
SOFTWARE ENGINEERING LABORATORY SERIES SEL-85-001

A COMPARISON OF
SOFTWARE VERIFICATION

TECHNIQUES
{NASA JH 005Q-&}— & COMPf lBISON OF
rERIFICAflON TECHNIQUES (HAS 4) 116 p
1C A06/MF fl01 . CSCL

N86-19965

Unclas
G3/61 05487

APRIL 1985

N/NSA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-85-00

A COMPARISON OF
SOFTWARE VERIFICATION

TECHNIQUES

APRIL 1985

NASA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administration/

Goddard Space Flight Center (NASA/GSFC) and created for the

purpose of investigating the effectiveness of software engi-

neering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organization members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as Computer Sciences Corporation document

CSC/TM-85/6017.

Contributors to this document include

David Card (Computer Sciences Corporation)
Richard Selby (University of Maryland)
Frank McGarry (Goddard Space Flight Center)
Gerald Page (Computer Sciences Corporation)
Victor Basili (University of Maryland)
William Agresti (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 552
NASA/GSFC
Greenbelt, Maryland 20771

11

9846

ABSTRACT

This document describes a controlled experiment performed by

the Software Engineering Laboratory (SEL) to compare the

effectiveness of code reading, functional testing, and

structural testing as software verification techniques. It

is one of a series of three experiments organized by

R. W. Selby as part of his doctoral dissertation. The

experiment results indicate that code reading provides the

greatest error detection capability at the lowest cost,

whereas structural testing is the least effective tech-

nique. This document explains the experiment plan, de-

scribes the experiment results, and discusses related

results from other studies. It also considers the applica-

tion of these results to the development of software in the

flight dynamics environment. Appendixes summarize the ex-

periment data and list the test programs. A separate Data

Supplement contains original materials collected from the

participants.

111

9846

TABLE OF CONTENTS

Section 1 - Introduction 1-1

1.1 Software Verification Experiment 1-1
1.2 Software Engineering Laboratory 1-2
1.3 Flight Dynamics Environment 1-3

Section 2 - Experimental Approach 2-1

2.1 Verification Techniques 2-1

2.1.1 Code Reading. 2-2
2.1.2 Functional Testing 2-2
2.1.3 Structural Testing 2-3

2.2 Experiment Procedure 2-4

2.2.1 Preparation 2-4
2.2.2 Execution . 2-6
2.2.3 Analysis 2-7
2.2.4 Observations 2-9

Section 3 - Experiment Results 3-1

3.1 Effectiveness of Fault Detection 3-1
3.2 Cost Effectiveness of Fault Detection/

Correction 3-2
3.3 Characteristics of Faults 3-5
3.4 Effect of Subject Expertise 3-10

Section 4 - Related Results 4-1

4.1 Other Verification Technique Evaluations 4-1
4.2 Independent Verification and Validation 4-2
4.3 Clean-Room Development 4-3

Section 5 - Conclusions 5-1

5.1 Evaluation of Verification Techniques 5-1
5.2 Application in Flight Dynamics Environment 5-2

Appendix A - Test Programs

Appendix B - Data Summary

Appendix C - Faults Found

References

Standard Bibliography of SEL Literature

iv

984b

LIST OF ILLUSTRATIONS

Figure

1-1 Activities by Percentage of Total Development
Staff Effort

3-1 Number of Faults Detected ,
3-2 Percentage of Faults Detected
3-3 Cost-Effectiveness ,
3-4 Total Detection/Correction Effort
3-5 Interaction of Expertise Level and

Program Tested
3-6 Interaction of Expertise Level and

Verification Technique

1-6
3-3
3-4
3-6
3-7

3-12

3-13

LIST OF TABLES

Table

1-1 Characteristics of Flight Dynamics
Environment

2-1 Characteristics of Verification Techniques
2-2 Test Programs
2-3 Fractional Factorial Design
3-1 Fault Detection Effectiveness
3-2 Fault Detection/Correction Rate
3-3 Fault Characterization
3-4 Detection of Omission/Commission Faults. .
3-5 Detection of Interface Faults
3-6 Effect of Subject Expertise

1-4
2-1
2-5
2-8
3-2
3-5
3-8
3-9
3-10
3-11

9846

SECTION 1 - INTRODUCTION - - .

Probably less work, both theoretical and practical, has been

invested in the development of effective tools, practices,

and techniques for testing than for any other phase of the

software life cycle. Many of the innovations suggested have

been organizational rather than methodological, for example,

independent verification and validation (Reference 1),

clean-room development (Reference 2), and separate test

teams (Reference 3). Decisions about the organization of

testing activities are premature, however, when the relative

effectiveness of different testing methodologies has not yet

been established.

The principal methodological approaches to software testing

and verification are code reading (Reference 4), functional

testing (Reference 5), and structural testing (Refer-

ence 5). Most experts recommend a mix of these techniques

(e.g., Reference 6); the relative merits of these very dif-

ferent approaches are not, however, well understood.

This document describes an experiment (Reference 7) per-

formed by the Software Engineering Laboratory (SEL) to com-

pare the effectiveness of these three techniques. It is one

of a series of experiments organized by R. W. Selby as part

of his doctoral dissertation (Reference 8) at the University

of Maryland. The results of the experiment were examined to

determine how the use of code reading, functional testing,

and structural testing can best be organized in the flight

dynamics environment (where they are already applied to dif-

fering degrees).

1.1 SOFTWARE VERIFICATION EXPERIMENT

The SEL planned a controlled experiment to compare the ef-

fectiveness of code reading, functional testing, and struc-

tural testing. During a 1-month period, over 40 professional

1-1

9846

programmers participated in the screening and other phases

of the experiment. Subjects completed a background survey

and a pretest prior to the actual experiment. The experi-

ment consisted of three software testing sessions. This

document presents an analysis and discussion of the experi-

ment, describes the test programs, and summarizes the exper-

iment data. The Data Supplement contains the original

materials collected from the participants.

1.2 SOFTWARE ENGINEERING LABORATORY

The SEL conducted the experiment described in this docu-

ment. The SEL is a research project sponsored by Goddard

Space Flight Center (GSFC) and supported by Computer

Sciences Corporation and the University of Maryland (Refer-

ence 9). The overall objective of the SEL is to understand

the software development process at GSFC and to identify

ways in which it can be modified to improve the quality and

reduce the cost of the product.

The SEL collects and analyzes data from software development

projects that support flight dynamics activities at GSFC.

Measures collected include staffing, computer utilization,

error reports, and product size/complexity statistics, as

well as the technologies applied. More than 40 projects

have been monitored by the SEL during the past 8 years. SEL

principals also participated in the management of these

projects. The data collected from these projects have been

assembled in the SEL computer data base. Reference 9 de-

scribes the SEL and its activities in more detail.

Three types of experiments have been performed by the SEL:

screening, semicontrolled, and controlled. Screening exper-

iments provide detailed information about how software is

currently developed in the environment under study. No at-

tempt is made to impose new or different methodologies on

these tasks. In semicontrolled experiments, on the other

1-2

9846

hand, specific methodologies are designated for application,

reinforced by training and management direction. Controlled

experiments can be implemented in either of two ways. Two

(or more) carefully matched individuals (or teams) may be

assigned the same task but required to use different method-

ologies. Alternatively, the teams (or individuals) may not

be matched but instead be assigned consecutive tasks, apply-

ing different methodologies to each task.

Screening and semicontrolled experiments employ production

flight dynamics projects; however, the high cost of full-

scale development makes controlled experiments with produc-

tion projects impractical. The testing experiment described

in this document represents the next best alternative, a

controlled experiment using production programmers.

1.3 FLIGHT DYNAMICS ENVIRONMENT

The general class of spacecraft flight dynamics software

studied by the SEL includes ground-based applications to

support attitude determination, attitude control, maneuver

planning, orbit adjustment, and mission analysis. System

sizes range from 33 to 159 thousand lines of source code,

and development schedules range from 13 to 21 months. The

fixed spacecraft launch date requires close adherence to

schedule. Table 1-1 summarizes the characteristics of

flight dynamics software.

Most flight dynamics projects are developed on a group of

IBM mainframe computers using FORTRAN and assembly lan-

guages. Smaller projects are developed on a VAX super mini-

computer. Some support software is developed on a PDF

minicomputer. Remote terminals provide easy access to all

computers. Data are collected from flight dynamics projects

via questionnaires, computer accounting, automated tools,

and management reviews. Reference 9 describes the flight

dynamics environment in more detail.

1-3

9846

Table 1-1. Characteristics of Flight Dynamics Environment

Process Characteristics Av High Low

Duration (months) 16 21 13
Effort (staff years) 8 24 2

Size (1000 source lines of code)
Developed 57 142 22
Delivered 62 159 33

Staff (full-time equivalent)
Average 5 11 2
Peak 10 24 4
Individuals 14 29 7

Application experience (years)
Managers 6 7 5
Technical staff 4 5 3

Overall experience (years)
Managers 10 14 8
Technical staff 9 11 7

NOTES; Type of Software: Scientific, ground-based, inter-
active graphic.

Languages: 85 percent FORTRAN, 15 percent assembler
macros.

Computers: IBM, PDF, VAX.

1-4

9846

Figure 1-1 shows the distribution of effort by software life

cycle activity in the flight dynamics environment. As indi-

cated in the figure, testing consumes a substantial portion

(up to 40 percent) of development resources. Any method of

increasing the efficiency and effectiveness of testing ac-

tivities would be welcomed. The purpose of the experiment

described in this report was to compare three relevant

software test/verification techniques and determine how they

can best be integrated into flight dynamics software devel-

opment practice.

1-5

9846

I
5

co:
5 uiz

Ms

il

.

low
• ZQ

-2ce
«§<

UZ
ui-S

I

o
4-1
M-l
w
4-1
<W
tO
-P
Cfl

-P
c
0)

<u
Q

-P
O

Cr>
(0
4J
C
(I)
O
n
0)

en
Q)

•H
4J
•H
>

•H
-P
O

I
•H

0)

1-6

SECTION 2 - EXPERIMENTAL APPROACH

This section describes the three software verification tech-

niques evaluated in the experiment as well as the experimen-

tal procedure followed and the statistical design employed

in the analysis of the experiment data. It also includes

some observations on the way the experiment was conducted.

2.1 VERIFICATION TECHNIQUES

Many different variations of the code reading, functional

testing, and structural testing approaches are possible.

For purposes of this experiment, one specific variation of

each was selected. The three techniques differ with respect

to tne access they provide to information about the program

tested (see Table 2-1). Consequently, the techniques differ

witn respect to who can apply them effectively. For exam-

ple, users and analysts can perform functional testing be-

cause it does not require studying the source code, but they

would probably not be very successful with code reading or

structural testing. The following subsections define the

specific versions of these techniques that the experimenters

encouraged the subjects to use.

Table 2-1. Characteristics of Verification Techniques

Characteristic

View program
specification

View source
code

Execute
program

Code
Reading

Yes

Yes

No

Functional
Testing

Yes

No1

Yes

Structural
Testing

Noa

Yes

Yes

aSpecification was supplied after all tests were executed.

DSource code was supplied after .all tests were executed.

2-1

9846

2.1.1 CODE READING

Code reading is a systematic procedure for reading and un-

derstanding the operation of a program. Developers read

code to determine if a program is correct with respect to a

given function. Techniques of code reading include check-

lists, simulated execution, and step-wise abstraction (Ref-

erence 4). in practice, developers employ some aspects of

all three techniques. For this experiment, subjects were

trained in and encouraged to use the method of step-wise

abstraction.

The method of step-wise abstraction is based on the concepts

of proper subprograms, prime programs, and structured pro-

grams. Large structured programs are made up of smaller

ones (subprograms). Those subprograms that cannot be fur-

ther decomposed are prime programs. Identifying the prime

programs in a software segment and then combining them to

form higher levels of abstraction allows the actual function

of the software to be defined and any errors or inconsis-

tencies to be recognized (Reference 4). During the experi-

ment, subjects attempted to recognize prime programs in the

source code and abstract their functions.

2.1.2 FUNCTIONAL TESTING

Functional testing is a strategy for designing and selecting

test cases. It treats the software like a "black box."

Input is supplied, and output is observed. Comparison of

the software specification with the observed input/output

relationship indicates whether an error is present in the

software. Functional testing does not require the tester to

have any knowledge of the design or operation of the soft-

ware.

For functional testing to be complete, all possible input

must be tested. Clearly, this is not practical for a pro-

gram of any significant size. One approach is to select

2-2

9846

at random from among the possible test cases (inputs). How-

ever, the experimenters selected the alternative strategy of

equivalence partitioning for study. Equivalence partition-

ing also reduces the amount of input that must be tested to

have reasonable confidence in the system. This is done by

dividing each input condition (usually a statement in the

specification) into two or more groups (Reference 5). Both

valid and invalid equivalence classes must be tested. After

testing was completed, subjects were provided with the

source code to isolate and correct the errors found.

2.1.3 STRUCTURAL TESTING

Structural testing is another strategy for designing and

selecting test cases. As opposed to functional testing, it

treats the software like a "white box." Tests are specified

based on an examination of the software structure (rather

than the specification). Structural testing compares the

detailed system design to its software implementation.

Ideally, structural tests should be based on the program

design language (PDL) and developed at the same time as the

PDL. Structural tests alone do not provide a mechanism for

verifying the software against the specification.

Coverage (the degree to which the software is exercised)

serves as the basic criteria for completion of structural

testing (Reference 5). Three levels of coverage are recog-

nized: Statement coverage requires that every statement in

the source code be executed at least once. Condition (or

branch) coverage requires that each outcome of every deci-

sion be executed at least once. Path coverage requires that

every possible sequence of decision outcomes be executed,

whicn can lead to an impractically large number of tests for

a program of any significant size or complexity. For exam-

ple, backward transfers can produce an infinite number of

paths.

2-3

9846

Statement coverage is the weakest form of coverage in the

sense that it can generally be satisfied with the fewest

test cases. It is, however, the form of structural testing

evaluated in this experiment. Subjects were directed to

stop testing after 100-percent statement coverage had been

achieved. After testing was completed, subjects were pro-

vided with the specification to compare against test results.

2.2 EXPERIMENT PROCEDURE

The experiment proceeded in three phases: experiment prepa-

ration, experiment execution, and data analysis. The fol-

lowing subsections describe these phases and present some

observations on the way the experiment was conducted.

2.2.1 PREPARATION

During the month prior to the start of the experiment ses-

sions, several preparatory steps were taken:

• Subject selection

• Preexperiment survey

• Training session

• Experiment pretest

• Environment setup

The experimenters screened about 50 professional programmers

to select an appropriate sample of 32 for the planned sta-

tistical design (Section 2.2.3). Subjects were selected to

represent three different levels of expertise defined by

professional experience and educational background. Sub-

jects were also about equally divided between IBM and VAX

users.

All experiment candidates completed an extensive question-

naire describing their education and relevant experience.

Subject selection was based on questionnaire responses as

well as information supplied by managers. The Data Supple-

ment contains the original questionnaire materials.

2-4

9846

Subjects participated in a 3-hour tutorial explaining the

three software verification techniques. Most subjects had

previous experience with functional testing and informal

code reading. Most, however, lacked previous formal train-

ing in any of the three techniques.

After the training session, subjects completed an experiment

pretest. The subjects solved problems and answered ques-

tions defining their understanding of the three techniques

and their attitude toward the experiment. The Data Supple-

ment contains the original pretest materials.

Each subject used either an IBM 4341 or VAX 11/780 computer

to perform both functional and structural testing. Before

the experiment sessions began, separate versions of the

three test programs were developed for each computer. Most

of the differences between the two versions are minor. Ap-

pendix A provides complete source listings for the VAX ver-

sion. Table 2-2 summarizes the test programs.

Table 2-2. Test Programs

Test Software Executable
Program Type Statements

1

2

3

Text formatter

List manager

File maintainer

55

48

144

Subroutines

3

9

7

Faults

9

7

12

The experimenters established temporary IDs and special ac-

counts on each computer. During testing, subjects invoked

each program via a driver that also recorded the number of

tests performed and the degree of structural coverage at-

tained. Operating system accounting information provided

the connect time and CPU utilization for each subject.

2-5

9846

2.2.2 EXECUTION

The actual experiment was conducted in three sessions over a

2-week period. Although tight, the schedule of experimental

activity was strictly adhered to. During each experiment

session, all subjects tested the same program. However, all

three verification techniques were applied to each program

as prescribed in the statistical design (Section 2.2.3).

Each subject used only one technique in any given experiment

session. Tests were executed on the same computers used by

the subjects in their usual work.

Each experiment session was scheduled to be completed in a

single day. The experimenters felt that the experimental

tasks could easily be completed within 8 hours. An experi-

menter distributed the test materials in the morning, then

collected the results in the afternoon. However, a few sub-

jects who did not complete testing on the prescribed day due

to interruptions submitted their results on the following

day. Each subject returned a list of errors, corrected

source listing, and estimates of effort expended and faults

found. An experimenter was available throughout the testing

period to answer the subjects' questions.

Code readers received a specifications statement and source

listing at the start of the experiment session. They were

not allowed to execute the test program. All errors de-

tected were found by inspecting the code and performing the

step-wise abstraction process described in Section 2.1.1.

Functional testers received a specifications statement and

access to the program driver at the start of the experiment

session. They defined tests as described in Section 2.1.2.

After executing the tests, access to the program driver was

removed, but a source listing was provided. Subjects sepa-

rately identified the errors detected during testing and

those found during source correction.

2-6

9846

Structural testers received a source listing and access to

the program driver at the start of the experiment session.

They defined and executed tests until achieving near

100-percent statement coverage (Section 2.1.3). After exe-

cuting the tests, access to the program driver was removed,

but a specifications statement was provided. Subjects iden-

tified errors by comparing the test output with the specifi-

cations.

2.2.3 ANALYSIS

The data analysis employed a fractional factorial design

(Reference 10). The experimenters divided the subjects into

three groups on the basis of overall experience. Within

each group, the sequence of code reading, functional test-

ing, and structural testing was varied to cover all possible

combinations about equally. Table 2-3 shows how the sub-

jects were divided into expertise groups and then assigned

combinations of verification techniques and programs.

Because each subject used each technique once and tested

each program once, rather than experiencing every possible

combination of technique and program, the design is a frac-

tional rather than full factorial model. The three programs

were always presented in the same order, thereby limiting

the opportunity for subjects who had completed testing a

program to discuss it with others who had not yet tested

it. This statistical design enabled the effects of program-

mer experience and program tested to be eliminated from the

evaluation of the three verification techniques. It as-

sumes, however, that there is no interaction between subject

and technique or program.

The dependent variables studied were number of faults found,

effort to detect faults, and effort to correct faults. Sec-

tion 3 presents the results of this analysis. Although the

analysis based on the fractional factorial design was

2-7

9846

Table 2-3. Fractional Factorial Design (Reference 7)

SUBJECT
r\ AQ^ICIPATIOM

1

•

•

•

8

Sq

IMTCDMCniATP Q

•

•

•

S ^
19

oS20

•
•
•

ob32

CODE
READING

P1 P2 P3

w

1 1 V

FUNCTIONAL
TESTING

P1 P2 P3

• • •

• • •

• • •

• • •

• • •

• • •

STRUCTURAL
TESTING

P1 P2 P3

NOTES: BLOCKING ACCORDING TO EXPERIENCE LEVEL AND PROGRAM TESTED.

EACH SUBJECT USES EACH TECHNIQUE AND TESTS EACH PROGRAM.

Sx = SUBJECT X.

Px = PROGRAM X.

2-8

completed within 2 months of the last experiment session,

the data collected during the experiment will enable addi-

tional analyses to be performed later.

2.2.4 OBSERVATIONS

After the completion of the experiment sessions, the sub-

jects indicated their reactions to the experiment process

and verification techniques evaluated. Relevant comments

included the following:

• A majority of subjects believed functional testing

to have been the most effective software verifica-

tion strategy.

• A majority of subjects did not follow the step-wise

abstraction method of code reading exactly or ex-

clusively.

• Several subjects indicated that satisfaction of the

100-percent statement coverage criteria caused them

to stop structural testing, even though they felt

that more testing was needed.

• Several subjects disagreed with the experimenter's

definitions of errors. These conflicts arose from

differing interpretations of the severity of prob-

lems as well as specification ambiguity.

• Some subjects were not able to concentrate fully on

the experiment due to conflicting responsibilities

(not unlike conditions obtaining during normal

software development).

• An office relocation that occurred on the same day

as the last experiment session interrupted the ac-

tivities of almost all the subjects.

2-9

9846

Nevertheless, none of the subjects indicated that the over-

all test results seemed biased or that the experiment proce-

dure was seriously flawed.

2-10

9846

SECTION 3 - EXPERIMENT RESULTS

Thirty-two subjects participated in the three experiment

sessions. Appendix B documents their performance with each

verification technique. The data were analyzed with a frac-

tional factorial design (described in Section 2.2.3). The

principal areas for comparison among the techniques were as

follows:

• Effectiveness of fault detection in terms of the

number of faults detected

• Cost of fault detection/correction in terms of the

effort (in hours) per fault to detect and correct

the faults identified

• Types of errors to which each technique was sensi-

tive

• Role of subject experience in technique effective-

ness

The following subsections describe the results obtained from

the experiment in each of these areas.

3.1 EFFECTIVENESS OF FAULT DETECTION

Table 3-1 lists the average number of errors detected by

subjects using each technique for each program. Figure 3-1

summarizes the faults detected by the techniques across pro-

grams. The figure shows that code reading detected the most

faults overall. Code reading detected significantly more

faults than functional testing, and functional testing de-

tected significantly more faults than structural testing.

Each program contained a different number of faults. Never-

theless, analyzing the data in terms of the percentage of

total faults detected yields the same result (Figure 3-2).

Code reading is clearly superior to either online testing

3-1

9846

technique with respect to fault-detection effectiveness.

However, the variation due to verification technique appears

to be much less than that due to the specific program under

examination.

Table 3-1. Fault Detection Effectiveness

Verification Program
Technique 1 2 3 Overall

Code reading 5.5 6.6 3.2 5.1

Functional testing 4.6 4.6 4.2 4.5

Structural testing 2.5 4.4 2.8 3.3

NOTE; Values are average number of faults detected.

The difference in fault-detection effectiveness between

functional and structural testing stands out because these

techniques are similar in many ways. Both structural and

functional testing achieved about the same level of state-

ment coverage (97 percent), although it was not a criterion

for functional testing. Furthermore, both structural and

functional testing exposed about the same percentage of

faults (62 percent), but not all faults exposed by testing

were recognized as such by the subjects. Functional testers

recognized 19 percent more of the observable faults than did

structural testers.

3.2 COST EFFECTIVENESS OF FAULT DETECTION/CORRECTION

Table 3-2 lists the average number of faults detected and

corrected per hour of effort using each technique for each

program. Figure 3-3 summarizes the fault detection/

correction rate for each technique across programs. The

figure shows that code reading detected the most faults per

hour of effort. Code reading performed significantly better

than functional or structural testing, which were not

3-2

9846

Q
UJL_

a
b
Q
CO
H
_J

<
u.

5.1

4.5

3.3

CODE FUNCTIONAL ' STRUCTURAL
READING TESTING TESTING

NOTES: CODE READING > OTHERS.

FUNCTIONAL >STRUCTURAL.

PROBABILITY OF DIFFERENCE BEING RANDOM IS LESS THAN 0.005.

Figure 3-1. Number of Faults Detected (Reference 7)

3-3

100-

90-

80-

70-o
z
ou.
w

° 50-

UJ
O
oc
UJ
a- 40

30-

20-

10-

KEY:

_• CODE READING

~A FUNCTIONAL

• STRUCTURAL

2 1

PROGRAM

NOTE: PROGRAMS ORDERED ACCORDING TO SIZE.

Figure 3-2. Percentage of Faults Detected

3-4

significantly different from each other. No significant

differences, however, exist among the techniques with

respect to the total time spent looking for and correcting

faults (see Figure 3-4).

Table 3-2. Fault Detection/Correction Rate

Verification Program
Technique 1 2 3 Overall

Code reading 1.1 3.6 0.9 1.9

Functional testing 1.1 1.2 0.7 1.0

Structural testing 1.1 1.7 0.5 1.1

NOTE; Values are average number of faults detected and cor-
rected per hour of effort.

The experimenters also monitored computer utilization during

functional and structural testing. (Code reading requires

no computer resources.) Functional testing expended signif-

icantly more CPU time than structural testing; however, no

differences were detected in the number of test runs.

3.3 CHARACTERISTICS OF FAULTS

Table 3-3 identifies the classes of faults present in the

test programs according to two criteria. The action associ-

ated with a fault identifies whether it is due to omitting

some necessary code or incorrectly implementing code. The

location of a fault defines where it occurs in the code.

Table 3-4 indicates that code reading and functional testing

proved to be substantially more effective than structural

testing in detecting faults of omission. Seven such faults

were detected by less than 25 percent of the structural

testers, whereas the same proportion of code readers and

functional testers left only five and four omission faults,

3-5

9846

oc
o

o
cr
O

cc
LU
0.

Q

O
O
V)
O
CO

3.3

1.8 1.8

CODE
READING

FUNCTIONAL
TESTING

STRUCTURAL
TESTING

NOTES: CODE READING > OTHERS.

PROBABILITY THAT THIS DIFFERENCE IS RANDOM IS 0.005.

FUNCTIONAL = STRUCTURAL.

Figure 3-3. Cost-Effectiveness (Number of Faults Detected
Per Hour of Effort) (Reference 7)

3-6

CJ
Ul
t£
OC
O
o

8-1

7-

6-

5 -

O —-
UjC/5

US 4.QO
I-

s 3.

2-

1 -

KEY:

• CODE READING

A FUNCTIONAL

• STRUCTURAL

I I
2 1 3

PROGRAM

NOTE: PROGRAMS ORDERED ACCORDING TO SIZE.

Figure 3̂ 4. -Total Detection/Correction Effort

3-7

respectively, undetected. This result seems reasonable -

given that structural tests were based solely on the exist-

ing code.

Table 3-3. Fault Characterization (Reference 7)

Action
Location Omission Commission

Initialization 0 2
Computation 2 2

Control 2 4
Interface 2 11

Data 2 0
Cosmetic j) 1

TOTAL 8 20

NOTE; Values are numbers of faults.

Table 3-4 also shows structural testing to be less effective

in detecting faults of commission. Only three such faults

were detected by 75 percent or more of the structural

testers, whereas the same proportion of code readers and

functional testers detected nine and six commission faults,

respectively.

The only fault location sufficiently represented in the sam-

ple to provide a basis for conclusions was interface fault.

As shown in Table 3-5, two or three such faults were found

by 75 percent or more of online testers, whereas seven in-

terface faults were detected by 25 percent or more of code
readers. Code reading thus appears to be the superior tech-

nique with respect to interface errors.

3-8

9846

Table 3-4. Detection of Omission/Commission Faults
(Reference 7)

Percent of Subjects Code
Detecting This Fault Reading

100 CCCO
CC
C
CCCO

1 C. _ __ _ _ _ _ _ _

C
cccc

50
0

C
C
CC

OR _ __ __ _ _ _ _ _ _ _ _ _ _ _

CO
0

0 COOO

Functional
Testing

CCO
C
CC

_ _ _ _ rri _ _ _ _ _ _ _ _

cccco
CC

CO
CC

C
_ _ _ _

C

coo
ccoo

Structural
Testing

C
CO

C
_ _ _ _ _ _ _ _

CCCC

C
C
CC
ccc

_ _ _ _ r r < _ _ _ _ _ _ _

CO
0
00

cccooo

NOTES; C = fault of commission
0 = fault of omission

3-9

9846

Table 3-5. Detection of Interface Faults (Reference 7)

Percent of Subjects Code
Detecting This Fault Reading

100 III
II

II
7 c

50

I

I

25
I
I

0 II

Functional
Testing

I

II

I

II
II

I

II

II

Structural
Testing

I

II

I
II

I
I

I

III

NOTES; I = interface fault

3.4 EFFECT OF SUBJECT EXPERTISE

The experimenters assigned subjects to three expertise

levels on the basis of their professional experience and

educational background. Table 3-6 shows subject performance

by expertise level. Advanced subjects detected signifi-

cantly more faults than intermediate or junior subjects.

However, the detection rate (faults detected per hour of

effort) did not appear to be related to level of expertise.

Figures 3-5 and 3-6 show the interaction of expertise level

with program tested and verification technique, respec-

tively. The specific program tested appears to have a

greater effect on the percent of faults found than expertise

3-10

9846

level does. Also, the advanced subjects performed substan-

tially better than intermediate or junior subjects when code

reading or structural testing. The percent of faults found

when functional testing was similar for all expertise levels,

Table 3-6. Effect of Subject Expertise

Expertise

Level

Advanced

Intermediate

Junior

Number of

Subjects

8

11

13

Faults

Detected

5.0

4.2

3.9

Detection

Rate3

2.36

2.53

2.14

aFaults detected per hour of effort.

3-11

9846

100-1

90-

80-

70-

O 60
u.
(A

< 50.

UJ
o 40-cc
UJ
Q.

30 -I

20-

10-

KEY:

O ADVANCED

& INTERMEDIATE

D JUNIOR

2 1

PROGRAM

NOTE: PROGRAMS ORDERED ACCORDING TO SIZE.

Figure 3-5. Interaction of Expertise Level
and Program Tested

3-12

100-1

90 •

O ADVANCED

80 •

70-

2
_
< 50

§ 40
cc
01
Q.

30 •>

20-

10-

A INTERMEDIATE

D JUNIOR

CODE FUNCTIONAL STRUCTURAL
READING TESTING TESTING

VERIFICATION TECHNIQUE

Figure 3-6. Interaction of Expertise Level and
Verification Technique

3-13

SECTION 4 - RELATED RESULTS

This section reviews the results of the experiment described

in Sections 2 and 3 in light of related research performed

by the SEL and others. Specifically, an attempt is made to

identify the implications of this experiment for developer

training and development organization.

4.1 OTHER VERIFICATION TECHNIQUE EVALUATIONS

The results of this experiment imply that code reading de-

tects the most faults at the lowest cost. Several relevant

studies have been conducted at the University of Maryland.

A prototype study of the same three verification techniques

by Hwang (Reference 11) suggested that code reading does at

least as well as the computer-based techniques. Two earlier

experiments by Selby (Reference 12) using student subjects

found that functional testing detected the most faults. In

one of these experiments, code reading demonstrated the

lowest fault detection cost; functional testing led in the

other.

Other researchers, as well, have studied these techniques.

Card et al. (Reference 13) showed that code reading in-

creases the reliability of the delivered software product.

It was not, however, compared with the other techniques.

Myers (Reference 14) evaluated functional testing and

three-person code reviews versus a control group. All three

groups proved to be equally effective in detecting errors,

but code reviews cost substantially more. Hetzel (Refer-

ence 15) compared functional testing, code reading, and a

composite testing technique and found code reading to be

inferior to the other techniques.

A significant difference between the experiment reported in

this document and many other studies is the use of profes-

sional programmers as subjects. Viewed in this context, the

4-1

984b

effectiveness of code reading relative to the other tech-

niques appears to increase with experience. Effective code

reading may require not only training in the technique of

step-wise abstraction but also the recognition of common

programming paradigms. Experiments by Soloway and Ehrlich

(Reference 16) showed that experienced programmers surpassed

novices in detecting and correcting faults when certain com-

mon programming plans and rules of discourse were followed

in the implementation of the code. The performance of ex-

perienced programmers approximated that of novices when the

plans and rules were not followed.

Together, these results suggest that code reading is most

effective when performed by individual experienced program-

mers. On the other hand, computer-based testing can be

performed effectively by less-experienced programmers.

Furthermore, functional testing works well for an independ-

ent test team (who do not have the developers' knowledge of

the code).

4.2 INDEPENDENT VERIFICATION AND VALIDATION

Independent verification and validation (IV&V) is an ap-

proach to organizing software development in which an inde-

pendent team is assigned to verify and validate each

life-cycle product of the development team (Reference 17).

Specifically, the IV&V team performs independent system

testing in addition to that done by the development team.

Many of the errors reported by an IV&V team duplicate those

found by the development team.

The IV&V team does not usually read code. Given that online

testing is less efficient than code reading, it is not sur-

prising that a recent study showed that the principal effect

of IV&V was to increase development costs in the flight dy-

namics environment (Reference 18), where code reading is al-

ready practiced. IV&V may provide some benefit in the

4-2

9846

earlier phases of requirements and design, but that is more

difficult to demonstrate.

4.3 CLEAN-ROOM DEVELOPMENT

Dyer and Mills (Reference 2) proposed that software develop-

ment can and should be done without the aid of computers.

Instead of computer-based testing, the development team

should rely on code reading, code inspections, and formal

verification techniques to identify and correct faults.

After development (of a build or a system) was complete, an

independent testing team would certify the reliability of

the developed software.

A recent experiment by Selby (Reference 8) showed that, rel-

ative to a control group, development teams using the clean-

room approach delivered products that passed a higher

percentage of test cases, more completely satisfied the sys-

tem requirements, included more comments, and exhibited

lower complexity. Another SEL study (Reference 13) indi-

cated that a high rate of computer use by the development

team is associated with low productivity.

The results of the testing experiment reported in this docu-

ment demonstrate that one clean-room technique, code read-

ing, surpasses the effectiveness of online testing

techniques. This evidence, together with the results of the

clean-room experiment (Reference 8), indicates that the

clean-room approach to software development is well founded

and viable. However, it "does not prove its value in every

circumstance, or specifically in the flight dynamics envi-

ronment. Further study of this approach is needed.

4-3

9846

SECTION 5 - CONCLUSIONS

As described in Section 2, the controlled experiment com-

pared the performance of code reading, functional testing,

and structural testing on three software verification

tasks. These techniques were applied by professional pro-

grammers working in their usual production environment. The

results of the controlled experiment (Section 3), together

with the related results presented in Section 4, provide

considerable guidance about the overall effectiveness of the

software verification techniques studied and about how to

best employ them in the flight dynamics environment.

5.1 EVALUATION OF VERIFICATION TECHNIQUES

Each of the verification techniques showed some merit in the

controlled experiment. Code reading performed best over-

all. Functional testing was second. The relatively poor

showing of structural testing may be due, in part, to the

weak coverage criterion used (i.e., statement coverage).

Prior to the experiment, only 22 percent of respondents to

the background survey believed that code reading was the

most effective software verification technique. About equal

proportions (38 percent and 40 percent, respectively) fa-

vored structural or functional testing. After participating

in the experiment, the majority of subjects felt that func-

tional testing had proved to be the most effective technique,

Nevertheless, subjects applying code reading detected the

most faults and expended the least effort per fault to do

so. Functional testing actually proved to be the second

most effective technique in terms of the number of faults

detected. Functional testers were more likely to recognize

an error that was uncovered by testing than were structural

testers.

5-1

9846

Both code reading and functional testing detected faults of

commission and omission better than did structural testing.

Code reading showed itself to be the most effective tech-

nique with respect to interface errors. Furthermore, the

advanced expertise group succeeded substantially better than

intermediate or junior subjects at code reading effec-

tively. The results of the experiment also indicated that

the effectiveness of these verification techniques may de-

pend on program size. This factor still needs to be inves-

tigated.

5.2 APPLICATION IN FLIGHT DYNAMICS ENVIRONMENT

The results of the controlled experiment and related studies

suggest several modifications to the process of software

development in the flight dynamics environment. These in-

clude the following:

• Formalize the code reading process.

• Provide specific instruction in code reading.

• Assign senior developers to code reading.

• Assign junior developers to functional testing,

possibly as an independent test team.

• Do not apply structural testing. However, monitor-

ing the coverage achieved may be useful for func-

tional testing.

An earlier study of flight dynamics acceptance testing prac-

tices (Reference 19) supports many of these conclusions.

That study was based on a review of the relevant literature

and observation of then-current procedures. Its recommenda-

tions included the following: acceptance test each build,

trace acceptance tests to requirements, measure test cover-

age, use equivalence partitioning (to reduce test cases),

perform independent acceptance testing, and record error

5-2

9846

histories. Many of these recommendations have already been

implemented.

Together, these studies demonstrate that the specific tech-

niques applied, as well as the expertise level of the

testers, affect the overall rate and cost of fault detection/

correction. Selecting and combining the appropriate tech-

niques, personnel, and organization can make a significant

contribution to software quality.

5-3

9846

APPENDIX A - TEST PROGRAMS

This appendix reproduces the specifications, source list-

ings, and error identifications for the test programs used

in tne experiment. The test programs represent three dif-

ferent types of software:

• Text formatter

• List manager

• File maintainer

Congruent versions of these programs were developed for both

the VAX-11/780 and IBM 4341 computers. The VAX versions are

supplied in this appendix. The Data Supplement contains

both versions of the specifications and source listings.

A-l

984b

1) VAX: Code Reading ID#

Specification
Given an Input text of up to 80 characters consisting of words separated by blanks

or new-line characters, the program formats It Into a line-by-line form such that 1) each
output line has a maximum of 30 characters, 2) a word In the Input text Is placed on a
single output line, and 3) each output line Is filled with as many words as possible.

The Input text Is a stream of characters, where the characters are categorized as
either break or nonbreak characters. A break character Is a blank, a new-line character
($), or an end-of-text character (/). New-line characters have no special significance;
they are treated as blanks by the program. The characters $ and / should not appear In
the output.

A word Is defined as a nonempty sequence of nonbreak characters. A break Is a
sequence of one or more break characters and Is reduced to a single blank character or
start of a new line In the output.

When the program Is Invoked, the user types the Input on a single line, followed by
by a / (end-of-text) and a carriage return. The program then formats the text and
types It on the terminal.

If the input text contains a word that Is too long to fit on a single output line, an
error message Is typed and the program terminates. If the end-of-text character Is miss-
ing, an error message Is Issued and the program awaits the Input of a properly ter-
minated line of text. (End of specification.)

A-2

1) VAX: Heading Functional Structural ID*

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE FUNCTION 'MATCH'.
002: C IT IS DESCRIBED THE FIRST TIME IT IS USED, AND ITS SOURCE CODE
003: C IS INCLUDED AT THE END FOR COMPLETENESS.
004: C
005: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS INCLUDE A LEADING
006: C AND REQUIRED ' ' FOR CARRIAGE CONTROL
007:
008: C VARIABLE USED IN FIRST, BUT NEEDS TO BE INITIALIZED
009: INTEGER MOREIN
010:
011: C STORAGE USED BY GCHAR
012: INTEGER BCOUNT
013: CHARACTER*1 GBUFER(80)
014: CHARACTER»80 GBUF
015: C GBUFER AND GBUFSTR ARE EQUIVALENCED
016:
017: C STORAGE USED BY PCHAR
018: INTEGER I
019: CHARACTER* 1 OUTLIN(3D
020: C OUTLIN AND OUTLINST ARE EQUIVALENCED
021:
022: CHARACTER*! GCHAR
023:
024: C CONSTANT USED THROUGHOUT THE PROGRAM
025: CHARACTER*1 EOTEXT, BLANK, LINEFD
026: INTEGER MAXPOS
027:
028: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
029: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
030:
031: DATA EOTEXT, BLANK, LINEFD, MAXPOS / '/', ' ', '&', 31 /
032:
033:
034: CALL FIRST
035: END
036:
037:
038: SUBROUTINE FIRST
039: INTEGER K. FILL, BUFPOS
040: CHARACTER*1 CW
041: CHARACTER*! BUFFER(3D
042:
043: INTEGER MOREIN, BCOUNT, I, MAXPOS
044: CHARACTER*! OUTLINED, GCHAR, EOTEXT, BLANK, LINEFD,
045: X GBUFER(80)
046: CHARACTER*80 GBUF
047:
048: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
049: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
050:
051: BUFPOS r 0
052: FILL = 0
053: CW = ' '

A-3

1) VAX: Reading Functional Structural ID#

054:
055: MOREIN = 1
056:
057: I = 1
058: K = 1
059: DOWHILE (K .LE. MAXPOS)
060: OUTLIN(K) = ' '
061: K = K + 1
062: ENDDO
063:
064: BCOUNT = 1
065: K = 1
066: DOWHILE (K .LE. 80)
067: GBUFER(K) = 'Z'
068: K = K + 1
069: ENDDO •
070:
071: DOWHILE (MOREIN)
072: CW = GCHARO
073: IF ((CW .EQ. BLANK) .OR. (CW .EQ. LINEFD) .OR.
074: X (CW .EQ. EOTEXT)) THEN
075: IF (CW .EQ. EOTEXT) THEN
076: MOREIN = 0
077: ENDIF
078: IF ((FILL+1+BUFPOS) .LE. MAXPOS) THEN
079: CALL PCHAR(BLANK)
080: FILL = FILL + 1
081: ELSE
082: CALL PCHAR(LINEFD)
083: FILL =0
084: ENDIF
085: K = 1
086: DOWHILE (K .LE. BUFPOS)
087: CALL PCHAR(BUFFER(K))
088: K = K + 1
089: ENDDO
090: FILL = FILL + BUFPOS
091: BUFPOS = 0
092: ELSE
093: IF (BUFPOS .EQ. MAXPOS) THEN
094: WRITE(6,10)
095: 10 FORMAT(' ','***WORD TO LONG***')
096: MOREIN = 1
097: ELSE
098: BUFPOS = BUFPOS + 1
099: BUFFER(BUFPOS) = CW
100: ENDIF
101: ENDIF
102: ENDDO
103: CALL PCHAR(LINEFD)
104: END
105:
106:

A-4

1) VAX: Reading Functional Structural H)#

107: CHARACTER*! FUNCTION GCHARO
108: INTEGER MATCH
109: CHARACTER*80 GBUFSTR
110:
111: INTEGER MOREIN, BCOUNT, I, MAXPOS
112: CHARACTER*! OUTLINED, EOTEXT, BLANK, LINEFD,
113: X GBUFER(SO)
114: CHARACTER*80 GBUF
115: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
116: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
117:
118: EQUIVALENCE (GBUFSTR,GBUFER)
119:
120: IF (GBUFERd) .EQ. 'Z') THEN
121: READ(5,20) GBUF
122: 20 FORMAT(A80)
123: C
124: C MATCH(CARRAY,C,ARSIZE) RETURNS 1 IF CHARACTER C IS IN CHARACTER ARRAY
125: C CARRAY, RETURNS 0 OTHERWISE. ARSIZE IS THE SIZE OF CARRAY.
126: C
127: IF (MATCH(GBUF,EOTEXT) .EQ. 0) THEN
128: WRITE(6,30)
129: 30 FORMAT(' V***NO END OF TEXT MARK***')
130: GBUFER(2) = EOTEXT
131: ELSE
132: C GBUFER(I) = GBUF
133: GBUFSTR = GBUF
134: ENDIF
135: ENDIF
136: GCHAR = GBUFER(BCOUNT)
137: BCOUNT = BCOUNT + 1
138: END
139:
140:
141: SUBROUTINE PCHAR (C)
142: CHARACTER*! C
143: CHARACTER*31 SOUT, OUTLINST
144: INTEGER K
145:
146: INTEGER MOREIN, BCOUNT, I, MAXPOS
147: CHARACTER'1 OUTLINED, GCHAR, EOTEXT, BLANK, LINEFD,
148: X GBUFER(80)
149: CHARACTER*80 GBUF
150: COMMON /ALL/ MOREIN, BCOUNT, I, MAXPOS, OUTLIN,
151: X EOTEXT, BLANK, LINEFD, GBUFER, GBUF
152:
153: EQUIVALENCE (OUTLINST,OUTLIN)
154:
155: IF (C .EQ. LINEFD) THEN
156: SOUT = OUTLINST
157: WRITE(6,40) SOUT
158: 40 FORMATC ',A3D
159: K = 1

A-5

1) VAX: Reading Functional Structural IDf

160: DOWHILE (K .LE. MAXPOS)
161: OUTLIN(K) = ' '
162: K = K + 1
163: ENDDO
164: I = 1
165: ELSE
166: OUTLIN(I) = C
167: 1 = 1 + 1
168: ENDIF
169: END
170: C
171: C NOTE: YOU DO NOT NEED TO VERIFY THE FOLLOWING FUNCTION. ITS SOURCE
172: C CODE IS INCLUDED JUST FOR COMPLETENESS.
173: C
174: C MATCH(CARRAY,C,ARSIZE) RETURNS 1 IF CHARACTER C IS IN CHARACTER ARRAY
175: C CARRAY, RETURNS 0 OTHERWISE. ARSIZE IS THE SIZE OF CARRAY.
176: C
177: INTEGER FUNCTION MATCH (STRIN, CH)
178: CHARACTER*100 STRIN
179: CHARACTER*! CH
180:
181: INTEGER PTR
182: CHARACTER*100 STR
183: CHARACTER*! SARRAY(IOO)
184: EQUIVALENCE (STR,SARRAY)
185:
186: STR = STRIN
187: DO 100 PTR = 1,100
188: IF (SARRAY(PTR) .EQ. CH) THEN
189: MATCH = 1
190: RETURN
191: ENDIF
192: 100 CONTINUE
193: MATCH = 0
194: RETURN
195: END

A-6

PROGRAM 1 FAULTS

1. Blank is printed before the first word on the first

line unless the first word is 30a characters long.

1. Leading blank line printed when first word is

30a characters long.

2. Assumes & (not $) is new-line character.

3. Assumes line size is 31 (not 30) characters.

.4. First character of input line equal to 'z' results

in line being ignored.

5. Does not condense successive break characters.

6. Spelling mistake in 'word to long' (WTL).

7. After WTL message, formatting does not terminate.

7.b After WTL condition, message printed once for every

character of word in excess of 30 .

8. After WTL condition, program prints output buffer.

9. If a line is entered without the end-of-text (EOT)

character, a message is printed, but if the next

line has EOT, this character is changed to 'z1 in

output.

9.b After two successive omissions of EOT, the program

prints 'z' and terminates.

aActually 31, due to Error 3.

^Alternate manifestation of this error.

A-7

9846

2) VAX: Functional Testing ID#

Specification

A list Is defined to be an ordered collection of elements which may have elements
annexed and deleted at either end, but not In the middle. The operations that need to
be available are ADDFIRST, ADDLAST, DELETEFIRST, DELETELAST, FIRST,
ISEMPTY, LISTLENGTH, REVERSE and NEWLIST. Each operation Is described In
detail below.

The lists are to contain up to a maximum of five (5) elements. If an element Is
added to the front of a "full" list (one containing five elements already), the element at
the back of the list Is to be discarded. Elements to be added to the back of a full list
are discarded. Requests to delete elements from empty lists result In an empty list, and
requests for the first element of an empty list results In zero (0) being returned. The
detailed operational descriptions are as below.

ADDFIRST I
Returns the list with the Integer I as Its first element followed by all the elements
of the list. If the list Is "full" to begin with, Its last element Is lost.

ADDLAST I
Returns the list with all of the elements of Its elements followed by the Integer I. If
the list is full to begin with, the list Is returned (I.e., I Is Ignored).

DELETEFIRST
Returns the list containing all but Its first element. If the list Is empty, then an
empty list Is returned.

DELETELAST
Returns the list containing all but Its last element. If the list Is empty, then an
empty list Is returned.

FIRST
Returns the first element In the list. If the list Is empty, then It returns zero (0).

ISEMPTY
Returns one (1) If the list Is empty, zero (0) otherwise.

LISTLENGTH
Returns the number of elements In the list. An empty list has zero (0) elements.

NEWLIST
Returns an empty list.

REVERSE
Returns the list containing Its original elements In reverse order.

(End of specification.)

A-8

2) 7AZ: Reading Functional Structural H)#

001: C NOTE THAT YOU DO MOT NEED TO VERIFY THE FUNCTIONS DRIVER, GETARG,
002: C CHAREQ, CODE, AND PRINT. THEIR SOURCE CODE IS DESCRIBED AND
003: C INCLUDED AT THE END FOR COMPLETENESS.
004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS INCLUDE A LEADING
005: C AND REQUIRED ' ' FOR CARRIAGE CONTROL
006: C
007: INTEGER POOL(7), LSTEND
008: INTEGER LISTSZ
009: C
010: COMMON /ALL/ LISTSZ
011: C
012: C
013: LISTSZ = 5
014: CALL DRIVER (POOL, LSTEND)
015: STOP
016: END
017:- C
018: C
019: FUNCTION ADFRST (POOL, LSTEND, I)
020: INTEGER ADFRST
021: INTEGER POOL(7), LSTEND, I
022: INTEGER LISTSZ
023: COMMON /ALL/ LISTSZ
024: C
025: INTEGER A
026: C
027: IF (LSTEND .GT. LISTSZ) THEN
028: LSTEND = LISTSZ - 1
029: ENDIF
030: LSTEND = LSTEND + 1
031: A = LSTEND
032: DOWHILE (A .GE. 1)
033: POOL(A+1) = POOL(A)
034: A = A - 1
035: ENDDO
036: C

037: POOL(1) = I
038: ADFRST r LSTEND
039: RETURN
040: END
041: C
042: C
043: FUNCTION ADLAST (POOL, LSTEND, I)
044: INTEGER ADLAST
045: INTEGER POOL(7), LSTEND, I
046: INTEGER LISTSZ
047: COMMON /ALL/ LISTSZ
048: C
049: IF (LSTEND .LE. LISTSZ) THEN
050: LSTEND = LSTEND + 1
051: POOL(LSTSND) = I
052: ENDIF
053: ADLAST = LSTEND

A-9

2) VAX: Reading Functional Structural ID*

054: RETURN
055: END
056: C
057: C
058: FUNCTION DELFST (POOL, LSTEND)
059: INTEGER DELFST
060: INTEGER POOL(7), LSTEND
061: INTEGER LISTSZ
062: COMMON /ALL/ LISTSZ
063: C
064: INTEGER A .
065: IF (LSTEND .GT. 1) THEN
066: A = 1
067: LSTEND = LSTEND - 1
068: DOWHILE (A .LE. LSTEND)
069: POOL(A) = POOL(A-cl)
070: A = A -t- 1
071: ENDDO
072: ENDIF
073: DELFST = LSTEND
074: RETURN
075: END
076: C
077: C
073: FUNCTION DELLST (LSTEND)
079: INTEGER DELLST
080: INTEGER LSTEND
081: C
082: IF (LSTEND .GE. 1) THEN
083: LSTEND = LSTEND - 1
084: ENDIF
085: DELLST = LSTEND
086: RETURN
087: END
088: C
089: C
090: FUNCTION FIRST (POOL, LSTEND)
091: INTEGER FIRST
092: INTEGER POOL(7), LSTEND
093: C
094: IF (LSTEND .LE. 1) THEN
095: FIRST = 0
096: ELSE
097: FIRST = POOL(1)
098: ENDIF
099: RETURN
100: END
101: C
102: C
103: FUNCTION EMPTY (LSTEND)
104: INTEGER EMPTY
105: INTEGER LSTEND
106: C

A-10

2) VAX: Reading Functional Structural ID*

107: IF (LSTEND'.LE. 1) THEN
108: EMPTY = 1
109: ELSE
110: EMPTY = 0
111: ENDIF
112: RETURN
113: END
114: C
115: C
116: FUNCTION LSTLEN (LSTEND)
117: INTEGER LSTLEN
118: INTEGER LSTEND
119: C
120: LSTLEN = LSTEND - 1
121: RETURN
122: END
123: C
124: C
125: FUNCTION NEWLST (LSTEND)
126: INTEGER NEWLST
127: INTEGER LSTEND
128: C
129: NEWLST = 0
130: RETURN
131: END
132: C
133: C
134: SUBROUTINE REVERS (POOL, LSTEND)
135: INTEGER POOL(7), LSTEND
136: C
137: INTEGER I, N
138: C
139: N = LSTEND
140: I = 1
141: DOWHILE (I .LE. N)
142: POOL(I) = POOL(N)
143: N = N - 1
144: 1 = 1 + 1
145: ENDDO
146: RETURN
147: END
148: C
149: C
150: C NOTE: YOU DO MOT NEED TO VERIFY THE FOLLOWING PROCEDURES. THEIR SOURCE
151: C CODE IS INCLUDED JUST FOR COMPLETENESS.
152: C
153: C DRIVER ACCEPTS THE COMMANDS, CALLS THE APPROPRIATE ROUTINES, AND DISPLAYS
154: C THE RESULTS.
155: C
156: SUBROUTINE DRIVER (POOL, LSTEND)
157: INTEGER POOL(7), LSTEND
158: C
159: INTEGER ADFRST,ADLAST,DELFST,DELLST,FIRST,EMPTY,LSTLEN,NEWLST

A-ll

2) VAX: Reading Functional Structural ID*

160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:

C
C

130

132

134

136

100

110

120

INTEGER ARC, GETARG
LOGICAL*1 CODE
LOGICAL*! CMD(80)
LOGICAL*1 CMD1(8),CMD2(7),CMD3(H),CMD4(10),CMD5(7),CMD6(5),
CMD7(10),CMD8(7) CMD9(7)

DATA CMD1
DATA CMD2 /'
DATA CMD3 /'
DATA CMD4
DATA CMD5
DATA CMD6 /'
DATA CMD7 /'
DATA CMD8 /'
DATA CMD9

/ ' A '
/ A
/ D'
/ ' D '
/'I'
/ ' F '
/ 'L'
/ ' R '
/ 'N'

D
' D '
' E '
E '
3
I
1
fa!
H

D
D
L
L

' E '
, H

S
r V

W

V
L

'E
'E
M

'S
T

' E
L

, 1
, A
, T
, T
> P
, T
» L
t ' H
, I

,
,
,
,
»
/
,
,
,

H
S
t!
E '
T '

E
i>
S

s
r T

f
r 'L

' X

r ' N

» bl
'T

,
/
,
,
/

,
/
/

TV

I ,
A ,

G ,

, «
'S', 'T'>

'T', 'H'/

r ' T '
1

r

LSTEND - NEWLST(LSTEND)
EXECNT = 1
DOWHILE (1 .EQ. 1)

READ(5,130,END=999) CMD
FORMAT(80A1)

WRITE(6,132) EXECNT
FORMATC ','< INPUT ',13,' : >')

WRITE(6,134) CMD
FORMATC ','<',60A1,'>')

WRITE(6,136)
FORMATC ','< OUTPUT : >')

EXECNT = EXECNT •»• 1
IF (CODE(CMD,80,CMD1,8)) THEN

ARC = GETARG(CMD,80)
LSTEND = ADFRST(POOL,LSTEND,ARC)

ELSEIF (CODE(CMD,80,CMD2,7)) THEN
ARG = GETARG(CMD,80)
LSTEND = ADLAST(POOL,LSTEND,ARG)

ELSEIF (CODE(CMD,80,CMD3,1D) THEN
LSTEND = DELFST(POOL,LSTEND)

ELSEIF (CODE(CMD,80,CMD4,10)) THEN
LSTEND = DELLST(LSTEND)

ELSEIF (CODE(CMD,80,CMD5,7)) THEN
ITMP = EMPTY(LSTEND)
WRITE(6,100) ITMP

FORMATC ',' VALUE IS ',110)
ELSEIF (CODE(CMD,80,CMD6,5)) THEN

ITMP = FIRST(POOL,LSTEND)
WRITE(6,110) ITMP

FORMATC ',' VALUE IS ',110)
ELSEIF (CODE(CMD,80,CMD7,10)) THEN

ITMP = LSTLEN(LSTEND)
WRITE(6,120) ITMP

FORMATC ',' VALUE IS ',110)
SLSEIF (CODE(CMD,30,CMD8,7)) THEN

CALL REVERS(POOL,LSTSND)
ELSEIF (CODE(CMD,80,CMD9,7)) THEN

A-12

2) VAX: Reading Functional Structural ID*

213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:

210

C
C PRUT
C

999

C
C CODE
C AR]
C OTl
C

C

C

X
X

X

C
C CHAR!
C EQ1
C

LSTEND = NEWLST(LSTEND)
ELSE

WRITE(6,210) CMD
FORMATC ','< UNKNOWN COMMAND: ',50A1/>')

ENDIF

PRINT PRINTS THE LIST

CALL PRINT(POOL,LSTEND)
ENDDO
CONTINUE
RETURN
END

CODE(CA1,LEN1,CA2,LEN2) RETURNS TRUE IF THE FIRST STRING IN CHARACTER
CA1 IS EQUIVALENT TO THE FIRST STRING IN CA2.

OTHERWISE.

FUNCTION CODE (CA1,LEN1,CA2,LEN2)
LOGICAL*1 CODE, CA1(120), CA2(120)
INTEGER LEN1, LEN2

INTEGER 11, 12
LOGICAL*1 CHAREQ
11 = 1
12 = 1
DOWHILE

IT RETURNS FALSE

((11
11 =

.LE.
11

ENDDO
DOWHILS ((12 .LE.

12 = 12
ENDDO

LEND.AND. CHAREQ(CAKH),' '))

LEN2).AND. CHAREQ (CA2(12) , ' '))

DOWHILE ((CHAREQ(CA1(I1),CA2(I2))) .AND.
(.NOT.(CHAREQ(CA1(I1),' '))).AND.(.NOT.(CHAREQ(CA2(12),' ')))
.AND. (11 .LE. LEND.AND. (12 .LE. LEN2))

11 = 11 -»• 1
12 a 12 + 1

ENDDO
IF (((LEN2 .LE. LEND.AND. (12 .GT. LEN2)) .OR.

((LEN2 .GT. LEND.AND. (11 .GT. LEND)) THEN
CODE = 1

ELSE
CODE = 0

ENDIF
RETURN
END

CHAREQ(C1,C2) IS CHARACTER EQUIVALENCE; RETURNS TRUE IF CHARACTER C1
EQUALS CHARACTER C2, RETURNS FALSE OTHERWISE

FUNCTION CHAREQ (C1,C2)
LOGICAL*1 CHAREQ, C1, C2

A-13

2) VAX: Reading Functional Structural ID*

266: C
267: IF (C1 .EQ. C2) THEN
268: CHAREQ = 1
269: ELSE
270: CHAREQ = 0
271: ENDIF
272: RETURN
273: END
274: C
275: C GETARG RETURNS THE SECOND STRING IN CHARACTER ARRAY CA CONVERTED TO AN
276: C INTEGER.
277: C
278: FUNCTION GETARG (CA, LEN)
279: INTEGER GETARG, LEN
280: LOGICAL*1 CA(120)
281: C
282: INTEGER I, SUM, NEGSUM
283: LOGICAL*1 CHAREQ
284: I = 1
285: C STRIP LEADING BLANKS
286: DOWHILE ((I .LE. LEN).AND. CHAREQ(CA(I),' '))
287: 1 = 1 + 1
288: ENDDO
289: C SKIP OVER COMMAND NAME
290: DOWHILE ((I .LE. LEN).AND.(.NOT.(CHAREQ(CA(I),' '))))
291: 1 = 1 + 1
292: ENDDO
293: C SKIP BLANKS BETWEEN COMMAND AND ARGUMENT
294: DOWHILE ((I .LE. LEN). AND. CHAREQ(CAd), ' '))
295: 1 = 1 + 1
296: ENDDO
297: C CALCULATE ARGUMET
298: SUM = 0
299: NEGSUM = 0
300: DOWHILE ((I .LE. LEN).AND.C.NOT.(CHAREQ(CA(I), ' '))))
301: IF (CHAREQ(CAd),'-')) THEN
302: NEGSUM = 1
303: ELSE
304: - SUM = SUM » 10 + CA(I) - 48
305: ENDIF
306: 1 = 1 + 1
307: ENDDO
308: IF (NEGSUM .EQ. 0) THEN
309: GETARG = SUM
310: ELSE
311: GETARG = -SUM
312: ENDIF
313: RETURN
314: END

A-14

PROGRAM 2 FAULTS

1. FIRST returns 0 when the list has one element.

2. ISEMPTY returns 1 when the list has one element.

3. DELETEFIRST cannot delete the first element when

the list has one element.

4. LISTLENGTH returns 1 less than the actual length of

the list.

5. ADDFIRST can add more than five elements to the

list.

6. ADDLAST can add more than five elements to the list.

7. REVERSE does not reverse the list properly.

A-15

9846

3) VAX & IBM: Structural Testing ID#

VAX & IBM: Structural Testing

Specification

(Note from Rick: a 'file' Is the same thing as an IBM 'dataset'.)
The program maintains a database of bibliographic references. It first reads a mas-

ter file of current references, then reads a file of reference updates, merges the two, and
produces an updated master file and a cross reference table of keywords.

The first Input file, the master, contains records of 74 characters with the following
format:
column comment

1-3 each reference has a unique reference key
4 - 1 4 author of publication

15 - 72 title of publication
73 - 74 year Issued
.The .key-should be a three (3) character unique Identifier consisting of letters between
A-Z. The next Input file, the update file, contains records of 75 characters In length.
The only difference from a master file record Is that an update record has either an 'A'
(capital A meaning add) or a 'R' (capital R meaning replace) In column 75. Both the
master and update files are expected to be already sorted alphabetically by reference key
when read Into the program. Update records with action replace are substituted for the
matching key record In the master file. Records with action add are added to the mas-
ter file at the appropriate location so that the file remains sorted on the key field. For
example, a valid update record to be read would be (Including a numbered line Just for
reference)

123456789012345078901234587890123456789012345678901234567890123456789012345

BITbaker an Introduction to program testing 83A

The program should produce two pieces of output. It should first print the sorted
list of records In the updated master file In the same format as the original master file.
It should then print a keyword cross reference list. All words greater than three charac-
ters In a publication's title are keywords. These keywords are listed alphabetically fol-
lowed by the key fields from the applicable updated master file entries. For example, If
the updated master file contained two records,

ABCkermlt Introduction to software testing 82
EOQones the r e a l i t i e s of software management 81

then the keywords are Introduction, testing, realities, software, and management. The
cross reference list should look like

Introduction
ABC

management
DDX

A-16

3) VAX & IBM: Structural Testing JD#

realities
DDX

software
ABC
DDX

testing
ABC

Some possible error conditions that could arise and the subsequent actions Include
the following. The master and update flies should be checked for sequence, and If a
record out of sequence Is found, a message similar to 'key ABC out of sequence' should
appear and the record should be discarded. If an update record Indicates replace and
the matching key can not be found, a message similar to 'update key ABC not found'
should appear and the update record should be Ignored. If an update record Indicates
add and a matching key Is found, something like 'key ABC already In file' should
appear and the record should be Ignored. (End of specification.)

A-17

3) Reading Functional Structural ID* _

001: C NOTE THAT YOU DO NOT NEED TO VERIFY THE ROUTINES DRIVER, STREQ, WORDEQ,
002: C NXTSTR, ARRCPY, CHARPT, BEFORE, CHAREQ, AND WRDBEF. THEIR SOURCE
003: C CODE IS DESCRIBED AND INCLUDED AT THE END FOR COMPLETENESS.
004: C NOTE THAT FORMAT STATEMENTS FOR WRITE STATEMENTS INCLUDE A LEADING
005: C AND REQUIRED ' ' FOR CARRIAGE CONTROL
006: C THE SFORT LANGUAGE CONSTRUCT '.IF (EXPRESSION)' BEGINS A BLOCKED
007: C IF-THEN[-ELSE] STATEMENT, AND IT IS EQUIVALENT TO THE F77
008: C 'IF (EXPRESSION) THEN'.
009: C
010: CALL DRIVER
011: STOP
012: END
013: C
014: C
015: SUBROUTINE MAINSB
016: C
017: LOGICAL*1 U$KEY(3),U$AUTH(11),U$TITL(58),U$YEAR(2),U$ACTN(1)
018: LOGICAL*1 M$KEY(3),M$AUTH(11),M$TITL(58),M$YEAR(2)
019: LOGICAL*1 ZZZ(3), LASTUK(3), LASTMK(3)
020: LOGICAL*! STREQ, CHAREQ, BEFORE, CHARPT
021: INTEGER I
022: C
023: LOGICAL*1 WORD(500,12), REFKEY(1000,3)
024: INTEGER NUMWDS, NUMREF, PTR(SOO), NEXT(IOOO)
025: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
026: C
027: WRITE(6,290)
028: 290 FORMAT(' ',' UPDATED LIST OF MASTER ENTRIES')
029: DO 300 I = 1, 3
030: LASTMK(I) = CHARPTC ')
031: LASTUK(I) = CHARPTC ')
032: ZZZ(I) = CHARPT('Z')
033: 300 CONTINUE
034: C
035: NUMWDS = 0
036: NUMREF = 0
037: CALL GETNM(MKEY,MAUTH,M$TITL,M$YEAR,LASTMK)
038: CALL GETNUP(UKEY,UAUTH,U$TITL,U$YEAR,U$ACTN,LASTUK)
039: C
040: DOWHILE ((.NOT.(STREQ(M$KEY,ZZZ,3))) .OR.
041: X (.NOT.(STREQ(U$KEY,ZZZ,3))))
042: .IF (STREQ(UKEY,MKEY,3))
043: .IF (.NOT.(CHAREQ(U$ACTN(1),'R')))
044: WRITE(6,100) U$KEY
045: 100 FORMAT(' ','KEY ',3A1,' IS ALREADY IN FILE')
046: ENDIF
047: CALL OUTPUT(UKEY,UAUTH,U$TITL,U$YEAR)
048: CALL DICTUP(UKEY,UTITL,58)
049: CALL GETNM(MKEY,MAUTH,M$TITL,M$YEAR,LASTMK)
050:, CALL GETNUP(UKEY,UAUTH,U$TITL,U$YEAR,U$ACTN,LASTUK)
051: ENDIF
052: C
053: .IF (BEFORE(M$KEY,3,U$KEY,3))

A-18

3) Reading Functional Structural ID*

054:
055:
056:
057:
058: C
059:
060:
061:
062: 110
063:
064:
065:
066:
067:
068:
069: C
070:
071:
072:
073:
074: C
075: C
076:
077:
078: C
079:
080:
081:
082:
083: C
084:
085:
086:
087: C

CALL OUTPUT(MKEY,MAUTH,M$TITL,M$YEAR)
CALL DICTUP(MKEY,MTITL,58)
CALL GETNM (MKEY , M AUTH , M$TITL , M$YEAR , LASTMK)

ENDIF

.IF (BEFORE(U$KEY,3,M$KEY,3))
.IF (CHAREQ(U$ACTN(1),'R'))

WRITE(6,110) U$KEY
FORMAT (' ', 'UPDATE KEY ',3A1,' NOT FOUND')

ENDIF
CALL OUTPUT (UKEY , U AUTH , U$TITL , U$YEAR)
CALL DICTUP(UKEY,UTITL,58)
CALL GETNUP (UKEY , UAUTH , U$TITL , U$ YEAR , U$ ACTN , LASTUK)

ENDIF
ENDDO

CALL SRTWDS
CALL PRTWDS
RETURN
END

SUBROUTINE GETNM (KEY , AUTH , TITL , YEAR , LASTMK)
LOGICAL«1 KEY(3) ,AUTH(1 1) ,TITL(58) ,YEAR(2) ,LASTMK(3)

LOGICAL* 1 SEQ, INLINE (80)
LOGICAL*! BEFORE, CHARPT, CHAREQ
LOGICAL* 1 GOM, GOU
COMMON /DRIV/ GOM, GOU

SEQ = 1
DOWHILE (SEQ)

.IF (GO$M)

088: C READ FROM THE MASTER FILE
089: C
090:
091:
092: C
093: C SEE
094: C
095:
096:
097: 200
098:
099:
100: 210
101:
102:
103: 220
104:
105:
106: 230

READ(10,200,END=299) INLINE
ELSE

REMARK ABOUT THE CHARACTER '%' LATER IN THE ROUTINE.

INLINEd) = CHARPTC*')
ENDIF
FORMAT (80A1)
DO 210 I = 1, 3

KEY(I) = INLINE(I)
CONTINUE
DO 220 I r 1, 11

AUTH(I) = INLINE (3+D
CONTINUE
DO 230 I = 1, 58

TITL(I) = INLINE (14+1)
CONTINUE

A-19

3) Reading Functional Structural ID#

107: DO 240 I = 1, 2
108: YEAR(I) = INLINE(72+1)
109: 240 CONTINUE
110: C
111: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT THE CHARACTER '%'
112: C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS FOR MULTIPLE
113: C SETS OF INPUT CASES.
114: C
115: .IF ((.NOT.(CHAREQ(KEY(1),'*'))) .AND.
116: X (BEFORE(KEY,3.LASTMK,3)))
117: WRITE(6,250) KEY
118: 250 FORMATC ','KEY ',3A1,' OUT OF SEQUENCE')
119: ELSE
120: CALL ARRCPY(KEY,LASTMK,3)
121: SEQ = 0
122: ENDIF •
123: -IF (CHAREQ(KEY(1),'?'))
124: SEQ = 0
125: DO 270 I = 1, 3
126: KEY(I) = CHARPT('Z')
127: 270 CONTINUE
128: ENDIF
129: ENDDO
130: RETURN
131: 299 CONTINUE
132: GO$M = 0
133: DO 260 I = 1, 3
134: KEY(I) = CHARPT('Z')
135: 260 CONTINUE
136: RETURN
137: END
138: C
139: C
140: SUBROUTINE GETNUP(KEY,AUTH,TITL,YEAR,ACTN,LASTUK)
141: LOGICAL*1 KEY(3),AUTH(11),TITL(58),YEAR(2),ACTN(1),LASTUK(3)
142: C
143: LOGICAL*1 SEQ, INLINE(80)
144: LOGICAL*1 BEFORE, CHARPT, CHAREQ
145: LOGICAL*1 GOM, GOU
146: COMMON /DRIV/ GOM, GOU
147: C
148: SEQ = 1
149: DOWHILE (SEQ)
150: .IF (GO$U)
151: C
152: C READ FROM THE UPDATES FILE
153: C
154: READ(11,200,END=299) INLINE
155: ELSE
156: C
157: C SEE REMARK ABOUT THE CHARACTER '%' LATER IN THE ROUTINE.
158: C
159: INLINEO) = CHARPT('J')

A-20

3) Reading Functional Structural ID*

160: ENDIF
161: 200 FORMAT(80A1)
162: DO 210 I = 1, 3
163: KEY(I) = INLINE(I)
164: 210 CONTINUE
165: DO 220 I = 1, 11
166: AUTH(I) = INLINE(3+1)
167: 220 CONTINUE
168: DO 230 I = 1, 58
169: TITL(I) = INLINE(14+1)
170: 230 CONTINUE
171: DO 240 I = 1, 2
172: YEAR(I) = INLINE (72+1),
173: 240 CONTINUE
174: ACTN(1) = INLINE(75)
175: C
176: C A METHOD OF SPECIFYING END-OF-FILE IN A FILE IS TO PUT THE CHARACTER '?
177: C AS THE FIRST CHARACTER ON A LINE. THE DRIVER USES THIS FOR MULTIPLE
178: C SETS OF INPUT CASES.
179: C
180: .IF ((.NOT.(CHAREQ(KEY(1),'*'))) .AND.
181: X (BEFORE(KEY,3,LASTUK,3)))
182: WRITE(6,250) KEY
183: 250 FORMATC ','KEY ',3A1,' OUT OF SEQUENCE')
184: ELSE
185: CALL ARRCPY(KEY,LASTUK,3)
186: SEQ = 0
187: ENDIF
188: .IF (CHAREQ(KEY(1),'%'))
189: SEQ = 0
190: DO 270 I = 1, 3
191: KEY(I) = CHARPT('Z')
192: 270 CONTINUE
193: ENDIF
194: ENDDO
195: RETURN
196: 299 CONTINUE
197: GO$U = 0
198: DO 260 I = 1, 3
199: KEY(I) = CHARPT('Z')
200: 260 CONTINUE
201: RETURN
202: END
203: C
204: C
205: • SUBROUTINE OUTPUT(KEY,AUTH,TITL,YEAR)
206: LOGICAL*1 KEY(3), AUTH(11), TITL(58), YEAR(2)
207: C
208: WRITE(6,200) KEY, AUTH, TITL, YEAR
209: 200 FORMATC ',3A1,11A1,58A1,2A1)
210: RETURN
211: END
212: C

A-21

3) Reading Functional Structural ID*

213: C
214: SUBROUTINE PRTWDS
215: C
216: LOGICAL*! WORD(500,12), REFKEY(1000,3)
217: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
218: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
219: C
220: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A LINKED LIST.
221: C WORD(I,J) IS A KEYWORD — J RANGING FROM 1 TO 12
222: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS AS A
223: C KEYWORD WORD(I,J) ,J=1 ,'12
224: C REFKEY(NEXT(PTR(I)),K),K=1,3 IS THE SECOND 3 LETTER KEY THAT HAS
225: C AS A KEYWORD WORD(I,J),J=1,12
226: C REFKEY(N£XT(NEXT(PTR(I))),K),K=1,3 IS THE THIRD ... ETC.
227: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER KEYS FOR
228: C THE PARTICULAR KEYWORD
229: C
230: INTEGER I, J
231: LOGICAL*! FLAG
232: C
233: WRITE(6,200)
234: 200 FORMAT(' ',' KEYWORD REFERENCE LIST')
235: DO 210 I = 1, NUMWDS
236: FLAG = 1
237: WRITE(6,220) (WORD(I,J),J=1,12)
238: 220 FORMAT(' ',12A1)
239: LAST = PTR(I)
240: DOWHILE (FLAG)
241: WRITE(6,230) (REFKEY(LAST,J),J=1,3)
242: 230 FORMAT(' ',' ',3A1)
243: LAST = NEXT(LAST)
244: .IF (LAST .EQ. -1)
245: FLAG = 0
246: ENDIF
247: ENDDO
248: 210 CONTINUE
249: RETURN
250: END
251: C
252: C
253: SUBROUTINE DICTUP(KEY,STR,STRLEN)
254: LOGICAL*! KEY(3), STR(120)
255: INTEGER STRLEN
256: C
257: LOGICAL*! WDLEFT, FLAG, OKLEN, NEXTWD(120), WORDEQ
258: INTEGER LPTR, NXTSTR, LEN, LAB, I, K
259: C
260: LOGICAL*! WORD(500,12), REFKEY(1000,3)
261: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
262: COMMON /WORDS/ WORD,'REFKEY, NUMWDS, NUMREF, PTR, NEXT
263: C
264: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A LINKED LIST.
265: C WORD(I,J) IS A KEYWORD — J RANGING FROM 1 TO 12

A-22

3) Reading Functional Structural ID*

266: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS AS A
267: C KEYWORD WORD(I,J),J=1,12
268: C REFKEY(NEXT(PTR(I)),K),K=1,3 IS THE SECOND 3 LETTER KEY THAT HAS
269: C AS A KEYWORD WORD(I,J),J=1,12
270: C REFKEY(NEXT(NEXT(PTR(I))),K),K=1,3 IS THE THIRD ... ETC.
271: C NEXT(J) IS EQUAL TO -1 WHEN THERE ARE NO MORE 3 LETTER KEYS FOR
272: C THE PARTICULAR KEYWORD
273: C
274: WDLEFT = 1
275: LPTR = 1
276: C
277: DOWHILE (WDLEFT)
278: FLAG = 1
279: OKLEN = 1
280: LEN = NXTSTR(STR,STRLEN,LPTR,NEXTWD,120)
281: .IF (LEN .EQ. 0)
282: WDLEFT = 0
283: ENDIF
284: C
285: .IF (LEN .LE. 2)
286: OKLEN = 0
287: ENDIF
288: C
289: .IF (OKLEN)
290: I = 1
291: DOWHILE ((I .LE. NUMWDS).AND. FLAG)
292: .IF (WORDEQ(NEXTWD,!))
293: LAB = I
294: FLAG = 0
295: ENDIF
296: I = I ••• 1
297: ENDDO
298: .IF (FLAG)
299: NUMWDS = NUMWDS + 1
300: NUMREF = NUMREF + 1
301: DO 300 K = 1, 12
302: WORD(NUMWDS,K) = NEXTWD(K)
303: 300 . CONTINUE
304: PTR(NUMWDS) = NUMREF
305: DO 310 K = 1, 3
306: REFKEY(NUMREF,K) = KEY(K)
307: 310 CONTINUE
308: NEXT(NUMREF) = -1
309: ELSE
310: NUMREF = NUMREF + 1
311: DO 320 K = 1, 3
312: REFKEY(NUMREF,K) = KEY(K)
313: 320 CONTINUE
314: NEXT(NUMREF) = PTR(LAB)
315: PTR(LAB) = NUMREF
316: ENDIF
317: ENDIF
318: ENDDO

A-23

3) Reading Functional Structural ID*

319: C
320: RETURN
321: END
322: C
323: C
324: SUBROUTINE SRTWDS
325: C
326: LOGICAL*1 WORD(500,12), REFKEY(1000,3)
327: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
328: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
329: C
330: C THE ABOVE GROUP OF DATA STRUCTURES SIMULATES A LINKED LIST.
331: C WORD(I,J) IS A KEYWORD — J RANGING FROM 1 TO 12
332: C REFKEY(PTR(I),K),K=1,3 IS THE FIRST 3 LETTER KEY THAT HAS AS A
333: C KEYWORD WORD(I,J),J=1,12
334: C REFKEY(NEXT(PTR(I)),K),K=1,3 IS THE SECOND 3 LETTER KEY THAT HAS
335: C AS A KEYWORD WORD(I,J),J=1,12
336: C REFKEY(NEXT(NEXT(PTR(I))),K),K=1,3 IS THE THIRD ... ETC.
337: C NEXT(J) IS EQUAL TO- -1 WHEN THERE ARE NO MORE 3 LETTER KEYS FOR
338: C THE PARTICULAR KEYWORD
339: C
3̂ 0: INTEGER I, J, K, LAB, LOWERS, UPPERS
341: LOGICAL*1 WRDBEF, NEXTWD(12)
342: C
343: UPPERS = NUMWDS - 1 .
344: DO 400 I = 1, UPPERS
345: LOWERS = 1 + 1
346: DO 410 J = LOWERS, NUMWDS
347: .IF (WRDBEF(J,D)
348: DO 300 K = 1, 12
349: NEXTWD(K) = WORD(I,K)
350: 300 CONTINUE
351: LAB = PTR(I)
352: DO 310 K = 1, 12
353: WORD(I,K) = WORD(J,K)
354: 310 CONTINUE
355: PTR(I) = PTR(J)
356: DO 320 K = 1, 12
357: WORD(J,K) = NEXTWD(K)
358: 320 CONTINUE
359: PTR(J) = LAB
360: ENDIF
361: 410 CONTINUE
362: 400 CONTINUE
363: C
364: RETURN
365: END
366: C
367: C
368: C NOTE: YOU DO NOT NEED TO VERIFY THE FOLLOWING PROCEDURES. THEIR SOURCE
369: C CODE IS INCLUDED JUST FOR COMPLETENESS.
370: C
371: C DRIVER CONTINUES TO CALL THE MAIN ROUTINE UNTIL END-OF-FILE HAS BEEN

A-24

3) Reading Functional Structural ID*

372: C REACHED ON BOTH THE MASTER AND UPDATES DATASETS.
373: C
374: SUBROUTINE DRIVER
375: C
376: INTEGER EXECNT
377: LOGICAL*! GOM, GOU
378: COMMON /DRIV/ GOM, GOU
379: C
380: EXECNT = 1
381: GO$M = 1
382: GO$U = 1
383: DOWHILE ((GO$M).OR.(GO$U))
384: WRITE(6,90) EXECNT
385: 90 FORMAT(' ','< PROGRAM EXECUTION ',13,' : >')
386: CALL MAINSB
387: EXECNT = EXECNT + 1
388: ENDDO
389: RETURN
390: END .
391: C
392: C WRDBEF(P1,P2) RETURNS 1 IF THE KEYWORD IN WORD(P1,J),J=1,12 COMES
393: C ALPHABETICALLY BEFORE THE KEYWORD IN WORD(P2,J),J=1,12.
394: C IT RETURNS 0 OTHERWISE.
395: C
396: FUNCTION WRDBEF(PTR1,PTR2)
397: LOGICAL*1 WRDBEF
398: INTEGER PTR1, PTR2
399: C
400: LOGICAL*1 WORD(500,12), REFKEYC1000,3)
401: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(1000)
402: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
403: LOGICAL*1 BEFORE, WORDK12), WORD2(12)
404: INTEGER I
405: C
406: DO 500 I = 1, 12
407: WORDKD = WORD(PTR1,I)
408: WORD2CI) = WORD(PTR2,I)
409: 500 CONTINUE
410: .IF (BEFORE(WORD1,12,WORD2,12))
411: WRDBEF = 1
412: ELSE
413: WRDBEF = 0
414: ENDIF
415: RETURN
416: END
417: C
418: C CHAREQ(C1,C2) IS CHARACTER EQUIVALENCE; RETURNS TRUE IF CHARACTER C1
419: C EQUALS CHARACTER C2, RETURNS FALSE OTHERWISE
420: C
421: FUNCTION CHAREQ (C1,C2)
422: LOGICAL*1 CHAREQ, C1, C2
423: C
424: .IF (C1. .EQ. C2)

A-25

3) Heading Functional Structural ID*

425: CHAREQ = 1
426: ELSE
427: CHAREQ = 0
428: ENDIF
429: RETURN
430: END
431: C
432: C BEFORE(S1,L1,S2,L2) RETURNS 1 IF THE STRING IN CHAR ARRAY S1 COMES
433: C ALPHABETICALLY BEFORE THE STRING IN CHAR ARRAY S2. S1 AND S2 ARE
434: C OF SIZES L1 AND L2. IT RETURNS 0 OTHERWISE (INCLUDING WHEN THE
435: C STRINGS ARE EXACTLY THE SAME).
436: C
437: FUNCTION BEFORE (STR1,LEN1,STR2,LEN2)
438: LOGICAL* 1 BEFORE, STRK120), STR2(120)
439: INTEGER LEN1, LEN2
440: C
441: INTEGER PTR
442: LOGICAL*1 TIE
443: PTR = 1
444: TIE = 1
445: DOWHILE (TIE .AND.(PTR.LE.LEND.AND.(PTR.LE.LEN2))
446: .IF (STRKPTR) .LT. STR2(PTR))
447: BEFORE = 1
448: TIE = 0
449: ELSE
450: .IF (STRKPTR) .GT. STR2(PTR))
451: BEFORE = 0
452: TIE = 0
453: ENDIF
454: ENDIF
455: PTR = PTR + 1
456: ENDDO
457: .IF (TIE)
458: .IF ((PTR .GT. LEND.AND.(PTR .LE. LEN2))
459: BEFORE = 1
460: ' ELSE
461: BEFORE = 0
462: ENDIF
463: ENDIF
464: RETURN
465: END
466: C
467: C CHARPT('C') IS A CHARACTER ASSIGNMENT FUNCTION; IT RETURNS THE
468: C CHARACTER PASSED TO IT AS AN ARGUMENT
469: C
470: FUNCTION CHARPT(C)
471: LOGICAL*1 CHARPT, C
472: C
473: CHARPT = C
474: RETURN
475: END
476: C
477: C ARRCPY(ARR1,ARR2,ARSIZE) COPIES CHARACTER ARRAY ARR1 TO CHARACTER

A-26

3) Reading Functional Structural ID*

478: C ARRAY ARR2. THE ARRAYS ARE OF SIZE ARSIZE
479: C
480: SUBROUTINE ARRCPY (ARR1,ARR2,LEN)
481: LOGICAL»1 ARRK120), ARR2O20)
482: INTEGER LEN
483: C
484: INTEGER I
485: DO 230 I = 1, LEN
486: ARR2CI) = ARR1U)
487: 230 CONTINUE
488: RETURN
489: END
490: C -
491: C NXTSTRCSTR,LEN,START,NEXTST,NXTLEN) COPIES THE NEXT STRING IN
492: C CHAR ARRAY STR TO CHAR ARRAY NEXTST. THE FORWARD SEARCH FOR THE
493: C NEXT STRING BEGINS AT INDEX START. START IS UPDATED TO BE THE INDEX OF THE
494: C CHARACTER IMMEDIATELY FOLLOWING THE STRING IN STR.
495: C THE SIZE OF STR IS LEN. THE LENGTH OF THE NEXT STRING IS RETURNED
496: C AS THE FUNCTION'S VALUE. THE SIZE OF THE CHAR ARRAY NEXTST IS NXTLEN.
497: C
498: FUNCTION NXTSTRCSTR,LEN,START,NEXTST,NXTLEN)
499: INTEGER NXTSTR
500: LOGICAL*1 STR(120), NEXTST(120)
501: INTEGER LEN, START, NXTLEN
502: C
503: INTEGER I, STRPTR
504: LOGICAL*1 CHAREQ, CHARPT
505: C
506: DOWHILE ((START.LE.LEN).AND. CHAREQ(STR(START),' '))
507: START = START + 1
508: ENDDO
509: STRPTR = 1
510: DOWHILE ((START.LE.LEN).AND.(.NOT.(CHAREQ(STR(START),' '))))
511: NEXTST(STRPTR) = STR(START)
512: START = START + 1
513:' STRPTR = STRPTR + 1
514: ENDDO
515: I = STRPTR
516: DOWHILE (I.LE.NXTLEN)
517: NEXTST(I) = CHARPTC ')
518: 1 = 1 + 1
519: ENDDO
520: NXTSTR = STRPTR - 1
521: RETURN
522: END
523: C
524: C STREQ(STR1,STR2,LEN) RETURNS 1 IF THE STRING IN CHAR ARRAY STR1 IS
525: C EQUIVALENT TO THE STRING IN CHARACTER ARRAY STR2.
526: C IT RETURNS 0 OTHERWISE. ARRAYS STR LAND STR2 ARE OF SIZE LEN.
527: C
528: FUNCTION STREQ(STR1,STR2,LEN)
529: LOGICAL* 1 STREQ, STRK120), STR2(120)
530: INTEGER LEN

A-27

3) Reading Functional Structural H>#

531: C
532: INTEGER I, START, 11, 12, NXTSTR
533: LOGICAL*1 CHAREQ
534: LOGICAL* 1 WORDK120), WORD2(120)
535: C
536: START = 1
537: 11 = NXTSTR(STR1.LEN,START,WORD1,120)
538: START = 1
539: 12 = NXTSTR(STR2,LEN,START,WORD2,120)
5̂ 0: I = 1
541: DOWHILE ((I .LE.I1) .AND.(I .LE.12) .AND. CHAREQ(WORD1(I) ,WORD2(I))
542: X .AND.(.NOT.(CHAREQ(WORD1(I) , ' ')))
543: X .AND.(.NOT.(CHAREQ(WORD2(I) , ' '))))
544: 1 = 1 + 1
545: ENDDO
546: .IF (((I .GT.I1) .AND.(I .GT.I2)) .OR.
547: X ((CHAREQ(WORDKI),' ')) .AND. (CHAREQ (WORD2CD ,' '))))
548: STREQ = 1
549: ELSE
550: STREQ = 0
551: ENDIF
552: RETURN
553: END
554: C
555: C WORDEQ(WORD1,PTR2) RETURNS 1 IF THE KEYWORD IN WORD(PTR2,J),J=1,12 IS
556: C EQUIVALENT TO THE WORD IN CHARACTER ARRAY WORD1.
557: C IT RETURNS 0 OTHERWISE.
558: C
559: FUNCTION WORDEQ(WORD1,PTR2)
560: LOGICAL*1 WORDEQ
561: LOGICAL* 1 WORD1O2)
562: INTEGER PTR2
563: C
564: LOGICAL*1 WORD(500,12), REFKEY(1000,3)
565: INTEGER NUMWDS, NUMREF, PTR(500), NEXT(IOOO)
566: COMMON /WORDS/ WORD, REFKEY, NUMWDS, NUMREF, PTR, NEXT
567: C
568: LOGICAL*1 WORD2(12), STREQ
569: INTEGER I
570: C
571: DO 700 I = 1, 12
572: WORD2(I) = WORD(PTR2,I)
573: 700 CONTINUE
574: .IF (STREQ(WORD1,WORD2,12))
575: WORDEQ = 1
576: ELSE
577: WORDEQ = 0
578: ENDIF
579: RETURN
580: END

A-28

PROGRAM 3 FAULTS

1. Three-character words are treated as keywords.

2. The key 'zzz1 is not recognized.

2. Any key greater than 'zzz' causes loop.

3. If action ADD occurs with key already in file, the

program acts like REPLACE; the update record is not

skipped.

4. if REPLACE key is not found, the program acts like

ADD; the update record is not skipped.

5. A maximum of 500 keywords and 1000 reference keys

are allowed.

6. Greater than 2 transactions for the same master

record produces incorrect results.

7. Keywords greater than 12 characters are truncated

and not distinguished.

8. UPDATE transaction with column 80 not an 'R'

produces same result as ADD.

9. Keyword indices appear in the opposite order from

that shown in specifications.

10. No check is made for unique keys in the master file.

11. Punctuation is made a part of the keyword.

12. A word appearing twice in a title gets two

cross-reference entries.

aAlternate manifestation of this error.

A-29

9846

APPENDIX B - DATA SUMMARY

This appendix contains a set of tables summarizing the re-

sults obtained from those subjects who passed the initial

screening and actually participated in the experiment. The

original materials provided by each subject are reproduced

in the Data Supplement.

B-l

9846

SUBJECT 02

EXPERIENCE LEVEL; Junior

COMPUTER: IBM

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 44

Percent Estimated Faults: 20

Hours To Detect: 4.75

Hours To Correct: .1.25

Hours per Fault: 1.5

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 86

Percent Estimated Faults: 75

Hours To Detect: 5

Hours To Correct: 2.5

Hours per Fault: 1.25

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 17

Percent Estimated Faults: 30

Hours To Detect: 6.75

Hours To Correct: 1

Hours per Fault: 3.88

B-2
9846

SUBJECT 03

EXPERIENCE LEVEL: Intermediate

COMPUTER; IBM

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 56

Percent Estimated Faults: 90

Hours To Detect: 3

Hours To Correct: 3

Hours per Fault: 1.2

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 100

Percent Estimated Faults: 95

Hours To Detect: 2.5

Hours To Correct: 0.75

Hours per Fault: 0.46

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 42•

Percent Estimated Faults: 70

Hours To Detect: 3.5

Hours To Correct: 3

Hours per Fault: 1.3

B-3
9846

SUBJECT 04

EXPERIENCE LEVEL; Junior

COMPUTER; VAX

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 33

Percent Estimated Faults: 100

Hours To Detect: 0.75

Hours To Correct: 1

Hours per Fault: 0.58

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults: 100

Hours To Detect: 2

Hours To Correct: 0.5

Hours per Fault: 0.36

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 50

Percent Estimated Faults: 70

Hours To Detect: 4

Hours To Correct: 4

Hours per Fault: 1.33

B-4
9846

SUBJECT 05

EXPERIENCE LEVEL; Intermediate

COMPUTER; VAX

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 78

Percent Estimated Faults: 100

Hours To Detect: 3.5

Hours To Correct: 4.25

Hours per Fault: 1.11

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 43

Percent Estimated Faults: 100

Hours To Detect: 4

Hours To Correct: 3.5

Hours per Fault: 2.5

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 90

Percent Estimated Faults: 43

Hours To Detect: 6.25

Hours To Correct: 1.75

Hours per Fault: 1.60

B-5
9846

SUBJECT 06

EXPERIENCE LEVEL: Junior

COMPUTER; VAX

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 67

Percent Estimated Faults: 75

Hours To Detect: 1.5

Hours To Correct: 1

Hours per Fault: 0.42

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 29

Percent Estimated Faults: 50

Hours To Detect: 0.75

Hours To Correct: 0.25

Hours per Fault: 0.5

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 25

Percent Estimated Faults: 50

Hours To Detect: 1.5

Hours To Correct: 0.25

Hours per Fault: 0.58

B-6
9846

SUBJECT 08

EXPERIENCE LEVEL; Junior

COMPUTER; IBM

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 44

Percent Estimated Faults: 93

Hours To Detect: 2.5

Hours To Correct: 3.5

Hours per Fault: 1.5

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 57

Percent Estimated Faults: 85

Hours To Detect: 4.5

Hours To Correct: 1

Hours per Fault: 1.38

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 17

Percent Estimated Faults: 80

Hours To Detect: 3.75

Hours To Correct: 0.75

Hours per Fault: 2.25

B-7
9846

SUBJECT 10

EXPERIENCE LEVEL; Advanced

COMPUTER; IBM

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 78

Percent Estimated Faults: 50

Hours To Detect: 5.5

Hours To Correct: 2.5

Hours per Fault: 1.14

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults:- 100

Hours To Detect: 1.25

Hours To Correct: 1.5

Hours per Fault: 0.39

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 50

Percent Estimated Faults: 80

Hours To Detect: 3

Hours To Correct: 2

Hours per Fault: 0.83

B-8
9846

SUBJECT 11

EXPERIENCE LEVEL; Junior

COMPUTER; VAX

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 67

Percent Estimated Faults: 75

Hours To Detect: 2.25

Hours To Correct: 0.5

Hours per Fault: 0.46

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 86

Percent Estimated Faults: 100

Hours To Detect: 1.5

Hours To Correct: 0.25

Hours per Fault: 0.29

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 42

Percent Estimated Faults: 90

Hours To Detect: 1.5

Hours To Correct: 1.5

Hours per Fault: 0.6

B-9
9846

SUBJECT 12

EXPERIENCE LEVEL; Junior

COiMPUTER; VAX

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 56

Percent Estimated Faults: 80

Hours To Detect: 3

Hours To Correct: 2

Hours per Fault: 1

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 43

Percent Estimated Faults: 75

Hours To Detect: 3.5

Hours To Correct: 3

Hours per Fault: 2.17

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 17

Percent Estimated Faults: 10

Hours To Detect: 6

Hours To Correct: 1

Hours per Fault: 3.5

B-10
9846

SUBJECT 13

EXPERIENCE LEVEL; Junior

COMPUTER; VAX

PROGRAM It

Verification Method: Structural

Percent Faults Found: 11

Percent Estimated Faults: 60

Hours To Detect: 1

Hours To Correct: 4

Hours per Fault: 5

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 57

Percent Estimated Faults: 80

Hours To Detect: 1.5

Hours To Correct: 2

Hours per Fault: 0.88

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 0

Percent Estimated Faults: 5

Hours To Detect: 4.5

Hours To Correct: 1.5

Hours per Fault:

B-ll
9846

SUBJECT 14

EXPERIENCE LEVEL; Junior

COMPUTER; IBM

PROGRAM 1:

Verification Method: Code Reading

Percent Faults Found: 89

Percent Estimated Faults: 90

Hours To Detect: 4

Hours To Correct: 1

Hours per Fault: 0.63

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 43

Percent Estimated Faults: 90

Hours To Detect: 3

Hours To Correct: 3.25

Hours per Fault: 2.08

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 33

Percent Estimated Faults: 80

Hours To Detect: 4

Hours To Correct: 3.5

Hours per Fault: 1.88

B-12
9846

SUBJECT 15

EXPERIENCE LEVEL; Intermediate

COMPUTER; VAX

PROGRAM 1;

Verification Method: Functional

Percent Faults Found; 67

Percent Estimated Faults: 75

Hours To Detect: 4.5

Hours To Correct: 3.5

Hours per Fault: 1.33

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults: 75

Hours To Detect: 2.5

Hours To Correct: 1

Hours per Fault: 0.50

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 33

Percent Estimated Faults: 60

Hours To Detect: 3.5

Hours To Correct: 2

Hours per Fault: 1.38

B-13
9846

SUBJECT 17

EXPERIENCE LEVEL; Junior

COMPUTER; IBM

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 33

Percent Estimated Faults: 40

Hours To Detect: 3

Hours To Correct: 1.5

Hours per Fault: 1.17

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 57

Percent Estimated Faults: 60

Hours To Detect: 3

Hours To Correct: 0.5

Hours per Fault: 0.88

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 25

Percent Estimated Faults: 30

Hours To Detect: 5

Hours To Correct: 1

Hours per Fault: 2

B-14
9846

SUBJECT 21

EXPERIENCE LEVEL; Junior

COMPUTER; VAX

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 33

Percent Estimated Faults: 90

Hours To Detect: 1.25

Hours To Correct: 1.5

Hours per Fault: 0.92

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 71

Percent Estimated Faults: 100

Hours To Detect: 1.25

Hours To Correct: 0.5

Hours per Fault: 0.35

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 17

Percent Estimated Faults: 20

Hours To Detect: 5

Hours To Correct: 0

Hours per Fault: 2.5

B-15
9846

SUBJECT 23

EXPERIENCE LEVEL; Intermediate

COMPUTER; IBM

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 11

Percent Estimated Faults: 2

Hours To Detect: 0.5

Hours To Correct: 0.5

Hours per Fault: 1

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 71

Percent Estimated Faults: 90

Hours To Detect: 0.5

Hours To Correct: 0.5

Hours per Fault: 0.2

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 8

Percent Estimated Faults: 60

Hours To Detect: 3

Hours To Correct: 1

Hours per Fault: 4

B-16
9846

SUBJECT 25

EXPERIENCE LEVEL; Intermediate

COMPUTER; IBM

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 44

Percent Estimated Faults: 70

Hours To Detect: 3.5

Hours To Correct: 2

Hours per Fault: 1.25

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 100

Percent Estimated Faults: 100

Hours To Detect: 3.25

Hours To Correct: 0.25

Hours per Fault: 0.5

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 0

Percent Estimated Faults: 0

Hours To Detect: 0.75

Hours To Correct: 0.5

Hours per Fault:

B-17
9846

SUBJECT 26

EXPERIENCE LEVEL: Intermediate

COMPUTER; VAX

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 22

Percent Estimated Faults: 50

Hours To Detect: 2

Hours To Correct: 0.75

Hours per Fault: 1.38

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 86

Percent Estimated Faults: 75

Hours To Detect: 3.25

Hours To Correct: 0.75

Hours per Fault: 0.67

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 25

Percent Estimated Faults: 75

Hours To Detect: 2

Hours To Correct: 0.5

Hours per Fault: 0.83

B-18
9846

SUBJECT 28

EXPERIENCE LEVEL; Intermediate

COMPUTER; VAX

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 44

Percent Estimated Faults: 95

Hours To Detect: 0.75

Hours To Correct: 2

Hours per Fault: 0.69

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults: 100

Hours To Detect: 0.75

Hours To Correct: 0.5

Hours per Fault: 0.18

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 17

Percent Estimated Faults: 60

Hours To Detect: 2

Hours To Correct: 2.5

Hours per Fault: 2.25

B-19
9846

SUBJECT 29

EXPERIENCE LEVEL; Advanced

COMPUTER; IBM

PROGRAM 1;

Verification Method; Structural

Percent Faults Found: 33

Percent Estimated Faults: 80

Hours To Detect: 2

Hours To Correct: 2.25

Hours per Fault: 1.42

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 43

Percent Estimated Faults: 100.

Hours To Detect: 2.75

Hours To Correct: 1.25

Hours per Fault: 1.33

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 50

Percent Estimated Faults: 90

Hours To Detect: 2

Hours To Correct: 1.5

Hours per Fault: 0.88

B-20
9846

SUBJECT 30

EXPERIENCE LEVEL; Intermediate

COMPUTER; VAX

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 44

Percent Estimated Faults: 81

Hours To Detect: 3

Hours To Correct: 0.5

Hours per Fault: 0.88

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 86

Percent Estimated Faults: 90

Hours To Detect: 2.25

Hours To Correct: 0.75

Hours per Fault: 0.5

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 25

Percent Estimated Faults: 80

Hours To Detect: 2.5

Hours To Correct: 1.75

Hours per Fault: 1.42

B-21
9846

SUBJECT 35

EXPERIENCE LEVEL; Advanced

COMPUTER; IBM

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 67

Percent Estimated Faults: 85

Hours To Detect: 2

Hours To Correct: 2

Hours per Fault: 0.67

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 100

Percent Estimated Faults: 85

Hours To Detect: 3.5

Hours To Correct: 1

Hours per Fault: 0.64

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 42

Percent Estimated Faults: 75

Hours To Detect: 2

Hours To Correct: 3

Hours per Fault: 1

B-22
9846

SUBJECT 36

EXPERIENCE LEVEL; Intermediate

COMPUTER: VAX

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 33

Percent Estimated Faults: 50

Hours To Detect: 0.75

Hours To Correct: 2

Hours per Fault: 0.92

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults: 90

Hours To Detect: 0.75

Hours To Correct: 0.5

Hours per Fault: 0.18

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 25

Percent Estimated Faults: 75

Hours To Detect: 2

Hours To Correct: 2

Hours per Fault: 1.33

B-23
9846

SUBJECT 37

EXPERIENCE LEVEL: Junior

COMPUTER: VAX

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 44

Percent Estimated Faults: 80

Hours To Detect: 2

Hours To Correct: 2

Hours per Fault: 1

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 86

Percent Estimated Faults: 95

Hours To Detect: 0.75

Hours To Correct: 0.5

Hours per Fault: 0.21

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 33

Percent Estimated Faults: 90

Hours To Detect: 6

Hours To Correct: 1.5

Hours per Fault: 1.88

B-24
9846

SUBJECT 38

EXPERIENCE LEVEL; Advanced

COMPUTER; IBM

PROGRAM 1;

Verification Method; Reading

Percent Faults Found: 67

Percent Estimated Faults: 90

Hours To Detect: 6.75

Hours To Correct: 1.5

Hours per Fault: 1.38

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 57

Percent Estimated Faults: 90

Hours To Detect: 2.75

Hours To Correct: 1.5

Hours per Fault: 1.06

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 17

Percent Estimated Faults: 60

Hours To Detect: 5

Hours To Correct: 1

Hours per Fault: 3

B-25
9846

SUBJECT 40

EXPERIENCE LEVEL; Intermediate

COMPUTER; IBM

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 44

Percent Estimated Faults: 70

Hours To Detect: 1.5

Hours To Correct: 1.5

Hours per Fault: 0.75

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 71

Percent Estimated Faults: 100

Hours To Detect: 2

Hours To Correct: 0.5

Hours per Fault: 0.5

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 33

Percent Estimated Faults: 51

Hours To Detect: 3

Hours To Correct: 1

Hours per Fault: 1

B-26
9846

SUBJECT 41

EXPERIENCE LEVEL: Junior

COMPUTER; VAX

PROGRAM 1;

Verification Method: Reading

Percent Faults Found: 56

Percent Estimated Faults: 100

Hours To Detect: 3.5

Hours To Correct: 1

Hours per Fault: 0.9

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 57

Percent Estimated Faults: 60

Hours To Detect: 2.25

Hours To Correct: 1.5

Hours per Fault: 0.94

PROGRAM 3;

Verification Method: Structural

Percent Faults Found: 25

Percent Estimated Faults: 80

Hours To Detect: 2.75

Hours To Correct: 1.5

Hours per Fault: 1.42

B-27
9846

SUBJECT 42

EXPERIENCE LEVEL; Advanced

COMPUTER; VAX

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 44

Percent Estimated Faults: 90

Hours To Detect: 2

Hours To Correct: 0.5

Hours per Fault: 0.63

PROGRAM 2;

Verification Method: Functional

Percent Faults Found: 57

Percent Estimated Faults: 100

Hours To Detect: 3.5

Hours To Correct: 1.5

Hours per Fault: 1.25

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 33

Percent Estimated Faults: 50

Hours To Detect: 2.5

Hours To Correct: 0.5

Hours per Fault: 0.75

B-28 " & '
9846

SUBJECT 43

EXPERIENCE LEVEL; Intermediate

COMPUTER; IBM

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 44

Percent.Estimated Faults: 85

Hours To Detect: 1.5

Hours To Correct: 3

Hours per Fault: 1.13

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 14

Percent Estimated Faults: 90

Hours To Detect: 0.75

Hours To Correct: 0.75

Hours per Fault: 1.5

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 25

Percent Estimated Faults: 60

Hours To Detect: 3

Hours To Correct: 0.5

Hours per Fault: 1.17

B-29
9846

SUBJECT 45

EXPERIENCE LEVEL; Advanced

COMPUTER; VAX

PROGRAM 1;

Verification Method: Functional

Percent Faults Found: 44

Percent Estimated Faults: 90

Hours To Detect: 1.5

Hours To Correct: 2.25

Hours per Fault: 0.94

PROGRAM 2;

Verification Method: Structural

Percent Faults Found: 86

Percent Estimated Faults: 100

Hours To Detect: 1.5

Hours To Correct: 0.5

Hours per Fault: 0.33

PROGRAM 3;

Verification Method: Reading

Percent Faults Found: 42

Percent Estimated Faults: 80

Hours To Detect: 3.25

Hours To Correct: 0.75

Hours per Fault: 0.8

3-30
9846

SUBJECT 47

EXPERIENCE LEVEL; Advanced

COMPUTER; VAX

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 44

Percent Estimated Faults: 83

Hours To Detect: 1.25

Hours To Correct: 2.5

Hours per Fault: 0.94

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults: 100

Hours To Detect: 1.5

Hours To Correct: 1.25

Hours per Fault: 0.39

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 50

Percent Estimated Faults: 70

Hours To Detect: 7.25

Hours To Correct: 3.5

Hours per Fault: 1.79

B-31
9846

SUBJECT 48

EXPERIENCE LEVEL; Advanced

COMPUTER; IBM

PROGRAM 1;

Verification Method: Structural

Percent Faults Found; 33

Percent Estimated Faults: 50

Hours To Detect: 1.25

Hours To Correct: 0.25

Hours per Fault: 0.5

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults: 90

Hours To Detect: 1

Hours To Correct: 0.25

Hours per Fault: 0.18

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 33

Percent Estimated Faults: 80

Hours To Detect: 3.75

Hours To Correct: 2.25

Hours per Fault: 1.56

B-32
9846

SUBJECT 50

EXPERIENCE LEVEL; Junior

COMPUTER; IBM

PROGRAM 1;

Verification Method: Structural

Percent Faults Found: 11

Percent Estimated Faults: 100

Hours To Detect: 2

Hours To Correct: 1

Hours per Fault: 3

PROGRAM 2;

Verification Method: Reading

Percent Faults Found: 100

Percent Estimated Faults: 100

Hours To Detect: 0.5

Hours To Correct: 2

Hours per Fault: 0.36

PROGRAM 3;

Verification Method: Functional

Percent Faults Found: 17

Percent Estimated Faults: 80

Hours To Detect: 3

Hours To Correct: 2

Hours per Fault: 2.5

B-33
984b

APPENDIX C - FAULTS FOUND

Figures C-l through C-3 show the distribution of faults

found by subjects during the experiment for the three test

programs. The subject identification number and verifica-

tion technique applied are also indicated in the figures.

C-l

9846

X

1-

gm
n
Cn
o

i8

a
3

cu
Cn
C

•H
-P
en
a>
EH

D en
-P
•H
3

U] (A » (O

1
1 1

S 2"^ P o
Ul o 3a z K
O D t-
U u. (O

II II II

U)

8

SU31S31 dO d38l«inN

U

0)
M
3
tn

•M

C-2

S8/I.16I-9C86

CO
m

(/) CO
in «-

oc
CN

CO CO

CO
CM

CO
in

LU

en
CD H

5 <

"• F- oLU o r>o z oc
o u_ co

a
z

2
CO

<o

do

CN

•H
^J
en
OJ

EH

en
4J

tn
(U

CN
I
U

(1)

tn
•H

C-3

S8/I.16I-9W6

CO CO cc <r
CM O-

CO CO
co 5

OCto

CO CO CO
00 CM

LL OC OC

S t- CM
CM i-

UJ
^ I

CO

15
Q <
< 2
UJ o

UJ o

§ %
(J u.

II II
CC U.

CO
UJ

_l
<
oc
D

u
DC

CO
II

(O

~
CM

2
CO

£
(0

Cn
C

•H
+J
tn
0)
E-i

0

w
-u

w
a)

I
U

(U
^1
3
tP

•H

co to

saaisai do

C-4

REFERENCES

1. M. S. Deutsch, "Verification and Validation," Software
Engineering. New Jersey: Prentice Hall, Inc., 1979

2. M. Dyer and H. D. Mills, "Cleanroom Software Develop-
ment," Proceedings of the Sixth Annual Software Engi-
neering Workshop, December 1981

3. B. Beizer, Software System Testing and Quality Assur-
ance. New York: Van Nostrand Reinhold, 1984

4. Linger, Mills, and Witt, "Reading Structured Programs,"
Structured Programming; Theory and Practice.
New York: Addison-Wesley, 1979

5. G. J. Myers, "Test-Case Design," The Art of Software
Testing. New York: John Wiley & Sons, 1979

6. B. Beizer, Software Testing Techniques. New York:
Van Nostrand Reinhold, 1983

7. R. W. Selby, V. R. Basili, G. T. Page, and
F. E. McGarry, "Evaluating Software Testing Strategies,"
Proceedings of the Ninth Annual Software Engineering
Workshop, November 1984

8. R. w. Selby, "A Quantitative Approach for Evaluating
Software Technologies," University of Maryland, Ph.D.
Thesis, December 1984

9. Software Engineering Laboratory, SEL-81-104, The Soft-
ware Engineering Laboratory, D. N. Card, F. E. McGarry,
G. Page, et al., February 1982

10. G. E. Box, W. G. Hunter, and J. S. Hunter, Statistics
for Experimenters. New York: John Wiley & Sons, 1978

11. S. V. Hwang, An Empirical Study in Functional Testing,
Structural Testing, and Code Reading/Inspection,
University of Maryland, Scholarly Paper 362, December
1981

12. R. W. Selby, "An Empirical Study Comparing Software
Testing Techniques," Presented at the Sixth Minnowbrook
Workshop on Software Performance Evaluation, July 1983

R-l

9846

13. D. N. Card, F. E. McGarry, and G. T. Page," Evaluating
Software Engineering Technologies," Proceedings of the
Eighth Annual Software Engineering Workshop, November
1983

14. G. J. Myers, "A Controlled Experiment in Program Testing
and Code Walkthroughs/Inspections," Communications of
the ACM, September 1978

15. W. C. Hetzel, "An Experimental Analysis of Program Veri-
fication Methods," University of North Carolina, Ph.D.
Thesis, 1976

16. E. Soloway and K. Ehrlich, "Empirical Studies of Pro-
gramming Knowledge," IEEE Transactions on Software Engi-
neering, September 1984

17. M. S. Deutsch, "Verification and Validation," Software
Engineering. New Jersey; Prentice-Hall, Inc., 1979

18. G. T. Page, F. E. McGarry, and D. N. Card, "A Practical
Experience with Independent Verification and Valida-
tion," Proceedings of the Eighth International Computer
Software and Applications Conference, November 1984

19. Computer Sciences Corporation, CSC/TM-78/6296, Accept-
ance Test Methods, J. Niblack, October 1978

R-2

9846

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-OU2, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, p. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-OOb, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

BL-1

9846

SEL-78-202, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 2) , W. J. Decker and-
W. A. Taylor, April 1985

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PPL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software SysFem (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-
scription and User's Guide (Revision 1), W. Decker and
W. Taylor, December 1982

BL-2

9846

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User *s Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. 0.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-G14, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Engineering Laboratory (SEL) Document
Library (DQCLIB) System Description and User's Guide (Re-
vision 1), W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page
and F. McGarry, December 1983

SSL-81-203, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

3EL-81-205, Recommended Approach to software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

BL-3

9846

SEL-82-001, Evaluation of Management Measures of Software
Developmentf G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers; Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes; The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revision 1), W. A. Taylor and
W. J. Decker, April 1982

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-206, Annotated Bibliography of Software Engineering
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1984

SEL-83-OU1, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers; Vol-
ume II, November 1983

SEL-83-U06, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-83-104, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) User's Guide, T. A. Babst,
W. J. Decker, P. Lo, and W. Miller, August 1984

BL-4

9846

SEL-83-105, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) System Description, P. Lo,
W. J. Decker, and W. Miller, August 1984

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, V. E. Church, and F. E. McGarry, April 1984

SEL-84-002, Configuration Management and Control; Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. Agresti,
V. Church, and F. E. McGarry, December 1984

SEL-85-001, A Comparison of Software Verification Tech-
niques, D. Card, R. Selby, F. McGarry, et al., April 1985

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

•'•Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

2Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

2Basili, v. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

2Basili, v. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

2Basili, v. R., and K. Freburger, "Programming Measurement
ana Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

BL-5

9846

•'-Basili, V. R. , and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

V. R., and T. Phillips, "Evaluating and Com-
paring Software Metrics in the 'Software Engineering Labora-
tory," Proceedings of the ACM SIGMETRICS Symposium/
Workshop; Quality Metrics, March 1981

V. R., R. W. Selby, and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

Basili, V. R. , and J. Ramsey, Structural Coverage of Func-
tional Testing, University of Maryland, Technical Report
TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

V.R., and D. M. Weiss, A Methodology for Col-
lecting Valid Software Engineering Data, University of
Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

2Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

2Basili, V. R. , and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R. , and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: Com-
puter Societies Press, 1978

2Basili, V. R. , and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

BL-6

9846

2Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering'New York:Computer Societies Press, 1981

^oerf linger, C. W., and V. R. Basili, "Monitoring Soft-
ware Development Through Dynamic Variables," Proceedings of
the Seventh International Computer Software and Applications
Conference.New York:Computer Societies Press, 1983

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference,November1984

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

^Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York:Computer Societies Press,1979

1Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),
November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

1This article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers; Volume II, November 1983.

2This article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers; Volume I, July 1982.

BL-7

9846

