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Grain boundary oxidation may accelerate fatigue crack nucleation and 

propagation. McMahon and Coffin [ I ]  studied oxide rupture as the process 

of fatigue crack nucleation in cast U d i r n e t  500. 

Antolovich e t  al.[2] have sham that, when an oxide reaches a &tical 

size a t  an applied stress level, the oxide w i l l  fracture. The oxide crack 

w i l l  serve as a fatigue crack nucleus to graw by the subsequent cyclic 

load. Coffin [3], Solaron [ 4 ] ,  and Solcmn and Coffin [S] shcswed that fatigue 

crack growth in air has a strong frequency dependence, which is absent in 

vacuum. They attributed the accelerated fatigue crack growth rate and the 

frequency &pendence i n  air to environmmtal effects. 

Remy et  al .[6] have sham that the oxidation of carbides accelerated 

fatigue crack grclwth in Mar-M509. Oshida and Liu [7]  have studied the kine- 

tics of grain boundary oxidation in a nickel-base superalloy, TAZ-8A. They 

treated the grain boundary oxide penetration as a precrack, and analyzed 

the effects of the precrack on the remaining fatigue l i fe .  Liu and -an 

[81, MScwan and Liu [ 9 ]  , Liu and O s h i d a  [ l o ]  analyzed the effects of 

grain bundaq oxidation on the accelerated fatigue crack growth. A -1 

of intermittent microruptures of the grain boundaxy oxi& was proposed 

an2 analyzed. In the law frequency region, the mdel shows that the fatigue 

crack growth rate is inversely proportional to  cyclic frequency as observed 

in  a n&er of materials. 

In this paper, the earlier studies on grain boundary oxidation kinetics 

[ 7 ] ,  the effects of grain boundary oxidation on fatigue l i f e  [ l l ] ,  and the 

mckl of intermittent microruptures of grain boundary oxide [ l o ]  w i l l  be 

reviewed and synthesized. 



11. GRAIN BOUNDARY OXIDATION KINETICS 

Figure la shows a cross-section of an unoxidized cocqpn of the cas t  

nickel-base superalloy, TAZ-8A. The microstructure etched by a mixed solution 

of HC1 and H P 2  (by 10:l w l m  ra t io )  shcws the y/yl matrix and the needle 

l ike  pmokent  Chinese-script M2 carbides, primary MC particles (white par- 

t ic les)  and C type carbide colonies (dark par t ic les) .  Only the  &$,3C6 3 3  6 
carbides wexe found along grain b o u i k i e s ,  It is noted that very f w  of 

these carbides are found i n  the thin &ace layer of the  test coupon. 

Figure lb shms the picture of a cross-section of an oxidized cylindri- 

cal  c m p n -  The surface is covered by a thin layer of &ace oxide. The 

grain boundary oxide penetrated much deeper into the s p e c h  than the thick- 

ness of the surface oxide. When the applied stress is high enough the grain 

boundary oxide m y  crack, and the cracked grain boundaxy oxide may serve as 

a nucleus to graw by the subsequent fatigue cycles. I f  the grain hundary 

oxide crack is f o e  quickly, the fatigue crack nucleation period as w e l l  

a s  the overall fatigue l i f e  w i l l  be shortened. 

O s h i d a  and Liu [ll] measured the grain boundary oxide penetration depth, 

a, as a function of the oxidation temperature T and the expsure time t. 

A t  a given oxidation tenperatme and exposure time, the grain boundary pene- 

t rat ion depth varies widely f m  one grain boundary to another, The statis- 

tical distribution of the grain boundary oxide penetration depth was  studied, 

and its effect  on the statistical scat ter  of the fatigue life w i l l  be analyzed, 

Cylindrical test coupons were oxidized in a laboratory air a t  tempera- 

tures of 600, 800, and 1 0 0 0 ~ ~  for  -sure times fmn  100 t o  1000 hours. The 

oxidized disk coupons were sectioned, and the deepest grain boundary oxide 

penetration depth, ami, of the ith sectioned surface w a s  m a w e d .  M t e r  the 

measurerent, a t h i n  layer of the coupon approximately 80 m thick was ground 

off and another ami of the new section w a s  rreasured. This pracess was repeat- 

ed twelve tirrres for each oxidized coupon to  collect  twelve data points for 

the s t a t i s t i c a l  analysis. 

Altogether twelve sets of meas-ts a t  twelve carbinations of T and t 

w e r e  collected. I t  is assunu3d that the relation between a t, and T has the mi' 



The linear regression analysis of the data  gives the e~npirical relat ion 

=m i n  an. t in seconds, the activation energy i n  Kcdl/ml, and T in OK. The 

coefficient of correlation is 0.96. The p lo t  of ln (a,i/tO. 25) versus (In) 
is shown in Figure 2. A sizeable scatter is shown in the figure. c0-g and 

Wluchowski [12] and Turnbul and Hoffman [13] have s b m  that grain bun-  

d a y  diffusion is a function of the  anqle of the mis-orientation of the t w o  

neighboring grains. Therefore it is reasonable to expect that a statistical 

scatter  of ami exists. 

Equation (2) is an empirical equation obtained by the  regression analy- 

sis. The deviation of each individual measuremnt £ran the empirical relation 

can be expressed i n  terms of the variation ai 

With the masured ami a t  t w r a t u r e  T and -sure tirre t known, n = 0.25, and 

Q = 4.26 ~cal/ml. , the value of ai can be calculated from -tion (3 1 . The 

values of a . ' ~  for  the 144 measurerrents are ranked in the i~c reas ing  order. The 
1 

probability of finding a value less than ai on a sectioned surf.ce is 

P(a.1 .= ~ ~ / ( l  + N) . Mi is the ranking nmker of ai and N is the total number 
1 7  

of the nutasuremnts. 

The probability of finding an a-value on a sectioned surface equal to 

o r  more than a is [l - P (a) . I .  The Weibull plot of In In [l/ (1 - P (a) . ) ] versus 
3 I 

a of a l l  of the 144  data points is shown in Figwe 3. 

The Weibull distribution function is 

For the data. b = 1.85 is the shape parameter o r  W e ; h u l l  d u l u s ;  aU = 0.53 x 
- 6 , the location par-ter ; and I = 4.8 x 10 , tke scale p r m t e r .  

0 

3 



The maxhnnn value of a dong the periphery of a sectioned surface can be 

considered as the maxirrnrm penetration of an exposed area of rDd of the test 

coupon. D is the coupon diameter and d is the grain size. Another sectioned 

surface a t  a distance one grain dieter away contains an entirely different  

set of grain boundaries and it is another independent sample of the total 

exposed area of the  test a w n .  

LRt P(a) be the  pmbability to find the maxirrnan value less than a on a 

un i t  surface area of a test coupon, P (a) the probability of finding a value 

less than a on a surface area S, and P (a) . the probability for a sectioned 
7 

surface. 

For an area of I T D ~ ,  

ccnrtsining (4)  and ( 7 )  , 

The value of P ( C L ) ~  can ke taken as the value of P(a )S ,  +he probability t o  

find a grain boundary penetration depth "a" on an q s e d  surface 

area S. It has been known tha t  fatigue l ives of gas turbine engine 

c ~ n e n t s  have very wide s t a t i s t i c a l  scatter. It is also known that the 

statistical scat ter  of fatigue crack propaga+don is r a t ? =  narmw. Therefore 

grain bundary  oxidation and its effect  on fatigue crack nucleation a u l d  

be one of the contributing factors to the wide variation the  fa^^^ 
lives of gas turbine engine components. 



111. GRAIN BOUNDMN OXIDATION AND IXM CYCLE FATIGUE LIFE 

In the intermediate A J  region, fatigue crack grorwth rate is related 

to A J  by a per  relation, 

Shih and Hutchinson have shown that  for  a srrall crack in a R m k q -  

Osgocd elastic-plastic solid in  general yielding [14,15] 

where n1 and n2 functions of strain hardening e n e n t  "n". For a given 

mterial ,  they are amstants. The value of n2 is usually much smller than 

the f i r s t  tern. WD is the deformation work density 

a and E are the applied stress and strain away £ran the cracked region. 

Zheng and Liu [16] have studied the crack t i p  fields for small cracks in 

plates in tension for piecewise p e r  hardening materials. a = EE for 
n u a and (o/uY) = ( E / E ~ )  for o > aye 

Y smali single edge u-acks (a/w 

= 0.1) in both stress and plane strain were studied. They found that 

Equation (10) is also appLicable to  the piecewise p e r  hardening materials. 

For cyclic loading, Equation (10) is rodified to the form 

Crack t i p  stresses and strains w i l l  cause a crack to  grm, only when 

the crack t i p  is o m .  Take t ? e  s b p l e  assuirption that under a w l e t e l y  

reversed cyclic axial loa&c;, a crack t i p  is o w  hben *e a q l i e d  s + ~ e s s  

becanes tensile during the loading half of the cycle (see Figure 4 ) .  



Theref ore 

o and E are the applied stress and strain. For a piecewise p e r  hardening 

material, AW is the cross-hatched area in Figure 4 ,  which can be a p p m ~ t e d  D 
by 

Substituting (12) into (9)  and integrating, 

?he remaining fatigue l i f e  a f te r  a crack reaches the s ize  a is (Nf - N ) . a 
0 0 f 

is m r e  or  less a constant. Therefore the fatigue l i f e  w i t h  a precrack, N , 
is a function of the precrack size,  ao. f"o 

The gmin boundary oxide crack can be considered. a precrack. I f  th, r e  

lati02 (16) is deterministic, t5e probability t o  have a fatigue l i f e  of N 
f a  

is also the probability t o  have an oxide crack s ize  E on a s p e c k  sarfac8. 
0 

I f  the oxidation process is fst, the fatigue l i f e  m ~ l Z  5e rec iud  consider- 

ably. It  is w e l l  known tha t  the fatigue l i f e  of an engine coi iner l t  has a 

wide sta+dsticzl scatter. Perna~s grain Sounciary oxi&-don and ~~ bo.s\.dxry 

oxide craclcing contrikute to  a siqnificant part of t ? e  setter. 

The reciuction in fatLcpe l i f e  is c a ~ e d  by shorten& " a a c k  nucleation" 

prid.  The accelerateci .fatigue crack grOWC& due t o  oxidation w i l l  5e &iscussed 

in the next sectdon. 



IV. GRAIN BOUNDARY OXIDATION AND FATIGUE CRACK PIiDPAGATION 

Fatigue crack growth a t  elevated taperatures is sensitive to cyclic 

frequency. Figure 5 shms the frequency effect  on fatigue crack growth rate 

a t  a mnstant AK level and a t  a constant m r a t u r e  T. The cyclic wsve 

shaps of these tests are also shown. Several of +& tests had hold tin-e 

a t  K-. The others had sawtooth wave £ o m .  The crack gmwth rates of 

Inconel 718, Astroloy, and Waspaloy, i n  the low frequency region, are in- 

versely proportional to cyclic frequency, v,  and are linearly p r o ~ r t i o n a l  

to the tirre duration a t  the K-. The tim rate of fatigue crack gruwtt., 

da/dt = a (da/dN) ( l / v )  is a constant. a is a constant, its value &pn& on 

the wave shape of the fatigue cycle. In  the l o w  frequency region, fatigue 

crack growth is intergranular. 

For a sus ta in4  load test ,  i . .e ,  constant-K test ,  da/dt is a n s c a t  

and crack growth is intergramla-. Crack ur&r a sustzineci co~s'ant- 

K tes t  i s  c m n l y  known z s  Cree? crack m. ?"ne fatigue cra& growths 

in  the lw frequency region have these two growth characteristics. Thus khe 

faciqce crack gmkkl in the 1w fre~rumcy region i s  often referred t~ as C Z ~ D  - 
crack m, - even thougn fatigue crack g x m i  r&es a t  elevated '-a?.xes 

in  vacuum an6 in &Y are quite different, a d  the Eifference C E ~ D ~  be ex- 

plzined i n  te-rms of creep b g e .  

- n? The qain bounikry oxi5e =.ne=a+tion or inZ-8' 15s 9ivei-1 b2- -Son (1) . 
P e - ~ n ~ s ,  +he oxi& =ietza-2on ciesth z t  a crack ti? cz?  5e h ~ i t ~ ~ i  i: the 

fom 

w k r e  9 is the q z i n  b ~ ~ C i ; _ 7 7  c-3-f fusion e f  ficiexz and in is m- e~iriczl 
$3 

mns-ait . 5 a d d  ke a 5xx+2~n of 3 e  ---- L-~ll. - +A? 5ieX m5 &. -7s c:.z79~? an- 

centrxion ii +5e abienz. 

Anmlovi&rl h x  fm-rld <?at, a t  cz?. mslied stress, +Ae 3 ~ i 5 2  Ir: a %-cot5 

s p c h - r l  w i l l  r q t ~ y e ,  -den it zeaches 2 cr i t ica l  size [ 2 ]  . T5s cri t iczl  

crzck ti;> oxide size a t  -v?=e m a t  he related t c  X. 



These tests had a hold time a t  K-. A t  K-' the crack t i p  oxide w i l l  

rupture when the oxide reaches a c r i t i d  size, 6a ,  and the crack w i l l  

g m  by the same amurat .  Once the crack t i p  grcws to its new position, this 

pmaess of garaira diffusion, grain bundary oxidation, grain boundary 

oxide mq?twhg, and the heremmtdl crack w i l l  repeat again. This 

p r e s s  ean be repeated t h s  during the hold tirre a t  K-. 

A t  a given K - l e v e l ,  the t h ~  incremznt, 6 t i ,  necessary for the oxide t o  

zeach the c r i t i ca l  size 6ai are related directly to ai by a relation such as 

The number of microrup-s, n, during the hold thz, A t ,  is n = A t / & t  = 

~ a / & a ,  Aa is the crack grolwth during the hold the of one fatigue cycle. "n" 

is proportional to A t  but inversely proportion& to frequency, v. Fatigue crack 

gmwf21 per cycle is the sum of the intermittent microruptures per cycle. 

) is the crack grm rate a t  a reference fr-cy vo. &/dN is inversely 
vo proportional to v. This agrees with the qirical data for Inwnel 718, 

Astroloy, and Waspaloy in Figure 5 in t l e  law frequency region. The s m  

conclusion that da,/dN is inversely praportional to cyclic frequency, can be 

derived for other wave forms i f  the frequency does not affect crack ti? 

field [ l o  1 , 

The micronptures, which take place alonq oxiZized grain Soundaq, result 

in intergranular crack grawth. Therefore bo%\ the co,?sL3nt tine rate of fa+Ac;~ 

crack growth and the intergranular fracture are not necessarily caused by Cree? 

damage, They can be the result of grain bundary oxidation. Cree? cracking qraJth 

has a conxiotation of crack growth by creep deformation, grain boundaq void 

formation, grain boundaxy cavitation, and/or the qrow"Lh of such voids an6 ca- 

vities, A t  least  for som materials, to  ca l l  fatigue crack graJth as Cree? 

cracking in the 1m frequency region is a rnisnoaner. 



V. liIJMMkIrY AND CX)IJCLUSIONS 

1. Grain boundary may accelerate fatigue crack nucleation and propagation. 

2. Grain boundary kinetics of a nickel-base superalloy, TAZ-8A was studied. 

The grain boundary oxide penetration depth can be expressed in a d f i e d  

form of the Arrhenius relation. 

3. Grain boundary oxide penetration depth varied widely f m  one boundary 

to another. The Weibull' s distribution function of grain baundary oxide 

penetration was studied. The variation in oxide penetration may contri- 

bute to the wide  s ta t is t ical  scatter of the fatigue lives of gas turbine 

engine canponents . 
4.  The grain boundary oxidation kinetics are essential for the develapmt of 

a quantitative l i f e  prediction methodology based on a mchanistic &el 

for those materials susceptible to fatigue Life ifipairment by oxidation. 

5. The effects of grain boundary oxide crack on fatigue l i f e  ue analyzed 

and discussed in  tern of the reduced fatigue crack "nucleation" period. 

6. An intermittent grain boundary oxide microrcp- &el is proposed for 

the fatigue crack growth in the low frequency region. The &served in- 

verse relation between &/dN and cyclic frequency, v,  and the observed 

intergranulv fatigue crack growth are consistent with the propsed 

rrodel. 

7. To ca l l  fatigue crack g r a d  in the low f rquency  region "trees cracking" 

because of mns"at &thw rate of crack growth a12 intergrar.ular fracture, 

is a misnorer for those materials susceptible to  fatigue l i f e  irpzirment 

by the o ~ i d a t i o n  process. 
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Figure la cross-section microstructure of unoxiciized t e s t  coupon, TAZ-8A 
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Figure 1S Cross-section of oxidized t e s t  m q n  
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