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Summary

Single-rotor helicopters experience significant
aerodynamic loading on the tail boom in hovering

and low-speed flight. Major sources of the boom

loads are induced aerodynamic effects from the main
and tail rotors and crosswinds. Complexity of the

flow field has precluded satisfactory analytical mod-
els of the boom loads, and a scarcity of experimen-

tal aerodynamic data exists for cross-sectional shapes

typical of helicopter tail booms. Consequently,
a wind-tunnel investigation was conducted in the

Langley 4- by 7-Meter Tunnel on three representa-
tive helicopter tail boom shapes (those of the AH-64,

UH-60, and UH-1H). Two-dimensional aerodynamic
forces and pressure distributions were obtained with

large-scale models of the cross sections for a flow in-

cidence range from -45 ° to 90 ° and a dynamic pres-

sure range from 1.5 to 50 psf. The effects of pro-
tuberances such as tail rotor drive-shaft covers and

spoilers were investigated. Of the tail boom shapes

tested, the circular cross section without the drive-
shaft cover had the least aerodynamic side force. Ad-

dition of the shaft cover to each shape changed side-

force and vertical-force characteristics significantly.

The addition of spoilers to the booms at selected lo-
cations shifted the side force in a favorable direction

over a wide range of flow angles. Consequently, there

is a potential for reducing the amount of directional

control required in hover and sideward flight through
a reduction in tail rotor thrust required. Although

the spoiler increases down load, the net effect is an

improvement in helicopter performance.

Introduction

Helicopters experience significant aerodynamic

loading on the tail assembly and fuselage during hov-

ering and low-speed flight because of combinations

of wind speed, maneuvers, and downwash from the

main rotor (ref. 1). Aerodynamic loading on the tail

boom is of particular interest because it is subjected

to the highest rotor wake velocities and to varying

flow angles. The down load must be offset by thrust
from the main rotor and a corresponding reduction

of payload. Sideward loading of the tail boom can

increase the thrust required of the tail rotor in the

direction which produces a yawing moment that adds
to main rotor torque. Since the forces and moments

from the tail boom loads must be balanced by tilting

of the tip path plane of the main rotor and/or by

additional tail rotor thrust, the result is a reduction

in payload and yaw-control margin.
Little consideration is given for tail boom effects

in the prediction of aerodynamic loads for low flight

speeds, and there is a scarcity of two-dimensional

data for typical tail boom cross sections to implement

such analyses.
Previous investigations of two-dimensional cylin-

ders of various cross sections have demonstrated the

sensitivity of aerodynamic characteristics to viscous

effects (as characterized by Reynolds number) and

flow incidence (refs. 2 through 7). The effects have
not been amenable to analytical definition, as was

demonstrated in attempts to correlate theory with

experiments (ref. 3). Current analytical techniques,
such as vortex sheet representation (ref. 8) of heli-

copter fuselage shapes, still require development and

correlation with experiments for the prediction of

fuselage loads at low flight speeds. Experimental

investigations have been conducted on many cross-
sectional shapes typical of fixed-wing aircraft. None

of these tests or analyses have dealt with the typical

helicopter tail boom cross section that has a unique

protuberance introduced by the tail rotor drive-shaft
cover.

Since there are insufficient data available for

the understanding of air loads on helicopter tail

booms, an experimental study was undertaken of
two-dimensional cross-sectional shapes of three typi-

cal current U.S. Army helicopter tail booms (those of

the AH-64, UH-60, and UH-1H, which together con-
stitute the bulk of the U.S. Army helicopter fleet).

Air loads and pressure distributions were measured

for the effects of shape (including tail rotor drive-
shaft cover on and off, and spoilers on and off), flow

incidence, and dynamic pressure. The investigation
was made in the Langley 4- by 7-Meter Tunnel over

a range of dynamic pressure from 1.5 to 50 psf and a

range of flow incidence from -45 ° to 90 ° .

Symbols

The aerodynamic data and angle of flow incidence
are referenced to the body axis system, as shown in

figure 1. Section coefficients cv and Cz and Reynolds
number R are referenced to dimensions customarily

used, as indicated in references 2 through 7.

b maximum width of cylinder normal to

flow at zero flow angle, ft

Cp pressure coefficient,
lLocal static pressure)-IFree-strearn static pressure)

q

c maximum depth of cylinder parallel to

flow at zero flow angle, ft

Cy section side-force coefficient,
Side force per unit len6th

bq

Cz section drag-force coefficient,
Longitudinal force per unit length

bq



q dynamic pressure, pV2/2, psf

R Reynolds number, pVc/p

Rmr radius of main rotor, ft

r distance of fuselage station from main
rotor hub, ft

V free-stream velocity, ft/sec

y cross-sectional lateral coordinate, in.

z cross-sectional vertical coordinate, in.

p viscosity, slugs/h-see

p free-stream air density, slugs/ft 3

¢ angle of flow incidence in plane normal

to axis of two-dimensional cylinder,

deg

¢1 pressure port location on tail boom,

deg

_'2 pressure port location on tail rotor

drive-shaft cover, deg

Abbreviations:

S spoiler configuration (see table I)

TRSC tail rotor drive-shaft cover

Models and Apparatus

Three two-dimensional models having cross-
sectional shapes representative of the tail boom de-

signs of a majority of current U.S. Army helicopters

were tested. Included were the boom shapes of an at-

tack helicopter (AH-64), a utility tactical transport

helicopter (UH-60), and a utility helicopter (UH-1H).

Each shape represented, at reduced size (approxi-
mately 50 percent for the UH-60 and AH-64 and

82 percent for the UH-1H), the cross section at a
station approximately 80 percent of the rotor radius

behind the main rotor shaft (the location where near-

maximum rotor wake velocities are generally expe-

rienced in hover). The dimensions and shapes are

described in figure 2 for each cross section. Table II

provides the coordinates of the shapes. Comparisons
of the relative size of the cross sections at model

and full scale are given in figure 3. The AH-64 con-
figuration is circular when the tail rotor drive-shaft

cover is removed. The other two configurations are

roughly oval with large corner radii and, though sym-

metric about the z-axis, are nonsymmetric about the

y-axis even when the tail rotor drive-shaft covers are
removed.

The models were constructed of aluminum sheet
metal attached to aluminum bulkheads with flush

screws. The shapes were held within 4-0.08 in. of
true contour. The contours and surface smooth-

ness are representative of full-scale helicopter tail

booms, though without the customary protruding

rivet heads. Table I lists l- and 2-in-high aluminum
spoilers, attached as shown in figure 2, that were

used for some tests. The spoilers were attached only
when the tail rotor drive-shaft covers were installed.

These spoilers were positioned by judgment based

on pressure distribution data obtained in preliminary

testing.

A photograph of the installation in the Langley
4- by 7-Meter Tunnel is shown in figure 4. The ar-

rangement of cylindrical components and balance is

described in figure 5. The upper and lower cylindri-

cal segments were attached rigidly to a center strut.

The middle segment was the metric component, and

it was attached to a strain-gauge balance (measuring

the force and moment), which in turn was attached
to the center strut. The center strut was attached

to a model mounting support below the tunnel floor
that could be rotated to vary angle of flow incidence.

Also, pressure-measuring ports were located on the

surface of the metric component in a plane perpen-

dicular to the cylinder axis. The locations of the

ports are indicated by tick marks in figure 2.

Large-diameter (48 in.) end plates were attached

to the top and bottom segments to help ensure
that two-dimensional flow would be achieved on the

metric section (fig. 5).

Tests

The cylinders were tested at constant flow inci-

dence angles over a range of dynamic pressure; hence,

data were obtained over a range of Reynolds num-

ber. Also, tests were made at constant dynamic pres-
sure (i.e., approximately constant flow velocity and

constant Reynolds number) for a range of flow inci-

dence angles. Flow incidence was varied by rotating

the cylinders about their longitudinal axes (i.e., ver-

tical in the tunnel) through a range from -45 ° to
90 °. The dynamic pressure range from 1.5 to 50 psf

was selected to encompass the range of flow condi-

tions characterized by Reynolds number that may be
experienced by full-scale helicopter tail booms. An

approximate rotor-wake velocity distribution is com-

bined with the full-scale dimensions to show a typical

Reynolds number distribution that may be experi-

enced along the tail boom at full scale (fig. 6(a)).

Figure 6(b) also shows the range of test Reynolds
number related to the test dynamic pressures for the

AH-64, UH-60, and UH-1H shapes. The large range
of flow incidence covered the extreme flow angles that

may be experienced by the tail boom. For exam-

ple, the range included 90 ° that could occur in right



sidewardflight, when the flight velocity is high
enoughthat therotorwakemaybeclearof thetail
boom.

Sincethe maximumtest Machnumberwasap-
proximately0.18,compressibilityeffectswerecon-
sideredto benegligible.Becauseof the largetest
sectionandrelativelysmallvolumeof the testap-
paratus,thetestdatadid notrequirecorrectionfor
blockageeffects.

Presentation of Data

The results are presented in coefficient form as

vertical-force and side-force body axes coefficients.
The coefficients are based on the dimension b, which

is consistent with presentations of data in references 2

through 7. Pressure measurements are presented

as standard pressure coefficients on polar coordinate

graphs. Some distortion of apparent pressure dis-
tribution for the UH-60 and UH-1H shapes results

because of their noncircular cross-sectional shapes.

The arrangement of data figures is as follows:

Figure

Three shapes:

Comparison of cz and cy versus ¢:
With TRSC .............. 7

Without TRSC ............ 8

AH-64 shape:

cz and cy versus ¢ and q:
Without TRSC ............ 9

With TRSC ............. l0

With S1 and TRSC .......... 11

With $2 and TRSC .......... 12

cz and cy versus ¢:
Comparison of Sl and $2 with basic

shape ................ 13

Cp distribution:
Comparison of $1 and $2 at various ¢'s 14

Summary of shape without TRSC 15

Summary of shape with TRSC ..... 16

Summary of Sl ........... 17

Summary of $2 ........... 18

UH-60 shape:

Cz and Cy versus ¢ and q:
Without TRSC ........... 19

With TRSC ............. 20

Cz and cv versus ¢:
With $1 and $2 ........... 21

With Sl and $12 ........... 22

With $2 and $21 ........... 23

With S12 and S21 .......... 24

Cp distribution:
Summary of shape without TRSC 25

Summary of shape with TRSC ..... 26

UH-1H shape:

Cz and Cy versus ¢ and q:
Without TRSC ........... 27

With TRSC ............. 28

With $12 .............. 29

Cz and cv versus ¢:
Comparison of $12 with and without
TRSC ............... 30

Cp distribution:
Comparison of S12 with TRSC at

various ¢'s ............ 31

Effects of dynamic pressure for shape
with TRSC at ¢ = 20 ° ....... 32

Effects of dynamic pressure for $12 at

¢ = 20 ° .............. 33

Discussion of Results

There are several factors that affect the pressure

patterns experienced by cylindrical shapes in two-
dimensional flow other than the shape itself, and an

awareness of these factors can assist in the interpre-

tation of the data presented herein. The influence

of viscosity, for one, has been shown to be extreme

(refs. 2 through 7). Reynolds number R provides a
standard for judgment of these effects of viscosity by

relating viscosity to flow velocity and cylinder size.

Typically, drastic changes in pressure patterns and,
therefore, air loads occur in the Reynolds number

range from 0.3 × 106 to 0.7 × 106. For some shapes,

such as square cylinders with relatively small cor-

ner radii, the changes can occur at higher Reynolds

number (refs. 3 and 4). A second factor, surface fin-
ish of the contour, can be important (refs. 6 and 7).

Typically, tests are conducted with highly polished

cylinders implying contours fabricated within close
tolerances. The cylinders used in the present test

were fabricated with less stringent tolerances and are

more representative of full-scale helicopter contours
and surfaces.

The procedure for setting test conditions of dy-

namic pressure (i.e., wind speed) or flow incidence
can also influence the results. A hysteresis effect can

occur if, for example, dynamic pressure is increased
to a desired test condition at one time; however at

another time, the same test condition is approached

by decreasing dynamic pressure. The hysteresis is es-

sentially due to a change in the pattern of separated

flow (and for these shapes there are always regions

of separated flow) causing a change in pressure pat-
tern and associated aerodynamic loads. The setting

of flow incidence angle can also result in hysteresis ef-

fects if the flow incidence setting is approached from



_enegativesideat onetime,andthenfromthepos-
itive sideat anothertime. Toavoidor reducethese
hysteresiseffectsin this investigation,the flowinci-
denceanddynamicpressurewerealwayssetby ap-
proachingeachconditionfromalowervalue.

Yet anotherfactor affectingthe interpretation
of data is the turbulencein the tunnel flow that
causesahighereffectiveReynoldsnumberthanthat
calculatedfor smoothflowconditions.Turbulence
measurementsmadein the Langley4- by 7-Meter
Tunnel indicatethat the tunnel hasa turbulence
factorof 1.3;that is,the effectiveReynoldsnumber
is 30percenthigherthan the valuethat wouldbe
obtainedin absolutely"smooth"flow. Of course,
helicoptertail boomscanexperienceturbulencein
the wakeof the rotor and, therefore,experience
a highereffectiveReynoldsnumberthanwouldbe
determinedfromsteadydownwashvelocities.

Comparison of Basic Configurations

The three shapes together (AH-64, UtI-60, and
UH-1H), each with a tail rotor drive-shaft cover

(TRSC), are representative of a large percentage
of single-rotor helicopter tail boom cross sections.

There are significant differences between these shapes

(see fig. 2), however, such as the ratio of depth to

width c/b and the curvature of the "corners." (Com-

pare tile UH-60 with the UH-1H in fig. 3.) These

differences result in different aerodynamic character-

istics, as shown by the variations in coefficients cy
and cz with flow incidence in figure 7. The AH-64

data show notable differences when compared with

that of the other two shapes for the fiow incidence

range from -20 ° to 20 ° for a Cz range from -35 ° to

35 ° where the slopes of cy plotted against ¢ for the
UH-1H and UH-60 shapes are more than double that

for the AH-64 shape. For 101 > 20°, the variation of
cz with ¢ for the UH-60 shape differs markedly from

that for the AH-64 and UH-1H shapes.

A comparison of the variations of cy and Cz with ¢
for the three shapes without the tail rotor drive-shaft

covers is given in figure 8. These shapes are more like

those described in references 2 through 7, except that

in those references all shapes are symmetric about
the y-axis whereas the UH-60 and UH-1H shapes

are not. The variations of cy and Cz with ¢ are
similar for the UH-60 and UII-1H but significantly
different from that of the AH-64 with the drive-shaft

covers off as well as with them on. Of course, the

tail rotor drive-shaft cover increases the asymmetry

about the y-axis for the UH-1H and UH-60 shapes

(and adds asymmetry to the AH-64 shape), resulting

in significant effects on the patterns of cy and Cz
plotted against ¢. (Compare fig. 8 with fig. 7.) These

results suggest that a departure from a circular cross

4

section has a major effect; whereas the details of

noncircular shapes have relatively minor effects, and
the addition of the tail rotor drive-shaft cover also

affects the patterns of cy and Cz plotted against ¢.

Discussion of Characteristics of Each

Shape

In the following discussion the force and pressure

data acquired at various dynamic pressures are de-

scribed for each shape individually. The sequence

of presentation (AH-64, UH-60, and UH-1H) follows

the order of testing. During this investigation, vari-

ous spoiler configurations were tested in attempts to
alter beneficially the characteristics of side-force co-

efficient of each shape. The beneficial effect desired

is a positive increase in Cy, which implies a side air
load to the right (if viewing the helicopter from the

rear) that would result in a decrease of the thrust

required of the tail rotor. For each shape, variations

of cy and Cz with ¢ for various dynamic pressures are

presented along with supplementary data describing

pressure patterns. The variations of cz and Cy with
dynamic pressure are shown to indicate the level of

dynamic pressure at which the data are relatively free
of variations due to R effects.

AH-64 Shape

The circular cross section of the AH-64 without

the TRSC is the most extensively tested shape in

aerodynamics, and thus its aerodynamic character-
istics are well understood. The data obtained in

this investigation are shown in figure 9 and corre-

spond reasonably well with past experience. For ex-

ample, in figure 9(b) the variation of Cz with dy-
namic pressure is similar to the variation of drag co-

efficient shown in figure 3 of reference 3. The differ-
ences between these data and those of reference 3 can

probably be attributed to the greater irregularities

in the contours of the models tested in the present
investigation.

The installation of the TRSC and aluminum

spoilers ($1 and $2) on the circular shape resulted

in significantly different variations of the coefficients

(figs. 10 through 13). The influence of viscosity on Cz

and Cy plotted against ¢ is large for ]¢1 > 25° where,
for example, Cz ranges from a minimum of less than 0

at q = 45 psf to a value approaching 1.0 at q = 5 psf

for the TRSC installed as shown in figure 10. The

effect of dynamic pressure (and therefore Reynolds

number) on the variation of Cy with ¢ is also large
throughout the range of ¢ tested.

The difference between the spoiler configurations

was only in the height of the spoiler: S1 was 1 in.

high and $2 was 2 in. high. (Full-scale values are 2

H| !



and 4 in., respectively.) The spoilers were attached

at a location found from preliminary tests to alter the

side-force (Cy) characteristics beneficially. The basic
effect of both spoilers was to produce a positive Cy

increment as shown in figure 13 for the range of ¢
from -20 ° to 48 °. Such a range may well encompass

the flow incidence felt by the AH-64 tail boom from

hover (where wake swirl produces a small negative

incidence) through a portion of right sideward flight

(where ¢ > 0°). The favorable shift in the side force
indicates a potential for reducing power required
for directional control in hover and sideward flight

through a reduction in tail rotor thrust required.

However, there is a penalty caused by the spoiler that

is the positive increment of Cz, as shown in figure 13.
That increment would result in a greater down load

on a tail boom for the same range of ¢ from -20 °

to 48 ° . Some simple calculations made by using the

present data show that the net effect, however, is an
improvement in overall helicopter performance. This

improvement is realized largely because the down

load penalty is compensated for by the main rotor

that is efficient in using the power saved by unloading
the tail rotor.

UH-60 Shape

The UH-60 tail boom without the tail rotor drive-

shaft cover has a depth-to-width ratio of 1.64 and

larger radii of curvature on the lower half than on
the upper half; these features combine to contribute

to a lower value of Cz at ¢ = 0 ° (fig. 19(a)) than

that for the circular shape. The depth-to-width ratio

for the UH-60 shape also results in a steep slope for

the curve of Cy plotted against ¢. The addition of
the TRSC on the UH-60 shape does not change the

slope significantly within the range of ¢ from -5 ° to

5° (fig. 20(a)). It does, however, increase the positive

and negative values of cy out to l¢l = 15°- Viscosity
effects are evident also in figures 19 and 20.

Several spoiler configurations were investigated

for the UH-60 shape, and the results are presented

in figures 21 through 24. In figure 21, data for two

different size spoilers (S1 and $2) attached at the

upper "left" corner are presented. For ¢ > 0°, the

Cy variations with the two spoilers are practically
identical. Compared with the basic shape with the

TRSC on, there is a substantial beneficial increment

in cy between ¢ = 0° and 20 ° that diminishes to 0

at ¢ = 30 °. (Here, Cy for spoiler on is the same as

cy for spoiler off.) For -12 ° < ¢ < 0°, the $2 spoiler
resulted in greater cy than that for the S1 spoiler. An
airfoil-like stall occurred at ¢ _ -8 ° for the $2 spoiler

and at ¢ _ -2 ° for the $1 spoiler. The increment

in Cz (positive cz represents a down load on the tail

boom) for the larger spoiler ($2) is greater than that

of the smaller spoiler (S1) for the range of ¢ from
-30 ° to 30 ° . That may be an acceptable penalty if

the greater increment in cy for the range of ¢ from
-12 ° to 0 ° is desirable for reduced tail rotor thrust

in hover.

In a limited effort to extend the range of increased

Cy and reduce the penalty of increased Cz, two alter-
nate spoiler configurations were tested. Spoilers of
1-in. and 2-in. were attached on the lower left side

of the UH-60 shape (see fig. 2(5)) in combination
with the 1-in. and 2-in. spoilers on the upper side.

In figures 22, 23, and 24 it is evident that the incre-

ment in cy was obtained for ¢ < -10 °, which may
be beneficial for left sideward flight of the UH-60.

Pressure distribution data were not acquired for

the UH-60 spoiler configurations. However, those

distributions shown for the UH-60 shape without and

with the TRSC (figs. 25 and 26, respectively) may

provide some clues to other placements of spoiler

configurations that could increase the positive range

of ¢ (beyond 30 °) for positive increments of c_.

UH-1H Shape

According to figure 6, the dynamic pressure that
results in the most representative Reynolds number

of the full-scale UH-1H shape is approximately 10 psf.

For the UH-1H shape with and without the TRSC,

it is evident in figures 27 and 28 that cy and Cz are
sensitive to a dynamic pressure variation. Care is re-

quired in interpreting the data at dynamic pressures

different from the representative full-scale value of

q = 10 psf.

Only one spoiler configuration (S12) was investi-

gated for the UH-1H shape and results are shown in

figure 29. Direct comparison of the Cz and cy vari-
ations for the three UH-1H configurations (without

the TRSC, with the TRSC, and with the TRSC and

$12) are given in figure 30. The general pattern of

cy and Cz increments for $12 holds rather well for
the three levels of dynamic pressure shown. The S12

spoiler is effective in beneficially increasing cy for a

range of ¢ from -8 ° to 50°; however, there is the

associated penalty in increased Cz.

The change in pressure distributions as a result
of adding the $12 spoiler configuration shown in fig-

ure 31 illustrates the mechanism of altering the air
load on the UH-1H boom section. The upper spoiler

separates the flow on the left side of the shape, thus

raising pressure on that side. On the right side,
there is the beneficial decrease in the pressure. It

is also evident that the increased down load Cz is pri-

marily the result of lower pressures on the bottom
of the UH-1H section caused by the upper spoiler.

The lower spoiler becomes effective as ¢ becomes
more negative. The interpretation of the effects is, of

5



course,somewhataffectedbyuncertaintyintroduced
by the nonrepresentativelevelof dynamicpressure
forfigure31.Figures32and33areofferedto relieve,
somewhat,that concern.Figure32 indicatesthat
for ¢ = 20 °, though the pattern changes between

q = 30 psf and 20 psf, the negative pressure peak lo-

cation is unchanged. Figure 33 suggests little change

in pressure patterns as a result of the variation of dy-

namic pressure. Figures 31 through 33 offer a basis

for relocation of spoilers to alter the effect on cy and
Cz if desired.

the side-force coefficients of all three tail booms over

a significant flow incidence range, thus indicating a
potential to reduce the thrust required for directional

control by a helicopter in right sideward flight. A

disadvantage noted with the spoilers was increased
down load.

NASA Langley Research Center
Hampton, VA 23665-5225
September 13, 1985

Summary of Results

An investigation has been conducted in the Lan-

gley 4- by 7-Meter Tunnel on three tail boom cross-

sectional shapes of current helicopters. The pur-

pose of the investigation was to determine two-

dimensional aerodynamic forces and pressure distri-

butions on these cross-sectional shapes over a flow

incidence range from -45 ° to 90 ° inclusive of hov-
ering and sideward flight. These shapes represented,

at reduced scale, the cross section of the tail booms

of the AH-64, UH-60, and UH-1H helicopters, which

together constitute the bulk of the U.S. Army he-

licopter fleet. Reynolds number was varied over a

range of dynamic pressure from 1.5 to 50 psf. Also,

the effects of tail rotor drive-shaft covers and spoilers

were investigated. The results of this investigation
are summarized as follows:

1. The departure of the shape of a helicopter tail

boom from a circular cross section has a major effect

on the aerodynamic loads, although the details of
the noncircular shapes have a relatively minor effect.
The addition of tail rotor drive-shaft covers to the

tail boom cross sections also affected the variations

of the side-force and vertical-force coefficients.

2. Viscosity effects were experienced by the three

tail boom cross sections, and analyses of air loads on

a helicopter operated at low flight speeds may need
to account for them.

3. The addition of spoilers to the shapes (with

tail rotor drive-shaft covers) beneficially increased
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TABLE I. SPOILER CONFIGURATIONS

Spoiler Height of aluminum
configuration spoiler, in. Position

AH-64 shape
S1 1 53 ° from top centerline
$2 2 53 ° from top centerline

UH-60 shape

Sl

$2

S12

$21

1
2

1{2
1

35 ° from top centerline
35 ° from top centerline

35° from top centerline

25° from bottom centerline

35° from top centerline

25° from bottom centerline

UH- 1H shape

1 35° from top centerlineS12 2 25° from bottom centerline

TABLE II. COORDINATES OF UH-1H AND UH-60 MODELS

[Note the convention of positive z downward]

(a) UH-iH shape

y, in. z, in.
0
1
2
3
4
5
6
6.5
6.9
7.0
6.9
6.5
6.0
5.0
4
3
2
1

0

-8.70
-8.70
-8.70
-8.65
-8.55
-8.10
-7.00
-5.60
-3.00

0
3.00
5.20
6.25
7.40
8.05
8.45
8.65
8.70
8.70
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