
SOFTWARE ENGINEERING LABORATORY -84-083

INVESTIGATION OF SPECIFICATION
MEASURES FOR THE SOFTWARE

ENGINEERING LABORATORY (SEL)

DECEMBER 1984

CSCX 09B Onclas
G3/61 05494

fVIASA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES SEL-84-003

INVESTIGATION OF SPECIFICATION
MEASURES FOR THE SOFTWARE

ENGINEERING LABORATORY (SEL)

DECEMBER 1984

NASA
National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion/Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

• NASA/GSFC (Systems Development and Analysis Branch)

• The University of Maryland (Computer Sciences

Department)

• Computer Sciences Corporation (Flight Systems

Operation)

The goals of the SEL are (1) to understand the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply

successful development practices. The activities, findings,

and recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of

reports that includes this document. A version of this

document was also issued as Computer Sciences Corporation

document CSC/TM-84/6162.

The primary contributors to this document are

William Agresti (Computer Sciences Corporation)

Victor Church (Computer Sciences Corporation)

Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry
Code 552
NASA/GSFC
Greenbelt, Maryland 20771

9686
ii

ABSTRACT

Requirements specification measures are investigated for po-

tential application in the Software Engineering Laboratory.

Eighty-seven candidate measures are defined; sixteen are

recommended for use. Most measures are derived from a new

representation, the Composite Specification Model, which is

introduced in this document. The results of extracting the

specification measures from the requirements of a real

system are described.

111

9686

TABLE OF CONTENTS

Section 1 - Introduction 1-1

1.1 Objective of the Study 1-1
1.2 Analytical Approach 1-1
1.3 Document Organization 1-2

Section 2 - Measures Based on Existing Documenta-
tion: Ml to M29 2-1

2.1 Definition of Measures Ml to M29 2-1

2.1.1 Basic Volume Measures 2-1
2.1.2 Requirements Counts 2-3
2.1.3 Counts of Features, Capabilities,

and Omissions 2-4
2.1.4 Resource Expenditures 2-7
2.1.5 Evolutionary Measures 2-7

2.2 Practicality and Utility of the Measures 2-8

Section 3 - Composite Specification Model 3-1

3.1 Functional View 3-2
3.2 Contextual View 3-2
3.3 Dynamic View 3-6

Section 4 - Measures Based on the Composite
Specification Model 4-1

4.1 Functional View: Data Flow Diagrams 4-1

4.1.1 Functions and Entities: Basic Counts
(Measures M101 to M103) 4-4

4.1.2 Arcs: Basic Counts (Measures M104
to M108) 4-7

4.1.3 Arcs: Derived Measures (Measures M109
to M118) 4-7

4.1.4 Data Items: Basic Counts (Measures M119
to M123) 4-9

4.1.5 Data Items: Derived Measures
(Measures M124 to M130) 4-10

4.1.6 Arc Weights (Measures M131 to M136) . . . 4-11
4.1.7 Measures for Early Classification

(Measures M137 to M141) 4-12
4.1.8 Analytic Measures (Measures M142

and M143) 4-13
4.1.9 Aggregate Measures (Measure M144) 4-13

IV

9686

TABLE OF CONTENTS (Cont'd)

Section 4 (Cont'd)

4.2 Contextual View: Entity-Relationship Repre-
sentation (Measures M201 to M208) 4-15

4.3 Dynamic View: State Transition Diagrams
(Measures M301 to M303) 4-17

4.4 Measuring the Dominant View (Measures M401
to M403) 4-17

Section 5 - An Exercise in Extracting Specification
Measures 5-1

5.1 Recommended Specification Measures for Extrac-
tion 5-1

5.2 Results of Extracting Specification Measures . . . 5-1

Section 6 - Assessment of the Specification Measures
Study 6-1

6.1 Strengths and Weaknesses of the Specification
Measures 6-1

6.2 Strengths and Weaknesses of the GSM 6-4
6.3 Implications of the Metrics Extraction Exercise . 6-8
6.4 Reconsideration of the Study Objective 6-9
6.5 Future Directions for Specification Measures

in the SEL 6-10

Appendix - Errorprone Characteristics of Requirements

References

Bibliography of SEL Literature

9686

LIST OF ILLUSTRATIONS

Figure

4-1 Example of Data Flow Diagram 4-5
4-2 Example of State Transition Diagram 4-18

LIST OF TABLES

Table

2-1 Measures Based on Existing Documentation:
Ml to M29 2-2

2-2 Estimated Accessibility and Utility of
Measures Ml to M29 2-10

4-1 Specification Measures Based on CSM 4-2
4-2 Basic Measures Extracted From Example

in Figure 4-1 4-6
5-1 Recommended Set of Specification Measures. . . 5-2
5-2 Computed Metric Values for ERBS YMCU 5-4

VI

9686

SECTION 1 - INTRODUCTION

The purpose of this document is to report on an investiga-

tion of requirements specification measures for possible use

in the Software Engineering Laboratory (SEL). This section

presents the study objective, analytical approach, and docu-

ment organization.

1.1 OBJECTIVE OF THE STUDY

The objective of the study was to investigate measures that

provide a quantitative characterization of the size and na-

ture of the software requirements. The measures will be

useful to managers for assessment and prediction and will

provide answers to the following questions:

• Is the intended behavior of the system understood?

• How large will the system be?

• Will the system be especially expensive to develop?

The difficulty with meeting the objective lay in the timing

of the measurement. To be useful, the measures must depend

on information that is available during the requirements

analysis phase of the software development life cycle. At

the beginning of this phase, the functional specifications

and requirements document (FSRD) should be complete (Refer-

ence 1). At the end of the phase, preliminary design be-

gins. The difficulty is that most familiar measures, like

lines of code, are not known until later in the life cycle.

During requirements analysis, the system is represented by

documents like the FSRD, which do not facilitate objective

measurement.

1.2 ANALYTICAL APPROACH

The analytical approach was strongly influenced by the need

for the measures to be based on information potentially

1-1

9686

available durinq the requirements analysis phase. Most pre-

vious approaches to specification measures have experimented

with subjective evaluations. By designing questionnaires

and scoring the responses, similar subjective measures could

be developed for the flight dynamics environment. The sub-

jective nature of such measures, however, makes them less

desirable than objective measures in forming the foundation

of a program of assessment and prediction. For this reason,

objective measures have been pursued in this study.

The identification of specific items to measure was driven

by the planned use of the measures. The basic needs are to

assess the size and nature of the requirements and to pre-

dict the effort required to develop software that satisfies

the requirements. One attempt was made to identify require-

ments characteristics that lead to errors so that those

characteristics could be included among the items being

measured. The brief study was inconclusive, however, as

summarized in the appendix.

From the consideration of information availability, a three-

step approach emerged: First, define measures derived from

documentation routinely prepared during requirements analy-

sis. Second, identify additional information that is avail-

able during requirements analysis but not currently captured

in documentation. Define a second set of measures based on

this additional information. Third, extract the measures

from the requirements for a real system.

1.3 DOCUMENT ORGANIZATION

The organization of the document reflects the three-step ap-

proach. Section 2 defines measures based on existing docu-

mentation, principally the FSRD. Section 3 introduces a new

representation, the Composite Specification Model (CSM),

which captures additional requirements information. The

1-2

9686

measures defined in Section 4 are derived from the CSM rep-

resentation. Section 5 presents the results of an exercise

to extract the measures, and Section 6 presents an

assessment of the specification measures investiqation.

1-3

9686

SECTION 2 - MEASURES BASED ON EXISTING
DOCUMENTATION: Ml TO M29

This section introduces possible measures Ml through M29.

These measures are not necessarily recommended for use; they

are presented as part of a survey of possible measures. Tne

measures were obtained through consultation with colleagues

and a review of related literature. The measures are de-

fined in Section 2.1, and a preliminary assessment of their

utility, costs, and benefits is presented in section 2.2.

All of the measures discussed in this section are based on

information that is captured routinely as part of the soft-

ware development process, the FSRD being the principal

source. Table 2-1 lists these measures.

2.1 DEFINITION OF MEASURES Ml TO M29

2.1.1 ESasic Volume Measures

Measures Ml through M7 can be obtained from an examination

of the FSRD.

Ml Number of Pages in the FSRD

M2 Number of Paragraphs, in the FSRD (see Reference 2,
p. 482)

M3 Number of Instances of the word "shall" in the FSRD
(see Reference 2, p. 482)

M4 Number of Figures in the FSRD

M5 Number of Tables in the FSRD

M6 Number of Equations in the FSRD

M7 Number of Variables in the FSRD

Altnough they are easy to obtain, these measures are unreli-

able. They are simple counts that would have value only if

there is some discipline in the way the FSRD is prepared:

same scope of contents, same level of detail in the descrip-

tions, etc. As the FSRD is now prepared, these counts would

not be useful for prediction or assessment. (This remark

2-1

9686

Table 2-1. Measures Based on Existing Documentation:
Ml to M29

Number Measure

Ml Pages in FSRD

M2 Paragraphs in FSRD

M3 Instances of the word "shall" in FSRD

M4 Figures in FSRD

M5 Tables in FSRD

M6 Equations in FSRD

M7 Variables in FSRD

M8 Functional Requirements

M9 Input Requirements

MlO Output Requirements

Mil Performance Requirements

M12 Subsystem Interface Requirements

Ml3 External Interface Requirements

M14 Operational Requirements

M15 Processing Modes

M16 Major Functions

Ml? Subsystems

M18 Environmental Constraints

M19 External Interfaces

M20 TBDs

M21 Events

M22 Entities

M23 Sensor Types

M24 Sensors (total)

M25 Pages in Section 2 of FSRD

M26 Staff-Months Expended: Requirements Defini-
tion

M27 Staff-Months Expended: Requirements Analysis

M28 Number of Specification Modifications

M29 Number of Recorded Questions About
Specifications

2-2

9686

snoula not be construed as critical of the FSRD, which has

other objectives than serving as the basis for specification

measures.)

If measures Ml through M7 were calculated, the question of

"includes" would need clarification. The FSRD refers to

other documents that contain requirements information. The

additional pages, equations, etc., should be included in the

totals for the measures.

An additional concern with measures M6 and M7 is that they

are specific to the type of application. Some large and

complex projects may not be described by many equations or

variables at the requirements stage. With equations, there

is also the question of which become represented later in

code. Some equations provide analytical background that is

never encoded.

2.1.2 REQUIREMENTS COUNTS
*

Measures M8 througn M14 depend on some enumeration of tae

requirements in the FSRD.

M8 Number of Functional Requirements

M9 Number of Input Requirements

MlO Number of Output Requirements

Mil Number of Performance Requirements

M12 Number of Subsystem Interface Requirements

Ml3 Number of External Interface Requirements

M14 Number of Operational Requirements

With some systems, e.g., the Earth Radiation Budget Satel-

lite Dynamics Simulator (DERBY), the requirements are num-

bered with a decimal system (e.g, 1.1, 1.2, ...) to express

some of the detail and subsidiary concerns associated with

certain requirements. The principal difficulties with all

such measures are the different levels of detail and the

2-3

9686

implicit nature of many requirements. Consider the follow-

ing three numbered requirements from the DERBY FSRD (Refer-

ence 3) :

• "R.1.2.3-the Profile Program will not allow users

to input or modify...the area of individual space-

craft elements..." (p. 2-2)

• "R.4.3.2-the ADCS will output actuator commands to

the Truth Model." (p. 5-4)

• "R.3.2.1.1-the Truth Model will interpolate the

profile data using a five-point Lagrangian inter-

polator." (p. 4-1)

The numbering of requirements is a good practice that accom-

modates traceability. However, counting such requirements

does not appear to be reasonable: they are expressing dif-

ferent levels of behavior. Also, many requirements are not

written down because they are assumed to be generally known

by the reader of the FSRD.

2.1.3 COUNTS OF FEATURES, CAPABILITIES, AND OMISSIONS

Measures M15 through M27 require careful interpretation of

the FSRD and consistent definitions to be of any use.

Ml5 Number of Processing Modes

Measure M15 can be evaluated as batch, interactive, real-

time, or some other mode, depending on the application. It

helps to describe the system but has a limited range of val-

ues.

M16 Number of Major Functions

M17 Number of Subsystems

Measure M16 needs especially consistent definition, and as

potential predictors of system size, measures M16 and M17

are both probably inadequate. In a large project, each sub-

system or major function may be larger than those in a small

project, but the number of them may not differ. Also, with

2-4

9686

unfamiliar applications, neither one may be known in the

requirements analysis phase.

M18 Number of Environmental Constraints

To acknowledge the existence of constraints is important,

but counting them is not straightforward. For example, the

following statement could be counted as one, two, or three

constraints:

"The system must run in 48K on a PDF 11/70 under
RSX-11."

M19 Number of External Interfaces

The awareness of interfaces is critical, but counting them

requires the consistent application of rules for interpret-

ing the contents of the FSRD. The rules would need to clar-

ify the handling of external peripheral devices, hardware,

software, and files. For example, would interfaces include

only major external systems and organizational entities like

the Network Control Center (NCC), Payload Operations Control

Center (POCC), and Information Processing Division (IPD)?

Or, would measure M19 also count the interfaces to the

Graphic Executive Support System (GESS), a line printer, and

a CRT display? Some of the interfaces are assumed but not

explicitly identified in the FSRD (e.g., GESS).

M20 Number of TBDs

Although to-be-determined items (TBDs) are key warning sig-

nals in the early development phases, counting them can be

problematical. Identifying items as TBDs implies that there

is some shared understanding of how much information should

be known at each point in the life cycle. For example, de-

tailed record layouts on files may not have been determined

during requirements analysis, but this lack of detail will

not deter progress because the project is in an early

2-5

9686

phase. One writer of an FSRD may identify such an item as a

TBD, while another may not choose to do so because he or she

• Has a more restrictive view of a TBD item as one

which is endangering progress at that point in the

life cycle, or

• Has a different understanding of the information

that would be known at that phase

An additional problem with identifying TBDs is that they may

not be called out in the FSRD. TBDs may correspond to mate-

rial omitted from the FSRD. Careful reading of the FSRD by

an experienced person would be required to recognize such

omissions.

M21 Number of Events

M22 Number of Entities

The rationale for measures M21 and M22 is that the behavior

and environment of the system help determine its complex-

ity. Both require consistent definitions and diligent read-

ing of the FSRD. Entities refer to objects like sensors or

momentum wheels that have data attributes. Obtaining meas-

ures M21 and M22 would be much easier with the representa-

tion described in Section 3.

M23 Number of Sensor Types

M24 Number of Sensors (total)

M25 Number of Pages in Section 2 of FSRD

Measures M23 through M25 are representative of a variety of

application-specific measures that could be defined if the

domain were restricted to, for example, attitude ground sup-

port systems (AGSSs). Measure M25 reflects the pattern of

having Section 2 of the FSRD contain a summary of the atti-

tude ground support requirements.

2-6

9686

The assumption is that, if there is some consistency in the

level of detail, the number of pages may serve to indicate

the relative size or complexity of the AGSS.

2.1.4 RESOURCE EXPENDITURES

Measures M26 and M27 differ from the earlier measures in

that they do not use the FSRD.

M26 Number of Staff-Months Expended: Requirements
Definition

M27 Number of Staff-Months Expended: Requirements
Analysis

They are included in this section because "existing documen-

tation" in the title of this section is being broadly inter-

preted to include the SEL data base as well as hardcopy

material.

Measures M26 and M27 have some attractive features. The

data on staff charges to the requirements tasks are avail-

able. The rationale is that the degree of difficulty is

performing the necessary analysis (as measured in staff-

months) will be a predictor of the effort required to

convert the product of the analysis, the FSRD, into code.

2.1.5 EVOLUTIONARY MEASURES

Measures M28 and M29, also non-FSRD data, may help to char-

acterize the requirements.

M28 Number of Specification Modifications

M29 Number of Recorded Questions About the Requirements
Specifications

Both measures would be in their early stages of collection,

so it is questionable whether there would be sufficient time

for the count to build up.

2-7

9686

2.2 PRACTICALITY AND UTILITY OF THE MEASURES

Although measures Ml through M29 are based on existing docu-

mentation, it would be a mistake to conclude that no effort

would be needed to extract the measures. As the comments on

the measures in Section 2.1 indicate,

• Precise definitions must be formulated so the

counts have some meaning

• Procedures must be established for systematically

processing the FSRD to determine if the definitions

are met

• Incompleteness or omissions from the FSRD must be

recognized and resolved

Even if the style of the FSRD does not change, some effort

will be needed in the above areas. But this effort will not

guarantee that the resulting measures will be useful. The

considerable latitude permitted in preparing the FSRD has

the effect of reducing confidence in the measures, even when

the items being counted are carefully defined.

The shortcomings of the current documentation as a basis for

measurement should not be surprising. Other investigators

have reported the same dissatisfaction, leading them to sub-

jective measures as an alterative. Boehm concludes (Ref-

erence 2, p. 482): x

"Some work has been done to correlate the amount of
software development effort to the number of specifica-
tion elements.... These attempts have run into the
same sort of definitional and normalization problems
as have the 'number of routines, reports, etc1..."

Measures M26 and M27 are significantly different from the

previous ones in their lack of dependence on the FSRD. Both

measures seem to be promising and simple to test.

2-8

9686

The practicality and usefulness of measures Ml through M25

may be summarized as follows:

• Extracting the measures by direct examination of

the FSRD must be preceded by the development of

procedures and definitions if the measures are to

have any use.

• Even with careful definitions of items being

counted, there is considerable doubt about the use-

fulness of the measures because of the latitude

permitted in FSRD preparation.

Table 2-2 presents a preliminary rating of the accessibility

and utility of the measures as being either high, moderate,

or low. The ratings should be interpreted only as rough

subjective evaluations. The comments in Section 2.1 may

help explain the reasoning that led to the ratings.

Accessibility of a measure encompasses the estimated effort

to

• Develop consistent definitions and procedures for

extracting the data on which the measures depend

• Extract the data, with consideration for the skills

and experience needed by personnel involved

• Calculate the measure

If a particular measure is computed, its estimated utility

depends on

• Analyst's confidence that the measure is defined

precisely enough so that it has a clear meaning

• Likelihood that the measure will relate to some

important attribute of the software product or

process

2-9

9686

Table 2-2. Estimated Accessibility and Utility of
Measures Ml to M29 (1 of 2)

Estimated
Accessibility*

H

H

H

H

H

H

H

M

M

M

M

M

M

M

M

M

M

M

M

L

L

L

H

Estimated
Utility*

L

L

L

L

L

L

L

L

L

L

L

L

L

L

M

M

M

M

M

M

M

M

L

Number

Ml

M2

M3

M4

M5

M6

M7

M8

M9

M10

Mil

M12

M13

M14

"MIS
M16

M17

M18

M19

M20

M21

M22

M23

Measure

Pages in FSRD

Paragraphs in FSRD

Instances of the word
"shall" in FSRD

Figures in FSRD

Tables in FSRD

Equations in FSRD

Variables in FSRD

Functional Requirements

Input Requirements

Output Requirements

Performance Requirements

Subsystem Interface
Requirements

External Interface
Requirements

Operational Requirements

Processing Modes

Major Functions

Subsystems

Environmental Constraints

External Interfaces

TBDs

Events

Entities

Sensor Types

*Ratings: H = high, M = moderate, L = low.

9686

2-10

Table 2-2. Estimated Accessibility and Utility of
Measures Ml to M29 (2 of 2)

Estimated
Accessibility*

H

H

H

Estimated
Utility*

L

L

H

Number

M24

M25

M26

Measure

Sensors (total)

Pages in Section

Staff-Months Exp*

2 of FSRD

;nded:
Requirements Definition

H H M27 Staff-Months Expended:
Requirements Analysis

H L M28 Number of Specification
Modifications

H L M29 Number of Recorded Ques-
tions About Specifications

*Ratings:H = high, M = moderate, L = low.

2-11

9686

SECTION 3 - COMPOSITE SPECIFICATION MODEL

The development of the Composite Specification Model (CSM)

is motivated by the limitations (noted in Section 2) in

deriving useful measures from existing documentation. The

remaining proposed specification measures, introduced in

Section 4, are based on the CSM.

The rationale for the CSM is that no single view of a com-

plex object should be expected to be satisfactory. The most

obvious analogy is with the multiple representations used in

architecture. A scale model or artist's rendering of a

building, which may be appropriate to show the planning com-

mission, is not the representation needed by the plumbers or

electricians. In terms of the number of relations present,

software can be more complex than buildings. A strong case

has been made elsewhere that the largest software systems

are the most complex objects humans have built.

If multiple perspectives are needed, are there dimensions of

a system description that would enable orthogonal projections

of the system onto different planes? Three such descriptive

dimensions are proposed, representing the functional, con-

textual, and dynamic views of the system. The CSM employs

these three views, choosing a particular notation to capture

the perspective in each case. The expectation is that the

three perspectives complement each other in providing a com-

prehensive understanding of a particular system. With a

batch system, for example, with little input and output, the

functional view may be the most meaningful, as it depicts

the transformations of input quantities through intermediate

stages to yield output. With the requirements for an inter-

active software tool, the dynamic view of the system will be

the most valuable for communicating the intended operation

of the system. The three views and the notation used to

represent them are explained in detail in the following

sections.

3-1

9686

3.1 FUNCTIONAL VIEW

Functional processing is what the software will do--how it

will transform input to produce output. The representa-

tional medium is the data flow diagram, consisting of func-

tions that may be thought of as engines for transforming

input data flows into output data flows. An attractive fea-

ture is that the reader can choose the desired level of de-

tail in the description of functionality. Because data flow

diagrams are well known, they will not be explained fur-

ther. Reference 4 may be consulted for more information.

3.2 CONTEXTUAL VIEW

Unlike functional processing, which is a predictable compo-

nent of most specification models, the contextual view is

not so obvious a choice. This view describes the environ-

ment or information space in which the system will reside.

Capturing the context of a system has been relatively under-

valued as a tool for requirements engineering. A partial

explanation may be that, for small programming exercises

(e.g., sorting numbers or solving an equation), the back-

ground environment is either nonexistent or not a major con-

cern; there is thus no need to try to represent it. Many of

the guidelines for addressing large system development have

begun as attempts to "scale-up" the approaches (e.g., struc-

tured techniques) that were successful with small programs.

Because the context is not important in understanding small

programs, it has not been one of the techniques that inves-

tigators pursued in this scaling-up process.

With larger systems, the context or environment is a signif-

icant element in understanding the system's behavior. The

software system is modeling some portion of an environment.

The system, when it is completed, will be taking its place

in that environment, interacting with other objects (e.g.,

3-2

9686

hardware, sensors, otner software) that are producing be-

havior in the environment. To describe its behavior rel-

ative to these other objects, the system must refer to

specific attributes of the objects, for example, the mean

radius of the Earth or the size of fuel tanks. Likewise,

events in the environment (e.g., loss of signal, thruster

on-time) may trigger behavior by the system. Not all of the

attributes or events in the environment are modeled by the

system. In this sense, the model of the environment is not

complete, nor is it ever intended to be complete. An in-

dividual attempting to understand the functioning and be-

havior of the software will be aided by seeing a

representation of precisely those objects, attributes, and

events that the system needs to know about in its environ-

ment.

The representation of the environment is not the same as a

data dictionary. Data items in the dictionary may have no

counterpart in the breakdown of objects, attributes, and

events in the environment. Conversely, descriptors in the

environment (e.g., Earth, gyro) will not always correspond

to data items.

The importance of context to system understanding is receiv-

ing increasing recognition. For example, DeMarco's influen-

tial 1978 book on system specification (Reference 4) does

not address the representation of context. In his 1982 book

(Reference 5), however, the system's environment has been

elevated to assume a major role in system specification,

although the "retained-data" model he uses is not as power-

ful (Reference 6) as the model proposed for the CSM.

It is much more difficult to specify the requirements for

large systems than to do so for small programs, because of

the increase in complexity. What is the origin of the added

complexity? In a rough analogy between large systems and

3-3

9686

humans as decisionmaking, behavior-producing entities, Simon

has observed (Reference 7):

"A man, viewed as a behaving system, is quite simple.
The apparent complexity of his behavior over time is
largely a reflection of the complexity of the environ-
ment in which he finds himself."

The implication is that a large system is more complex be-

cause it is modeling more of a complex environment. In this

sense, representing the environment in the GSM requires fo-

cusing properly on the source of the complexity.

Capturing the information space or context will be extremely

valuable in making decisions about the reusability of sys-

tems. From this representation, the particular environment

of an existing system will be visible. An analyst or devel-

oper will thus be able to assess the degree of reusability

based on the new system's similarity to the objects, attri-

butes, and events characterizing the environment of an

existing system.

The representation of context will also help with the ques-

tion of how "good" a particular requirements specification

is. Two key properties that determine its "goodness" are

completeness and modifiability. Making the objects and

events visible through the representation of context will

greatly assist any assessment of completeness. For example,

if a system models thruster firings during a maneuver,

"volume of fuel in tank" should be present in the represen-

tation as an attribute.

Modifiability or designing for change is a desirable attri-

bute of a system. Its embodiment earlier in the life cycle

is to "specify for change." Many of the changes to a system

are responses to changes in the environment. When the spec-

ification includes a representation of the environment, the

effects of such changes are easier to assess, because both

3-4

9686

the change and the specification being changed are expressed

in the same terms in the domain of the application and the

user.

The form used in the CSM for representing the information

space of the system is the entity-relationship (ER) approach

(Reference 8). The ER model was selected because, as ex-

plained in Reference 8,

• It is among the most flexible models, having been

used in a wide range of applications.

• Its view of a particular environment is more "nat-

ural" than other alternatives—requiring less ef-

fort to apply.

• It is a sufficiently comprehensive to serve as a

framework for deriving the three more-specific

models: network, relational, and entity-set.

Four terms will be used in the ER view: entities, relation-

ships, attributes, and value sets. Brief definitions and

examples will be presented for each term. Reference 8 con-

tains a more thorough introduction.

Entities are identifiable objects in the environment. Some

examples are a momentum wheel, a user, a CRT display, a fuel

tank, Earth, and the spacecraft. Events (e.g., start of

maneuver, end of integration step) are considered to be en-

tities in the ER approach. In the CSM, the entities that

correspond to events can be identified separately but share

all of the properties of entities. In the following discus-

sion, entities may includes events.

Relationships are associations among entities and are de-

fined as are relations in discrete mathematics (Refer-

ence 9). Examples of relations are Earth-spacecraft and

fuel tank-initial loading time.

3-5

9686

Information about entities and relationships is expressed by

a set of attribute-value pairs. An attribute is a property

or feature of the entity or relationship. For example, the

entity "fuel tank" may have attributes of volume and loca-

tion on the spacecraft.

Value sets combine the concepts of the units of measure with

ranges and types of acceptable values for attributes. For

example, the value set for the attribute "volume" may be

"INCHES3: cubic inches, nonnegative real range."

A valuable conceptual feature of the ER approach is the

ability to associate attributes with relationships as well

as entities. As an example, the attribute "unit vector from

the spacecraft center of mass to the center of Earth" is

associated with the "Earth-spacecraft" relationship. It

would be inaccurate to associate with the entities "Earth"

or "spacecraft."

3.3 DYNAMIC VIEW

The third component of the CSM is the dynamic view, repre-

senting the behavior of the system over time. The notation

used is the state transition diagram, a directed graph in

which the nodes correspond to states of the system and the

directed arcs show the possible changes in state (Refer-

ence 5). Events in the environment (e.g., a user selects a

menu option) provide the stimuli to trigger a state change.

3-6

9686

SECTION 4 - MEASURES BASED ON THE COMPOSITE
SPECIFICATION MODEL

This section defines measures based on the Composite Speci-

fication Model introduced in Section 3. The measures are

grouped according to the three dimensions of the CSM: func-

tional view, contextual view, and dynamic view. All of the

measures defined in this section are listed in Table 4-1.

4.1 FUNCTIONAL VIEW; DATA FLOW DIAGRAMS

Data flow diagrams are presented at different levels of de-

tail. The measures should be based on the most detailed,

fully decomposed data flow diagram so that there will be

some consistency and opportunity for comparison between

projects.

Although objective counts will be available from the com-

pleted data flow diagram, the process of developing the data

flow diagram has a subjective component. Personal judgment

is involved in deciding how to decompose system requirements

into function nodes and data flows. The structured analysis

methodology and its derivatives recognize four methods for

deciding when the lowest level partitioning has been reached

(References 4 and 5) :

• When the minispecification is approximately one

page in length

• When the function has a single input data flow and

a single output data flow

« When application of Jackson's concept of boundary

clashes indicates that the partitioning should stop

• When further partitioning will not reduce the aver-

age number of data items on input or output data

flows around function nodes

4-1

9686

Table 4-1. Specification Measures Based on CSM (1 of 2)

Number

M101*

M102*

M103*

M104*

M105*

M106*

M107*

M108*

M109

MHO

Mill

M112

M113

M114

M115

M116

M117

M118

M119*

M120*

M121*

M122*

M123*

M124

M125

M126

M127

M128

M129

Measure

Functional Primitives

Longest Path

Interface Count

System In-Arcs

System Out-Arcs

File In-Arcs

File Out-Arcs

Internal Arcs

Maximum Internal Arcs

Arc Density

Relative Arc Density

System In/Out-Arcs

File In/Out-Arcs

Total In-Arcs

Total Out-Arcs

Total System Non-File Arcs

Total Internal and File Arcs

Total Arcs

System In-Data Items

System Out-Data Items

File In-Data Items

File Out-Data Items

Internal Data Items

System In/Out-Data Items

File In/Out-Data Items

Total In-Data Items

Total Out-Data Items

Total System Non-File Data Items

Total Internal and File Data Items

*Denotes basic measure, i.e., not computable from other
measures on this list.

4-2

9686

Table 4-1. Specification Measures Based on CSM (2 of 2)

Number

M130

M131

M132

M133

M134

M135

M136

M137

M138

M139

Ml 40

Ml 41

M142*

M143*

M144*

M201*

M202*

M203*

M204*

M205*

M206

M207

M208

M301*

M302*

M303

M401

M402

M403

Measure

Total Data Items

Internal Arc Weight

System In/Out-Arc Weight

File In/Out-Arc Weight

System Non-File Arc Weight

Internal and File Arc Weight

Arc Weight

Classification Measure #1

Classification Measure #2

Classification Measure #3

Classification Measure #4

Classification Measure #5

Derivation Set Complexity

Relative Derivation Set Complexity

Weighted Function

Entities

Events

Relations

Attributes

Value Sets

Relation Density

Attribute Density

Value Set Density

States

Transitions

Activity

Functional/Contextual Ratio

Functional/Dynamic Ratio

Dynamic/Contextual Ratio

*Denotes basic measure, i.e., not computable from other
measures on this list.

4-3

9686

The application of the CSM to a real system in Section 5

confirmed that following one guideline may violate another

one: human judgment remains a factor in the decomposition

decision.

Several of the measures defined in this section are minor

variations of one another. It is not recommended that all

of the measures be used. They are included to illustrate

the details that must be considered when such measures are

defined.

A further distinction may be made between raw counts and

derived measures, which combine the raw counts in various

ways. These derived measures are included because they are

analogs of size and complexity measures that have been pro-

posed by other investigators. For example, several early

complexity measures (e.g., Reference 10) have been based on

some count of input and output. Some proposed measures in

this section are therefore similarly defined.

Figure 4-1 is an example of a data flow diagram consisting

of six nodes and four external entities (denoted I, II, III,

and IV). Table 4-2 gives the values of the basic measures

extracted from the example.

4.1.1 FUNCTIONS AND ENTITIES: BASIC COUNTS (MEASURES MIDI
TO M103)

MlOl Functional Primitives

This is the number of nodes in a fully decomposed data flow

diagram.

M102 Longest Path

This is the number of nodes in the longest path from any

source external entity to any sink external entity. It is

valid only if loop-free data flow diagrams are enforced.

4-4

9686

9686/84

Figure 4-1. Example of Data Flow Diagram

4-5

Table 4-2. Basic Measures Extracted From Example
in Figure 4-1

Measure Number

M101

M102

M103

M104

M105

M106

M107

M108

M119

M120

M121

M122

M123

Measure Name Value

Functional Primitives 6

Longest Path 5

Interface Count 4

System In-Arcs 2

System Out-Arcs 3

File In-Arcs 2

File Out-Arcs 2

Internal Arcs . 7

System In-Data Items 3

System Out-Data Items 5

File In-Data Items 4

File Out-Data Items 2

Internal Data Items 12

4-6

9686

Ml03 Interface Count

Tnis is the numuer of external entities that have data flows

to/from the system. It is not necessarily equal to the

count of arcs to/from external entities.

4.1.2 ARCS: BASIC COUNTS (MEASURES M104 TO M108)

M104 System In-Arcs

This is tne number of arcs from outside entities to the sys-

tem. It does not include arcs from files.

M105 System Out-Arcs

Tnis is the number of arcs from the system to outside enti-

ties. It does not include arcs to files.

M106 File In-Arcs

This is the number of arcs from files.

M1Q7 File Out-Arcs

This is the number of arcs to files.

M108 Internal Arcs

This is the number of arcs between nodes that are part of

the system. It does not include arcs to/from files or

to/from external entities.

4.1.3 ARCS: DERIVED MEASURES (MEASURES M109 TO M118)

M10_9 Maximum Internal Arcs

This measure is obtained from measure MlOl, number of func-

tional primitives. It assumes that a fully decomposed data

flow diagram is loop-free. It is derived as follows:

M109 = ((MlOl)2 - Ml01)/2

4-7

9686

MHO Arc Density

This measure is obtained from measure M108, number of inter-

nal arcs, and measure M101, number of functional primi-

tives. It is derived as follows:

MHO = M108/M101

Mill Relative Arc Density

This measure is obtained from measure M108, number of inter-

nal arcs, and measure M109, maximum number of internal

arcs. It is derived as follows:

Mill = M108/M109

M112 System In/Out-Arcs

This is the number of arcs in/out of the system. It is de-

rived as follows:

M112 = M104 + M105

M113 File In/Out-Arcs

This is the number of arcs in/out of files. It is derived

as follows:

M113 = M106 + M107

Ml14 Total In-Arcs

This is the number of arcs input from external entities or

from files. It is derived as follows:

M114 = M104 + M106

M115 Total Out-Arcs

This is the number of arcs output to external entities or to

files. It is derived as follows:

M115 = M105 + M107

4-1

9686

Mllb Total System Non-File Arcs

This is the number of internal and system input/output arcs,

excluding to/from files. It is derived as follows:

M116 = M108 + M112

M117 Total Internal and File Arcs

This is the number of internal arcs and arcs to/from files.

It is derived as follows:

M117 = M108 + M113

M118 Total Arcs

This is the total number of arcs: internal, to/from files,

and to/from external entities. It is derived as follows:

M118 = M108 + M112 + M113

4.1.4 DATA ITEMS: BASIC COUNTS (MEASURES M119 TO M123)

M119 System In-Data Items

This is the number of distinct data items input to the sys-

tem from external entities. It does not include data items

from files.

M120 System Out-Data Items

This is the number of distinct data items output to external

entities from the system. It does not include data items to

files.

Ml21 File In-Data Items

This is the number of distinct data items input from files.

Ml22 File Out-Data Items

This is the number of distinct data items output to files.

M123 Internal Data Items

Tnis is the number of distinct data items on internal arcs.

It does not include data items on arcs to/from files.

4-9

9686

4.1.5 DATA ITEMS: DERIVED MEASURES (MEASURES M124 TO M130)

Ml24 System In/Out-Data Items

This is the number of distinct data items input or output.

It is derived as follows:

M124 = M119 + M120

M125 File In/Out-Data Items

This is the number of distinct data items to/from files. It

is derived as follows:

M125 = M121 + M122

M126 Total In-Data Items

This is the number of distinct data items input from ex-

ternal entities or files. It is derived as follows:

M126 = M119 + M121

Ml27 Total Out-Data Items

This is the number of distinct data items output to external

entities or files. It is derived as follows:

M127 = M120 + M122

Ml28 Total System Non-File Data Items

This is the number of distinct internal and system input/

.output data items excluding to/from files. It is derived as

follows:

M128 = M123 + M124

Ml29 Total Internal and File Data Items

This is the number of distinct internal and file data

items. It is derived as follows:

M129 = M123 + M125

4-10

9686

Ml30 Total Data Items

This is the number of distinct data items appearing on all

arcs: internal, to/from files, and to/from external enti-

ties. It is derived as follows:

M130 = M123 + M124 + M125

4.1.6 ARC WEIGHTS (MEASURES M131 TO M136)

Ml31 Internal Arc Weight

Tnis measure is obtained from measure M123, internal data

items, and measure M108, internal arcs. It is derived as

follows:

M131 = M123/M108

M132 System In/Out-Arc Weight

The measure is obtained from measure M124, system

in/out-data items, and measure M112, system in/out-arcs. It

is derived as follows:

M131 = M124/M112

Ml33 File In/Out-Arc Weight

This measure is obtained from measure M125, file in/out-data

items, and measure M113, file in/out-arcs. It is derived as

follows:

M133 = M125/M113

M134 System Non-File Arc Weight

This measure is obtained from measure M128, total system

non-file data items, and measure Mil6, total system non-file

arcs. It is derived as follows:

M134 = M128/M116

4-11

9636

M135 Internal and File Arc Weight

This measure is obtained from measure M129, total internal

and file data items, and measure M117, total internal and

file arcs. it is derived as follows:

M135 = M129/M117

Ml36 Arc Weight

This measure is obtained from measure M130, total data

items, and measure M118, total arcs. It is derived as fol-

lows :

M136 = M130/M118

4.1.7 MEASURES FOR EARLY CLASSIFICATION (MEASURES M137
TO M141)

Measures M137 through M141 are analogous to proposals for

classification of projects. Low values imply "function-

strong" applications; high values imply "data-strong"

applications.

M137 Classification Measure 1

This measure is obtained from measure M120, system out-data

items, and measure MlOl, functional primitives. It is de-

rived as follows:

M137 = M120/M101

Ml38 Classification Measure 2

This measure is obtained from measure M127, total out-data

items, and measure MlOl, functional primitives. It is de-

rived as follows:

M138 = M127/M101

ivil39 Classification Measure 3

This measure is obtained from measu-re M124, system

in/out-data items, and measure MlOl, functional primitives.

It is derived as follows:

M139 = M124/M101

4-12

9686

Ml40 Classification Measure 4

This measure is obtained from measure M128, total system

non-file data items, and measure M101, functional primi-

tives. It is derived as follows:

M140 = M128/M101

M141 Classification Measure 5

This measure is obtained from measure M130, total data

items, and measure Midi, functional primitives. It is de-

rived as follows:

M141 = M130/M101

4.1.8 ANALYTIC MEASURES (MEASURES Ml42 AND M143)

Ml42 Derivation Set Complexity

Ml43 Relative Derivation Set Complexity

Measures M142 and M143 could provide predictions of effort

or complexity. They have been adapted from Reference 11,

which uses control information as well as data flow. The

results could be modified so control flow is not needed.

The principle behind these measures is to focus on the size

and complexity of the set of data items that derive each

output data item. The measures are time-consuming to com-

pute manually, but the process could be automated.

4.1.9 AGGREGATE MEASURES (MEASURE M144)

Another approach to project-level measures is to build them

from counts associated with each functional primitive node

in the data flow diagram: number of arcs in and out, number

of data items in and out, etc. Instead of simply adding the

counts for each node, the values could also be weighted. If

the Section 2 measure "number of equations" was developed

4-13

9686

and associated with each function node, it could be used as

a weighting for a measure of functionality of each node,

such as

(number of equations) x (number of data items in and out)

Summing the node-level measures will yield project-level

measures, which will generally differ from the measures pre-

sented earlier in this section. For example, measure M123,

number of internal data items, will not generally have the

same value as an aggregate measure formed by adding the data

items surrounding each node, because of duplicate counting

in the latter case. The use of aggregate measures would

resemble the approach used by Albrecht (Reference 12) for

commercial applications.

One aggregate measure, M144, weighted function, has been

proposed by DeMarco (Reference 5) as an early estimate of

system size:

Define DE. as the number of data items "around"

node i, i.e., the number of data items appearing on

any arcs into or out of node i.

For each node i, compute

(DEi x Iog2 (DEi))/2

M144 Weighted Function

This measure is derived as follows:

MIDI

M144 = y] ((DEi x Iog2 (DEi))/2

where M101 is the number of nodes (functional primitives) .

The entire set of aggregate measures will not be presented

in this section. They would be defined by modifying the

4-14

9686

definitions used in measures M101 through M141 such that the

counts are made on each node and then added together.

4.2 CONTEXTUAL VIEW; ENTITY-RELATIONSHIP REPRESENTATION
(MEASURES M201 TO M208)

Measures of the information space of the system are based on

counts of the principal constituents of the entity-

relationship description: entities, events, relations, at-

tributes, and value sets. The only variation from the

definitions of the terms in Section 3 is to maintain a sep-

arate count of events and a count of other (nonevent) enti-

ties.

M201 Entities

This is a count of the distinct nonevent entities about

which the system must have some knowledge.

M2Q2 Events

This is a count of the distinct environmental occurrences

that affect the behavior of the system.

M2Q3 Relations

This is a count of the distinct relations between collec-

tions of entities or events. Relations are counted when

attributes are associated with them.

M204 Attributes

This is a count of the distinct properties or characteris-

tics that must be known to the system about the entities,

events, or relations.

M2O5 Value Sets

This is a count of the distinct collections of attribute

values, incorporating concepts of range, type, and units of

measure.

4-15

9686

M206 Relation Density

•p

The maximum number of relations is 2 , where E = M201 +

M202. Measure M206, how many of the possible relations

exist, is derived as follows:

M206 = M203/(2E)

This measure will range between 0 and 1 and may assist in

characterizing the degree of interconnectedness of the in-

formation space.

M207 Attribute Density

This is the mean number of attributes per entity or event.

It is derived as follows:

M207 = M204/E

where E = M201 + M202.

Measure M207 may assist in characterizing the depth of

knowledge that the system must maintain.

M208 Value Set Density

This is defined as the number of value sets relative to the

number of attributes. It is derived as follows:

M208 = M205/M204

Measures M208 will range between 0 and 1. A low measure

(near zero) indicates that relatively few distinct sets of

values are being used to represent attribute values; a high

measure (near unity) indicates that nearly every attribute

has its own distinct value set.

This measure may assist in measuring a suspected highly

error-prone activity, that of accommodating all of the vari-

ous coordinate systems, frames of reference, units, and ac-

ceptable ranges.

4-16

9686

4.3 DYNAMIC VIEW; STATE TRANSITION DIAGRAMS (MEASURES M301
TO M3Q3)

M301 States

M302 Transitions

Measures of the dynamic view are based on counts of these

two elements that make up the diagrams.

M303 Activity

Measure M303 relates measures M301 and M302 to capture the

level of activity in the dynamic view.

It is a measure of the actual number of transitions relative

to the maximum number possible. It is derived as follows:

M303 = M302/(M301)2

Measure M303 will range between 0 and 1. It allows transi-

tions from a state to itself.

Figure 4-2 is an example of a state transition diagram with

values extracted for M301 and M302.

4.4 MEASURING THE DOMINANT VIEW (MEASURES M401 TO M403)

The counts from separate views can be combined in various

ways to yield a fourth group of measures from the CSM.

Measures M401 through M403 could be used to assess the rela-

tive strength of each of the three views. Experience with

tne measures may allow the early characterization of a sys-

tem, for example, "function-strong" or "context-strong,"

because of the dominant role of a particular view.

One approach is to select, from each view, a measure that

represents that view. The ratios of these three measures

would capture the notion of relative dominance, for example,

• Functional view—Measure MlOl, functional primitives

• Contextual view—Measure M203, relations

• Dynamic view—Measure M301, states

4-17

9686

MEASURE NAME VALUE

11

M301 NUMBER OF STATES 7

M302 NUMBER OF TRANSITIONS 12

Figure 4-2. Example of State Transition Diagram

4-18

M401 Functional/Contextual Ratio

This measure is derived as follows:

M401 = M101/M203

M402 Functional/Dynamic Ratio

This measure is derived as follows:

M402 = M101/M301

M403 Dynamic/Contextual Ratio

This measure is derived as follows:

M403 = M301/M203

If such measures are used on several projects, patterns may

emerge, allowing the identification of threshold values and

the classification of related systems.

4-19

9686

SECTION 5 - AN EXERCISE IN EXTRACTING SPECIFICATION MEASURES

This section reports on an exercise in extracting specifica-

tion measures from a real system. Section 5.1 identifies

16 specification measures recommended for use in the SEL.

Section 5.2 presents the results of extracting these

16 measures from flight dynamics software requirements.

5.1 RECOMMENDED SPECIFICATION MEASURES FOR EXTRACTION

Table 5-1 lists a recommended set of 16 specification meas-

ures. The first two measures are available from existing

documentation and are defined in Section 2. The remaining

measures are defined in Section 4 and are derived from the

GSM representation of requirements. Except for the analytic

measure, weighted function, all the CSM-based measures are

explicit counts. As discussed in Section 4, these explicit

counts enable the calculation of more derived measures from

this basic set.

The following criteria were used to select the 16 measures in

Table 5-1 from the 87 measures defined in Sections 2 and 4:

• Availability and accessibility of the measures,

including ease of extraction

• Usefulness of the measures as indicated by their

potential to measure some key properties of the

requirements

• Ability of the measures to be combined with other

measures (e.g., as normalization factors), thereby

creating potentially useful analytic measures

5.2 RESULTS OF EXTRACTING SPECIFICATION MEASURES

As an exercise, the measures from Table 5-1 were extracted

from the requirements for a real system. This section

5-1

9686

Table 5-1. Recommended Set of Specification Measures

Measure
Number Measure Name

M26 Staff-Months Expended: Requirements Definition

M27 Staff-Months Expended: Requirements Analysis

MlOl Functional Primitives

M103 Interface Count

M108 Internal Arcs

M123 Internal Data Items

M124 System In/Out Data Items

M125 File In/Out Data Items

M144 Weighted Function

M201 Entities

M202 Events

M203 Relations

M204 Attributes

M205 Value Sets

M301 States

M302 Transitions

aAs defined in Sections 2 and 4.

5-2

9686

summarizes the measurement exercise, which is described in

more detail in Reference 13.

Specification measures were extracted from the Yaw Maneuver

Control Utility (YMCU) of the Earth Radiation Budget

Satellite (ERBS). The YMCU software consists of

11,191 source lines of FORTRAN.

The results of the measurement exercise are summarized in

two parts:

• The actual values extracted

• The measurement process

The actual values extracted from the requirements and listed

in Table 5-2 constitute only a single data point in any at-

tempt to draw inferences from the values. Specification

measures must be extracted for several projects before any

patterns or trends might possibly emerge.

The exercise demonstrated that the measurement process is

feasible. The process involved the preparation of the CSM

for the YMCU software. This alternative representation of

requirements (Reference 14) not only facilitates measurement

out also serves as a clearer reference document.

The extraction process required 1.7 staff-months of effort,

almost all of which was spent understanding the requirements

and recasting them according to the CSM. Only 9 hours were

needed to calculate the measures from the CSM representa-

tion.

5-3

9686

Table 5-2. Computed Metric Values for ERBS YMCU

Metric.
Number'

M26

M27

MIDI

M103

M108

M123

M124

M125

M144

M201

M202

M203

M204

M205

M301

M302

Metric Name

Staff-Months Expended: Require-
ments Definition

Staff-Montns Expended: Require-
ments Analysis

Functional Primitives

Interface Count

Internal Arcs

Internal Data Items

System In/Out Data Items

File In/Out Data Items

Weignted Function

Entities

Events

Relations

Attributes

Value Sets

States

Transitions

Value

NAb

2.1

39

3

60

42

67

74

688

11

14

19

91

29

7

11

aFrom Sections 2 and 4.

bNot available; see Reference 13 for discussion.

5-4

9686

SECTION 6 - ASSESSMENT OF THE SPECIFICATION MEASURES STUDY

This section presents an assessment of the investigation

into specification measures for use by the SEL. This as-

sessment covers the strengths and weaknesses of the defined

specification measures, the GSM, and the implications of the

metrics extraction exercise. The results of the investiga-

tion are outlined as they relate to the study objective, and

directions for future studies and applications of specifica-

tion measures are proposed.

6.1 STRENGTHS AND WEAKNESSES OF THE SPECIFICATION MEASURES

The strengths of the set of specification measures lie in

four areas:

• Quantity

• Objectivity

• Breadth

• Extractability

The quantity of measures defined is viewed as a strength.

Requirements definition and analysis have been difficult

phases in which to introduce measurement. With the defini-

tion of 87 measures, there are increased opportunities for

the emergence of useful indicatprs of key properties of the

requirements.

The measures are objective, either explicit counts or well-

defined calculations based on the counts. A particular

requirements representation will yield a single set of meas-

urements. Assuming that no errors are made in the extrac-

tion procedure, the measurements will be unaffected by the

analyst extracting the measures.

The specification measures exhibit greater breadth than

tnose reported in the literature. Historically, specifica-

tion efforts have been directed to describing the required

6-1

9686

functionality of the system. Measures of the specification

have reflected this orientation. In the current study,

measures are defined for the system's environment and its

dynamic behavior, as well as its functionality.

The measures are easy to extract from the requirements

representation. Most of the measures are explicit counts,

and the remainder are analytic measures that can be computed

Dy hand calculation.

The weaknesses in the set of specification measures lie in

three areas:

• Lingering effect of human judgment

• Inability to measure some properties of requirements

• Limited use as "stand-alone" measures

Human judgment is still a factor in the recommended specifi-

cation measures. Although the measures are objective, they

are extracted from a representation that relies on subjec-

tive judgment. For example, as noted in Section 4, several

guidelines have been proposed to help analysts decide when

to stop decomposing processes during data flow analysis

(Reference 5). Depending on which guideline is followed,

the data flow diagrams may be expected to differ even when

the same requirements are being analyzed. The measures

based on the data flow diagrams will, of course, differ as

well.

It should not be surprising that the role of human judgment

has not been eliminated by these specification measures.

Requirements analysis, being the first life cycle phase,

occurs at a time when there is the most uncertainty about

the needs of the system. It seems reasonable that any meas-

ures during this phase would reflect this uncertainty.

6-2

9686

Specification measures are not the only measures influenced

Dy subjective considerations. Human judgment continues to

affect measures that are widely considered to be among the

most objective available anytime during the life cycle.

Lines of code, for example, is a measure that is influenced

by the coding style of the individual programmer.

A second perceived weakness is the inability of the measures

to address certain properties of requirements. It is not

clear that, even after applying these measures on several

projects, measures will emerge for consistency, complete-

ness, or understandability. Rough, relative, subjective

measures of such properties may result from the use of ques-

tionnaires. For example, several peer analysts would be

asked to rate each property on a scale from one to five.

When a group of projects is scored in this way, rating pat-

terns may be used as a reference for assessing the proper-

ties on a new project (Reference 15). The current study has

not pursued questionnaires because of the strong subjective

nature of any resulting measures.

Although measures for consistency, completeness, and under-

standability are not forthcoming, the CSM representation has

contributed in this regard. It is found (Section 6.2) to be

a better medium than the requirements document for identify-

ing inconsistency and incompleteness.

A third weakness of the set of specification measures is the

limited ability for a single project to be useful without

reference to other projects. This weakness was demonstrated

in the extraction exercise of Section 5. The magnitude of

the numbers did not convey any message about the require-

ments being large or small, easy or difficult, etc. The

measures will have meaning only when other projects are

measured and their corresponding concluding values (size,

error rate, etc.) are recorded.

6-3

9686

To a degree, this weakness is unavoidable. Measures associ-

ated with implementation and testing are more meaningful

than those associated with specification and design. The

activities of coding and debugging are familiar to program-

mers. The system product, expressed as source lines of

code, has a degree of visibility that is not found in the

early life cycle phases. This weakness may be expected to

persist with specification measures generally until the

products and process of requirements analysis become regu-

larized.

6.2 STRENGTHS AND WEAKNESSES OF THE CSM

The CSM has both strengths and weaknesses. Its perceived

strengths lie in the following areas:

• Facilitating objective specification measures

• Supporting multiple views of requirements

• Presenting requirements in a graphical, nonnarra-

tive style

• Providing early capture of key requirements infor-

mation

• Facilitating reusability and maintainability

• Evaluating properties of requirements

• Anticipating object-oriented design

The CSM facilitates the definition and extraction of objec-

tive specification measures. It was developed in response

to the need for such measures, and Section 4 demonstrates

that 58 measures are indeed definable due to the CSM.

The multiple viewpoints of the CSM provide breadth in the

coverage of requirements. The CSM accommodates the differ-

ent needs of users who may have a particular interest,

6-4

9686

for example, in the dynamic behavior of the system. The CSM

shifts the attention of requirements analyses from purely

functional concerns to consideration of context and state

transition. The discipline of developing each viewpoint

provokes insights that aid the analyst in understanding the

requirements.

Through its use of a largely nonnarrative style, the CSM is

a more accessible form of requirements expression. The

graphs and lists contribute to the understandability of the

requirements. The CSM structure exposes the objects, rela-

tions, states, and functions. This visibility enhances

traceability, maintainability, and early configuration

control.

By capturing more of the requirements earlier, the CSM

reduces the incidence of costly "rediscovery" of key infor-

mation. Value sets are examples of important data that were'

not recognizable as distinct objects in non-CSM representa-

tions. Value sets have the flexibility to capture all of

the important characteristics of the values that attributes

may assume. As noted in Section 3, they encompass the con-

cepts of type, structure, and unit of measure. Value sets

can, however, be extended to include additional characteris-

tics: coordinate system, precision, and range. Uncertainty

about the correct value set leads to coding errors. By cap-

turing the value sets early, the CSM serves as a valuaole

requirements data base.

The CSM supports the organizational objective of reusability

of software products. The benefits of reusability are mag-

nified when it is applied at earlier phases in the life

cycle. By its contextual view, the CSM captures the problem

domain of the software. Analysts can see the objects and

relations that are being modeled so that opportunities for

6-5

96b6

reuse are easier to detect. Because many enhancements to a

system are due to changes in the environment, the maintainer

can work directly with the contextual model in the CSM to

record those changes.

The CSM facilitates the evaluation of requirements proper-

ties. Requirements specifications serve a diverse audience--

analysts, developers, managers, and customers--who want to

determine the degree to wnich the requirements possess cer-

tain properties. The CSM makes it easier to identify incon-

sistency, for example, because of its multiple complementary

views and its graphical style. Likewise, software complex-

ity may be assessed by considering the state behavior along

with the interconnection of entities shown by the relations.

Tnrougn its identification of entities and attributes, the

CSM serves as a logical predecessor of object-oriented

design. Developers who use the CSM will find it to be a

good starting point as they encapsulate objects and their

operations into logical units for design.

The weaknesses of the CSM lie in three areas:

• Labor intensity

• Lack of integration of views

• Incompleteness

The CSM is highly labor intensive, relying on the efforts of

analysts to understand the requirements and cast them in CSM

form. Portions of the CSM can be assisted by automation.

The extraction exercise used the Index Technology Excelerator

workstation (Reference 16) to support the functional view,

i.e., drawing data flow diagrams and maintaining a data dic-

tionary. Graphics and word processing software can help the

analyst with the two other views as well. The analyst using

the CSM does not, however, obtain the reports and consistency

checking that would be produced automatically from the use

of a specification language system. Such systems were

6-6

9686

explicitly not pursued because of the recommendations from

previous SEL studies (Reference 17).

The multiple views of the CSM are distinct, requiring addi-

tional effort to integrate them. With the YMCU software, an

extra table was prepared to show the relationship between

the functional and dynamic views, specifically to identify

the functional processes that are active during every soft-

ware state (Reference 14).

The completeness of the CSM is an issue if it is contemplated

as an alternative to the functional specification and re-

quirements document. Two weaknesses of the CSM regarding

its completeness are its provision for storing mathematical

equations and its scope.

Mathematical equations are used to specify flight dynamics

software requirements. They can be accommodated in the CSM

by using a process description that can be associated with

every functional primitive in the data flow analysis. The

descriptions will include the equations required to specify

now the input data flows will be transformed into output

data flows.

The weakness of the CSM's scope is due to the broad defini-

tion of requirement that has been used in this investigation:

"A requirement is any property of the proposed
system that determines its acceptability."

This definition may be contrasted with a narrower definition

of a requirement as "what the software does--its functional-

ity." with such restricted definitions, the CSM has no

weakness in its scope.' With the broad, more realistic

definition, there are many examples of requirements that

could not be represented in the CSM:

• The system must respond in less than 5 seconds.

• Both batch and terminal use must be supported.

• The output can be tape or disk.

6-7

9686

With natural language descriptions of requirements, there is

no need to recast such examples in a restricted notation or

style. The GSM may be extended to include more views (e.g.,

an operational view to represent some performance require-

ments) but employing such a broad definition of requirement

guarantees that some requirements will remain outside the

scope of the CSM. A list of such requirements will be a

necessary accompaniment to the CSM for it to serve as a com-

plete specification.

6.3 IMPLICATIONS OF THE METRICS EXTRACTION EXERCISE

The results of the metrics extraction exercise (presented in

Reference 13) are used here to consider tne effort (greater

than or less than that required in the exercise) that may be

required to measure future projects. Reference 13 reported

1.7 staff-months spent by an analyst to recast the require-

ments into tne CSM and extract the measures. For comparison,

2.1 staff-months were spent by the developer to perform the

requirements analysis.

Four factors that influenced the effort expenditures in the

exercise will continue to affect the effort required on

future projects:

• Staff experience with the application

• Staff experience with the CSM

• Effort reporting practices

• Availability of requirements information

The first factor affecting effort is the staff experience

with the application. The exercise involved a relatively

small system, the Yaw Maneuver Control Utility, consisting

of 11,191 source lines of FORTRAN. The requirements analy-

sis and the CSM representation were performed by single

(different) individuals. As a result, the effort values

were more sensitive to individual differences than would be

true of larger projects with a team approach.

6-8

9686

The analyst preparing the CSM representation had no prior

experience with flight dynamics applications. This inexper-

ience undoubtedly lengthened the time necessary for the

analyst to understand the requirements. The analyst was,

however, very experienced with the components of the CSM.

This familiarity obviated the need for CSM training. Future

use of the CSM will probably require such training.

The reported effort of 1.7 staff-months is sensitive to the

practices employed for collecting effort data. During the

exercise, time was charged only when the analyst was working

specifically on the exercise. For example, time spent de-

fining the measures or reading the literature on specifica-

tion measures was not charged to the measurement exercise.

The availability of requirements information affected the

effort expended on the exercise and will affect the effort

required on future uses of the CSM. Because the exercise

was a retrospective study, the YMCU source code was avail-

able. As Reference 13 explains, the code was used selec-

tively to resolve questions about the requirements.

Referring to the code was faster than asking the developer

for assistance. However, the exercise was slowed because

the code provided requirements information at a very de-

tailed level. The analyst had to filter out the excessive

detail, consistent with the intention of the exercise to

depend only on information potentially available at require-

ments time.

6.4 RECONSIDERATION OF THE STUDY OBJECTIVE

The objective of the study (Section 1.1) was to investigate

measures that provide a quantitative characterization of the

size and nature of the software requirements. The study has

succeeded in defining a wide range of objective measures and

recommending a comprehensive subset for use.

6-9

9686

Progress was also made in addressing three questions posed

in Section 1.1 regarding the behavior, size, and cost of a

proposed system. Through the CSM representation, greater

likelihood exists for capturing essential aspects of system

behavior. The estimation of the size and cost of a system

is enhanced by using the measures recommended in this study

for functional primitives, weighted function, relation den-

sity, states, and transitions. The discussions in Sec-

tions 6.1 through 6.3 offered additional assessments of the

degree to which study objectives have been met.

6.5 FUTURE DIRECTIONS FOR SPECIFICATION MEASURES IN THE SEL

An obvious alternative for future development is to apply

the metric extraction procedure to more projects. As ex-

plained in Section 5, only when more projects are measured

can patterns emerge from the extracted metric values.

Future use of the specification measures will also help

refine the CSM and the extraction procedure. Additional

benefits would accrue if the target for measurement were a

new system, not one (like the YMCU) that is already devel-

oped. It would eliminate the difficulty experienced during

the exercise in trying to identify which information would

have been available at an earlier time.

A more immediate plan is to solicit comments on the recast

requirements for the YMCU (Reference 14). Such responses

from requirements users (analysts, developers, managers, and

customers) will help determine the potential usefulness of

tne CSM representation.

Continued monitoring of research by outside organizations on

specification measures is a possible future activity. Po-

tentially promising developments can be interpreted for

adaptation by the SEL.

6-10

9686

These suggested future directions share a desire to build on

the results of this study for the improvement of the soft-

ware development process in the flight dynamics environment.

6-11

9686

APPENDIX - ERRORPRONE CHARACTERISTICS OF REQUIREMENTS

As part of the analysis to identify what should be measured,

a brief study of requirements errors was conducted. The

intent was to uncover particular aspects of the requirements

that are leading to errors, so that measures can be defined

to address those aspects. The Software Engineering Labora-

tory (SEL) file of Change Report Forms (CRFs) was scanned

for changes due to requirements errors or specifications

errors on all projects as of March 22, 1984. The search

identified 34 forms reporting requirements errors and

126 reporting specifications errors. The affected forms

were examined to try to detect if a few types of mistakes

explained a high percentage of the errors. No such rela-

tionship was found. In fact, from the comments on the form,

it was difficult in most cases to understand why the error

was identified as being one in requirements or specifica-

tions. A possible explanation was suggested by an SEL col-

league: At the level of the individual programmer who

completes the CRF, the programming assignment received from

the task leader may be interpreted as constituting the re-

quirement or specification. When there is a change in that

assignment, it is reported as a requirement or specification

error, regardless of its relationship to requirements docu-

mentation.

A-l

9686

REFERENCES

1. Software Engineering Laboratory, SEL-84-001, Manager* s
Handbook for Software Development, W. W. Agresti,
F. E. McGarry, D. N. Card et al., April 1984

2. B. W. Boehm, Software Engineering Economics,
Englewood Cliffs, N.J.: Prentice-Hall, 1981

3. Computer Sciences Corporation, CSC/TM-83/6052, Earth
Radiation Budget Satellite (ERBS) Dynamics Simulator
Requirements and Mathematical Specifications, July 1983

4. T. DeMarco, Structured Analysis and System Specifica-
tion, New York: Yourdon, Inc., 1978

5. T. DeMarco, Controlling Software Projects, New York:
Yourdon Press, 1982

6. W. W. Agresti, "Review: Controlling Software Projects
by T. DeMarco," ACM Computing Reviews, September 1983

7. H. Simon, The Sciences of the Artificial,
Cambridge, Mass.: M.I.T. Press, 1970

8. P. Chen, "The Entity-Relationship Model—Toward a Uni-
fied View of Data," ACM Transactions on Data Base Sys-
tems, March 1976

9. C. L. Liu, Elements of Discrete Mathematics, New York:
McGraw-Hill, 1977

10. S. Henry and D. Kafura, "Software Structure Metrics
Based on Information Flow," IEEE Transactions on Soft-
ware Engineering, September 1981

11. M. H. Whitworth and P. A. Szulewski, "The Measurement of
Control and Data Flow Complexity in Software Designs,"
Proceedings, IEEE COMPSAC, 1980

12. A. J. Albrecht and J. E. Gaffney, Jr., "Software Func-
tion, Source Lines of Code, and Development Effort Pre-
diction: A Software Science Validation," IEEE
Transactions on Software Engineering, November 1983

R-l

9686

13. Computer Sciences Corporation, Informational Memorandum,
"Extracting Specification Measures From Flight Dynamics
Software Requirements," W. Agresti, December 1984

14. --, Informational Memorandum, "Case Study in Recasting
Flight Dynamics Software Requirements Using the
Composite Specification Model (GSM)," W. Agresti,
December 1984

15. W. W. Agresti, "Measuring Program Maintainability,"
Journal of Systems Management, vol. 33, no. 3, 1982

16. Index Technology Corporation, Excelerator Reference
Guide, Release 1.11, 5 Cambridge Center, Cambridge,
Massachusetts, 02142, 1984

17. Software Engineering Laboratory, SEL-78-006, GSFC
Software Engineering Research Requirements Analysis
Study, P. Scheffer and T. Velez, November 1978

R-2

9686

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were .

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu
and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design
and Module Descriptions, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

1SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 1) , W. J. Decker and
W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson and B. Chu, September
1978

B-l

9686

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory; Relation-
snip Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description "and User's Guide, C.E. Goorevicn, A. L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PPL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,
C. E. Goorevich, A. L. Green,and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Configuration Analysis Tool (CAT), F. K. Banks,
A. L. Green, and C. E. Goorevicn, February 1980

SEL-80-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevicn, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

1SEL-80-004, System Description and User's Guide for Code
580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garranan, et al., October 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-
scription and User's Guide (Revision 1), W. Decker and
W. Taylor, December 1982

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

B-2

9686

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

1SEL-81-001/ Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

1SEL-81-002, Software Engineering Laboratory (SEL) Data
Base Organization and User's Guide, D. C. Wyckoff, G.Page,
and F. E. McGarry, September 1981

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

1SEL-81-003, Data Base Maintenance System (DBAM) User's
Guide and System Description, D. N. Card, D. C. Wyckoff, and
G. Page, September 1981

-l-SEL-81-103, Software Engineering Laboratory (SEL) Data
Base Maintenance System (DBAM) User's Guide and System
Description, P. Lo and D. Card, July 1983

SEL-81-203, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

1SEL-81-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

^SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

•^•SEL-81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-81-006, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

B-3

9686

, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, w. A. Taylor, and E. J. Smith,
February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

, Performance and Evaluation of an Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page
and F. McGarry, December 1983

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-
bution Over the Life of Medium Scale Software Systems, G. 0.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL) ,
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program
(SAP) System Description, W. A. Taylor and W. J. Decker,
August 1982

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers; Vol-
ume 1, July 1982

B-4

9686

^-SEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

^•SEL-82-006, Annotated Bibliography of Software Engineer-
ing Laboratory (SEL) Literature, D. N. Card, November 1982

l-SEL-82-106, Annotated Bibliography of Software
Engineering Laboratory Literature, D. N. Card, T. A. Babst,
and F. E. McGarry, November 1983

SEL-82-206, Annotated Bibliography of Software Engineering
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1984

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes; The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers; Vol-
ume II, November 1983

1SEL-83-004, Software Engineering- Laboratory (SEL) Data
Base Retrieval System (DARES) User's Guide, T. A. Babst and
W. J. Decker, November 1983

SEL-83-104, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) User's Guide, T. A. Babst,
W. J. Decker, P. Lo, and W. Miller, August 1984

l-SEL-83-005, Software Engineering Laboratory (SEL) Data
Base Retrieval System (DARES) System Description, P. Lo and
W. J. Decker, November 1983

SEL-83-105, Software Engineering Laboratory (SEL) Data Base
Retrieval System (DARES) System Description, PT Lo,
W. J. Decker, and W. Miller, August 1984

B-5

9686

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinqer, November 1983

i

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-84-001, Manager's Handbook for Software Development,
W. W. Aqresti, V. E. Church, and F. E. McGarry, April 1984

SEL-84-002, Configuration Management and Control; Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
.Software Engineering Laboratory (SEL), W. Aqresti,
V. Church, and F. E. McGarry, December 1984

SEL-RELATED LITERATURE

Aqresti, W. W., Definition of Specification Measures for the
Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

^Aqresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
urinq Software Technoloqy," Program Transformation and Pro-
gramming Environments. New York: Sprinqer-Verlaq, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering"^
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

3Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-
ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

3Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-
lems?", Journal of Systems and Software, February 1981,
vol. 2, no.I

B-6

9686

3Basili, V. R., and K. Freburqer, "Proqramminq Measurement
and Estimation in the Software Enqineerihq Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

^Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investiqation," Communications of
the ACM, January 1984, vol. 27, no. 1

3Basili, V. R., and T. Phillips, "Evaluatinq and Com-
parinq Software Metrics in the Software Enqineerinq Labora-
tory," Proceedings of the ACM SIGMETRICS Symposium/
Workshop; Quality Metrics, March 1981

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Enqineerinq, November 1983

Basili, V. R., and J. Ramsey, Structural Coverage of Func-
tional Testing, University of Maryland, Technical Report
TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluatinq Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

2Basili, V.R., and D. M. Weiss, A Methodology for Col-
lecting Valid Software Enqineerinq Data, University of
Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Desiqninq a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

^Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Enqineerinq Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

^Basili, V. R., and M. V. Zelkowitz, "Measurinq Software
Development Characteristics in the Local Environment,"
Computers and Structures, Auqust 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Enqineerinq. New York: Com-
puter Societies Press, 1978

3Basili, V. R., and M. V. Zelkowitz, "The Software Enqi-
neerinq Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
Auqust 1977

B-7

9686

, D, N.f "Early Estimation of Resource Expenditures
and Proqram Size," Computer Sciences Corporation, Tech-
nical Memorandum, June 1982

D. N., "Comparison of Regression Modelinq Tech-
niques for Resource Estimation," Computer Sciences Cor-
poration, Technical Memorandum, November 1982

Card, D. N. , and V. E. Church, "Analysis Software Require-
ments for the Data Retrieval System," Computer Sciences
Corporation Technical Memorandum, March 1983

Card, D. N. , V. E. Church, W. W. Aqresti, and Q. L. Jordan,
"A Software Enqineerinq View of Flight Dynamics Analysis
System," Parts I and II, Computer Sciences Corporation
Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Character-
istics of FORTRAN Modules," Computer Sciences Corporation
Technical Memorandum, June 1984

•^Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies," Proceed-
ings of the Fifth International Conference on Software
Engineering. New York: Computer Societies Press, 1981

2Doerf linger, C. W. , and V. R. Basili, "Monitoring Soft-
ware Development Throuqh Dynamic Variables," Proceedings of
the Seventh International Computer Software and Applications
Conference. New York: Computer Societies Press, 1983

Freburger, K. , "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

Hislop, G. , "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

McGarry, F. E., E. C. Edwards, K. Liu, and G. Page, Software
Conversion History; Flight Dynamics System, June 1984

McGarry, F. E. , G. Page, and R. D. Werking, Software Devel-
opment History of the Dynamics Explorer (DE) Attitude Ground
Support System (AGSS) , June 1983

B-8

9686

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation," Computer
Sciences Corporation, Technical Memorandum, December 1977

Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"
Naval Research Laboratory, Technical Memorandum, July 1979

^Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.
New York: Computer Societies Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations
for Computer and Information Science (proceedings),
November 1982

B-9

9686

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

Zelkowitz, M. V., and J. Sukri, "Evaluation of the PDAS
Prototype as a Software Development System" (paper prepared
for the University of Maryland, February 1984)

^This document superseded by revised document.

2This article also appears in SEL-83-003, Collected Soft-
ware Engineering Papers; Volume II, November 1983.

3This article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers; Volume I, July 1982.

B-10

9686

