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summary of Major Activities

During the reporting period, the following major activities

relating to the proposed work have been accomplished.

1.1 Papers published

Vaicaitis, R., "Noise Transmission into Propeller Aircraft,"”
The Shock and Vibration Digest, Vol. 17, No. 8, Aug. 1985.

1.2 Papers prepared for publication

Bofilios, D.A. and Vaicaitis, R., "Response of Double Wall
Composite Shells to Random Point Loads," submitted for
publication, Journal of Aircraft, AIAA.

1.3 Conference papers (presented)

Vaicaitis, R., and Bofilios, D.A., "Noise Transmission of
Double Wall Composite Shells," ASME 10th Biennnial Conference
on Mechanical Vibration and Noise, Paper, No. H-334,
Cincinnati, Ohio, Sept. 1985.

Vaicaitis, R., "Structureborne Noise in Space Station," 5th
Science and Engineering Symposium, Chicago, Illinois, Nov.
1985,

1.4 Conference papers (accepted for presentation)

Vaicaitis, R., "Noise Transmission into Enclosures," Fourth
International Modal Analysis Conference, Los Angeles,
California, Feb. 1986. M

Vaicaitis, R. and Bofilios, D.A., "Response Suppression in
Composite Sandwich Shells," Vibration Damping Workshop II,
lL.as Vegas, Nevada, March 1986.

1.5 Conference papers submitted for presentation

Vaicaitis, R. and Bofilios, D.A., "Vibro-Acoustics for Space
Station Applications," AIAA 10th Aeroacoustics Conference,
Seattle, Washington, July 1986.

Vaicaitis, R., "Nonlinear Response - A Time Domain Approach,"
AIAA 10th Aeroacoustics Conference, Seattle, Washington, July
1986.




2.0 Technical Highlights

The technical background and highlights of structureborne
noise generation and transmission have been described in Refs. 1
and 2. In what follows, a brief review of new accomplishments

and progress of new work is given.

2.1 Response and Noise Transmission of Double Wall Circular
Plates and Laminated Composite Cylindrical Shells

Analytical models were developed in the Doctoral thesis by
Dr. D.A. Bofilios for application to structureborne noise related
problems. A copy of the thesis is enclosed with the present prog-
ress report. The main objectives of this work were to develop
theoretical models capable of predicting structural response and
noise transmission to random point mechanical loads. Fiber rein-
forced composite and aluminum materials were considered.
Cylindrical shells and circular plates were taken as typical
representatives of structural components for space station habit-
ability modules. Analytical formulations include double wall and
single wall constructions. Pressurized and unpressurized models

‘

were considered. Parametric studies were conducted to determine
the effect on structural response and noise transmission due to
fiber orientation, point load location, damping in the core and
the main load carrying structure, preséﬁrization, interior
acoustic absorption, etc. These analytical models could serve as

preliminary tools for assessing noise related problems, for space

station applications.
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2.2 Propagation and Transfer of Vibrational Energy for
Structureborne Noise Applications

Structureborne noise arises as a result of mechanical vibra-
tions which might start as flexural, torsional, dilatational or
traveling waves. For space station operations, vibrations could
be induced directly to the habitability modules by mechanical
impacts, power generating systems, life support systems, proposed
manufacturing devices, or it could arrive through interconnecting
structures due to thruster action, payload deliveries, etc. 1In
order to assess the significance of these vibrations on the
vibroacoustic environmental inside the habitability modules,
detailed understanding of structural response, wave propagation,
transfer and attenuation of vibrational energy is needed. For
this purpose, a structural model shown in Fig. 1 has been
selected. The acoustic enclosure is subdivided (partitioned)
into a number of individual or interconnecting compartments.
Noise is generated in these compartments by the vibration of a
stiffened wall or the partitions. The vibrational energy arrives
via the stiffened structure and it is transferred into the stif-
fened wall at the points of l&%d transfer. The number and loca-
tions of applied random loads are taken to be arbitrary. Such a
model would al}ow for a more basic understanding of structure-
borne noise generation and transmission and still provide a
tractable mathematical formulation. In this part of the study,
we will be mainly concerned with modes of dynamic (mechanical)
load generation, vibrational energy propagation and transfer into

interconnected structures, and noise generation in partitioned




interiors. To construct the required analytical model, modal
methods, wave propagation, and transfer matrix techniques will be
used. We expect to present the mathematical formulations of the

structural response problem in the next progress report.

2.3 Structureborne Noise Generation and Transmission into
Habitability Modules

The analytical models described in Sec. 2.1 were developed
for monocoque (single or double) cylindrical shells and idealized
cylindrical acoustic enclosures. However, the final configura-
tion of the habitability modules expected to be discretely stif-
fened cylindrical shells with truncated cone type end caps and
partitioned interiors. The structural details of a typical
(proposed) habitabilaity module is shown in Fig. 2. For the
structural response analysis of the pressurized habitability
module, the following analytical formulations are being

considered.

1) orthotropic Shell Model

r

In the orthotropic shell hodel, the effect of stiffeners
(rings and stringers, Fig. 3)lis smeared into an equivalent skin
[3]. Such a model provides a relatively simple analytical tool
for response estimation to point loads. However, this model is
limited to a frequency range where the modal wavelengths are
significantly larger than the spacing between stiffeners. The
natural frequencies of an orthotropic shell (smeared) are shown

in Figs. 4 and 5 for several cases of different structural

parameters. The structural parameters chosen for these examples

it




are typical of the proposed habitability modules. We expect to
incorporate the orthotropic formulation in the analytical model
for structural response and noise transmission calculations

described in Sec. 2.1.

2) Discretely Stiffened Shell Model

A transfer matrix technique is being used to devlop an
analytical model for response estimation of ring stiffened shells
to point loads acting on the stiffening rings or the shell
skin. For this purpose, the general theory of transfer matrices
presented in Ref. 4-6 is being utilized. Such a structural model
allows for proper dynamic interaction of stiffening elements,

shell skin and paplied load.

3) End Caps

The end caps of the habitability module shown in Fig. 2 are
taken as truncated cones. We expect to develop analytical proce-
dures for estimating response and noise transmission of these
structures. Due to a very complex geometry of such a configura-
tion, numerical techniques based on the finite element methods

will be utilized.

4) Acoustic Model

The acoustic enclosure is a cylindrical cavity with a number
of partitions as shown in Fig. 2. Noise inside various compart-
ments can be generated by vibrations of the main shell structure,

the end caps or the partitions. Analytical models for interior



noise are being developed for cylindrical, rectangular and

irregular enclosures.

For irregular enclosures, the

acoustic

modes are not readily available and numerical techniques will be

utilized to calculate these modes.
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ABSTRACT

RESPONSE AND NOISE TRANSMISSION OF DOUBLE WALL
CIRCULAR PLATES AND LAMINATED COMPOSITE

CYLINDRICAL SHELLS

Dimitrios Alexander Bofilios

An analytical study is presented to predict the
response and noise transmission of double wall circular
plates and double wall laminated composite fiber reinforced
cylindrical shells to random loads. The core of the double
wall construction is taken to be soft so that dilatational
motions can be modeled. The analysis of laminated shells
is simplified by introducing assumptions similar to those
in the Donnell-Mushtari theory for isotropic shells. The
theoretical solutions of the governing acoustic-structural
equations are obtained using modal decomposition and a
Galerkin-like procedure. Numerical results include modal
frequencies, deflection response spectral densities and
interior sound pressure levels. From the parametric study
it was found that by proper selection of dynamic parame-
ters, viscoelastic core characteristics and fiber rein-
forcement orientation, vibration response can be reduced

and specific needs of noise attenuation can be achieved.
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1. INTRODUCTION

The design of many ground and space structures is
impacted by the interaction of functional requirements such
as strength, stiffness, weight, passenger and crew comfort,
cargo containment protection, reliability, etc. To accom-
modate many of these reguirements, new design concepts for
lower weight, extended service life and reduced costs are
needed. It has been demonstrated that composite materials
could give weight and structural integrity advantages over
many commonly used materials [1-3]. However, the low
weight composites might not provide any advantages with
respect to less response, reduced noise transmission [4] or
longer fatigue life. Past studies have demonstrated that
sandwich constructions might be an effective way of
dissipating vibrational energy [5-7]. Thus, to satisfy the
required vibroacoustic environment, designs utilizing
composite materials might need to be modified by including
the double wall sandwich concept. It is expected that the
vibroacoustic environment in the proposed space station
might exceed the acceptable vibration and noise levels.
Therefore, implementation of sandwich constructions might
prove to be useful alternatives in the design process.

Many transportation vehicles involve shell construc-
tions. The greatest impetus to the development of the
dynamics and noise transmission of shell-type structures
has been for aircraft, missiles, launch vehicles, manned

spacecraft, and submercibles [8-22]. Current technological



interest is shifted from simple, single layer, isotropic
shells without stiffeners [23-30], to shells made of com-
posite materials, of laminated sandwich type constructions,
and shells stiffened with rings and/or stringers. Previous
research efforts concerned with the dynamics of laminated
shells, neglected the bending-stretching coupling and the
concept of an equivalent single-layer special orthotropic
shell was used [31-33]. Due to the limiting applicability
of the latter formulation, this type of bending-stretching
was then incorporated in a Donell-type shell theory for
laminated composites and a general solution of free vibra-
tion of laminated orthotropic cylindrical shells was
presented [34-39]. Similar analyses have been carried out
using Love's first approximation theory for an arbitrarily
laminated anisotropic shell of moderate length [40-42].

The vibrationdl analyses of sandwich shells were mainly
concerned with simply supported circular cylindrical shells
having isotropic facings ([43]. Then, it was extended to
orthotropic facings and orthotropic core where the in-
surface forces were neglected ([44]. The forced vibrational
analyses of cylindrical orthotropic sandwich shells took
into account the transverse shear deformation of the core
and the material damping of the core and of the facings
(45]. Furthermore, an analysis of sandwich shells with
laminated anisotropic facingé was presented [46]. 1In
addition, a more complex formulation for the vibration of

open and closed sandwich shells was developed [47].



The analytical and experimental, studies of noise
transmission through shell structures were mostly under-
taken in the aerospace industry where models for prediction
of sound transmission were developed [8-~13,48-50]. The
main research efforts were concentrated on the prediction
of sound transmission through thin cylindrical shells in an
acoustic field [48-50). A general formulation, using the
interaction of structural vibrations and external sound
fields, in terms of structural normal modes and acoustic
cavity normal modes, has been developed [10]. These
procedures have been extended to include a formulation
which combines modal methods and statistical energy
analysis [11l]. Airborne noise transmission through
laminated composite cylindrical shells of infinite extent
has been considered in Ref. 4. An analysis of the sound
transmission through closed sandwich cylindrical shells
where the closed ends are taken as acoustically hard walls
has been presented [51] as an extension of an earlier
investigation on sound transmission through damped sandwich
panels (52]. However, studies are needed on response and
noise transmission through double wall laminated composite
shells separatéd by a soft core.

This work presents an analytical study on vibration
response and noise transmission of double wall laminated
composite circular cylindrical shells of finite extent.
Each shell is a composite built up of laminae, which in

turn consist of unidirectional fibers imbedded in a



supporting matrix. Furthermore, each lamina can be
oriented in any arbitrary direction. The shell skins are
modeled according to a laminated cylindrical thin shell
theory using Love's first approximation theory and the
Donnell-Mushtari assumptions for thin shells [53-57]. The
end caps are taken as double wall circular isotropic plates
[58-66]. The governing differential equations for the
vibration of double wall shells and double wall circular
plates, shown in Fig. 1, are developed for the case in
which the core material is taken to be soft, so that
bending and shearing stresses can be neglected and,
consequently, the core can be described by a uniaxial
constitutive law. Such a core allows in phase (flexural)
and out of phase (dilatational) motions of the double wall
system [52,67}. The inertia effects of the core follow a
linear apportioned mass distribution law. The inputs to
the shell and the end caps are either uniforml} distributed
random pressures or random point loads. The equations for
the shell and circular plate systems are analyzed using
modal decomposition and a Galerkin-like procedure [68,69],
along with power spectal density approaches [70]. 1t is
assumed that the shell and the end plate systems vibrate
independently. The noise transmission through the double
wall sandwich constructions, of the facings and ends, into
the cylindrical enclosure shown in Fig. 1, is analyzed by
solving the linearized wave equation for the interior sound

pressure field [71])]. Time domain and frequency domain



formulations are included. 1In the time domain approach,
the time dependent boundary conditions are transformed into
a governing equation and then the solution of the resulting
nonhomogeneous partial differential equation with
homogeneous boundary conditions is obtained [72,73]. Then,
the solutions for the acoustic pressure in the shell
interior are obtained in terms of the inner shell and/or
the inner circular plate motions. The interior acoustic
pressure is ultimately expressed in terms of spectral
density functions normalized to a reference pressure, and a
quantity is defined called sound pressure level.

This work contains numerical results for response and
noise transmission of simply supported double wall cylin-
drical shells and double wall circular plate systems.
Natural frequencies, vibration response spectral densities
and transmitted sound pressure levels are calculated.

These results are obtained for double wall isotropic
(aluminum) and double wall fiber reinforced composite
cases. The outer shell is constructed from three laminae
and the inner shell from ten laminae. The end caps are
taken as flexible double wall constructions capable of
structurally inducing noise. It is shown that by proper
selection of dynamic parameters, damping characteristics
and reinforcing fiber orientation lower response levels can
be obtained at some frequencies for a composite shell than
those of an equivalent aluminum shell, and a significant

amount of noise attenuation might be achieved by a design



composed of two composite shells and a soft viscoelastic

core.



2. STRUCTURAL PROBLEM FORMULATION
2.1 Introduction

This section is concerned with the random vibration of
a closed double wall cylindrical shell system of finite
extent. The sandwich shell system is composed of two
simply supported circular cylindrical shells and a soft
viscoelastic core as shown in Fig. 1. Each shell is
constructed either from isotropic material or from fiber
reinforced laminae. The fibers are basically the load
carriers. A linear viscoelastic model is chosen to
describe the behavior of the core. The thin composite
shells separated by the core are modeled according to the
theory presented in Refs. 35,42,43,54-56. This theory is
appropriate for many arbitrarily oriented layers, each
reinforced with unidirectional fibers. The fiber orienta-
tion is defined in Fig. 1 with respect to the chosen
coordinates. The end plates are taken to be double wall
homogeneous isotropic circular plates and modeled according
to the theory presented in [58-66]. As in the case of the
shell system, a linear viscoelastic model is chosen to
describe the behavior of the core. For both, the double
wall shell and the end plate systems, the core is assumed
relatively soft so bending and shearing stresses can be
neglected, and consequently, the core can be described by a
uniaxial constitutive law. The double wall homogeneous
isotropic shell is considered as a limiting case to the

general formulation.



2.2 Random Vibration of a Double Wall Shell
Following the procedures presented in (54,55}, the

equations of motions of a single cylindrical shell are

3N_/dx + (1/R) 3Ny /38 + g = p u (2.1)

(l/R)bNe/ae + aNxe/bx + (1/R) ((1/R)aMe/ae

+ aMxe/ax) + gy =pV

(2.2)
azmx/ax2 + (2/R) azmxe/axae + (1/R?) 62Me/662
- N,/JR+ q = p W
0 w (2.3)
where a dot indicates a time derivative and
3 ] B ov 7
Ny X
! 1
Ng [Aij] ! [Bij] (5) (3v/28 + w)
! 1, du v
Nyo : (R) 38 * 2%
'
=]--=== 3 R
" . _ 2w
X : ax2
|
| 1 2 2
Mg [Bij] ! [Dij] - (;5)(a w/36° - 3v/2e)
1
M - (&) (25%w/0x28 - av/dx)
i xe_ L R x_
(2.4a)

where the submatrices [Aij]'[Bij]'[Dij] are



(A,B,D)11 (A,B,D)12 (A,B,D)16
[(a,8,D);5] =| (A,B,D);, (A,B/D),, (A,B,D)ye

(A,B,D)l6 (A,B,D)26 (A,B,D)66

(2.4b)
- B -
Aij (hy = h ;)
B et |12 (n2 - n2)
S 1IN RS k = "k-1
3.3
Dy ; 1/3 (hy - hk‘ll (2.5)

in which ng) are the elastic moduli of the kth lamina

and hy,hy_; are distances measured from the reference
surface to outer and inner surfaces of the kth lamina (see
Fig. 1). Following Ref. 35, the stiffness coefficients

A ,Dij can be calculated in terms of directional

i385
moduli, Poisson's ratios and fiber orientation angle a. 1In
this approach, the properties of each lamina are functions
of volume ratio of fibers to supporting matrix material. A
more detailed discussion is given in Appendix I.

The mass density per unit of surface area is calcu-

lated from
n
p = ¥ p, (he=h _.) (2.6)

where P is the material density of the kth lamina and hy

are distances from reference surface to lamina surface.



Using Egs. (2.4a), (2.5), and (2.1-2.3), the equations

of motion of a laminated shell can be written as

Lllu + lev + L13w + g, = e u (2.7)
L12u + L22v + L23w + dg = P V (2.8)
L13u + L23v + L33v +g,=pWv (2.9)

where the differential operators Lij are given in Appendix
II. As can be seen from equations (2.7-2.9) the matrix of
differential operators is symmetric. Setting the in-plane
loads g, = dg = 0, introducing the Donnell-Mushtari-Vlasov
type assumptions [35,54,55] and combining Egs. (2.7-2.9), a
single equation in terms of transverse displacement w can
be obtained

8 6 YLwur et pw-q) =0 (2.10)

where

8

7° = zlas/ax + (1/R)2268/6x766

2 3

. (1/R2)Z368/6x669 + (1/R3)Z468/ax566

+ (1/R4)z5a8/ax4ae4

10



5 6

' (1/R5)2668/6x368 + (1/R6)Z768/ax269

7

+ (l/R7)2868/6x69 + (1/R8)Z468/ax8 (2.11)

xv6 = (1/R)x1a6/ax6 + (1/R2)x2a5/axsae

2 3

+ (1/R3)X366/ax469 + (1/R4)x4a6/ax3ae

2.4

+ (1/R5)x5a6/ax 26

5

+ (1/R6)X666/axae + (1/R7)x766/666 (2.12)

4

vd = (l/Rz)Yla4/ax4

v + (1/-Y) v, 70x 300

+ (1/R4)Y3a4/ax2ay2

3

+ (1/R%)y,0%/0x00% + (1/R%)¥ 0%/ 00" (2.13)

vd - a164/6x4 + (2/R)a264/6x369

+ (1/R‘)a3a4/axzae2 (2.14)

3

+ (2/R3)a4b4/bx69 + (1/R4)asa4/ae4

and the coefficients 2i1X50Yy and «, (i =1,2,...9; j =

r

1,2,...7; r = 1,2,...5) are defined in Appendix II.

Following Ref. 52 and using Eq. (2.10), the double

11
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wall shell motions can be modeled by two coupled partial
differential equations for normal deflections wp and wy as
4

{ZV + Vo o+ Vo jw, + © {pEwE + k(wy - w

E E )

I

° . .e 4
+ c w, + (1/3)msw + (1/6)msz} = VEpe(x,e,t) (2.15)

E

8 6 4 4, -
{90 + V5 *+ ¢ihwp + Vplepwer kolwy - wp)

+ c W, + (1/3)ms; + (1/6)ms& = - Vgpi(x,e,t) (2.16)

E'I I E}

The subscripts E,I and s denote the external and the inter-
nal shells, and the core, respectively. The pe and pi are
random loads acting on the external and the internal
shell. 1In the present formulation, the acoustic radiation
pressure is not included. The stiffness of the core is
represented by a linear viscoelastic spring, kg = kg

(1 + igs)’ where k, is spring constant and gg is the loss
factor.

The input loads are modeled either as uniformly
distributed random pressures or random point loads acting
at an arbitrary location on the shell surface as shown in
Fig. 2. 1In the vicini;y of point load application some of
the assumptions of linear, elastic thin shell theory are
violated (54]. However, outside the vicinity of the point

load shell response can be calculated with good accuracy.

A Dirac delta function is used to define the location of



the point load. The random loads p€ and pi are expressed

in terms of two point loads F?’l and Fg’l asg

e.e e e e

p¥(x,0,t) = (1/a7A5) {FJ(t) &(x-xT) &(0-67)
e e e (2.17)

+ Fo(t) 8(x-x,) 6(9-62)}

i _ i i i 1 _al

p(x,0,t) = (1/A7A5) {F(t) 8(x-x]) 6(6-8;)
(2.18)

+ F;(t) 6(x-x;) 5(6-0)}

where the superscripts e and i denote the external and the

internal loads, 8§ is the Dirac delta function and for a
e _ e _ i _ i _
1 - l' AZ - R + hs, Al - l, A - R-

The point loads are assumed to be independent and each

cylindrical shell [54] A

characterized by a spectral density.

2.2.1 Frequency Response Functions and Modal Frequencies
The equations of motion of double wall shells are
solved by modal expansion methods. To take the advantage
of orthogonality of modal functions, the equations of
motion are further simplified by neglecting from the
operators ZV8,xV6,Yv4 and V4

derivatives-of spatial variables x and 6. The various

the terms containing odd

simplifications of shell equations are discussed in Refs.
35,42,54. The general solution of Egs. (2.15) and (2.16)

is expressed in terms of the simply supported shell modes

13



wp(x,0,t) = D) AL Xoo(x,8) (2.19)
m=1 n=0
wox,008) = 13 al x5 (x,e) (2.20)
It mn’- mn ! °
m=1 n=0

where Agn and A;n are the generalized coordinates of exter-

nal and internal shells, and xgn are the shell modes. For

a simply supported shell, xin = sin (mnx/L) cos n8. The

input loads p® and pi are also expanded in terms of the
natural shell modes. Substitution of Egqs. (2.19) and
(2.20) into Egs. (2.15) and (2.16) and use of the orthog-
onality principle, give a set of coupled differential

E I

equations in Amn and Amn‘ Taking the Fourier transform of

these equations it can be shown that

=E _ B =E
Amn = Bmn {Pmn/pE (2.21)
+al (ko + (1/6)m_w?)/0_}
mn' s s E
=TI _ I (=1
Aon = Hmn{Pmn/pI (2.22)

+ Kin(ks + (1/6)msw2)/PI}

in which a bar indicates a transformed quantity. The

E

generalized random forces §mn

and ﬁin corresponding to

point loads given in Egs. (2.17) and (2.18) are

=E - - e =e.S e e
P {lemn(xl,el) + FoXD (x5,05) }/(R + hg) (2.23)

14



i,S i 41 =i,S i g1

The frequency response functions of the external and the

internal shells are

2
E _ E 2 .
Hmn = 1/{m an~ @ YE/pB + LNCE/pE + ks/pE} (2.25)
Bl = 1/{w12 - wly /o + iwc./p. + k_/p.} (2.26)
mn mn Yp/ Pt LWCr/ Py s’ P1 *
where Yg = Pg + 1/3 m_, Y; T Pp + 1/3 m and
E,12 E,I 8
’ - 14
w oo = {Z1 (mn/L)

2,2
+ (mn/L)° (zg'In /RS 1 - xf'I/RE,I)

4, E,I 4, 4 _ (E,I 2,3 E,I,.2
+ (mn/L) (z5 n /RE’I X3''n /RE,I + Y /RE'I)
2, E,I 6,6 _ JE,I_4,.5 E,I_2,.4
+ (mmn/L) (27 n /RE,I XS n /RE,I + Y3 n /RE,I)
4, E,I 4, 4 E,I 2,3
{ ) ’ - ’
+ \n/RE'I, (29 /RE,I X5'"n /RE'I

E, 2 ’
+ vert/Re 01/ (o ((mr/)? aD!

4 E,I

2 2 E,I, .2 4
+ n%(mn/L)° aq /RE,I + nag /RE,I)} (2.27)

in which the superscripts or subscripts E,I denote either

15
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the external or the internal shells and RE = R + hs'
Ry = R.

Equation (2.27) gives the natural frequencies of
uncoupled laminated shell vibrations. The coupled natural
frequencies of double wall shell motions can be obtained
from Egs. (2.21) and (2.22) by setting cg = ¢y = g4 = 0

and maximizing the solution for generalized coordinates.

This yields

c _ _ 2 _ 1/2 1/2
oo = {1 b, % (b = dac ) 1/2a} (2.28)
where
= - 2

a = Yprg (1/6 ms) (2.29)
EZ I2

bmn = (pEwmn+ ks)YI+ (prmn + ks)YE + ksms/3

(2.30)
2 2
= E I _ 2
Smn = (pEwmn + ks) (prmn + ks) ks (2.31)

Equation (2.28) gives two .characteristic values for each
set of modal indices (m,n). These roots are associated
with in-phase flexural and out-of-phase dilatational

vibration frequencies of the sandwich construction.

2.2.2 Response under Random Loads
For the analysis presented herein, it is assumed that
the input spectral densities of the uniform pressure or

point loads are specified. Thus, the response (shell



17

deflections) needs to be expressed in the form of a
spectral density. Following the procedure given in Ref. 70
it can be shown that the spectral density of normal shell

deflections wg,1 can be determined from

sw' (x,8,0) = El EO El EO wsmérs(w) an' xrs
m=Ll n=u =L 8= (2.32)
where SE’I (w) are the cross spectral densities of the
w mnrs
generalized coordinates Agél. Expanding Eg. (2.32) and

assuming that inputs are stationary and independent, it may

be shown that

E,I T s v v E,I, . E,I.* .E,I
S (x,0,w) = 7§ Yy Y 1 {e r"(e’’") s
w me1l n=0 r=1 s=0 mn rs mnrs
+a n sEE xS xS
mn - rs-mnrs mn rs {2.33)
where
E,I E,I
emn (Hmn /pE,I)/@mn (2.34)
A= (82 /o) (HY /o (k. + (1/6)m_w)/®__  (2.35)
mn mn’ "E mn’ "I s S mn )
_ 1 _ (uE I 2,2
an =1 (Hmn/PE) (Hmn/pI)(ks + (1/6)msw )T (2.36)
and Sgéis are the cross-spectal densities of the general-

ized random inputs. 1If the inputs are represented by two
independent stationary point loads acting on the external

shell, from Eq. (2.23) and Ref. 70, the cross-spectral
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density of generalized random forces is

E - e S e ,e S e .e
Smnrs {SFl(w) Xnn (X1797) Xps(%1/8))
+ S S e .e S e .e 2
Fz(w) xmn(xz,ez) er(xz,ez)}/(R + hs)
(2.37)
where Sg and Sg are the spectral densities of the point
1 2
loads F? and Fg. Similar expression can be developed for

point loads acting on the interior shell.

2.3 Double Wall Homogeneous Isotropic Shell

A special case of the general formulation presented in
Section 2.2, is a double wall homogeneous isotropic
shell. Using Egs. (2.1-2.3) and utilizing the Donnel-
Mushtari approximations for thin shells [54,55]) it may be
shown that the coupled governing equations of motion reduce

to the following form

8 2,..4 4 4- 4
DpVpWp + (Eghp/Rp)B3 wo/dx " + pVow, + VE{ks(wE-wI)
. .e .o _ 4 e
+ cpwp + (1/3)m_w, + (1/6)msz} = Vo p (x,8,t)
(2.38)
8 2, .4 4 4~ 4 ’
DIVIwI + (EIhI/RI)a wI/ax + pIVIwI + VI{kS(wI-wE)
. .. .. _ 4 i
+opwp + (1/3)m_wy + (1/6)mswE} = - V;p (x,0,t)

(2.39)



19

where PpsPq are surface densities of the homogeneous

facings and

Ry ;= (R + h)),R (2.40)
m, = e, (2.41)
D = /12(1 - v2 ) (2.42)
E,I E I E I E,I
4 _ .4, .4 2 4, 2.2 4 4, .4
vg o = o%/axt+ (a/r} etrox?ee? + (1/rg pafree? (2.43)
8 _ .8, 8 2 .8, 6..2 4 8, 4.4
Vpp = 0°/0x° + (4/RZ 13°/3x°20% + (6/Rp [)0°/0x" 00
+ (4/Rg I)ag/axzae6 + (l/Rg I)aa/ae8 (2.44)
r r

The uncoupled frequencies of the face shells are given by

4

E,1)2 _ .

(w )

mn [(mn/L) + (n /R

Dp 1/Pg,1) E,I

+ (Bg thg 1/Pg, 1 E ) (/L) )/ Hma/n) 2

2

+ (n /R )]

E,I (2.45)
2.4 Random Vibration of Double Wall Circular Plates
Consider the two circular plates shown in Fig. 1 which
are simply supported around the edges. The boundary
conditions for deflection and radial bending moment at the

edges are



_ P
wT,B(r'e) =0 at r = R (2.46)
asz B
= - _D
Mr(r’e) DT,B { 3 2
r
ow 62w
1 T,B 1 T,B P
+ v (= 1= 4+ =5 =} =0 atr =R
T,B 'r or r2 692
(2.47)
where wp g are the normal displacements of the midsurfaces
’

of the top (exterior) and bottom (interior) circular plates

respectively, and superscript P denotes the plate. The
governing equations of motion of the two plates, coupled

through a linear soft core, can be written as [52,58,59]

4 P LYY P P.-
DTV wT + cTwT + mTwT + ks(w,r - wB) + (1/3)msz
+ (1/6)m§{.38 = - pi(r,8,t) (2.48)
D V4w + cow. +m ; + kP(w - w.) + (l/3)mP;
B' "B B'B B"B s''B T s'B
P B
+ (1/6)mswT =p (r,6,t) (2.49)
where
D. . = E. _h3 _/12(1 - v2 ) (2.50a)
T,B T,8'T,B T,B .
m = h (2.50b)

t,8 _ Pr,8'T,B

m_ = p h (2.50c¢)

lav)
0 o
»n o
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2 2 2 2
e rrh L S KR 5 s
or r- 020 or r- 36

The subcripts T,B denote the top and bottom plates and
s denotes the core. The pressures pT(r,e,t) and pB(r,e,t)
are the random excitations applied to the top and bottom
plates. In obtaining Egs. (2.48) and (2.49) it was assumed
that the mass of the core follows an apportioned linear
distribution.

The solution to Egs. (2.48) and (2.49 ) can be
expressed in terms of normal modes

@

wT(r,e,t)

) (t) x g{re® (2.51)
s=0 g=1 TAsq

wg(r,8,t) (t) X (r 8) (2.52)

\
e~ 8

z gt sq’

s=0 g=

where TAsq and BAsq are the generalized coordinates of top

(exterior) and bottom (interior) circular plates, and

xiq(r,e) are the circular plate modes given by

xsq(r,e) = qu(r) cos (s8) (2.53a)
J _(AS

qu(r) = Js(ksqr) _____S_ I (k r) (2.53b)
IS(ASq)

in which Js and I4 are Bessel functions and modified Bessel
functions of the first kind respectively, and A:q is the

gth root of the frequency egquation

21



J (\) I (\)
s+1 s+1 _ 2\
SAEY) + (0 - I (2.54)

Results given in Eq. (2.54) are obtained by substituting

Egs. (2.53a) and (2.53b) into Egs. (2.46) and (2.47) and

using relationships which relate the derivatives of Bessel

functions to high order functions [60,65,69}. 1In Eq.

2
(2.54) A = kRP, k4 = EBE and consequently
)\zq = kquP (2.55)
4 _ 2
ksq - 1,BY%gq mT,B/DT,B (2.56)

Substituting Egs. (2.51) and (2.52) into Egs. (2.48)
and (2.49) and using the orthogonality principle, gives a
set of coupled differential equations in TAsq and BAsq'
Taking the Fourier transform of these equations it can be

shown that

= T = 2
() =
Psq ¥ qu(m) {BAsq(m) (kg + (1/6)m_w®)

+ Tpsq(w)/osq}/mT (2.57)

- _ .B 2
BAsq(w) = qu(w) {TAsq(w) (kg + (1/6)msw )

+ BPsq(w)/qu}/mB (2.58)

22



where

T,B _ 2 _ 2 :
Heg (@) = Uy gugy = v p/Mp g + lwey g/mp g + ko/mp ol
(2.59)
Yo o= m,  + (1/3)mb (2.60)
T,B T,B S
- - RP 27 -T.B P
- 14
T,BPsq(w) = + [0 fo P (r,o,w) qu(r,e)rdrde (2.61)
RP o o , "qu if s+ 0 (2.62a)
Qg = [ J {xs (r,8)}“rdrde = {
q 0 0 a 270y, if 5 =0 (2.62b)
P,2 2
- (R) '2,.s __s" 2,.8
Qq = —3 {ag (Agg) *+ (1 ) Js(ksq)}
(As )
q
P2 J_(A%)
(R™) s ' sg s S S s
) I s {Is(ksq)Js+l(ksq) * Js(xsq)Is+l(Asq)}
A s(A” )
sq sq
2,.s
P, 2 J (A_ ) 2
(R)" “s "sq’ S 2,,s , _ ;'2,.s
* 2 Iz(xs ) {(1+ (Ks )Z)Is(Asq) Is (Asq)}
s sqd =4 (2.63)
2 _ .4
T,8Ysq ~ ksq DT,B/mT,B (2.64)

Furthermore, a ( )' indicates differentiation with respect
to the spatial variable r and a bar indicates transformed

quantity. The coupled natural frequencies can be obtained

23



from Eqs. (2.28) =-(2.31) where the superscripts E,I have to
be replaced by T,B.

The excitations applied to the top and/or bottom
circular plates are assumed to be uniform random pressure
or random point loads as shown in Fig. 2 for which the
spectral densities are specified. 1In the case of uniform

pressure input the generalized random forces reduce to

2«p0q5T'B(m) s =0 (2.65a)
P_ (w) = {
where
P J~ (A3 )
R ] 0" 0qg s
m P {J (A2 ) = ———=— I, (A )} (2.66)
0g koq 1" 0g IO(KSq) 1" "0g

and ET’B(m) is the Fourier transform for spatially uniform
pressure input pT’B(r,e,t).

The random loads acting on the top and bottom plates

are expressed in terms of two point loads Ff’B and Fg’B as

p’(r,8,t) = (1/A]A7){F](t) 6(8-8]) &(r-r])
(2.67)

T T T
+ Fo(t) 6(8-8,) &(r-r,)}
B B,B,[.B B

P (r,0,8) = (1/A5A0) {F2(t) s(0-6}) 6(r-r])

(2.68)

B B B
+ F,o(t) 8(8-6)) 6(r—r2)}

24



where T,B denote the external and internal loads, & is the
B,T

Dirac delta function and for a circular plate [54] Al =1,
A?’T = r. The generalized random forces corresponding to

point loads given in Egs. (2.67) and (2.68) are

Ttw) xZ (r],0]) + Fo(w) XxE (r3,03))  (2.69)

TPsq {Fl( sg 1'9

€
]

BP (w)

sq {F (w) x (rl,e ) + F (w) x (r2,6 ) } (2.70)

Following the procedures of Ref. 70 and assuming the
point loads are stationary and independent, the spectral
densities of normal plate deflections Wwp,Wg can be

determined from

-] K @©

(rew)=2 ) ) | <] (
s=0 g=1 j=0 k=1 '+B'S9

T B *

T,Bssqjk

*

P P ,x =~
+ PAsq(PAjk)B,TSsqjk} xsq'xjk/quij
(2.71)
where
T,8%q(w) = {Hgéa(m>/mT,B}y¢§q(m) (2.72)
_ B 2
pAsq(w) = Tesq(w) {qu(w)/mB}(ks + (1/6)m_w®) (2.73)
(w) =1 - {H] (m)a g (kg + (1/6)m ©%) %} /m
P sq S TmB

(2.74)
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The asterisks in Eq. (2.71) denote complex conjugates and
B,Tssqjk are the cross-spectral densities of the
generalized random forces.

For two stationary independent point loads acting on
the external plate it may be shown that the cross-spectral

density of the generalized forces (w) may be

Tssqjk

determined from

T

Fy

_ P T ,T P T ,T

Tssqjk(w)

(2.75)
T P, T ,T P, T ,T
SFz(m) xsq(rz,e2 ) xjk(rz,ez)}

where sg and Sg are the spectral densities of the point

1 2

and FT. Similar expressions can be developed for

T
loads Fl 2

point loads acting on the interior plate.
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3. INTERIOR ACOUSTIC PRESSURE
3.1 Frequency Domain Solution

Consider a closed cylindrical enclosure with volume
v = nRzL shown in Fig. 1. It is assumed that the walls of
the multilayered shell and the circular end plates are
flexible. However, the motions of the shell and the end
plates are taken to be independent. Thus the acoustic

pressure inside the enclosure can be obtained from

P=0p +P, (3.1)

where py and p, are the acoustic pressures due to the inner
shell and inner plate motions. The pressure p inside the
enclosure satisfies the wave equation in cylindrical polar

coordinates

v2

p - Bp = 6/02 (3.2)
in which 8 and c, are the acoustic damping and speed of
sound in the cavity, a dot indicates time derivative,
and

v2= 32/ar2 + (1/r)d/or + (1/r%)2a/2362 + 8°/ax2 (3.3)

The interior walls ar r = R and x = 0,L are taken to
be absorbent with a prescribed point impedance 2/w). The

boundary conditions to be satisfied are



apl/ar = - p&I(x,e,t) - (p/ZA)fD1 at r = R (3.4)
apl/ax =0 at x = 0,L (3.5)
apz/ax = p&g(r,e,t) + (p/ZL)é2 at x =0 (3.6)
apz/bx = - p;g(r,e,t) - (p/ZR)fD2 at x = L (3.7)
. apz/ar =0 - at r = R (3.8)

where p is air density, 2p+27,,2p are the absorbent wall

L R
B and wB

direction (positive outwards) of the inner shell and the

impedances, WieW are displacements in the normal
inner end plates respectively. Taking Fourier transfor-
mation of Egqs. (3.2) - (3.8) and writing the solution in
terms of the orthogonal acoustic modes corresponding to
acoustically hard walls yield

-] [--]

D ', 0, = P.. ’ s ’ .
Pl(x r w) iZO jZO lJ(r w)le(x 9) (3.9)

-]

jzo kzl ij(xlw)ij(rle) (3.10)

Ez(x,r,e,w)

where the acoustic modes for a closed cylindrical enclosure

are

_ 2 . .
xij = /Ef cos (imx/L) cos j#6 (3.11)
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Y = Jj(kjkr) cos j6 (3.12)

jk

Jj represents the Bessel function of the first kind of

order j and Ajk = ajk/R where ajk is the kth root of the

equation de/dr

0. Substituting Egs. (3.9) and (3.10)
into Eq. (3.2) and using orthogonality condition of

acoustic modes, one obtains

2 2 2 2,2 _
d Pij/dr + (l/r)dPij/dr + (ci - j%/r )Pij =0 (3.13)
2 2 2 -
a%0,, /ax® + v 05 = 0 (3.14)
in which
of = (m/co)2 - (in/L)? - iwp (3.15)
2- _ 2 _ .2 _
Y= (w/ey) M - LB (3.16)

and i = /=I. Solving Egs. (3.13) and (3.14) and imposing

the finiteness condition of the pressure 51 at r = 0 gives

- (-] - -] 2
P, (x,r,0,0) = ‘2 'z aiij(cir)Xij(x,e), for of > 0
i=0 j=0
(3.17)
D,(x,r,8,w) = {a., sin (y., x)
2 j=0 k=1 jk jk
(3.18)

+ Bjkcos (ijx)} ij(r,e)

in which a, . . . i .
i hic alJ'A]k'B]k are arbitrary constants For
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c? < 0 the Bessel function Jj needs to be replaced with

the modified Bessel function I.. For the special case when

]
o? = 0, the solution for the pressure 51 is
p.(x,r,0,w) = § ¥ c..rIx..(x,0) (3.19)
1 i=0 j=0 *3 1]

where C: ij are arbitrary constants. Using the boundary

conditions specified in Egs. (3.4) - (3.8) and expanding

the shell, wy, and the end plate, wL,wg, motions in terms

B
of the acoustic eigenfunctions given in Eq. (3.11) and

(3.12), one obtains

Sl(xrrrerw)

2 -I
= pw Y| (r,w) J YV AL bx; 5(xr0)
120 3=0 ij°ij m=1 n=o mn mnij
(3.20)
P,(xX,r,0,w)
TN 5 1)_ (2) P
= I 1 e,/ )E I [{ce! /2,) L .
j=0 k=1 Jjk s=0 q=1 jk AS B sq L™sqgjk
R p . 2 =R p
+ (1p w /ZR B sq RquJk} Sln(ijx) + {pw ij BAsq Rqujk
(3) (4) AL P .
+ (e jk + /ZL gA q LquJk}cos(ijx)]Jj(xjkr)COSJe

(3.21)

where



1/4 i=0,5=0
eij = 1/2 i+#0,j=0;1i=0,3#0 (3.22)
1 i#0,j#0
-
eI/ 3R+ twp RJ/ZA} o =0
G..(r,w) =
i) 1 . 2
Jj(cir)/{oiJj(ciR) + iprj(ciR)/zA} of > 0
(3.23)
L 27 s
mnij = jo fo Xon(%:8) Xij(x,e) dxdé (3.24)
R 2= 5 5
€5k = 1/{f0 fo ri(kjkr) cos“j6 drde
2 -2 .2 - 2y
2kjk/{ﬂ(ajk- i) [Jj(ajk)] } 320
2 - 2 . (3.25)
1/ {nR [(Tolag, )] } 3= 0
Ajk = meyjkcos (ijL) (l/ZL + l/ZR)
o 2 2 2 (3.26)
sin (ijL) (ij + pTwT/2,2p)
(1) _ 2 .
ejk = pw ij sin (yjkL) (3.27a)
(2) _ 23 )
ejk = p“w” cos (ijL) (3.27b)
(3) _ 2
ejk = pw ij cos (yjkL) (3.27¢)
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(4) _ 2.3 _. 7d
ejk = P W’ sin (ijL) (3.274)
P RP 2=n P
= . e 3028
L, R sqik fo fo £ r%sq YJk(r,e) drd ( )
. . P .
More explicit expressions for Lmnij and L,Rqujk are given

in Appendix III. The modes of shell and circular end plate

vibrations are taken to be

X;n(x,e) = sin (mrnx/L) cos n® (3.29)
P
Llesq(r'e)
_ L,R_, _ s L,R s
= {Js(kSq r) - I rreq) IsKsq r)/Is(L'Rksq)} cos (s9)
(3.30)
L,R _ ] P . : s .
where ksq L,Rksq/R in which L,Rxsq is the gth root of

the characteristic equation of circular plate vibrations
and the superscripts L and R denote the end plates at x = 0
and x = L. The generalized deflections responses
A;n'Bqu’Bqu of the shell and the end plates, respec-
tively, are given in Section 2.

The acoustic resonant frequencies for the cylindrical

closed enclosure can be calculated from

JJ'.(cir) =0 at r = R (3.31)
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where B = 0 is used in Eq. (3.15). For each combination of
i,j modal indices there are k zeros of Eq. (3.31). This

condition then gives all the modal frequencies w, of the

ijk
closed cylindrical enclosure shown in Fig. 1.

The total acoustic pressure inside the shell enclosure
can be calculated from Egs. (3.1), (3.20) and (3.21).
Assuming the input loads are stationary random processes,
the spectral density of the acoustic pressure p can be

obtained by taking the Fourier transform and then the

mathematical expectation of Eq. (3.1). The result is

Sp(x,r,e,w)'= Spl(x,r,e,w) + Zsplpz(x,r,e,w)
+ S (x,r,6,w) (3.32)
P2
where S_ ,S and S are the spectral densities and the
1 P2 PP

cross-spectral densities of the acoustic pressures p; and
Py respectively. If the responses of the shell and plates
are taken to be independent, the cross-spectral densities

S = 0. The spectral densities S and S_ , are
PPy 1 2

calculated from Egs. (3.20) and (3.21) in terms of the

generalized coordinates of the shell, A;n, and the end

L R
sq’BAsq'

functions of the prescribed random inputs acting on the

plates, BA These generalized coordinates are

shell and/or the plate surfaces. Then, the sound pressure

levels in the enclosure can be calculated from
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where Aw is the selected frequency bandwidth and p, is the

reference pressure (py = 2.9 X 10”° psi).
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3.2 Time Domain Solution
3.2.1 Introduction

In Section 3.2, a frequency domain solution for the
perturbation pressure was developed in terms of the
system's flexible wall motions for the structural-acoustic
problem. Due to the linearity of the structural model, the
I L R

mn'BA A were obtained in

generalized coordinates A sq’'B"'sq

closed form. However, when structural and/or material
nonlinearities are present, the frequency domain approach
is no longer feasible. Structural response solutions have
to be determined in time domain using numerical proce-
dures. 1In such a case, it may be advantageous to develop a
solution for the acoustic perturbation pressure in time
domain. The time domain solutions for the sound pressure
in the enclosure due to the double wall shell and end plate
motions are presented separately. Then, the total pertur-
bation pressure inside the acoustic cavity is obtained by
the superposition of the individual contributions.

Validity of the latter statement stems from the assumption

of an independently vibrating shell and end plate systems.
3.2.2 Acoustic Pressure due to Vibrating Shell

The perturbation pressure, Py due to the shell system

motions, satisfies the linear acoustic wave, Eq. (3.2)

2. e 2
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On the rigid boundaries of the acoustic region, i.e., at
the end plates, it is assumed that there exists no acoustic

energy dissipation and therefore

3p,/3x = 0 at x = 0,L (3.35)

Furthermore, by taking into account the effect of acoustic
absorption at the flexible surface of the shell system and
assuming that at the interface the fluid velocity and the
wall motions are equal, p; must also satisfy the following

boundary condition

apl/ar = = pw; - (p/ZA)p1 at r R (3.36)
Equation (3.36) demonstrates that the boundary condition
for pressure p; 1is nonhomogeneous at r = R. Solution of
this boundary value problem can be obtained by employing a
linear transformation which renders the boundary conditions

homogeneous {72]. Hence,
Py (X,T,8,t) = q(x,7,0,£) + G (r)pw (x,8,t) (3.37)

where Gl(r) is a function chosen to modify the given
boundary conditions. Therefore a boundary value problem of
an inhomogeneous differential eguation in g3 is estab-
lished,.which can be solved using the resulting homogeneous

boundary conditions.
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Substituting Eq. (3.37) into Egs. (3.34-3.36) yields

vqu - 83, + &il/cg = pf, (x,r,0,t) (3.38)
aql/ax =0 at x = 0,L (3.39)
aql/ar = - (p/ZA)&1 at r = R (3.40)

where the function Gl (r) has been chosen to have the
following form

3 2
G.(r) = L - 35~ , 2t (3.41)
1 3 T 2

R
The linear transformation introduced by Eg. (3.37) requires
for the function Gl(r) to be defined at the boundaries.
Furthermore, Gl(r) is subject only to the conditions of
continuity and differentiability within the domain and may
be chosen arbitrarily [71}. The forcing function

fl(x,r,e,t) is given by

- 2 a2
{""I oo i L, ‘”I}
f.(x,r,6,t) = G,(r) (== + BW_ = - (=
1 1 c2 I axz r2 ae2
o
2
d G1 1 dGl
- wI{ 7 Y rar }
dr (3.42)

Equations (3.38-3.40) constitute the new boundary value

problem. In obtaining the boundary condition given by
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Eq. (3.39) at the end caps x = 0,L, it was assumed that the
shell motions w; do not extend to these boundaries. Thus,
the flexible shell is located in the region € < x < L-eo,
where €5 could be a small positive number but €% # 0.
The acoustic hard wall modes ?ijk satisfy the equations
V2%

2 3 _
ijk + (wijk/co) Yijk =0 (3.43)

in the enclosure, and

]

ayijk/ar =0 at r R (3.44)

where

Yijk = cos (inx/L) cos j6 Jj(kjkr) (3.45)

wijk are the corresponding modal frequencies given by

2 = ¢ {x?

: 2
i3k = S A5yt (in/L)“} (3.46)

The effect of acoustic absorption in Eg. (3.40) can be
transferred into the governing differential eugation by

making use of Green's theorem [12], which states the

following
Y. . 9qg
23 -3 2 - ijk _ % 1
[v (@) 97¥; 56~ Yi5k7 9100V = fs‘ql Y3 Yijk 3¢ '9S

(3.47)



where V and S indicate volume and surface integrals,
respectively. Substituting Egs. (3.38), (3.40), (3.43) and

(3.44) into Eg. (3.47) it can be shown that

. . ,
1953k (8) + 28550055 1955 (8 + Wiy Q45K (F)

2 = 2 3 > _
*ecy 1Figk(8) * (pcy/2)) 3¢ fA 9) Yj59a =0
(3.48)
where

195k (8) = fv 9y ¥y, dV (3.49)

1Fijk = fv £y Y49V (3.50)

C... = Bc/2u (3.51)

ijk o ““ijk .

and A indicates that the integration is taken over the
interior absorbing surface [12]. Upon expanding gy in
terms of acoustic modes, utilizing the orthogonality

principle and using Eq. (3.49), gives

w .-} «©
q,(x,r,8,t) = izo jgo k§1 €53k 19315k (8) Figp(xer,8)
(3.52)
where
. (L/2)ejk i#0
€55k * (3.53)
Le i=20



and Ejk is given by Eg. (3.25). Substitution of Eg. (3.52)

into Eg. (3.48) results in

2 2
loljk(t) * chjk ijk loljk(t)+ lek 1Q1]k( )+ PCo 1 ljk(t)
t =0
+ mRL(pc /z JJ (a..) | Z 13973 Jq)1 qu( ) }
(3.54)

where

2 i=20,j-=

gij = 1 i=0,3+#0;1i=+0,j=0

1/2 i#0,5 ¢

The modal forcing functions lFijk can be obtained from Egs.

(3.42), (3.50) and the modal solutions of the shell system

motion wp are presented in Section 2. Hence

1Fijk(t)
B ..{R3[¢j(5,k) - 305(4,k) + 20,(3,k)]

m=0 n=1 "1

(al se2 + 2¢ v2se

1Jk 1Jk mn

T+ {(53)2R3[¢ (5,k) - 3¢j(4,k) + 2¢j(3,k)]

+ n2R[¢j(3,k) - 30,(2,K) + 20,(1,K)]

- I
+ [16¢j(2,k) 27¢j (1,k) + 8¢j(0,k)]}Amn} (3.55)
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where Bp,;; is given by
0 n#j
%_{1_(_1)m} m#0,i=0n=33#0
Z (1~ 1™ m#0,4=0n=73=0
m+1 m-i
AT e o
B ..=
mni j
m+i m-i
L™ 0 e
0 m=1i,i #0,n=73¢20
L (3.56)

and ¢j(p,k) is defined as

¢J(Plk) =

-
Su‘lrj-l(ajk

v - _= u+l) R b~ -
[or Jj(ajkr)dr-ajk ((j+p 1)aijj(ajk)+ )

_ - r(l/2 + 1/2p + 1/23)
“5k75-10508y, 5 ¢

T(1/2 + 1/23 - 1/2u)
(3.57)

- B
ajk) + 2

In Eq. (3.57) r‘,Su 3 represent Gamma and Lommel functions,
[

respectively [73]. Aén are the generalized coordinates

corresponding to the inner shell motions of the double wall

system described in Section 2. Finally, combining Egs.
(3.32) and (3.52), the solution for the perturbation

pressure inside the enclosure due to the inner shell
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motions is given by

pl(xlrrert)
= .z ‘z 2 Eijk 1Qijk(t)?ijk(x’r'e) + Gl(r)p;I(xlelt)

where the solutions to lQ. are determined from Eqg. (3.54).

ijk

3.2.3 Acoustic Pressure due to Vibrating End Plates
The perturbation pressure, p,, due to the end plates

motion, satisfies the linear acoustic wave eguation

2 <t a2
V“p, - BpP, = py/cg (3.59)

and the boundary condtions

3p,/dx = p&§ + (p/2,)D, at x =0 (3.60)
3p,/0% = - p&§ - (p/2)B, at x =L (3.61)
6p2/ar =0 at r = R (3.62)

Equations (3.60) and (3.61) show that the boundary condi-
tions for p, are nonhomogeneous at x = 0,L. Therefore,
proceeding as in Section 3.2.2 we introduce a solution for

p; of the following form

- C-L .'R
Pz(xrrrert) = qz(x,r,e,t) - GL(x)pr + GR(X)PWB (3.63)
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where G;, and Gy are functions chosen to modify the given
boundary conditions. Substituting Eg. (3.63) into Egs.

(3.59-3.62) yields

quz - Béz - az/cg = pfz(x,r,e,t) (3.64)
3q,/0x = (p/zL)é2 at x = 0 (3.65)
aqz/ax = (p/ZR)é2 at x = L (3.66)
aqz/ar = 0 at r = R (3.67)

where the modifying functions GL(x) and GR(x) are chosen as

2x2 x3

GL(x) =5 - 23 - X (3.68)
2 3
=X _ X_

GR(x) T L2 (3.69)

where GL(x) and GR(x) must satisfy the requirements of
continuity and differentiability as discussed in Section

3.2.2. The forcing function fz(x,r,e,t) is

2 L s L L, 2
£,(x,r,0,t) = GL(x){szB - Bwg - wB/co}
2 R *R

ooR 2
= Gi(x) {vst - Bwg - wB/co}

+ d%/ax? (WEG, (x) = wiG,(x)] (3.70)
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and V¢ is the two-dimensional Laplacian operator in polar
coordinates. Equations (3.64-3.67) constitute the new
boundary value problem. In obtaining the boundary condi-
tion given by Eg. (3.61) it was assumed that the flexible
end plate motions at x = 0,L do not éxtend at this
boundary. Thus, the flexible end plates are located in the
region defined by r < RP - g where €6 is a small positive
number but € # 0.

Using the property of the acoustic hard wall modes

§ijk given by Eg. (3.43), and utilizing Green's theorem in

the same manner as in Section 3.2.2, it may be shown that

2
e ° 2 3
291k (B 428 5055 2945k (BI+0i 5 2055k (BI¥PCy HF 4y ()

22 1 3 1 3
+ pct — (== [ g, ¥.. dA_ - == [ q, ¥Y..
o ZR AR 2 “ijk .R ZL AL 2 "ijk

dAL}

with 2Q ' defined in Egs. (3.49)-(3.51) where

ijk, 2Fijk’
the subscript 1 is replaced with 2. Ap and A; are the

ijk

acoustic absorbing surfaces of the end plates at x = 0,L.

The function g, may be expanded in terms of the acoustic

hard wall modes resulting in

@ @ -]

(xrx,8,8) = €54 () ¥, . 9) (3.72
e iZO jZo kzl fijk 2Q13k( ) 1Jk(x'r' ) )

where Eijk is given by Eq. (3.53) Substitution of Eg.

(3.72) into Eq. (3:71) yields

44
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2 2 ..
(t)+w; (t)+pcO 2Fijk

2% k() * 285595 5 29 5k ijk 293k (t)

P P

€. ® : €. @
2(Rjk i+r ~ s _ L Jk ~ . -
+ pco{ Z (-1) ®rik Zerk 2, rZosrjk 2erk} 0

(3.73)

where

P

L,Rejk = ({3.74a)

£ = RF/R (3.74b)

The modal forcing functions 2Fijk can be obtained from
Egs. (3.70) and (3.50) and the modal sclutions of the end

plates motions given in Section 2. Therefore

Fisk(8) = T5l{x (1) = 2x(2) + % (D} | Z [ k5As

L] L L -cL 2 .
{¢jkq + < ¢jkq} {8 AJq + qu/co}
50 A5g)
J. (A% )
{¢qu - S ¢jkq}] + {xi(Z) - xi(3)} .
(A g)
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> 5 R 2 J.(Rx?q) R
. {q§1 R*jq *iq {d’jkq * I.(.A%) "’jkq}
j'R7iq
S
J. (A3 )
+R “R , 2 R R ~R
AT+ Al S - .
+ (B Ay + Aaj/elt {4, T Pixgt]
j'R7iq
S
® J.(. A% )
~ L L L ~L,
+ {4 - 6%,(1 A : - :
{4x i (1)} qzl jaq “’qu .25 ) q’qu}
j'L7iq
N e & R I (A3) n
- {ax; - 6,1} T A% {ef, - 29T 1 (3.75)
q=1 19 IR 1 (A% ) I¢9
3 R7iq
where
Lz/(n+1) i 0, n=1,2,..
xi(n) =
12
Znsny 1Fy(nrlint2idng)
+ 1Fl(n+17n+2;-ini)] i+0,n=1,2,...
= (3.76a)
() = x;(n)/L? (3.76b)
n, = in/L (3.77)
27 3 =0

(3.78)

L]
[}



0 i 20
K. = (3.79)
! 1 i=0
RP
L,R L,R
= (k> (\.. r)rd
¢qu IO JJ(kSq r) JJ( Jkr)r r
= (R )Z{L R"Jq J( 1k§) JJ(L R Jq) aJkF’ JJ(L R Jq)J (a Jké)
(7.,8)% - (. A5 )2
jk L,R"jq
(3.80)
~L,R RP
Yikg = IO (ke Rr) 35(Agr)rdr
RS RquJJ(aJkF,) IL(L R Jq) a. ks_, (. R lq)JJ(a &) }
(@2 + (25
R"iq (3.81)

(u;v:z) represent degenerate hypergeometric functions

1 1
(731, Jj and Ij are Bessel and modified Bessel functions of
the first kind, respectively, AS are solutions of the

jg

frequency equation for circular plate vibrations described
in Section 2, and Ejk is the kth root of the equation
dJ;/dr = 0. 1In Egs. (3.80), (3.81) a ( )' indicates
differentiation with respect to the spatial variable r.
Furthermore, qu,qu are the generalized coordinates of the
inner plates motion described in Section 2.

Finally, combining Egs. (3.63) and (3.72) the solution

for the perturbation pressure inside the enclosure due to

47



48

the inner plates motion is given by

@© (-4 @®

p (X,r,e,t) = 2 X E E-- Q" (t)?--
2 i=0 j=0 k=1 ijk 2¥1jk ijk
L “R
- Gp(x)pwy + Gp(x)pwy (3.82)

where are determined from Eg. (3.73).

291 5
Due to the assumption of independently vibrating shell
and end plate systems, the complete solution for the
acoustic pressure inside the acoustic cavity can be

obtained by combining Eg. (3.58) and (3.82). Hence

p(x,r,8,t)
= igo jzo kzl eijk{loijk(t) + 2Qijk(t)}yijk(x,.r,e)

+ Gl(r)p&I(x,e,t) - GL(x)pQE(r,e,t) + Gr(x)p&g(r,e,t)

(3.83)
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4., NUMERICAL RESULTS
4.1 General

Numerical results presented herein correspond to the
double wall sandwich shell and circular plate systems shown
in Fig. 1. The following set of parameters are selected
for the study: The dimensions of the double wall shell are
L = 25 ft, R = 58 in, hg = 2 in. The shell response is
computed at x = L/2 and 6 = 45°, The thicknesses of the
external and internal shells are hg = 0.032 in. and hy =
0.1 in. The stiffness and material density of the core are
kg = 4.17 1bg/in3 and pg = 3.4 x 107% 1bg-sec?/int. The
outer shell consists of three laminae while the inner shell
is composed of ten laminae. Fiberglass and graphite fibers
are used to reinforce the plexiglass material. The ratio
of fibers volume to the plexiglass volume is 0.2. The

fiber orientation is prescribed by angle a as shown in Fig.

l. The elastic moduli, Poisson's ratios and material

densities are Eg = 7.75 x 10% psi, ve = 0.33, pg = 0.0002
lbg-sec?/in?, B4 = 10.5 x 107 psi, vy = 0.33, py = 0.00015
lbg-sec?/in?, Ep = 2.35 x 105 psi, vp = 0.35, p, = 0.00011 )

1bf—sec2/in4 where the subscripts f£,p,g denote fiberglass,
graphite and plexiglass, respectively. The fiber rein-
forcement--same pattern is used for internal and external
shell--is arranged as follows: 1st layer fiberglass, 2nd
layer graphite, 3rd layer fiberglass, and so on. For the
aluminum shell, E., = 10.5 x 106 psi, v, = 0.30, Py =

a a
0.000259 lbf-secz/in4.
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The viscous damping coefficient cp and c¢; are

expressed in terms of modal damping ratios an and

I
mn

g

corresponding to the external and internal shells.,
Damping in the soft core is introducted through the loss
factor dg for which values ranging from 0.02 to 0.1 are
selected.
The input random pressures, pe,pi, and the point loads
e i

FS,rl
b

truncated Gaussian white noise spectral densities

(j = 1,2) are assumed to be characterized by

8.41 x 10°°  (psi)/Hz 0 < £ < 1000 Hz

Spe'pi ) -
0 otherwise (4.1)

B 2
0.84 lbf/Hz 0 < £ < 1000 Hz
e,i -

SFl'Fz .

0 otherwise (4.2)

The spectral densities given in Eq. (4.1) correspond to a
130 dB sound level. Numerical computations were performed
using the same value of spectral density for the external
and the internal loads. The frequency bandwidth was
selected to be Aw = 2n rad/sec with the upper ?requency
cutoff 6280 rad/sec for the aluminum shell and 8164 rad/sec

for the composite shell. The random point loads were

e _ e _ i_ i _
located at X) = x5 = 12.5 f¢t, X] = X, = 12.5 f¢t,
e _ _ ° e _ ° i _ ° i °
el = 90°, 62 90°, 91 90°, 62 90°.



The dimensions of the double wall circular plates

P = 58 in, hY = n_.
S

located at x = 0,L are taken to be R s

The thicknesses of the inner and outer plates are hy = hg
0.25 in. The stiffness and material density of the core
are the same as in the shell system, i.e., kg = 4.17
1be/in3 and pg = 3.4 x 1078 1bg-sec?/in?. Both end plate
systems are composed of aluminum, with elastic moduli Ep =
T = Vg = 0.3 and

= 0.000259 lb.-sec?/in®.  The

Eg = 10.5 x 106 psi, Poisson's ratios v

material densities Pp = Pg

viscous damping coefficients Sr and cg are expressed in

terms of modal damping ratios Czq and Czq corresponding to
the outer (top) and inner (bottom) plates, respectively.
The loss factor accounting for damping in the soft core of

the double wall plate systems is taken to be gg = 0.02.

The input random pressures pT,pB, and the point loads

T B
)
"3
cated Gaussian white noise spectral densities

F j = 1,2) are assumed to be characterized by trun-

[5.41 x 1077 (psi)2 Hz 0 < £ < 1000 Hz
SpT 0B =
r .
0 otherwise (4.3)
-
0.84 lbg/Hz "0 < £ < 1000 Hz
JIB
F) /Fy
0 otherwise
B (4.4)

The spectral densities given in Eq. (4.3) correspond to a

51



110 dB sound level. The noise levels and the magnitudes of
input point loads characterized by spectral densities given
in Egqs. (4.1-4.4) were selected in such a way that the
resulting maximum shell or plate response is linear and
equal to about one half value of the outer shell or outer
plate thicknesses.

Numerical results are presented for noise transmitted
and noise generated by vibrations of the cylindrical shell
and circular plate systems. However, the vibrations and
noise tfansmission of the shell and circular plates are
assumed to be independent. Then, the total transmitted
noise into the enclosure due to shell and end caps
(circular plates) can be obtained by superposition of the
individual contributions.

The speed .of sound, ¢ in the enclosure, the air

ol
dénsity p and flow resistivity of porous acoustic material
lining, Ry, of the interior surfaces, are taken to be c, =

13540 in/secs P = 1.147 x 1077 1bg-sec?/in?, Ry = 3.74 x

10-3 lbf-sec/in4. The sound pressure levels are computed
at x = L/2, r = 28 in and 6 = 45°, To save computation
time, only one location inside the shell was selected for
sound pressure calculations. The acoustic impedance of
porous materials was calculated from ([71]

0.754

2y = 2p = I = - pcy {(1 + 0.0571 (27R;/ pw) )

+ i(0.087 (Zan/pw)0°732)}

The equivalent acoustic damping parameter B8 due to viscous
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air damping and wall absorption was obtained from
_ aax, 2
B = ZCOw /co (4.6)

where wl is the lowest acoustic modal frequency in the
enclosure. In using Eq. (4.6), the acoustic modal damping

ratios are taken as (.

_ .a, R .
ijk = Co(w /wijk) with w,

ijk
representing the modal frequencies and CZ the damping
coefficient corresponding to the first lowest acoustic
modal frequency in the cylindrical enclosure.

Numerical results are obtained for aluminum and fiber
reinforced laminated double wall shells and aluminum double
wall circular plates. The frequency range considered is

0-1300 Hz. The results are presented for uniform random

pressure and for random point load inputs.

4.1.1 Deflection Response of the Double Wall Shell

The introduction of soft core in the system's formula-
tion allows for in phase (flexural) and out of phase
(dilatatioﬁal) motions of the double wall shell. The modal
frequencies of double wall aluminum and double wall compos-
ite shells are presented in Figs. 3-5. The fiber rein-
forcement pattern fiberglass/graphite is repeated for the
interior and the exterior shells. The fiber orientation
for the three laminae of the exterior shell are a = -
45°,45°,-45° (Fig. 4) and a« = 90°,0°,90° (Fig. S5). The

fiber orientation for the ten laminae of the interior shell
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is arranged in an alternating order with a« = - 45°,45°,
-45°,45°, etc., (Fig. 4) and « = 90°,0°,90°,0°, etc., (Fig.
5). The results are presented for half axial wavelengths
m=1,2,...10 and for circumferential waves n = 0,1,...20.
Results plotted in Figs. 3-5 indicate that for the large
shell dimensions and the ratio radius/length = 0.,1933
chosen in this study, the modal frequencies at n = 0 seem
to converge to a single point for all values of m =
1,2,...10. A comparison of modal frequencies of aluminum
and composite shells shows that depending on fiber rein-
forcement orientation, significantly higher modal frequen-
cies can be obtained for a composite shell. However, the
mass of the composite shell is about 50% less than that of
the aluminum shell while all the other geometric parameters
remain the same. For an orthogonal orientation of fiber
reinforcement, the stiffness of the composite shell is
reduced. Furtheremore, a direct comparison of the results
given in Fig. 4 to those in Fig. 5 indicate a different
modal behavior in the latter case. For the results that
follow, the fiber orientation, except when stated, of the
composite shell will be the same as that given for Fig. 4.
The deflection response spectral densities for the
external and internal shells due to uniform random pressure
acting on the external shell are given in Fig. 6. The
abscissa is a logarithmic scale, called response level

({RL), in units of decibels (dB)
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rReErT(x,0,0) = 10 log [ss'l(x,e,wmw/wge (4.7)

£)

where the reference deflection Wref 1S taken to be Wref =

hg = 0.032 in. The modes that are excited by the random
pressure are indicated in Fig. 6 by the symbols F and D,
which refer to the flexural and dilatational, respectively,
of the double wall system. For a uniform pressure distri-
bution, only the circumferential modes for which n = 0 are
excited. As can be seen from Fig. 6, only two peaks are
observed in each case. Response levels for the internal
shell are lower at the flexural freguencies when compared
to the response levels of the external shell. However, at
the dilatational frequency the trend is reversed.
Vibration response at the dilatational frequencies is a
function of damping, stiffness and coupling effects of the
viscoelastic core. Response peaks of the composite shell
"are about 6dB lower than those of an aluminum shell.

The deflection response levels due to two random point
loads acting on the external shell are shown in Figs. 7 and
8. As can be seen from these results, a large number of
flexural and dilatational modes are excited by point
loads. Due to the large number of participating modes and
modal frequency overlaps as shown in Figs. 3-5, it is dif-
ficult to identify the response peaks corresponding to
dilatational frequencies. However, for n = 0 the flexural
and dilatational frequencies are well separated. A direct

comparison of these results indicates that at most



frequencies the response levels of the composite shells are
lower when compared to the response levels of the aluminum
shells. However, at some frequency values the opposite is
true. Similar results are presented in Fig. 9 but for the
point loads acting on the interior shell. As can be seen
from Figs. 8 and 9, response levels at the first three
peaks are about the same for both of these cases. However,
significantly different vibration levels might be observed
at other frequencies when the input point loads are moved
from external to internal shells. The location and magni-
tude of these loads are the same for both cases.

To demonstrate the effect of shell and core damping,
results are presented in Figs. 10 and 11 for constant modal

E I

damping ratios, Cmn = Cmn = Co

0.04 and g4 = 0.1. The
point loads are acting on the interior shell for both of
these cases. By increasing modal damping of the interior
and exterior shell from 0.01 to 0.04, about 12 dB of
response reduction can be gained at most modal frequen-
cies. As can be seen from Figs. 9 and 11, only about 2-4
dB of the response reduction is achieved at some peaks when
damping in the core 1s increased from 0.02 to 0.1.
However, the shells forming a double wall construction are
bonded to the core. Thus, the cumulative effect of damping
on vibration response would be similar to the combined
results given in Figs. 10 and 11.

The deflection response levels of the external and

internal shells are presented in Fig. 12 for a fiber
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orientation a = 0°,90°,0°, etc. The modal frequencies

corresponding to this case were given in Fig. 5. A direct
comparison of these results to the results given in Fig. 9
indicate that the response levels are significantly higher
at some frequencies when the fiber reinforcement orienta-

tion is orthogonal.

4.1.2 Deflection Response of the End Plates

The core separating the double wall end plate con-
struction is taken to be relatively soft in order to allow
for dilatational modes to be present. The coupled modal
fregquencies of the double wall aluminum caps for s =
0,1,2,3 (number of nodal diameters) and g = 1,2,...10
(number of nodal circles) are given in Table 1 where F,D
represent the in phase (flexural) and out of phase
(dilatational) motions of the double wall circular plates,
respectively. The first three structural mode$ for zero
number of diametrical nodes are shown in Fig. 13.

The response levels, as given by Eg. (4.7), of the
inner plate of the double wall end cap construction aré
illustrated in Fig. 14 for various thicknesses of the outer
platef These results are for a uniform random pressure
input, as given by Eq. (4.3), acting on the outer plate.
The modal damping ratios are assumed to be constant,

ng = Ciq = Co = 0.06, and the loss factor in the core gg
= 0.02. The thickness of the inner plate was taken to be

hg = 0.25 in. PFor a uniform random pressure excitation,
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only the modes with s = 0 (i.e., no nodal diameters) are
excited. As can be seen from Fig. 14, the response levels
of the inner plate are significantly higher at most values
of the lower frequency range when the thickness of the
outer plate is hp = 0.05 in. However, the trend is

reversed when the thickness of the outer plate increases to

hy 0.25 in. and hT = 0.5 in. It should be noted that for

0.05 in., the response level of the inner plates

]

b
almost reaches the nonlinear range and therefore assump-~
tions made in the formulation of the theory may be vio-
lated. At higher frequency values and hyp = 0.5 in.,
significantly lower response levels for the inner plate are
observed.

The effect on structural response due to changes in
location of point loads is presented in Figs. 15 and 16,
In this case, the thicknesses of the plates are taken to be
hp = hg = 0.25 in. The two point loads are acting on the
outer plate and characterized by the spectral densities
given in Eq. (4.4). The response levels for both the inner
and outer plates are calculated at r = 0 in. (i.e., at the
center of the plate) and 6 = 45°. 1In Fig. 15 results are

presented for the outer plate response due to two point

loads acting on rf = rg = 28 1in. 9? = - 990°, 9§= g0°
T _ T _ . T _ no T _
and ry = r2 = 10 in and 91 = D°, 62 = 180°. As

can be seen from these results, response levels are signif-

icantly higher at most modal frequencies when the point
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loads are located at rf = rg = 10 in. and GT = Q°, 92 =

180°. Furthermore, the number of participating modes in
the response calculation is increased. However, the
response level at the fundamental modal frequency (3.73 Hz)
is approximately the same for both of these cases. In Figq.
16, results are presented for the vibration response of the
inner plate. From the results shown in Fig. 15 and 16 it
can be said that at the first two modal frequencies the
response levels for both the inner and outer plates are
about the same and not strongly dependent on the location

of point load application.

4.1.3 Interior Noise Due to Shell Vibrations

The first sixty~four acoustic resonant frequencies for
the cylindrical closed enclosure were obtained by solving
Eq. (3.31) and given in Table 2. The lowest modal fre-
quency in the enclosure is 22.56 Hz which corresponds to
the first longitudinal mode (x-dimension) in the shell,

In Fig. 17, the sound pressure levels normalized to
the highest peak for reverberant (ZA + «,8 = 0) and highly
absorbent conditions (2, given in Eg. (4.5), B =1 x 1077
rad-sec/in?) are presented. In obtaininig these results,
the following data were used: uniform random pressure
corresponding to a 130 dB sound pressure level acting on
the exterior shell, both shells are made of aluminum with
densities Pp = Py = 0.000259 lbf-secz/in4, elastic moduli

Ep = Er = 10.5 x 106 psi, Poisson's ratios Vg = vVp = 0.3,
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structural modal damping coefficients an = Cmn = 0.03.

The structural loss factor in the core was taken to be gg
0.02. Up to ten structural modes are included for each of
the circumferential and the longitudinal directions.
However, for a uniformly distributed input of an axially
symmetric shell only the modes for which n = 0 are
excited. As can be seen from Fig. 17, a large number of
acoustic modes is excited for reverberant conditions. For
highly absorbent interiors, peaks are observed only at the
structural modal frequencies. The modal fregquencies
corresponding to the breathing mode of the flexural and
dilatational motions of the double wall structure are at
490 and 600 Hz. Sound pressure levels at these frequencies
are significantly higher when compared to other response
peaks.

In Fig. 18, the same shell configuration is used, but

the inputs are two point loads located on the exterior

shell surface at x] = x5 = L/2, 8] = - 90° and 67 = 90°.
The structural and acoustic damping parameters are

E _ I _ _ -8 - )

Cmn Cmn 0.01 and B =1 x 10 rad-sec/in¢. The

results of Figs. 17 and 18 indicate that many more struc-
tural modes are excited for point load inputs. Even though
the sound pressure levels in a shell with large acoustic
absorption are dominated by the flexural vibration mode,
the sound pressure levels at other structural modes excited
by point loads are relatively high. The results presented

in these figures clearly illustrate the difference between



the noise transmitted due to a uniformly distributed
acoustic pressure input and sound generated (structureborne
noise) by point loads.

The results shown in Fig. 19 are for the same shell
and identical point load excitation, but higher modal and
core damping. It is seen from Fig. 19 that for higher
damping in the shell and the core the sound pressure levels
are significantly lower at the modal response peaks.

Figure 20 depicts sound pressure levels for an alumi-
num and fiber reinforced laminated shell under exterior
point load inputs, with Cﬁn = Cén = 0.01, gg = .02 and 8 =
1. x 108 rad-sec/inz. As can be observed from these
results, the noise levels generated by a composite shell
are higher than the noise levels for an aluminum shell at
most frequencies. The mass of the composite shell is about
one half of the mass of the aluminum shell. However, the
composite shell is much stiffer than the aluminum one. For
a shell structure, a shift in modal frequency could induce
different coupling between structural and acoustic modes.
The effect of structural and acoustic damping on sound
generation is illustrated in Fig. 21. These resulcts
correspond to B = 1 x 10~8 rad-sec/inz. As can be seen
from these results, a significant amount of noise reduction
can be achieved in a composite shell by increasing struc-
tural and acoustic damping. The results shown in Fig. 21
indicate that for acoustically hard interior walls

(z, » »), the noise levels in the cylinder become

A
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relatively large.

A direct comparison of interior sound pressure levels
in the cylinder excited by exterior and interior point
loads is given in Fig. 22. The loading conditions are the
same for both cases. Since vibration coupling is provided
by the viscoelastic core, the noise generated in the
interior is a function of how the point loads are acting on
the double wall shell. The results presented in Fig. 22
correspond to point loads acting on the interior shell at

i i L/2, ei = - 90° and ei = 90°, The fiber

1= %2 1 2
orientation of the three layers (Fig. 1) at the exterior

X

shell is described in Fig. 23. The fiber orientation for
the ten layers of the interior shell are: (A) 0°,22.5°,
45°,45°,22.5°,0°,90°,90°,90°,90° (B) 90°,0°,90°,0°,90°,0°,
90°,0°,90°,0° (c) =-45°,45°,-45°,45°,-45°,45° ,-45°,45°,
-45°,45°, These results show that shell response and
interior noise are functions of fiber orientation in a
composite shell. The interior noise levels might be
tailored to meet specific needs by selecting a suitable
fiber orientation. However, interior noise is a function

of frequency and only specific frequency bands might be

affected by this procedure.

4.1.4 Interior Noise Due to End Plate Vibrations
In Fig. 24, the first three radial acoustic modes are
illustrated. These results were obtained from Eq. (3.12)

for zero number of nodal diameters (i.e., j = 0, no



variation in 6-direction) and k = 1,2,3, where k represents
number of nodal circles (r-direction).

The sound pressure levels at x = L/2, r = 23 in. and
@ = 45° due to noise transmitted through the double wall
circular end plates located at x = L, are shown in Fig. 25
for reverberant and absorbent interiors. The input is a
uniform 120 dB acoustic pressure acting on the exterior end
plate. In this case, the end plate located at x = 0 is
assumed to be rigid. The reverberant and absorbent condi-
tions are simulated by selecting ZL,ZR + », B =0, and
2p,,2, as given in Eq. (4.5) and B = 1 x 10~7 rad-sec/inz,
respectively. As can be seen from Fig. 25, a large number
of acoustic modes are excited by the vibration of the end
plates for reverberant conditions. Modal plate damping is
taken to be constant and equal to C:q = czq = 0.06. The
structural loss factor of the core gg = 0,02. The noise
transmission of the end caps is predominantly low fre-
guency. The fundamental circular plate frequency is 3.73
Hz while the lowest acoustic modal fregquency in the shell
enclosure is 22.56 Hz. From these results and the results
presented in Fig. 17 it can be seen that under uniform
random pressure input, the noise transmitted by the double
wall shell and circular end plates could be relatively
large over the selected frequency range.

The results presented in Fig. 26 illustrate the

difference between the noise tranmsmitted due to a

uniformly distributed acoustic pressure input and sound
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generated by point loads. 1In both cases, the random exci-
tations-are acting on the exterior plate of the double wall
construction located at x = L and the end plate located at
X = 0 is assumed to be rigid. The uniform input is 120 dB
acoustic pressure and the two point loads are characterized

by a truncated Gaussian white noise spectral density given

by Eg. (4.2) and are located at rf = rg = 28 in, and
e{ = - 90° eg = 90°, The absorbent conditions are

described in Eg. (4.5) and the equivalent acoustic camping
parameter is B = 1 x 10~7 rad-sec/inz. The modal damping
ratios are taken to be constant and equal to 0.06. The
loss factor of the core gg = 0.02, The sound pressure
levels are calculated at x =L/2, r = 23 in, B = 45°. From
Fig. 26 it can be seen that the uniform acoustic pressure
tends to generate more noise in the low frequency region
while the sound generated by point loads inside the

enclosure is about 10-15 dB higher in the high frequency

region.

4.1.5 Total Interior Noise

Due to the assumption of independently vibrating
double wall shell and end plate systems, the total interior
pressure can be calculated by a superpositon of the
individual contributions. In Fig. 27 results are shown of
noise generated inside the enclosure due to uniform random
pressure applied on the exterior surfaces of the double

wall shell and double wall end plates. It can be seen that
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transmitted noise is dominated by end plate vibrations for
frequencies up to 200 Hz and by shell vibrations for
frequencies above 200Hz. Then, the total interior pressure
is presented in Fig. 28. These results indicate that
neglecting noise transmitted by the end caps would
underestimate interior sound pressure levels for the low
frequency region. Similar results are presented in Figs.
29 and 30 but for random point load inputs. These loads
were applied on the exterior surfaces of the shell and end
plate systems. As can be observed from these results, low

frequency noise is dominated by end plate motions.
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5. CONCLUDING REMARKS

An analytical model has been developed to predict
vibration response and noise transmission of double wall
circular plates and double wall laminated composite shells
to random inputs. Results indicate that the shell response
is strongly dependent on damping characteristics of the
shell material and the core, location of the point load
action, and reinforcing fiber orientation of the different
laminae. 1In general, the response levels for a composite
double wall shell are lower at most frequencies than those
of an equivalent aluminum shell. The vibration response of
the end caps (circular plates) are predominantly low
frequency with the largest peak occuring at the fundamental
mode.

The interior noise is strongly dependent on damping
characteristics of the shell and the core, location of the
point load action, fiber orientation of the different
laminae and wall absorption of the interior walls. A fiber
reinforced composite double wall shell tends to generate
more noise than an equivalent aluminum shell. This is due
to the fact that the mass of the composite shell is about
one half of the mass of the aluminum shell and increase of
the modal frequencies of the stiffer composite shell could
induce different coupling of the structural-acoustic
modes. The noise transmitted by the end caps is predomi-
nantly low frequency. Thus, neglecting noise transmitted

by the end caps could underestimate interior sound pressure



levels for the low frequency region. Furthermore, by a
proper selection of structural damping, reinforcing fiber
orientation, acoustic absorption and core stiffness, a
significant amount of lower response and higher noise
attenuation can be achieved by a design consisting of
double wall laminated fiber reinforced composite shells and

a soft viscoelastic core.
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APPENDIX I - ELASTIC MODULI

Following Refs. 34,54 the elements of [C(k)] for the

kth lamina are given by

_ 4 . 2 2 . 4 _
C11 = Qllcos a + 2(le+ 2066)s1n a cos“a + szsln a (I-1)
C = (Q,,+0..,~40 )sinza cosza + 0 (sin4a+cos4a) (1-2)
12 11 =22 66 12
C = 0Q sin4a + 2(Q,.,+20 )sinza cosza + Q cos4a (I-3)
22 11 12 66 22

) o . 3 _ .3
16 = (Qll le 2066)51n @ cos~a + (le 022+2066)51n @ COs a
(1-4)

O
|

2% = (Qll-le-zoss)sin3a cos a+(Q12-022+2Q66)sin a cos3a
(I-5)

(@'
|

. 2 2 . 4 4
66 = (Qll+022-2012-2066)51n a COs a +Q66(Sln a + COoOs a)
(1-6)

where a is the angle between the fiber direction and the
cylindrical shell axis in the kth lamina and Qij (ij =

11,12,22,66) are given by [54]

E
11
Q1 1T (1-7)
11 1 v12v21
E
- 22
sz R prevenEv (1-8)



0. = —12P11
12 l-vlzvll
Q65 = G2

Furthermore, the directional moduli E11+E22,G15 and

. ' .
Polsson's ratios, v12,v21

the volume ratio of fiber and matrix material [54]

Bi1 = EgVe + EjVy

Em(l + a Vf)/Vm

m
1}

22

v12 = vav + vam

21 = V12E117B2:

@
[}

12 Gm(l + B Vf)/vm

where

a = [Ef/Em) -ll/f(Ef/Em) + 1]

B [(Gg/G,)-11/(G/G ) + 1]

(1-9)

(1-10)

can be expressed in the terms of

(I-11)

(I-12)

(1-13)

(1-14)

(I-15)

(I-16)

(1-17)

The subscripts m,f refer to matrix and fiber material,

V refers to volume fraction and E,G,v represent the modulus
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of elasticity, shear modulus and Poisson's ratio, respec-
tively. Finally, using Egs.(II-7)-(II-17) into Egs.

(II-1 )-(II-6) the elastic moduli ng) can be expressed in
terms of directional moduli Ell’EZZ’Elz’ angle a, and
volume fractions Vg,V,. It should be noted that the
subscripts 1,2 in directional moduli and Poisson's ratios
notation refer to fiber direction and should not be con-
fused with subscripts indicating position of element in

elastic moduli matrix [C(k)].



APPENDIX II

(a) Differential operators Ljj

The differential operators used in equations (2.7-2.9)

are
L a S 216 82 |, Pes a2 _ . 32
11 1152 R 500% 2 75 72
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3
1= 2 1 =~ » = 2
La3 = " 226 3x " 2 22235 - Bis
R ax
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R 717 ax238 R 26 axpe2 R3  22 443
2 2
1 2 2 4 3
L., = A, -2p, 2 __4 g5 O
33 ;7 22 R "12 ax2 Rz 26 860x
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3 P2z 72 11,3 R P16 73, 3.2
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2 5 4 > 1 > 3
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where

B B
- 12 66
Blp = Byp ¥ g * Bgg * 1
) B, .
Ryj o= Ay — (ij = 16,22,26,66)
Byy = Byy * 2Bgg
_ D,
Bij = Byy* -1 (ij = 16,17,22,26)
' - §1 .
Aij = Aij + -ﬁl (ij = 22,26,66)
017 = D12 + 2D66 (1I-2)

(b) Stiffness parameters
The coefficients Zi,xi,Yr,ar in egs. (2.11-2.14) are

as follows

2y = Dyyep * By Byt §16Yl
2, = 2Dy,@, + 4D, a, + B, B, + 3B B,
* By + Byyyy
Z3 T P11%3 * 8Dy * 2050 * BBy
+ 3BygBy + BBy + By vy + Bigv, + 3By,



Z

z

2

4

5

6

-—

=

-—
=

=

#

[

L

ZDllcx4 + 4Dlsa3 + 4017“2 + 4D26a1

*ByyBy 3By By + BigBy + By

t Bievy * Bygvy t 3Boey, * Boovy

D,,.a. + 8D, _«a

11% 16% * 2Dy5a3 *+ 8Dyga,

+ Dypay + ByyBg + 3By By + BigBy + Byghy
* Byg¥g * Bygvy * 3Byeva * Byayy

4D, a. + 401734 + 4D26a3 + 2D

1675 2272

* ByyBg + 3B By + ByBy * Byghy

* Byg¥g * Byg¥g * 3Byevy + Byovy

2017a5 + 8D26a4 + D22a3 + 381636 + 81755

* BygBy t Bygvg * 3Byevg * Byoyvy

4D, . a. + 2D22a + 81766 + 82635

265 4

+ 382576

(11-3)
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- (2B,,a5 * Byefg ¥ BogBio * P26¥s T P22710

0% * B12Py T B2eY7
28,,0,% AypBg * Bogfy T RogYg * Pa2¥7
L2083 * Brofg * Pogfs T AygYg * P27

28,0, + Bpgfyg * B,eBg * Byg¥io ¥ A2279

A,,05 *+ A6fi0 * A22710

1]
Big™ P11866

- 1
Bighyp ~ Britos T BiePss
- - L}
28,6096 12 = BpiPan T 4Petae T BeePs6
- - [}
BiaByg ~ BrePaz T BeePas

1
ASe ~ Bgeh22

’ -
By12g6 ~ P16°16

s 1 - - - -
2B,A5¢ * 3Bighes ~ P16P17 T AypBye

) (11-4)
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By =B)1a,, + 6B 1gA e + Bi7Rs6 ~ 32

T ABig
[} [} 1 -
By = 3Bighy, + Bighge + B26%66 = A
= AyeBys
] [ - - ~—
Bs = Bp,A,, + 28,64, T A12By, -~ 34,

' - -
Pe = Bogh,, - 426855
' - -
By = a8 - A16856
1 - P - -
Pg = 28 ,A, + A26P66 - f16822 = A8,
] ] - - ...2
Pg = Apya,, + 2BogAgg - B128y, - A5
' - -
Plo = A48, - PV LI
Y1 7 45,8 - 416813
Y2 T A B, + 2816816 - 3816816 - A123y,
Y3 = 3Byea,, + 2B1,46

t AgeBrs - 216815

A12B6 - 256811

16%26 - 4,5,
B,, - 3

A12Boe
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APPENDIX III

The structural-acoustic coupling terms are

L,RL sqjk =

-
0 S #j
P.2 1
n(R ) {[E. SRR [L RquJJ(akat;)JJ(L R Jq)
Jk L,R]q
- 08 I5( R Jq) J. (aJka)] +
S
+ L SR U
(.. 8% (. A5)2 1. A5 K73 LR jq
jk L,R7]q j'L,Riq
S .
J( Jkg) L,R g JJ(aJki) I, ;LR Jq)}} j#0
(I1I-1)
P2 1
2%(R°) {[E a2 (52 [L,r Mog70 %0k® JO(L Roq)
Ok L,R"0q
%kE J (L R*0q) JO(aOkF’)]
S
+ 1 5 JO(L,RXOQ) [ kg IO( o )
AS S L,R Oqg
(3, 8) >+ (L,R*oq’” To'L,rMoq’

Io(@0®) L, RoqTo o ol rogH 3= 0
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APPENDIX IV - LIST OF SYMBOLS

Aj3/Bij/Dij stiffness coefficients

AE’I shell generalized deflection

mn coordinates

T BAL’R end plates generalized

B 5S4 deflection coordinates

CgrCy shell damping coefficients

Cr,Cpg end plates damping coefficients

Cﬁg) elastic moduli defined in Appendix I

Co speed of sound

Ep,Eq Young's moduli of external and
internal shells

Ep,Eg Young's moduli of outer and inner
end plates

hg,hy thicknesses of external and
internal shells

hy distance from reference surface to
lamina surface

hs,hz thicknesses of shell and end plate
cores

hT,hB thicknesses of outer and inner end
plates

HgéI frequency response functions of
external and internal shells

Hz'B frequency response functions of outer

q and inner end plates

i /=1

Ko core stiffness

ks koll+gg)

L length of shell
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Lij differential operators given in
Appendix II
m ,mP core surface densities for shell and
S8 end plates
Mg, m surface densities of external and
E’™1 :
internal shells
Mp, T surface densities of outer and inner
T'"B
end plates
M number of laminae of internal shell
Mx,Me,ﬂxe loading moments
N number of laminae of external shell
Nx'Ne'Nxe membrane forces
P acoustic pressure
P1/Py acoustic pressures due to vibrating

shell and end plate systems

PT/P external and internal random pressures
applied on shell surface

pT,pB outer and inner random pressures
applied on end plate surfaces

§§AI shell generalized random forces

T,Bpsq end plate generalized random forces

9, 9,794 shell loading

r,o polar coordinates

Ry porous material flow resistivity

R shell radius

RP plate radius

RLE(I shell deflection response levels



SPL

WriWg

88

spectral densities of shell and
end plate point loads j=1,2

shell cross-spectral densities of
generalized random forces

end plate cross-spectral densities of
generalized random forces

spectral density of acoustic pressure
sound pressure levels

spectral densities of shell
deflections

spectral densities of end plate
deflections

shell displacements

transverse displacement of external
and internal shells

displacement of outer and inner plates
cylindrical coordinates

coordinates of shell point loads
location, j = 1,2

coefficients given in Appendix II

coefficients given in Appendix II
shell acoustic impedance
coefficients given in Appendix II
end plate acoustic impedances

angle between fiber direction and
shell axis

coefficients defined in Appendix II



w
mn, sq
w
mn,sq

Yiik

acoustic damping coefficient
critical damping ratios

a constant value of damping
coefficient

frequency

coupled modal frequency

uncoupled modal frequency

acoustic modal frequencies

superscripts and subscripts:

external shell

internal shell

external or internal shell
outer plate (top)

inner plate (bottom)

outer or inner plate

right (x=L), left (x = 0) end plates
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Figure 15, Response Levels of Outer Plate for
Different Location of Point Loads(Exterior)
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Figure 16. Response Levels of Inner Plate for
Different Location of Point Loads(Exterior)
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