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FOREWORD

The Software Engineering Laboratory (SEL) is an organization

Sponsored by he National Aeronautics and Space Administra-

tion, Goddard Space Flight Center (NASA/GSFC) and created

for the purpose of investigating the effectiveness of soft-

ware engineering technologies when applied to the develop-

ment of applications software. The SEL was created in 1977

and has three primary organizational members:

NASA/GSFC (System Developement and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

the goals of the SEL are (1) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as Computer Sciences Corporation document

CSC/TM-85/6086.

The primary contributors to this document are

Dave Card (Computer Sciences Corporation)
Betsy Edwards (Goddard Space Flight Center)
Frank McGarry (Goddard Space Flight Center)
Cindy Antle (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 552
NASA/GSFC
Greenbelt, Maryland 20771
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ABSTRACT

General procedures for software verification and validation

are provided as a guide for managers, programmers, and ana-

lysts involved in software development. The verification

and validation procedures described are based primarily on

testing techniques. Testing refers to the execution of all

or "part of a software system for the purpose of detecting

errors. Planning, execution, and analysis of tests are out-

lined in this document. Code reading and static analysis

techniques for software verification are also described.
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SECTION 1 - INTRODUCTION

This document describes a recommended set of verification

and validation activities that software developers should

perform to ensure the delivery of reliable, cost-effective

software. Its intent is to provide a practical reference

for managers, programmers, and analysts. Most of these ver-

ification and validation activities involve testing. These

terms are defined as follows:

• Verification is the process of ensuring that each

intermediate product of each phase of the software life

cycle is consistent with previous phases. This document

describes the use of static analysis, code reading, and

testing to ensure that the software is a faithful rendition

of the design.

• Validation is the process of ensuring that each

intermediate product of each phase of the software life

cycle accurately responds to the underlying system require-

ments. This document describes the use of testing techniques

to ensure that requirements are reflected in the software.

The objective of testing is to ensure that a reliable and

effective product is delivered to the customer. Neverthe-

less, testing cannot substitute for an effective software

implementation; it can only detect its absence. Together

with quality assurance and configuration management, how-

ever, testing and especially nontesting verification tech-

niques (Section 2) provide the tools that detect problems

before their effects become too great.

Departures from the general procedures for static analysis,

code reading, and testing outlined in this document must be

specified in the pertinent software development plan
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(Reference 1). Guidelines for configuration management and

quality assurance are described in Reference 2.

The following subsections identify the verification and val-

idation activities to be discussed and show where they occur

in the software life cycle. Sections 2 through 7 describe

every activity area/phase in detail. Section 8 reiterates

the major points made elsewhere in the document.

1.1 VERIFICATION AND VALIDATION ACTIVITIES

Software developers employ many different terms to label

verification and testing activities. Often these terms are

not consistent even within a single software development

organization. This section provides simple definitions of

some of the most common terms. The software verification

and testing activities discussed in this document include

the following:

• Static Analysis—Evaluation of a program by a soft-

ware tool that does not execute the program

• Dynamic Analysis—Evaluation of a program by moni-

toring its behavior during execution

• Code Reading—Examination of compiled code by some-

one other than the developer to identify faults

• Software Inspection—Formal review of a program

including the design description, source code, and

test plans

• Debugging—Trial-and-error process whereby a pro-

grammer attempts to isolate the cause of an error

detected during testing

• Unit Testing—Execution of part of a system under

controlled conditions to detect errors in internal

logic and algorithms

1-2

0022



• Integration Testing—Execution of two or more mod-

ules under controlled conditions to detect errors

in intermodule logic and interfaces

• Build Testing—Execution (in accordance with a test

plan) of a set of modules, comprising one or more

complete functions, to detect errors

• System Testing—Execution of a complete system as

directed by a test plan to detect errors

• Acceptance Testing—Execution of a completed system

by nondeveloper personnel to demonstrate that the

system satisfies requirements

• Regression Testing—Repetition of previous tests

after a system has been changed to ensure that the

change has had no unintended effects

• Certification—Process of declaring that a system

is acceptable and ready for operation

1.2 APPROACHES TO TESTING

Testing is a primary tool for ensuring the effectiveness and

reliability of software. It involves not only running tests

but also designing, preparing, and evaluating them. Testing

compares the software product against a statement of what

was intended, either the requirements specification or the

design description. Effective testing will identify signif-

icant problems so that some resolution of them can be made

prior to software delivery. Figure 1-1 illustrates the test

process.

Testing is not debugging (the informal process by which a

programmer attempts to isolate the cause of a previously

identified failure). Testing starts with known conditions,

uses predefined procedures, and attempts to produce predict-

able outcomes. Only the success or failure of the test is

undetermined.
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REQUIREMENTS
OR DESIGN

TEST DATA
TEST

REPORT

Figure 1-1. The Testing Process

Debugging starts from unknown conditions and its end cannot

be predicted. It continues until the error is found.

The following subsections discuss three general strategies

for designing tests (i.e./ selecting test cases): func-

tional, structural, and operational. Each of these has

strengths and weaknesses. A successful tester will employ

all of these techniques to some extent. These strategies

apply to all phases of testing to some degree.

1.2.1 FUNCTIONAL TESTING

Functional testing is one strategy for designing and select-

ing test cases. It treats the software like a "black box."

Input is supplied, and output is observed. Comparison of

the software (requirements) specification with the observed
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input/output relationship indicates whether an error is

present in the software. Functional testing does not re-

quire the tester to have any knowledge of the design or

operation of the software.

For functional testing to be complete, all possible input

must be tested. Clearly, this is not practical for a pro-

gram of any significant size. Several strategies may be

followed to define smaller sets of input for testing that

still provide reasonable confidence in the system.

One informal approach is to identify the major functional

capabilities specified in the requirements, then select a

set of input values that fully exercise those functions.

Handling of boundary values and error conditions as well as

the main processing stream should be tested. This approach

usually drives acceptance test planning.

Other formal approaches to functional testing include equiv-

alence partitioning (Reference 3) and statistical testing

(Reference 4). Equivalence partitioning reduces the set of

possible input values to a subset of functionally equivalent

classes. Statistical testing selects a random subset from

among the possible test cases.

1.2.2 STRUCTURAL TESTING

Structural testing is another strategy for designing and

selecting test cases. As opposed to functional testing, it

treats the software like a "white box." Tests are specified

based on an examination of the software structure (rather

than the specification). Structural testing compares the

detailed system design to its software implementation.

Ideally, structural tests should be based on the program

design language (PDL) and developed at the same time as the

PDL. Structural tests alone do not provide a mechanism for

verifying the software against the specification.
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Coverage (the degree to which the software is exercised)

serves as the basic criterion for completion of structural

testing (Reference 3). Three levels of coverage are recog-

nized: Statement coverage requires that every statement in

the source code be executed at least once. Condition (or

branch) coverage requires that each outcome of every deci-

sion be executed at least once. Path coverage requires that

every possible sequence of decision outcomes be executed.

(Path testing can lead to an impractically large number of

tests for a program of any significant size or complexity.

For example, backward transfers can produce an infinite num-

ber of paths.) In practice, ensuring that every statement

and every condition (but not necessarily all combinations of

them) is executed provides adequate coverage.

1.2.3 OPERATIONAL TESTING

Operational testing is a strategy based on simulating the

expected operational environment. Functionally and struc-

turally based testing tend to consider the software in iso-

lation. Yet, other factors such as hardware, operator

actions, and the physical environment affect the functioning

of software. These factors may not be fully evaluated in a

controlled test environment. Frequently, system testing

occurs on a development computer rather than the eventual

operational computer. These computer configurations can

differ significantly. Consequently, developers may adopt

operational testing techniques as part of the acceptance

testing process. (Acceptance testing should always be per-

formed on the operational computer.)

Operational testing may be performed by simulating the ex-

pected workload and environment, running the system in par-

allel with the existing manual or automatic system, or making

cautious use of the system for actual production. Simulating
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operational conditions and running in parallel can be expen-

sive. Frequently, large systems are released tentatively

for operation to multiple users ("beta testing"). During

this test period, users record errors and report them to the

developers.

1.3 FLIGHT DYNAMICS LIFE CYCLE

This document is based on experience in and analysis of

flight dynamics software development. Flight dynamics ap-

plications include spacecraft attitude determination/control,

orbit adjustment, mission planning, and support tools. Most

of these projects are developed in FORTRAN on IBM mainframes

or DEC minicomputers. Typical projects produce from 30,000

to 150,000 source lines of code. Schedules range from 13 to

21 months. Figure 1-2 shows the software life cycle for

flight dynamics. Reference 1 describes the software life

cycle and other software development activities in more

detail.

Software verification and validation activities span the

entire software life cycle, not just system and acceptance

testing. Test planning occurs during requirements analysis

and design. Testing begins in implementation and continues

throughout the life of the software product. Table 1-1

identifies the major life cycle verification and validation

activities and the relevant techniques. The rest of this

document explains these verification and validation activi-

ties in detail.
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Table 1-1. Application of Techniques

Life-Cycle Activities

Technique

Static Analysis

Dynamic Analysis

Code Reading

Structural Testing

Functional Testing

Regression Testing

Operational Testing

Coding,
Unit
Testing,
Debugging

X

X

X

X

X

-
-

Integra-
tion

Testing

-
-

X

X

X

-

System
Testing

-
-

X

X

X

-

Acceptance
Testing

-

-

"

X

X

X

X

NOTE; X indicates technique is used for this activity.

1-9

0022



SECTION 2 - NONTESTING VERIFICATION TECHNIQUES

Static analysis and code reading are nontesting verification

techniques that detect many common errors. Static analysis

usually precedes code reading. All newly developed code

must be read. Especially critical or complex modules may

also undergo a formal software inspection as part of the

quality assurance process (see Reference 2). The technical

manager must allocate sufficient time and resources for

these activities during implementation. Experience shows

that the benefits of code reading exceed its cost, so skimp-

ing on this activity will ultimately prove detrimental.

2.1 STATIC ANALYSIS

Static analysis consists of processing a coded module

through a software tool to detect errors and identify prob-

lem areas. Examples of such tools include compilers, inter-

face checkers, and source analyzers. The programmer's first

step after coding a module is usually to compile it. In

addition to the syntax errors reported, most compilers offer

other software aids. The cross-reference listing is espe-

cially useful. Undeclared arrays and misspelled variable

names, for example, stand out with only a cursory inspection

of this listing.

Processing a module through the Static Source Code Analyzer

Program (Reference 5) can identify problem areas. For exam-

ple, modules of exceptional complexity (many descendants) or

with a large number of unreferenced variables are especially

error-prone. Code readers should give extra attention to

these modules.

An interface checker, such as RXVP80 (Reference 6), proc-

esses a subsystem or complete system to detect inconsistent

calling sequences and external references. Because it
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handles groups of modules, the interface checker may only be

applied after some related modules (e.g., a subsystem) have

been coded and read.

Generally, static analysis should precede code reading. The

results (clean compile, cross-reference, SAP report, etc.)

of any static analysis performed should be provided to the

code reader. The next section describes some common code-

reading techniques.

2.2 CODE READING

Code reading is a systematic procedure for reading and

understanding the operation of a program. An experienced

developer (not the original programmer) reads code to deter-

mine if a program is correct with respect to its intended

function. Techniques of code reading include checklists and

simulated execution. In practice, developers employ some

aspects of both techniques. Some general guidelines for

code reading are as follows:

• The code reader need not be a member of the devel-

opment team.

• The developer should not be present during the

code-reading process.

• The intended function of the code must be extract-

able from the commentary or a separate explanation

must be provided.

• Only cleanly compiled code should be presented for

code reading.

• Code should be submitted for reading in increments

that require 1/2 hour or less of the reader's time

(i.e., one to four subroutines).

• Code must be read and returned with comments to the

developer within 1/2 day.
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• The code-reading process must be recorded in the

unit development folder (i.e., date read and by

whom) .

Code reading is not intended to redesign, evaluate alterna-

tives, or find solutions; its purpose is to find faults and

deficiencies. Corrections should be made by the original

developer. The technical manager must ensure that all code

is read and corrections are made.

The first step in code reading is to extract the intended

function of the module by reviewing the code and supporting

materials. The following subsections explain two approaches

to detecting problems--checklists and simulated execution--

and indicate the areas in which each is especially effec-

tive. Careful code reading will result in clear, complete,

and correct code.

2.2.1 CHECKLISTS

The checklist approach to code reading is the simplest

method of code reading. Using this technique, the reader

examines the source code to answer a predefined set of ques-

tions. Checklists (of questions) are a very effective means

of detecting certain common errors and ensuring conformance

to standards. Major areas of concern are as follows:

• Verify that calling sequences and argument lists

agree in number, type, and units

• Verify that all local variables are defined, ini-

tialized, and used

• Verify that indices are correctly initialized and

used

• Verify that file definitions and unit numbers are

consistent and match the design
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• Verify that a path is defined for every outcome of

a logical decision (providing a default if nec-

essary)

• Check that the presentation of the code is clear

and adequately documented

The Appendix provides a sample checklist for finding common

errors. Reference 7 provides more information.

2.2.2 SIMULATED EXECUTION

Another approach to code reading is to simulate the execu-

tion of the module under review manually. The reader traces

the flow of input data through the module, recording the

current values of all variables on a separate sheet of

paper. A compiler-generated cross-reference listing pro-

vides a good template for this record. At the end of execu-

tion or exit from the module, these values are compared with

the design specification and any discrepancies are noted.

The input values may be either symbolic (e.g., using T to

represent time) or typical (similar to those likely to be

encountered in actual operation). Simulated execution is a

good technique for uncovering logic errors (especially in

complex algorithms) but may fail to detect other types of

errors. Code readers should use it in conjunction with

other techniques.
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SECTION 3 - UNIT TESTING

Unit testing is the process of executing a functional subset
of a software system to determine that it performs its as-
signed function. All modules must be unit tested. Espe-
cially complex or critical modules may be unit tested in
isolation. Usually the individual programmer develops an
informal plan and performs the testing.

3.1 PLANNING

Unit testing does not require the formal planning and pro-
cedures that apply to system and acceptance testing. How-

ever, some general guidelines for preparing unit tests are
as follows:

• A unit must include one or more logically related
modules.

• Te'st data, the test driver, and stubs must be de-

veloped by the programmer.

• Unit testing takes place only after the code has

been read (Section 2.2).

• After successful unit testing, modules must be sub-
mitted to the controlled library.

3.2 EXECUTION

Figure 3-1 illustrates the unit testing process. For a mod-
ule tested in isolation, unit testing begins by developing a
test driver and stubs. Alternatively, a high-level driver

that is planned to be part of the final system may assume
the role of test driver for a group of modules. Any dummy
routines are combined with the modules to be tested in an
executable load module. This load module is executed using
test data developed by the programmer. Small tested units
may be combined to form larger units for further testing.

3-1
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In this case, programmers may adopt some of the techniques

described in Section 4 for integration testing.

DRIVER, -
MOOULE(S),
AND STUBS

FAILED MODULE(S)
(TO BE CORRECTED
BY PROGRAMMER) CONTROLLED

LIBRARY

0022/85

Figure 3-1. Unit Testing Process

In the test driver, input variables are initialized and

passed to the routine to be tested. Additional debug output

features may be added to the driver. An example of a test

driver is shown in Figure 3-2. In this example, values of

the input and output variables are saved for later inspec-

tion.

A FORTRAN stub consists of a SUBROUTINE statement, a line of

debug output, and a RETURN, as follows:

SUBROUTINE STUBX (VAR1, VAR2)

WRITE (1, 100)

100 FORMAT (' *** ENTERED STUBX ***')

RETURN

END

Dynamic debugging tools may help to monitor and analyze unit

tests.
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3.3 ANALYSIS

After testing, the output from the test driver and the

tested modules is examined. If the test cases were handled

satisfactorily, the unit is submitted to the controlled li-

brary. Transfer of modules to the controlled library must

be approved by the technical manager. Subsequent changes to

modules in the controlled library follow special procedures

(Reference 2) .
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SECTION 4 - INTEGRATION TESTING

After unit testing is completed, all modules must be inte-

gration tested. A single integration team performs this

function for the entire system. During integration testing,

the system is slowly built up by adding one or a few modules

at a time to the core of already integrated modules. The

two basic approaches to incremental integration testing are

top-down and thread testing (Reference 8). Figure 4-1 con-

trasts these approaches.

TOP-DOWN TESTING THREAD TESTING

PREVIOUSLY INTEGRATED MODULES

MODULES INTEGRATED THIS ITERATION

SOFTWARE STUB

Figure 4-1. Integration Testing Techniques

Both begin with the top-level driver and require the substi-

tution of stubs for not-yet-integrated modules. Top-down

testing integrates additional modules level by level. Thread

testing builds a single end-to-end path that demonstrates a

4-1
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basic functional capability, then adds on to that. Top-down

testing generally requires less time, but thread testing

allows some operational capability to be demonstrated sooner.

4.1 PLANNING

Integration testing usually does not require the formal

planning that applies to system and acceptance testing.

However, its procedures are more carefully controlled than

unit testing. The development of formal integration test

plans must be specified in the software development plan if

they are required. Some important points to consider are as

follows:

• Usually, a subset of the development team performs

all integration testing.

• This testing may rely on data and procedures de-

fined in the system test plan, but formal integra-

tion test plans are usually not developed in this

environment.

• Alternatively, integration testing may be based on

the individual programmer's unit tests.

• Only modules already accepted into the controlled

library may be integration tested.

4.2 EXECUTION

Integration testing follows the hierarchical system struc-

ture. Modules must be integrated a few at a time so that

the location of newly detected errors will be constrained.

Two or more modules on successive levels should never be

integrated in the same test. Modules called by those cur-

rently being integrated are represented by stubs. Succes-

sive levels of modules are integrated into the system by

replacing stubs with actual software modules. Additional
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stubs are added and replaced as needed,

trates the integration testing process.

Figure 4-2 illus-

PREVIOUS TEST
UNIT

INFORMAL
TEST PLAN

FAILED MODULE(S)
(TO BE CORRECTED
PER PROCEDURES)

TEST DATA

0022/85

Figure 4-2. Integration Testing Process

4.3 ANALYSIS

Analysis of integration testing results is informal unless

formal test plans are required. The integration team com-

pares test results with design specifications to determine

whether a problem exists. Problems are reported to the

technical manager, who refers them to the original program-

mers for correction. Changes to modules in the controlled

library must be approved by the technical manager and re-

ported on change report forms (see Appendix). Changed mod-

ules must undergo unit testing again.
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SECTION 5 - BUILD/SYSTEM TESTING

Large software systems are implemented as a series of in-

creasingly complete partial systems called builds. A build

is a portion of a software system that satisfies, wholly or

in part, a subset of the requirements (Reference 9). The

first build of a system consists of the most basic functional

capabilities. New capabilities are added to each build, and

each build must be tested separately. The final build com-

prises the whole system. In the case of a system implemented

in three builds, the builds would typically be defined as

follows:

1. Main drivers; data input subsystem; and interfaces

to graphics, data base, and operating systems

2. Primary processing subsystem from input to output

3. Full system including results output subsystem,

error handling, and secondary processing options

The capabilities of each build for a system must be defined

in the software development plan (Reference 1). Generally,

each build should add a major function to the system. Fig-

ure 5-1 provides an example of build definition.

Build and system testing are performed and evaluated by a

system test team. The test plans and test results should be

reviewed by a quality assurer (Reference 2). System test

planning and procedures are formal. Some important points

to consider include the following:

• Usually, system tests are planned and executed by a

subset of the development team or by an independent

test team.
0

• Testing time may have to be scheduled well in

advance to ensure adequate computer resources.
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• Test plans, data, and results must be archived to

provide for regression testing.

• Discrepancies and changes must be formally recorded

and reviewed.

• System testing must probe both functional and oper-

ational requirements.

5.1 PLANNING

Build tests and system tests are very similar. Both build

and system tests are based on the design (of a build or the

system, respectively) and on the requirements. A set of

formal system test plans must.be produced by the development

team and quality assured. Figure 5-2 shows the test plan-

ning process. Build tests may be subsets of the system

tests. This, however, must be indicated in the system test

plan, or separate build test plans must be developed. The

complete description of a system test will include the fol-

lowing:

• Purpose of test, i.e., specific capabilities or

requirements tested

• Detailed specification of input

• Required environment, e.g., data sets required,

computer hardware necessary

• Operational procedure, i.e., how to do the test

• Detailed specification of output, i.e., the ex-

pected results

An example of an individual test plan is given in the Appen-

dix. A complete test plan consists of a set of such indivi-

dual plans.

Build/system test plans may be developed based on an analy-

tical test plan or on the acceptance test plan prepared by

the analysis team. An analytical test plan shows how the
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computational accuracy of the system can be verified. It

may be incorporated in the build/system test plan by refer-

ence, or it may be partially rewritten and incorporated in

the build/system test plan proper. In either case, the

build/system test plan will have two parts: software tests

to demonstrate conformance to operational requirements and

analytical tests to demonstrate satisfaction of functional

requirements. Effective testing depends largely on select-

ing appropriate test cases. Test cases should be selected

to exercise fully the function, structure, capacity, and

configuration of the system as described in Table 5-1.

OPERATIONAL
REQUIREMENTS.

FUNCTIONAL
REQUIREMENTS

ANALYTICAL
TEST PLAN

OR DRAFT ACCEPT-
ANCE TEST PLAN

PLAN
ACCEPT

ANCE
TESTS

SYSTEM
TEST PLAN

\

ACCEPTANCE
TEST PLAN

\

Figure 5-2. Test Planning Process

5.2 EXECUTION

Figure 5-3 outlines the steps involved in build/system test-

ing. A system load module is built by the technical manager,

or by the librarian at the direction of the technical man-

ager, from the source in the controlled library. The load
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Table 5-1. What To Test

Testing Area

Function

Structure

Capacity

Configuration

Capabilities To Test

Computational accuracy
Invalid data handling
Special case processing
Boundary value handling

Data flow management
Error recovery
Control options
Recycle and restart

Volume of data processed
Rate of data processing
Resources consumed (e.g., CPU)

Minimum hardware set
Maximum hardware set
Alternate processors

SOFTWARE
SOURCE

CONTROLLED
LIBRARY

SYSTEM
TEST PLAN

TEST
UNIT TEST DATA

FAILED
MODULE(S)

(TO BE CORRECTED
PER PROCEDURES)

Figure 5-3. System Testing Process
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module data set and the specific load module member being

tested are managed by the librarian and must be identified

on the test report. The test data, which may include con-

trol parameter data sets (e.g., JCL and NAMELISTs) as well

as prepared data files, are generated at the time the test

plans are written. These items are also managed by the li-

brarian.

Test execution follows the pattern prescribed in the system

test plan. All printed output is kept by the system test

team for each test executed. When a separate organization

for testing is not possible, developers on the system test

team should test sections of the system developed by members

other than themselves.

5.3 ANALYSIS

The build/system test results are reviewed by the develop-

ment team and manager. Any discrepancies between system

requirements and system performance are evaluated and as-

signed to a programmer for correction.

Changes are made in accordance with established configura-

tion management procedures. The programmer must complete a

change report form (CRF) detailing the nature of the change

(Reference 2). The Appendix includes a sample CRF. Copies

of all CRFs are kept by the technical manager. The techni-

cal manager is also responsible for tracking the discrepan-

cies over time for each build and for the complete system.

A summary of testing progress should be prepared periodi-

cally, listing the tests started, tests completed, errors

identified, and errors resolved. System testing continues

until no more errors are identified. However, build/system

tests must be planned to have a high probability of detect-

ing errors if any are present. Testers should not try to

avoid errors!
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5.4 TEST DATA

Effective testing depends on the timely availability of ap-

propriate test data. Test data must be created that support

the test plans. The types of data sets needed and their

contents are indicated in the test plan. Some important

points to consider about test data include the following:

• The system test team is responsible for generating

all system test data, including control (parameter

and command) data sets.

• All system test data (including control parameter

data sets) are kept under configuration control.

• All test data should be checked before testing. At

the minimum, a listing of the data should be scanned

by the test team for obvious errors.

• Test data may be created by a data generator or a

simulator, or by manual entry.

Data generators produce random or systematically varying

data that conform to specified characteristics such as mean,

range, amplitude, and frequency. Data generators provide a

simple, readily available source of test data, especially

for integration testing.

A simulator reproduces the output from the actual operation

of a device for input to a data processing system. Simula-

tors are usually mission specific. All simulator software

must itself be tested and its output verified. It is impor-

tant, therefore, that simulator software development begin

as early as possible to avoid becoming a bottleneck.

Developers manually create much of the test data used in

software development. This is especially true for unit and

integration testing. Developers also define control param-

eters (e.g., NAMELISTs), initialize COMMON variables via
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BLOCK DATA routines, and provide interactive responses to

prompts from the system.

5.5 REGRESSION TESTING

Regression testing is the testing that must be performed

after functional improvements or repairs have been made to a

system (Reference 8) to confirm that the changes have had no

unintended side effects. Correction of errors relating to

logic and control flow, computational errors, and interface

errors are examples of conditions that necessitate regres-

sion testing. Cosmetic errors generally do not affect other

capabilities and therefore do not require that regression

testing be performed.

During system testing, regression testing is based on a

specified subset of the system tests. It is performed by

the system test team. Some regression testing must be per-

formed for each new build of a system. This ensures that

previously demonstrated capabilities have not been adversely

affected by later development and/or error corrections.
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SECTION 6 - ACCEPTANCE TESTING

The purpose of acceptance testing is to certify that the

software system satisfies its requirements. Acceptance

testing should not begin until the software has successfully

completed system testing. Ideally, system documentation

should also be ready. However, acceptance testing of a

series of releases may be conducted in some situations in

which an early initial operational capability is desired.

Some important points to consider about acceptance testing

include the following:

• Acceptance testing involves an interorganizational

team.

• Testing time may have to be scheduled well in ad-

vance to ensure adequate computer resources.

• Acceptance tests should be run in an environment

that is the same as or very similar to the planned

operational environment.

• Test plans, data, and results must be archived to

provide for regression testing.

• Discrepancies and changes must be formally recorded

and reviewed.

• Acceptance testing must probe both functional and

operational requirements.

6.1 PARTICIPANTS

Three groups of people participate in acceptance testing:

analysts, developers, and operators. Each group has a spec-

ific role and responsibilities. However, in some cases, one

organization may fill more than one role.
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The analysts are responsible for conducting the tests. In

addition, they must

• Generate the acceptance test plan

• Produce the simulated data for testing

• Evaluate the test results
• Identify any errors in the software
• Monitor the status of the testing

At least one member of the analysis team must be present at

the acceptance test for it to be an official test. Other

members of the analysis team may also be present during ac-

ceptance testing.

The developers are responsible for executing the software as

directed by the analysts during testing. As a part of ac-

ceptance testing, the developers will

• Provide the analysts with all printed output of the

tests

• Prepare (in advance) all required job control lan-

guage (JCL) or command files necessary for execut-

ing the software

• Maintain configuration control over all the software

• Correct any errors identified in the software

• Generate new load modules after corrections have

been made so that testing can continue

At least one member of the software development team must be

present at the acceptance test for it to be an official

test. Other members of the software development team also

may be present at the acceptance tests to help in the execu-

tion of the software.

The operators ultimately will be responsible for executing

the software on a regular basis. They may be present as
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observers. However, acceptance testing does not provide the

required formal training in the use of the software. During

the course of testing, the operators may make recommenda-

tions to the analysts and developers.

6.2 PLANNING

All acceptance tests executed are based on the acceptance

test plan written by the analysts prior to the start of the

acceptance testing phase. The tests in this plan should be

traceable to the system requirements document. That is,

every major requirement specified must be included in at

least one test. Conversely, all capabilities implied in the

test plan must originate in the requirements. The acceptance

test plan should include the following information:

• An introduction that includes

Purpose of the tests

Type and level of testing

Testing schedule

• A test description for each test that includes

Purpose of the test

Detailed specifications of the input

Required environment (e.g., the use of

graphics devices)

Operational procedure

Detailed specifications of the output

Pass or fail criteria

• A requirements traceability matrix showing the gen-

eral requirements covered by each test

All tests in this plan must be passed for the software to be

certified, unless an exception has been noted and formally

approved.
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6.3 EXECUTION

The acceptance test plan defines the procedures for execut-

ing the acceptance tests. It should be followed as closely

as possible. The order of testing nominally will be the

order of the tests in the acceptance test plan. This order

may be changed during testing by a decision of the accepting

organization. Figure 6-1 illustrates the acceptance testing

process. Acceptance testing continues even if errors are

found, unless the error itself prevents continuation. Pro-

cedures for data and source maintenance during the testing

phase must comply with the relevant configuration management

guidelines (Reference 2). The following subsections describe

error correction procedures and the test environment.

FORMAL
TEST PLAN

TEST DATA

CONTROLLED
LIBRARY

OPERATIONAL
LIBRARY

FAILED MODULE(S)
(TO BE CORRECTED
PER PROCEDURES)

PASSED
TEST UNIT

• SOFTWARE
SOURCE

FILES AND
DOCUMENTATION

SYSTEM TAPE
AND DOCUMENTATION

PROGRAM
ARCHIVES

Figure 6-1. Acceptance Testing Process
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6.3.1 ERROR CORRECTION

During acceptance testing, errors may be found in the soft-

ware, in the data being used to test the software, or in the

JCL or command procedures being used. Formal procedures

must be followed for recording errors and making corrections

to these items. Temporary corrections to the current JCL,

control parameters, or command procedures may be made im-

mediately by the developers (with the approval of the tech-

nical manager) so that testing can continue. In the case of

a test data error, testing of that function must stop until

the analyst regenerates the test data set. However, both of

these types of errors must be reported on a problem report

(see Appendix). Corrections to the controlled library must

be documented with a change report (see Appendix).

Software errors are treated more formally. When a software

error has been detected, a problem report must be initiated.

One form must be initiated for each error found. Any given

test may result in the detection of more than one error. At

the end of a scheduled testing session, the analyst must

complete a test results report for all tests attempted. The

report should describe the errors found.

The software development technical manager assigns responsi-

bility for making each correction to a member of the devel-

opment team. The developer then identifies which routines

need to be changed and copies those routines from the con-

trolled library. When the changes have been made and unit

tested, the controlled library can be updated. The problem

reports addressed by these changes should be completed at

this time. Change reports must also be submitted.

Generation and release of new load modules must be coordi-

nated with the analysts. The new load module must be re-

gression tested by the developers. This load module or task

image is then released for further acceptance testing.
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6.3.2 TESTING ENVIRONMENT

The acceptance testing environment should be as similar as

possible to the planned operational environment. If the

software is not being developed on the target machine, only

the load module or source files (together with control

files) are transferred to the operational computer. This

may be done by magnetic tape or other route. Data set

naming conventions, JCL classes, and system defaults may

differ from the development computer to the target com-

puter. The development team is responsible for ensuring

that the system is ready for acceptance testing in every

respect.

Consideration must be given to scheduling the resources nec-

essary to perform the acceptance testing. A system that

uses a lot of CPU time or memory may seriously impact other

projects on the same computer. Strict timing tests may need

to be run that cannot afford to be affected by other users.

In these cases, reserved blocks of time may be required for

acceptance testing. Time on peripherals, especially termi-

nals and graphics devices, may also need to be scheduled.

Arrangements must be made between the developers and ana-

lysts for batch testing. The operational conditions spec-

ified in the test plan must still be satisfied. Test output

must be retrieved and delivered to the analysts.

6.4 ANALYSIS

The results of each test must be studied by the analysis

team to determine whether the test was successful. Success-

ful completion of a test requires that

• All tested options ran without causing any abnormal

terminations or other execution time errors
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• All tested options worked correctly

• Numerical results were within the tolerance speci-

fied in the acceptance test plan

• All plots, tables, and control displays met all

criteria specified for them, including the use of

proper units and a clear description of all vari-

ables

Any part of the software that fails to meet these criteria

must be reported as in error, and the problem must be cor-

rected. Acceptance testing will likely generate both prob-

lem reports and test result reports. These are discussed

below.

6.4.1 PROBLEM REPORTS

Problem reports must be initiated during the testing session

for all errors detected. These forms provide a mechanism

for ensuring that all errors discovered are corrected. The

form is completed after the error correction has been imple-

mented and tested. The Appendix includes a sample problem

report.

The analysts will classify all errors according to serious-

ness. The specifics of the classification scheme will be

decided upon prior to the start of testing. The most severe

errors (as classified by the analyst) will be corrected

first, and a decision will be made whether to correct very

minor errors, make some cosmetic changes, or wait until the

maintenance phase has begun. Acceptance testing will con-

tinue regardless of the errors found unless the error itself

prevents further testing.
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6.4.2 TEST RESULT REPORTS

In addition to problem reports, the outcome of each test

attempted is presented in a set of test result reports:

• A preliminary report will be generated by the ana-

lyst at the end of the testing session and will be provided

to the developers by the start of the next testing session.

The purpose of this report is to provide an immediate as-

sessment of the status of the system and testing progress.

• A detailed report will be generated by the analysts

and provided to the developers within 3 days of the comple-

tion of the test session. These reports will describe any

problems with the software but will not attempt to indicate

where the error is occurring in the code.

• Periodic summary status reports will be generated

by the analysts. For each test, these reports will indicate

Actual start and end dates of the testing

Date the output was received by the analysis

team

Date on which the detailed report is due

Date on which the detailed report was delivered

Summary of the results

• Periodic error rate plots (Figure 6-2) may be gen-

erated by the developers. The cumulative number of errors

found should level off as testing progresses. Consequently,

the error rate will stabilize. Project A in Figure 6-2 pro-

vides a good example in which the error rate plot indicates

that testing is complete. This provides a visual mechanism

for determining when the system is ready for certification.

The Configuration Analysis Tool (CAT) can also be helpful in

tracking testing progress (Reference 10). CAT provides an
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automated process for managing problem and test reports

(Reference 2).

6.5 TEST DATA

The timely availability of test data is just as important to

acceptance testing as it is to system testing (see Sec-

tion 5.4). Some important points to consider about accept-

ance te.st data include the following:

• The analysis team is responsible for generating

acceptance test data.

• The development team is responsible for generating

control (parameter and command) data sets.

• All acceptance test data and control data sets are

kept under configuration control.

6.6 REGRESSION TESTING

A subset of (benchmark) tests should be designated from

among the complete set of acceptance tests. This subset of

tests will become the basis for subsequent regression test-

ing of the system. This subset should exercise most of the

basic capabilities of the system and should be reexecuted

after any corrections have been made to the software. The

purpose of these tests is to ensure that the corrections

have not affected any other part of the system. These tests

will also be used during the maintenance phase.

6.7 SOFTWARE CERTIFICATION AND DELIVERY

The criterion for certification of the software is that it

passes all the identified acceptance tests. Once the soft-

ware has passed all tests to the satisfaction of the analysis

team and no outstanding discrepancies remain (or none whose

delayed correction has not been approved), it is ready to be

delivered. At this point, the system tape is generated by
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the software development team. This tape will contain, in a

standard format (Reference 11), the following:

• All the source code and other files needed to

create the load module

• Load module or executable task image

• JCL, control files, and any other files necessary

for system execution

• Copies of all the acceptance test files (data, JCL,

NAMELISTS, etc.)

• Copies of all the acceptance test results

All the information on this tape should be exact copies of

the items used in the acceptance tests. When the information

is unloaded from the tape, the maintenance team should be

able to recreate fully the system as well as the acceptance

tests. System documentation should be delivered at the same

time as the software. Copies of all system tapes and docu-

mentation reside in the customer program archives.

The files from which the system tape was generated may also

be made available to the maintenance team. When the devel-

opment computer and target computer are the same or in com-

munication with each other, it is easier to build the

operational system from these files than from the system

tape. However, this file transfer does not substitute for

the official delivery of a system tape unless specified as

such by the customer.
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SECTION 7 - MAINTENANCE TESTING

Testing during maintenance includes many activities. The
operational use of a system constitutes testing, because
this is how most errors are found during the maintenance
phase. Operation also suggests ideas for enhancements.
Corrections, enhancements, and new releases require that
regression testing as well as development testing be per-
formed.

Preparations for maintenance testing must be made during the

earlier phases of system and acceptance testing. Archiving

the system is the essential step in preparing for mainte-
nance. Archived materials include the following:

• System and acceptance test plans

• Test data and results associated with executing the
system against that data (at least the test data
and results from the benchmark regression tests

must be saved), usually on the system tape

• Software source and supporting materials on the
system tape

The system tape (or other delivered materials) should be
used to create the original system for operations and main-
tenance. The benchmark regression tests must be run by the
maintenance team as soon as the system is built, to confirm
that it is in good working order.

7.1 REGRESSION TESTING

Whenever maintainers make a change or enhancement to the
system, regression testing must be performed. The purpose

of this testing is to ensure that a change in one part of
the system does not propagate errors into previously func-
tioning parts of the system. Regression testing includes
executing the previously defined set of benchmark tests
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and studying the results. New tests must be created for any
enhancements added to the system.

Usually, complex test cases are executed first. These test

the overall functionality of the system. If these are un-
successful, then simpler, localized cases are run to isolate
the problem in the system. The error can then be identified
and corrected, and the system retested.

As part of the testing process, the test results are evalu-
ated for correctness. If the tests being run are the stand-

ard set of baseline tests, the results can be compared to
the results that were archived from previous successful ex-

ecution of the tests. If the tests are tests created for a
new function or error correction, the results should be
checked carefully by hand. When that test is correct, it
should become a part of the benchmark set of tests.

7.2 OPERATIONAL TESTING

The operational environment cannot usually be duplicated
exactly during system and acceptance testing. Operation
uncovers hardware/software incompatibility and operator er-
rors that may not show up during development testing. In-
compatibilities also arise when changes are made to the
hardware configuration after the software is developed, or
when the operating system is upgraded or modified. Devel-
opers try to anticipate the types of errors that operators
will make so that they can be managed; however, they are

generally not completely successful.

Operational testing can be performed by running the new
system in parallel with the old or by confining its use to
noncritical applications with careful oversight. These con-
ditions continue until a sufficient level of confidence in
the system is achieved. New releases of a system may also
undergo operational testing. Thus, testing continues
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throughout the life of a software system. Reference 12 pro-

vides additional information about managing operational

software in the flight dynamics environment.
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SECTION 8 - SUMMARY

Testing provides the last chance for developers to get the
software right. It cannot be conducted in a haphazard man-
ner. Some important points to remember about testing in-
clude the following:

• To be effective, tests must be planned.

• Many testing approaches must be used to ensure com-
plete testing.

• Configuration control of software and test data
must be maintained at all times.

• Test results must be fully documented. Errors must
be reported formally.

• It is better to prevent errors than to find them
during testing.

Testing cannot substitute for a careful software implementa-
tion; however, together with quality assurance and configur-
ation management, effective testing ensures that the software
product ultimately delivered is reliable and satisfies the
customer's requirements.
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APPENDIX - SAMPLE TEST AND VERIFICATION REPORTS

This Appendix provides samples of some frequently used test

and verification reports. These items are samples only.

Local guidelines prescribe the specific reports to be used.

The reports included are as follows:

• Code reading checklist (Figure A-l)

• Test plan element (Figure A-2)

• Change report (Figure A-3)

• Problem report (Figure A-4)

Checklists may be completed during code reading. If used,

they are kept in the programmers' unit developement folder.

Individual test plans are compiled into the system test and

acceptance test documents. Change reports are submitted

when a controlled item is changed. Problem reports are ini-

tiated when an error is found, then completed when the cor-

rection is implemented. Change and problem reports are kept

by the configuration manager.
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CODE READING REPORT

CONTENT ARE ALL CONSTANTS DEFINED? Q

ARE ALL UNIQUE VALUES EXPLICITLY TESTED FOR INPUT PARAMETERS? Q

ARE VALUES STORED AFTER THEY ARE CALCULATED? D

IS A PATH DEFINED FOR EVERY POSSIBLE OUTCOME OF A LOGICAL DECISION? D

ARE ALL INPUT DEFAULTS EXPLICITLY TESTED? D

IF A KEYWORD HAS MANY UNIQUE VALUES, ARE THEY ALL CHECKED? D

IS THE SPECIFIED PRECISION SUFFICIENT FOR THE REQUIRED ACCURACY? D

ARE FLAGGED/MISSING DATA VALUES CORRECTLY EXCLUDED FROM D
COMPUTATIONS?

ARE DISPLAY FORMATS LARGE ENOUGH? D

ARE DATA SETS PROPERLY OPENED AND CLOSED? D

ARE LEADING AND TRAILING RECORDS RECOGNIZED AND HANDLED APPROPRIATELY? D

ARE UNIT NUMBERS UNIQUE? D

ARE DOUBLE-PRECISION CONSTANTS USED IN DOUBLE-PRECISION EXPRESSIONS? D

ARE CORRECT UNITS OR THE APPROPRIATE CONVERSION USED (e.g., DEGREES, D
RADIANS)?

IS THE CORRECT SIGN (POSITIVE OR NEGATIVE) USED, ESPECIALLY IN BIAS D
ADJUSTMENTS?

ARE ALL COUNTERS PROPERLY INITIALIZED (0 OR D? CD

ARE ABSOLUTE AND SYMBOLIC (PARAMETER) VALUES USED APPROPRIATELY? Q

ON COMPARISON OF TWO BYTES, ARE ALL BITS COMPARED, IF NECESSARY? D

FORMAT ARE THE VARIABLE NAMES INFORMATIVE? D

DOES THE PROLOG DEFINE ALL VARIABLES USED? G

IS THE CODE INDENTED TO SHOW ITS STRUCTURE? D

IS THE CODE ADEQUATELY COMMENTED? D

DOES THE PROLOG DEFINE OPERATIONAL CONSTRAINTS AND ASSUMPTIONS? D

ARE CONTINUATION LINES CLEARLY INDICATED? D

DO STATEMENT LABELS OCCUR IN AN OBVIOUS SEQUENCE? D

DATE NAME MODULE

Figure A-l. Code Reading Checklist

0022-11091/85
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Subsystem: PADS Date: 9/10/83
Test Number: R2-01 Load Module: ADS0909A

Purpose; Verify the capability to compute an epochal atti-
tude for a batch using the differential corrector algorithm.
Verify the use of convergence criteria and the calculation
and display of residuals and statistics.

Input; Use data with a constant attitude of roll, pitch,
and yaw equal to zero, and no biases, no noise. Use a short
span of data (approximately 10 minutes) with gyro scale fac-
tors set to 2 to correct the gyro data.

Environment; This test must be run using an IBM 3250
graphics device. A processed engineering data set is
required.

Procedure; Process data with no residual editing using a
zero a priori weight matrix and equal (1.0) data weights.
Verify offset of statistics parameters in displays through
comparison of debug output. Test all five convergence cri-
teria. Use an initial a priori estimate of off null and do
not solve for biases.

Expected Results; Reduction of residuals and related sta-
tistics for each iteration until the solution converges to
an epochal null attitude.

Figure A-2. Test Plan Element
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CHANGE REPORT FORM

PROJECT NAME

PROGRAMMER NAME

CURRENT DATE

APPROVED BY _

SECTION A - IDENTIFICATION

DESCRIBE THE CHANGE: (What. why. how).

EFFECT: What components (or documents) are changed? (Include version).

EFFORT: What additional components (or documents) were examined in determining what change was needed?.

(Month Day Year)

Need for change determined on

Change completed (incorporated into system)

1hr/less thr/ldy 1dy/3dyi >3dys

Effort in person time to isolate the change (or error)

Effort in person time to implement the change (or correction)

SECTION B - ALL CHANGES

TYPE OF CHANGE (Check one) EFFECTS OF CHANGE

D Error correction

D Ranned enhancement

D Implementation of requirements change

uD Improvement of clarity, maintainability,
or documentation

O Improvement of user services

Q Insertion/deletion of debug code

D Optimization of time/space/accurscy

D Adaptation to environment change

D Other (Explain on back)

Y N
D D Was the change or correction to one and

only one component?

Q D Did you look at any other component?

D D Did you have to be aware of parameters passed
explicitly or implicitly (e.g., common blocks)
to or from the changed component?

SECTION C - FOR ERROR CORRECTIONS ONLY

SOURCE OF ERROR
(Check one)

CLASS OF ERROR
(Check most applicable)*

CHARACTERISTICS
(Check Y or N for all)

O Requirements

D Functional specifications

O Design

D Code

D Previous change

C Initialisation

D Logic/control structure
(e.g., flow of control incorrect)

O Interface (internal)
(module to module communication)

O Interface (external)
(modula to external communication)

O Data (value or structure)
(e.0,, wrong variable used)

O Computational
(e.g.. error in math expression)

Y N
O D Omission error (e.g., something was left out)

D D Commission error (e.g., something incorrect was included)

D Q Error was created by transcription (clerical)

FOR LIBRARIANS USE ONLY

NUMBER.

DATE

BY

CHECKED BY.

(Month Day Year)

•tf two are equally applicable, check tn0
onft higher on the list.

ORIGIN DATE

(Additional Comments on Reverse Sides

Figure A-3. Change Report Form
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Current Date

Attitude System Maintenance Report Number
(system name)

A. Project Name Heed for change determined on (Mo., Day, Yr.)

Describe problem

What components/subroutines/modules are suspected?

Proposed method for testing modifications:

B. Change (NON-ERROR) (fill out this section If change Is NOT an error correction). This change Is being made
because of a change in: (Check all that apply)

requirements/specifications software environment
new Information/data optimization
design other (specify):
hardware environment

C. ERROR ONLY (fill out this section If change IS an error correction). The following activities were used In
error detection or Isolation: (Check all that apply)

normal use trace/dump
test runs cross reference/attitude list
code reading system error messages
reading documentation project specific error messages
other (specify):

0. Please give any Information that may be helpful In categorizing and understanding the change on the reverse
side of this form.

Person filling out this form (signature)

Management approved (signature) Date

Change started on date (month, day, year)

Time spent on this change (Includes Isolation, Implementation and testing):

less than 1 day 1 day to a week more than a week

Which of the following best describes the error:

requirements/specification error code error
design error clerical error
other: Describe

Was this error related to a previous maintenance change yes no can't tell

What components/subroutines/modules were changed?

New load module name Data set

New nonresident table name Data set

Ready for parallel tests (librarian signature) Date

Parallel tests complete (signature) Date

Management approved for operational use (signature) Date

Ooerational (librarian signature) Oate

F£gure A~4. Problem Report
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