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SUMMARY

During the grant period the following research results were obtained:

Performance Analysis of NASA Telecommand System,

Details of our work on this problem have been previously submitted
to NASA. Three papers have been published in the open literature [1l, 2,
3]. Copies of these papers have been sent to NASA in earlier reports. A
complete summary of this work is included as Appendix A of this report.
This constitutes Chapter 3 of the Ph.D. thesis of Dr. Robert H. Deng, who
was supported as a research assistant on this grant and received his

Ph.D. from the Illinois Institute of Technology in December, 1985,

Optimum Code Rate Selection in FEC Systems,

A random coding approach was taken to determine the optimum code
rate to use in a forward-error-correcting (FEC) system with a fixed
signal-energy-to-noise-power~density ratio, Ep/Ng, but no bandwidth
constraint. By optimal code rate we mean the code rate which gives the
smallest decoding error probability, or equivalently, the largest coding
gain, for a given Ep/Ng. A paper is being prepared on this subject for
submission to the IEEE Transactions on Information Theory [4]. A com-
plete summary of this work is included as Appendix B of this report,

This constitutes Chapter 4 of the Ph.D. thesis of Dr. Robert H. Deng.

Our results indicate, as expected, that when maximum likelihood de-
coding is used, the optimal code rate approaches zero (infinite bandwidth
expansion). However, for more practical bounded distance decoders, an
optimal code rate does exist between about a rate of 0.2 and a rate of
0.5 over a broad range for values for Ep/Ng. Calculations of coé; per-

formance for several classes of specific codes tend to support these

conclusions.
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Capacity and Cutoff Rates of Concatenated Coding Systems.
Details of our work on this problem have been previously submitted
to NASA. Four papers have been published in the open literature [5, 6,

7, 8]. Copies of these papers have been sent to NASA in earlier reports.

Distance Growth Rates in Convolutional Codes.

The rate of growth of the minimum distance between unmerged code-
words in a convolutional code is an important parameter in determining
the bit error probability of the code when used with a finite memory de-
coder. Also, if the code is terminated to form a block code, the per-
formance of the block code depends on the distance between unmerged code-
words in the convolutional code. We have obtained a lower bound on the
minimum distance growth rate between unmerged codewords for time-invari-
ant convolutional codes. This complements a similar result previously
obtained for time~varying codes. A paper summarizing this result was

previously submitted to NASA [9].

Bandwidth Efficient Coded Modulation.

Details of our work on bandwidth efficient coded modulation have
been previously submitted to NASA. A copy of a paper on this subject was
sent to NASA in an earlier report [10]. We are continuing our research

in this area under our current NASA grant NAG5-557.
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CHAPTER 111

UNDETECTED ERROR PROBABILITY AND THROUGHPUT ANALYSIS
OF A CONCATENATED CODING SCHEME

3.1. Description of the Scheme

Consider a concatenated coding scheme for error control on a binary

symmetric channel (BSC). Two linear block codes, denoted C_. and Cb, are

£
used. The inner code Cf, called the frame code, is an (n,k) systematic
binary block code with minimum distance df. The frame code is designed
to correct t or fewer errors and simultaneously detect X (A>t) or fewer

errors, where t + X + 1 < df [2]. The outer code is an (nb, kb) binary

block code with

n_b :mk, (3.1)

where m, a positive integer, is the number of frames. The outer code is
designed for error detection only.
The encoding of the concatenated code is achieved in two stages

(see Figure 3.1). A message of kb bits is first encoded into a codeword

of nb bits in the outer code C Then this codeword is interleaved to

b

depth m. After interleaving, the nb-bit block is divided into m

k-bit segments. Each k-bit segment is encoded into an n-bit word in the
frame code Cf. This n-bit word is called a frame. The two dimensional
block format is depicted in Figure 3.2.

Decoding consists of error correction and error detection on each
frame and error detection on the m decoded k-bit segments. When a frame
in a block is received, it is first decoded based on the frame code Cf.

The n-k parity bits are then removed from the decoded frame. If there
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are t or fewer transmission errors in a received frame, the errors will
be corrected, and the decoded segment is error free. If there are more
than t errors in the received frame, the errors will be either detected
or undetected. If the errors are detected, the decoder stops decoding
immediately and requests a retransmission of the entire block. On the
other hand, if the errors in a frame are undetected, the decoded segment
will be stored in a buffer and the decoder continues to decode the next
frame. After m frames of a block have been decoded, the m k-bit decoded
segments are then deinterleaved. Error detection is performed on these

deinterleaved segments based on the outer code C If no errors are

b
detected, the m decoded segments are assumed to be error free, and are
accepted by the receiver. If the presence of errors is detected, the m
decoded segments are discarded and the receiver requests a retransmis-
sion of the entire block.

The error control scheme described above is actually a combination
of forward-error-correction (FEC) and automatic-repeat-request (ARQ).
In this chapter, we analyze the performance of the proposed error con-
trol scheme. Specifically, the system reliability and the system
throughput are considered. The system reliability is measured in terms
of the probability of undetected error after decoding. First, by assum-
ing the inner channel to be a memoryless binary symmetric channel (MBSC)
with a bit error rate (BER) €. we look at the outer channel created by
the combination of the interleaver, the frame code, and the inner chan-
nel. Then we develop precise expressions for both the probability of
undetected error and the system throughput. Following that, we investi-
gate the system reliability attainable by using random coding arguments,

which in turn are used as theoretical guidance in the selection of inner



and outer codes. Finally, the system performance on burst-noise-

channels is considered.

3.2. The OQuter Channel Model

Let ng)(ei) denote the probability of correct decoding for the
frame code. Suppose that a bounded-distance decoding algorithm is em-
ployed. Bounded-distance decoding corrects all received n-bit sequences
with t or fewer errors. When an n-bit sequence with more than t errors
is detected, no attempt is made to correct the errors. Since there are
(2) distinct ways in which i errors may occur among n bits,

P ey = § Me.t-e )™t (3.2)
c i jeg 11 i
for bounded-distance decoding.

For a code word v in the frame code Cf, let w(v) denote the Hamming
weight of v. 1If a decoded frame contains an undetectable error pattern,
this error pattern must be a nonzero codeword in Ce. Let £y be an un-
detectable error pattern after decoding. The probability Pf(w,ei) that
a decoded frame contains a nonzero error pattern & after decoding is

given by [14,33,34]

t min(t-i,n-w) _ i ..
Polw,e,) = I OO M ey, (6u3)
. j i i
1=0 j=0
. . 1
where w = w(go), and e; 1is the BER of the inner channel. 1If e; << =
then
w w-t n-w+t -
Pf(w,si) * (t)ei (l—ei) . (3.4)

Let ng)(ei) denote the probability of undetected error for the frame



code. Let {Aif), de < w < n} be the weight distribution of Cf. It

follows from (3.3) and (5.4) that

n
pDey= T alPp que), (5.5)
w=df
(5 . A
Pud (&5) = Adf Peldgse;)
d d.~t n-d .+t
. Aéi)( f)ei £ (1-e,) £ for e <<-%. (3.6)

Now consider any one of the m frames, say the j-th frame, If the

decoded frame contains undetected errors, the BER €, after decoding is

given by
n
-1 (£)
e, = > Z A w P(w,e,). (3.7)
w=d
£
1
For . << =, then
i n
.1 ()
S df Adf Pf(df,ei)
d d d.-t n-d .+t
S SN € 3 P S 3 £, (3.8)
“n Adf C t)ei (1'61)

is a good approximation to e,- Let E be defined as the event that a
frame contains undetected errors. Now let sa/E denote the BER embedded
in a decoded frame conditioned on the occurrence of event E. It

follows from (3.7) that

- - (£)
e g = €a/PL B} = e /P 7 (e)). (3.9)

a/E

For € <<-%, substituting (3.6) and (3.8) into (3.9) yields



1 (f) ~
o d¢ Adf Peldpiesd 4
€ b =
a/E ()
Adf Pf(df,ei)

5|

(5.10)

Now define S to be a random variable such that when h of the m
frames contain undetected errors, and the remaining m-h frames are de-
coded correctly, S=h, h=0, 1, 2, --., m. It follows from (3.2) and
(3.5} that
]m-h-

<hl = (O (£ h | ()
Pr{S-h} = (h)-[Pud (ai)] [Pc (e.)

i (3.11)

Note that (3.11) is not a binomial distribution because Pig)(si) +
Péf)(si) <1, i.e., some received sequences with more than t errors are
detected by the frame code.

After deinterleaving of the m decoded segments (with the n-k parity

bits removed from each frame), the BER embedded in the nb-bit block,
conditioned on S = h, is given by
e(h) =€ ,. + R k=0,1, 2, =, m. (3.12)
0 a/E m '’ > ?

We call the channel specified by (3.11) and (3.12) the outer channel,
and it is depicted in Figure 3.3. Note that EO(O) = 0. This channel

can be viewed as a block interference (BI) channel, as described in

[35]. Ah, h=0,1,2, -+-, m, is called the h-th component channel of

the BI channel. Each block of n,_ bits (nb is the length of the outer

b
code) is transmitted over one of the m+l component channels. The random
variable S determines which component channel is used to transmit a

given nb—bit block.



Figure 3.3.

Outer Channel Resulting from Decoding Inner Code on an MBSC
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35.3. The Probability of Undetected Error and the System Throughput

g£ the Concatenated Code

Let {A§b), d <ix< nb} be the weight distribution of the outer

b

b is the minimum distance of Cb' Let PSS)(E) be the proba-

bility of undetected error for the outer code C

code, where d
b If the nb-blt block
is transmitted over the h-th component channel Ah of the outer channel,
it follows from (3.12) that
n .
b . n, -i
(b) _ (b) i b
Pig (gq() = F A (ey()) 7 (1-e,(R)) (3.13)
i=d
b
Let Pud(ei) be the average probability of undetected error of the

concatenated code. From (3.11) and (3.13) we obtain

m
_nip D)
¥ P_{S=h}P ;" (ey())

P ,(e.)
ud > i h=0

1]

m
1 QPG e e e

n -i

b . n
N RECN O EE NP ILDS (3.14)

i=db

where ng)(ei) and Pﬁg)(ei) are given by (3.2) and (3.5), respectively.
The system throughput is defined as the ratio of the average number

of information digits successfully accepted by the receiver per unit of

time to the total number of digits that could be transmitted per unit

of time [8,36]. It is determined by the retransmission strategy, which

may be one of the three basic types: stop-and-wait, go-back-N, or

selective-repeat. All three basic ARQ schemes achieve the same relia-

bility; however, they have different throughputs. Suppose that the
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selective-repeat ARQ scheme is used as the retransmission strategy. The
specific manner in which the receiver signals to the transmitter for a
retransmission will not be considered. It will be assumed, however,
that this backward signal is error-free, and that repeated retransmis-
sions of a block are possible. For an analysis of various ARQ schemes
with a noisy feedback channel, the reader is referred to Reference 8.
For the concatenated code, let Pud(ei), Pr(si), and Pc(si) denote
4 the probabilities of an undetected error, of a block retransmission, and

of correct decoding, respectively. Obviously,
Pud(ai) + Pr(si) + Pc(ei) =1, (3.15)

In the selective-repeat ARQ scheme, the transmitter sends code
blocks to the receiver continuously and resends only those code blocks
that are detected in error at the receiver. The probability that a

block will be accepted by the receiver 1is

P(Ei) = Pud[;i) + Pc[ei). (3.16)

For a code block to be successfully accepted by the receiver, the
average number of retransmissions (including the original transmission)
required is

N

1l

1+P(e;) + 2-P(e) (1-P(e))) + S-P(si)(l-P(gi))z e s

+

2eP(e) (1-P(e T+ oo

1 1

- - . (3.17)
Pleg)  Pygleg) + Poley)

Then the throughput of the system is [2]

%

k
= -r—l- ¢ —= o (Pudtgl) + pC(Ei)), (3.18)

1
n=R-yg n



k
b .
where R = PO is the over-all code rate of the concatenated code.

Note that a transmitted block will be received correctly if and
only if all m frames are decoded correctly. Therefore, the probability

of accepting a correct block is given by
(£) m T on i n-i,m
P.(e;) = [P/ (e)] = [igo(i)ei (1-e)7 7. (3.19)

For the usual situation where Pud(si) << Pc(ai), it follows from

(3.18) and (3.19) that

t . .
ikl [,zo(z)siltl-ei)“‘llm- (3.20)

L S =

It can easily be seen that n increases monotonically as t increases,
but that for small €5 N is only a weakly increasing function of t.
In order to see the relationship between t and Pud(ei), from
(3.14) we have
e . plE) . rolf) m-1
Pualeg) = m = Py () (P (e;)]
ny : -i
0D AP antase,an ?

i,

Using (3.6), (3.10), and (3.12), Pud(ei) can be further approximated as

1
}, for gy << = (3.21)

d.” d_-t n-d_+t
Paley) =X« (He Fraey o pBPen™, 22
where n
d. . d -1

f i=db

is a constant which is independent of t. Let Q(t) denote the right

hand side of (3.22). Then



(ds.-t)
Q(t+1) _ *°f A SN
Qt) C ey e oM oo

1 . e
for Ei << T (3.23)

That is, for e, << 1/n, when t increases by 1, Pud(si), the probability
of undetected error, will increase by approximately e;l. Thus Pud(ei)
is a strongly increasing function of t. For this reason, a large value

of t is not desirable in such a system.

3.4. A Bound on the Reliability of the Concatenated Code by a Random

Coding Argument

In this section we derive a lower bound on the reliability of the
concatenated code by using a random coding approach. Although the bound
may not be tight enough, especially when the inner code is used for
error detection only (i.e., t=0), it does give some insight into the
concatenated code.

Let Péf)(ei) be the probability of decoding error for the frame
code when the frame code is used only for error correction. Again, let
Pég)(ei) and Péf)(si) be the probabilities of undetected error after
error correction and of correct decoding for the frame code, respective-

ly. Obviously,

p&? () < Péf) () (3.24)

Then Pud(si), the probability of undetected error of the concatenated

code, from (3.14) and (3.24), can be bounded by



Pae) = L e e e 01" ) e )

1
il ~13

1

2 (h)[P(f)(e 31728 (e (1)

T om o (6) h_(b)
hzlch)[PE (e;)17P,4° (g5 (h)). (3.25)

Let Fl and Fz denote the ensembles of inner systematic codes and

of outer systematic codes, respectively. We assume that the two en-
sembles of codes are selected independently of each other. Then the

average probability of undetected error over lerz is, from (3.25)

PG < 2 NGILSIC ENYCHLE

T £ h b
hzl(g)[Pé Yen™ - 2B e m, (3.26)
where the first average is over Fl and the second over Fz. Equation
(3.26) can be rewritten as
PG < z N P 01" 2 ey, (3.27)

because the average of the sum is equal to the sum of the averages. By

the memoryless assumption of the inner channel, we also have, from

(3.27),
m —— ———
P < G pt e ™ - P ey (5.28)

The last term in (3.28) is given by [2]
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—————— -(n-k) -0 _(1-R))
PO ey <2 P P = L (3.29)

which is independent of h, where R, = kb/nb is the code rate of the

outer code. Using this fact, equation (3.28) yields

-n, (1-R,) m —_—
Py <2 2 16 et (e 01", (3.30)

Now we define the reliability of an (n,k) code as

E > -~ lim logZPud. (3.31)
N
For the concatenated code, the reliability is
.1 ——
E>- lim — logZPud(si). (3.32)
my>e b
Note that n = km = len. For fixed R1 and m, n, going to infinity is
equivalent to n going to infinity. Hence (3.32) can be rewritten as
-n,_(1-R,)
E>- lim l—-10g22 " 2
noe Th

m r—————
. 1 m () h
- iﬂ mR 1 1°g2{hzl(h] [Pg ()]}

——————

- | SR § )
= l—R2 * {- lim ~ log2 PE (ei)
1 o
1 T om0 h-1
- lim = log,[m + y ) [Pg ()] . (3.33)
N> h=2
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Because PE (ei) + 0 when n-= if and only if R1

1 - H(ei) =1 + cilogzei + (l-si)logz(l-si) is the inner channel

< C, where C =

capacity [15], the last limit in the brackets {---.} goes to zero.

Therefore
1 1 @,
E > l-R2 * == { - 1lim = log2 PE (si) }
1 n->
- 1 L
=1 R2 + le Ef, (3.34)
[ | (f) o
where Ef = - lim = log2 PE (ei) is given by [15]
N-><o
A log2 . 0 < Rl-i Rb,
v4e.(1-ei)
Ec = 1 Ry - R » Ry <R <R, (3.35)
E(A, €,) , R_<R 2,
where
A = H'l(l-Rl), (3.36)
1
E(A,ei) = H(ei) + (A-ei)H (ei) - H(V), (3.37)
' d 3.38
H (81) = "dE;’H(SI), (3.38)
4(e. (1-¢€.)
R, =1 - H( A it S (3.39)
1+¢4si(1—ei)
/ Ci
RC =1 - H{ ———), (3.40)
/E; + Vl-g,
and
Ry =1 - log, (L + 2Jei(1-ei)). (3.41)



The reliability E, bounded in (3.34) is plotted in Figures 3.4
and 3.5 for € = 107% and e, = 10-4, respectively. These results show
that low inner and outer code rates are needed in order to obtain high

system reliability.

3.5. Examples

Having investigated the theory of the concatenated code in the pre-~
vious sections, in this section we present some concatenated code ex-
amples whose purpose is to give a feeling for the actual system perform-
ance. Recall that the concatenated coding scheme described above is
used in ARQ systems, and that the major advantage of ARQ is that it
requires simple decoding equipment, while achieving high system relia-
bility and throughput. Therefore, only those codes which require simple
decoding are chosen as examples. We should point out that the results

of sections 3.3-3.4 are a useful general guide to code selection.

Examgle 3.1

This concatenated code example has been proposed for a NASA tele-
command system. The frame code Cf is a distance-4 Hamming code with

generator polynomial
g(x) = (x+1) (x"+x+1) = x e x®ax?a, (3.42)

where x6 + x + 1 is a primitive polynomial of degree 6. The natural
length of this code is 63. This code is used for single error correc-
tion (t=1), and is also used to detect all error patterns of double

weight and some higher odd weight error patterns. The outer code is a
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distance-4 shortened Hamming code with generator polynomial

OUREY R CIPNR TIPS BN ¢ A SN I NI

g(x)

-

= X + X + X+ 1, (3.43)

3 2
where xl + x14 + xl3 + xl' + x4 + x3 + x2 + X + 1 is a primitive poly-

nomial of degree 15. This code is the x.25 standard for packet-switched
data networks [37]. The natural length of this code is 215-1 = 32,767.
In this example, a shortened code of maximum length 3,584 bits is con-
sidered. This code is used for error detection only.

We assume that the number of information bytes (IB) in a frame is
between 3 and 7, that is, the inner code can also be shortened. The
number of frames in a block is between 4 and 64.

To obtain a precise result for Pud(ei), a computer program was
written to help determine the reliability of the proposed concatenated
coding scheme. We found that if only one frame contains a weight 4

undetected error pattern, then this error pattern can always be detected

by the outer code. Thus (3.14) can be modified as follows:

Paaley) = P (2R )™

™

) iz T

AP @ anta-gyan

db i

m-h

+

OP&ME

X (et 1" el ()
. -1
AP (e () 1oy 1) P

%

}, (3.44)

(¥}

.
W~

where
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I TSP

n

Py 3 A‘Sf)Pf(w,ei), (3.45.1)
w=d .+1
f
and n
1 ()
- A w P _(w,e.)
_ n ”=dz*1 w £ €1 .
eo(l) = 3) g (3.45.2)

5
pud (Ei)

Results for the probability of undetected error Pud(ei), based on
(3.44), and the system throughput n are plotted in Figure 3.6, where we
have used the method in [6] to obtain

L

. ~i
(b) _ b) i g
Paq (gp(M)) = iz A7 (g () (-4 (h))
The system described above can be altered by allowing the frame
code to do error detection only (i.e., t=0). In this case, Pud(si) and

n are shown in Figure 3.7.

Examgle 3.2

The same frame code and outer code are employed as in Example 3.1.
The inner channel is, however, assumed to be a AWGN channel with BPSK
modulation and the frame code is decoded by using the Viterbi decoding
algorithm with repeat request and infinite demodulator output quantiza-
tion [38]. Let u, a positive real number, be the retransmission metric
threshold of the algorithm (38]. Let Pég), ng), and €, denote the
probability of undetected error, the probability of detected error, and

the BER after decoding, respectively, for the frame code. Then [38]
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(£) L vqr v N N
Pa < kQ( ¥ Nodf«»u/—wa)
E

. exp( N—N df)T(X)l E, (3.46)
I
0 |X=exp( o )
0
2E 2E,,
P(Ef) <KQ( Y —Nd, - uw —X )
- N, f N
0 0
N -
« exp( N_'df)T(X) EN , (3.47)
0 =exp( - 7~ )
0
2Ey 2E,
N
saiQ(‘/Tdf+U/_I\I—)
0 0
E Y=1
N 3T(X,Y)
exp( - dp) %y
0 EN
X=exp(- N Y, (3.48)
0
where
1 7 -22/2
Qx) = — S e dz, (3.49)
V27 x
n .
TX) = ) Ai(f)xl, (3.50)
1=df
Y=1 n .
3T(X,Y) - 7 o1 AlB, (3.51)
Y . 1
i=d
f
and EN/NO is the channel symbol signal energy-to-noise power demsity

ratio. From (3.46) and (3.47) we see that the probability of correct
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decoding for the frame code is

£ £
pc( )_ . Pidf) - P§ ) (3.52.1)
21 - pc(if) ,  for PS? << p(gf). (3.52.2)

The probability of undetected error of the concatenated code, Pud’ and
the system throughput, n, can be computed by using (3.46)-(3.52.2) in

the formulas given in section 3.3. Both Pu and n are shown in Figure

d
3.8 for u=4 with respect to € where EN/NO and e, are related by the

equation

e. =Q( Y — ). (3.53)

The influence of the value of u on the system performance is

obvious. For larger values of u, from (3.46), (3.47), and (3.52.2),

£)
d

probability of undetected error and the system throughput are lower.

the probabilities Pé and Péf) become smaller, and consequently the

Examgle 3.3

The outer code is again a shortened distance-4 Hamming code with
generator polynomial given by (3.43). The frame code is an (n,n-1)
single-parity-check code. The frame code has a minimum distance of 2,
and is used for error detection only. The frame code can detect all odd
weight error patterns. The weight distribution of the frame code can be
calculated from

. -l n-1 - U
AZl - (21) + (21_1) » 1= 0: 1, 2, lzJ , (3'54'1)

A,
J

0, for all odd j, (3.54.2)
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where (2) = 0 for k< 0 and k > n, and [x] denotes the integer part of
X.

Because the outer code detect three or fewer errors, if only one
frame contains a weight 3 or less undetected error pattern, then this
error pattern can always be detected by the outer code. Hence, equation

(3.44) is used to compute the probability of undetected error, where

n

L

_J

2 . .

— f 2 _2

Pl(ld)(ei) = lzz A2i5i1(1~€i)n 1 (3'55.1)

is the probability of undetected error when the undetected error

pattern has weight greater than 3, and

n
17} ’; s s
1 1 N~-21
.122 n Aifp (-gy) .
(1) = = C = (3.55.2)
ud i

Figure 3.9 shows the probability of undetected error Pud(ei) and the

system throughput n for this example.

From Figures 3.6-3.9, we observe that the performance of a particu-
lar scheme depends strongly upon the channel noise conditions. There-
fore, we cannot say that a particular one of the above schemes is
"best'". However, we can draw a number of conclusions which will be dis-
cussed below.

From Figures 3.6 and 3.7 we can see the tradeoffs between the
probability of undetected error and the system throughput obtained by
varying the number of correctable errors t in the frame code. Smaller

value of t always result in a lower probability of undetected error,
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and therefore a higher system reliability. But as the channel BER gets
higher, the system throughput degrades rapidly for smaller t. The
system throughput is less affgctgd by t if the channel BER is small.

Figure 3.8 shows the advantages of a Viterbi decoded frame code
with repeat request over an algebraically decoded frame code. The
Viterbi decoding algorithm makes the system much more flexible in trad-
ing between system reliability and throughput by simply changing the
value of u. Varying u can be viewed as a generalized method of '"varying
t" for algebric decoding of the frame code. From comparison of Figures
3.6-3.9 we see that lower inner code rates provide higher system:re-
liabilities but lower system throughputs.

In Figure 3.10 we plot Pud(ei) vs. n for the above examples with
m =64 and IB = 7. The infinite slope of the curves is due to the fact
that at low channel BER's the system throughput becomes saturated. We
conclude that, at moderately low BER's, the concatenated coding scheme
is capable of achieving high system throughputs and extremely low unde-

tected error probabilities.

vy

3.6. The Concatenated Code Performance on a Burst-Noise-Channel

Channels with memory often occur in practice. Errors on these
channels tend to occur in bursts, and hence they are called burst-noise-
channels. Examples of burst-noise-channels are radio channels, where
the error bursts are caused by signal fading due to multipath transmis-
sion, wire and cable transmission, which is affected by impulsive
switching noise and crosstalk, and magnetic recording, which is subject

to tape dropouts due to surface defects and dust particles. In this
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section we extend the performance analysis of the concatenated coding
scheme to burst-noise-channels. The results here will be compared with

those presented in the previous sections.

3.6.1. The Inner Channel Model

The generalized Gilbert type channel [11,39,40], as shown in
Figure 3.11, is used as our inner channel model. There are two states
in the model. Each state is a BSC. State 1 is the ''‘quiet" state, where
the BER is e,. State 2 is the 'noisy' state, where the BER is €y and

1
€, >> e€.. The transition probabilities between states are P = Pr{1-+2}

2 1

and p = pr{2-+1} (see Figure 3.11). Q = 1-P and q = 1l-p are the proba-
bilities of remaining in states 1 and 2, respectively. To simplify the
model's treatment, we assume that one transition time in the model
corresponds to the transmission of one frame of length n bits, i.e., the

noisy bursts last for a multiple of the transmission time of a frame.

The average burst length is then [11]

T

|}

% frames, (3.56)

or

n bits. (3.57)

The average BER is

5 (pe1 * Pey), (3.58)

and the probability of being in the noisy state is

(3.59)
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A Burst-Noise Inner Channel
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Four parameters govern the model. They can be chosen to be L, ¢, Py»

and the high-to-low BER ratio ez/el.

2.6.2. The Outer Channel Model

Let ng)(ej), Pég)(ej), eaj and Eaj/E’ j =1, 2, denote the proba-
bility of correct decoding for the frame code, the probability of unde-
tected error for the frame code, the BER in a decoded frame, and the BER
embedded in the decoded frame conditioned on the decoded frame contain-
ing undetected errors, respectively, when the frame is transmitted in

state j. (In the following we will always use the subscript j, j = 1,

2, to denote that a frame is transmitted in state j.) Then ng)(ej),

£)
d

respectively, with €5 replaced by ej, j =1, 2.

{ .
Pu (ej), eaj’ and Eaj/E are given by (3.2), (3.5), (3.7), and (3.9),

Now define E 0 <2 <h<m tobe an event such that h of them

2,h’
decoded frames contain undetected errors (the other m-h decoded frames

are error free) and 2 of the h containing undetected error frames are
transmitted in state 2 of the inner channel. Let Pr{E2 h} be the prob-
>

ability that event E2 occurs. Then after deinterleaving of the m

sh
segments (with the n-k parity bits removed from each decoded frame), the

BER embedded in the n,-bit block, conditioned on the occurrence of event

b
Ez,h’ is given by

eo(E ’ ) = [l-eaZ/E + (h-ﬁ)sal/E]/m , 0<% <h=<m (3.60)

We call the channel specified by (3.60) and the probability distribution

Pr{Eg h} the outer channel (see Figure 3.12).
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3.6.3. Performance 9£ the Concatenated Code on a Burst-Noise-Channel

If the nb—bit block is transmitted over the component channel Al h

of the outer channel, the probability of undetected error of the outer

code is n
b . n, -i
(b) _ (b) i b

Pad 5By ) = izd Ap (5B 1)) (e By 4D

b

(3.61)

With the aid of the above outer channel model, the average probability

of undetected error of the concatenated code is

m h
Pgq= ¢ LPIE

(b)
W = Lot niPud’ (5o By 1)) (3.62)

2,
For large m, the computation of (3.62) is very complex and time
consuming. To reduce the computational work to a manageable amount,

we seek an approximation to (3.62).

Define
€nax = max[eal/E, EaZ/E]' (3.63)
It follows from (3.60) that
e~(E, ;) <he /m..é e, (h) (3.64)
0*72,h’ — max’ 0 ?

and equality holds when €, and e, are equal, i.e., the inner channel is

1

a memoryless BSC. Assuming that Pﬁg)(z) is an increasing function of z,
0 <z <1/2, we obtain from (3.62) and (3.64)
m h

(b)
Ly Lpetm r D o

o
iA

ud

m h n
L P{) (eon)) ] PIE, () = hiopﬁg)ceoch))s(h), (5.65)
=0 2= ’ =

0
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where

B(h) = P_{E

. Lﬁ’ 0 <h <m, (3.66)

I~

2=0

is the probability that h of the m decoded frames contain undetected
errors (and the remaining m-h decoded frames are error free). B8(h) can
be readily computed by a recursive method. To find 8(h), we model the
decoded frame status as a Markov chain (see Figure 3.13). In state j,
j =1, 2, the decoded frame contains an undetected error with probabil-
ity Pﬁg)(ej) and is error free with probability ng)(ej).

Define G(h,m) = Pr{h of the m decoded frames contain undetected
errors / the inner channel starts in gtate 1} and B(h,m) = Pr{h of the m
decoded frames contain undetected errors / the inner channel starts in

state 2}. By applying a similar argument as in [40], we have

- P P
8(h) = 545 OChm) + 55 B(hym), 0 < h < m. (3.67.1)

G(h,m) and B(h,m) can be found recursively from

Ghm) = 6(h,m-13Q P () + B(a,m-13p LD (e

+ 6(a-1,m-10Q PC (e ) + Br-1,m-13p 2D (3, (3.67.2)
B(h,m) = B(h,m-1)q PC7(e) + Geh,me1)p PP (e

+ B(h-1,m-1)q P&i)(ez) + G(h-1,m-1)p pig)(ez), (3.67.3)
60,1 = pF ey, Boy =2y,
ca,n = Pep L, sy =pWe) (3.67.4)

we must also assign the values GCh,m) = B(h,m) = 0 when h < 0 or h > m,
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Note that if ¢ the upper bound of (3.65) 1s very close

al/E * Fa2/E’

to (3.62). Fortunately, this is usually the case for 0 < 51 < €, <1/2,

especially for small e, and €., for then ¢

the

1))

2)

1 2? a1/€ = ¢/

Although in general the computation of (3.62) is very involved, in

following two important cases it can be handled quite easily.

el = 0. That is errors are not allowed to occur in state 1.Then

(3.62) reduces to

m
- (b)
Pg = L PelBy By (50 (B, 1)), (3.68.1)
where
G N | 0<hz<m, (3.68.2)
= B(h m), 0 <h<m, (3.68.3)

pr(Eh,h) - P+p G(h,m) +

and both G(h,m) and B(h,m) can be found from (3‘67;2)—(3.67.4) by

letting ng)(el) = 1 and Pég)(el) =

P = 1-p, i.e., the inner channel of Figure 3.11 becomes a BI

channel, as shown in Figure 3.14. Pl and P2 are the probabilities

of being in states 1 and 2, respectively. The probability Pr{E2 h}
. Hd

is given by

P{E, ;) = 2 1D ) 1p (e)° e,
. [P(f)( )]h 2[p(f)( 1)]m~s-9L le-s}
m
< DB En™ L @y p,® e,

s=4L

0 <2 <h<m (3.69)
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Pud can be computed by using (3.69) in (3.62).

To evaluate the system throughput, again assume that selective-

repeat ARQ is used. Let P Pr’ and Pc denote the probabilities of an

ud’
undetected error, of a block retransmission, and of correct decoding,

respectively. Of course,

Py *P.+P =Ll (3.70)

In order to simplify the problem, we assume that retransmissions do
not depend on the previous inner channel states. This is a reasonable
assumption if the channel round-trip delay is large. Then the through-

put of the system is [2]

n = %-k—b- (1-p_) = %;‘i (P 4*P.) (3.71)
™ b
ke .72
and

P_ = 3% Gm) + —P_E? B(m), (6.73.1)
G(m) = G(m-1)Q péf)(el) + B(m-1)P pgf)(sl), (6.73.2)
B(m) = B(m-1)q pif)(ez) + 6m-1p 2P (e ), \ (6.73.3)
sy =P Fey B = (e, (6.73.4)

3.6.4. Examples on a Burst-Noise-Channel

Examgle 3.4

The same frame and outer codes are used as in Example 3.1. The
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probability of undetected error, Pud’ and the system throughput, n, are
plotted in Figures 3.15(a) and 3.15(b) for t=1, and in Figures 3.16(a)

and 3.16(b) for t=0, respectively.

Example 3.5

The same coding scheme is used as in Example 3.3. Pud and n are
shown in Figures 3.17(a) and 3.17(b).

The performance of the concatenated coding scheme on burst-noise-
channels heavily depends on the channel's parameters, especially on the
high-to-low BER ratio, ez/el. As shown in Figures 3.15(a})-3.17(b), for
a given average BER €, with other parameters fixed, as the ez/e1 ratio
becomes large, the system performance becomes poor. Our results indi-
cate that on a burst-noise-channel for the same average BER, the system
reliability degrades greatly, while the system throughput remains almost
the same, compared with the same coding schemes on a memoryless BSC.

For moderate values of average BER, high system reliability and through-
put are still achievable using the concatenated coding system on burst-

noise-channels.
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CHAPTER IV

ON THE OPTIMAL CODE RATE IN AN FEC SYSTEM

4,1. Problem Statement

A problem which frequently arises in forward-error-correction (FEC)
coding is how to select a code from among various existing codes to ob-
tain the best system performance. More specifically, what is the opti-
mal code rate and code length that should be chosen?

Consider a discrete memoryless channel (DMC) with Q possible

channel inputs x = {al, 3y, tv5 @ }, which are specified by a distribu-

Q

tion vector g = q{(al), q(az), e, q(aQ)}, subject to the constraints

qx) > 0 for every  xeX,

and

Ya(x) = 1. (4.1)
X

The channel transition probabilities are denoted by p(ylx) for every

output yeY and input xeX. For such a channel, the Gallager function

is defined by [22]

1
1+ 1+
E (e, @) = -log, [[fatapy|x)"® 1% , o0<p <1, (4.2)
y X
and plays a central role in the channel coding theorem. The channel
transition probabilities p(y|x) in (4.2) depend on a parameter EN/NO, a
nonnegative real number, called the channel symbol signal energy-to-

noise power density ratio. When coding is used, if R is the code rate,

as defined in Chapter II, then



EN/NO = R-Eb/VO, (4.3)

where Eb/.\'0 is the information bit signal energy-to-noise power density
ratio. For a given communication system, the average transmitter power
is fixed, and so is Eb/NO. ‘Therefore, changing the code rate R varies
the channel parameters. Most previous work on error control coding has
not considered the influence of code rate on the transmission channel.
As a result, a communication engineer who must design a practical
coded communication system may find little theoretical guidance in
selecting the best code rate for the system. In this chapter we attempt
to partially remedy this situation by finding the optimal code rate in
an FEC system. By otpimal code rate, we mean the code rate which gives
the smallest decoding error probability, or equivalently, the largest
coding gain for a given Eb/NO and code length (for block_codes) or con-
straint length (for convolutional codes). We begin by considering ran-
dom coding error probability bounds [21,22] as a measure of system
performance, and then proceed to consider random bounds on minimum dis-
tance. Both kinds of bounds will be used to study the optimal code rate

problem.

4.2, The Optimal Block Code Rate

4.2.1. The Optimal Code Rate in Terms of the Error Probability Bound

The channel coding theorem says that the average decoding error
probability over the ensemble of all block codes of length n and rate R

for the Q-ary input DMC described in section 4.1 is bounded by [21,22]

-nEb(R)

P <2 , (4.4)



PR

where

Eb(R) = mgf 02221[50(0, q) - pR], (4.5)
and Eo(p, Q) 1s given by (4.1). It follows from (4.4) that at least one
code in the ensemble must have PE no greater than this ensemble bound.

Note that EOCp, q) is also a function of R. If we use the code
length n as a measure of decoding complexity, from (4.4) and (4.5) we

see that the code rate R should be chosen such that Eb(R) is as large

as possible. Formally, the optimization problem is

maximize: Eb(R)

subject to: EbCR] > 0. (4.6)

The code rate R which satisfies (4.6) is defined as the optimal code

(b)

rate and is denoted by R .
opt

Another important quantity in describing the performance of coded

communication systems is the computational cutoff rate RO. It is de-

fined as the largest number for which there is a bound with a linear ex-
ponent, i.e., a bound of the form [21,22]

-n(RO-R)

'P‘E <2 , (4.7)

on the average decoding error probability of all codes of length n and

rate R on the Q-ary DMC described in section 4.1, where

RO = max Eo(l, q)
q
= max{-log, Y (Ra(x) ey [x) ]2}. (4.8)
q y X

If we define



4.4

EbO(R) = RO - R, (4.9)

the optimization problem is

maximize: EbO(R)
subject to: EbO(R) > 0, (4.10)
b0)

g

%
It can be seen from (4.1), (4.5), and (4.8) that as long as p(y]x)

and the code rate R which satisfies (4.10) is denoted by Ré

is continuous in R, both Eb(R) and EbO(R) are continuous functions of R
over a closed region. Therefore, there exists at least one value of R
which satisfies (4.6), and at least one value of R which satisfies
(4.10). More general statements about (4.6) and (4.10) cannot be made
because the channel transition probabilities p(ylx) depend on R, Eb/NO’
the modulation/demodulation scheme used, the channel noise characteris-
tics, the channel output quantization method, etc. This fact is made

more clear by the following examples.

Example 4.1

Suppose that BPSK or BFSK modulation is used over an AWGN channel.
If the demodulator makes hard quantization, a BSC results with bit error
Tate € = e(R-Eb/NO), where € is a decreasing convex U function of R, as
shown in Appendix A. From (4.1) and (4.5) we obtain
1 1

1+p0 1+po
g - (1*py)log,[e + (1-¢) 1 - R

E (R)

1]

Egleg) - ogRs (4.11)

where



4.5

1 1
1+po l+0
Eo(po) = po - (1+po)10g2[s + (1-€)

04,

and o is the value of pe[0, 1] which maximizes Eb(R). It is easy to

show that
dE (p,)
00 1
—a <0 0<g<—2—’ (4.12.1)
and
2
d7E;(py) 1
— 50 , 0O0<e<=. (4.12.2)
d 2 2
[

We also have

dE (R)  dEi(op) 4,
dR .

1 R po , (4.13.1)
and
d%E (R)  d%E.(p.) 2 dE.(p.) .2
Eb 00 de 0707 d7¢
5 = > ( Ty ) o+ - 3 - (4.13.2)
dR de dR
Since = [R-Eb/NO) is a decreasing convex U function of R, it follows
that
de
¥® <0 , Rx20, (4.14.1)
2
d; >0 , R<G0. (4.14.2)
dR -

Now let C(R) denote the channel capacity, which is a function of
the code rate R. From (4.12.1)-(4.14.2) we can draw the following con-

clusions:

2 2
d"E, (R) L GE () g 2
1) —— <0, if —H— (g
dR de

dEO(p) 2

d7¢
de dRz |

<

for 0 < R < C(R),
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and the optimal code rate Rggz is the unique solution of the follow-
1ng equation
iE_O_(_p_Ql.SE- ; (4.15
de R~ Po’ 159
a’E (R a%E_(p,) 2 | 4B (0) 42
5 E (R : 0Po de 0-P0’ d%e
) —— > 0, i () > | g 7 |
dR de dR™ |
for 0 < R < C(R),
and
) _ g’
ROpt =R , (4.16)

] 1
where R maximizes C(R );

3) If Eb(R) is not a convex function for 0 < R < C(R), Rggg must be

found numerically,

By replacing p, with 1 and C(R) with RO, respectively, similar conclu-

0
sions apply to the function EbO(R).
This example is used to indicate that even for the particularly

simple, often studied, BSC, finding the optimal code rate Rgzz is rather

complex. The computation of Réb)

pt for explicit channels is generally

very involved, because the function Eb(R) (or EbO(R)) depends on R,
Eb/NO’ the modulation/demodulation scheme used, the channel noise char-
acteristics, the channel output quantization method, etc. Fortunately,
direct numerical computation can be carried out easily by computer. The
optimal code rate Régz for BPSK modulation over an AWGN channel with
demodulator output hard quantization is given in Table 4.1 and depicted

in Figure 4.1 as a function of Eb/NO.



Table 4.,1. Rggi for BPSK Modulation over an
AWGN Channel with Output Hard Quantization

PP}
1.1 () 0 0 0

1.2 0.06 0.064 0.0001
1.5 0.17 0.209 0.0024
2.0 0.27 0.392 0.0121
2.5 0.32 0.522 0.0388
3.0 0.34 0.610 0.0691
4.0 0.37 0.746 0.1429
5.0 0.38 0.828 0.2238
6.0 0.38 0.879 0.2938
7.0 0.37 0.910 0.3520
8.0 0.36 0.931 0.4010
9.0 0.34 0.942 0.4420
10.0 0.33 0.954 0.4780
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Figure 4.1. Optimal Block Code Rate for BPSK Modulation over an
AWGN Channel with Output Hard Quantization



4.9
Example 4.2

For M-ary PSK modulation over an AWGN channel with no demodulator

output quantization, the computational cutoff rate is given by [23]

M
Ry = -log, % ) exp[-R ;2 sin? KT
0

0 M_]’ (4.17)

where M is a power of 2. It can be shown that [see Appendix B]

dRO
-d—R-—_>_ 0 N for Eb/NOiO s R_>'0, (4.18)
and
a’r
<0 , for E/N;>20 , R>0. (4.19)
dr® - -

Equality in both (4.18) and (4.19) holds only when Eb/N0 = 0. It

follows from (4.19) that

2
d°E, 4 (R)
—02-—<0 , for E/N,>0 , R>0, (4.20)

4R - 0 = =

Therefore, Ebo(R) = R, - R is a strict convex n function of R > 0 for

0
Eb/NO > 0. The equation for a stationary point of Ebo(R) with respect

to R is

dR

0 -
= - =0 (4.21)

Since dZRO/dRZ.i 0, any solution of (4.21) in the range 0 < R < 1, sub-
ject to EbO(R) > 0, maximizes Ebo(R), and hence gives the optimal code
rate R(bo)

opt
If M=2 and 4, i.e., BPSK and QPSK modulation, the optimal code rate

can be found explicitly by solving (4.21) and is given by



1 n2 -
- =~ n[ =——————= ], for BPSK, E_/N_ > 22n2,
Eb/NO Eb/f\O - &n2 b0 —
(b0) _
Ropt = { (4.22)
2 in2
- = #n[ =—x——— 1, for QPSK, E /N > 22n2.
Eb/NO Eb/NO - ¢n2 b0

For Eb/NO < 2¢n2, we always have EbO(R) < 0, so with BPSK (or QPSK) mod-
ulation on an AWGN channel, any block coding technique will require an
Eb/N0 of greater than 10 loglo(Zan) = 1.42 dB for small error rates and
reasonable implementation complexity, regardless of the code rate or of
how many quantization levels are used at the demodulator output, as
stated in [41]. Therefore, we call Eb/N0 = 22n2 the "information bit
signal energy-to-noise power density ratio threshold", and denote it by
T. The optimal code rates as a function of Eb/N0 for this example are

listed in Tables 4.2(a)-4.2(d) and plotted in Figure 4.2,

(b0)

opt for BPSK modulation over an AWGN

The optimal code rates R
channel with demodulator output hard quantization and for MFSK modula-
tion over an AWGN channel with demodulator output hard quantization are
listed in Tables 4.3 and 4.4 and depicted in Figures 4.1 and 4.3, re-

spectively. In the tables we also indicate the Eb/N0 threshold, T, for

each case.

(bO)) is

(b)
From these examples we observe that the value of ROpt (or Ropt

relatively small and is inversely proportional to Eb/N0 for relatively

(b) (b0) -
large values of Eb/No. For small values of ROpt (or ROpt ), EN/N0

(b0)

L2 ,' 3 - -
opt Eb/NO), and the ''channel symbol signal energy-to

®), -
Ropt Eb/N0 (or = R
noise power density ratio' becomes small compared with Eb/NO, and conse-
quently results in a '""noisy' channel, or a "higher' channel bit error

rate. The interesting fact is to note that the "high' bit error rate is



Table 4.2(a). Rggg) for BPSK Modulation over

an AWGN Channel with no Qutput Quantization

Ey/No Rggg) Ro EbOCRéﬁg))
1.39 (T) 0 0 0

2. 0.317  0.386 0.069
3.0 0.401  0.621 0.220
3.15 0.402  0.635 0.233
4.0 0.391  0.726 0.335
5.0 0.365 0.784 0.419
6.0 0.339  0.823 0.484
7.0 0.315  0.849 0.534
8.0 0.294  0.869 0.575
9.0 0.276  0.884 0.608
10.0 0.260 0.897 0.637
11.0 0.245  0.906 0.661
12.0 0.233  0.915 0.682
13.0 0.221  0.921 0.700
14.0 0.211  0.927 0.716
15.0 0.202  0.932 0.730
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Table 4.2(b). R(bo) for QPSK Modulation over
an AWGN Channel with no Output Quantization

opt

R (20)

(v0)

Eb/NO opt R0 EbO(Ropt )

1.39 (T) 0 0 0

2.0 0.634 0.772 0.138
3.0 0.802 1.242 0.440
3.15 0.804 1.270 0.466
4.0 0.782  1.452 0.670
5.0 0.730 1.568 0.838
6.0 0.678 1.646 0.968
7.0 0.630 1.658 1.068
8.0 0.588 1.738 1.150
.0 0.552 1.768 1.216
10.0 0.520 1.79%4 1.274
11.0 0.490 1.812 1.322
12.0 0.466 1.830 1.364
13.0 0.442 1.842 1.400
14.0 0.422 1.854 1.432
15.0 0.404 1.864 1.460

4,



Table 4.2(c). Rgig) for 8-ary PSK Modulation over

an AWGN Channel with no Output Quanti:ation

W Y el
1.39 (T) 0 0 0

2.0 0.645 0.783 0.138
3.0 0.855 1.308 0.453
4.0 0.879 1.584 0.705
5.0 0.864 1.764 0.900
6.0 0.846 1.902 1.056
7.0 0.825 2.01Q 1.185
8.0 0.807 2.100 1.293
9.0 0.792 2.178 1.386
10.0 0.780  2.250 1.470
11.0 0.765  2.310 1.545
12.0 0.753  2.364 1.611
13.0 0.741  2.412 1.671
14.0 0.726  2.451 1.725
15.0 0.714  2.487 1.773
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Table 4.2(d).

R

opt

(b0)

an AWGN Channel with no Qutput Quantization

for l6-ary PSK Modulation over

Ey/No Régg) Ro EboﬁRésg))
1.39 (T) 0 0

2.0 0.64  0.780 0.140
3.0 0.84  1.292 0.452
4.0 0.88  1.584 0.704
5.0 0.88  1.780 0.900
6.0 0.84  1.896 1.056
7.0 0.84 2,024 1.184
8.0 0.80  2.092 1.292
9.0 0.80  2.188 1.388
10.0 0.80  2.272 1.472
11.0 0.80  2.348 1.548
12.0 0.76  2.376 1.616
13.0 0.76  2.436 1.676
14.0 0.76  2.492 1.732
15.0 0.76  2.548 1.788

4.
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Figure 4.2. Optimal Block Code Rate for MPSK Modulation over an
AWGN Channel with no Output Quantization
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Table 4.3. RS;S) for BPSK Modulation over an
AWGN Channel with Output Hard Quantization

Ey/No Réggl Ro Ebo(R§§3)>
2.1 (T) 0 0 0

3.0 0.26  0.308 0.048
4.0 0.36  0.500 0.140
5.0 0.38  0.604 0.224
6.0 0.38  0.674 0.294
7.0 0.37  0.722 0.352
8.0 0.36  0.761 0.401
9.0 0.34  0.782 0.442
10.0 0.35  0.808 0.478
11.0 0.32  0.829 0.509
12.0 0.31  0.846 0.536
13.0 0.29  0.850 0.560
14.0 0.28  0.861 0.581
15.0 0.27  0.870 0.600

4.

16



Table 4.4(a). Réﬁg) for BFSK Modulation over an

AWGN Channel with Output Hard Quantization

Ep/No ﬁﬁg) Ro Ebo(Rggg))
9.5 () 0 0 0
10.0 0.49  0.508 0.018
12.0 0.50  0.609 0.109
15.0 0.48  0.699 0.219
20.0 0.43  0.781 0.351
25.0 0.39  0.832 0.442
30.0 0.35  0.859 0.509
35.0 0.52  0.881 0.561
40.0 0.29  0.892 0.602
45.0 0.27  0.905 0.635
50.0 0.25  0.913 0.663
55.0 0.24  0.927 0.687
60.0 0.22  0.927 0.707
65.0 0.21  0.934 0.724
70.0 0.20  0.940 0.720
75.0 0.19  0.943 0.753
80.0 0.18  0.945 0.765
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Table 4.4(b). Rggg) for QFSK Modulation over an

AWGN Channel with Output Hard Quantization

(b0)

Ep/No Rﬁgg) Ry Epo(Ropt )
5.5 (T) 0 0 0

6.0 1.0  1.088 0.048
7.0 1.06  1.272 0.212
8.0 1.04  1.392 0.352
8.5 1.02  1.434 0.414
10.0 0.96  1.534 0.574
15.0 0.78  1.708 0.928
20.0 0.66  1.792 1.132
25.0 0.56  1.828 1.268
30.0 0.50  1.864 1.364
35.0 0.44  1.876 1.436
40.0 0.40  1.894 1.494
45.0 0.36  1.898 1.538
50.0 0.34  1.916 1.576
55.0 0.32  1.928 1.608
60.0 0.30  1.934 1.634
65.0 0.28  1.938 1.658
70.0 0.26  1.938 1.678
80.0 0.24  1.950 1.710




Table 4.4(c). R(bo) for 8-ary FSK Modulation over
an AWGN Channel with Output Hard Quantization

opt

BNy Rep Ry E(ROD)
4.5 (T) 0 0 0

5.0 1.71 1.881 0.171
6.0 1.65 2.130 0.480
8.0 1.47 2.400 0.930
10.0 1.29 2.529 1.239
13.0 1.11 2.664 1.554
15.0 0.99 2.694 1.704
18.0 0.87 2.745 1.875
20.0 0.81 2.775 1.965
25.0 0.69 2.823 2.133
30.0 0.60 2.853 2.253
35.0 0.54 2.880 2.340
40.0 0.48 2.889 2.409
45.0 0.45 2.913 2.463
50.0 0.42 2.928 2.508
55.0 0.39 2.934 2.544
60.0 0.36 2.937 2.577
65.0 0.33 2.937 2.604
70.0 0.30 2.928 2.628
80.0 0.27 2.937 2.667

4.19
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Table 4.4(d).

an AWGN Channel with Output Hard Quantization

R

(b0)
opt

for 16-ary FSK Modulation over

ity 0D gl
3.5 (T) 0 0 0
4.0 2.44 2.464 0.024
5.0 2.36 2.924 0.564
6.0 2.16 3.136 0.976
8.0 1.84 3.392 1.552
10.0 1.60 3.536 1.936
13.0 1.32 3.640 2.320
15.0 1.20 3.704 2.504
20.0 0.96 3.772 2.812
25.0 0.80 3.812 3.012
30.0 0.72 3.872 3.152
35.0 0.64 3.892 3.252
40.0 0.56 3.892 3.332
45.0 0.52 3.916 3.396
50.0 0.48 3.928 3.448
55.0 0.44 3.932 3.492
60.0 0.40 3.928 3.528
65.0 0.36 3.916 3.556
75.0 0.32 3.928 3.608
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Figure 4.3, Optimal Block Code Rate for MFSK Modulation over
an AWGN Channel with Output Hard Quantization




compensated for by the powerful error correcting capability of the codes

(b0)

opt )}, and the net effect is that we obtain the lowest

of rate R(b) (or R

opt
decoding error probability, or equivalently, the largest coding gain.
The trade off is in a reduction of the system throughput. However, a
relatively small optimal code rate need not reduce throughput if addi-
tional bandwidth is available on the channel. Satellite and deep space
channels, in particular, are not nearly as much bandwidth limited as
they are power limited.

In the practically interesting range of values for Eb/NO’ the

( (b0)

b) . . . .
values of Ropt (or Ropt ) remain quite stable. For example, in Figure

4.1, for BPSK modulation with output hard quantization, when Eb/NO €

{5,9), which approximately corresponds to a channel bit error rate ¢ =

107% - 10'5, the optimal code rate Rgg)t = 0.321 + 0.045. This fairly

stable optimum code rate shows that optimum system performance is not
overly sensitive to the channel noise,

Note that Eb(R) > 0 for 0 < R < C, while EbOCR)-i 0 only for
0 <Rx< RO [21,22]. The channel capacity C is the absolute upper limit

on the rate of a code. The channel cutoff rate RO is the upper limit

for practically implementable systems [42]. Following the same line of

(b)

opt is the upper limit on the optimal code

reasoning, we believe that R

rate, while Rgbo)

Dt more closely matches the real optimal code rate. For

BPSK modulation on an AWGN channel with demodulator output hard quanti-

zation, Figure 4.1 shows the difference between Rgb) and R(bO)

pt opt For

large Eb/NO’ they are the same. This fact can be explained as follows.

It has been shown [21,22] that for small R, Eb(R) = E, _(R). As Eb/No

b0

becomes large we have seen that both Régi and Rg;g) becomes small.

Therefore, for large Eb/NO, the optimal code rates found in terms of



both Eb(R) and Ebo(R) must be the same.

4.2.2. The Optimal Code Rate in Terms of the Minimum Distance Bound

For an (n,k) binary block code with minimum distance dmin’ we de-
fine the asymptotic coding gain in the hard quantization case [see

Appendix C] as
R«d

_ min -
y = 10 IOgIO__—E—— dB, (4.23)
for large Eb/NO. The asymptotic lower and upper bounds on dmin are
[43]
lim —n H-l(l-R), (4.24)
N

where H(x) = -x logzx - (l-x)logzﬁl-x), for 0 < x 5_%3 is the binary

entropy function, and

d_.
lim —== 5.%(1-R), (4.25)
N>
respectively.
Define
d .
Fy(R) = Relim ﬁl . ‘ (4.26)

n-><x

From (4.23) we see that the optimal code rate in terms of the minimum

(bd)

opt ’ should maximize (4.26). By numerical

distance bound, denoted by R
calculation, we find that

(bd) _

opt (4.27)

{ 0.3778, from the lower bound (4.24),
R

0.5 , from the upper bound (4.25)

These results show that for large Eb/NO’ the optimal code rate



e aa. N,
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Régi) e [0.3778, 0.5].

An apparently contradictory fact is that the optimal code rate
found in terms of the error probability bounds is a function of Eb/NO,
while the optimal code rate found by using minimum distance bounds is a
fixed number for large Eb/NO' If one notice that the coding gain of

(4.23) are defined by using only the first term of the decoding error

probability expression [see Appendix C], the data become comprehensive.

4.3. The Optimal Convolutional Code Rate

4.3.1. The Optimal Code Rate in Terms of the Error Probability Bound

The channel coding theorem for convolutional codes states that
[21]: For a Q-ary input DMC, there exists an (n,k,m) time-varying con-
volutional code of constraint length n, = n(l+m}, and arbitrary sequence
length, whose bit error probability Pb, resulting from maximum-likeli-

hood decoding, is bounded by

. Z—nAEC(R)
Pb < (27-1) 5 § > 0, i (4.28.1)
-GnEc(R)
[1-2 ]
EC(R) = RO , 0 <R < Ro(l-é), (4.28.2)

E.(R) = m;x Eyos @0 5 020 <1,

Ey(r,a)
R = (1-8)max ———, R, (1-8) < R < C(1-6), (4.28.3)

where § is an arbitrary positive number, and Eo(p, gq) and R0 are given

in (4.1) and (4.8), respectively. We define the optimal code rate Ré;i



4.25

as the code rate R which

maximizes: EC(R),

subject to: EC(R) > 0. (4.29)

If the value of R is restricted only to 0 < R :_Ro(l-é), from

(4.28.1) and (4.28.2) we obtain

-n.E . (R)
K 2 A cO )
Pb < (2-1n 5 , § >0, (4.30.1)
-énEco(R]
[1-2 ]
ECOCR) = R0 , 0 <R < Ro(l-é). (4.30.2)

In this case the optimization problem is
maximize: ECO(R),
subject to: Eco(R) > 0, (4.31)

and the code rate R which satisfies (4.31) is denoted by Rggg).

For most real channels, Eo(p, q) (and consequently RO) is an in-
creasing function of EN/N0 = R-Eb/NO. Therefore, without loss of
generality, we can make the following assumption:

Eo(o, q) (and RO) is an increasing function of R for fixed

Eb/NO and an increasing function of Eb/NO for fixed R.

Under this assumption, the optimization problems of (4.29) and (4.31)

can be reduced to:

subject to: Ec(R) > 0, (4.32)

and



4.26

Récg) = max R,
P 0<R<R
- =0
subject to: ECO(R) > 0, (4.33)
respectively.

(c0)

opt * Also, by

Note that Régz is always greater than or equal to R
our assumption, EC(R) and ECQ(R) are increasing functions of Eb/NO for
fixed R, and this implies that the optimal code rate is proportional to

Eb/No. Because EC(R) and EcO(R) approach long on a Q-ary input DMC as

(CO)) also

. e . (c)
Eb/NO goes to infinity, the optimal code rate Ropt (or Ropt

approaches long asymptotically. The.optimal code rates as a function
of Eb/NO for the same modulation schemes considered for block codes are
given in Tables 4.5-4.8 and shown graphically in Figures 4.4-4.6.

Note that in Figures 4.4-4.6, the optimal convolutional code rate
is very close to 1og2Q in the practically interesting range of Eb/NO.
This implies that no coding is necessary. The reason for obtaining such
a rather surprising result is that the convolutional coding exponents
EC(R) and ECO(R) are not as accurate as the block coding exponents Eb(R)
and EbO(R) at low code rates. To obtain a more meaningful optimal code
rate, a tighter bound on decoding error probability at low code rates -
the expurgated upper bound - should be used. The expurgated bound for
convolutional codes states that [21]: For binary-input, output-symmetric
channels, there exists a time-varying convolutional code of constraint

length n, and rate R = k/n bits per channel use for which the bit error

A
probability with maximum likelihood decoding satisfies



Table 4.5, Rggl for BPSK Modulation over an

AWGN Channel with Output Hard Quanti:zation

W R eald
1.0 (T) 0 0 0

1.1 0.01 0.0101 0.0001
1.2 0.09 0.0945 0.0048
1.3 0.15 0.1641 0.0159
1.5 0.26 0.3015 0.0525
2.0 0.42 0.5391 0.1924
2.5 0.51 0.6921 0.3652
3.0 0.65 0.7888 0.5511
3.5 0.70 0.8973 0.7011
4.0 0.79 0.9473 0.7933
4.5 0.85 0.9719 0.8541
5.0 0.89 0.9845 0.8950
5.5 0.92 0.9913 0.9239
6.0 0.94 0.9950 0.9440
6.5 0.95 0.9970 0.9578
7.0 0.96 0.9982 0.9683
7.5 0.97 0.9990 0.9764
8.0 0.98 0.9994 0.9824
9.5 0.99 0.9999 0.9923

.
o
~1
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Figure 4.4. Optimal Time Varying Convolutional Code Rate for
BPSK Modulation over an AWGN Channel with Output Hard
Quantization
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Table 4.6(a). Ré;g) for BPSK Modulation over

an AWGN Channel with no Qutput Quantization

(c0)

Ey/Ng Rﬁgg) Eco(Rope ) (Ry)
1.3 () 0 0

1.4 0.02 0.0201
1.5 0.20 0.2002
1.7 0.44 0.4409
2.0 0.65 0.6523
2.3 0.77 0.7733
2.5 0.82 0.8253
5.0 0.90 0.9062
3.5 0.94 0.9472
4.0 0.7 0.9705
4.5 0.98 0.9826
5.5 0.99 0.9938




Table 4.6(b). Rc();g) for QPSK Modulation over

an AWGN Channel with no Output Quantization

By Repe  EeolRepe)(Ry)
1.3 (T) 0 0

1.4 0.04 0.0402
1.5 0.40 0.4004
1.7 0.88 0.8818
2.0 1.30 1.3046
2.3 1.54 1.5466
2.5 1.64 1.6506
3.0 1.80 1.8124
3.5 1.88 1.8944
4.0 1.94 1.9410
4.5 1.96 1.9652
5.5 1.98 1.9876




Table 4.6(c). Rggg) for 8-ary PSK Modulation over

an AWGN Channel with no Output Quantization

Ep/No Régg) Eco(R§§2)>CRo)
1.3 (T) 0 0

1.4 0.03 0.0303
1.5 0.39 0.3912
1.8 1.05 1.0575
2.0 1.35 1.3527
2.5 1.77 1.7838
3.0 2.04 2.0562
3.5 2.25 2.2569
4.0 2.40 2.4072
4.5 2.52 2.5275
5.0 2.61 2.6223
5.5 2.70 2.7027
6.0 2.76 2.7639
6.5 2.79 2.8095
7.0 2.85 2.8521
8.0 2.88 2.904
9.0 2.94 2.9412




Table 4.6(d). Régg) for 16-ary PSK Modulation over

an AWGN Channel with no Output Quatnization

i
n

£y Gpe EeglRepe ) (RO

1.3 (T) 0 0

1.4 0.04 0.0404
1.5 0.40 0.4004
1.7 0.88 0.8840
2.0 1.32 1.3332
2.5 1.76 1.7788
3.0 2.04 ) 2.0564
3.5 2.24 2.2556
4.0 2.40 2.4136
4.5 2.52 2.5412
5.0 2.64 2.656
5.5 2.76 2.7612
6.0 2.84 2.8472
6.5 2.92 2.9276
7.0 3.00 3.0024
7.5 3.04 3.0632
8.0 3.12 3.1300

9.0 3.24 3.2436
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Figure 4.5. Optimal Time Varying Convolutional Code Rate for MPSK
Modulation over an AWGN Channel with no Qutput Quantization



Table 4.7. Rggg) for BPSK Modulation over an

AWGN Channel with OQutput Hard Quantization

Ey/No Rﬁﬁg) Eco(R§§2)>(Ro3
2.1 (T 0 0

2.2 0.02 0.0201
2.5 0.28 0.2810
3.0 0.55 0.5503
3.5 0.70 0.7011
4.0 0.79 0.7933
4.5 0.85 0.8541
5.0 0.89 0.8950
6.0 0.94 0.9440
6.5 0.95 0.9578
7.0 0.96 0.9683
7.5 0.97 0.9764
8.0 0.98 0.9824
9.5 0.99 0.9923
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Table 4.8(a). Rggg) for BFSK Modulation over an

AWGN Channel with Output Hard Quantization

%)
wn

(c0) (c0)

Eb/NO Ropt EcO(Ropt )(RO)

9.5 (T) 0 0

10.0 0.64 0.6409
10.5 0.72 0.7221
11.0 0.77 0.7740
11.5 0.81 0.8142
12.0 0.84 0.8448
13.0 0.89 0.8912
14.0 0.92 0.9207
15.0 0.94 0.9411




(c0)
Table 4.8(b). Ropt

AWGN Channel with Output Hard Quantization

for QFSK Modulation over an

Ep/Ng Rﬁ;i) . Eco(Régg))(Ro)
5.5 (T) 0 0

6.0 1.40 1.4012
6.5 1.60 1.6086
7.0 1.72 1.7288
7.5 1.80 1.8064
8.0 1.86 1.8602
8.5 1.88 1.8926
9.0 1.92 1.9214
10.0 1.94 1.9532
11.0 1.96 1.9726
12.0 1.98 1.9840




Table 4.8(c). Rg;g) for 8-ary FSK Modulation over

an AWGN Channel with Output Hard Quantizatibn

Ep/Ng RSES) Eco(Rggg))(Ro)

4.5 (T) 0 0

5.0 2.46 2.4639
5.5 2.67 2.6817
6.0 2.79 2.8011
6.5 2.85 2.8695
7.0 2.91 2.9163
7.5 2,94 2.9442
8.5 2.97 2.9745

(93]
~1
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Table 4.8(d). Rggg) for 16-ary FSK Modulation over

an AWGN Channel with Output Hard Quantization

Ey/Ng Rﬁgg) Eco<R§§3))(Ro)
3.5 (T) 0 0

4.0 2.76 2.7648
4.5 3.52 3.5208
5.0 3.72 3.7404
5.5 3.82 3.8556
6.0 3.88 3.9140

6.5 3.92 3.9496
7.0 3.96 3.9708
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Figure 4.6. Optimal Time Varying Convolutional Code Rate for MFSK
Modulation over an AWGN Channel with Output Hard Quantization



TIE__(R)/[R(1+6)]
2K o MyEex (P
Pb |/ 2 s (4.34.1)
-bd)
L -2 _
where
R{(1+8)nZ
E (R) = — » 0 < R <R./(1+8), (4.34.2)
cex on[2 R(1+6)_1] - 0
6 > 0 is an arbitrary positive number, and
z =) /Piy[O)piyl1) . (4.34.3)

y

Since the exponential term dominates the error probability expression,
the optimal code rate, denoted by Rggix), satisfies

maximizing: Ecex(R),

subject to: Ecex(R) > 0. {4.35)
The optimal code rates as a function of Eb/NO’ for BPSK and BESK modu-
lation on an AWGN channel with output hard quantization are shown in
Tables 4.9 and 4.10 and plotted in Figures 4.4 and 4.6, respectively.

- (cex) .
Note that ROpt is around 0.75 for large Eb/NO.

4.3.2. The Optimal Code Rate in Terms of the Free Distance Bound

With maximum-likelihood decoding of convolutional codes, for large

Eb/NO, the asymptotic coding gain is given by [2]

R-d
y =10 1ogld———§£93 dB , for hard quantization, (4.36)



Table 4.9, Régix) for BPSK Modulation over an

AWGN Channel with Output Hard Quanti:zation

Eb/NO g;iX) R0 Ecex(RégiX))
2.2 (T)  0.02 0.0201 0.0201
2.3 0.12 0.1203 0.1203
2.4 0.21 0.2102 0.2102
2.5 0.28 0.2810 0.2811
2.6 0.35 0.3506 0.3507
2.7 0.41 0.4104 0.4105
2.8 0.46 0.4610 0.4612
2.9 0.50 0.5028 0.5038
3.0 0.55 0.5503 0.5505
3.2 0.62 0.6204 0.6206
3.4 0.67 0.6734 0.6758
3.6 0.72 0.7222 0.7241
4.0 0.75 0.7753 0.8021
5.0 0.75 0.8482 0.9906

10.0 0.75 0.9790 1.9019
15.0 0.75 0.9970 2.7881




Table 4,10. Ré;:x) for BFSK Modulation over an

AWGN Channel with Output Hard Quantization

Eb/NO Ré;iX) RO Ecex(R§;§X))
9.65 (T) 0.51 0.5102 0.5102
9.70 0.54 0.5408 0.5412
9.90 0.62 0.6201 0.6201
10.0 0.64 0.6410 0.6415
10.3 0.69 0.6925 0.6944
10.5 0.72 0.7221 0.7239
10.8 0.76 0.7601 0.7605
11.0 0.77 0.7740 0.7784
11.5 0.79 0.8040 0.8215
15.0 0.78 0.8945 1.1155
20.90 0.78 0.9593 1.5369
25.0 0.77 0.9835 1.9590
30.0 0.77 0.9937 2.3811
35.0 0.77 0.9976 2.8033
40.0 0.77 0.9991 3.2255




¥ = 10 log, .R-d dB , for infinite fine
107 “free qQuantization (4.37)
where dfree is the free distance of the convolutional code. The

asymptotic bounds on free distance are given by [44]:

d
lim —£Xee L% (4.38.1)
n,o= A
lim If:;ree > H 1 a-R), (4.38.2)
n, > A

for systematic fixed codes, where n, is the code constraint length;

A
d
1im —free o L (4.39.1)
n,»~ A 2
A
2R-1
2R(1 - 2 ) 0<RrR<3
R Y T T T8
d
. free
lim —n———i
n e A . 5
2H " (1-R) , §-§_R.§ 1, (4.39.2)
for nonsystematic fixed codes; and
d R-1
lim f}ree > R(é_; 2 ) (4.40)
n e A H(2 ) + R-1
for nonsystematic time-varying codes.
Define
F (R) = Relim —X8€ (4.41)
¢ n,>e A

A

The code rate R which maximizes FC(R) is called the optimal code rate,
cd)
e

o If follows from (4.36) and (4.37) that R(Y)

. (
and is denoted by Ro opt
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1s the code rate which maximizes the coding gain for large Eb/NO.
The optimization probelm can best be solved by computer. By

numerical calculation, we find that

1) For systematic fixed codes

(cd) 0.5 , from the upper bound (4.38.1),
RO ¢ = { ) ) (4.42)
P 0.3778, from the lower bound (4.38.2);
2) For nonsystematic fixed codes
(cd) 1 , from the upper bound (4.39.1),
Ropt” = { (4.43)
p 0.3778, from the lower bound (4.39.2);
3) For nonsystematic time varying codes
R(Y) _ .7580, from the lower bound (4.40). (4.44)

opt

These results indicate that for systematic fixed codes low code
rate should be used while for nonsystematic codes high code rate should
be used for optimum performance. It is interesting to compare (4.44)

with the optimal code rate Récex) found in terms of the expurgated

pt
bound, they both indicate that the optimal code rate is around 0.75 for

large F‘b/NO .

4.4. The Optimal Concatenated Code Rate

The complexity of conventional coding systems grows exponentially
with the block length for block codes or with the constraint length for

convolutional codes. To overcome the complexity of very long codes,



R L R N aet

o 7 aee

4.45

Forney [24] first introduced concatenated codes as a practical means of
implementing codes with long block or constraint lengths. Concatenated
coding systems are usually implemented by employing two levels of cod-
ing, as illustrated in Figure 4.7. Binary data from the data source is

serially partitioned into k,-bit blocks that are subsequently used as

1
input signals to a 2k1—ary block encoder known as the outer encoder.
Usually Q = Zkl—ary RS codes are used for this purpose. The output of
the RS encoder is converted back into bits and serially encoded by the
inner encoder, which may be either block or convolutional (only block
inner codes are considered here), and the resultant sequence of channel
symbols is sent over the physical channel - the inner channel. Decoding
is accomplished in the reverse order.

To evaluate the optimal code rate of the concatenated code
described above, let us investigate the performance obtainable with the
following concatenation scheme. The inner code is a block code of

length ny and rate R., where R, = logzM/nl, and M is the number of coqe

1’ 1

words in the inner code. The inner decoder is a maximum-likelihood
decoder which puts out an estimate of which code word was sent, with
average probability of error p. The outer code is a block code of
length n, and rate R2. Given an estimate, the outer decoder makes no
distinction between the outputs other than the estimate. Therefore, we
regard the outer channel as an equierror channel, and the outer channel
has transition probability matrix

1-p y =X,

ply|x) = -1 (4.45)
'1) > Y # X.

The overall rate and length of the concatenated code are R = Rle
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and N = n,n,, respectively. Define R* = n R. Note that the total num-
n,Rzan1 n7R* \R
ber of code words in the concatenated code is 2 ~ =2~ =2,

First, we derive a random coding bound for the concatenated code in
terms of the channel cutoff rate. Suppose that the best inner code of

length n, and rate R1 is used. Then

p<2 ) 0 <R <R (4.46)

1 01°

where ROl is the inner channel cutoff rate. The outer channel cutoff

rate, denoted by ROZ’ is given by (4.8). By symmetry, the probability

vector q for which the left hand side of (4.8) is maximized is

Ry
q(x) =2 , for all x. (4.47)

Substituting (4.45-4.47) into (4.8), we obtain

n, (R

-n. R, - - -R.)
11 1201 '1
Ry, 2 - log, 2 v1i-2

n,R —nl(R01~R1)

s/ @y 2 1 (4.48)

As ny becomes large, (4.48) is reduced to

{ ™Ry Ro1 2 2Ry
R
02 _ 5
ny(RopRy) s Ryp 2 2Ry
or in another form
RO2 2y mln[(ROI-Rl), R1]° (4.49)

Now define

C~ o



<

Eo (R) =R, -R

v

g min[(ROl-Rl), Rl] - an

n

t

l{min[(ROl-Rl), RI] - R}. (4.50)

In order to maximize performance, for a given overall rate R, R1 and

R, may be varied subject to the comstraint R = R.R We then define

2 172°

l * *
EnO(R) =~ max EnO(R )
1 R1R2=R

> max {min[(R

R1R2=R

o1-R)» Ry - RL (4.51)

Therefore, we can claim from the coding theorem (in terms of the cutoff
n_R

11

rate) that if there exists an equierror outer channel with 2 inputs

and average error probability p, then there exists a concatenated code

of overall length N and overall rate R such that

' -NE_,(R)
P <2 n0

g = , O0<R<R

01 (4.52)

Note that in (4.51), R01 is a function of R1 and RZ’ and so is EnO(R).

To emphasize this fact, we rewrite EnO(R) as Eno(Rl, Rz), and conse-
quently
-NEnO(Rl, RZ)

P. <2 » 0 <R<R

£ < (4.53)

01°

Now the optimal inner and outer code rates, denoted by Réég) and

respectively, should satisfy
maximize: Eno(Rl, R2),

subject to: EnO(Rl, Ré) > 0. (4.54)
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A tighter bound on P_ is given by a concatenated coding theorem in

E

Reference 24, But in [24] the inner code rate is restricted to Rcl <

R1 < Cl’ where Rcl

inner channel capacity, respectively. For our optimal code rate

and C1 are the inner channel critical rate and the

problem, the inner code rate can be any value between O and Cl' This 1is

done by slightly modifying Formey's theorem in [24]. From the block
coding theorem, the outer channel average probability of error is
bounded by

. 2'“1Eb(R1)

P s 0 <R, <C (4.55)

where Eb(Rl) is given by (4.5). Using (4.55) and following the same
line of reasoning as Forney, we obtain: If there exists an equierror

n R
outer channel with 2 1 inputs and average error probability p, bounded

by (4.55), then there exists a concatenated code of overall length N and

overall rate R such that

-NE_(R)
P2 , 0<RZ2C, (4.56)
where
En(R) = max {min[Eb(Rl), Rl](l-Rz)}. (4.57)
R R)=R

Again note that En(R) is, in fact, a function of R1 and RZ’ SO we can

rewrite it as En(Rl’ R,), and (4.56) becomes

-NE_(R;, R,)

P <2 , 0<R<C

g < (4.58)

1°

Therefore the optimization problem is
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maximize: En(Rl, RZ)’

subject to: En(Rl’ Rz) >0, (4.59)
and the inner and outer code rates R1 and R2 which satisfy (4.59) are
denoted by Rcl) and R(z) respectively.

opt opt’

Examgle 4.3

Assume that the inner channel is a BSC derived from forcing hard
decisions on an AWGN channel with BPSK modulation. This channel is
representative of the deep space channel where concatenated codes have
met with a great deal of success. The numerical values of optimal
(R

inner and outer code rates in terms of both E Rz) and En(Rl, R

n0- 1’ 2)
are listed in Table 4.11 and shown in Figure 4.8 as a function of Eb/NO.
From Figure 4.8 we see that low inner code rates and high outer code

rates should be used in such a concatenated coding system.
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Table 4.11(a). R(lo) and R("O) for BPSK Modulation
opt opt

over an AWGN Channel with Output Hard Quantization

o WP RED 009, 800)
4.4  0.01 1.0 0.0200 2x107°
4.5  0.02 0.98 0.0398 0.0002
4.7 0.04 0.96 0.0809 0.0016
4.9 0.06 0.94 0.1204 0.0036
5.1 0.08 0.92 0.1604 0.0064
5.3 0.10 0.90 0.1599 0.0099
5.5 0.12 0.89 0.2410 0.0132
5.7 0.14 0.87 0.2790 0.0172
6.0 0.16 0.85 0.3202 0.0240
6.4 0.18 0.82 0.3615 0.0324
6.7 0.20 0.80 0.4002 0.0400
7.1 0.22 0.78 0.4420 0.0484
7.6 0.25 0.76  0.5013 0.0600
7.9  0.26 0.74 0.5200 0.0675
8.5 0.27 0.70 0.5404 0.0810
9.1 0.30 0.69 0.6005 0.0930
9.7 0.31 0.66 0.6205 0.1054

10.2  0.32 0.64  0.6402 0.1152

11.1  0.33 0.60 0.6597 0.1317

11.8 0.34 0.58 0.6815 0.1428

12.8 0.36 0.56 0.7206 0.1584




‘ (1)
Table 4.11(b). Ropt

an AWGN Channel with Output Hard Quantization

and Ré;i for BPSK Modulation aver

By KR8 o gl a)
1.2 0.05  0.98  0.0522 1x107°
1.3 0.08 0.96 0.0870 6x10”°
1.4 0.11 0.94 0.1237 2.6x107°
1.5 0.14 0.93 0.1634 7.1x107°
1.6 0.16 0.91 0.1917 1.5x107%
1.7 0.18 0.90 0.2226 2.7x107%
1.8 0.20 0.89 0.2540 0.0004
2.0 0.22 0.86 0.2928 0.0009
2.1 0.24 0.86 0.3277 0.0012
2.3 0.26 0.84 0.3690 0.0021
2.5 0.28 0.82 0.4093 0.0031
2.8 0.30 0.80 0.4604 0.0051
3.2 0.32 0.78 0.5201 0.0084
3.8 0.34 0.75 0.5900 0.0147
4.3 0.35 0.73 0.6365 0.0211
5.0 0.36 0.71 0.6923 0.0312
5.75 0.37 0.69 0.7427 0.0435
6.75 0.38 0.67 0.7963 0.0613
7.75 0.38 0.64 0.8256 0.0795
8.75 0.38 0.61 0.8475 0.0971
9.75 0.38 0.58 0.8637 0.1138
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Figure 4.8. Optimal~Concatenated Code Rate for BPSK Modulation over

an AWGN Channel with Output Hard Quantization
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