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1. Summary of Major Activities

During the reporting period, the following major activities

relating to the proposed work have been accomplished.

1.1 Papers published

1. Vaicaitis, R., "Noise Transmission into Propeller Aircraft,"
The Shock and Vibration Digest, Vol. 17, No. 8, Aug. 1985.

1.2 Papers prepared for publication

1. Bofilios, D.A. and Vaicaitis, R., "Response of Double Wall
Composite Shells to Random Point Loads," submitted for
publication, Journal of Aircraft, AIAA.

1.3 Conference papers (presented)

1. Vaicaitis, R., and Bofilios, D.A., "Noise Transmission of
Double Wall Composite Shells," ASME 10th Biennnial Conference
on Mechanical Vibration and Noise, Paper, No. H-334,
Cincinnati, Ohio/ Sept. 1985.

2. Vaicaitis, R., "Structureborne Noise in Space Station," 5th
Science and Engineering Symposium, Chicago, Illinois, Nov.
1985.

1.4 Conference papers (accepted for presentation)

1. Vaicaitis, R., "Noise Transmission into Enclosures," Fourth
International Modal Analysis Conference, Los Angeles,
California, Feb. 1986.

2. Vaicaitis, R. and Bofilios, D.A., "Response Suppression in
Composite Sandwich Shells," Vibration Damping Workshop II,
Las Vegas, Nevada, March 1986.

1.5 Conference papers submitted for presentation

1. Vaicaitis, R. and Bofilios, D.A., "Vibro-Acoustics for Space
Station Applications," AIAA 10th Aeroacoustics Conference,
Seattle, Washington, July 1986.

2. Vaicaitis, R., "Nonlinear Response - A Time Domain Approach,"
AIAA 10th Aeroacoustics Conference, Seattle, Washington, July
1986.



2.0 Technical Highlights

The technical background and highlights of structureborne

noise generation and transmission have been described in Refs. 1

and 2. In what follows, a brief review of new accomplishments

and progress of new work is given.

2.1 Response and Noise Transmission of Double Wall Circular

Plates and Laminated Composite Cylindrical Shells

Analytical models were developed in the Doctoral thesis by

Dr. D.A. Bofilios for application to structureborne noise related

problems. A copy of the thesis is enclosed with the present prog-

ress report. The main objectives of this work were to develop

theoretical models capable of predicting structural response and

noise transmission to random point mechanical loads. Fiber rein-

forced composite and aluminum materials were considered.

Cylindrical shells and circular plates were taken as typical

representatives of structural components for space station habit-

ability modules. Analytical formulations include double wall and

single wall constructions. Pressurized and unpressurized models

were considered. Parametric s'tudies were conducted to determine

the effect on structural response and noise transmission due to

fiber orientation, point load location, damping in the core and

the main load carrying structure, pressurization, interior

acoustic absorption, etc. These analytical models could serve as

preliminary tools for assessing noise related problems, for space

station applications.



2.2 Propagation and Transfer of Vibrational Energy for

Structureborne Noise Applications

Structureborne noise arises as a result of mechanical vibra-

tions which might start as flexural, torsional, dilatational or

traveling waves. For space station operations, vibrations could

be induced directly to the habitability modules by mechanical

impacts, power generating systems, life support systems, proposed

manufacturing devices, or it could arrive through interconnecting

structures due to thruster action, payload deliveries, etc. In

order to assess the significance of these vibrations on the

vibroacoustic environmental inside the habitability modules,

detailed understanding of structural response, wave propagation,

transfer and attenuation of vibrational energy is needed. For

this purpose, a structural model shown in Fig. 1 has been

selected. The acoustic enclosure is subdivided (partitioned)

into a number of individual or interconnecting compartments.

Noise is generated in these compartments by the vibration of a

stiffened wall or the partitions. The vibrational energy arrives

via the stiffened structure and it is transferred into the stif-

fened wall at the points of load transfer. The number and loca-

tions of applied random loads are taken to be arbitrary. Such a

model would allow for a more basic understanding of structure-

borne noise generation and transmission and still provide a

tractable mathematical formulation. In this part of the study,

we will be mainly concerned with modes of dynamic (mechanical)

load generation, vibrational energy propagation and transfer into

interconnected structures, and noise generation in partitioned



interiors. To construct the required analytical model, modal

methods, wave propagation, and transfer matrix techniques will be

used. We expect to present the mathematical formulations of the

structural response problem in the next progress report.

2.3 Structureborne Noise Generation and Transmission into

Habitability Modules

The analytical models described in Sec. 2.1 were developed

for monocoque (single or double) cylindrical shells and idealized

cylindrical acoustic enclosures. However, the final configura-

tion of the habitability modules expected to be discretely stif-

fened cylindrical shells with truncated cone type end caps and

partitioned interiors. The structural details of a typical

(proposed) habitabilaity module is shown in Fig. 2. For the

structural response analysis of the pressurized habitability

module, the following analytical formulations are being

considered.

1) orthotropic Shell Model
r

In the orthotropic shell model, the effect of stiffeners

(rings and stringers, Fig. 3) is smeared into an equivalent skin

[3]. Such a model provides a relatively simple analytical tool

for response estimation to point loads. However, this model is

limited to a frequency range where the modal wavelengths are

significantly larger than the spacing between stiffeners. The

natural frequencies of an orthotropic shell (smeared) are shown

in Figs. 4 and 5 for several cases of different structural

parameters. The structural parameters chosen for these examples



are typical of the proposed habitability modules. We expect to

incorporate the orthotropic formulation in the analytical model

for structural response and noise transmission calculations

described in Sec. 2.1.

2) Discretely Stiffened Shell Model

A transfer matrix technique is being used to devlop an

analytical model for response estimation of ring stiffened shells

to point loads acting on the stiffening rings or the shell

skin. For this purpose, the general theory of transfer matrices

presented in Ref. 4-6 is being utilized. Such a structural model

allows for proper dynamic interaction of stiffening elements,

shell skin and paplied load.

3) End Caps

The end caps of the habitability module shown in Fig. 2 are

taken as truncated cones. We expect to develop analytical proce-

dures for estimating response and noise transmission of these

structures. Due to a very complex geometry of such a configura-

tion, numerical techniques based on the finite element methods

will be utilized.

4) Acoustic Model

The acoustic enclosure is a cylindrical cavity with a number

of partitions as shown in Fig. 2. Noise inside various compart-

ments can be generated by vibrations of the main shell structure,

the end caps or the partitions. Analytical models for interior



noise are being developed for cylindrical, rectangular and

irregular enclosures. For irregular enclosures, the acoustic

modes are not readily available and numerical techniques will be

utilized to calculate these modes.
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ABSTRACT

RESPONSE AND NOISE TRANSMISSION OF DOUBLE WALL

CIRCULAR PLATES AND LAMINATED COMPOSITE

CYLINDRICAL SHELLS

Dimitrios Alexander Bofilios

An analytical study is presented to predict the

response and noise transmission of double wall circular

plates and double wall laminated composite fiber reinforced

cylindrical shells to random loads. The core of the double

wall construction is taken to be soft so that dilatational

motions can be modeled. The analysis of laminated shells

is simplified by introducing assumptions similar to those

in the Donnell-Mushtari theory for isotropic shells. The

theoretical solutions of the governing acoustic-structural

equations are obtained using modal decomposition and a

Galerkin-like procedure. Numerical results include modal

frequencies, deflection response spectral densities and

interior sound pressure levels. From the parametric study

it was found that by proper selection of dynamic parame-

ters, viscoelastic core characteristics and fiber rein-

forcement orientation, vibration response can be reduced

and specific needs of noise attenuation can be achieved.
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1. INTRODUCTION

The design of many ground and space structures is

impacted by the interaction of functional reauirements such

as strength, stiffness, weight, passenger and crew comfort,

cargo containment protection, reliability, etc. To accom-

modate many of these reguirements, new design concepts for

lower weight, extended service life and reduced costs are

needed. It has been demonstrated that composite materials

could give weight and structural integrity advantages over

many commonly used materials [1-3]. However, the low

weight composites might not provide any advantages with

respect to less response, reduced noise transmission [4] or

longer fatigue life. Past studies have demonstrated that

sandwich constructions might be an effective way of

dissipating vibrational energy [5-7]. Thus, to satisfy the

reguired vibroacoustic environment, designs utilizing

composite materials might need to be modified by including

the double wall sandwich concept. It is expected that the

vibroacoustic environment in the proposed space station

might exceed the acceptable vibration and noise levels.

Therefore, implementation of sandwich constructions might

prove to be useful alternatives in the design process.

Many transportation vehicles involve shell construc-

tions. The greatest impetus to the development of the

dynamics and noise transmission of shell-type structures

has been for aircraft, missiles, launch vehicles, manned

spacecraft, and submercibles [8-22]. Current technological



interest is shifted from simple, single layer, isotropic

shells without stiffeners [23-30], to shells made of com-

posite materials, of laminated sandwich type constructions,

and shells stiffened with rings and/or stringers. Previous

research efforts concerned with the dynamics of laminated

shells, neglected the bending-stretching coupling and the

concept of an equivalent single-layer special orthotropic

shell was used [31-33]. Due to the limiting applicability

of the latter formulation, this type of bending-stretching

was then incorporated in a Donell-type shell theory for

laminated composites and a general solution of free vibra-

tion of laminated orthotropic cylindrical shells was

presented [34-39]. Similar analyses have been carried out

using Love's first approximation theory for an arbitrarily

laminated anisotropic shell of moderate length [40-42].

The vibrationaT. analyses of sandwich shells were mainly

concerned with simply supported circular cylindrical shells

having isotropic facings [43]. Then, it was extended to

orthotropic facings and orthotropic core where the in-

surface forces were neglected [44]. The forced vibrational

analyses of cylindrical orthotropic sandwich shells took

into account the transverse shear deformation of the core

and the material damping of the core and of the facings

[45]. Furthermore, an analysis of sandwich shells with

laminated anisotropic facings was presented [46]. In

addition, a more complex formulation for the vibration of

open and closed sandwich shells was developed [47].



The analytical and experimental, studies of noise

transmission through shell structures were mostly under-

taken in the aerospace industry where models for prediction

of sound transmission were developed [8-13,48-50]. The

main research efforts were concentrated on the prediction

of sound transmission through thin cylindrical shells in an

acoustic field [48-50]. A general formulation, using the

interaction of structural vibrations and external sound

fields, in terms of structural normal modes and acoustic

cavity normal modes, has been developed [10] . These

procedures have been extended to include a formulation

which combines modal methods and statistical energy

analysis [11]. Airborne noise transmission through

laminated composite cylindrical shells of infinite extent

has been considered in Ref. 4. An analysis of the sound

transmission through closed sandwich cylindrical shells

where the closed ends are taken as acoustically hard walls

has been presented [51] as an extension of an earlier

investigation on sound transmission through damped sandwich

panels [52]. However, studies are needed on response and

noise transmission through double wall laminated composite

shells separated by a soft core.

This work presents an analytical study on vibration

response and noise transmission of double wall laminated

composite circular cylindrical shells of finite extent.

Each shell is a composite built up of laminae, which in

turn consist of unidirectional fibers imbedded in a



supporting matrix. Furthermore, each lamina can be

oriented in any arbitrary direction. The shell skins are

modeled according to a laminated cylindrical thin shell

theory using Love's first approximation theory and the

Donnell-Mushtari assumptions for thin shells [53-57]. The

end caps are taken as double wall circular isotropic plates

[58-66]. The governing differential equations for the

vibration of double wall shells and double wall circular

plates, shown in Fig. 1, are developed for the case in

which the core material is taken to be soft, so that

bending and shearing stresses can be neglected and,

consequently, the core can be described by a uniaxial

constitutive law. Such a core allows in phase (flexural)

and out of phase (dilatational) motions of the double wall

system [52,67]. The inertia effects of the core follow a

linear apportioned mass distribution law. The inputs to

the shell and the end caps are either uniformly distributed

random pressures or random point loads. The equations for

the shell and circular plate systems are analyzed using

modal decomposition and a Galerkin-like procedure [68,69],

along with power spectal density approaches [70]. It is

assumed that the shell and the end plate systems vibrate

independently. The noise transmission through the double

wall sandwich constructions, of the facings and ends, into

the cylindrical enclosure shown in Fig. 1, is analyzed by

solving the linearized wave equation for the interior sound

pressure field [71], Time domain and frequency domain



formulations are included. In the time domain approach,

the time dependent boundary conditions are transformed into

a governing equation and then the solution of the resulting

nonhomogeneous partial differential equation with

homogeneous boundary conditions is obtained [72,73]. Then,

the solutions for the acoustic pressure in the shell

interior are obtained in terms of the inner shell and/or

the inner circular plate motions. The interior acoustic

pressure is ultimately expressed in terms of spectral

density functions normalized to a reference pressure, and a

quantity is defined called sound pressure level.

This work contains numerical results for response and

noise transmission of simply supported double wall cylin-

drical shells and double wall circular plate systems.

Natural frequencies, vibration response spectral densities

and transmitted sound pressure levels are calculated.

These results are obtained for double wall isotropic

(aluminum) and double wall fiber reinforced composite

cases. The outer shell is constructed from three laminae

and the inner shell from ten laminae. The end caps are

taken as flexible double wall constructions capable of

structurally inducing noise. It is shown that by proper

selection of dynamic parameters, damping characteristics

and reinforcing fiber orientation lower response levels can

be obtained at some frequencies for a composite shell than

those of an equivalent a'luminum shell, and a significant

amount of noise attenuation might be achieved by a design



composed of two composite shells and a soft viscoelastic

core.



2. STRUCTURAL PROBLEM FORMULATION

2.1 Introduction

This section is concerned with the random vibration of

a closed double wall cylindrical shell system of finite

extent. The sandwich shell system is composed of two

simply supported circular cylindrical shells and a soft

viscoelastic core as shown in Fig. 1. Each shell is

constructed either from isotropic material or from fiber

reinforced laminae. The fibers are basically the load

carriers. A linear viscoelastic model is chosen to

describe the behavior of the core. The thin composite

shells separated by the core are modeled according to the

theory presented in Refs. 35,42,43,54-56. This theory is

appropriate for many arbitrarily oriented layers, each

reinforced with unidirectional fibers. The fiber orienta-

tion is defined in Fig. 1 with respect to the chosen

coordinates. The end plates are taken to be double wall

homogeneous isotropic circular plates and modeled according

to the theory presented in [58-66]. As in the case of the

shell system, a linear viscoelastic model is chosen to

describe the behavior of the core. For both, the double

wall shell and the end plate systems, the core is assumed

relatively soft so bending and shearing stresses can be

neglected, and consequently, the core can be described by a

uniaxial constitutive law. The double wall homogeneous

isotropic shell is considered as a limiting case to the

general formulation.



2.2 Random Vibration of a Double Wall Shell

Following the procedures presented in [54,55], the

equations of motions of a single cylindrical shell are

3Nx/ax + ( i /R) 9NQ x /a9 + qx = p u ( 2 . 1 )

( ! /R)aN 0 / a9 ( ( l / R ) 5 M e / d 9

+ 3Mx e/ax) + qQ = p v ( 2 . 2 )

d2M /3x2 + (2/R) 52M Q/3xd9X Xo

- Ne/R + qw = p w

5 2 M 0 /d9 2

o

(2.3)

where a dot indicates a time derivative and

N

N

Nx9

M

M

[BAj]

av
ax

(i) (av/39 + w)

fi> du av{R' "a? ax

a w
ax2

(~)(32w/a92

^
- av/39)

- () (2aw/axa9 -

(2.4a)

where the submatrices [Aĵ  j ] , [Q± j ] , [Di j ] are



(A,B,D)n (A,B,D)12 (A,B,D)16

(A,B,D)12 (A,B,D)22 (A,B,D)2g

(A,B,D)lg (A,B,D)26 (A,B,D)

1/2 (h£ -

1/3 (hi -

66

(2.4b)

(2.5)

/1, \
in which C.. are the elastic moduli of the kth lamina

and h^fh^.^ are distances measured from the reference

surface to outer and inner surfaces of the kth lamina (see

Fig. 1). Following Ref. 35, the stiffness coefficients

A..,B..,D.. can be calculated in terms of directional
ij' 13' ij

moduli, Poisson's ratios and fiber orientation angle a. In

this approach, the properties of each lamina are functions

of volume ratio of fibers to supporting matrix material. A

more detailed discussion is given in Appendix I.

The mass density per unit of surface area is calcu-

lated from

P = I Pk (hk- h )
k = l K K K L

(2.6)

where p is the material density of the kth lamina and

are distances from reference surface to lamina surface.
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Using Eqs. (2.4a), (2.5), and (2.1-2.3), the equations

of motion of a laminated shell can be written as

Lllu + L12V + L13W + qx = p u (2.7)

L12U + L22V + L23W + Q8 = P V (2.8)

L13U + L23V + L33V "*" qw = p W (2>9)

where the differential operators L^j are given in Appendix

II. As can be seen from equations (2.7-2.9) the matrix of

differential operators is symmetric. Setting the in-plane

loads q = q. = 0,' introducing the Donnell-Mushtari-Vlasov
X H

type assumptions [35,54,55] and combining Eqs. (2.7-2.9), a

single equation in terms of transverse displacement w can

be obtained

(Z7
8 + X7

6 + y7
4} w + 74 {p w - qw} = 0 (2.10)

where

z1d8/ax8 + ( i /R )z 2 a 8 / 5x 7 d9

( i /R 2 ) z 3 d 8 / ax 6 ae 2 + ( i /R 3 ) z 4 a 8 / dx 5 ae 3

4 fi(i/R )zd
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u/R5)z,a8 /ax3ae5 + ( i /R 6 )z_a 8 / ax 2 ae 6
o /

u/R 7 )z 8 a 8 /axae 7 + u/R 8)z 4a 8 /ax 8 (2 .11)

xv6 = ( i /R)x1a6 /ax6 + (! /R 2)x 2a 6 /ax 5ae

U/R 3 )x 3a 6 /ax 4ae 2 + ( i /R 4 )x 4 a 6 / ax 3 ae 3

( i /R 6)x 6a 6 /axae 5 + ( i /R 7 )x 7 a 6 /ae 6 ( 2 .12 )

= ( i /R 2 )Y 1 a 4 / ax 4 + ( i /R 3 )Y 2 a 4 / ax 3 ae

4 4 ? 2-i- (i/R ) Y 3 a y a x ay

-i- ( i /R 5 )Y 4 a 4 / axae 3 + ( i /R 6 )Y 5 a 4 / ae 4 ( 2 . 1 3 )

v4 = a1a4/ax4 -i- ( 2 / R ) a 2 a 4 / a x 3 a e

( i /R 2 ) a 3 a 4 / ax 2 ae 2 ( 2 . 1 4 )

(2 /R 3 ) a 4 a 4 / axae 3 + ( i /R 4 )a 5 a 4 / ae 4

and the coefficients Z^,Xj,Yr and ar (i = 1,2,...9; j =

1,2,...7; r = 1,2,...5) are defined in Appendix II.

Following Ref. 52 and using Eq. (2.10), the double
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wall shell motions can be modeled by two coupled partial

differential equations for normal deflections w^ and Wj as

c_w- + (l/3)ni wp + (l/6)rn w_} = 7p (x , 9, t ) (2.15)
Cj tj S C* 5 J. C*

ks(wi - V

+ CgWj + (l/3)mswr + (l/6)mswEJ = - vjp
l(x,8,t) (2.16)

The subscripts E,I and s denote the external and the inter-

nal shells, and the core, respectively. The pe and p1 are

random loads acting on the external and the internal

shell. In the present formulation, the acoustic radiation

pressure is not included. The stiffness of the core is

represented by a linear viscoelastic spring, ks = kQ

(1 + _ig ), where kQ is spring constant and gs is the loss

factor.

The input loads are modeled either as uniformly

distributed random pressures or random point loads acting

at an arbitrary location on the shell surface as shown in

Fig. 2. In the vicinity of point load application some of

the assumptions of linear, elastic thin shell theory are

violated [54]. However, outside the vicinity of the point

load shell response can be calculated with good accuracy.

A Dirac delta function is used to define the location of
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the point load. The random loads pe and p*- are expressed

in terms of two point loads F®'1 and F?'1 ag

pe(x,9,t) = (I/A® A®) (F®(t) 6(x-xJ) 6(9-6®)

6(x-x®) 6(9-8®)}

(FJ(t) 6(x-xj) 6(8-0

(t) 6(x-x*) 6(9-9*)}

where the superscripts e and i denote the external and the

internal loads, 6 is the Dirac delta function and for a

cylindrical shell [54] A® = 1 , A® = R + hg, A^ = 1 , A^ = R.

The point loads are assumed to be independent and each

characterized by a spectral density.

2.2.1 Frequency Response Functions and Modal Frequencies

The equations of motion of double wall shells are

solved by modal expansion methods. To take the advantage

of orthogonality of modal functions, the equations of

motion are further simplified by neglecting from the

operators 7 ,7 ,7 and 7 the terms containing odd
L A x

derivatives- of spatial variables x and 9. The various

simplifications of shell equations are discussed in Refs.

35,42,54. The general solution of Egs. (2.15) and (2.16)

is expressed in terms of the simply supported shell modes
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wE(x,9,t) = I A nX m (x,9) (2.19)
m=l n=0

wl(x,9,t) = I I AmnXmn (x/0) (2.20)
ra=l n=0

E Iwhere A and A are the generalized coordinates of exter-
mn mn

c
nal and internal shells, and X are the shell modes. Formn

g
a simply supported shell, X = sin (mux/L) cos n6. The

input loads pe and p1 are also expanded in terms of the

natural shell modes. Substitution of Eqs. (2.19) and

(2.20) into Eqs. (2.15) and (2.16) and use of the orthog-

onality principle, give a set of coupled differential

E Iequations in A and A . Taking the Fourier transform ofmn mn

these equations it can be shown that

Amn = Hmn 'Pmi/pE (2.21)

_I_ A /I* _l_ / 1 / C \ \ / \

mn s s E

** "~ tl 1 IT / p — i ~ ^ • »mn mn mn I (2.22)

in which a bar indicates a transformed quantity. The

— E —Igeneralized random forces P and P corresponding tomn mn

point loads given in Eqs. (2.17) and (2.18) are

' 92 > >/< R + hs } (2'23)
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The frequency response functions of the external and the

internal shells are

Hmn = ̂mn- "V'E + ̂ CE/*E + V '^ (2'25)

Hmn - l/^L - U^I/PI+ iuCl/Pl + VplJ (2'26)

where YE = PE
 + V3 ms' YT = PX

 + 1/3 mg and

2

Vn = fZl

^In6/Rp , - X?fIn4/R? T + Y?
fln2/Rp T)7 t-, I J ^ / J- J t/, 1

/,E'I 4 /r,4 vE/1 2/r,3(Z/ n /REfI - X7 n /R

-l- n2(mn/L)2 af'VR^j + n4a^ 'X/R4 f j ) } (2.27)

in which the superscripts or subscripts E,I denote either
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the external or the internal shells and RE = R + hs,

Rj = R.

Equation (2.27) gives the natural frequencies of

uncoupled laminated shell vibrations. The coupled natural

frequencies of double wall shell motions can be obtained

from Eqs. (2.21) and (2.22) by setting CE = GJ = gs = 0

and maximizing the solution for generalized coordinates.

This yields

%n = U- b 2 1 / 2 1 / 2

where

± (b2n - 4acmn)]/2a} (2.28)

a = YrYT - d/6 in )2 (2.29)
ti 1 S

bmn ' ('Eumn+ W ^An +
 k
s^E +

 ksms/3

(2.30)

cmn= ('E%n + ks} (^I%n

Equation (2.28) gives two .characteristic values for each

set of modal indices (m,n). These roots are associated

with in-phase flexural and out-of-phase dilatational

vibration frequencies of the sandwich construction.

2.2.2 Response under Random Loads

For the analysis presented herein, it is assumed that

the input spectral densities of the uniform pressure or

point loads are specified. Thus, the response (shell
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deflections) needs to be expressed in the form of a

spectral density. Following the procedure given in Ref. 70

it can be shown that the spectral density of normal shell

deflections w^ T can be determined from

to GO CD CD

H*1'1* v.fl.i.ii = y y y y sE'1 (o>) xs • xsL U L L u i mnt-cv ' m n r S
m=l n=0 r=l s=0 ,- 39}

E Twhere S ' (w) are the cross spectral densities of thew mnrs ^
F* Tgeneralized coordinates A ' . Expanding Eg. (2.32) and

assuming that inputs are stationary and independent, it may

be shown that

QO OO GO
_ _ _ , P T I? T *

»,v a ,o - fiftnf^ *>
(x,9,u>) - i l l l J0 (0 ) smnrs

w m=l n=0 r=l s=0 mn rs mnrs

"*" AmnArsSmnrs^ Xmn* Xrs (2.33)

where

(Hmn/»I)(ks

(2'34)

Amn ' ("mn/PE5 (Hmn/Pl)(ks + < ̂ 6 )ms >/«mn (2'35)

E Iand S ' are the cross-spectal densities of the general-

ized random inputs. If the inputs are represented by two

independent stationary point loads acting on the external

shell, from Eq. (2.23) and Ref. 70, the cross-spectral
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density of generalized random forces is

mnrs

( 2 . 3 7 )

where S^ and S® are the spectral densities of the point

e1 e 2loads F, and F_. Similar expression can be developed for

point loads acting on the interior shell.

2.3 Double Wall Homogeneous Isotropic Shell

A special case of the general formulation presented in

Section 2.2, is a double wall homogeneous isotropic

shell. Using Eqs. (2.1-2.3) and utilizing the Donnel-

Mushtari approximations for thin shells [54,55] it may be

shown that the coupled governing equations of motion reduce

to the following form

DEVEWE + ( E E 4 4

( l /3 )m g w E + ( l / e j n i g W j } = 7* p e ( x , 8 , t )

( 2 . 3 8 )

DI7IWI + ( E j h j / R ^ a 4

Wj + ( l / 6 ) m s w E } = - y j p x ( x , e f t )

( 2 . 3 9 )
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where PO/PT are surface densities of the homogeneous
E I

facings and

R_ _ = (R + h ),R (2.40)t, /1 s

m = p h (2.41)
s s s

DE,I - EE,IhE,I/12(1 - VE

_ = a4 /ax4+ (2/R2
 T ) a 4 / a x 2 a e 2 + u/R4

 T ) a 4 / a e 4 ( 2 . 4 3 ), /1 t-, i ti f i

v! _ = a8/ax8 + (4/R2
 T ) a 8 / ax 6 ae 2 + (6/R4

 T ) a 8 / a x 4 a e 4
E t L t, , 1 ^ f J-

+ (4 /Rp T ) a 8 / ax 2 ae 6 + (i/R8
 T ) a 8 / ae 8 ( 2 . 4 4 )

Ci r 1 Ci f 1

The uncoupled frequencies of the face shells are given by

Vli /IVE,I;J (2.45)

2.4 Random Vibration of Double Wall Circular Plates

Consider the two circular plates shown in Fig. 1 which

are simply supported around the edges. The boundary

conditions for deflection and radial bending moment at the

edges are
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w_ 0(r,9) =0i ,u at r = R (2.46)

Hr{r.6) = -

a2wn
'T,B vr at r = R

(2.47)

where w are the normal displacements of the midsurfaces
T/B

of the top (exterior) and bottom (interior) circular plates

respectively, and superscript P denotes the plate. The

governing equations of motion of the two plates, coupled

through a linear soft core, can be written as [52,58,59]

- WB) -I-

w_ = - p(r,9,t)s o (2.48)

ks(WB * WT)

w = pB(r,6,t) (2.49)

where

DT,B = ET,BhT,B/12(1 * VT,B> (2'50a)

mT,B = PT,BhT,B {2'50b)

(2.50c)
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2 2 2 2o4 / d .Id .1 9 . / 5 .1 d, 1 5% / 0 cnj»V = ( ;r + — — + —= 5) ( =• + - -5— + —•= 5) (2.50d)
9r2 r dr r2 592 dr2 r dr r2 592

The subcripts T,B denote the top and bottom plates and

T Bs denotes the core. The pressures p (r,9,t) and p (r,9,t)

are the random excitations applied to the top and bottom

plates. In obtaining Eqs. (2.48) and (2.49) it was assumed

that the mass of the core follows an apportioned linear

distribution.

The solution to Eqs. (2.48) and (2.49 ) can be

expressed in terms of normal modes

• - p
w (r,9,t) = I I -pA^U) x; (r,9) (2.51)
T s=0 q=l T Sq Sq

CD 00

wB(r,9,t) = JQ ^ BAsq(t) Xq(r,9) (2.52)

where A and A are the generalized coordinates of topi sq D sq

(exterior) and bottom (interior) circular plates, and
p

X (r,9) are the circular plate modes given bysq

X*L(r,9) = R (r) cos (s9) (2.53a)

R l r \ — "T ( W r\ — ^ T I W r-^ I") £> TH ^sa( ' ~ <?1 sn ' s^ s( so ' l ^ . b J D )s>q s 5>q T / . b v & s>q

in which JQ and Is are Bessel functions and modified Bessel

functions of the first kind respectively, and \s is thesq

qth root of the frequency equation
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J.U) I (X) - 1-v
S 5

Results given in Eq. (2.54) are obtained by substituting

Eqs. (2.53a) and (2.53b) into Eqs. (2.46) and (2.47) and

using relationships which relate the derivatives of Bessel

functions to high order functions [60,65,69]. In Eq.

4 2m(2.54) \ = kRp, k = —JT— and consequently

Xs = k RP (2.55)

ksc, - T,Busq -V.B̂ T.B (2'56)

Substituting Eqs. (2.51) and (2.52) into Eqs. (2.48)

and (2.49) and using the orthogonality principle, gives a

set of coupled differential equations in A and Ar sq o sq

Taking the Fourier transform of these equations it can be

shown that

T*sa(»> = Hsc

(2'57)

' Hsq(u) ̂ sq(u) (ks

(2'58)
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where

(2.59)

YT,B = mT,B + (1/3)ms (2'60)

RP 2 n _ n p
T ..?_(«) = + / / pTfB(rfe,u) X* (r,9)rdrd9 (2.61)
TfB sq sq

RP 2 «Qsq if s * 0 (2.62a)

^ {X^ (r,0)}2rdrd9 = {
0 0 sq 2n00 if s = 0 (2.62b)

r , s . ..s . ,xs . .
{ I ( X ) J - U ) + J U ) Z - U

s
i s . s s q s - H s q s s q s - H s q

sq sq'

. (
2 I2(\S ) (XS )2 S Sq S

s sq sq

ksq DT/B/
mT,B (2'64)-

Furthermore, a ( ) indicates differentiation with respect

to the spatial variable r and a bar indicates transformed

quantity. The coupled natural frequencies can be obtained
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from Eqs. (2.28) -(2.31) where the superscripts E,I have to

be replaced by T,B.

The excitations applied to the top and/or bottom

circular plates are assumed to be uniform random pressure

or random point loads as shown in Fig. 2 for which the

spectral densities are specified. In the case of uniform

pressure input the generalized random forces reduce to

2« 0̂ p
T'B(u>) s = 0 (2.65a)

T B?sa(a)) = tT/B sa 0 s * 0 (2.65b)

where

,,,2'66)uq Q^ Oq'

—T B
and p ' (o>) is the Fourier transform for spatially uniform

pressure input p ' (r,9,t).

The random loads acting on the top and bottom plates

T B T Bare expressed in terms of two point loads F^' and Fi' as

pT(r,9,t:) =

jU) 6(0-82) 6(r~r2)

pB(r,9rt) = -

(2.67)

(2.68)
B) 6(r-r2)}
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where T,B denote the external and internal loads, 6 is the

Q T

Dirac delta function and for a circular plate [54] A,' = 1,
D *!*

A.' = r. The generalized random forces corresponding to

point loads given in Eqs. (2.67) and (2.68) are

TP8q<») = { F < » > Xsq^l'
9!* + 2(U) Xq(r2'e2^ (2'69)

BPsq(u>) = {?*(«) X*q(r
B,9B) + F*(U) X*q(r

B,9B)} (2.70)

Following the procedures of Ref. 70 and assuming the

point loads are stationary and independent, the spectral

densities of normal plate deflections WT,WQ can be

determined from

QD CO CD

sw'
B(r,e,oo) = I I I I { e ( e" ) s_<uu;

w
 s=o q=l j=0 k=l

 T'B sq T/B Jk T'B

(2.71)

where

T,B0sq(o,) = { H B ( a » ) / m } / ( u , ) (2'72)

PAsq(u) = TQsq(w) <Hsq( w)/mB » ( ks + d/6)msa)) (2.73)

(2.74)
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The asterisks in Eg. (2.71) denote complex conjugates and

B,Tssgjk are tne cross-spectral densities of the

generalized random forces.

For two stationary independent point loads acting on

the external plate it may be shown that the cross-spectral

density of the generalized forces _S -i^10) may ^e

determined from

S (<ii) — IS"1 (ii}\ Xr fr'1 QA } X^ f r^" 9*̂ ) +
T O/"YT|^ 1C1 e/r 1' 1 T^ 1' 1SCjJK F , SCj X X JN J. X

1

r p ^ r p r p p r p r p \ " * ' J /

T Twhere S_ and S are the spectral densities of the point
"l *2

T Tloads F, and F?. Similar expressions can be developed for

point loads acting on the interior plate.
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3. INTERIOR ACOUSTIC PRESSURE

3.1 Frequency Domain Solution

Consider a closed cylindrical enclosure with volume
2

V = itR L shown in Fig. 1. It is assumed that the walls of

the multilayered shell and the circular end plates are

flexible. However, the motions of the shell and the end

plates are taken to be independent. Thus the acoustic

pressure inside the enclosure can be obtained from

P = P! + P-2 (3.1)

where p-^ and p2 are the acoustic pressures due to the inner

shell and inner plate motions. The pressure p inside the

enclosure satisfies the wave equation in cylindrical polar

coordinates

V2p - pp = p/c2 (3.2)

in which p and c are the acoustic damping and speed of

sound in the cavity, a dot indicates time derivative,

and

72= d2/dr2 + (l/r)d/5r + (l/r2)52/592 + Q2/5x2 (3.3)

The interior walls ar r = R and x = 0,L are taken to

be absorbent with a prescribed point impedance Z'w). The

boundary conditions to be satisfied are
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= - pwz(x,e,t) - (p/ZA)p1 at r = R (3.4)

5p1/5x =0 at x = 0,L (3.5)

dp2/9x = pwg(r,9,t) + (p/ZL)p2 at x = 0 (3.6)

ap2/5x = - PWg(r,9,t) - (p/ZR)p2 at x = L (3.7)

= 0 - a t r = R (3.8)

where p is air density, 2^,2^,2^ are the absorbent wall

L Rimpedances, w_,w_ and w are displacements in the normal
I B o

direction (positive outwards) of the inner shell and the

inner end plates respectively. Taking Fourier transfor-

mation of Eqs. (3.2) - (3.8) and writing the solution in

terras of the orthogonal acoustic modes corresponding to

acoustically hard walls yield

CO CO

,(x,v,Q,u) = 1 1 P,,(r,o))X. .(x,9) (3.9)
1 i=0 j=0 1J 1J

CO 00

p (x,r,9,w) =11 0,w(x,w)Y., (r,8) (3.10)
2 j=0 k=l JK Jk

where the acoustic modes for a closed cylindrical enclosure

are

X = /- cos (iltx/L) cos Je (3.11)
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Y.. = J,(X..r) cos J9 (3.12)
JK J JR.

Ji represents the Bessel function of the first kind of

order j and \. = a../R where a., is the kth root of the
JK JK JK

equation dJ./dr = 0. Substituting Eqs. (3.9) and (3.10)

into Eg. (3.2) and using orthogonality condition of

acoustic modes, one obtains

+ (l/rJdP-ydr + (a? - j2/r2)P i : J = 0 (3.13)

d2Qjk/dx
2 + T

2
kOjk = 0 (3.14)

in which

? = (aj/c )2 - (in/L)2 - iup . (3.15)i o ~

Yjk=

and :i = /̂ T. Solving Egs. (3.13) and (3.14) and imposing

the finiteness condition of the pressure p. at r = 0 gives

CD 00

.UfTre,!!)) =11 a. .J.(a.r)X. . (x,8), for aT > 0
1 i=o j=0 IJ -1 1J X

(3.17)

a) oa

p (x,r,9,u) =11 {A., sin (yiwx)
* j=Q k=l DK JK

(3.18)
+ B.kcos (Tjk.x)} Yjk(r,9)

in which a..,A. ,B. are arbitrary constants. For
1J JK JK



a? < 0 the Bessel function J^ needs to be replaced with

the modified Bessel function 1^. For the special case when

a. = 0, the solution for the pressure p. is

CO CD

p,(x,r,8,u) =11 C. .r3X. .(x,9) (3.19)
1 i=0 j=0 1J 1;J

where C^^ are arbitrary constants. Using the boundary

conditions specified in Eqs. (3.4) - (3.8) and expanding

L Rthe shell, WT / and the end plate, w_,w , motions in terms•*• B B

of the acoustic eigenfunctions given in Eg. (3.11) and

(3.12), one obtains

0

(3.20)

P2(x,r,e,oj)

te^^- ie^)/z , AJ| LPJk Jk L B sq L sqjkj=0 k=l s=0 q=l

sin(Yjkx) + {pa, Y

(3.21)

where

30
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e. . =

1/4 i = 0,j = 0

1 / 2 i * 0 , j = 0 ; i = 0 , j * 0 ( 3 . 2 2 )

1 i * 0,j * 0

+ iup R j /Z }
a. = 0

J , ( o . r ) / { a . J . ( a . R ) + iupJ . ( a. R ) / Z } a > 0
J X i j l J J . r t X

( 3 . 2 3 )

mni j

L 2-

0 0
X. . ( x , 6 ) dxd8 ( 3 . 2 4 )

R 2n
!/{/ /

0 0
. r) drd9

l /{*R 2 [ J 0 ( a 0 k ) ] 2 } j = 0 (3 .25 )

( T j k L ) (1/ZL + 1/ZR)

s in ( Y j k L )
( 3 . 2 6 )

( 3 .27a )

COS (3 .27b)

jk C O S ( Y j k L ) (3 .27c )
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u) sin <YjkL) (3.27d)

L - '* r X r'9) drd9 (3'28)L,RLsq j k - 0
 r L,RXsq Vr

p
More explicit expressions for L^ij and L RL -k are given

in Appendix III. The modes of shell and circular end plate

vibrations are taken to be

X (x,9) = sin (mrcx/L) cos n9 (3.29)
mn

L,RXs><9)

(3.30)

where k ' = _ _\ /R in which r _\
s is the qth root ofsq L,R sq L,R sq ^

the characteristic equation of circular plate vibrations

and the superscripts L and R denote the end plates at x = 0

and x = L. The generalized deflections responses

I L RA , A , A of the shell and the end plates, respec-

tively, are given in Section 2.

The acoustic resonant frequencies for the cylindrical

closed enclosure can be calculated from

j! ((̂ r) =0 at r = R (3.31)
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where p = 0 is used in Eq. (3.15). For each combination of

i,j modal indices there are k zeros of Eq. (3.31). This

condition then gives all the modal frequencies u... of the
1 JK

closed cylindrical enclosure shown in Fig. 1.

The total acoustic pressure inside the shell enclosure

can be calculated from Eqs. (3.1), (3.20) and (3.21).

Assuming the input loads are stationary random processes,

the spectral density of the acoustic pressure p can be

obtained by taking the Fourier transform and then the

mathematical expectation of Eq. (3.1). The result is

) = S^ (x,r,9,u>) + 2S^ _ (x,r,9,u>)

+ S (x,r,9,co) (3.32)
P2

where S ,S and S are the spectral densities and the
pl P2 P1P2

cross-spectral densities of the acoustic pressures p^ and

PJI respectively. If the responses of the shell and plates

are taken to be independent, the cross-spectral densities

S =0. The spectral densities S and S , are
P1P2 Pl P2

calculated from Eqs. (3.20) and (3.21) in terms of the

generalized coordinates of the shell, A , and the end
mn

L Rplates, _A^ ,0A . These generalized coordinates areo sq D sq

functions of the prescribed random inputs acting on the

shell and/or the plate surfaces. Then, the sound pressure

levels in the enclosure can be calculated from
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SPL(x,r,e,u) = 10'log JS (x,r,6,u) Au/p} (3.33)

where Au> is the selected frequency bandwidth and po is the

reference pressure (po = 2.9 x 10~
9 psi).
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3.2 Time Domain Solution

3.2.1 Introduction

In Section 3.2, a frequency domain solution for the

perturbation pressure was developed in terms of the

system's flexible wall motions for the structural-acoustic

problem. Due to the linearity of the structural model, the

I L R
generalized coordinates Amn'B

Asa'BAsa were obtained in

closed form. However, when structural and/or material

nonlinearities are present, the frequency domain approach

is no longer feasible. Structural response solutions have

to be determined in time domain using numerical proce-

dures. In such a case, it may be advantageous to develop a

solution for the acoustic perturbation pressure in time

domain. The time domain solutions for the sound pressure

in the enclosure due to the double wall shell and end plate

motions are presented separately. Then, the total pertur-

bation pressure inside the acoustic cavity is obtained by

the superposition of the individual contributions.

Validity of the latter statement stems from the assumption

of an independently vibrating shell and end plate systems.

3.2.2 Acoustic Pressure due to Vibrating Shell

The perturbation pressure, p^ due to the shell system

motions, satisfies the linear acoustic wave, Eq. (3.2)

V2p. - pp. = p./c* (3.34)
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On the rigid boundaries of the acoustic region, i.e., at

the end plates, it is assumed that there exists no acoustic

energy dissipation and therefore

dp1/5x =0 at x = 0,L (3.35)

Furthermore, by taking into account the effect of acoustic

absorption at the flexible surface of the shell system and

assuming that at the interface the fluid velocity and the

wall motions are equal, p^ must also satisfy the following

boundary condition

dp1/Sr = - pwj - (p/ZA)p1 at r = R (3.36)

Equation (3.36) demonstrates that the boundary condition

for pressure pi is nonhomogeneous at r = R. Solution of

this boundary value problem can be obtained by employing a

linear transformation which renders the boundary conditions

homogeneous [72]. Hence,

Pl(xfr,Q,t) = q1(x,r,6,t) + G^(r)pWj(x , 9 ,t) (3.37)

where G,(r) is a function chosen to modify the given

boundary conditions. Therefore a boundary value problem of

an inhomogeneous differential equation in q-^ is estab-

lished, which can be solved using the resulting homogeneous

boundary conditions.
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Substituting Eq. (3.37) into Eqs. (3.34-3.36) yields

(3.38)

= 0 at x = 0,L (3.39)

= - (p/ZA)q1 at r = R (3.40)

where the function G-^ (r) has been chosen to have the

following form

G,(r) = =• - - + - (3.41)
1 R3 R2 R

The linear transformation introduced by Eq. (3.37) requires

for the function G,(r) to be defined at the boundaries.

Furthermore, G,(r) is subject only to the conditions of

continuity and differentiability within the domain and may

be chosen arbitrarily [71]. The forcing function

f.(x,r,9,t) is given by

" 2 2w d w d w
f (x,r,9,t) = G,(r) (- + PW 1 - (i*) i}

Equations (3.38-3.40) constitute the new boundary value

problem. In obtaining the boundary condition given by
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Eq. (3.39) at the end caps x = 0,L, it was assumed that the

shell motions Wj do not extend to these boundaries. Thus,

the flexible shell is located in the region e < x < L-e ,

where e could be a small positive number but e * 0.o o

The acoustic hard wall modes Y - - v satisfy the equations1 JK

(3'43)

in the enclosure, and

where

5Y.../ar = 0 at r = R (3.44)
lj K

Yi-k = cos (inx/L) cos J9 JjUjkr) (3.45)

u).., are the corresponding modal frequencies given by

co {Xk+ (ilt/L)2} (3'46)

The effect of acoustic absorption in Eq. (3.40) can be

transferred into the governing differential euqation by

making use of Green's theorem [12], which states the

following

»*,-m, ~ *<*i

(3.47)
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where V and S indicate volume and surface integrals,

respectively. Substituting Eqs. (3.38), (3.40), (3.43) and

(3.44) into Eq. (3.47) it can be shown that

2CijkMijk

where

at
(3.48)

• / "1 5i1kdvV

V

2

(3.49)

(3.50)

(3.51)

and A indicates that the integration is taken over the

interior absorbing surface [12], Upon expanding q^ in

terms of acoustic modes, utilizing the orthogonality

principle and using Eq. (3.49), gives

q (x,r,9,t) =

where

i=0 j=0 k=l
Y... (x,r,9)

(3.52)

(L/2)£jk
(3.53)

i = 0
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and e. is given by Eg. (3.25). Substitution of Eg. (3.52)
Jk

into Eg. (3.48) results in

g— i
( 3 . 5 4 )

where

2

1

1/2

i

i

i

= 0,j
= 0,j

* 0,j

= 0

* 0;

* 0

i * 0 , j = 0

The modal forcing functions ,F.., can be obtained from Egs.J. i j k

(3.42), (3.50) and the modal solutions of the shell system

motion w are presented in Section 2. Hence

09 a

I I B , . { R 3 [ * . ( 5 , k ) - 3 4 > . ( 4 , k ) + 2 * . ( 3 f k ) ]
m=0 n=l mn i j J J J

, ( 5 , k ) - 3 4 > . ( 4 , k ) + 2 4 . . ( 3 ,
J 3 J

( 2 , k )

- 27$. ( l , 8 * . ( 0 f k ) ] ( 3 . 55 )
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where

ninij

is given by

0

m

nH-i m-i

nH-i

0

}m+i !_(.!)«-!
m-i '

n * j

m * 0,i = 0,n = j * 0

m * 0,i = 0,n = j = 0

m * i,i # 0,n = j = 0

m = i,i * 0, n = j * 0

m # i,i # 0, n = j # 0

m = i,i # 0,n = j # 0

(3.56)

and is defined as

- a Ja J (a )( a j k )
^ ^(1/2 + 1/2^ + 1/2 j)

r ( l / 2 + 1/2J - 1

( 3 .57 )

In Eq. ( 3 . 5 7 ) r,S . represent Gamma and Lommel "funct ions,
H 13

respectively [73]. A are the generalized coordinatesmn

corresponding to the inner shell motions of the double wall

system described in Section 2. Finally, combining Eqs.

(3.32) and (3.52), the solution for the perturbation

pressure inside the enclosure due to the inner shell
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motions is given by

P1(x/r,9,t)

00 09

- I I I *iik iQiiic
(t)?i1k(x'r'e) + G (r)pw (x,9,t)1Jk l 1Jk 1Jk I-o k-i (3<58)

where the solutions to i O - - k are determined from Eq. (3.54).

3.2.3 Acoustic Pressure due to Vibrating End Plates

The perturbation pressure, P2, due to the end plates

motion, satisfies the linear acoustic wave equation

72p2 - pp2 = P2/c
2 (3.59)

and the boundary condtions

ap2/3x = pWg + (p/ZL)p2 at x = 0 (3.60)

ap./ax = - pwj* - (p/Z-Jp. at x = L (3.61)
£• D K £•

ap2/5r =0 at r = R (3.62)

Equations (3.60) and (3.61) show that the boundary condi-

tions for ?2 are nonhomogeneous at x = 0,L. Therefore,

proceeding as in Section 3.2.2 we introduce a solution for

p2 of the following form

P2(x,r,6,t) = q2(x,r,9,t) - GL<x)pWg + GR(x)pWg (3.63)
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where GL and GR are functions chosen to modify the given

boundary conditions. Substituting Eq. (3.63) into Egs.

(3.59-3.62) yields

q2 - q2/c
2 = pf2(x,r,0,t) (3.64)

6q2/dx = (p/ZL)q2 at x = 0 (3.65)

dq2/3x = - (p/ZR)q2 at x = L (3.66)

dq2/3r =0 at r = R (3.67)

where the modifying functions G_(x) and G_(x) are chosen as
Li K

2x2 x3GL(X) = -^ ~ - x (3.68)
Jj

x2 x3GR(X) • r- - 72 (3-69)
LJ

where G (x) and GD(x) must satisfy the requirements ofLi K

continuity and differentiability as discussed in Section

3.2.2. The forcing function f_(x,r,8/t) is

2 L • L "L 2
f2(x,r,9,t) = G (x){7 w - pWp - w^/c

S B r B

'nGo(xM (3.70)
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and V is the two-dimensional Laplacian operator in polar
O

coordinates. Equations (3.64-3.67) constitute the new

boundary value problem. In obtaining the boundary condi-

tion given by Eq. (3.61) it was assumed that the flexible

end plate motions at x = 0,L do not extend at this

boundary. Thus, the flexible end plates are located in the
p

region defined by r < R - e where e is a small positive

number but e * 0.
o

Using the property of the acoustic hard wall modes

Y. .. given by Eq. (3.43), and utilizing Green's theorem in
1JK

the same manner as in Section 3.2.2, it may be shown that

2Qijk(t)+pco 2Fijk(t)

PC ( / ' ? dA * / <*2
.

(3.71)

0 t zT 2 ijk R
K A . L, A.

with 20ijkf 2
Fijk' Cijk defined in E(3S- ( 3 . 49 )-( 3 . 51) where

the subscript 1 is replaced with 2. AR and AL are the

acoustic absorbing surfaces of the end plates at x = 0,L.

The function q2 may be expanded in terms of the acoustic

hard wall modes resulting in

09 00

q (x,r,8,t) = 1 1 1 e... 20iik(t) Y. .. (x,r,9) (3.72)
^ i=Q j=0 k=l 1JK 2 1JK 1JK

where e.. is given by Eq. (3.53) Substitution of Eq.
1 JK

(3.72) into Eq. (3r71) yields
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2ijk(t)

JR r=0

~ • L jk r ~
e r jk 2°rjk~ ZL r ^g £ r jk

where

L,Rejk =

it

5 =

Ok

(3.73)

(3.74a)

j = 0

(3.74b)

The modal forcing functions -F. .. can be obtained from

Eqs. (3.70) and (3.50) and the modal solutions of the end

plates motions given in Section 2. Therefore

2 F i j k ( t ) = 2 X i ( 2 )
q<

J L jg
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T I \S \v '

AR

jq

( 3 . 7 5 )

where

L / (n+1) i = 0, n = 1,2,.

1 F 1 (n+ l ;n+2 ; - i^Ti i ) ] i * 0, n = 1,2,

( 3 . 7 6 a )

( 3 . 7 6 b )

= in/L ( 3 . 7 7 )

1 . =
3

2-K

•K

j = o

j * o
( 3 . 7 8 )
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ic . =i

0

1

i # 0

i = 0
(3.79)

v)rdr

(3.80)

V V
—

'1'L.l"^

(3.81)

,F,(u;v;z) represent degenerate hypergeometric functions

[73], Jj and Ij are Bessel and modified Bessel functions of

the first kind, respectively, \. are solutions of the

frequency equation for circular plate vibrations described

in Section 2, and o.. is the kth root of the equation
JK

dJ^/dr = 0. In Eqs. (3.80), (3.81) a ( )' indicates

differentiation with respect to the spatial variable r.

L RFurthermore, A ,A are the generalized coordinates of the
SCJ ^M

inner plates motion described in Section 2.

Finally, combining Eqs. (3.63) and (3.72) the solution

for the perturbation pressure inside the enclosure due to
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the inner plates motion is given by

00 05

p ( x , r , 6 , t ) = 1 1 1 e . . 2°i ik ( t ) ? i ik2 i=0 j=0 k=l 1JK ^ 1JK 1JK

- G . ( x ) p w ^ + G R ( x ) p w ^
Li D I\ O

where 0Q.-. are determined from Eq. (3.73).
^ 1. j K

Due to the assumption of independently vibrating shell

and end plate systems, the complete solution for the

acoustic pressure inside the acoustic cavity can be

obtained by combining Eq. (3.58) and (3.82). Hence

p ( x , r , 9 , t )
00 CO

I I I e-.^Q^U) + 2 ° i ik ( t ) ) ? i ik ( x ' - r ' e )

i=0 j=0 k=l -1 -1 J -1

G 1 ( r ) p w I ( x f 9 , t ) - G L ( x ) p W g ( r , 9 f t ) + G r ( x ) p W g ( r , 9 , t )

( 3 . 8 3 )
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4. NUMERICAL RESULTS

4.1 General

Numerical results presented herein correspond to the

double wall sandwich shell and circular plate systems shown

in Fig. 1. The following set of parameters are selected

for the study: The dimensions of the double wall shell are

L = 25 ft, R = 58 in, h_ = 2 in. The shell response is
0

computed at x = L/2 and 0 = 45°. The thicknesses of the

external and internal shells are hg = 0.032 in. and hj =

0.1 in. The stiffness and material density of the core are

ks = 4.17 lbf/in
3 and ps = 3.4 x 10"

6 Ibf-sec
2/in4. The

outer shell consists of three laminae while the inner shell

is composed of ten laminae. Fiberglass and graphite fibers

are used to reinforce the plexiglass material. The ratio

of fibers volume to the plexiglass volume is 0.2. The

fiber orientation is prescribed by angle a as shown in Fig.

1. The elastic moduli, Poisson's ratios and material

densities are Ef = 7.75 x 10
6 psi, vf = 0.33, pf = 0.0002

Ibf-sec
2/in4, Eg = 10.5 x 10

7 psi, vg = 0.33, pg = 0.00015

Ibf-sec
2/in4, Ep = 2.35 x 10

5 psi, vp = 0.35, pp = 0.00011

ibf-sec
2/in* where the subscripts f,p,g denote fiberglass,

graphite and plexiglass, respectively. The fiber rein-

forcement—same pattern is used for internal and external

shell — is arranged as follows: 1st layer fiberglass, 2nd

layer graphite, 3rd layer fiberglass, and so on. For the

aluminum shell, Ea = 10.5 x 10
6 psi, va = 0.30, pa =

0.000259 Ibf-sec
2/in4.
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The viscous damping coefficient Cg and GJ are
p

expressed in terms of modal damping ratios C, and

C corresponding to the external and internal shells.
mn ^ *

Damping in the soft core is introducted through the loss

factor gs for which values ranging from 0.02 to 0.1 are

selected.

The input random pressures, p6,?1, and the point loads

e iFT,FT (j = 1,2) are assumed to be characterized by

truncated Gaussian white noise spectral densities

8.41 x 10~5 (psi)2/Hz 0 < f < 1000 Hz

otherwise , . , .

0.84 Ib^/Hz 0 < f < 1000 Hz
qe,i
F1'F2 otherwise • , .

The spectral densities given in Eq. (4.1) correspond to a

130 dB sound level. Numerical computations were performed

using the same value of spectral density for the external

and the internal loads. The frequency bandwidth was

selected to be Au = 2n rad/sec with the upper frequency

cutoff 6280 rad/sec for the aluminum shell and 8164 rad/sec

for the composite shell. The random point loads were

located at x® = x® = 12.5 ft, xj = x* = 12.5 ft,

e® = - 90°, e| = 90°, ej = - 90°, e* = 90°.
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The dimensions of the double wall circular plates

P Plocated at x = 0,L are taken to be R = 58 in, h = h .
S S

The thicknesses of the inner and outer plates are hT = hB =

0.25 in. The stiffness and material density of the core

are the same as in the shell system, i.e., ks = 4.17

lbf/in
3 and ps = 3.4 x 10~

6 Ibf-sec
2/in4. Both end plate

systems are composed of aluminum, with elastic moduli ET =

En = 10.5 x 10^ psi, Poisson's ratios v_ = v_ = 0.3 and
o I B

2 4material densities p = p = 0.000259 Ib^-sec /in . The
I D E

viscous damping coefficients c,., and CQ are expressed in
I D

T B
terras of modal damping ratios C and C corresponding tosg sg

the outer (top) and inner (bottom) plates, respectively.

The loss factor accounting for damping in the soft core of

the double wall plate systems is taken to be g =0.02.s
T BThe input random pressures p ,p , and the point loads

T BF.,F. (j = 1,2) are assumed to be characterized by trun-

cated Gaussian white noise spectral densities

8.41 x 10~7 (psi)2 Hz 0 < f < 1000 Hz
S T B
P otherwise (4.3)

0.84 lbp/Hz '0 < f < 1000 Hz
QT,B
SF ,F2

otherwise

The spectral densities given in Eg. (4.3) correspond to a
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110 dB sound level. The noise levels and the magnitudes of

input point loads characterized by spectral densities given

in Eqs. (4.1-4.4) were selected in such a way that the

resulting maximum shell or plate response is linear and

equal to about one half value of the outer shell or outer

plate thicknesses.

Numerical results are presented for noise transmitted

and noise generated by vibrations of the cylindrical shell

and circular plate systems. However, the vibrations and

noise transmission of the shell and circular plates are

assumed to be independent. Then, the total transmitted

noise into the enclosure due to shell and end caps

(circular plates) can be obtained by superposition of the

individual contributions.

The speed -of sound, CQ, in the enclosure, the air

density p and flow resistivity of porous acoustic material

lining, R^, of the interior surfaces, are taken to be c0 =

13540 in/sec' P = i'147 x 10~7 Ibf-sec
2/in4, RX = 3.74 x

10~^ Ibf-sec/in . The sound pressure levels are computed

at x = L/2, r = 28 in and 9 = 45°. To save computation

time, only one location inside the shell was selected for

sound pressure calculations. The acoustic impedance of

porous materials was calculated from [71]

ZA = ZL = ZR = - pco {(1 + 0.0571 (2nR1/pu)
0*754)

-I- i(0.087 (2nR1/pu)
0'732) }

The equivalent acoustic damping parameter {3 due to viscous
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air damping and wall absorption- was obtained from

(4.6)

0

where GO is the lowest acoustic modal frequency in the

enclosure. In using Eq. (4.6), the acoustic modal damping

a H
ratios are taken as C - - k = C (u /^) with

representing the modal frequencies and C^ the damping

coefficient corresponding to the first lowest acoustic

modal frequency in the cylindrical enclosure.

Numerical results are obtained for aluminum and fiber

reinforced laminated double wall shells and aluminum double

wall circular plates. The frequency range considered is

0-1300 Hz. The results are presented for uniform random

pressure and for random point load inputs.

4.1.1 Deflection Response of the Double Wall Shell

The introduction of soft core in the system's formula-

tion allows for in phase (flexural) and out of phase

(dilatational) motions of the double wall shell. The modal

frequencies of double wall aluminum and double wall compos-

ite shells are presented in Figs. 3-5. The fiber rein-

forcement pattern fiberglass/graphite is repeated for the

interior and the exterior shells. The fiber orientation

for the three laminae of the exterior shell are a = -

45°,45°,-45° (Fig. 4) and a = 90°,0°,90° (Fig. 5). The

fiber orientation for the ten laminae of the interior shell
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is arranged in an alternating order with a = - 45°,45°,

-45°,45°, etc., (Fig. 4) and a = 90°,0°,90°,0°, etc., (Fig.

5). The results are presented for half axial wavelengths

m = 1,2,...10 and for circumferential waves n = 0,1,...20.

Results plotted in Figs. 3-5 indicate that for the large

shell dimensions and the ratio radius/length = 0.1933

chosen in this study, the modal frequencies at n = 0 seem

to converge to a single point for all values of m =

1,2,... 10. A comparison of modal frequencies of aluminum

and composite shells shows that depending on fiber rein-

forcement orientation, significantly higher modal frequen-

cies can be obtained for a composite shell. However, the

mass of the composite shell is about 50% less than that of

the aluminum shell while all the other geometric parameters

remain the same. For an orthogonal orientation of fiber

reinforcement, the stiffness of the composite shell is

reduced. Furtheremore, a direct comparison of the results

given in Fig. 4 to those in Fig. 5 indicate a different

modal behavior in the latter case. For the results that

follow, the fiber orientation, except when stated, of the

composite shell will be the same as that given for Fig. 4.

The deflection response spectral densities for the

external and internal shells due to uniform random pressure

acting on the external shell are given in Fig. 6. The

abscissa is a logarithmic scale, called response level

(RL), in units of decibels (dB)
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RLEfI(x,9,u) = 10 log [SEfI(x,e,u)Aw/w*ef] (4.7)

where the reference deflection wre£ is taken to be wref =

hE = 0.032 in. The modes that are excited by the random

pressure are indicated in Fig. 6 by the symbols F and D,

which refer to the flexural and dilatational, respectively,

of the double wall system. For a uniform pressure distri-

bution, only the circumferential modes for which n = 0 are

excited. As can be seen from Fig. 6, only two peaks are

observed in each case. Response levels for the internal

shell are lower at the flexural frequencies when compared

to the response levels of the external shell. However, at

the dilatational frequency the trend is reversed.

Vibration response at the dilatational frequencies is a

function of damping, stiffness and coupling effects of the

viscoelastic core. Response peaks of the composite shell

are about 6dB lower than those of an aluminum shell.

The deflection response levels due to two random point

loads acting on the external shell are shown in Figs. 7 and

8. As can be seen from these results, a large number of

flexural and dilatational modes are excited by point

loads. Due to the large number of participating modes and

modal frequency overlaps as shown in Figs. 3-5, it is dif-

ficult to identify the response peaks corresponding to

dilatational frequencies. However, for n = 0 the flexural

and dilatational frequencies are well separated. A direct

comparison of these results indicates that at most
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frequencies the response levels of the composite shells are

lower when compared to the response levels of the aluminum

shells. However, at some frequency values the opposite is

true. Similar results are presented in Fig. 9 but for the

point loads acting on the interior shell. As can be seen

from Figs. 8 and 9, response levels at the first three

peaks are about the same for both of these cases. However,

significantly different vibration levels might be observed

at other frequencies when the input point loads are moved

from external to internal shells. The location and magni-

tude of these loads are the same for both cases.

To demonstrate the effect of shell and core damping,

results are presented in Figs. 10 and 11 for constant modal

damping ratios, £E = C = C = 0.04 and gc = 0.1. Themn mn o =

point loads are acting on the interior shell for both of

these cases. By increasing modal damping of the interior

and exterior shell from 0.01 to 0.04, about 12 dB of

response reduction can be gained at most modal frequen-

cies. As can be seen from Figs. 9 and 11, only about 2-4

dB of the response reduction is achieved at some peaks when

damping in the core is increased from 0.02 to 0.1.

However, the shells forming a double wall construction are

bonded to the core. Thus, the cumulative effect of damping

on vibration response would be similar to the combined

results given in Figs. 10 and 11.

The deflection response levels of the external and

internal shells are presented in Fig. 12 for a fiber
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orientation a = 0°,900,0°/ etc. The modal frequencies

corresponding to this case were given in Fig. 5. A direct

comparison of these results to the results given in Fig. 9

indicate that the response levels are significantly higher

at some frequencies when the fiber reinforcement orienta-

tion is orthogonal.

4.1.2 Deflection Response of the End Plates

The core separating the double wall end plate con-

struction is taken to be relatively soft in order to allow

for dilatational modes to be present. The coupled modal

frequencies of the double wall aluminum caps for s =

0,1,2,3 (number of nodal diameters) and q = 1,2,...10

(number of nodal circles) are given in Table 1 where F,D

represent the in phase (flexural) and out of phase

(dilatational) motions of the double wall circular plates,

respectively. The first three structural modefe for zero

number of diametrical nodes are shown in Fig. 13.

The response levels, as given by Eq. (4.7), of the

inner plate of the double wall end cap construction are

illustrated in Fig. 14 for various thicknesses of the outer

plate. These results are for a uniform random pressure

input, as given by Eq. (4.3), acting on the outer plate.

The modal damping ratios are assumed to be constant,

T B
C = C = C = 0.06, and the loss factor in the core g_
SCj ^4 O

= 0.02. The thickness of the inner plate was taken to be

hg = 0.25 in. For a uniform random pressure excitation,
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only the modes with s = 0 (i.e., no nodal diameters) are

excited. As can be seen from Fig. 14, the response levels

of the inner plate are significantly higher at most values

of the lower frequency range when the thickness of the

outer plate is hT = 0.05 in. However, the trend is

reversed when the thickness of the outer plate increases to

hT = 0.25 in. and hT = 0.5 in. It should be noted that for

hT = 0.05 in., the response level of the inner plates

almost reaches the nonlinear range and therefore assump-

tions made in the formulation of the theory may be vio-

lated. At higher frequency values and hT = 0.5 in.,

significantly lower response levels for the inner plate are

observed.

The effect on structural response due to changes in

location of point loads is presented in Pigs. 15 and 16.

In this case, the thicknesses of the plates are taken to be

h-j. = hB = 0.25 in. The two point loads'are acting on the

outer plate and characterized by the spectral densities

given in Eq. (4.4). The response levels for both the inner

and outer plates are calculated at r = 0 in. (i.e., at the

center of the plate) and 9 = 45°. In Fig. 15 results are

presented for the outer plate response due to two point

|0loads acting on r; = r^ = 28 in. 9^ = - 90°, 9^= 90

and r^ = r^ = 10 in and 9^ = 0°, 9^ = 180°. As

can be seen from these results, response levels are signif-

icantly higher at most modal frequencies when the point
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loads are located at r? = r2 = 10 in. and 8r= 0°, 9_ =

180°. Furthermore, the number of participating modes in

the response calculation is increased. However, the

response level at the fundamental modal frequency (3.73 Hz)

is approximately the same for both of these cases. In Pig.

16, results are presented for the vibration response of the

inner plate. From the results shown in Fig. 15 and 16 it

can be said that at the first two modal frequencies the

response levels for both the inner and outer plates are

about the same and not strongly dependent on the location

of point load application.

4.1.3 Interior Noise Due to Shell Vibrations

The first sixty-four acoustic resonant frequencies for

the cylindrical closed enclosure were obtained by solving

Eq. (3.31) and given in Table 2. The lowest modal fre-

quency in the enclosure is 22.56 Hz which corresponds to

the first longitudinal mode (x-dimension) in the shell.

In Fig. 17, the sound pressure levels normalized to

the highest peak for reverberant (Z -»• »,p = 0) and highly

absorbent conditions ( ZA given in Eq. (4.5), p = 1 x 10""
7

rad-sec/in*) are presented. In obtaininig these results,

the following data were used: uniform random pressure

corresponding to a 130 dB sound pressure level acting on

the exterior shell, both shells are made of aluminum with

densities PE = Pj = 0.000259 Ibf-sec
2/ir>4, elastic moduli

EE = Ej = 10.5 x 106 psi, Poisson's ratios v = v = 0.3,
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E I
structural modal damping coefficients Cmn = Cmn = 0.03.

The structural loss factor in the core was taken to be gs =

0.02. Up to ten structural modes are included for each of

the circumferential and the longitudinal directions.

However, for a uniformly distributed input of an axially

symmetric shell only the modes for which n = 0 are

excited. As can be seen from Fig. 17, a large number of

acoustic modes is excited for reverberant conditions. For

highly absorbent interiors, peaks are observed only at the

structural modal frequencies. The modal frequencies

corresponding to the breathing mode of the flexural and

dilatational motions of the double wall structure are at

490 and 600 Hz. Sound pressure levels at these frequencies

are significantly higher when compared to other response

peaks.

In Fig. 18, the same shell configuration is used, but

the inputs are two point loads located on the exterior

shell surface at x® = x® = L/2, 6® = - 90° and e| = 90°.

The structural and acoustic damping parameters are

CE = C1 = 0.01 and 0 = 1 x 10~8 rad-sec/in2. Themn mn

results of Figs. 17 and 18 indicate that many more struc-

tural modes are excited for point load inputs. Even though

the sound pressure levels in a shell with large acoustic

absorption are dominated by the flexural vibration mode,

the sound pressure levels at other structural modes excited

by point loads are relatively high. The results presented

in these figures clearly illustrate the difference between
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the noise transmitted due to a uniformly distributed

acoustic pressure input and sound generated (structureborne

noise) by point loads.

The results shown in Fig. 19 are for the same shell

and identical point load excitation, but higher modal and

core damping. It is seen from Fig. 19 that for higher

damping in the shell and the core the sound pressure levels

are significantly lower at the modal response peaks.

Figure 20 depicts sound pressure levels for an alumi-

num and fiber reinforced laminated shell under exterior

point load inputs, with cjjn = C^n = 0.01, gs = .02 and 0 =

1. x 10^ rad-sec/in^. As can be observed from these

results, the noise levels generated by a composite shell

are higher than the noise levels for an aluminum shell at

most frequencies. The mass of the composite shell is about

one half of the mass of the aluminum shell. However, the

composite shell is much stiffer than the aluminum one. For

a shell structure, a shift in modal frequency could induce

different coupling between structural and acoustic modes.

The effect of structural and acoustic damping on sound

generation is illustrated in Fig. 21. These results

correspond to (3 = 1 x IQ~° rad-sec/in^. As can be seen

from these results, a significant amount of noise reduction

can be achieved in a composite shell by increasing struc-

tural and acoustic damping. The results shown in Fig. 21

indicate that for acoustically hard interior walls

(Z -»• °») , the noise levels in the cylinder become
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relatively large.

A direct comparison of interior sound pressure levels

in the cylinder excited by exterior and interior point

loads is given in Fig. 22. The loading conditions are the

same for both cases. Since vibration coupling is provided

by the viscoelastic core, the noise generated in the

interior is a function of how the point loads are acting on

the double wall shell. The results presented in Fig. 22

correspond to point loads acting on the interior shell at

x* = x* = L/2, 0J = - 90° and 9* = 90°. The fiber

orientation of the three layers (Fig. 1) at the exterior

shell is described in Fig. 23. The fiber orientation for

the ten layers of the interior shell are: (A) 0°,22.5°,

45°,45°,22.5°,0°,90°,90°,90°,90° (B) 90° ,0° ,90° ,0° ,90° ,0° ,

90°,00,90°,00 (c) -45°,45°,-45°,45°,-45°,45°,-45°,45°,

-45°,45°. These results show that shell response and

interior noise are functions of fiber orientation in a

composite shell. The interior noise levels might be

tailored to meet specific needs by selecting a suitable

fiber orientation. However, interior noise is a function

of frequency and only specific frequency bands might be

affected by this procedure.

4.1.4 Interior Noise Due to End Plate Vibrations

In Fig. 24, the first three radial acoustic modes are

illustrated. These results were obtained from Eq. (3.12)

for zero number of nodal diameters (i.e., j = 0, no
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variation in 8-direction) and k = 1,2,3, where k represents

number of nodal circles (r-direction).

The sound pressure levels at x = L/2, r = 23 in. and

9 = 45° due to noise transmitted through the double wall

circular end plates located at x = L, are shown in Fig. 25

for reverberant and absorbent interiors. The input is a

uniform 120 dB acoustic pressure acting on the exterior end

plate. In this case, the end plate located at x = 0 is

assumed to be rigid. The reverberant and absorbent condi-

tions are simulated by selecting ZT,Z_ •* «/ (3 = 0, and
L K

ZL,Zr as given in Eq. (4.5) and p = 1 x 10~7 rad-sec/in2,

respectively. As can be seen from Fig. 25, a large number

of acoustic modes are excited by the vibration of the end

plates for reverberant conditions. Modal plate damping is

T* B
taken to be constant and equal to C = C =0.06. The

sq sq

structural loss factor of the core gp = 0.02. The noise
S

transmission of the end caps is predominantly low fre-

quency. The fundamental circular plate frequency is 3.73

Hz while the lowest acoustic modal frequency in the shell

enclosure is 22.56 Hz. From these results and the results

presented in Fig. 17 it can be seen that under uniform

random pressure input, the noise transmitted by the double

wall shell and circular end plates could .be relatively

large over the selected frequency range.

The results presented in Fig. 26 illustrate the

difference between the noise tranmsmitted due to a

uniformly distributed acoustic pressure input and sound
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generated by point loads. In both cases, the random exci-

tations-are acting on the exterior plate of the double wall

construction located at x = L and the end plate located at

x = 0 is assumed to be rigid. The uniform input is 120 dB

acoustic pressure and the two point loads are characterized

by a truncated Gaussian white noise spectral density given

T Tby Eq. (4.2) and are located at r. = r_ = 28 in. and

9r = - 90° Qj = 90°. The absorbent conditions are

described in Eq. (4.5) and the equivalent acoustic camping

parameter is p = 1 x 10 rad-sec/in . The modal damping

ratios are taken to be constant and equal to 0.06. The

loss factor of the core gp = 0.02. The sound pressure
5

levels are calculated at x =L/2, r = 23 in, p = 45°. From

Fig. 26 it can be seen that the uniform acoustic pressure

tends to generate more noise in the low frequency region

while the sound generated by point loads inside the

enclosure is about 10-15 dB higher in the high frequency

region.

4.1.5 Total Interior Noise

Due to the assumption of independently vibrating

double wall shell and end plate systems, the total interior

pressure can be calculated by' a superpositon of the

individual contributions. In Fig. 27 results are shown of

noise generated inside the enclosure due to uniform random

pressure applied on the exterior surfaces of the double

wall shell and double wall end plates. It can be seen that
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transmitted noise is dominated by end plate vibrations for

frequencies up to 200 Hz and by shell vibrations for

frequencies above 200Hz. Then, the total interior pressure

is presented in Fiq. 28. These results indicate that

neglecting noise transmitted by the end caps would

underestimate interior sound pressure levels for the low

frequency region. Similar results are presented in Figs.

29 and 30 but for random point load inputs. These loads

were applied on the exterior surfaces of the shell and end

plate systems. As can be observed from these results, low

frequency noise is dominated by end plate motions.
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5. CONCLUDING REMARKS

An analytical model has been developed to predict

vibration response and noise transmission of double wall

circular plates and double wall laminated composite shells

to random inputs. Results indicate that the shell response

is strongly dependent on damping characteristics of the

shell material and the core, location of the point load

action, and reinforcing fiber orientation of the different

laminae. In general, the response levels for a composite

double wall shell are lower at most frequencies than those

of an equivalent aluminum shell. The vibration response of

the end caps (circular plates) are predominantly low

frequency with the largest peak occuring at the fundamental

mode.

The interior noise is strongly dependent on damping

characteristics of the shell and the core, location of the

point load action, fiber orientation of the different

laminae and wall absorption of the interior walls. A fiber

reinforced composite double wall shell tends to generate

more noise than an equivalent aluminum shell. This is due

to the fact that the mass of the composite shell is about

one half of the mass of the aluminum shell and increase of

the modal frequencies of the stiffer composite shell could

induce different coupling of the structural-acoustic

modes. The noise transmitted by the end caps is predomi-

nantly low frequency. Thus, neglecting noise transmitted

by the end caps could underestimate interior sound pressure
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levels for the low frequency region. Furthermore, by a

proper selection of structural damping, reinforcing fiber

orientation, acoustic absorption and core stiffness, a

significant amount of lower response and higher noise

attenuation can be achieved by a design consisting of

double wall laminated fiber reinforced composite shells and

a soft viscoelastic core.
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APPENDIX I - ELASTIC MODULI

Following Refs. 34,54 the elements of [C^ '] for the

kth lamina are given by

C,, = Q,,cos a + 2(Qn+ 2Q,,-)sin a cos a + Q _ _ s i n a (1-1)11 11 L£. Do /z

C12 = (Qll"l"°22~4°66)sin2a C0s2a + ° 12(sin
4a+cos4a) (1-2)

4 2 2 4C22 = Qnsin a + 2(Q1 2-i-20g6)sin a cos a + Q22cos a (1-3)

C16 = (0ll~°12~2066)sin a COS a "*" (012~°22+2°66)sin a COS a

(1-4)

C26 = (Qll"°12~2°66)sin a COS a"l"(Q12""°22 + 2Q66)sin a COS a

(1-5)

2 2 4 4
C66 = ^ll+^22~2Q12~2Q66^ s in a COS a +^66^ s i n a + COS *

(1-6)

where a is the angle between the fiber direction and the

cylindrical shell axis in the kth lamina and Q^^ (ij =

11,12,22,66) are given by [54]

-v vV12V21

E22
v

12V21
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Q12

= G12

Furthermore, the directional moduli E^,^22'^12

Poisson's ratios, Vi2/V21 can be exPressed i° tne terms of

the volume ratio of fiber and matrix material [54]

EfVf + EmVM

En(l * «'vf)/Vn d-12

V12 - VfVv + Vm

V21 ' V12E11/E22

G12 = Gm(1

where

a = [Ef/Em) -l]/['(Ef/Em) + 1] (1-16)

P [(Gf/Gm)-l]/(Gf/Gm) + 1] (1-17)

The subscripts m,f refer to matrix and fiber material,

V refers to volume fraction and E,G,v represent the modulus
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of elasticity, shear modulus and Poisson's ratio, respec-

tively. Finally, using Eqs.(II-7}-(11-17} into Eqs.

(k)(II-l )-(II-6) the elastic moduli C.. can be expressed in

terms of directional moduli E,, ,E__ ,E.. _ , angle a, and

volume fractions VF,Vm. It should be noted that the

subscripts 1,2 in directional moduli and Poisson's ratios

notation refer to fiber direction and should not be con-

fused with subscripts indicating position of element in

elastic moduli matrix [Ĉ ].
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APPENDIX II

(a) Differential operators LJJ

The differential operators used in equations (2.7-2.9)

are

a2 2A16 52 A66 a2

ax'
R aeax _2

R at'

r »L12 " A16
a2 . A26 a2

i2 a 26 a
'13 ~ B 11

- 1 B -2-R B16 .2

B

a x a e
17
—jR axae'

B9fi ft3^O O

L = A' S— + 1 A*22 66 „ 2 R 26
i »'
R2

 A22

- A'23 ~ R A26 22 - BB16 . 3
OX

I BR 17 ax2ae

_

R
2 26 ae-

'33 R

— ̂ -

9 ^ A A a A. 2 B 5 + a 4 _a a
R3 22 ae2 n ax4 R 16 ax3ae at2

i7 axae- R^ 22 ae' at
(ii-D
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where

A - A + - + A +A12 ~ A12 R A66 R

i*1 J -* (ii = 16,22,26,66)

B17 = B12 + 2B66

D. .
-1 ^J = 16,17,22,26)

D17 = °12 + 2D66

(b) Stiffness parameters

The coefficients Z./X./Y ,a in eqs. (2.11-2.14) are

as follows

Zl = Dllal * B11P1 + 516^1

B16Y2 + B17Y1

3B16P2 + B17P1 + B16Y3



Z4 * 2Dlla4 * 4D16tt3 + 4D17a2 + 4D26al

B26P1

Z5 " DUa5 * 8D16a4 * 2D17a3 + 8D26a2

Z, = 4D,,,ac + 4D,-a . + 4D_,a^ + 2D00a06 16 5 17 4 26 3 22 2

B17Y5 B22Y3

Z8 S 4D26a5 + 2D22a4

3B26Y6 + 22Y5

Z9 = D22°5
(II-3)



*2 * - (48.

38

^3 • " (28

26*1 + s

a26

V2 + B,
J8

*22^ * g.

B
+ A.

12 «4
 + 4B,

3B
16^0 + B

B
26^7 B

10 + A
26*4

*5 ^ (28
26 r3 + B.

12«5 * SB
26 a

4
 + 28

22a
3

 + A

B
26 P

8
 + 3B

38.
B

26a
5 + 48

22

22a +

B
8
W^c

10 + A
26^6 + A,

38
26^10 + B,



al =
-2

" A16A66

" A66A26

"c; = Sfi "" A66A22

BUA66

81

2A22a4

A22Y10
(II-5)

" A12B16
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!766

- 3A 7 _g,

A26517

116A22 26

*I15M

(II-7)

.



A11B22 *

16

= 2A16B22 *

2A16A22+ AA

- A12A12

' A26ttl2

(II-8)

10
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APPENDIX III

The structural-acoustic coupling terms are

L,R sqjk

u(RP)2

2+ f Xs )2 I ( Xs)+ (L,RXjq} Ij (L,RXjq )

lL,RAjq'

(III-l)

8 2

2, . .s .2
+ (L,RXOq}

.s . "-"Ok^ I0 (L,RXOq )
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mnij

2L
m

m = i,i * 0,n = j = 0

m * 0,i = 0,n = j * 0

(III-2)

m * 0,i = 0,n = j = 0

1 . .. .

^

m-i

m-i 0,n - j - 0

2 itHo n i m # i,i # 0,n = j # 0
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APPENDIX IV - LIST OF SYMBOLS

Aii'Bii'Dii stiffness coefficients

P TA ' shell generalized deflection
mn coordinates

RA
L' end plates generalized

' s<^ deflection coordinates

CE,CT shell damping coefficients

c.p,cg end plates damping coefficients

f k}C..' elastic moduli defined in Appendix I

CQ speed of sound

Ejr,Ej Young's moduli of external and
internal shells

Ê ,,EQ Young's moduli of outer and inner
end plates

hE,hj thicknesses of external and
internal shells

hR distance from reference surface to
lamina surface

p
h ,h thicknesses of shell and end plate

s cores

h ,h thicknesses of outer and inner end
1 B plates

E IH ' frequency response functions of
external and internal shells

T BH ' frequency response functions of outer
^ and inner end plates

i

k0 core stiffness

ks k0(l+gs)

L length of shell
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Lji differential operators given in
-1 Appendix II

m ,m core surface densities for shell and
s s end plates

surface densities of external and
internal shells

mT,mB surface densities of outer and inner
end plates

M number of laminae of internal shell

M ,Ma,M fl loading moments
x o .xo

N number of laminae of external shell

N .NQ,N Q membrane forces
X O XW

p acoustic pressure

pi,p2 acoustic pressures due to vibrating
shell and end plate systems

p6,?1 external and internal random pressures
applied on shell surface

P̂ ,PB outer and inner random pressures
applied on end plate surfaces

~E I
P ' shell generalized random forcesmn

p
T,B sq end plate generalized random forces

qx'qw/q9 shell loading

r,9 polar coordinates

R^ porous material flow resistivity

R shell radius

R plate radius

RLEfI shell deflection response levels
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Sp'^Sp' spectral densities of shell and
Fj j end plate point loads j=l,2

p» -p

S shell cross-spectral densities of
mnrs generalized random forces

T Bsscrik end Plate cross-spectral densities of
' generalized random forces

S_ spectral density of acoustic pressure

SPL sound pressure levels

E T' spectral densities of shellS
w deflections

T BS ' spectral densities of end plate
w deflections

u,v,w shell displacements

WgfWj transverse displacement of external
and internal shells

displacement of outer and inner plates

x,9 cylindrical coordinates

x^,xl",0e,9* coordinates of shell point loads
J J D 3 location, j = 1,2

X^ coefficients given in Appendix II

Yj. coefficients given in Appendix II

ZA shell acoustic impedance

Z^ coefficients given in Appendix II

ZR,ZL end plate acoustic impedances

a angle between fiber direction and
shell axis

a coefficients defined in Appendix II
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(3 acoustic damping coefficient

C critical damping ratios
mn ^ *

C a constant value of damping
° coefficient

w frequency

o)C coupled modal frequencymn,sq * M JT

a) uncoupled modal frequencymn,sq

a)... acoustic modal frequencies
1JK

superscripts and subscripts:

E external shell

I internal shell

E,I external or internal shell

T outer plate (top)

B inner plate (bottom)

T,B outer or inner plate

R,L right (x=L), left (x = 0) end plates
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Different Location of Point Loads(Exterior)
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* A l A ^ f - . l A ( J » O ^ «
*f O ^0 ^* ^O O O h»
m > o o o - ^ > ^ a n ^ r »
O ^ ^ O O O Q H ^ O l N )

^o f̂ ^^ ^o QO *^

< O ^ » a o o > o » < ' < s i i ' o

^ • M l M f M i x m m m

• o i M - ^ i A i A ^ o e r 1

^^ f̂t %O ^^ v^ ^^ 0^ ^^

IN m -sf IA <A

> A t A » 4 I A > O ' M « 4 ^
^O *^ ^O f^ ^^ ^A ffrt ^to

^^ ^^ ^^ l̂ m ^3 IA ^^
•O -O ,f f\J «•» rvl i.* ^

e « « « e « » «
^ - i o o o r » e B a o r » m

^ " ^ ^ "°

^ - , W 0 - ^ «

o o o o o > 4 > 4 ^

"» T» (SI O IN *» >*
IM -4 co oo IA o n
^O 1^ r̂t ^3 <^^ ^^ ^^

o^ o *o f«» ^4 o rn

*H ry m -^ ^) ffc co

^ *A fg r^ rsj n) #\j
*^ fO ro *^ ^ ^ o
ro IA >^ ^ ^J ^ o

*^ <N ^ ^ *O h- CO

•̂  I/N >0 ?** ao <y* o

m i*> m fn ^i

<^ 00 O ^ ^ ^ ^

* r-, u> >o o fo eo

^J O^ ^« f1* CO O -^
«-« ^« rj tTI >^ >O f-

^ >f IT> 0 9> 9> «M
•^ *•> »^ o o <y <o
IB >> IA IA an m IM
r- o ^ o o o o
f • 9 f • • •

0^ ^^ ^4 p^ ^9 O OO
f̂  C3 ro f̂  OB ^^ î
»^ <M IN ro >*• «0 f*

*^ l̂  s^ ^* CO ^^ *^J

-• - - ^ - -. -•



118

OR/GJIV,'«. PASS

•n
•H

3

*

•n

•H

•r-i
•H

3

•H

•n
•H
3

•n

^

3

•n

rt
«
O
rt

«

CD
to

r-
rt

o

Ot

rt

01

rt

O
O
O
0

0

rt

« > O c o o i o t o i n o t < o 01 ot CD 01 r>
O i r t o i c o O r t r - n r - O o t r t o o t
» r t « r t « O 4 « r t O O « r t O l O r t
m < O r t r - o i t o « r t O r» « r t « a t

o i r t ^ m r t o i m r t o i n v r t o i

* ^ ^ o i r t i n r > r » r * i n o r t o i o » c o
rtinatoioircvrtcooio<o«oi
t o « m m < o r t r . r ^ o t c D O o i c o A
« ' O c o » r - f i o i » * i « r - « - » o
a t r t r t r t r t r t i n r t r t r > r > a t o i < o
c D t o o o i • v o v r > a t t o m t o o a a i
* r t r t » m o i r t » i n r t o i r t

rtoiin<oaiOoiaiinrtOrtoirt

^ ^ o i f M n n n n n m ^ ^ ^ ^

o i m r t m « ^ « « m « i n < o c D m
m « O I C O O C A C D O r t O C * O i r > r t
« O 9 t f t ^ > * ^ r ^ r t t o o i r ^ o ^ o i
» r t » r t r t O C O P - r t O C » r t * O

o i r t « O B a » r « i n o i O « i » o > o > r t
» < o r « . t o o « r t r t r t i n t o c D i n o t o i
rtoirt rtrt^rrtoirt^fHoi^p

0 1 r t , r t O , r t , r t O , r t , r t O , r t

S 5 S o : s s s s ; s
« « » o i c D r . » o t o o i
c D r t m r > m m r * < o o t r «
" ' " ' - ' r t O r ' r - ^ r ^ c o
r > a t c o r t r t V r t i n o . o >
" * r t ' n * i n o i r t » «

m in ^ ^o 9 in m ^ ^ ^
» r t r t t o » i n r t » m »
a t i o o c D i n r > i n « o i o i

a t ^ r t r t a t t f > o i r t t o ^
o o t ^ » r t m r » a > r - o o i
O l r t ^ r r t o i r t ^ r t r t ^

o o r t r t O t o i « r > « r >

t n a t m a i r t m o c o r t v

rt Ol rt Ol rt ^ î  Ol
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