLT.DAT (Downcounter) 
MEM2FLT.DAT (Memory circuit) 

If the user wishes to enter the faulte~ Jatd by file he should 
enter the file name. Otherwise hit the return key. 

29 



30 

The program will then prompt as follows: 

DO YOU WISH A FAULTED RUN? (Y OR N) 

If you do not want a faulted run type (N) otherwise type (Y) and the 
program will then ask: 

FAULT TABLE INPUT MANUAL OR FROM A FILE (M OR F) ? 

If you specified a file of faults before and you wish to run those 
faults then type ( F ). If you want to enter your faults manually, 
you should type ( M ). The program then asks you to enter the faults 

as you would in the partslist. 

The program will next prompt you: 

What are the output column headings? 
Type a 1*1 if they are to be the same: 

It will then list each of the external outputs to the circuit and 
wait while the user either types a 1*1 or the new name of the output 
column. If the user hits the (RETURN) key without typing anything 
that output column heading will be blank. 

The program then asks: 

Do you wish to load contents of memory(s) YIN? 

If lyl is typed the program will respond with: 

Enter the name of the memory input file. 

The user should respond with the full file-name of the file 
containing the data which is to set up the memory(s). 
(see: MEMORY DATA FILE, page 56). 

The program next prompts: 

Do you wish a print out of the output? (Y or N): 

If the response is ( Y ) then an output file will be created and 
can be printed out. 



Next the program will prompt the user with: 

Input manually or from a file? ( M or F ) 

If an input data file name was entered previously, type an (F), 
otherwise type an (M) to indicate that data will be entered by hand. 
If the data is to be entered via a data file the program will then 
complete without any more prompts. 

If the input is to be entered manually, the program will prompt the 
user with the following: 

How many cycles do you want to simulate? 

Respond with an integer greater than zero. 

What are the initial values for the inputs? ( 0 or 1 ) 

Each external input pin to the circuit will then be printed on the 

screen and the user will be able to assign a value of (0) or (I) to it. 

The program then asks: 

Do you want to change the input data for any cycle? (V or N) 

If the user responds with a (V), the next prompt will be: 

Which cycle do you want to update? 

Enter an integer between 2 and the total number of cycles to be 
simulated, as entered previously. The first cycle will use the 
initial data already entered. 

What are the input values? ( 0 or 1 or 9 ) 
( 9 indicates no change in the value) 

Each external input pin name to the circuit will once again be printed 
on the screen and the user will be able to assign a value of (0) or (I) 
to it. If the user does not want to change the value of the input pin 
from the last value entered, he should type a (9). 

Again, the user will be 'prompted as to whether or not he wants to 
change the input pin values for any cycle." If yes, he must choose 
a cycle between the last cycle chosen and the final cycle. All other 
choices will be declared inappropr1ate. 

31 



32 

When there are no more cycles whose inputs values may be changed, or 
when the user does not want to change the input values on any more 
cycles the program will then run to termination. 
If a print out was desired then the output of the simulation 
will be printed on the screen. This output will also be 
placed in a file named OUTPUT.DAT for future reference. 
The faulted data (ie whether a fault was detected, and in what 
machine and what cycle) is not printed out on the terminal, but 
is stored 1n a file named DETECTED.DAT. 



3.0 INPUT FILES 

3.1 LIBRARY.DAT 

The Bliss-coded Library contains Bliss macros for the following 
devices: 

Device 

Buffer 
Inverter 
AND Gate 
NAND Gate 
OR Gate 
NOR Gate 
EXCLUSIVE OR Gate 
D-Flip Flop 
RAI~ 
ROI~ 

Inputs 

1 
1 

2,3,4 
2,3,4 
2,3 
2,3,4,5 

2 
4 

User-Sped fi ed 
User-Specified 

The Bliss Library also contains the fault model for each of the 
above devices. The primitive devices are shown in Figures 8-1 
through 8-9. 

The library contains a description of the gates used in the circuits 
to be simulated with GLOSS. For each gate, the library contains 
the name of the gate, the logical name associated with it, those pins 
which will be identified as inputs to the gate, and those pins which 
will be identified as outputs to the gate(pin names in the partslist 
must be identical. to the names in the Library). The library has the 
following format: 

NAME: POOO~'; 
LOGIC: BUF(%Y,%A); 
INPUTS: .A; 
OUTPUTS: • Y; 

NAME:TOOOM; 
LOGIC: NAND2(%Y,%A,%B); 
INPUTS: .A, .8; 
OUTPUTS:.Y; 

33 



34 

NAME:T260M; 
LOGIC: NOR5(%Y,%A,%B,%C,%D,%E); 
INPUTS: .A,.B,.C,.D,.E; 
OUTPUTS: • Y; 

NAME:ALUMAC; 
LOGIC: ALU(%XX,%YY,%AA,%BB,%CC,%DD,%EE,%FF,%GG); 
INPUTS: .AA,.BB,.CC,.DD,.EE,.FF,.GG; 
OUTPUTS: .XX,.YY; 

NAME:CLK; 
LOGIC: CLK(%Y,%A,.K+$); 
INPUTS: .A; 
OUTPUTS: • Y; 

The "%" sign precedes the pin names into which GLOSS will be 
substitute the appropriate net. 

GLOSS will substitute an integer where a "$" is found, to be 
used as an index variable in array within the BLISS modules. 

The contents of the library as of now are as follows: 

NAME:POOOM; 
LOGIC: BUF(%Y,%A); 
INPUTS: .A; 
OUTPUTS: • Y; 

NAME:TOOOM; 
LOGIC: NAND2(%Y,%A,%B); 
INPUTS: .A,.B; 
OUTPUTS: • Y; 

NAME:P002M; 
LOGIC: NINV(%Y,%A); 
INPUTS: .A; 
OUTPUTS: • Y; 

NAME:T002M; 
LOGIC: NOR2(%Y,%A,%B); 
INPUTS: .A,.B; 
OUTPUTS: • Y; 

NAME:T004M; 
LOGIC: NOTT(%Y,%A); 
iNPUTS: .A; 
OUTPUTS: • Y; 

{ BUF is a non-inverting 
buffer. } 

{ NAND2 is a two-input 
nand. } 

{ NINV is a non-inverting 
buffer. } 

{ NOTT is an Jnverter. } 



NAME: T008r~; 
LOGIC: AND2(%Y,%A,%B); 
INPUTS: .A, .B; 
OUTPUTS: • Y; 

NAME:T010I1; 
LOGIC: NAND3(%Y,%A,%B,%C); 
INPUTS: .A,.B,.C; 
OUTPUTS: • Y; 

NAME:TOllM; 
LOGIC: AND3(%Y,%A,%B,%C); 
INPUTS: .A,.B,.C; 
OUTPUTS: • Y; 

NAME:T020M; 
LOGIC: NAND4(%Y,%A,%B,%C,%D); 
INPUTS: .A,.B,.C,.D; 
OUTPUTS: • Y; 

NAME:T02HI; 
LOGIC: AND4(%Y,%A,%B,%C,%D); 
INPUTS: .A,.B,.C,.D; 
OUTPUTS: • Y; 

NAME:T025M; 
LOGIC: NOR4(%Y,%A,%B,%C,%D); 
INPUTS: .A,.B,.C,.D; 
OUTPUTS: • Y; 

NAME:T027M; 
LOGIC: NOR3(%Y,%A,%B,%C); 
INPUTS: .A,.B,.C; 
OUTPUTS: • Y; 

NAME:T032M; 
LOGIC: OR2(%Y,%A,%B); 
INPUTS: .A, .B; 
OUTPUTS: • Y; 

NAME:C050F; 
LOGIC: FNIB(%Y,%A); 
INPUTS: .A; 
OUTPUTS: • Y; 

NAME:COSOL: 
LOGIC: LNIB(%Y,%A); 
INPUTS: .A: 
OUTPUTS: • Y; 

{ NAND3 is a three input nand.} 

{ AND3 is a three input AND. } 

{ AND4 is a four input 
AND. } 

{ NOR4 is a four input 
NOR. } 

{ FNIB is a non-inverting 
buffer. } 

{ LNIB is a non-inverting 
buffer. } 

35 



36 

NAME:T074M; { OFF is a D-flip flop. } 
LOGIC: DFF(%Q,%QB,%CK,%D,%PR,%CLR,.K+$); 
INPUTS: .CK, .0, .PR, .CLR; 
OUTPUTS: .Q,.QB; 

NAME:C075M; 
LOGIC: OR3(%Y,%A,%B,%C); 
INPUTS: .A,.B,.C; 
OUTPUTS: • Y; 

NAME:T086M; 
LOGIC: XOR2(%Y,%A,%B); 
INPUTS: .A, .B; 
OUTPUTS: • Y; 

NAME:T260M; 

{ XOR2 is a two input 
exclusive OR. } 

LOGIC: NOR5(%Y,%A,%B,%C,%D,%E); { NOR5 is a five input NOR. } 
INPUTS: .A,.B,.C,.D,.E; 
OUTPUTS: • Y ; 

NAME:FT002M; { NAND2F is a faulted two input 
LOGIC: NAND2F(%Y,%A,%B,%FA,%FB,%FO,%FP); - nand. } 
INPUTS: .A,.B,.FA,.FB,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FT002M; 
LOGIC: NOR2F(%Y,%A,%B,%FA,%FB,%FO,%FP); 
INPUTS: .A,.B,.FA,.FB,.FO,.FP; {NOR2F is a faulted two input 
OUTPUTS: .Y; NOR. } 

NAME:FT008M; 
LOGIC: AND2F(%Y,%A,%B,%FA,%FB,%FO,%FP): 
INPUTS: .A,.B,.FA,.FB,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FT032M; 
LOGIC: OR2F(%Y,%A,%B,%FA,%FB,%FO,%FP); 
INPUTS: .A,.B,.FA,.FB,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FT027M; 
LOGIC: NOR3F(%Y,%A,%B,%C,%FA,%FB,%FC,%FO,%FP); 
INPUTS: .A,.B,.C,.FA,.FB,.FC,.FO,.FP; 
OUTPUTS: • Y: 

NAME:FT025M; 
LOGIC: NOR4F(%Y,%A,%B,5C,%D%FA,%FB,%FC,%FD,%FO,%FP); 
INPUTS: .A,.B,.C,.D,.FA,.FBr.~C,.FO,.FO,.FP; 
OUTPUTS: • Y; 



NAME:FT260M; 
LOGIC: NOR5F(%Y,%A,%B,%C,%D,%E,%FA,%FB,%FC,%FD,%FE,%FO,%FP); 
INPUTS: .A,.B,.C,.D,.E,.FA,.FB,.FC,.FD,.FE,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FTOllM; 
LOGIC: AND3F(%Y,%A,%B,%C,%FA,%FB,%FC,%FO,%FP); 
INPUTS: .A,.B,.C,.FA,.FB,.FC,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FT021M; 
LOGIC: AND4F(%Y,%A,%B,%C,%D,%FA,%FB,%FC,%FD,%FO,%FP); 
INPUTS: .A,.B,.C,.D,.FA,.FB,.FC,.FD,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FTOIOM; 
LOGIC: NAND3F(%Y,%A,%B,%C,%FA,%FB,%FC,%FO,%FP); 
INPUTS: .A,.B,.C,.FA,.FB,.FC,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FT020M; 
LOGIC: NAND4F(%Y,%A,%B,%C,%D,%FA,%FB,%FC,%FD,%FO,%FP); 
INPUTS: .A,.B,.C,.D,.FA,.FB,.FC,.FD,.FO,.FP; 
OUTPUTS: • Y; 

NAME: FC075M; 
LOGIC: OR3F(%Y,%A,%B,%C,%FA,%FB,%FC,%FO,%FP); 
INPUTS: .A,.B,.C,.FA,.FB,.FC,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FT086M; 
LOGIC: XOR2F(%Y,%A,%B,%FA,%FB,%FO,%FP); 
INPUTS: .A,.B,.FA,.FB,.FO,.FP; 
OUTPUTS: • Y; 

NAME: FPOOOM; 
~OGIC: FBUFF(%Y,%A,%FO,%FP); 
INPUTS: .A,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FP002M; 
LOGIC: NINVF(%Y,%A,%FO,%FP); 
INPUTS .A,.FO,.FP; 
OUTPUTS: • Y; 

NAME:FT004M; 
LOGIC: NOTTF(%Y,%A,%FO,%FP); 
INPUTS: .A,.FO,.FP: 
OUTPUTS: • Y; 

37 



38 

NAME:FC050F; 
LOGIC: FNIBF(%Y,%A,%FO,%FP); 
INPUTS: .A,.FO,.FP; 
OUTPUTS: • Y ; 

NAME:FC050L; 
LOGIC: LNIBF(%Y,%A,%FO,%FP); 
INPUTS: .A,.FO,.FP; 
OUTPUTS: • Y; 



3.2 RTNES.R32 

RTNES.R32 contains the macro for each gate defined in the library. 
The macro expansion occurs during the compilation of the BLISS coded 
programs created by the GLOSS. FOR (The variables in this file do 
not need to exactly match those in the Library, but the partslist 
and Library names must match exactly. The order of the variables is 
pertinent). 
The macros are formatted as follows: 

MACRO 

BUF(Rl,Il)= 
Rl= .11 %, 

NAND2(Rl,Il,I2)= 
Rl= NOT (.11 AND .12 ) %, 

NOR5(Rl,Il,I2,I3,I4,I5)= 
Rl= NOT ««.11 OR .12) OR .13) OR .14) OR .15) %, 

ALU(X,Y,A,B,C,D,E,F~G)= 
BEGIN 

LOCAL ORlY,OR2Y,OR3Y,OR4Y; 
OR3(ORlY,A,B,C); 
OR3(OR2Y,D,B,E); 
OR2(OR3Y,D,F); 
OR2(OR4Y,A,G); 
NAND2(X,ORlY,OR2Y); 
NAND3(Y,OR3Y,B,OR4Y); 

END%, 

CLK(Rl, 11, L) = 
STELl = .11 %; 

{ ALU is a macro to 
simulate the logic of 
an ALU device. } 

39 



These are the Bliss macros that are used by the Bliss 
routines. 

MACRO 
BUF(Rl,Il)= 

Rl= .11 %, 

NAND2(Rl,Il,I2)= 
Rl= NOT (.11 AND .12 ) %, 

NINV(Rl,Il)= 
Rl= .11 %, 

NOR2 (Rl, 11,12) = 
Rl= NOT (.11 OR .12) %, 

NOTT(Rl,Il)= 
Rl= NOT .11 %, 

AND2 (Rl, 11,12) = 
Rl= .11 AND .12 %, 

NAND3(Rl,Il,I2,I3)= 
Rl= NOT «.11 AND .12) AND .13) %, 

NAND4(Rl,Il,I2,I3,I4)= 
Rl= NOT «.11 AND .12) AND .13) AND .14 %, 

AND3(Rl,Il,I2,I3)= 
Rl= (.11 AND .12) AND .13 %, 

AND4(Rl,Il,I2,I3,I4)= 
Rl= «.11 AND .12) AND .13) AND .14 %, 

NOR4(Rl,Il,I2,I3,I4)= 
Rl= NOT «(.11 OR .12) OR .13) OR .14) %, 

NOR3(Rl,Il,I2,I3)= 
Rl= NOT «.11 OR .12) OR .13) %, 

OR2(Rl,Il,I2)= 
Rl= .11 OR .12 %, 

FNIB(Rl,Il)= 
Rl= .11 %, 

LN I B ( R 1 , 11) = 
Rl= .11 %, 

40 



DFF(Rl,R2,Il,I2,I3,I4,L)= 
Rl= «(.ST[L] AND (NOT .11) OR .12) AND .11) AND .14) OR (NOT .13) 
R2= (NOT .Rl) OR (NOT .14) 
ST[L]= .Rl : 
ST[L+l]= .R2 %, 

OR3(Rl,Il,I2,I3)= 
Rl= .11 OR .12 OR .13 %, 

XOR2(Rl,Il,I2)= 
Rl= (.11 AND (NOT .12)) OR (.12 AND (NOT .11)) %, 

NOR5(Rl,Il,I2,I3,I4,I5)= 
Rl= NOT ««.11 OR .12) OR .13) OR .14) OR .15) %, 

AND2F(Rl,Il,I2,FA,FB,FO,FP)= 
Rl= «(.11 OR .FA) AND (.12 OR .FB)) AND NOT .FO) OR .FP %, 

OR2F(Rl,Il,I2,FA,FB,FO,FP)= 
Rl= «(.11 AND NOT .FA) OR (.12 AND NOT .FB)) AND NOT .FO) OR .FP %, 

NAND2F(Rl,Il,I2,FA,FB,FO,FP)= 
Rl=«NOT«.Il OR .FA) AND (.12 OR .FB))) AND NOT .FO) OR .FP %, 

NOR2F(Rl,Il,I2,FA,FB,FO,FP)= 
Rl=«NOT « .11 AND NOT .FA) OR (.12 AND NOT .FB))) AND NOT .FO) 

OR .FP %, 

NOR3F(Rl,Il,I2,I3,FA,FB,FC,FO,FP)= 
Rl=«NOT « .11 AND NOT .FA) OR ( .12 AND NOT .FB) OR 

(.13 AND NOT .FC))) AND NOT .FO) OR .FP %, 

NOR4F(Rl,Il,I2,13,I4,FA,FB,FC,FD,FO,FP)= 
Rl= «NOT « .11 AND NOT .FA) OR ( .12 AND NOT .FB) 
OR (.13 AND NOT .FC) OR ( .14 AND NOT .FD))) AND NOT .FO) OR .FP%, 

NOR5F(Rl,Il,I2,I3,I4,I5,FA,FB,FC,FD,FE,FO,FP)= 
Rl= «NOT « .11 AND NOT .FA) OR (.12 AND NOT .FB) 
OR (.13 AND NOT .FC) OR ( .14 AND NOT .FD) OR (.15 AND NOT .FE))) 
AND NOT .FO) OR .FP%, 

AND3F(Rl,Il,I2,I3,FA,FB,FC,FO,FP)= 
Rl= «( .11 OR .FA) AND ( .12 OR .FB) AND ( .13 OR .FC)) AND NOT .FO) 

OR .FP%, 

41 



AND4F(Rl,Il,I2,I3,I4,FA,FB,FC,FD,FO,FP)= 
Rl= « .11 OR .FA) AND ( .12 OR .FB) AND ( .13 OR .FC) AND 

( .14 OR .FD» AND NOT .FO OR .FP %, 

NAND3F(Rl,Il,I2,I3,FA,FB,FC,FO,FP)= 
Rl= «NOT « .11 OR .FA) AND (.12 OR .FB) AND (.13 OR .FC») 

AND NOT .FO) OR .FP%, 

NAND4F(Rl,Il,I2,I3,I4,FA,FB,FC,FD,FO,FP)= 
Rl= «NOT « .11 OR .FA) AND (.12 OR .FB) AND (.13 OR .FC) 

AND ( .14 OR .FD») AND NOT .FO) OR .FP%, 

OR3F(Rl,Il,I2,I3,FA,FB,FC,FO,FP)= 
Rl= « .11 AND NOT .FA) OR ( .12 AND NOT .FB) 

OR (.13 AND NOT .FC» AND NOT .FO OR .FP%, 

XOR2F(Rl,Il,I2,FA,FB,FO,FP)= 
Rl= «( .11 AND NOT .FA) AND NOT ( .12 AND NOT .FB» OR 

« .12 AND NOT .FB) AND NOT ( .11 AND NOT .FA») 
AND NOT .FO OR .FP%, 

FBUFF(Rl,Il,FO,FP)= 
Rl= (.11 AND NOT .FO) OR .FP%, 

NINVF(Rl,Il,FO,FP)= 
Rl= (.11 AND NOT .FO) OR .FP%,· 

NOTTF(Rl,Il,FO,FP)= 
Rl= NOT «.11 AND NOT .FP) OR .FO) %, 

FNIBF(Rl,Il,FO,FP)= 
Rl= (.11 AND NOT .FO) OR .FP%, 

LNIBF(Rl,Il,FO,FP)= 
Rl= (.11 AND NOT .FO) OR .FP%, 

ALU(X,Y,A,B,C,D,E,F,G)= 
BEGIN 

LOCAL ORlY,OR2Y,OR3Y,OR4Y; 
OR3(ORlY,A,B,C); 
OR3(OR2Y,D,B,E); 
OR2(OR3Y,D,F); 
OR2(OR4Y,A,G); 
NAND2(X,ORlY,OR2Y); 
NAND3(Y,OR3YrBir~4Y): 

END%, 

CLK(Rl,Il,L)= 
ST[L]= .11 %; 

42 



-- This is a keyword macro to simulate memory devices. It accepts from 1 to 16 
-- address parameters, from 1 to 16 output parameters and from 1 to 16 data 
-- parameters. Unused address,data,or output parameters are set to 'NINE' 
-- (which equals 99) and are later set to 0 for the computations involving 
-- full word values. 

KEYWORDMACRO 
MEMR(YO=NINE,Y1=NINE,Y2=NINE,Y3=NINE,Y4=NINE,Y5=NINE,Y6=NINE,Y7=NINE,Y8=NINE, 

Y9=NINE,Y10=NINE,Y11=NINE,Y12=NINE,Y13=NINE,Y14=NINE,Y15=NINE,Y16=NINE, 
AO=NINE,A1=NINE,A2=NINE,A3=NINE,A4=NINE,A5=NINE,A6=NINE,A7=NINE, 
A8=NINE,A9=NINE,A10=NINE,A11=NINE,A12=NINE,A13=NINE,A14=NINE,A15=NINE, 
A16=NINE,EN=NINE,RW=NINE,DO=NINE,D1=NINE,D2=NINE,D3=NINE,D4=NINE, 
D5=NINE,D6=NINE,D7=NINE,D8=NINE,D9=NINE,D10=NINE,D11=NINE,D12=NINE, 
D13=NINE,D14=NINE,D15=NINE,D16=NINE) = 
BEGIN 

LOCAL JJ, KK; 
KK = 0; 
IF (.AO NEQ 99) THEN 

BEGIN 

END; 

ADDARY[.KK] = .AO; 
KK = .KK + 1; 

IF (.A1 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A1; 
KK = .KK + 1 

IF (.A2 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A2; 
KK = .KK + 1 

IF (.A3 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A3; 
KK = .KK + 1 

IF (.A4 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK]' = .A4; 
KK = .KK + 1 

IF (.A5 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A5; 
KK = .KK + 1 

IF (.A6 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A6; 
KK = .KK + 1 

43 



44 

IF (.A7 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A7; 
KK = .KK + I 

IF (.A8 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A8; 
KK = .KK + I 

IF (.A9 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .A9; 
KK = .KK + I 

IF (.AIO NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .AIO; 
KK = .KK + I 

IF (.AII NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .AII; 
KK = • KK + I 

IF (.AI2 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .AI2; 
KK = .KK + I 

IF (.AI3 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .AI3; 
KK = .KK + 1 

IF (.AI4 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .AI4; 
KK = .KK + I 

IF (.AIS NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .AIS; 
KK = .KK + I 

IF (.AI6 NEQ 99) THEN 
BEGIN 

END; 

ADDARY[.KK] = .AI6; 
KK = .KK + 1; 



NAB = .KK - 1; 
RWB = .RW; 
ENB = .EN; 
KK = 0; 

IF (.00 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .00; 
KK = .KK + 1; 

IF (.01 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .01; 
KK = • KK + 1; 

IF (.02 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .02; 
KK = • KK + 1; 

IF (.03 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .03; 
KK = .KK + 1; 

IF (.04 NEQ 99) THEN 
• BEGIN 

ENO; 

OATARY[.KK] = .04; 
KK = • KK + 1; 

IF (.05 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .05; 
KK = .KK + 1; 

IF (.06 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .06; 
KK = .KK + 1; 

IF (.07 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .07; 
KK = .KK + 1; 

IF (.08 NEQ 99) THEN 
BEGIN 

ENO; 

OATARY[.KK] = .08; 
KK = .KK + 1; 

45 



IF (.09 NEQ 99) THEN 
BEGIN 

OATARY[.KK] = .09; 
KK = .KK + I; 

ENO; 
IF (.010 NEQ 99) THEN 

BEGIN 
OATARY[.KK] = .010; 
KK = .KK + I; 

ENO; 
IF (.011 NEQ 99) THEN 

BEGIN 
OATARY[.KK] = .011 ; 
KK = • KK + I; 

ENO; 
IF (.012 NEQ 99) THEN 

BEGIN 
OATARY[.KK] = .012; 
KK = • KK + I; 

ENO; 
IF (.013 NEQ 99) THEN 

BEGIN 
OATARY[.KK] = .013; 
KK = • KK + I; 

ENO; 
IF (.014 NEQ 99) THEN 

BEGIN 
OATARY[.KK] = .014; 
KK = .KK + I; 

ENO; 
IF (.015 NEQ 99) THEN 

BEGIN 
OATARY[.KK] = .015; 
KK = • KK + I; 

ENO; 
IF (.016 NEQ 99) THEN 

BEGIN 
OATARY[.KK] = .016; 
KK = • KK + I; 

ENO; 
IF .KK EQL 0 THEN 

NOB = .KK 
ELSE 

NOB = • KK - 1; 

IF .RWB NEQ 99 THEN 
BEGIN 

RWMEMO; 
ENO 

ELSE 
BEGIN 

PRMSO; 
ENO; 

KK = 0; 

46 



IF (.YO NEQ 99) THEN 
BEGIN 

END; 

YO = .OUTARY[.KK]; 
KK = • KK + 1; 

IF (.Yl NEQ 99) THEN 
BEGIN 

END; 

Yl = .OUTARY[.KK]; 
KK = .KK + 1; 

IF (.Y2 NEQ 99) THEN 
BEGIN 

END; 

Y2 = .OUTARY[.KK]; 
KK = .KK + I; 

IF (.Y3 NEQ 99) THEN 
BEGIN 

END; 

Y3 = .OUTARY[.KK]; 
KK = • KK + I; 

IF (.Y4 NEQ 99) THEN 
BEGIN 

END; 

Y4 = .OUTARY[.KK]; 
KK = • KK + I; 

IF (.YS NEQ 99) THEN 
BEGIN 

END; 

YS = .OUTARY[.KK]; 
KK = .KK + I; 

IF (.Y6 NEQ 99) THEN 
BEGIN 

END; 

Y6 = .OUTARY[.KK]; 
KK = .KK + I; 

IF (.Y7 NEQ 99) THEN 
BEGIN 

END; 

Y7 = .OUTARY[.KK]; 
KK = .KK + I; 

IF (.Y8 NEQ 99) THEN 
BEGIN 

END; 

Y8 = .OUTARY[.KK]; 
KK = .KK + I; 

IF (.Y9 NEQ 99) THEN 
BEGIN 

END; 

Y9 = .OUTARY[.KK]; 
KK = .KK + I; 

47 



48 

IF (.Y10 NEQ 99) THEN 
BEGIN 

END; 

Y10 = .OUTARY[.KK]; 
KK = .KK + 1; 

IF (.Y11 NEQ 99) THEN 
BEGIN 

END; 

Y11 = .OUTARY[.KK]; 
KK = • KK + 1; 

IF (.Y12 NEQ 99) THEN 
BEGIN 

END; 

Y12 = .OUTARY[.KK]; 
KK = .KK + 1; 

IF (.Y13 NEQ 99) THEN 
BEGIN 

END; 

Y13 = .OUTARY[.KK]; 
KK = • KK + 1; 

IF (.Y14 NEQ 99) THEN 
BEGIN 

END; 

Y14 = .OUTARY[.KK]; 
KK = • KK + 1; 

IF (.Y1S NEQ 99) THEN 
BEGIN 

END; 

Y1S = .OUTARY[.KK]; 
KK = .KK + 1; 

IF (.Y16 NEQ 99) THEN 
BEGIN 

END 
END%; 

Y16 = .OUTARY[.KK] 



3.3 PARlSLISl 

The partslist describing the circuit must be of the following format: 

(* preliminary declarations *) 
(The declarations must be given in the following order) 
USER: "NEMEROFF"; 
(Every partslist is required to have a user name) 
NAME: DWNCNlG; 
(A name is required for every circuit) 
PURPOSE: lEGATE; 
(The purpose declaration is optional) 
LEVEL: CHIP; 
(The level declaration is optional) 
(* declare logical types *) 
TYPES: NAND, INV; 
(Every component is required to have a logical type) 
(* declare the external connectors *) 
EXT:: X, Y, D3, D2, Dl, DO; 
INPUTS: .X,. Y; 
OUTPUTS: .DO, .Dl, .D2, .D3; 
(* declare components *) 
NAND: NANDI, NAND2, NAND3, NAND4; 
INV: NOTl, NOT2; 
(Every component must be identified as a logical type) 
END; _ 
(* End of preliminary declaration section *) 
COMPSEGMENT; 
(This segment defines the circuit connectivity) 
(* declare main components with input and output buffers *) 

= X*Nl, Y*N2, DO*NDO 
Dl*NDl; 

(* declare inner components *) 
NANDI = A*N2, B*N4, Y*NDO; 
NAND2 = A*N2, B*N3, Y*NDl; 
NAND3 = A*N4, B*Nl, Y*ND2; (* order is not important *) 
NAND4 = A*Nl, B*N3, Y*ND3; 
NOll = A*Nl, Y*N2; 
NOl2 = A*N3, Y*N4; 
ENDCOMPS; 
(* End of COMPSEGMENT *) 
(* Enter fault detection pins or memory locations *) 
DETECTSEGMENTj 
PINS; 
(These two declarations are not optional even if no 
faults are to be simulated. If there are no faults to 
be entered in the fault list, then type:) 

ENDC; 
END OF FILE; 
(Otherwise see detect Point List, oage 52) 

49 



50 

Comments: 

The order in which the circuit components are listed in the 
COMPSEGMENT is arbitrary. 

Net names must be legal Bliss variables. 

Each component of the compsegment is defined as follows: 

component = pin*net <, pin*net, ••• > . 
Names of input and output pins of a component must be identical to 
the corresponding names, as defined in LIBRARY.DAT, pages 8-13. 
The pins are identified as either input pins or output pins by 
referring to the specific part in the library. 

The partslist does not distinguish between upper and lower case 
characters. 

The external connectors have input or output buffers, the nets of 
which connect to the other parts of the circuit. Every input and 
output pin is required to be associated with a buffer. If real 
buffers do not exist, then fictitious buffers must be inserted. 

- I 



3.4 MEMORY PARTS 

If you have memory devices to be included into the partslist, they 
are to be entered in this format: 

1. Under the I TYPES I dec 1 arat ion "MEMR" is the memory type. 

2. In the ICOMPSEGMENT I, declaration of the part number (for this 
example let us choose IU3 1) is declared as follows: 

U3 = AO*U7Y, Al*U43Y, Alnl*U15Y, 

where 

EN*U9Y, RW*U77Y, 00*U64Y, 
01*U90Y; 01n l*U2Y, YO*U3YO, 
Yl*U3Yl, ylnl*U3ylnl; 

AO ••• Alnl 
EN 
RW 
OO ••• Olnl 
YO ••• ylnl 

= Address bits. 
= Enable bit. 
= Read/Write bit(For RAM, only). 
= Data bits. 
= Output bits. 

The output nets of the part (U3) become: 
U3YO ••• U3ylnl. 

51 



52 

3.5 DETECT POINT LIST 

The user has the ability to declare certain pins or memory addresses 
as 'detect points ' • These detect points are locations which are 
watched by IGLOSS and tested at the end of each cycle to determine 
if a fault was detected. A detected fault is defined as a dis
crepancy between the 0 bit (the unfaulted machine) and any of the 
other 31 bits (possibly faulted machines). 

The declaration of 'detect points ' is done in the partslist. 

Following the 'ENDCOMPS;' the detect list is described using this 
format: 

DETECTSEGMENT; 
PINS; 

UIY; 
U20Y; 
U33Y; 
U34Y; 

ADDRESSES; 

ENDDET; 

00002; 
00010; 
00016; 
00018; 

(* declare the pins to be watched *) 

(* declare hex memory addresses to be 
watched *) 

The pins that are declared, are the output nets of the part number. 
The addresses declared are any location in user defined memories. 

The file is then closed in this manner: 

ENDC; 
END_OF _FILE; 



them 

3.6 FAULT INPUT LIST 

If the user wishes to choose the gates to be faulted, he must enter 

in a file which he names. When IGGLOSS is run it will ask for the 
filename and copy it into a file called <FLTVAL.DAT). 

To declare the faultlist use the following format: 

First delcare the parts to be faulted: 

(* declare faults *) 
PINFLTS; 
U32: 
U14: 
NOR54: 
NOT1: 
NOT4: 
U22: 
ENDPINS; 

y* 
A* 
8* 
y* 
y* 
A* 

0; 
I; 
o· , 
0; 
I-I 
I; 

Then if a fault in ROM is desired, declare the words in memory 
and the bits to be faulted like this: 

MEMFLTS; 
000001* 
000235* 
000236* 
ENDMEM; 

4; 
25; 
16; 

(The memory addresses are in he~; bit positions, in decimal) 

Then the file is ended in this manner: 

ENDC; 
END_OF_FILE; 

In this form 'U32' is the part name, 'Y' is the pin name, and 0 or 1 
is the stuck at zero or stuck at one fault. 

In this form '000001' is the word in ROM which will be faulted. 
4 is the bit of this word which will be flipped from 0 to 1 or 
from 1 to 0 in order to create the memory fault. Since '000001' 
appears as the first word in this memory fault list, it becomes 
the faulted value of that word in the first faulted machine. The 
faulted value of '000235' becomes the fault in the second faulted 
machine and the rest follow consecutively. 

53 



54 

3.7 DETECTED FAULTS OUTPUT LIST 

Once the usei has chosen test points, faults and input sequence, 
IGGLOSS will, at each cycle, identify the first detect point in the 
list at which the fault is detected. 
Only the first detect point at which the fault is discovered is printed 
out by IGGLOSS. 

example: 
ALU -- page 75 

FAULT NAME 

INV3 
INV35 
INV4 
INV5 

TEST PIN # 

INV3Y 
NOR51Y 
INV4Y 
XOR49 

CYCLE # 

1 
1 
1 
9 

(* Fault INV3 is detected at detect point INV3Y on the first cycle. *) 

Further modification of IGGLOSS to identify all detect points 

corresponding to a given fault is a relatively easy task. 



3.8 FICTITIOUS CLOCKS 

In the event that the circuit to be simulated has a feedback loop, 
the partslist will be unorderable. In this case, the user must choose 
which nets in the circuit to "break" in order to eliminate all the 
loops. Fictitious clocks must be inserted on each net which is to be 
broken. The following procedure should be followed to add the 
fictitious gates to the partslist.(It is noted that fictitious clocks 
are treated like devices in their interconnections in the partslist). 

(1) In the section of the partslist where the logical types are 
declared, add type ClK to the list. 
ex: TYPES: NAND,INV,ClK; 

(2) In the section in which the components are declared, add type 
ClK and enough components to correspond to the number of 
"ficticious" gates needed. 
ex: 

INV: NOT1, NOT2; 
ClK: C1, C2, ••• Cn; 

(3) In the section of the partslist betweep the words "COMPSEGMENT;" 
and "ENDCOMPS;", for each "ficticious gate", choose an "output 
net" to correspond to the "broken net" and list: 
component = A*"broken.net", Y*"output net"; 

ex: COMPSEGMENT; 

C1 
C2 

Cn 

= A*U35Y, 
= A*U36Y, 

= A*U45Y, 

ENDCOMPS; 

Y*C1Y; 
Y*C2Y; 

Y*CnY; 

~or an actual example of "fictitious gates", see the example of 
the Downcounter. 

55 



56 

3.9 MEMORY DATA FILES 

The data which controls the contents,size and range of the 
memory devices in the partslist is stored in a file and entered 
in by the user in response to the prompt: 

Enter name of Memory Input File. 

The memory input file is to be formatted in the following manner: 

0,15,0,15,100,000; 
( * "100,000" not used but must be present * ) 
RADIX, DECIMAL; 
000,000003,000004,000005,000006,000007,000008; 
006,000009,000010,000011,000012,000013,000014; 
012,000015,000000,000001,000002; 
END 

The data on line (* 1 *) represents: 

(* 1 *) 

(* 2 *) 
(* 3 *) 
(* 4 *) 
(* 5 *) 

Low data address (i.e., starting decimal location for ROM) 
High data address (i.e., ending decimal location for ROM) 
Low writeable address (i.e., starting decimal location for RAM) 
High writeable address (ie. ending decimal location for RAM) 
"100,000" are not used but must be present 

Line (* 2 *) sets the radix to decimal. 
Lines (* 3 *)- (* 5 *) consist 9f the data to be stored in 
memory with the first number in the line being the address of the 
piece of data which directly follows it(the line header), and the rest 
of the data on that line is stored in consecutive addresses (Memory 
addresses and contents are in decimal format). 
When memory is read, the routines will rely on the line headers as tile 
displacement (to be compensated for),when searching for non-consecutive 
locations in memory. 

ex. 000 is the address for the data 000003. then 
001 will be the address for 000004 

therefore since: 

012 is the address for 000015 then 
013 is the address for 000000 and 
014 is the address for 000001 and 
015 is the address for 000002. 

The file must close with the word 'END'. 



VARS: 

INPUT: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

3.10 P-ORDERING 

. LISTI = unordered list 
LIST2 = ordered list 

MAIN = position of externals in partslist 
NUM = number of components in partslist 

Equate input nets to external input pins and add them to LIST2. 

Set FIN = true. 

Find the next statement in LISTI which has not yet been 
placed in LIST2 (not DONE). If all statements are DONE 
then go to (10) 

Set FIN = false. 

Check if the values of all inputs to the statement are known. 
If not, go to (8). 

Check if statement is a ficticious clock. If so, add it 
to the list of ficticious clocks (LISFC) and go to (8). 

Add statement to LIST2. 
Set statement = DONE. 
Add statement output to. list of knowns (KNOWN). 

Increment NUM. 

If loop was executed more than NUM times, then print an 
error message and go to (11). 

If FIN = true then go to (2). 

Add list of ficticious clocks (LISFC) to LIST2. 
/ 

Equate external output pins to output nets. 

57 



USER: 
NAME: 
PURPOSE: 
LEVEL: 
TYPES: 

EXT: : 

INPUTS: 

OUTPUTS: 
T004M: 

ALUMAC: 
POOOM: 
P002M: 
T086M: 
T032M: 
T002M: 
TOIOM: 
T020M: 
TOOOM: 
C075M: 
T025M: 
T260M: 

"DEUTSCH" ; 
ALU; 
TESTING; 
SUBCHIP; 

4.0 ARITHMETIC LOGIC UNIT 

USER INPUT 

4.1 PARTSLIST -- ALU(Fig.2) 
(ALU. PRT) 

T004M,ALUMAC,POOOM,P002M,T086M,T032M,T002M,TOIOM, 
T260M,T025M,T020M,TOOOM,C075M; 
SELl,SEL2,SEL3,SEL4,Al,A2,A3,A4,Bl,B2,B3,B4, 
CONTROL, CARIN, 
OUTl,OUT2,OUT3,OUT4,COMPARE,CAROUT,LACOl,LAC02; 
.SELl,.SEL2,.SEL3,.SEL4,.Al,.A2,.A3,.A4,.Bl,.B2,.B3, 
.B4,.CONTROL,.CARIN; 
.OUTl,.OUT2,.OUT3,.OUT4,.COMPARE,.LACOl,.LAC02,.CAROUT; 
INVl,INV2,INV3,INV4,INV5,INV6,INV7,INV8,INV9,INVlO,INV11,INV12, 
INV13,INV14,INV15,INV16,INV17,INV18,INV35,INV83,INV82,INV84,INV85, 
INV74,INV75,INV76,INV77,INV78,INV73,INV79,INV80,INV81; 
ALUMACl,ALUMAC2,ALUMAC3,ALUMAC4; 
SELl,SEL2,SEL3,SEL4,Al,A2,A3,A4,Bl,B2,B3,B4,CONTROL,CARIN; 
OUTl,OUT2,OUT3,OUT4,COMPARE,CAROUT,LACOl,LAC02; 
XOR49,XOR54,XOR58,XOR61,XOR68,XOR69,XOR70,XOR71; 
OR46,OR53,OR57,OR60; 
NOR62,NOR67; 
NAND65; 
NAND63,NAND64; 
NAND66; 
OR45,OR52,OR56,OR59; 
NOR44,NOR48,NOR51,NOR55,NOR72; 
NOR47,NOR50; 

END; 
COMPSEGMENT; 

INVI 
INV2 
INV3 
INV4 
INV5 
INV6 
INV7 
INV8 
INV9 
INVIO 
INVll 
INV12 
INV13 

58 

= SELl*ISELl,SEL2*ISEL2,SEL3*ISEL3,SEL4*ISEL4,Al*IAl,A2*IA2, 
A3*IA3,A4*IA4,Bl*IBl,B2*IB2,B3*IB3,B4*IB4,CONTROL*ICONTROL, 
CARIN*ICARIN,OUTl*IOUTl,OUT2*IOUT2,OUT3*IOUT3,OUT4*IOUT4, 
COMPARE*ICOMPARE,LACOl*ILACOl,LAC02*ILAC02,CAROUT*ICAROUT; 

= A*ISEL4,Y*INVIY; 
= A*ISEL3,Y*INV2Y; 
= A*ISEL2,Y*INV3Y; 
= A*ISELl,Y*INV4Y; 
= A*IB4,Y*INV5Y; 
= A*IA4,Y*INV6Y; 
= A*IB3,Y*INV7Y; 
= A*IA3,Y*INV8Y; 
= A*IB2,Y*INV9Y; 
= A*IA2,Y*INVIOY; 
= A*IBl,Y*INVllY; 
= A*IAl,Y*INV12Y; 
= A*INV5Y,Y*INV13Y; 



INV14 = A*INV7Y,Y*INV14Y; 
INV15 = A*INV9Y,Y*INV15Y: 
INV16 = A*INVIIY,Y*INV16Y; 
INV17 = A*ICONTROL,Y*INV17Y; 
INV18 = A*ICARIN,Y*INV18Y; 
INV35 = A*INV17Y,Y*INV35Y; 
ALUMACI = AA*INV13Y,BB*INV6Y,CC*INV2Y,DD*INV5Y,EE*INVIY,FF*INV4Y, 

GG*INV3Y,XX*ALUMACIX,YY*ALUMACIY; 
ALUMAC2 = AA*INV14Y,BB*INV8Y,CC*INV2Y,DD*INV7Y,EE*INVIY,FF*INV4Y, 

GG*INV3Y,XX*ALUMAC2X,YY*ALUMAC2Y; 
ALUMAC3 = AA*INV15Y,BB*INVIOY,CC*INV2Y,DD*INV9Y,EE*INVIY,FF*INV4Y, 

GG*INV3Y,XX*ALUMAC3X,YY*ALUMAC3Y; 
ALUMAC4 = AA*INV16Y,BB*INV12Y,CC*INV2Y,DD*INVIIY,EE*INVIY,FF*INV4Y, 

GG*INV3Y,XX*ALUMAC4X,YY*ALUMAC4Y; 
NOR44 = Y*NOR44Y,A*ALUMACIX,B*ALUMAC2X,C*ALUMAC3X,D*ALUMAC4Y; 
INV83 = Y*INV83Y,A*NOR44Y; 
OR45 = Y*OR45Y,A*ALUMACIX,B*ALUMAC2X,C*ALUMAC3Y; 
OR46 = Y*OR46Y,A*ALUMACIX,B*ALUMAC2Y; 
NOR47 = Y*NOR47Y,A*ALUMACIX,B*ALUMAC2X,C*ALUMAC3X,D*ALUMAC4X,E*INV18Y; 
NOR48 = Y*NOR48Y,A*ALUMACIX, B*ALUMAC2X, C*ALUMAC3X, D*ALUMAC4X; 
XOR49 = Y*XOR49Y,A*ALUMACIX,B*ALUMACIY; 
NOR50 = Y*NOR50Y,A*ALUMAC2X,B*ALUMAC3X,C*ALUMAC4X,D*INV18Y,E*INV35Y; 
INV82 = Y*INV82Y,A*NOR50Y; 
NOR51 Y*NOR51Y,A*ALUMAC2X,B*ALUMAC3X,C*ALUMAC4Y,D*INV35Y; 
INV84 = Y*INV84Y,A*NOR51Y; 
OR52 = Y*OR52Y,A*ALUMAC2X,B*ALUMAC3Y,C*INV35Y; 
OR53 = Y*OR53Y,A*ALUMAC2Y,B*INV35Y; 
XOR54 = Y*XOR54Y,A*ALUMAC2X,B*ALUMAC2Y; 
NOR55 = Y*NOR55Y,A*ALUMAC3X,B*ALUMAC4X,C*INV18Y,D*INV35Y; , , 

INV85 Y*INV85Y,A*NOR55Y; 
OR56 = Y*OR56Y,A*ALUMAC3X,B*ALUMAC4Y,C*INV35Y; 
OR57 = Y*OR57Y,A*ALUMAC3Y,B*INV35Y; 
XOR58 = Y*XOR58Y,A*ALUMAC3X,B*ALUMAC3Y; 
OR59 = Y*OR59Y,A*ALUMAC4Y,B*INV18Y,C*INV35Y; 
OR60 = Y*OR60Y,A*INV35Y,B*ALUMAC4Y; 
XOR61 = Y*XOR61Y,A*ALUMAC4X,B*ALUMAC4Y; 
NOR62 Y*NOR62Y,A*INV18Y,B*INV35Y; 
NAND63 = Y*NAND63Y,A*INV83Y,B*OR45Y,C*OR46Y,D*ALUMACIY; 
NAND64 = Y*NAND64Y,A*INV82Y,B*INV84Y,C*OR52Y,D*OR53Y; 
NAND65 = Y*NAND65Y,A*INV85Y,B*OR56Y,C*OR57Y; 
NAND66 = Y*NAND66Y,A*OR59Y,B*OR60Y; 
NOR67 = Y*NOR67Y,A*NAND63Y,B*NOR47Y; 
XOR68 = Y*XOR68Y,A*XOR49Y,B*NAND64Y; 
XOR69 = Y*XOR69Y,A*XOR54Y,B*NAND65Y; 
XOR70 = Y*XOR70Y,A*XOR58Y,B*NAND66Y; 
XOR71 = Y*XOR71Y,A*XOR61Y,B*NOR62Y; 
NOR72 = Y*NOR72Y,A*XOR68Y,B*XOR69Y,C*XOR70Y,D*XOR71Y; 
INV73 Y*INV73Y,A*NOR72Y; 
INV74 = Y*ILACOl,A*NAND63Y; 
INV75 = Y*ICAROUT,A*NOR67Y; 
INV76 = Y*ILAC02,A*NOR48Y; 
INVn = Y*IOUT4,A*XOR68Y; 
INV78 Y*IOUT3,A*XOR69Y; 
INV79 = Y*ICOMPARE,A*INV73Y: 

59 



INV80 = Y*IOUT2,A*XOR70Y; 
INV81 = Y*IOUTl,A*XOR71Y; 
ENDCOMPS; 
DETECTSEGMENT; 

PINS; 
INV2Y; 
INV3Y; 
INV4Y; 
XOR49Y; 
NOR50Y; 
INVIOY; 
INV82Y; 
NOR47Y; 
NOR48Y; 
NOR51Y; 
OR52Y; 
OR53Y; 
NAND63Y; 
NAND64Y; 
NAND65Y; 
NAND66Y; 
XOR68Y; 
XOR69Y; 
XOR70Y; 

ENDDET; 
ENDC; 
END_Of_fILE; 

60 



PROGRAM OUTPUT 

4.2 P-ORDERING -- ALU 
----------------------

(DWN.B32) 

IS Ell = 

ISEL2 ::: 

ISEL3 = 

ISEL4 = 

IAI = 

IA2 = 

IA3 = 

IA4 = 

IBI = 

IB2 = 

IB3 = 

IB4 = -

ICONTROL = 

ICARIN = 

NOTT(INVIY,ISEL4); 
NOTT(INV2Y,ISEL3); 
NOTTF(INV3Y,ISEL2,ZAND[OOOOOOOOOI],ZERO); 
NOTTF(INV4Y,ISELl,ZAND[0000000003],ZERO); 
NOTTF(INV5Y,IB4,ZAND[0000000004],ZERO); 
NOTTF(INV6Y,IA4,ZAND[0000000005],ZERO); 
NOTTF(INV7Y,IB3,ZAND[0000000006],ZERO); 
NOTTF(INV8Y,IA3,ZAND[0000000007],ZERO); 
NOTTF(INV9Y,IB2,ZAND[0000000008],ZERO); 
NOTTF(INVI0Y,IA2,ZAND[0000000009],ZERO); 
NOTTF(INVIIY,IBI,ZAND[OOOOOOOOI0],ZERO); 
NOTTF(INVI2Y,IAl,ZAND[OOOOOOOOII],ZERO); 
NOTTF(INV13Y,INV5Y,ZAND[0000000012],ZERO): 
NOTTF(INVI4Y,INV7Y,ZAND[OOOOOOOOI3],ZERO); 
NOTT(INVI5Y,INV9Y); 
NOTT(INVI6Y,INVIIY); 
NOTT(INVI7Y,ICONTROL); 
NOTT(INVI8Y,ICARIN); 
NOTTF(INV35Y,INVI7Y,ZAND[0000000002],ZERO); 
ALU(ALUMACIX,ALUMACIY,INV13Y,INV6Y,INV2Y,INV5Y,INVIY,INV4Y,INV3Y); 

• .SEll; 

• .SEL2; 

• .SEl3; 

• .SEL4; 

• .Al; 

•• A2; 

• .A3; 

• .A4; 

• • Bl; 

•• B2; 

.. B3; 

· • B4; 

•• CONTROL; 

•• CARIN; 

61 



ALU(ALUMAC2X,ALUMAC2Y,INV14Y,INV8Y,INV2Y,INV7Y,INVIY,INV4Y,INV3Y); 
ALU(ALUMAC3X,ALUMAC3Y,INV15Y,INVIOY,INV2Y,INV9Y,INVIY,INV4Y,INV3Y); 
ALU(ALUMAC4X,ALUMAC4Y,INV16Y,INV12Y,INV2Y,INVIIY,INVIY,INV4Y,INV3Y); 
NOR4F (NOR44Y, ALUr~ACIX, ALUMAC2X ,ALUMAC3X,ALUr~AC4Y, ZERO, ZERO, ZERO, ZERO, 
ZANO[0000000014],ZERO); 
NOTT(INV83Y,NOR44Y); 
OR3F(OR45Y,ALUMACIX,ALUMAC2X,ALUMAC3Y,ZERO,ZERO,ZERO,ZANO[0000000015], 
ZERO); 
OR2F(OR46Y,ALUMACIX,ALUMAC2Y,ZERO,ZERO,ZANO[0000000016],ZERO); 
NOR5F(NOR47Y,ALUMACIX,ALUMAC2X,ALUMAC3X,ALUMAC4X,INV18Y,ZERO,ZERO, 
ZERO,ZERO,ZERO,ZANO[0000000017],ZERO); 
NOR4F(NOR48Y,ALUMACIX,ALUMAC2X,ALUMAC3X,ALUMAC4X,ZERO,ZERO, ZERO, ZERO, 
ZANO[0000000018],ZERO); 
XOR2F(XOR49Y,ALUMACIX,ALUMACIY,ZERO,ZERO,ZANO[OOOOOOOO19],ZERO); 
NOR5F(NOR50Y,ALUMAC2X,ALUMAC3X,ALUMAC4X,INV18Y,INV35Y,ZERO,ZERO,ZERO, 
ZERO,ZERO,ZANO[0000000020],ZERO); 
NOTT(INV82Y,NOR50Y); 
NOR4F(NOR51Y,ALUMAC2X,ALUMAC3X,ALUMAC4Y,INV35Y,ZERO,ZERO,ZERO,ZERO, 
ZANO[0000000021],ZERO); 
NOTT(INV84Y,NOR51Y); 
OR3F(OR52Y,ALUMAC2X,ALUMAC3Y,INV35Y,ZERO,ZERO,ZERO,ZAN0[0000000022], 
ZERO); 
OR2F(OR53Y,ALUMAC2Y,INV35Y,ZERO,ZERO,ZANO[0000000023],ZERO); 
XOR2F(XOR54Y,ALUMAC2X,ALUMAC2Y,ZERO,ZERO,ZANO[OOOOOOOO24],ZERO); 
NOR4F(NOR55Y,ALUMAC3X,ALUMAC4X,INV18Y,INV35Y,ZERO,ZERO,ZERO,ZERO, 
ZANO[0000000025],ZERO); 
NOTTF(INV85Y,NOR55Y,ZANO[0000000031],ZERO); 
OR3F(OR56Y,ALUMAC3X,ALUMAC4Y,INV35Y,ZERO,ZERO,ZERO,ZAN0[0000000026], 
ZERO); 
OR2F(OR57Y,ALUMAC3Y,INV35Y,ZERO,ZERO,ZANO[0000000027],ZERO); 
XOR2F(XOR58Y,ALUMAC3X,ALUMAC3Y,ZERO,ZERO,ZANO[0000000028],ZERO); 
OR3F(OR59Y,ALUMAC4Y,INV18Y,INV35Y,ZERO,ZERO,ZERO,ZANO[0000000029], 
ZERO); 
OR2F(OR60Y,INV35Y,ALUMAC4Y,ZERO,ZERO,ZANO[0000000030],ZERO); 
XOR2(XOR61Y,ALUMAC4X,ALUMAC4Y); 
NOR2(NOR62Y,INV18Y,INV35Y); 
NAN04(NAN063Y,INV83Y,OR45Y,OR46Y,ALUMACIY); 
NAN04(NAN064Y,INV82Y,INV84Y,OR52Y,OR53Y); 
NAN03(NAN065Y,INV85Y,OR56Y,OR57Y); 
NAN02(NAN066Y,OR59Y,OR60Y); 
NOR2(NOR67Y,NAN063Y,NOR47Y); 
XOR2(XOR68Y,XOR49Y,NAN064Y); 
XOR2(XOR69Y,XOR54Y,NAND65Y); 
XOR2(XOR70Y,XOR58Y,NAN066Y); 
XOR2(XOR71Y,XOR61Y,NOR62Y); 
NOR4(NOR72Y,XOR68Y,XOR69Y,XOR70Y,XOR71Y); 
NOTT(INV73Y,NOR72Y); 
NOTT(ILACOl,NAN063Y); 
NOTf(ICAROUT,NOR67Y); 
NOTT(ILAC02,NOR48Y); 
NOTT(IOUT4,XOR68Y); 
NOTT(IOUT3,XOR69Y); 
NOTT(ICOMPARE,INV73Y); 
NOTT(IOUT2,XOR70Y); 
NOTT(IOUTl,XOR71Y); 

62 



.oun = • lOUn; 

.OUT2 = .lOUT2; 

.OUB = . IOUB; 

.OUT4 = .IOUT4; 

.COMPARE = .lCOMPARE; 

• LACOI = .lLACOl; 

.LAC02 = . lLAC02; 

.CAROUT = . lCAROUT 

63 



PROGRM1 OUTPUT 

4.3 OUTPUT (NON-FAULTED) -- ALU 
--------------------------------

oun OUT2 oun OUT4 CMP L1 L2 C 

1 0 0 0 0 0 0 1 

1 1 1 1 1 0 0 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 1 

1 1 1 1 1 0 0 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

1 0 1 1 0 1 1 0 

1 1 0 1 0 1 1 0 

0 0 1 1 0 1 1 0 

0 0 1 1 0 1 1 0 

1 0 1 1 0 1 1 0 

1 1 0 1 0 1 1 0 

0 0 1 1 0 1 1 0 

0 0 1 1 0 1 1 0 

1 1 0 0 0 1 1 0 

1 0 0 0 0 1 1 0 

0 1 0 0 0 1 1 0 

0 1 0 0 0 1 1 0 

1 1 0 0 0 1 1 0 

1 0 0 0 0 1 1 0 

0 1 0 0 0 1 1 0 

64 



0 1 0 0 0 1 1 0 

1 1 1 1 1 1 1 0 

1 0 1 1 0 1 1 0 

0 1 1 1 0 1 1 0 

0 1 1 1 0 1 1 0 

1 1 1 1 1 1 1 0 

1 0 1 1 0 1 1 0 

0 1 1 1 0 1 1 0 

0 1 1 1 0 1 1 0 

NOTE: "0" = "00000000" 
11111 = "FFFFFFFF" 

65 



USER INPUT 

4.4 INPUT -- ALU 

(ALU.DAT) 

32 { number of desired cycles. } 
Column 0,0,0,0,0,1,1,1,1,1,0,0,1,0 

9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,0,0,0,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
0,1,0,0,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,1,0,0,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
0,0,1,0,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,0,1,0,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
0,1,1,0,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,1,1,0,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
0,0,0,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,0,0,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
0,1,0,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,1,0,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
0,0,1,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,0,1,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
0,1,1,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 
1,1,1,1,9,9,9,9,9,9,9,9,1,9 
9,9,9,9,9,9,9,9,9,9,9,9,0,9 

66 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Variable 

SELI 
SEL2 
SEL3 
SEL4 
Al 
A2 
A3 
A4 
81 
82 
83 
84 
CONTROL 
CARIN 



(output stuck at 0) 

PINFLTS; 
INV3: 
INV35: 
INV4: 
INV5: 
INV6: 
INV7: 
INV8: 
INV9: 
INVIO: 
INVll : 
INV12: 
INV13: 
INV14: 
NOR44: 
OR45: 
OR46: 
NOR47: 
NOR48: 
XOR49: 
NOR50: 
NOR51: 
OR52: 
OR53: 
XOR54: 
NOR55: 
OR56: 
OR57: 
XOR58: 
OR59: 
OR60: 
INV85: 
ENDPINS; 
ENDC; 

y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0: 
y* 0: 
y* 0: 
y* 0; 
y* 0: 
y* 0: 
y* 0; 
y* 0; 
y* 0; 
y* 0: 
y* 0; 
y* 0: 
y* 0: 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 

END_OF _FILE; 

4.5 EXAMPLES 

USER INPUT 
EXAMPLE 1 

FAULTLIST ALU 

(ALUFLT.DAT) 

67 



PROGRAM OUTPUT 
EXAMPLE 1 

ALU 

(DETECTED.DAT) 

(output stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

INV3 INV3Y 1 
INV35 NOR51Y 1 
INV4 INV4Y 1 
INV5 XOR49Y 9 
INV7 XOR69Y 9 
INV12 NAND63Y 1 
NOR44 NAND63Y 1 
OR45 NAND63Y 3 
OR46 NAND63Y 3 
NOR48 NOR48Y 1 
XOR49 XOR49Y 1 
NOR51 NOR51Y 2 
OR52 OR52Y 1 
OR53 OR53Y 1 
XOR54 XOR69Y 1 
OR56 NAND65Y 1 
OR57- NAND65Y 1 
XOR58 XOR70Y 1 
OR59 NAND65Y 1 
OR60 NAND66Y 1 
INV85 NAND65Y 1 

ADDRESS LOCATION MACHINE # CYCLE # 

58 



(output stuck at 1) 

PINFLTS; 
INV3: 
INV35: 
INV4: 
INV5: 
INV6: 
INV7: 
INV8: 
INV9: 
INV10: 
INVll : 
INV12: 
INV13: 
INV14: 
NOR44: 
OR45: 
OR46: 
NOR47: 
NOR48: 
XOR49: 
NOR50: 
NOR51: 
OR52: 
OR53: 
XOR54: 
NOR55: 
OR56: 
OR57: 
XOR58: 
OR59: 
OR60: 
INV85: 

y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* 1; 
y* I; 
y* I; 
y* I; 
y* I; 
y* 1; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 
y* I; 

ENDPINS; 
ENDC; 
END_OF_FILE; 

USER INPUT 
EXAMPLE 2 

FAUL TUST ALU 

(ALUFLT • OAT) 

69 



PROGRAM OUTPUT 
EXAMPLE 2 

ALU 

(DETECTED.DAT) 

(output stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

INV3 INV3Y 5 
INV35 NOR51Y 2 
INV4 INV4Y 3 
INV6 XOR49Y 1 
INV8 XOR69Y 1 
INV9 XOR70Y 9 
INV10 INV10Y 1 
INVll NAND63Y 3 
INV13 XOR49Y 9 
INV14 XOR69Y 9 
NOR44 NAND63Y 3 
NOR47 NOR47Y 1 
NOR48 NOR48Y 9 
XOR49 XOR49Y 9 
NOR50 NOR50Y 1 
NOR51 NOR51Y 1 
XOR54 XOR69Y 9 
NOR55 NAND65Y 1 
OR56 NAND65Y 2 
XOR58 XOR70Y 17 
OR60 NAND66Y 2 

ADDRESS LOCATION MACHINE # CYCLE # 

70 



(input pin A stuck at 0) 

PINFLTS; 
INV3: 
INV3S: 
INV4: 
INVS: 
INV6: 
INV7: 
INV8: 
INV9: 
INVI0: 
INVll : 
INVI2: 
INVI3: 
INVI4: 
NOR44: 
OR4S: 
OR46: 
NOR47: 
NOR48: 
XOR49: 
NORSO: 
NORS1: 
ORS2: 
ORS3: 
XORS4: 
NORSS: 
ORS6: 
ORS7: 
XORS8: 
ORS9: 
OR60: 
INV8S: 

A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 

ENDPINS; 
ENDC; 
END_OF_FILE; 

USER INPUT 
EXAMPLE 3 

FAUL TLlST ALU 

(ALUFL T • OAT) 

71 



PROGRAM OUTPUT 
EXAMPLE 3 

ALU 

(DETECTED. DA T) 

(input pin A stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

INV5 XOR49Y 9 
INV7 XOR69Y 9 
OR45 NAND63Y 3 
OR46 NAND63Y 3 
XOR49 XOR49Y 9 
NOR51 NOR51Y 10 

·OR53 OR53Y 2 
XOR54 XOR69Y 9 
OR56 NAND65Y 18 
OR57 NAND65Y 4 
XOR58 XOR70Y 17 
OR60 NAND66Y 1 

ADDRESS LOCATION MACHINE # CYCLE # 

72 



(input pin A stuck at 1) 

PINFLTS; 
INV3: 
INV35: 
INV4: 
INV5: 
INV6: 
INV7: 
INV8: 
INV9: 
INV10: 
INVll : 
INV12: 
INV13 : 
INV14: 
NOR44: 
OR45: 
OR46: 
NOR47: 
NOR48: 
XOR49: 
NOR50: 
NOR51: 
OR52: 
OR53: 
XOR54: 
NOR55: 
OR56: 
OR57: 
XOR58: 
OR59: 
OR60: 
INV85: 

A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* 1; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 
A* I; 

ENDPINS; 
ENDC; 
END_OF_FILE; 

USER INPUT 
EXAMPLE 4 

FAUL TlIST ALU 

(ALUFL T • DA T) 

73 



PROGRAM OUTPUT 
EXAMPLE 4 

ALU 

(DETECTED. DA T) 

(input pin A stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

INV3 INV3Y 1 
INV35 NOR51Y 2 
INV6 XOR49Y 1 
INV8 XOR69Y 1 
NOR44 NAND63Y 1 
NOR47 NOR47Y 1 
NOR48 NOR48Y 9 
XOR49 XOR49Y 9 
NOR51 NOR51Y 10 
OR53 OR53Y 2 
XOR54 XOR69Y 9 
OR56 NAND65Y 18 
OR57 NAND65Y 4 
XOR58 XOR70Y 17 
OR60 NAND66Y 1 

ADDRESS LOCATION MACHINE # CYCLE # 

74 



5.0 BCD ADDER 

USER INPUT 

5.1 PARTSlIST -- BCD ADDER (FIG. 4) 

(BCD. PRT) 

USER: "DEUTSCH" ; 
NAME:BCDADD; 
PURPOSE:TESTING; 
lEVEl:CHIP; 
TYPES:TOOOM,T002M,T004M,T008M,TOlOM,TOllM,T02lM,T025M,T027M,T086M,POOOM, 

P002M; 
EXT:: Al,A2,A3,A4,Bl,B2,B3,B4,CARIN,CAROUT,SUMl,SUM2,SUM3,SUM4; 
INPUTS: .Al,.A2,.A3,.A4,.Bl,.B2,.B3,.B4,.CARIN; 
OUTPUTS: .CAROUT,.SUMl,.SUM2,.SUM3,.SUM4; 
TOOOM: NANDl,NAND2,NAND3,NAND4,NAND30; 
T002M: NOR15,NOR16,NOR17,NOR18,NOR3l,NOR4l,NOR45,NOR46,NOR62,NOR63; 
T004M: INV7,INVlO,INV19,INV20,INV2l,INV42,INV47,INV48,INV64; 
T008M: AND5,AND6,AND8,AND9,ANDll,AND12,AND13,AND14,AND22,AND25,AND29,AND34, 

AND35,AND40,AND44,AND50,AND5l,AND52,AND53,AND54,AND55,AND57,AND59; 
TOIOM: NAND38; 
TOIIM: AND24,AND28,AND39,AND43,AND49,AND56,AND58; 
T021M: AND27; 
T025M: NOR60; 
T027M: NOR32,NOR33,NOR6l; 
T086M: XOR36,XOR37; _ 
POOOM: PAI,PA2,PA3,PA4,PBI,PB2,PB3,PB4,PCARIN,AND23,AND26; 
P002M: PSUMI,PSUM2,PSUM3,PSUM4,PCAROUT; 
END; 
COMPSEGt1ENT; 
= AI*IAI,A2*IA2,A3*IA3,A4*IA4,BI*IBI,B2*IB2,B3*IB3,B4*IB4,CARIN*ICARIN, 

CAROUT*PCAROUTY,SUMI*PSUMIY,SUM2*PSUM2Y,SUM3*PSUM3Y,SUM4*PSUM4Y; 
NANDl= A*PAlY,B*PBIY,Y*NANDIY; 
NAND2= A*PA2Y,B*PB2Y,Y*NAND2Y; 
NAND3= A*PA3Y,B*PB3Y,Y*NAND3Y; 
NAND4= A*PA4Y,B*PB4Y,Y*NAND4Y; 
NAND30= A*PCARINY,B*NORI5Y,Y*NAND30Y; 
NORI5= A*AND5Y,B*AND6Y,Y*NORI5Y; 
NORI6= A*AND8Y,B*AND9Y,Y*NORI6Y; 
NORI7= A*ANDIIY,B*ANDI2Y,Y*NORI7Y; 
NORI8= A*ANDI3Y,B*ANDI4Y,Y*NORI8Y; 
NOR31= A*AND22Y,B*AND23Y,Y*NOR3IY; 
NOR41= A*AND34Y,B*AND35Y,Y*NOR4IY; 
NOR45= A*AND39Y,B*AND40Y,Y*NOR45Y; 
NOR46= A*AND43Y,B*AND44Y,Y*NOR46Y; 
NOR62= A*AND56Y,B*AND57Y,Y*NOR62Y; 
NOR63= A*AND58Y,B*AND59Y,Y*NOR63Y; 
INV7= A*NANDIY,Y*INV7Y; 
INVIO= A*NAND2Y,Y*INVIOY; 
INVI9= A*NORI5Y,Y*INVI9Y; 
INV20= A*NORI6Y,Y*INV20Y; 

75 



INV21= A*NORI7Y,Y*INV2IY; 
AND23= A*INV7Y,Y*AND23Y; 
AND26= A*INVIOY,Y*AND26Y; 
INV42= A*XOR36Y,Y*INV42Y; 
INV47= A*NOR46Y,Y*INV47Y; 
INV48= A*NOR45Y,Y*INV48Y; 
INV64= A*NOR62Y,Y*INV64Y; 
AND5= A*PAIY,B*NANDIY,Y*AND5Y; 
AND6= A*NANDIY,B*PBIY,Y*AND6Y; 
AND8= A*PA2Y,B*NAND2Y,Y*AND8Y; 
AND9= A*NAND2Y,B*PB2Y,Y*AND9Y; 
ANDII= A*PA3Y,B*NAND3Y,Y*ANDIIY; 
ANDI2= A*NAND3Y,B*PB3Y,Y*ANDI2Y; 
ANDI3= A*PA4Y,B*NAND4Y,Y*ANDI3Y; 
ANDI4= A*NAND4Y,B*PB4Y,Y*ANDI4Y; 
AND22= A*PCARINY,B*INVI9Y,Y*AND22Y; 
AND25= A*INV7Y,B*INV20Y,Y*AND25Y; 
AND29= A*INVIOY,B*INV2IY,Y*AND29Y; 
AND34= A*PCARINY,B*NAND30Y,Y*AND34Y; 
AND35= A*NAND30Y,B*NORI5Y,Y*AND35Y; 
AND40= A*NORI8Y,B*NAND4Y,Y*AND40Y; 
AND44= A*NAND38Y,B*NORI8Y,Y*AND44Y; 
AND50= A*INV42Y,B*INV47Y,Y*AND50Y; 
AND51= A*XOR37Y,B*INV47Y,Y*AND5IY; 
AND52= A*INV42Y,B*NOR45Y,Y*AND52Y; 
AND53= A*XOR37Y,B*INV48Y,Y*AND53Y; 
AND54= A*XOR36Y,B*INV47Y,Y*AND54Y; 
AND55= A*INV42Y,B*NOR45Y,Y*AND55Y; 
AND57= A*INV42Y,B*NOR45Y,Y*AND57Y; 
AND59= A*INV48Y,B*NOR46Y,Y*AND59Y; 
NAND38= A*NOR33Y,B*NAND3Y,C*NORI8Y,Y*NAND38Y; 
AND24= A*PCARINY,B*INVI9Y,C*INV20Y,Y*AND24Y; 
AND28= A*INV7Y,B*INV20Y,C*INV2IY,Y*AND28Y; 
AND39= A*NOR33Y,B*NAND3Y,C*NAND4Y,Y*AND39Y; 
AND43= A*NAND3Y,B*NOR33Y,C*NAND38Y,Y*AND43Y; 
AND49= A*XOR36Y,B*NOR46Y,C*INV48Y,Y*AND49Y; 
AND56= A*XOR36Y,B*XOR37Y,C*INV47Y,Y*AND56Y; 
AND58= A*XOR36Y,B*XOR37Y,C*INV48Y,Y*AND58Y; 
AND27= A*PCARINY,B*INVI9Y,C*INV20Y,D*INV2IY,Y*AND27Y; 
NOR60= A*AND49Y,B*AND50Y,C*AND5IY,D*AND52Y,Y*NOR60Y; 
NOR32= A*AND24Y,B*AND25Y,C*AND26Y,Y*NOR32Y; 
NOR33= A*AND27Y,B*AND28Y,C*AND29Y,Y*NOR33Y; 
NOR61= A*AND53Y,B*AND54Y,C*AND55Y,Y*NOR6IY; 
PAI= A*IAI,Y*PAIY; 
PA2= A*IA2,Y*PA2Y; 
PA3= A*IA3,Y*PA3Y; 
PA4= A*IA4,Y*PA4Y; 
PBI= A*IBI,Y*PBIY; 
PB2= A*IB2,Y*PB2Y; 
PB3= A*IB3,Y*PB3Y; 
PB4= A*IB4,Y*PB4Y; 
PCARIN= A*ICARIN,Y*PCARINY; 
PSUMI= A*NOR4IY,Y*PSUMIY; 
PSUM2= A*NOR60Y,Y*PSUM2Y; 

76 



PSUM3= A*NOR61Y,Y*PSUM3Y; 
PSUM4= A*INV64Y,Y*PSUM4Y; 
PCAROUT= A*NOR63Y,Y*PCAROUTY; 
XOR36= A*NOR31Y,B*INV20Y,Y*XOR36Y; 
XOR37= A*NOR32Y,B*INV21Y,Y*XOR37Y; 
ENDCOMPS; 
DETECTSEGMENT; 

PINS; 
AND5Y; 
AND6Y; 
AND8Y; 
AND9Y; 
NOR31Y; 
NOR41Y; 
NOR45Y; 
NOR62Y; 
INV42Y; 
INV64Y; 
AND50Y; 
AND5IY; 
AND52Y; 
AND53Y; 
AND55Y; 
AND57Y; 

ENDDET; 
ENDC; 
END_OF_FILE; 

77 



PROGRAM OUTPUT 

5.2 P-ORDERING -- BCD ADDER 
----------------------------

(DWN.B32) 

IA1 = 

IA2 = 

IA3 = 

IA4 = 

IB1 = 

IB2 = 

IB3 = 

IB4 = 

ICARIN = 

BUF(PA1Y,IA1); 
BUF(PA2Y,IA2); 
BUF(PA3Y,IA3); 
BUF(PA4Y,IA4); 
BUF(PB1Y,IB1); 
BUF(PB2Y,IB2); 
BUF(PB3Y,IB3); 
BUF(PB4Y,IB4); 
BUF(PCARINY,ICARIN); 
NAND2F(NAND1Y,PA1Y,PB1Y,ZERO,ZERO,ZAND[OOOOOOOOOl],ZER0); 
NAND2F(NAND2Y,PA2Y,PB2Y,ZERO,ZERO,ZAND[0000000002],ZER0); 
NAND2F(NAND3Y,PA3Y,PB3Y,ZERO,ZERO,ZAND[0000000003],ZER0); 
NAND2F(NAND4Y,PA4Y,PB4Y,ZERO,ZERO,ZAND[0000000004],ZER0); 
NOTTF(INV7Y,NAND1Y,ZAND[0000000007] ,ZERO); 
NOTTF(INV10Y,NAND2Y,ZAND[0000000009] ,ZERO); 
FBUFF(AND23Y,INV7Y,ZAND[0000000013] ,ZERO); 
FBUFF(AND26Y,INV10Y,ZAND[0000000016] ,ZERO); 
AND2F(AND5Y,PAIY,NANDIY,ZERO,ZERO,ZAND[0000000005],ZER0); 
AND2F(AND6Y,NAND1Y,PB1Y,ZERO,ZERO,ZAND[0000000006],ZER0); 
AND2(AND8Y,PA2Y,NAND2Y); 
AND2F(AND9Y,NAND2Y,PB2Y,ZERO,ZERO,ZAND[0000000008],ZER0); 
AND2F(ANDI1Y,PA3Y,NAND3Y,ZERO,ZERO,ZAND[OOOOOOOOlO],ZERO); 
AND2(AND12Y,NAND3Y,PB3Y); 
AND~F;~ND13¥,PA4Y,NAND4Y,ZERO,ZERO,ZAND[OOOOOOOOll],ZERO); 
AND?~::ND14Y,NAND4Y,PB4Y,ZERO,ZERO,ZAND[0000000012],ZERO); 
NOR2(NOR15Y,AND5Y,AND6Y); 
NOR2(NOR16Y,AND8Y,AND9Y); 
NOR2(NOR17Y,AND11Y,AND12Y); 
NOR2(NOR18Y,AND13Y,AND14Y); 
NOTT(INV19Y,NOR15Y); 

78 

· .A1; 

• • A2; 

• .A3; 

· .A4; 

• . B1; 

• • B2; 

· • B3; 

•. B4; 

•. CARIN; 



NOTT(INV20Y,NOR16Y); 
NOTT(INV21Y,NOR17Y); 
AND2(AND22Y,PCARINY,INV19Y); 
AND2F(AND25Y,INV7Y,INV20Y,ZERO,ZERO,ZAND[0000000015],ZERO); 
AND2F(AND29Y,INVIOY,INV21Y,ZERO,ZERO,ZAND[0000000017],ZERO); 
AND2F(AND40Y,NOR18Y,NAND4Y,ZERO,ZERO,ZAND[0000000023],ZERO); 
AND3F(AND24Y,PCARINY,INV19Y,INV20Y,ZERO,ZERO,ZERO,ZAND[0000000014], 
ZERO); 
AND3(AND28Y,INV7Y,INV20Y,INV21Y); 
AND4(AND27Y,PCARINY,INV19Y,INV20Y,INV21Y); 
NOR3(NOR32Y,AND24Y,AND25Y,AND26Y); 
NOR3F(NOR33Y,AND27Y,AND28Y,AND29Y,ZERO,ZERO,ZERO,ZAND[0000000019], 
ZERO); 
XOR2(XOR37Y,NOR32Y,INV21Y); 
NAND2F(NAND30Y,PCARINY,NOR15Y,ZERO,ZERO,ZAND[0000000018],ZERO); 
NOR2(NOR31Y,AND22Y,AND23Y); 
AND2F(AND34Y,PCARINY,NAND30Y,ZERO,ZERO,ZAND[0000000020],ZERO); 
AND2F(AND35Y,NAND30Y,NOR15Y,ZERO,ZERO,ZAND[0000000021],ZERO); 
NAND3(NAND38Y,NOR33Y,NAND3Y,NOR18Y); 
AND3F(AND39Y,NOR33Y,NAND3Y,NAND4Y,ZERO,ZERO,ZERO,ZAND[0000000022], 
ZERO); 
AND3(AND43Y,NAND3Y,NOR33Y,NAND38Y); 
XOR2(XOR36Y,NOR31Y,INV20Y); 
NOR2(NOR41Y,AND34Y,AND35Y); 
NOR2F(NOR45Y,AND39Y,AND40Y, ZERO, ZERO, ZAND[0000000024] , ZERO); 
NOTT(INV42Y,XOR36Y); 
NOTT(INV48Y,NOR45Y); 
AND2(AND44Y,NAND38Y,NOR18Y); 
AND2F(AND52Y,INV42Y,NOR45Y,ZERO,ZERO,ZAND[0000000026],ZERO); 
AND2F(AND53Y,XOR37Y,INV48Y,ZERO,ZERO,ZAND[0000000027],ZERO); 
AND2(AND55Y,INV42Y,NOR45Y); 
AND2(AND57Y,INV42Y,NOR45Y); 
AND3F(AND58Y,XOR36Y,XOR37Y,INV48Y,ZERO,ZERO,ZERO,ZAND[0000000029], 
ZERO); 
NINV(PSUMIY,NOR41Y); 
NOR2(NOR46Y,AND43Y,AND44Y); 
NOTT(INV47Y,NOR46Y); 
AND2(AND50Y,INV42Y,INV47Y); 
AND2F(AND51Y,XOR37Y,INV47Y,ZERO,ZERO,ZAND[0000000025],ZERO); 
AND2(AND54Y,XOR36Y,INV47Y); 
AND2(AND59Y,INV48Y,NOR46Y); 
AND3(AND49Y,XOR36Y,NOR46Y,INV48Y); 
AND3F(AND56Y,XOR36Y,XOR37Y,INV47Y,ZERO,ZERO,ZERO,ZAND[0000000028], 
ZERO); 

NOR4F(NOR60Y,AND49Y,AND50Y,AND51Y,AND52Y,ZERO,ZERO,ZERO,ZERO,ZAND[0000000030], 
ZERO); 
NOR3F(NOR61Y,AND53Y,/~D54~,AND55Y,ZERO,ZERO,ZERO,ZAND[0000000031], 
ZERO); 
NINV(PSUM2Y,NOR60Y); 
NINV(PSUM3Y,NOR61Y); 
NOR2(NOR62Y,AND56Y,AND57Y); 
NOR2(NOR63Y,AND58Y,AND59Y); 
NOTT(INV64Y,NOR62Y); 

79 



NINV(PSUM4Y,INV64Y); 
NINV(PCAROUTY,NOR63Y); 

.CAROUT = .PCAROUTY; 

.SUMl = .PSUMlY; 

.SUM2 = .PSUM2Y; 

.SUM3 = .PSUM3Y; 

.SUM4 = .PSUM4Y 

80 



PROGRAM OUTPUT 

5.3 OUTPUT (NON-FAULTED) -- BCD ADDER 
---------------------------------------

CAROUT SUM1 SUM2 SUM3 SUM4 

0 0 0 0 0 

0 1 0 0 0 

0 1 1 1 0 

0 0 0 0 1 

1 1 0 0 0 

1 0 1 0 0 

1 1 1 0 0 

1 0 0 1 0 

1 1 0 0 1 

NOTE: 110" "00000000" 
11111 = "FFFFFFFF" 

81 



9 
0,0,0,0,0,0,0,0,0 
0,0,0,0,0,0,0,0,1 
0,0,1,0,1,1,0,0,0 
9,9,9,9,9,9,9,9,1 
1,1,1,0,0,0,1,0,0 
9,9,9,9,9,9,9,9,1 
0,0,0,1,1,0,1,0,0 
0,1,1,0,0,0,0,1,0 
1,0,0,1,1,0,0,1,1 

82 

PROGRAM INPUT 

5.4 INPUT-- BCD ADDER 

(BCD.DAT) 

{ number of desired cycles. } 
Column 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Variables 

Al 
A2 
A3 
A4 
B1 
B2 
B3 
B4 
CARIN 



(output stuck at 0) 

PINFLTS: 
NANDI: 
NAND2: 
NAND3: 
NAND4: 
AND5: 
AND6: 
INV7: 
AND9: 
INVIO: 
ANDll: 
AND13 : 
ANDI4: 
AND23: 
AND24: 
AND25: 
AND26: 
AND29: 
NAND30: 
NOR33: 
AND34: 
AND35: 
AND39: 
AND40: 
NOR45: 
AND51: 
AND52: 
AND53: 
AND56: 
AND58: 
NOR60: 
NOR61: 
ENDPINS; 
ENDC; 

y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 
y* 0; 

END_OF _FILE; 

5.5 EXAMPLES 

USER INPUT 
EXAMPLE I 

FAULTLIST BCD ADDER 

(BCDFL T.DAT) 

83 



PROGRAM OUTPUT 
EXAMPLE 1 

BCD 

(DETECTED. OAT) 

(output stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

NANDI NOR31Y 1 
NAND2 AND53Y 1 
NAND3 NOR62Y 1 
NAND4 NOR45Y 1 
AND5 AND5Y 5 
AND6 AND6Y 3 
INV7 NOR31Y 9 
AND9 AND9Y 3 
ANDll AND53Y 3 
AND14 AND50Y 8 
AND23 NOR31Y 9 
AND24 NOR62Y 4 
NAND30 NOR41Y 1 
NOR33 NOR62Y 1 
AND34 NOR41Y 4 
AND35 NOR41Y 1 
AND39 NOR45Y 7 
AND40 NOR45Y 4 
NOR45 NOR45Y 9 
AND51 AND51Y 4 
AND52 AND52Y 9 
AND53 AND53Y 1 
AND56 NOR62Y 4 

ADDRESS LOCATION MACHINE # CYCLE # 

84 



(output stuck at 1) 

PINFLTS: 
NANDI: 
NAND2: 
NAND3: 
NAND4: 
AND5: 
AND6: 
INV7: 
AND9: 
INVIO: 
ANDll : 
AND13 : 
ANDI4: 
AND23: 
AND24: 
AND25: 
AND26: 
AND29: 
NAND30: 
NOR33: 
AND34: 
AND35: 
AND39: 
AND40: 
NOR45: 
AND5I: 
AND52: 
AND53: 
AND56: 
AND58: 
NOR60: 
NOR6I: 

y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 
y* 1; 

ENDPINS; 
ENDC; 
END_OF_FILE; 

USER INPUT 
EXAMPLE 2 

FAULTLIST BCD ADDER 

(BCDFL T. DA T) 

85 



PROGRAM OUTPUT 
EXAMPLE 2 

BCD 

(DETECTED. DA T) 

(output stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

NANDI AND5Y 9 
NAND3 AND50Y 5 
NAND4 NOR45Y 9 
AND5 AND5Y 1 
AND6 AND6Y 1 
INV7 NOR31Y 1 
AND9 AND9Y 1 
INVI0 AND53Y 1 
ANDll AND53Y 1 
AND13 NOR62Y 1 
AND14 NOR62Y 1 
AND23 NOR31Y 1 
AND24 AND53Y 1 
AND25 AND53Y 1 
AND26 AND53Y 1 
AND29 NOR62Y. 1 
NAND30 NOR41Y 2 
NOR33 NOR62Y 4 
AND34 NOR41Y 2 
AND35 NOR41Y 2 
AND39 NOR45Y 9 
AND40 NOR45Y 9 
NOR45 NOR45Y 1 
AND51 AND51Y 1 
AND52 AND52Y 1 
AND53 AND53Y 3 
AND56 NOR62Y 1 

ADDRESS LOCATION MACHINE # CYCLE # 

86 



(input stuck at 0) 

PINFLTS: 
NANDI: A* 0; 
NAND2: A* o· • 
NAND3: A* 0; 
NAND4: A* 0; 
AND5: A* 0; 
AND6: A* 0; 
INV7: A* o· • 
AND9: A* 0; 
INVlO: A* 0; 
ANDll: A* 0; 
ANDl3: A* 0; 
ANDI4: A* 0; 
AND23: A* 0; 
AND24: A* 0; 
AND25: A* 0; 
AND26: A* 0; 
AND29: A* 0; 
NAND30: A* 0; 
NOR33: A* 0; 
AND34: A* O· • 
AND35: A* 0; 
AND39: A* 0; 
AND40: A* 0; 
NOR45: A* 0; 
AND5I: A* 0; 
AND52: A* 0; 
AND53: A* 0; 
AND56: A* 0; 
AND58: A* O· • 
NOR60: A* 0; 
NOR61: A* 0; 
ENDPINS; 
ENDC; 
END_OF_FILE; 

USER INPUT 
EXAMPLE 3 

FAULTLIST BCD ADDER 

(BCDFLT .DAT) 

87 



PROGRAM OUTPUT 
EXAMPLE 3 

BCD 

(DETECTED. OAT) 

(input stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

NANDI AND6Y 3 
NAND2 AND9Y 3 
NAND3 NOR45Y 7 
NAND4 NOR45Y 8 
AND5 AND5Y 5 
AND6 AND6Y 9 
ANDII AND53Y 1 
AND13 NOR62Y 1 
ANDI4 AND50Y 9 
AND23 NOR3IY 9 
AND24 AND53Y 3 
AND25 AND53Y 3 
AND29 AND50Y 3 
NAND30 NOR4IY 1 
NOR33 NOR62Y 4 
AND34 NOR4IY. 3 
AND35 NOR4IY 2 
NOR45 NOR45Y 7 
AND5I AND5IY 6 
AND53 AND53Y 3 
AND56 NOR62Y 5 

ADDRESS LOCATION MACHINE # CYCLE # 

88 



(input stuck at 1) 

PINfLTS: 
NANDI: 
NAND2: 
NAND3: 
NAND4: 
AND5: 
AND6: 
INV7: 
AND9: 
INVI0: 
ANDll : 
AND13 : 
ANDI4: 
AND23: 
AND24: 
AND25: 
AND26: 
AND29: 
NAND30: 
NOR33: 
AND34: 
AND35: 
AND39: 
AND40: 
NOR45: 
AND5l : 
AND52: 
AND53: 
AND56: 
AND58: 
NOR60: 
NOR61: 

A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 
A* 1; 

ENDPINS; 
ENDC; 
END_Of_fILE; 

USER INPUT 
EXAMPLE 4 

fAULTLIST BCD ADDER 

(BCDfLT.DAT) 



PROGRAM OUTPUT 
EXAt~PLE 4 

BCD 

(DETECTED.DAT) 

(input stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

NANDI AND5Y 9 
NAND2 AND9Y 3 
NAND3 NOR62Y 1 
NAND4 NOR45Y 8 
AND5 AND5Y 1 
AND6 AND6Y 1 
INV7 NOR3IY 1 
AND9 AND9Y 1 
ANDll AND53Y 1 
AND13 NOR62Y 1 
ANDI4 AND50Y 9 
AND24 AND53Y 3 
AND25 AND53Y 3 
AND26 AND53Y 1 
AND29 AND50Y 3 
NAND30 NOR41Y _ 1 
NOR33 NOR62Y 4 
AND34 NOR41Y 3 
AND35 NOR4IY 2 
NOR45 NOR45Y 1 
AND5I AND5IY 6 
AtID53 AND53Y 3 
AND56 NOR62Y 5 

ADDRESS LOCATION t~ACHINE # CYCLE # 

90 



6.0 DOWNCOUNTER 

USER INPUT 

6.1 PARTSlIST - DOWNCOUNTER (FIG. 3) 

(OWN. PRT) 

USER: "SWD" ; 
NAME: DWNCNTG; 
PURPOSE: TEGATE; 
lEVEL: CHIP; 
TYPES: COSOF, COSOl, POOOM, P002M, T002M, 

T004M, T008M, T027M, T032M, T074M, 
ClK; 

EXT: : CARRYIN, CLEAR, CLOCK, PO, 
PI, P2, P3, PRELOAD, 
SSET, CARRYOUT, QO, Ql, 
02, 03; 

INPUTS: .CARRYIN, .ClEAR, .ClOCK, .PO, 
.Pl, .P2, .P3, .PRElOAD, 
.SSET; 

OUTPUTS: .CARRYOUT, .QO, .01, .Q2, 
.Q3; 

COSOF: U48, U46; 
COSOl: U47; 
POOOM: PI2, PI4, PI3, PIl, PI8, 

PI9, PI6, ~I7, PIS; 
P002M: POI, P03, P02, pas, P04; 
T002M: U19, U44, U20, U3, U2, 

Ul, U2l, U22; 
T004M: U8, U26, U7, U2S, U24, 

U6, U23, U9; 
T008M: U29, Ull, UlO, UlS, U33, 

U34, U16, U17, U28, U18, 
U27, US, U14, U32, U3l, 
U30, U13, U4S; 

T027M: U4, U43; 
T032M: U3S, U36, U37, U38; 
T074M: U42, U4l, U40, U39; 
ClK: Cl, C2, C3, C4; 
END; 
COMPSEGMENT; 
POS = A*U4SY, Y*XCARRYOUT; 
P04 = A*U42Q, Y*XQ3; 
P03 = A*U41Q, Y*XQ2; 
P02 = A*U40Q, Y*XQl; 
POI = A*U39Q, Y*XQO; 
U48 = A*PISY, Y*lD; 
U47 = A*U46Y, Y*CK; 
U46 = A*PI3Y, Y*U46Y; 
U4S = A*U43Y, B*U44Y, Y*U4SY; 
U44 = A*U39Q, B*C1, Y*U44Y; 

91 



U43 = A*U42Q, B*U41Q, C*U40Q, 
Y*U43Y; 

U42 = D*U38Y, CK*CK, CLR*CLR, 
Q*U42Q, QB*U42QB, PR*STT; 

U41 = D*U37Y, CK*CK, CLR*CLR, 
Q*U41Q, QB*U41QB, PR*STT; 

U40 = D*U36Y, CK*CK, CLR*CLR, 
Q*U40Q, QB*U40QB, PR*STT; 

U39 = D*U35Y, CK*CK, CLR*CLR, 
Q*U39Q, QB*U39QB, PR*STT; 

U38 = A*U33Y, B*U34Y, Y*U38Y; 
U37 = A*U3lY, B*U32Y, Y*U37Y; 
U36 = A*U29Y, B*U30Y, Y*U36Y; 
U35 = A*U27Y, B*U28Y, Y*U35Y; 
U34 = A*U26Y, B*LD3, Y*U34Y; 
U33 = A*U22Y, B*LD, Y*U33Y; 
U32 = A*U25Y, B*LD2, Y*U32Y; 
U31 = A*U21Y, B*LD, Y*U31Y; 
U30 = A*U24Y, B*LDl, Y*U30Y; 
U29 = A*U20Y, B*LD, Y*U29Y; 
U28 = A*U23Y, B*LDO, Y*U28Y; 
U27 = A*U19Y, B*LD, Y*U27Y; 
U26 = A*LD, Y*U26Y; 
U25 = A*LD, Y*U25Y; 
U24 = A*LD, Y*U24Y; 
U23 = A*LD, Y*U23Y; 
U22 = A*U17Y, B*U18Y, Y*U22Y; 
U21 = A*U15Y, B*U16Y, Y*U21Y; 
U20 = A*U13Y, B*U14Y, Y*U20Y; 
U19 = A*UI0Y, B*Ull Y, Y*U19Y; 
U18 = A*U9Y, B*U42QB, Y*U18Y; 
U17 = A*U42Q, B*U5Y, Y*U17Y; 
U16 = A*U8Y, B*U41QB, Y*U16Y; 
U15 = A*U41Q, B*U4Y, Y*U15Y; 
U14 = A*U7Y, B*U40QB, Y*U14Y; 
U13 = A*U40Q, B*U3Y, Y*U13Y; 
Ull = A*CI, B*U39QB, Y*Ull Y; 
UIO = A*U39Q, B*U6Y, Y*UI0Y; 
U9 = A*U5Y, Y*U9Y; 
U8 = A*U4Y, Y*U8Y; 
U7 = A*U3Y, Y*U7Y; 
U6 = A*CI, Y*U6Y; 
U5 = A*UlY, B*U2Y, Y*U5Y; 
U4 = A*CI, B*U39Q, C*U40Q, 

Y*U4Y; 
U3 = A*U39Q, B*CI, Y*U3Y; 
U2 = A*U40Q, B*U41Q, Y*U2Y; 

92 



Ul 

PI9 
PI8 
PI7 
PI6 

= A*CI, 
= 

= A*XP3, 
= A*XP2, 
= A*XPl, 
= A*XPO, 

B*U39Q, 
CARRYIN*XCARRYIN, 
CLOCK*XCLOCK, 
Pl*XPl, 
P3*XP3, 
SSET*XSSET, 
QO*XQO, 
Q2*XQ2, 

PIS 
PI4 
PI3 

= A*XPRELOAD; 
= A*XCARRYIN, 
= A*XCLOCK, 

Y*LD3; 
Y*LD2; 
Y*LDl; 
Y*LDO; 
Y*PISY; 
Y*CI; 
Y*PI3Y; 
Y*STT; 
Y*CLR; 
Y*T1; 
Y*T2; 
Y*T3; 
Y*T4; 

PI2 = A*XSSET, 
PIl = A*XCLEAR, 
Cl = A*U3SY, 
C2 = A*U36Y, 
C3 = A*U37Y, 
C4 = A*U38Y, 
ENDCOMPS; 
DETECTSEGMENT; 

PINS; 
UIY; 
U2Y; 
U3Y; 
UlSY; 
U16Y; 
U17Y; 
U20Y; 
U30Y; 
U31Y; 
U32Y; 
U33Y; 
U34Y; 

ENDDET; 
ENDC; 
END_OF _FILE; 

Y*UIY; 
CLEAR*XCLEAR, 
PO*XPO, 
P2*XP2, 
PRELOAD*XPRELOAD, 
CARRYOUT*XCARRYOUT, 
Ql*XQl, 
Q3*XQ3; 

93 



XCARRYIN 

XCLEAR 

XCLOCK 

XPO 

XPI 

XP2 

XP3 

XPRELOAD 

XSSET 

BUF(LD3,XP3); 
BUF(LD2,XP2); 
BUF(LDI,XPI); 
BUF(LDO,XPO); 
BUF(PISY,XPRELOAD); 
BUF(CI,XCARRYIN); 
BUF(PI3Y,XCLOCK); 
BUF (STT, XSSET) ; 
BUF(CLR,XCLEAR); 
FNIB(LD,PISY); 
FNIB(U46Y,PI3Y); 

PROGRAM OUTPUT 

6.2 P-ORDERING -- DOWNCOUNTER 

(DWN.B32) 

= 

= 

= 

= 

= 

= 

= 

= 

= 

NOTTF(U26Y,LD,ZAND[OOOOOOOOI4],ZERO); 
NOTTF(U2SY,LD,ZAND[0000000030],ZERO); 
NOTT(U24Y,LD); 
NOTTF(U23Y,LD,ZAND[OOOOOOOOIS],ZERO); 
NOTTF(U6Y,CI,ZAND[OOOOOOOOOS],ZERO); 
LNIB(CK,U46Y); 
DFF(U42Q,U42QB,CK,T4,STT,CLR,.K+I); 
DFF(U4IQ,U4IQB,CK,T3,STT,CLR,.K+3); 
DFF(U40Q,U40QB,CK,T2,STT,CLR,.K+S); 
DFF(U39Q,U39QB,CK,TI,STT,CLR,.K+7); 
AND2F(U34Y,U26Y,LD3,ZERO,ZERO,ZAND[0000000007],ZERO); 
AND2(U32Y,U2SY,LD2); 
AND2F(U30Y,U24Y,LDI,ZERO,ZER0,~A~O[OU00000009],ZERO); 
AND2F(U28Y,U23Y,LDO,ZERO,ZERO,ZAND[0000000031],ZERO); 
AND2F(UIIY,CI,U39QB,ZERO,ZERO,ZAND[OOOOOOOOI6],ZERO); 
AND2F(UIOY,U39Q,U6Y,ZERO,ZERO,ZAND[0000000026],ZERO); 
NOR3F(U4Y,CI,U39Q,U40Q,ZERO,ZERO,ZERO,ZAND[OOOOOOOOIO],ZERO); 
NOR2(U3Y,U39Q,CI); 

94 

•• CARRYIN; 

•• CLEAR; 

•. CLOCK; 

.• PO; 

•• PI; 

•• P2; 

•• P3; 

•• PRELOAD; 

•• SSET; 



NOR2(U2Y,U40Q,U41Q); 
NOR2F(UIY,CI,U39Q,ZERO,ZERO,ZAND[0000000003] ,ZERO); 
NINV(XQ3,U42Q); 
NINV(XQ2,U41Q); 
NINV(XQ1,U40Q); 
NINV(XQO,U39Q); 
NOR2F(U44Y,U39Q,CI,ZERO,ZERO,ZAND[0000000012] ,ZERO); 
NOR3F(U43Y,U42Q,U41Q,U40Q,ZERO,ZERO,ZERO,ZAND[0000000020] ,ZERO); 
NOR2F(U19Y,UIOY,UIIY,ZERO,ZERO,ZAND[0000000001] ,ZERO); 
AND2F(U15Y,U41Q,U4Y,ZERO,ZERO,ZAND[0000000002] ,ZERO); 
AND2F(U13Y,U40Q,U3Y,ZERO,ZERO,ZAND[0000000019] ,ZERO); 
NOTTF(U8Y,U4Y,ZAND[0000000004] ,ZERO); 
NOTTF(U7Y,U3Y,ZAND[0000000024] ,ZERO); 
AND2F(U5Y,UIY,U2Y,ZERO,ZERO,ZAND[0000000018] ,ZERO); 
AND2F(U45Y,U43Y,U44Y,ZERO,ZERO,ZAND[0000000029] ,ZERO); 
AND2F(U27Y,U19Y,LD,ZERO,ZERO,ZAND[0000000008] ,ZERO); 
AND2F(U17Y,U42Q,U5Y,ZERO,ZERO,ZAND[0000000027] ,ZERO); 
AND2F(U16Y,U8Y,U41QB,ZERO,ZERO,ZAND[0000000017] ,ZERO); 
AND2F(U14Y,U7Y,U40QB,ZERO,ZERO,ZAND[0000000028] ,ZERO); 
NOTT~(U9Y,U5Y,ZAND[0000000025],ZERO); 
NINV(XCARRYOUT,U45Y); 
OR2F(U35Y,U27Y,U28Y,ZERO,ZERO,ZAND[0000000011],ZERO); 
NOR2F(U21Y,U15Y,U16Y,ZERO,ZERO,ZAND[0000000013] ,ZERO); 
NOR2F(U20Y,U13Y,U14Y,ZERO,ZERO,ZAND[0000000022] ,ZERO); 
AND2(U18Y,U9Y;U42QB); 
AND2(U31Y,U21Y,LD); 
AND2F(U29Y,U20Y,LD,ZERO,ZERO,ZANO[0000000006] ,ZERO); 
NOR2F(U22Y,U17Y,U18Y,ZERO,ZERO,ZAND[0000000023] ,ZERO); 
OR2(U37Y,U31Y,U32Y); . 
OR2F(U36Y,U29Y,U30Y,ZERO,ZERO,ZAND[0000000021],ZERO); 
AND2(U33Y,U22Y,LD); 
OR2(U38Y,U33Y,U34Y); 

CLK(Tl,U35Y,.K+9); 

CLK(T2,U36Y,.K+IO); 

CLK(T3,U37Y,.K+ll); 

CLK(T4,U38Y,.K+12); 

.CARRYOUT = 

.QO = 

.Ql = 

.Q2 = 

.Q3 = 

.XCARRYOUT; 

.XQO; 

.XQ1; 

.XQ2; 

.XQ3 

95 



PROGRAM OUTPUT 

6.3 OUTPUT (NON-FAULTED) -- DOWN COUNTER 
----------------------------------------

CARRYOUT QO Ql Q2 Q3 

1 0 0 0 0 

0 1 1 1 1 

0 0 1 1 1 

0 1 0 1 1 

0 0 0 1 1 

0 1 1 0 1 

0 0 1 0 1 

0 1 0 0 1 

0 0 0 0 1 

0 1 1 1 0 

0 0 1 l 0 

0 1 0 1 0 

0 0 0 1 0 

0 1 1 0 0 

0 0 1 0 0 

0 1 0. 0 0 

1 0 0 0 0 

0 1 1 1 1 

0 0 1 1 1 

0 1 0 1 1 

0 0 0 1 1 

0 1 1 0 1 

0 0 1 0 1 

96 



0 1 

0 0 

0 1 

0 0 

0 1 

0 0 

0 1 

0 0 

0 1 

1 0 

0 1 

0 0 

0 1 

0 0 

0 1 

0 0 

0 1 

NOTE: "0" = "00000000" 
"1" = "FFFFFFFF" 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 1 

0 1 

1 0 

1 0 

1 0 

1 0 

0 0 

0 0 

0 0 

0 0 

1 1 

1 1 

1 1 

1 1 

0 1 

0 1 

0 1 

97 



(output stuck at 0) 

PINFLTS; 
Ul9: y* 
Ul5: y* 
Ul: y* 
U8: y* 
U6: y* 
U29: y* 
U34: y* 
U27: y* 
U30: y* 
U4: y* 
U35: y* 
U44: y* 
U2l: y* 
U26: y* 
U23: y* 
un: y* 
Ul6: y* 
U5: y* 
Ul3: y* 
U43: y* 
U36: y* 
U20: y* 
U22: y* 
U7: y* 
U9: y* 
UlO: y* 
U17: y* 
Ul4: y* 
U45: y* 
U25: y* 
U28: y* 
ENDPINS; 
ENDC; 
END_OF _FILE; 

98 

O· • o· • o· • o· • o· • o· • o· • o· • o· • o· • o· • o· • o· • o· • o· • o· • O· • o· • o· • o· • o· • 
O· • o· • o· • o· • o· • o· • o· • o· • o· • o· • 

6.4 EXAMPLES 

USER INPUT 
EXAMPLE 1 

FAULTLIST DOWNCOUNTER 



PROGRAM OUTPUT 
FOR 

EXAMPLE 1 

DOWNCOUNTER 
-----------

(DETECTED. OAT) 

(output stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN /I CYCLE /I 

U19 U1Y 2 
U15 U15Y 5 
U1 U1Y 1 
U8 U16Y 6 
U6 U1Y 3 
U29 U20Y 2 
U27 U1Y 2 
U4 U16Y 1 
U35 U1Y 2 
U21 U31Y 1 
U16 U16Y 6 
U5 U33Y 1 
U13 U20Y 3 
U36 U20Y 2 
U20 U20Y 1 
U22 U33Y 1 
U7 U20Y 4 
U9 U33Y 10 
U10 U1Y 3 
U17 U17Y 9 
U14 U20Y 4 

ADDRESS LOCATION MACHINE /I CYCLE /I 

99 



(output stuck at 1) 

PINFLTS; 
U19: y* 
U15: y* 
U1: y* 
U8: y* 
U6: y* 
U29: y* 
U34: y* 
U27: y* 
U30: y* 
U4: y* 
U35: y* 
U44: y* 
U21: y* 
U26: y* 
U23: y* 
Ull: y* 
U16: y* 
U5: y* 
U13: y* 
U43: y* 
U36: y* 
U20: y* 
U22: y* 
U7: y* 
U9: y* 
U10: y* 
U17: y* 
U14: y* 
U45: y* 
U25: y* 
U28: y* 
ENDPINS; 
ENDC; 
END_OF_FILE; 

100 

1; 
1; 
1; 
1; 
1; 
1; 
I-t 
I-t 
1; 
1; 
1; 
1; 
I-t 
1; 
1; 
1; 
1; 
1; 
1; 
1; 
1; 
1; 
1; 
I-t 
1; 
1 
1 
1 
1 
1 
1 

USER INPUT 
EXAMPLE 2 

FAULTLIST DOWNCOUNTER 



PROGRAM OUTPUT 
EXAMPLE 2 

DOWNCOUNTER 
-----------

(output stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN /I CYCLE /I 

U19 UlY 3 
U15 U15Y 1 
U1 U1Y 2 
U8 U16Y 1 
U29 U20Y 4 
U34 U34Y 1 
U27 UlY 3 
U30 U30Y 1 
U4 U15Y 2 
U35 U1Y 3 
U21 U31Y 5 
U26 U34Y 1 
U23 U1Y 3 
un U1Y 2 
U16 U16Y 1 
U5 U17Y 2 
U13 U20Y 1 
U36 U20Y 4 
U20 U20Y 3 
U22 U33Y 9 
U7 U20Y 1 
U9 U33Y 1 
U10 U1Y 2 
U17 U17Y 1 
U14 U20Y 1 
U25 U32Y 1 
U28 U1Y 3 

ADDRESS LOCATION MACHINE /I CYCLE # 

101 



(input stuck at 0) 

PINFLTS; 
U19: 
U15: 
U1: 
U8: 
U6: 
U29: 
U34: 
U27: 
U30: 
U4: 
U35: 
U44: 
U21: 
U26: 
U23: 
Ull: 
U16: 
U5: 
U13: 
U43: 
U36: 
U20: 
U22: 
U7: 
U9: 
U10: 
U17: 
U14: 
U45: 
U25: 
U28: 

A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A*. 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 
A* 0; 

ENDPINS; 
ENDC; 
END_OF_FILE; 

102 

USER INPUT 
EXAMPLE 3 

FAULTLIST DOWNCOUNTER 



PROGRAM OUTPUT 
EXAMPLE 3 

DOWNCOUNTER 
-----------

(input stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

U19 UIY 3 
U15 U15Y 1 
U29 U20Y 4 
U34 U34Y 1 
U27 UIY 2 
U30 U30Y 1 
U35 UIY 2 
U2l U31Y 5 
U11 UIY 2 
U16 U16Y 1 
US U17Y 8 
U13 U20Y 1 
U36 U20Y 2 
U20 U20Y 3 
U22 U33Y 9 
UI0 UIY 2 
U17 U17Y 1 
U14 U20Y 1 
U28 UIY 3 

ADDRESS LOCATION MACHINE # CYCLE # 

103 



(input stuck at 

PINFLTS: 
U19: A* 1 
U15: A* 1 
Ul: A* 1 
U8: A* 1 
U6: A* 1 
U29: A* 1 
U34: A* 1 
U27: A* 1-, 
U30: A* 1-, 
U4: A* 1-, 
U35: A* 1: 
U44: A* 1-, 
U21: A* 1-, 
U26: A* 1-, 
U23: A* 1: 
Ull: A* 1: 
U16: A* 1-, 
U5: • A* 1-, 
Ul3: A* 1 
U43: A* 1 
U36: A* 1 
U20: A* 1 
U22: A* 1 
U7: A* 1 
U9: A* 1, 
UI0: A* 1: 
U17: A* 1-, 
U14: A* 1: 
U45: A* 1: 
U25: A* 1: 
U28: A* 1: 
ENDPINS: 
ENDC: 
END_OF_FILE: 

104 

1) 

USER INPUT 
EXAMPLE 4 

FAULTLIST DOWNCOUNTER 



PROGRAM OUTPUT 
EXAMPLE 4 

DOWNCOUNTER 
-----------

(input stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

U19 U1Y 3 
U15 U15Y 1 
U29 U20Y . 2 
U34 U34Y 1 
U27 U1Y 3 
U35 U1Y 2 
U21 U31Y 5 
U23 U1Y 3 
un U1Y 2 
U16 U16Y 1 
U5 U17Y 8 
U13 U20Y 1 
U36 U20Y 2 
U20 U20Y 3 
U22 U33Y 9 
U10 U1Y 2 
U17 U17Y 1 
U14 U20Y 1 
U25 U32Y 1 

ADDRESS LOCATION MACHINE # CYCLE # 

105 



7.0 TEST 

USER INPUT 

7.1 PARTSLIST TEST (FIG. 1) 

USER: "MCGOUGH" 
NAME: TEST; 
PURPOSE: TESTING; 
LEVEL: SUBCHIP; 

(TEST .PRT) 

TYPES: T004M,T008M,T002M,TOOOM,T032M,COSOMF; 
EXT :: Al,Bl,A2,B2,A3,B3,A4,B4,AS,BS,CS,Pl,P2,P3,P4,PS; 
INPUTS: .Al,.Bl,.A2,.B2,.A3,.B3,.A4,.B4,.AS,.BS,.CS; 
OUTPUTS: .Pl,.P2,.P3,.P4,.PS; 
POOOM: IAl,IA2,IA3,IA4,IBl,IB2,IB3,IB4,IAS,IBS,ICS; 
P002M: POl,P02,P03,P04,POS; 
T004M: INVl,INV2,INV3,INV4,INVS; 
T008M: ANDl; 
T002M: NORl; 
T027M: NOR2; 
TOOOM: NANDI; 
T032M: ORl; 
COSOF: PAl,PA2,PA3,PA4,PAS,PA6; 
END; 
COMPSEGMENT; 

= Al*XAl,A2*XA2,A3*XA3,A4*XA4,B~*XBl,B2*XB2,B3*XB3,B4*XB4, 
AS*XAS,BS*XBS,CS*XCS,Pl*XPl,P2*XP2,P3*XP3,P4*XP4,PS*XP5; 

IAI = A*XAl,Y*IAlY; 
IA2 = A*XA2,Y*IA2Y; 
IA3 = A*XA3,Y*IA3Y; 
IA4 = A*XA4,Y*IA4Y; 
lAS = A*XAS,Y*IASY; 
IBI = A*XBl,Y*IBlY; 
IB2 = A*XB2,Y*IB2Y; 
IB3 = A*XB3,Y*IB3Y; 
IB4 = A*XB4,Y*IB4Y; 
IBS = A*XBS,Y*IBSY; 
ICS = A*XCS,Y*ICSY; 
INVI = A*IAlY,Y*INVlY; 
PAl = A*IBlY,Y*PAlY; 
ANDI = A*INVlY,B*PAlY,Y*ANDlY; 
PA2 = A*IA2Y,Y*PA2Y; 
INV2 = A*IB2Y,Y*INV2Y; 
NORI = A*PA2Y,B*INV2Y,Y*NORlY; 
INV3 = A*IA3Y,Y*INV3Y; 
PA3 = A*IB3Y,Y*PA3Y; 
NANDI = A*INV3Y,B*PA3Y,Y*NANDlY; 
INV4 = A*IA4Y,Y*INV4Y; 
PA4 = A*IB4Y,Y*PA4Y; 
ORI = A*INV4Y,B*PA4Y,Y*ORlY; 
INVS = A*IASY,Y*INVSY; 

106 



PA5 = A*IB5Y,Y*PA5Y; 
PA6 = A*IC5Y,Y*PA6Y; 
NOR2 = A*INVSY,B*PASY,C*PA6Y,Y*NOR2Y; 
POI = A*ANDlY,Y*XPl; 
P02 = A*NORlY,Y*XP2; 
P03 = A*NANDlY,Y*XP3; 
P04 = A*ORlY,Y*XP4; 
POS = A*NOR2Y,Y*XPS; 
ENDCOMPS; 
DETECTSEGMENT; 

PINS; 
INVlY; 
ANDlY; 
PA2Y; 
NORlY; 
PA3Y; 
NANDlY; 
INV4Y; 
ORlY; 
NOR2Y; 

ENDDET; 
ENDC; 
END_Of_fILE; 

107 



XAl 

XA2 

XA3 

XM 

XB1 

XB2 

XB3 

XB4 

XAS 

XBS 

XCS 

BUF (rAl Y ,XA1) ; 
BUF(IA2Y,XA2); 
BUF(rA3Y ,XA3); 
BUF(IMY,XM); 
BUF(rASY ,XAS); 

108 

PROGRAM OUTPUT 

7.2 P-ORDERING TEST 

(DWN.B32) 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

• • AI; 

• .A2; 

• • A3; 

• .A4; 

•• B1; 

•• B2; 

• • B3; 

· • B4; 

• .AS; 

•• BS; 

•• CS; 



BUF(IBIY ,XBl); 
BUF (IB2Y, XB2) ; 
BUF(IB3Y,XB3); 
BUF(IB4Y ,XB4); 
BUF(IB5Y ,XB5); 
BUF(IC5Y ,XC5); 
NOTTF(INVIY,IAIY,ZERO,ZAND[OOOOOOOOOl]); 
FNIBF(PAIY,IBIY,ZERO,ZERO); 
AND2F(ANDlY,INVlY,PAlY,ZAND[0000000007],ZERO,ZERO,ZERO); 
FNIBF(PA2Y,IA2Y,ZERO,ZERO); 
NOTTF(INV2Y,IB2Y,ZERO,ZAND[0000000009]); 
NOR2F(NORlY,PA2Y,INV2Y,ZAND[0000000010],ZERO,ZERO,ZERO); 
NOTTF(INV3Y,IA3Y,ZAND[0000000011],ZERO); 
FNIBF(PA3Y,IB3Y,ZERO,ZAND[0000000012]); 
NAND2F(NANDlY,INV3Y,PA3Y,ZERO,ZERO,ZAND[0000000013],ZERO); 
NOTTF(INV4Y,IA4Y,ZERO,ZERO); 
FNIBF(PA4Y,IB4Y,ZERO,ZAND[0000000015]); 
OR2F(ORlY,INV4Y,PA4Y,ZERO,ZERO,ZAND[0000000016],ZERO); 
NOTTF(INV5Y,IA5Y,ZAND[0000000002],ZERO); 
FNIBF(PA5Y,IB5Y,ZAND[0000000003],ZERO); 
FNIBF(PA6Y,IC5Y,ZERO,ZERO); 
NOR3F(NOR2Y,INV5Y,PA5Y,PA6Y,ZAND[0000000005],ZERO,ZERO,ZERO,ZERO); 
NINV(XPl,ANDlY); 
NINV(XP2,NORlY); 
NINV(XP3,NANDlY); 
NINV(XP4,ORlY); 
NINV(XP5,NOR2Y); 

.Pl 

.P2 

.P3 

.P4 

.P5 

END; 

END 
ELUDOM 

= 

= 

= 

= 

.XPl; 

.XP2; 

.XP3; 

.XP4; 

.XP5 

109 



4 
0,1,1,0,1,1,1,1,0,0,0 
0,0,0,1,0,0,0,0,1,1,1 
1,0,1,0,0,1,0,1,0,1,0 
1,0,1,0,0,1,0,1,1,0,0 

110 

USER INPUT 

7.3 INPUT TEST 

(TEST.DAT) 

{ number of desired cycles. } 
Column 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Variables 

Al 
61 
A2 
62 
A3 
63 
A4 
64 
A5 
65 
C5 



(output stuck at 0) 

PINFLTS; 
INVl: y* 
INV5: y* 
PA5: y* 
PA6: y* 
NOR2: y* 
PAl: y* 
ANDl: y* 
PA2: y* 
INV2: y* 
NORl: y* 
INV3: . y* 
PA3: y* 
NANDI: y* 
INV4: y* 
PA4: y* 
ORl: y* 
PA7: y* 
INV6: y* 
PA8: y* 
OR2: y* 
PA9: y* 
INV7: y* 
PAlO: y* 
INV8: y* 
NOR3: y* 
ENDPINS; 
ENDC; 
EN£t.OF_FILE; 

0; 
0; 
O· • 
0; 
0; 
O· • 
0; 
O· • 
0; 
O· • 
0; 
0; 
O· • 
0; 
0; 
0; 
0; 
0; 
0; 
0; 
O· • 
0; 
O· • 
0; 
0; 

7.4 EXAMPLES 

USER INPUT 
EXAMPLE 1 

FAULTLIST TEST 

(TESTFL T • DA T) 

111 



PROGRAM OUTPUT 
EXAMPLE I 

TEST 

(DETECTED. DA T) 

(output stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

INVI INVIY I 
INV5 NOR2Y I 
NOR2 NOR2Y 4 
PAl ANDIY I 
AND I ANDIY I 
PA2 PA2Y I 
NORI NORIY 2 
INV3 NANDIY 3 
PA3 PA3Y I 
NANDI NANDIY I 
INV4 INV4Y "2 
PM ORIY I 
ORI ORlY I 

-
ADDRESS LOCATION MACHINE # CYCLE # 

112 



(output stuck at 1) 

PINFLTS; 
INV1: y* 
INVS: y* 
PAS: y* 
PA6: y* 
NOR2: y* 
PAl: y* 
AND1: y* 
PA2: y* 
INV2: y* 
NOR1: y* 
INV3: y* 
PA3: y* 
NANDI: y* 
INV4: y* 
PA4: y* 
OR1: y* 
PA7: y* 
INV6: y* 
PA8: y* 
OR2: y* 
PA9: y* 
INV7: y* 
PAlO: y* 
INV8: y* 
NOR3: y* 
ENDPINS; 
ENDC; 
END_OF_FILE; 

1; 
1· • 
I-• 
1; 
I-• 
1; 
1: 
I-• 
1: 
I-• 
1; 
1; 
1; 
1; 
I-• 
1; 
I-• 
1: 
I-• 
1; 
1; 
I-• 
1; 
1; 
1; 

USER INPUT 
EXAMPLE 2 

FAULTLIST TEST 

(TESTFLT.DAT) 

113 



PROGRAM OUTPUT 
EXAMPLE 2 

TEST 

(DETECTED. OAT) 

(output stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

INV1 INV1Y 3 
INVS NOR2Y 4 
PAS NOR2Y 4 
PA6 NOR2Y 4 
NOR2 NOR2Y 1 
PAl AND1Y 2 
AND 1 AND1Y 2 
PA2 PA2Y 2 
INV2 NOR1Y 2 
NOR1 NOR1Y 1 
INV3 NAND1Y 1 
PA3 PA3Y 2 
NANDI NAND1Y 3 
INV4 INV4Y 1 

ADDRESS LOCATION MACHINE # CYCLE # 

114 



(input· stuck at 0) 

PINFLTS; 
INVI: A* 
INV5: A* 
PA5: A* 
PA6: A* 
NOR2: A* 
PAl: A* 
ANDI: A* 
PA2: A* 
INV2: A* 
NORI: A* 
INV3: A* 
PA3: A* 
NANDI: A* 
INV4: A* 
PA4: A* 
ORI: A* 
PAl: A* 
INV6: A* 
PA8: A* 
OR2: A* 
PA9: A* 
INVl: A* 
PAlO: A* 
INV8: A* 
NOR3: A* 
ENDPINS; 
ENDC; 
END_OF_FILE; 

0; 
0; 
O' , 
O' , 
O' , 
0; 
O' , 
0; 
0; 
0; 
0; 
O' , 
0; 
0; 
0; 
O' , 
O' , 
0; 
0; 
0; 
0; 
0; 
O' , 
0; 
0; 

USER INPUT 
EXAMPLE 3 

FAULTLIST TEST 

(TESTFLT.DAT) 

115 



PROGRAM OUTPUT 
EXAMPLE 3 

TEST 

(DETECTED. OAT) 

(input stuck at 0) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN ,I. CYCLE II 

NOR2 NOR2Y 4 
NANDI NANDIY I 
INV4 INV4Y 2 
ORI ORIY 2 

ADDRESS LOCATION MACHINE II CYCLE II 

116 



(input stuck at 1) 

PINFLTS; 
INVl: A* 
INV5: A* 
PA5: A* 
PA6: A* 
NOR2: A* 
PAl: A* 
ANDl: A* 
PA2: A* 
INV2: A* 
NORl: A* 
INV3: A* 
PA3: A* 
NANDI: A* 
INV4: A* 
PA4: A* 
ORl: A* 
PA7: A* 
INV6: A* 
PA8: A* 
OR2: A* 
PA9: A* 
INV7: A* 
PAlO: A* 
INV8: A* 
NOR3: A* 
ENDPINS; 
ENDC; 
END_OF _FILE; 

I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 
I-I 

USER INPUT 
EXAMPLE 4 

FAULTLIST TEST 

(TESTFL T _ OAT) 

117 



PROGRAM OUTPUT 
EXAMPLE 4 

TEST 

(DETECTED.DAT) 

(input stuck at 1) 

PIN FAULTS DETECTED 

FAULT NAME TEST PIN # CYCLE # 

INV1 INVlY 3 
INVS NOR2Y 1 
NOR2 NOR2Y 1 
INV2 NORIY 2 
INV3 NANDIY 3 
PA3 PA3Y 2 
NAND1 NANDIY 1 
ORI ORlY 1 

ADDRESS LOCATION MACHINE # CYCLE # 

118 



B.O MEMORY CIRCUIT 
-------------------

USER INPUT 

B.1 PARTS LIST -- MEMORY CIRCUIT (FIG. 5) 
-----------------------------------------

USER: "NEMEROFF" ; 
NAME: MEMRYRW; 
PURPOSE: PRAC; 
LEVEL: CHIP; 
TYPES: MEMR, C050F, POOOM, 

T004M, P002M; 
EXT: : EO, El, E2, E3, E4, 

E5, PO, P1, P2, P3; 
INPUTS: EO, E1, E2, D, E4, E5; 
OUTPUTS: PO, P1, P2, P3; 
POOOM: UO U1, U2, U3, U4; 
T004M: U10; 
C050F: U6, U7, UB, U9; 
MEMR: U5, Ull; 
P002M: POl, P02, P03, P04; 
END; 
COMPSEGMENT; 

= EO*XEO, El*XEl, E2*XE2, E3*XE3, 
E4*XE4, E5*XE5, PO*XPO, P1*XP1, 
P2*XP2, P3*XP3;. 

POl = A*U11 Y1, Y*XPO; 
P02 = A*Ull Y2, Y*XPl; 
P03 = A*U11 Y3, Y*XP2; 
P04 = A*U11Y4, Y*XP3; 
UO = A*XE5, Y*UOY; 
Ul = A*XEO, Y*UIY; 
U2 = A*XEl, Y*U2Y; 
U3 = A*XE2, Y*U3Y; 
U4 = A*XE3, Y*U4Y; 
UIO = A*XE4, Y*UIOY; 
U6 = A*U5Y1, Y*U6Y; 
U7 = A*U5Y2, Y*U7Y; 
UB = A*U5Y3, Y*UBY; • 
U9 = A*U5Y4, Y*U9Y; 
U5 = AO*UIY, A1*U2Y, A2*U3Y, A3*U4Y, 

EN*XE4, Y1*U5Y1, Y2*U5Y2, Y3*U5Y3, 
Y4*U5Y4; 

U11 = AO*U6Y, Al*U7Y, A2*UBY, A3*U9Y, 
EN*U10Y, RW*UOY, DO*UIY, Dl*U2Y, 
D2*U3Y, D3*U4Y, Y1*U11 Y1, Y2*Ull Y2, 
Y3*U11 Y3, Y4*U11 Y4; 

119 



ENDCOMPS; 
DETECTSEGMENT; 
PINS: 

U1Y; 
U2Y; 
U3Y; 
U4Y; 

ADDRESSES; 
0001; 
0003; 
0012; 
0013; 
0014; 
0015; 
0002; 
0010; 
0011; 
ENDDET; 
ENDC; 
END_OF_FILE; 

120 



PROGRAM OUTPUT 

B.2 P-ORDERING -- MEMORY CIRCUIT 

(DWN.B32) 

XEO = •• EO; 
XEl = •• El; 
XE2 = •• E2; 
XE3 = •• E3; 
XE4 = •• E4; 
XE5 = •• E5; 
BUF(UOY,XE5); 
BUF(UIY,XEO); 
BUF(U2Y ,XEl); 
BUF(U3Y,XE2); 
BUF(U4Y,XE3); 
NOTT(UI0Y,XE4); 
MEMR(AO=UIY,Al=U2Y,A2=U3Y,A3=U4Y,EN=XE4,Yl=U5Yl,Y2=U5Y2,Y3=U5Y3,Y4=U5Y4); 
FNIB(U6Y,U5Y1); 
FNIB(U7Y,U5Y2); 
FNIB(UBY,U5Y3); 
FNIB(U9Y,U5Y4); 
MEMR(AO=U6Y,Al=U7Y,A2=UBY,A3=U9Y,EN=UlOY,RW=UOY,DO=UlY,Dl=U2Y,D2=U3Y, 
D3=U4Y,Yl=UlIYl,Y2=UllY2,Y3=UllY3,Y4=UllY4); 
NINV(XPO,UllYl); 
NINV(XPl,UllY2); 
NINV(XP2,UllY3); 
NINV(XP3,UllY4); 
.PO = .XPO; 
.Pl = .XPl; 
.P2 = .XP2; 
.P3 = .XP3 

121 



48 
0,0,0,0,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
0,0,0,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
0,0,1,0,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
0,0,1,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
0,1,0,0,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
0,1,0,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
0,1,1,0,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
0,1,1,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
1,0,0,0,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
1,0,0,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
1,0,1,0,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
1,0,1,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
1,1,0,0,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
1,1,0,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 
1,1,1,0,1,0 
9,9,9,9,0,~ 
9,9,9,9,0,0 
1,1,1,1,1,0 
9,9,9,9,0,1 
9,9,9,9,0,0 

122 

USER INPUT 

8.3 INPUT -- MEMORY CIRCUIT 

NUMBER OF DESIRED CYCLES 
COLUMN 

1 
2 
3 
4 
5 
6 

VARIABLES 

EO 
E1 
E2 
E3 
E4 
E5 



8.4 INITITAL MEMORY DATA 

0,15,0,15,100,000,000; 
RADIX, DECIMAL; 
000,000003,000004,000005,000006,000007,000008; 
006,000009,000010,000011,000012,000013,000014; 
012,000015,000000,000001,000002; 
END 

123 



PINFLTS; 
ENDPINS; 
MEMFLTS; 
000000* 
000002* 
000010* 
000011 * 
000012* 
000013* 
000014* 
000015* 
ENDMEM; 
ENDC; 
END_OF _FILE; 

124 

8_5 FAULTLIST -- MEMORY CIRCUIT 

2-I 
I-I 
3-I 
I-I 
2 - . 

I 

2-I 
3-I 
I-I 



8.6 OUTPUT -- MEMORY CIRCUIT 
------------------------------

PO Pl P2 P3 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 

00000000 00000000 0000000'0 FFFFFFFF 

00000000 00000000 00000000 FFFFFFFF 

00000000 00000000 00000000 FFFFFFFF 

00000000 00000000 FFFFFFFF 00000000 

00000000 00000000 FFFFFFFF 00000000 

00000000 00000000 FFFFFFFF 00000000 

00000000 00000000 FFFFFFFF FFFFFFFF 

00000000 00000000 .FFFFFFFF FFFFFFFF 

00000000 00000000 FFFFFFFF FFFFFFFF 

00000000 FFFFFFFF 00000000 00000000 

00000000 FFFFFFFF 00000000 00000000 

00000000 FFFFFFFF 00000000 00000000 

00000000 FFFFFFFF 00000000 FFFFFFFF 

00000000 FFFFFFFF 00000000 FFFFFFFF 

00000000 FFFFFFFF 00000000 FFFFFFFF 

00000000 FFFFFFFF FFFFFFFF 00000000 

00000000 FFFFFFFF FFFFFFFF 00000000 

00000000 FFFFFFFF FFFFFFFF 00000000 

00000000 FFFFFFFF FFFFFFFF FFFFFFFF 

00000000 FFFFFFFF FFFFFFFF FFFFFFFF 

.125 



00000000 FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF 00000000 00000000 00000000 

FFFFFFFF 00000000 00000000 00000000 

FFFFFFFF 00000000 00000000 00000000 

FFFFFFFF 00000000 00000000 FFFFFFFF 

FFFFFFFF 00000000 00000000 FFFFFFFF 

FFFFFFFF 00000000 00000000 FFFFFFFF 

FFFFFFFF 00000000 FFFFFFFF 00000000 

FFFFFFFF 00000000 FFFFFFFF 00000000 

FFFFFFFF 00000000 FFFFFFFF 00000000 

FFFFFFFF 00000000 FFFFFFFF FFFFFFFF 

FFFFFFFF 00000000 FFFFFFFF FFFFFFFF 

FFFFFFFF 00000000 FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF 00000000 00000000 

FFFFFFFF FFFFFFFF .00000000 00000000 

FFFFFFFF FFFFFFFF 00000000 00000000 

FFFFFFFF FFFFFFFF 00000000 FFFFFFFF 

FFFFFFFF FFFFFFFF 00000000 FFFFFFFF 

FFFFFFFF FFFFFFFF 00000000 FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF 00000000 

FFFFFFFF FFFFFFFF FFFFFFFF 00000000 

FFFFFFFF FFFFFFFF FFFFFFFF 00000000 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

126 



8.7 MEMORY DETECTION RESULT 

ADDRESS LOCATION MACHINE # CYCLE # 

000000 0003 2 
000010 0013 17 
000011 0012 41 
000012 0015 11 
000014 0001 23 
000015 0002 47 

127 



9.0 SUBROUTINES, MODULES & VARIABLES 

PROGRAM: GLOSS. FOR 

MAIN VARIABLES: 

INTEGER: 

BOOLEAN: 

I = Index variable. 
11 = Index variables used to find 
12 = corresponding types for components. 
ICOl = Column position of parser. 
IK = Index to reference knowns in p-ordered list. 
10 = Call to function INOUT. 
lONE = 1. 
ISTAT = Sets cursor to a specified position. 
ITKlN = length of variable ITOK. 
J = Index variable. 
Jl = Index variable for OUT(NUM,Jl,O). 
J2 = Index variable for IN (NUM,J2,0). 
MAIN = Position of Main component in partslist. 
NC = Number of characters read into NCARD. 
NClOCKS = Number of ficticious clocks. 
NI = Number of external inputs in main circuit. 
NK = Number of nets whose values are known. 
NO = Number of ext~rnal outputs in main circuit. 
NTYPES = Number of types. 
NUM = Number of components on partslist. 
ZERO = Constant set to zero for fault input. 
IA = Index variable. 
NF Number of faults. 
IB = Index variable. 

CK = True if part is a ficticious clock. 

CHARACTER: 

128 

EXTNAM 
NAME 
NET 
PIN 
T 
TOKEN 
Tl 

= External pins name. 
= Name of circuit. 
= Net being examined. 
= Pin being examined. 
= Temporary variable for TYPE(Il,I2). 
= Token returned by parser ( =ITOK ). 
= Temporary variable for FlT(NF,I). 



BYTE: 

ITOK = Token returned by parser. 
NCARD = 80 character line read in to be parsed. 

INTEGER ARRAY: 

(100) 
(100) 
(100) 
(100) 
( 20) 

NETIN 
NETOUT 
NIN 
NOUT 
NPARTS 

= Number of inputs to a particular component. 
= Number of outputs to a particular component. 
= Position of last input in LIB. 
= Position of last output in LIB. 
= Number of parts for each type. 

BOOLEAN ARRAY: 

(100) DONE = False if part is not yet in p-ordered list 

CHARACTER ARRAY: 

(0:20) 
( 20, 2) 
clocks. 
(100, 20, 0:1) 
(100) 
(500) 
( 50, 0:10) 
(150) 
(150) 
(100) 
( 50) 
(100, 20, 0:1) 
(100) 
(100, 2) 
( 30, 0: 50) 
(100,0: 5) 

CH NUM = Character equivalents of integers. 
CLOCK = Li st of input and output nets of the fi cti ci ous 

IN 
IN PIN 
KNOWN 
LIB 
L1sn 
L1ST2 
LOG 
LOGIC 
OUT 
OUTPIN 
PART 
TYPE 
FLT 

= Array of inputs to a particular component. 
= Array of inputs to main circuit. 
= List of known external inputs and clock outputs. 
= Library. 
= Unordered list. 
= P-ordered list. 
= Array of logical equations for each component. 
= Array of logical equations for each type. 
= Array of outputs to a particular component. 
= Array of outputs to main circuit. 
= Array of all components on partslist. 
= Array of all types associated wI parts on partslist. 
= Array of all faults and their values. 

SUBROUTINES CALLED: 

CREATE OWN 
CREATCEXEC 
CREATCMAIN 
CREATCPRINT 

GETOK 
HUT CH NUI,1 
LI~{I.ITY -
SUBSTITUTE 

SET FLT 

= Creates bliss coded P-ordered program. 
= Creates fortran coded executive program. 
= Creates bliss coded control program. 
= Creates fortran coded program to print 

results. 
= Parses a given line. 
= Converts integers to ch~racters. 
= Reads in library of cells and their logic. 
= Substitutes parts, their inputs and their 

outputs into the proper logical macro 
equation. 

= Reads faults from partslist and stores them 
in array FLT. 

129 



CLPS FLT 
FAULT SUB 

SET MEM 

CREATE MEM 

CR FLTPRN 

CREATE RWM 

RWMEM 

CREATE PAS 

CREATE DET 

FUNCTIONS CALLED: 

(INTEGER) 
(INTEGER) 

130 

IFORM 
INOUT 

= Collapses faults. 
= Substitutes faulted parts,their inputs and 

their outputs into the proper logical macro 
equation. 

= reads in memory input data. 

= parses memory input data and stores in array 
FLT. 

= creates subroutine for printing results of 
fault detection. 

= creates bliss module for simulating random 
access memories. 

= creates bliss module for simulating read 
only memories. 

= creates routine for passing results from 
the bliss module DETFLT (DETECT) to the 
routine FLTPRN. 

= creates a bliss module for detecting whether 
or not a fault has been injected. The module 
routine called DETECT is performed after 
every cycle. 

= Determines format of a line in the partslist. 
= Determines whether a net is an input or 

an output net. 



· . .;.. LIBAR¥·: 
.1 

This routine reads 1n the contents of the standard library of 
components • 

VARIABLES: 
INTEGER: 

I 
(main) ICOL 
(main) ITKLN 

J 
K 

(main) NC 

CHARACTER: 

= Index variable. 
= Column position of parser. 
= Length of variable ITOK. 
= Index variable. 
= Index variable for read statement. 
= Number of characters read into NCARD. 

(main) TOKEN = Token returned by parser ( =ITOK ). 

BYTE: 

(main) ITOK 
(main) NCARD 

INTEGER ARRAY: 

(main) NIN 
(main) NOUT 

CHARACTER ARRAY: 

= Token returned by parser. 
= 80 character line read in to be parsed. 

= Position of last input in LIB. 
= Position of last output in LIB. 

(main) LIB = Library. 
(main) LOGIC = Array of logical equations for each type. 

SUBROUTINES CALLED: 

GETOK = Parses a given line. 

131 



GETOK 

This routine parses an 80 column line and returns the first word 
of characters stripped of all punctuation marks. It's length is 
stored in ITKlN, and the length of the line to be parsed is stored 
in NC. Words are separated by any of the following punctuation marks 
or characters: US", "SS", ";", ",", ":", "*", "=", "~", where US" 
and "SS" denote single and double spaces, respectively. 

VARIABLES: 

132 

INTEGER: 

(main) 
(main) 

BYTE: 

ICOl 
ITKlN 
J 

(main) ITOK 
(main) NCARD 

= Column position of parser. 
= length of variable ITOK. 
= Index variable. 

= Token returned by parser. 
= 80 character line read in to be parsed. 



IFORM 

Used with GETOK to determine format of word currently being parsed. 

VARIABLES: 
INTEGER: 

IPOS = Column position of IFORM parser in string. 

BYTE: 

(main) NCARD = 80 character line read in to be parsed. 

133 



INOUT 

Determines whether a pin is an input or output pin and returns 0 
if an output pin and 1 if an input pin. 

VARIABLES: 

134 

INTEGER: 

I 
INl 
IN2 
IOUTl 
IOUT2 
J 

(main) NI 
(main) NO 
(main) NUM 

CHARACTER: 

(main) 

(main) 

BYTE: 

EXTNAM 
L 
PIN 
TOKEN 
TYPE 

(main) ITOK 
(main) NCARD 

INTEGER ARRAY: 

(main) NIN 
(main) NOUT 

CHARACTER ARRAY: 

(main) 
(main) 
(main) 
(mai n) 
(main) 

IN PIN 
LIB 
LOG 
LOGIC 
OUTPIN 

= Index variable. 
= Position of a component's first input pin in LIB. 
= Position of a component's last input pin in LIB. 
= Position of a component's first output pin in LIB. 
= Position of a component's last output pin in LIB. 
= Index variable 
= Number of inputs in main circuit. 
= Number of outputs in main circuit. 
= Number of components on partslist. 

= External pins name. 
= Temporary for LIB(I,Jl. 
= The pin to be checked. 
= Token returned by parser ( =ITOK ). 
= The type of the part which the pin belongs to. 

= Token returned by parser. 
= 80 character line read in to be parsed. 

= Position of last input in LIB. 
= Position of last output in LIB. 

= Array of inputs to main circuit. 
= Library. 
= Array of logical equations for each component. 
= Array of logical equations for each type. 
= Array of outputs to main circuit. 



INIT CH NUM : 

This routine finds the ASCII equivalents of integers. 

VARIABLES: 
CHARACTER ARRAY: 

(main) CH NUM = Character equivalents of integers • 

. ' 

135 



SET FlT : 

Parses the fault data file. Fault data is stored 1n the array 
FlT. 

VARIABLES: 
INTEGER: 

I 
J 
K 
NF 

(main) ITKlN 
(main) ICOl 
(main) NC 

CHARACTER: 

ANS 
(main) CHNM 

T 
Tmp 
TOKNI 

BYTE ARRAYS: 

= Index variable. 
= Index variable. 
= Index variable. 
= Number of faults. 
= length or variable ITOK. 
= Column position of parser. 
= Number of characters read into NCARD. 

= Temporary variable. 
= Character equivalent of integer. 
= Temporary variable. 
= Temporary variable. 
= Token returned by parser (= ITOK). 

(80) ITOKI = Token returned by parser. 
(80) NICARD = 80 character line read 1n to be parsed. 

CHARACTER ARRAYS: 

(0:20) (main) CH_NUM = Character equivalent of integer. 
(100,0:5)(main) FlT = Array of all faults and their values. 

SUBROUTINES REFERENCED: 

GETOK. 
IN CH NM. 

136 



CLPS FLT : 

Used to find unique faults. 

VARIABLES: 
INTEGER: 

NM = Number of faults. 
NZ = Number of faults. 

CHARACTER: 

T = Temporary variable. 
Tl = Temporary variable. 
L = Logic of gate. 

CHARACTER ARRAYS: 

(100,O:5)(main) FLT = Array of faults and their values. 

137 



IN CH NM : 

For finding ASCII equivalents of integers. Uses data stored 
in INIT CH NM. 

VARIABLES: 
INTEGER: 

PI = Temporary variable. 
P2 = Temporary variable. 
P3 = Temporary variable. 
P4 = Temporary variable. 
NF = Number of faults. 

CHARACTER: 

Cl = Temporary character variable. 
C2 = Temporary character variable. 
C3 = Temporary character variable. 
C4 = Temporary character variable. 

CHARACTER ARRAYS: 

(0:20) (main) CH NUM = Character equivalent of integer. 

138 



CREATE ZND : 

Sets input fault values into bliss arrays for sUbstitution in place 
of non-faulted inputs, it creates the bliss module ZND.B32. 

VARIABLES: 
INTEGER: 

ZND.B32 

NF = Number of faults. 

ZAND = vector containing the input vaules for 
the expanded (faulted) gates. 

139 



SUBSTITUTE : 

Substitutes inputs and outputs of each part(except for faulted 
and memory parts) into the bliss logical phrase for its type. 

VARIABLES: 
INTEGER: 

I = Index variable. 
IC = Column position. 
IJ = Length of line to be printed. 

(main) IK = Index to reference knowns in p-ordered 1 i st. 
IPOS = Index variable for OOUT and lIN. 
J = Index variable. 
LN = Length of net. 
LPIN = Length of pin to be replaced by a net. 
M = Index variable. 

(main) NCLOCKS = Number of ficticious clocks. 

(100) 
(100) 

(main) NI 
(main) NUM 

CHARACTER: 

(mai n) 

(main) 
(main) 

IIN 
L 
NO 
N1 
OOUT 
PIN 
PRINT 
T 

INTEGER ARRAY: 

(main) NETIN 
(main) NETOUT 

NINP 
NOUTP 

CHARACTER ARRAY: 

= Number of external inputs in main circuit. 
= Index number of "part" being substituted 

= Input string being parsed and substituted. 
= Logical phrase from library. 
= Output net. 
= Input net. 
= Output string. being parsed and substituted. 
= Pin being replaced. 
= Variable containing line to be printed. 
= Temporary variable. 

= 
= 
= 
= 

Number of inputs to a particular component. 
Number of outputs to a particular component. 
Number of inputs for each part. 
Number of outputs for each part. 

(main) CH NUM = Character equivalents of integers. 
(main) CLOCK = List of input and output nets of the ficticious 

clocks. 
(main) 

(100, 10) 
(main) 
(main) 

(100, 10) 

140 

IN 
INP 
LISn 
OUT 
OUTP 

= Array of inputs to a particular component. 
= Array of inputs to a particular component. 
= Unordered list. 
= Array of outputs to a particular component. 
= Array of outputs to a particular component. 



FAULT SUB: 

Substitutes the inputs and outputs of faulted parts into 
the faulted logic for its type. 

VARIABLES: 

(100) 
(100) 

INTEGER: 

(main) 

(main) 
(main) 
(main) 
(main) 

I 
IC 
IJ 
IK 
IPOS 
J 
LN 
LPIN 
M 
NCLOCKS 
NI 
NUM 
NF 
TK 

CHARACTER: 

(main) 

(main) 
(main) 

lIN 
L 
NO 
Nl 
OOUT 
PIN 
PRINT 
T 
NPT 
NPN 
T1 
N2 
N3 

INTEGER ARRAY: 

(main) 
(main) 

NETIN 
NETOUT 
NINP 
NOUTP 

= Index variable. 
= Column position. 
= Lenth of line to be printed. 
= Index to reference knowns in p-ordered list. 
= Index variable for OOUT and lIN. 
= Index variable. 
= Length of net. 
= Length of pin to be replaced by a net. 
= Index variable. 
= Number of ffctfcious clocks. 
= Number of external inputs in main circuit. 
= Index number of "part" bOeing sUbstituted. 
= Number of faults. 
= Temporary variable. 

= Input string being parsed and substituted. 
= Logical phrase from library. 
= Output net. 
= Input net. _ 
= Output string being parsed and substituted. 
= Pin being replaced. 
= Variable containing line to be printed. 
= Temporary variable. 
= Name of faulted part. 
= Name of faulted pin. 
= Temporary variable. 
= Temporary variable. 
= Temporary variable. 

= Number of inputs to a particular component. 
= Number of outputs to a particular component. 
= Number of inputs for each part. 
= Number of outputs for each part. 

141 



CHARACTER ARRAY: 

(main) CH NUM = Character equivalents of integers. 
(rna in) CLOCK = Li st of input and output nets of the fi ct i c1 ous 

clocks. 
(main) 

(100, 10) 
(main) 
(main) 

(100, 10) 
(100,0:5) (main) 

142 

IN 
INP 
LISn 
QUT 
QUTP 
FLT 

= Array of inputs to a particular component. 
= Array of inputs to a particular component. 
= Unordered list. 
= Array of outputs to a particular component. 
= Array of outputs to a particular component. 
= Array of faults and their values. 



CREATE OWN : 

This routine creates the bliss emulation module DWN.B32. It 
calls the bljss macros which represent the gates and memories. 

VARIABLES: 
INTEGER: 

I 
J 
K 
MAIN 

(main) NI 
(main) NO 
(main) NUM 

CHARACTER: 

(main) L 

INTEGER ARRAY: 

(main) NETIN 
(substitute) NOUTP 

(150) 

CHARACTER ARRAY: 

(main) 
(main) 
(main) 

(main) 
(main) 

IN 
INPIN 
LISn 
LIST3 
OUTP 
OUTPIN 

= Index variable. 
= Index variable. 
= Number of knowns at beginning of execution. 
= Position of Main component in partslist. 
= Number of inputs in main circuit. 
= Number of outputs in main circuit. 
= Index number of "part" being substituted 

= Logical phrase from library. 

= Number of inputs to a particular component. 
= Number of outputs for each part. 

-
= Array of inputs to a particular component. 
= Array of inputs to main circuit. 
= Unordered list. 
= List of variables in ST array (in DWN.B32). 
= Array of outputs to a particular component. 
= Array of outputs to main circuit. 

SUBROUTINES CALLED: 

P ORDER = P orders LISTI. 

143 



P ORDER : 

This routi~e (called from CREATE OWN) sets up the macro calls 
so that they may be performed in-the order required by 
the circuit and writes them into DWN.B32. 

VARIABLES: 
INTEGER: 

I 
IXl 
IX2 
IX3 
IX4 
IX5 
IX6 
J 
K 

(main) MAIN 
MNO 
NFC 

(main) NK 
(main) NUM 
(main) NUM 

CHARACTER: 

(main) L 
T 
T1 

BOOLEAN: 

= Index variable. 
= Index variable. 
= Index variable. 
= Index variable. 
= Index variable. 
= Index variable. 
= Index variable. 
= Index variable. 
= Index variable. 
= Position of Main component in partslist. 
= Number of passes made while p ordering. 
= Number of ficticious clocks. -
= Number of nets whose values are known. 
= Index number of "part" being substituted 
= Number of components on partslist. 

= Logical phrase from library. 
= Temporary variable for INP(IXl,IX2). 
= Temporary variable for IN(MAIN,I,l). 

FIN = True when list is successfully p_ordered. 

INTEGER ARRAY: 

( 80) 
(main) 
(main) 

(substitute) 
(substitute) 

144 

LISFC 
NETIN 
NETOUT 
NINP 
NOUTP 

= List of ficticious clocks. 
= Number of inputs to a particular component. 
= Number of outputs to a particular component. 
= Number of inputs for each part. 
= Number of outputs for each part. 



CHARACTER ARRAY: 

(main) 
(substitute) 

(main) 
(main) 
(main) 

(substitute) 

IN 
INP 
L1sn 
L1ST2 
OUT 
OUTP 

BOOLEAN ARRAY: 

(main) DONE 

= Array of inputs to a particular component. 
= Array of inputs to a particular component. 
= Unordered list. 
= P-ordered list. 
= Array of outputs to a particular component. 
= Array of outputs to a particular component. 

= False if part is not yet in p-ordered list 

.,' 4 

145 



CREATE EXEC : 

Creates the subprogram EXEC. For which sets up the output headings in 
OUTPUT.DAT and calls the bliss module CTRL which controls the 
execution of the circuit. 

VARIABLES: 
INTEGER: 

I 
(main) NO 

CHARACTER ARRAY: 

= Index variable. 
= Number of outputs in main circuit. 

(100) NAME = Output column headings. 
(main) OUTPIN = Array of outputs to main circuit. 

146 



CREATE MAIN : 

Creates MAIN.B32 ,the main bliss module which contains the routine 
CTRL • CTRL keeps track of cycles, changes in input ,calls ZND.B32 
and MEM.B32 to load their data, calls DWN.B32 to run the actual 
emulation, calls detect to determaine if any faults were detected, 
calls PASPIN.FOR and PASADD.FOR to pass in detected results and 
calls PRINT.FOR and FLTPRN.FOR to print the results of the emulation 
and the fault detection. 

VARIABLES: 

(100) 

INTEGER: 

(main) 
(main) 

(main) 
(main) 

I 
IBEG 
lEND 
lONE 
ISTAT 
J 
K 
M 
NCYCLE 
NI 
NO 

CHARACTER: 

= Index variable. 
= Start index for cycle in MAIN.B32. 
= End index for cycle in MAIN.B32. 
= 1. 
= Sets cursor to a specified position. 
= Index variable. 
= Index variable. 
= Total number of cycles to be simulated. 
= Cycle in which input values are to be changed. 
= Number of external inputs in main circuit. 
= Number of external outputs in main circuit. 

ANS = Update input?Y or N 
QU = Input manually or from a file? M or F 

INTEGER ARRAY: 

NUM = Initial input valuas for circuit. 

CHARACTER ARRAY: 

(main) INPIN = Array of inputs to main circuit. 
(main) OUTPIN = Array of outputs to main circuit. 

147 



148 

MAIN.B32 : 

(for explanation see CREATE_MAIN page) 

VARIABLES: 

AMACH = contains values of machines in which address 
faults were detected. 

ACYCLE ; contains values of cycles in which address 
faults were detected. 

PMACH = contains values of machines in which pin 
faults were detected. 

PCYCLE = contains values of cycles in which pin 
faults were detected. 

MFTAOO = contains values of addresses of words to 
be faulted in ROM. 

MFTBIT = contains values of the bits of the words 
in MFTAOO which are to be flipped,thus 
faulting ROM. 

ST ; contains values of temporary variables used 
in emulation (ie ficticious clocks). 

ROUTINES CALLEO: 

PRINT = fortran routine to print the results of 
emulation. 

ZND = loads the faulted gate input data into the 
vector ZAND. 

PRMS = read only memory simulation routine. 

RWMEM = random access memory simulation routine. 

DETFLT = routine to detect injected faults. Stores 
results in AMACH,ACYCLE,PMACH and PCYCLE. 

FLTPRN = prints data in AFINF and PFINF to file named 
DETECTED.DAT. 



PASADD = passes data in AMACH and ACYCLE to the fortran 
array AFINF used by FLTPRN. 

PASPIN = passes data in PMACH and PCYCLE to the fortran 
array PFINF used by FLTPRN. 

INTRAM = makes 32 copies of RAM. 

MEM = loads data into memory, calls INTRAM. 

149 



CREATE PRINT : 

This routine creates a fortran subroutine PRINT.FOR to print 
out the results of the emulation. 

VARIABLES: 

150 

INTEGER: 

I 
(main) NO 

CHARACTER ARRAY: 

= Index variable. 
= Number of external outputs in main circuit. 

(main) INPIN = Array of inputs to main circuit. 
(main) OUTPIN = Array of outputs to main circuit. 



SET MEM : 

Parses the memory data file (FOR006.DAT). 

VARIABLES: 
CHARACTER: 

(main) TOKEN = Token returnes by parser ( = ITOK ). 
LIB*10 = Temporary variable. 
Q1 = Temporary variable. 

CHARACTER ARRAY: 

= Library. (main) LIB 
(main) LOGIC 

TMP1 
= Arrary of logical equations for each type. 
= temporary array of memory data. 

INTEGER ARRAY: 

(main) NIN 
(main) NOUT 

BYTE: 

(mai n) ITOK 
(main) NCARD 

= Position of last input in Lib. 
= Position of last output in Lib. 

= Token returned by parser. 
= 80 character line read in to be parsed. 

151 



152 

RWMEM : 

Creates PRM.B32, the bliss module that emulates a read-only 
memory. If ROM is to be faulted it makes 32 copies of ROM 
in a scratchpad memory. In the fault list (see page) the 
user specifies the word in memory and the bit to be faulted 
and faults are injected by flipping the bit of the chosen 
word of memory to 0 if it was 1 ,or to 1 if it was o. 

VARIABLES: 

MASKI = vector containing the bit mask for 
the serial to parallel conversion. 

ADDARY= vector containing the address in memory 
to be read from or written to. 

into memory. 

ENB = enable bit. If 1 then read ROM else end. 

OUTARY = vector containing memory output data. 

MFTADD = vector containing the addresses of the words 
in memory to be faulted (if ROM faults are 
desired). 

MFTBIT = vector"containing the value of the bits to 
be flipped (from 0 to 1 or 1 to 0) in ROM thus 
causing the chosen words of memory to be 
faulted. 

ZMIM = vector containing 32 copies of ROM with the 
faults injected. 

ISTART= if ISTART = 1 then fault ROM else no ROM faults 
are desired. 

MNI = vector containg the displacement to be comp
ensated for if the given addresses in memory 
are not consecutive. 

MN2 = vector containing the addresses in bliss memory 
to be used after the displacement is taken into 
account. 

MNN = contains the 11',nlL.:,· of entries in MNI. 

MACRO XLATE = bliss macro to convert from serial to 
parallel and vice versa. 



CREATE RWM : 

Create RWM.B32 , the bliss module that reads or writes from 
RAM. If the read/write bit is 1 (on), the write routine is 
called else the read routine is done. 

VARIABLES: 

MASKl = vector containing the bit mask for 
the serial to ~arallel conversion. 

ADDARY= vector containing the address in memory 
to be read from or written to. 

DATARY= vector containing the data to be written 
into memory. 

ENB = enable bit. If 1 then proceed else end. 

RWB = read/write bit. If 1 then write else read. 

WMACMEM = RAM scratch-pad memory. loaded in module 
MEM.B32, it is copied 32 times so it can 
be faulted. 

MNl = vector containg the displacement to be comp
ensated for if the given addresses in memory 
are not consecutive. 

MN2 = vector containing the addresses in bliss memory 
to be used after the displacement is taken into 
account. 

MNN = contains the number of entries in MNl. 

OUTARY = vector containing memory output data. 

MACRO XLATE = bliss macro to convert from serial to 
parallel and vice versa. 

153 



154 

CREATE PAS : 

This routine creates two fortran modules PASPIN.FOR 
and PASADD.FOR. These routines pass the detected fault information 
contained in the bliss vectors PCYClE ,PMACH ,ACYClE and AMACH to 
to the fortran arrays PFINF and AFINF so that it can be formatted 
and printed out by the routine FlTPRN.FOR 

VARIABLES :. 

PFINF = character array containing detected pin 
faults and the cycle in which they were 
discovered. 

AFINF = character array containing detected address 
faults and the cycle in which they were 
discovered. 



FLTPRN.FOR 

This routine prints out the fault detection data contained 
in the arrays PFINF and AFINF. The output file which then contains 
the information is·named DETECTED.DAT. This routine is created by 
CR FLTPRN a GLOSS. FOR subroutine. 

VARIABLES : 

PFINF = character array containing detected pin 
faults and the cycle in which they were 
discovered. 

AFINF = character array containing detected address 
faults and the cycle in which they were 
discovered. 

155 



CH IN NM : 

Uses IN NUM to convert characters to integers. 

VARIABLES: 
CHARACTER: 

CH = Holds value to be returned. 
TEMP = Temporary variable. 

FUNCTIONS REFERENCED: 

IN NUM. 

156 



FUNCTION IN NUM : 

(returns an integer equivalent of a character) 

VARIABLES: 
CHARACTER: 

C = Character that is input parameter. 

157 



158 

CREATE MEM : 

This routine creates a bliss module to store the memory input data 
that is read in from the user input file. The bliss module created 
is named MEM.B32 

VARIABLES: 
INTEGER: 

RADIX 
NUMLOC 
LRW 
HIW 
LOD 
HIADD 

CHARACTER: 

CH NUM 
NUMR 
TEMP2 
LODMEM 
HIDMEM 
LRWMEM 
HIWMEM 
END PC 
WMEMBS 
TOKEN 
CHNM 
CHEM 

= Value of memory index(octal or decimal). 
= Place oJ current storage for memory data. 
= Integer equivalent of LRWMEM. 
= Integer equivalent of HIWMEM. 
= Integer equivalent of LODMEM. 
= Integer equivalent of HIDMEM. 

= Character equivalents of integers. 
= Temporary variable. 
= Temporary variable. 
= Starting address for read only memory. 
= Ending address for read only memory. 
= Starting address for read/write memory. 
= Ending address for read/write memory. 
= Ending address for program counter. 
= Base ~ddress for read/write memory. 
= Token returned by parser( = ITOK ). 
= Character equivalents of integers. 
= Character equivalents of integers. 

SUBROUTINES CALLED: 

GETOK = Parses a given line. 
IN CH NM = Returns a character equivalent of an integer. 

-NUMDEC = Sets radix for decimal memory data. 
NUMOCT = Sets radix for octal memory data. 

CH IN NM= Returns an integer equivalent of a character. 



MEM.B32 : 

(for explanation see CREATE_MEM above) 

VARIABLES : 

MNN = number of displacement for nonconsecutive 
addresses in memory. 

MNI = vector containing the address line headers 
supplied by the user (the first number in 
each the memory input file line) 

MN2 = vector containing the values of the actual 
position in bliss memory. MNI - MN2 gives 
the displacement used to the desired word in 
memory. 

MACMEM = vector containing the memory data. 

ROUTINES CALLED : 

INTRAM = routine which makes 32 copies of the 
RAM portion of MACMEM. 

159 



160 

MEM SUB : 

Substitutes the proper memory logic for the memory devices. 

VARIABLES: 
CHARACTER: 

n 
NO 
Nl 
lIN 
OOUT 

(main) PIN 
PRINT 
T 

CHARACTER ARRAY: 

(main) 
(main) 
(main) 
(main) 

LIsn 
IN 
OUT 
CLOCK 

INTEGER ARRAY: 

(main) 
(main) 

NETOUT 
NETIN 
INP 
OUTP 

= Temporary variable. 
= Output net. 
= Input net. 
= Input string being parsed and substituted. 
= Output string being parsed and substituted. 
= Pin being replaced. 
= Variable containing line to be printed. 
= Temporary variable. 

= Unordered list. 
= Array of inputs to a particular component. 
= Array of outputs to a particular component. 
= List of input and output nets of ficticious 

clocks. 

= Number of outputs to a particular component. 
= Number of inputs to a particular component. 
= Number of inputs for each part. 
= Number of outputs for each part. 



ER343A 

FLTDET.B32 

This is a bliss module that contains the routine DETECT. 
The purpose of DETECT is to determine whether there were any 
differences between the output of the unfaulted machine and that of 
the 31 faulted machines. If so, it stores the results of the 
machine and the cycle in which the fault was detected. 
FLTDET.B32 is created by CREATE_DET. 

VARIABLES : 

AMACH = contains values of the machines in which 
address faults were detected. 

ACYCLE = contains values of the cycles in which 
address faults were detected. 

PMACH = contains values of the machines in which 
pin faults were detected. 

PCYCLE = contains values of the cycles 1n which 
pin faults were detected. 

.161 



INVl 
(#1) 

0011 
ANDl Al (#3) 

TP(#1) $oa-l 100 

(#2) P1 

1000 TP(#2) 
Bl 

(#4) 

1011 
NORl (#0) A2 

010 

P2 

0100 
TP(#4) 

B2 

~ALSo .. a-o 
(#1) 

1000 
$oa-O 

(#9) 

110 

(#8) 101 P3 

1011 
TP(#O) 

B3 

TP - TEST POINT 
(#10) X- FAULT 

1000 
A4 

P4 

1011 TP(#8) 

B4 

(#13) 

0101 
AS 

(1010) NOR2 
(#14) 

0110 
B5 

TP (#9) 

(#15) 

0100 
C5 

FIGURE 1 TEST CIRCUIT' 
162 



SEL4 
INV 1 

INV2 
SEL3 

, SEL2 
INV3 

SEL 1· 
INV4 

INV5 INV 13 

B4 

M 

83 

A3 

B2 

A2 

INY 11 INV" 

81 

Al 

INV17 INV35 

CONTROL 

INYI. 

CARIN 0---------; 

· FIGURE2 
ARITHMETIC LOGIC UNIT (ALUI 

FUNCTIONAL EaUIVALENT LOGIC DIAGRAM 

INV83 

NOR 
47 

NOR 
46 

AU. 

AL3y 

AU. 

AUy 

INV74 

LAC01 

INV7S 

CAROUT 

INV76 

l.AC02 

INV77 

OUT. 

OUl3 

COMPARE 

INV80 

OUT 2 

INV81 

OUT' 

163 



CLEAR 
Pl1 r--

SSET r-
P12 

U47· 

~ 

~ 
CLOCK 

P13 

C ARRYltl 
P14 

r-

PR ELDAD 
PI5 

Po 
PI6 

r---

FIGURE 3 
4-BIT DOWN COUNTER 

FUNCTIONAL EaUIVALENT LOGIC DIAGRA~1 

U6 I UIO) 

~ T 
'-- ~U19 

. TOO4M ~ ~ 
J Ul1 
~ U3S 

~23 
~ 

. 

T _ 

:E> IU,l\ 

~ U7 -1 U20 
IU29 ~'"-

UI4 .--
U38 

H>U24 

1 U30 
.~ 

, 

T _ 

~ IU,5' .--

~ m~ U8 

..--
UI6 

U48 H)25 U37 

.---.. 
I U32 
.~ 

~ 
r----

P17 .--

~-Ul IU,7 
.....-.. 

JU22 ~ us 
P2 -=,. ~ --- I U33 

P18 ..- ..-- U 
U U2 U18 :JU38~ 

~ '-- L-{)26 
T002M ~ I 

P3 L 

D a 
U39 

T074M 

~ CK OB I--

l 
D a 

U40 
T074M 

~ CK OB ~ 

r 

D a 

U41 
T074M 

~ CK aD I--

Y 

A 
D a 

U42 
T074M 

'-- OB~ CK 

'r' 
I 

PI9 
-1'" T027M 

~'-U45 

)U44 
TooZM 

POI 

P002P 

00 

ILEAST SIG. BIT) 

POl 

01 

P002M 

I POl 

02 

P002M 

I 

Poc 

03 

POOZM 
IMOST SIG. BI TI 

PQ6 

CARR YOll1 

P002M 



CARIN 

A1 o-____ --------~ 

B1O-~--------_+~ 

A3o-_--'---~ 

B3o--4~-------+~ . 

FIGURE4 
BCD AUUER 

FUNCTIONAL EaUIVALENT LOGIC DIAGRAM 

SUM 1 

SUY2 

1lJM3 

CAROUT 



.... 
01 
01 

E5 
~O 

V 

~' -V EO 

~2 

V· E1 

~3 
-V E2 

~4 

V E3 

E4 

AD 

A1 

A2 

A3 

I 
I 
! 
• 

R/W 

aD ~U6 .. 
V -

a1 ~U7 ... 
l/ -

ROM 

US 
Q2 ~U8 --l/ --
a3 ~U9 .. 

V. --
1'1 

ENABLE 
~ENABL'h-

DO 
1<0 -

01 --
02 _ ... -
03 po --

FIGURE 5 MEMORY CHV";-)IT 

H 

P01 ~ ... . 
V -

P02 ~ .. 
l/ -

P03 ~ .. 
V -RAM 

un 

P04 '" --V -



1--' 
r COMPILER I-
L __ J -r -

r -. 
I PARTS LIST I 

=-r-
ruBRARYOfl 
I STANDARD I 
EMPONENTS I 

-r= 
r MEMORy-, 

I INPUT I 
L DATA -.J 

-T 
I 'FAULT --, 

I INPUT I 
L DATA -.l 

MENU 

+ 
OUTPUTS 

L ---1 

OUTPUTS ~I---~ FLTPRN. 
FOR 

• PRINTS 
RESULTS OF 
FAULT DETECTION 

GLOSS. FOR 
PREPROCESSOR 1----Il:!I~ 

PROGRAM GLOSS· 
CREATED 
'NODE 

EVALUATION 
MODULES 

FORTRAN 
COMPILER' 

PASPIN. FOR 1---.... 

BLISS 
COMPILER 

LIBRARY OF 
BLISS CODED 

COMPILED 
PROGRAM 

EXEC. FOR 

• CALLS 
BLISS EXECUTIVE 
EMULATION 
PROGRAM 

PRINT. FOR 
POSTPROCESSOR Idl---~ 

~I--I PROGRAM 

MAIN. b32 
,BLISS EMULATION 

CONTROL 
MODULE 

• OPTIONAL 
• PRINTS 

EMULATION 
RESULTS 
IF DESIRED 

PASADD. FOR 1----" 
I 
I 

PASS 
RESULTS 
OF FAULT DETECTION 
TO FL TPRN. FOR 

FIGURE A-I STRUCTURE OF IGGLOSS 

(SEE PAGE 21 

r -- 1 
I EXISTING I 

DATA BASE 
L __ -1 



'A [> --i >---

NON·FAUL TED BUFFER 

A 

_FA-_FO -d )t----
F
-
P 
~) ))---_ 

FIGURE B-1 FAULTED BUFFER 



_A __ ~I---_ 

. NON·FAUL TED INVERTER 

_F: -d ).--FO----\') >~-

FIGURE 8-2 FAULTED INVERTER 



A 

A 
C , 

FA • 

. I . )~ 
• . NON·FAULTED AND GATE 
• 

B 

FB I 

C , 
FC } 

FO ) r . 
FP 

• 
• 
• • 

• 

• 

FIGURE 8-3 FAULTED AND GATE 



...... 
" ...... 

A 

FA 

B 

FB 

C 

FC 

• 

• 

• 

A 

-:--11 )--
• 
• NON-FAULTED NAND GATE 

• 
FO • 

FPI 
• 

FIGURE 8-4 FAULTED NAND GATE 



A 

..... 
"'-J 
N FA 

a 

Fa 

C 

FC 

o 
Q 

o 

• 
• 
o 

A 

) ) a 

C 

0 

" NON-FAULTED OR GATE 

• 

Fa 
FP 

FIGURE 8-5 FAULTED OR GATE 



...... 
'-J 
W 

A 

~ FA 

B 

FB 

C 

FC 
-------40 

• • • 

) 

II 

• • 

A 

) > B 

C 

• 
0 

0 
NON·FAULTED NOR GATE 

FO 
FP 

FIGURE 8-6 FAULTED NOR GATE 



A 

B 

B 

A 

A NON·FAULTED EXCLUSIVE-OR GATE 

FA 

B 

FB 

A Fa 
FP 

FA d 

B 

FB 

FIGURE B-7 FAULTED EXCLUSIVE OR GATE 



ClK 

D 

11 

12 . 

F"ULTED GATES 
(FICTITIOUSI 

ST CLOCKED BRANCH 

11/- NEW GATES 
FOR 
PRESET/CLEAR 

13 

PRESET -1 
NOMINALLY 

. CLEAR -1, NOMINALLY' 

14 

PRESET - 0 AND CLEAR - 0 NOT PERMISSIBLE 

FIGURE B-8 D-FLIP FLOP WITH PRESET AND CLEAR 

R1 

a 

R2 



ADDRESS { 
BITS 

DATA 
INPUT 
BITS { 

• 
• 
• 

• 
• 
• 

RIW 

ENABLE 

- Ao; -
-.. An, -

• 
.. 

• 
MEMORY · -.... DEVICE 

.. } 

OUTPUT 
BITS 

ROM/RAM 

-.. "MEMR" 

-... 
-.... 

FIGURE B-9 STRUCTURE OF MEMORY DEVICE 



1. Report No. I 2. Government Accession No. 3. Recipient'S c.talog No. 

NASA CR-177939 
4. Title and Subtitle 5. Report Dille 

The Development of an Interim Generalized Gate Logic December 1985 
Software Simulator 6. Performing Organiution Code 

7. Author(s! 8. Performing Organization Report No. 

J. G. McGough and S. Nemeroff 
10. Work Unit No. 

9. Performing Organization Name and Address 
Allied/Bendix Aerospace 
Flight Systems Division 11. Contract or Grant No. 

Teterboro, New Jersey NASl-15946 

13. Type of Report and Period Covered 

12. Sponsoring Agency Name and Address Contractor Report 
National Aeronautics and Space Administration 
Washington, DC 20546 14. Sponsoring Agency Code 

505-34-13-30 
15. Supplementary Notes 

NASA Langley Senior Project Engineer; Sfl,lyatore J, Bavuso 

16. Abstract 

A proof-of-concept computer program called IGGLOSS (Interim Generalized Gate.Logic 
Software Simulator) was developed and is discussed in this report. The simulator 
engine was deSigned to perform stochastic estimation of self-test coverage (fault-
detection latency times) of digital computers og systems. A major attribute of thE 
IGGLOSS is its high-sgeed simulation: 9.5 x 10 gates/cpu sec. for nonfaulted 
circuits and 4.4 x 10 gates/cpu sec. for faulted circuits on a VAX 11/780 host 
computer. See NASA Contractor Report 172159, April 1983 for design principles. 

17. Key Words (Suggested by Authorh" 18. Distribution Statement 

Emulation Self-test Unclassified - Unlimited 
Gate-level Comparison-monitoring 
Fault detection Coverage Subject Category 59 
Fault latency 

19. Security Oassif. (of this report! 20. Security Classif. (of this pagel 21. No. of Pages 22. Price 

Unclassified Unclassified 178 

N-lOS For sale by the National Technical Information SerVIce. Springfield. VIrgInIa 22161 

177 



THIS PAGE INTENTIONALLY LEFT BLANK 

178 



End of Document 


