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SUMMARY

During the grant period the following research results were obtained:

1) Performance Analysis of NASA Telecommand System.

Details of our work on this problem have been previously submitted

to NASA. Three papers have been published in the open literature [1, 2,

3]. Copies of these papers have been sent to NASA in earlier reports. A

complete summary of this work is included as Appendix A of this report.

This constitutes Chapter 3 of the Ph.D. thesis of Dr. Robert H. Deng, who

was supported as a research assistant on this grant and received his

Ph.D. from the Illinois Institute of Technology in December, 1985.

2) Optimum Code Rate Selection in FEC Systems.

A random coding approach was taken to determine the optimum code

rate to use in a forward-error-correcting (FEC) system with a fixed

signal-energy-to-noise-power-density ratio, Eb/NQ, but no bandwidth

constraint. By optimal code rate we mean the code rate which gives the

smallest decoding error probability, or equivalently, the largest coding

gain, for a given Eb/NQ. A paper is being prepared on this subject for

submission to the IEEE Transactions on Information Theory [4]. A com-

plete summary of this work is included as Appendix B of this report.

This constitutes Chapter 4 of the Ph.D. thesis of Dr. Robert H. Deng.

Our results indicate, as expected, that when maximum likelihood de-

coding is used, the optimal code rate approaches zero (infinite bandwidth

expansion). However, for more practical bounded distance decoders, an

optimal code rate does exist between about a rate of 0.2 and a rate of
*

0.5 over a broad range for values for ED/NQ. Calculations of code per-

formance for several classes of specific codes tend to support these

conclusions.



3) Capacity and Cutoff Rates of Concatenated Coding Systems.

Details of our work on this problem have been previously submitted

to NASA. Four papers have been published in the open literature [5, 6,

7, 8]. Copies of these papers have been sent to NASA in earlier reports.

4) Distance Growth Rates in Convolutional Codes.

The rate of growth of the minimum distance between unmerged code-

words in a convolutional code is an important parameter in determining

the bit error probability of the code when used with a finite memory de-

coder. Also, if the code is terminated to form a block code, the per-

formance of the block code depends on the distance between unmerged code-

words in the convolutional code. We have obtained a lower bound on the

minimum distance growth rate between unmerged codewords for time-invari-

ant convolutional codes. This complements a similar result previously

obtained for time-varying codes. A paper summarizing this result was

previously submitted to NASA [9].

5) Bandwidth Efficient Coded Modulation.

Details of our work on bandwidth efficient coded modulation have

been previously submitted to NASA. A copy of a paper on this subject was

sent to NASA in an earlier report [10]. We are continuing our research

in this area under our current NASA grant NAG5-557.
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CHAPTER III

UNDETECTED ERROR PROBABILITY AND THROUGHPUT ANALYSIS
OF A CONCATENATED CODING SCHEME

3.1. Description of the Scheme

Consider a concatenated coding scheme for error control on a binary

symmetric channel (BSC). Two linear block codes, denoted C,. and C, , are
t D

used. The inner code Cf, called the frame code, is an (n,k) systematic

binary block code with minimum distance d~. The frame code is designed

to correct t or fewer errors and simultaneously detect X (X>t) or fewer

errors, where t + X + 1 _< df [2]. The outer code is an (iv> k ) binary

block code with

n, = mk, (3.1)

where m, a. positive integer, is the number of frames. The outer code is

designed for error detection only.

The encoding of the concatenated code is achieved in two stages

(see Figure 3.1). A message of k, bits is first encoded into a codeword

of n, bits in the outer code C, . Then this codeword is interleaved to

depth m. After interleaving, the n,-bit block is divided into m

k-bit segments. Each k-bit segment is encoded into an n-bit word in the

frame code C_. This n-bit word is called a frame. The two dimensional

block format is depicted in Figure 3.2.

Decoding consists of error correction and error detection on each

frame and error detection on the m decoded k-bit segments. When a frame

in a block is received, it is first decoded based on the frame code C_.

The n-k parity bits are then removed from the decoded frame. If there
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are t or fewer transmission errors in a received frame, the errors will

be corrected, and the decoded segment is error free. If there are more

than t errors in the received frame, the errors will be either detected

or undetected. If the errors are detected, the decoder stops decoding

immediately and requests a retransmission of the entire block. On the

other hand, if the errors in a frame are undetected, the decoded segment

will be stored in a buffer and the decoder continues to decode the next

frame. After m frames of a block have been decoded, the m k-bit decoded

segments are then deinterleaved. Error detection is performed on these

deinterleaved segments based on the outer code C, . If no errors are

detected, the m decoded segments are assumed to be error free, and are

accepted by the receiver. If the presence of errors is detected, the m

decoded segments are discarded and the receiver requests a retransmis-

sion of the entire block.

The error control scheme described above is actually a combination

of forward-error-correction (FEC) and automatic-repeat-request (ARQ).

In this chapter, we analyze the performance of the proposed error con-

trol scheme. Specifically, the system reliability and the system

throughput are considered. The system reliability is measured in terms

of the probability of undetected error after decoding. First, by assum-

ing the inner channel to be a memoryless binary symmetric channel (MBSC)

with a bit error rate (BER) e. , we look at the outer channel created by

the combination of the interleaver, the frame code, and the inner chan-

nel. Then we develop precise expressions for both the probability of

undetected error and the system throughput. Following that, we investi-

gate the system reliability attainable by using random coding arguments,

which in turn are used as theoretical guidance in the selection of inner



and outer codes. Finally, the system performance on burst-noise-

channels is considered.

3.2. The Outer Channel Model

Let P^ (e.) denote the probability of correct decoding for thec i

frame code. Suppose that a bounded-distance decoding algorithm is em-

ployed. Bounded-distance decoding corrects all received n-bit sequences

with t or fewer errors. When an n-bit sequence with more than t errors

is detected, no attempt is made to correct the errors. Since there are

(.) distinct ways in which i errors may occur among n bits,

ei> = C 1 " ^ " (3.2)

for bounded-distance decoding.

For a code word _v in the frame code Cr, let w(v) denote the Hamming

weight of _v. If a decoded frame contains an undetectable error pattern,

this error pattern must be a nonzero codeword in C^. Let j» be an un-

detectable error pattern after decoding. The probability Po(w,e.) that

a decoded frame contains a. nonzero error pattern £. after decoding is

given by [14,33,34]

t minft-i.n-w) . . . .
P£Cw,e.) - I I' (XrXW"1+JC1-ei>n~W+1~J- C3.3)

i=0 j=0 J

where w = w(O > and e. is the BER of the inner channel. If e. « — ,

then

n f \ ,-w.. w-t,, ..n-w+t ,._ ...PfCw,ei) z Ct)ei (1-ê  . O-4)

Let P^. Ce-) denote the probability of undetected error for the frame
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code. Let {A^ , dr < w < n} be the weight distribution of C~. Itw i — — t

follows from [3. 5) and (5.4) that

) * I Aw
fVw,

w=d -

. _ , , .ud ^ ij df f f i

df df't n~df+ t 1
C : ) e . (l-e-) * f o r e . « -. (3.6)d _ v t j i v i i n

Now consider any one of the m frames, say the j-th frame. If the

decoded frame contains undetected errors, the BER e after decoding is
3.

given by
1 n

r . ,,., „ f , ^3>7j

For e. « — , theni n

e s - d.a n f d,.

dp d,.-t n-d,.+t
f)e. f C1.ej f ,

n d t i i

is a good approximation to e . Let E be defined as the event that a
3.

frame contains undetected errors. Now let e ,_ denote the BER embedded

in a decoded frame conditioned on the occurrence of event E. It

follows from (3.7) that

e ._ = e /P {E} = e /PCe.). (3.9)a/E a r a. ud ^ \

For e. « — , substituting (3.6) and (3.8) into (3.9) yields



Now define S to be a random variable such that when h of the m

frames contain undetected errors, and the remaining m-h frames are de-

coded correctly, S = h, h = 0, 1, 2, •••, m. It follows from (3.2) and

(3.5) that

Pr<S=h} = O'tP^CeX - [Pc
Cf)(£i)]

m-h. (3.11)

Note that (3.11) is not a binomial distribution because P , (e.) +

P^ (e.) < 1, i.e., some received sequences with more than t errors are

detected by the frame code.

After deinterleaving of the m decoded segments (with the n-k parity

bits removed from each frame), the BER embedded in the n,-bit block,

conditioned on S = h, is given by

e000 = ea/E ' ~ , k = 0, 1, 2, -.-, m. (3.12)

We call the channel specified by (3.11) and (3.12) the outer channel,

and it is depicted in Figure 3.3. Note that £Q(0) = 0. This channel

can be viewed as a. block interference (BI) channel, as described in

[35]. A, , h = 0, 1, 2, ••-, m, is called the h-th component channel of

the BI channel. Each block of n, bits (n, is the length of the outerb D

code) is transmitted over one of the m+1 component channels. The random

variable S determines which component channel is used to transmit a

given n,-bit block.
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3.3. The Probability of Undetected Error and the System Throughput

of the Concatenated Code

Let {A. , d < i < n } be the weight distribution of the outer
1 D "~" D

code, where d, is the minimum distance of C, . Let P , (E) be the proba-b b ud r

bility of undetected error for the outer code C, . If the n -bit block
b b

is transmitted over the h-th component channel A, of the outer channel,

it follows from (3.12) that

n
1U-e 00) (3.13)

i=db

Let P j(e-) be the average probability of undetected error of the

concatenated code. From (3.11) and (3.13) we obtain

I U
h=l

n

I A^^W^Gl-egOi)) b >, (3.14)
1=db

where P^ ̂ (e.) and P^,7(e.) are given by (3.2) and (3.5), respectively.

The system throughput is defined as the ratio of the average number

of information digits successfully accepted by the receiver per unit of

time to the total number of digits that could be transmitted per unit

of time [8,36]. It is determined by the retransmission strategy, which

may be one of the three basic types: stop-and-wait, go-back-N, or

selective-repeat. All three basic ARQ schemes achieve the same relia-

bility; however, they have different throughputs. Suppose that the
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selective-repeat ARQ scheme is used as the retransmission strategy. The

specific manner in which the receiver signals to the transmitter for a

retransmission will not be considered. It will be assumed, however,

that this backward signal is error-free, and that repeated retransmis-

sions of a block are possible. For an analysis of various ARQ schemes

with a noisy feedback channel, the reader is referred to Reference 8.

For the concatenated code, let P d(e-)>
 p (e-)» and P (e.~) denote

the probabilities of an undetected error, of a block retransmission, and

of correct decoding, respectively. Obviously,

P jCe.) + P CeJ + P CE-) = 1. (3.15)ud i r i c i

In the selective-repeat ARQ scheme, the transmitter sends code

blocks to the receiver continuously and resends only those code blocks

that are detected in error at the receiver. The probability that a

block will be accepted by the receiver is

For a code block to be successfully accepted by the receiver, the

average number of retransmissions (including the original transmission)

required is

)(l-P(e.)) " + •••i

1

Then the throughput of the system is [2]



i.ll

k kbwhere R = — • — is the over-all code rate of the concatenated code.

Note that a transmitted block will be received correctly if and

only if all m frames are decoded correctly. Therefore, the probability

of accepting a correct block is given by

P (e.) = [P(£)(£.)]
m = [ I ("De.̂ l-e.)11'1]1". (3.19)c l' l c v i'J L.f;g iv i v iv J *• '

For the usual situation where P ,(e.) « P (e.)> it follows fromud v i c ̂  iJ'

(3.18) and (3.19) that

. k. t
— . P . r V rn-\ ir-( ^n-i,m ,_

~n n, . ̂ rt i i i
D 1=0

It can easily be seen that n increases monotonically as t increases,

but that for small s., n is only a weakly increasing function of t.

In order to see the relationship between t and P ,(£.)» from

(3.14) we have

I
i=db

{ I Ap5(e (D^Cl-e (I))"1' "}, for e « I. (3.21)

Using (3.6), (3.10), and (3.12), P d(e-) can be further approximated as

d ' d -t n-d -+t rf^ ,
Pud(ei5 = K ' ( t)ei (1'£i} ' [Pc (ei)] • C3'22)

where
,0. D ,. , d. . d- IL -i

K . m • A.Cf) - { I A.Cb)(-i-)lCl --1-)d_ . L , i vm'n' *• m-ny

f

is a constant which is independent of t. Let Q(t) denote the right

hand side of (3.22). Then
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That is, for e. « 1/n, when t increases by 1, P d(e-), the probability

of undetected error, will increase by approximately e. . Thus P j(e-)

is a strongly increasing function of t. For this reason, a large value

of t is not desirable in such a system.

3.4. _A Bound on the Reliability of the Concatenated Code by _a Random

Coding Argument

In this section we derive a lower bound on the reliability of the

concatenated code by using a random coding approach. Although the bound

may not be tight enough, especially when the inner code is used for

error detection only (i.e., t=0), it does give some insight into the

concatenated code.

Let Pp (e.) be the probability of decoding error for the frame
£ X

code when the frame code is used only for error correction. Again, let

P d (£•) and P
1- '(e.) be the probabilities of undetected error after

error correction and of correct decoding for the frame code, respective-

ly. Obviously,

Then P ,(£.)> the probability of undetected error of the concatenated

code, from (3.14) and (3.24), can be bounded by



5.15

m

h=l

Let T and r_ denote the ensembles of inner systematic codes and

of outer systematic codes, respectively. We assume that the two en-

sembles of codes are selected independently of each other. Then the

average probability of undetected error over r.xr is, from (3.25)

m
I I

h=l

I
h=l

where the first average is over T and the second over F_. Equation

(3.26) can be rewritten as

m
^< I 01 h=l n

because the average of the sura is equal to the sum of the averages. By

the memoryless assumption of the inner channel, we also have, from

(3.27),

m ~Tn h fhl
P ,(e-) < y (m) [P (£•)] ' P H (en(h))- (3.28)
U h=l

The last terra in (3.28) is given by [2]
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= 2 , (3.29)

which is independent of h, where R? = k,/TL is the code rate of the

outer code. Using this fact, equation (3.28) yields

m ~ ,
[Pf}(£i)]

h. (3.30)
h=l

Now we define the reliability of an (n,k) code as

E > - lim - log0P~7. (3.31)
— n 2 ud

For the concatenated code, the reliability is

E _> - lim - log2Pud(ei). (3.32)
"

Note that n^ = km = R mn. For fixed ^ and ra, n, going to infinity is

equivalent to n going to infinity. Hence (3.32) can be rewritten as

E _> - lim — log 2
n

m

h=l

(3.33)
h=2
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Because

1 - H C e i ) = 1

:^) -*• 0 when n̂ «° if and only if R < C, where C =

* eilog2
Ei + t1'ci)1°S2^1"-i^ is the inner channel

capacity [15], the last limit in the brackets {•••} goes to zero.

Therefore

Ei1-R2*i^t'

= ** "~ "n "* ^n ' r »2 mR f (3.34)

where Ef = - lira Iog2 P g C ^ D is given by [15]

where

X log.

- R

, e.)

X = H"1(1-R1),

1 Rl 1 V

» R
c 1

 Rl 1 c»

(3.35)

(3.36)

(3.37)

(3.38)

- H( (3.39)

and

Rc ' l - »t , , ).
/e7 + /1-e/

(3.40)

R0 = (3.41)
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The reliability E, bounded in (3.34) is plotted in Figures 3.4

-2 -4and 3.5 for e. = 10 and e. = 10 , respectively. These results show

that low inner and outer code rates are needed in order to obtain high

system reliability.

3.5. Examples

Having investigated the theory of the concatenated code in the pre-

vious sections, in this section we present some concatenated code ex-

amples whose purpose is to give a feeling for the actual system perform-

ance. Recall that the concatenated coding scheme described above is

used in ARQ systems, and that the major advantage of ARQ is that it

requires simple decoding equipment, while achieving high system relia-

bility and throughput. Therefore, only those codes which require simple

decoding are chosen as examples. We should point out that the results

of sections 3.3-3.4 are a useful general guide to code selection.

Example 5.1

This concatenated code example has been proposed for a NASA tele-

command system. The frame code C,. is a distance-4 Hamming code with

generator polynomial

g(x) = (x-t-l)(x64-x+l) = x7 + x6 + x2 + 1, (3.42)

where x + x + 1 is a primitive polynomial of degree 6. The natural

length of this code is 63. This code is used for single error correc-

tion (t=l), and is also used to detect all error patterns of double

weight and some higher odd weight error patterns. The outer code is a
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distance-4 shortened Hamming code with generator polynomial

, . , . w 15 14 13 12 4 3 2g(x) = (x+l)(x + x + x - i - x + x + x + x

16 12 5 . ,„ ._.= x + x + x + 1 , (3.4j)

where x + x + x < > + x" + x + x + x + x •»• 1 is a primitive poly-

nomial of degree 15. This code is the x.25 standard for packet-switched

data networks [37]. The natural length of this code is 2 -1 = 32,767.

In this example, a shortened code of maximum length 3,584 bits is con-

sidered. This code is used for error detection only.

We assume that the number of information bytes (IB) in a frame is

between 3 and 7, that is, the inner code can also be shortened. The

number of frames in a block is between 4 and 64.

To obtain a precise result for P ,(e.)> a computer program was

written to help determine the reliability of the proposed concatenated

coding scheme. We found that if only one frame contains a weight 4

undetected error pattern, then this error pattern can always be detected

by the outer code. Thus (3.14) can be modified as follows:

£ )P
C£)feud eij c {

i=db

r. , . n, -i
I A}DJ(e OOrCl-e n(h)) >, (3.44)

i=db

where
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'(E.) = I Â %(w,e.), (3.45.1)

and

r w=d£+l

I I A<f>w P (w,e )
w=d£+l L

Results for the probability of undetected error P ,(e.)» based on

(3.44), and the system throughput n are plotted in Figure 3.6, where we

have used the method in [6] to obtain

%
" izdb1

The system described above can be altered by allowing the frame

code to do error detection only (i.e., t=0). In this case, P J(G-) and

n are shown in Figure 3.7.

Example 3.2

The same frame code and outer code are employed as in Example 3.1.

The inner channel is, however, assumed to be a AWGN channel with BPSK

modulation and the frame code is decoded by using the Viterbi decoding

algorithm with repeat request and infinite demodulator output quantiza-

tion [38]. Let u, a positive real number, be the retransmission metric

threshold of the algorithm [38], Let P , , Pj , and e denote the
UQ u 3.

probability of undetected error, the probability of detected error, and

the BER after decoding, respectively, for the frame code. Then [38]
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Figure 3.6. Performance of the Concatenated Code of
Example 3.1 Ct=l)



Figure 3.7. Performance of the Concatenated Code of
Example 3.1 Ct=0)



<ud —

exp( ̂  d )T(X)
0 X=exp( -

(3.46)

d -
. „/

N,

w- df)
T(x)

W0 X=exp( - ̂
0

(3.47)

£a 1 Q( 7 -T d£a NQ t

N 3T(X,Y)
3Y

Y=l

X=exp(- N (3.48)

where
00 2

Q(x) = -i- / e"z /2dz, (3.49)

n
T(X) =

i=d£
1

(3.50)

9Y

Y=l n

i=d
i ACfVX rv. A

1
(3.51)

and E /N is the channel symbol signal energy-to-noise power density

ratio. From (3.46) and (3.47) we see that the probability of correct



decoding for the frame code is

H
(3.52.1)

for P^ « P'"'. (3.52.2)vi ud d

The probability of undetected error of the concatenated code, P ,, and

the system throughput, n, can be computed by using (3.46)-(3.52.2) in

the formulas given in section 3.3. Both P , and n are shown in Figure

3.8 for u=4 with respect to e., where E^/N- and e. are related by the

equation

, 2EN
e. = QC / -CT )• (3.53)

0

The influence of the value of u on the system performance is

obvious. For larger values of u, from (3.46), (3.47), and (3.52.2),

the probabilities P . and P^ ' become smaller, and consequently the

probability of undetected error and the system throughput are lower.

Example 3.3

The outer code is again a shortened distance-4 Hamming code with

generator polynomial given by (3.43). The frame code is an (n,n-l)

single-parity-check code. The frame code has a minimum distance of 2,

and is used for error detection only. The frame code can detect all odd

weight error patterns. The weight distribution of the frame code can be

calculated from

A2i = ^i5 + (2i-l} ' i = 0, 1, 2, ". ijj , (3.54.1)

A. = 0, for all odd j, (3.54.2)
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where (,) = 0 for k < 0 and k > n, and [xj denotes the integer part of

x.

Because the outer code detect three or fewer errors, if only one

frame contains a weight 3 or less undetected error pattern, then this

error pattern can always be detected by the outer code. Hence, equation

(3.44) is used to compute the probability of undetected error, where

is the probability of undetected error when the undetected error

pattern has weight greater than 3, and

2i 2i,. ,n-2i) — A_ . e . (l-e. ). L _ n 2i i v ij ,

Figure 3.9 shows the probability of undetected error P ,(e.) and the

system throughput n for this example.

From Figures 3.6-3.9, we observe that the performance of a particu

lar scheme depends strongly upon the channel noise conditions. There-

fore, we cannot say that a particular one of the above schemes is

"best". However, we can draw a number of conclusions which will be dis-

cussed below.

From Figures 3.6 and 3.7 we can see the tradeoffs between the

probability of undetected error and the system throughput obtained by

varying the number of correctable errors t in the frame code. Smaller

value of t always result in a lower probability of undetected error,
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and therefore a higher system reliability. But as the channel BER gets

higher, the system throughput degrades rapidly for smaller t. The

system throughput is less affected by t if the channel BER is small.

Figure 3.8 shows the advantages of a Viterbi decoded frame code

with repeat request over an algebraically decoded frame code. The

Viterbi decoding algorithm makes the system much more flexible in trad-

ing between system reliability and throughput by simply changing the

value of u. Varying u can be viewed as a generalized method of "varying

t" for algebric decoding of the frame code. From comparison of Figures

3.6-3.9 we see that lower inner code rates provide higher system-re-

liabilities but lower system throughputs.

In Figure 3.10 we plot P dO-)
 vs • n for the above examples with

m = 64 and IB = 7. The infinite slope of the curves is due to the fact

that at low channel BER's the system throughput becomes saturated. We

conclude that, at moderately low BER's, the concatenated coding scheme

is capable of achieving high system throughputs and extremely low unde-

tected error probabilities.

• y

3.6. The Concatenated Code Performance on a Burst-Noise-Channel

Channels with memory often occur in practice. Errors on these

channels tend to occur in bursts, and hence they are called burst-noise-

channels. Examples of burst-noise-channels are radio channels, where

the error bursts are caused by signal fading due to multipath transmis-

sion, wire and cable transmission, which is affected by impulsive

switching noise and crosstalk, and magnetic recording, which is subject

to tape dropouts due to surface defects and dust particles. In this
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section we extend the performance analysis of the concatenated coding

scheme to burst-noise-channels. The results here will be compared with

those presented in the previous sections.

3.6.1. The Inner Channel Model

The generalized Gilbert type channel [11,39,40], as shown in

Figure 3.11, is used as our inner channel model. There are two states

in the model. Each state is a BSC. State 1 is the "quiet" state, where

the BER is e . State 2 is the "noisy" state, where the BER is e2, and

e2 » e . The transition probabilities between states are P = P {l->2}

and p = P {2->l} (see Figure 3.11). Q = 1 - P and q = 1-p are the proba-

bilities of remaining in states 1 and 2, respectively. To simplify the

model's treatment, we assume that one transition time in the model

corresponds to the transmission of one frame of length n bits, i.e., the

noisy bursts last for a multiple of the transmission time of a frame.

The average burst length is then [11]

T = — frames, (3.56)
P

or

£ = Ln = - n bits. (3.57)
P

The average BER is

and the probability of being in the noisy state is

£ - £1
p = -i. (3.59)
* 2 " £1
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Four parameters govern the model. They can be chosen to be L, e, p.:

and the high-to-low BER ratio e->/ei •

3.6.2. The Outer Channel Model

Let P^ (e.), P _,(£•)» £ • and e -iv 3 = 1> 2» denote the proba-c ^ j ' u d ^ j a j aj/E J ' r

bility of correct decoding for the frame code, the probability of unde-

tected error for the frame code, the BER in a decoded frame, and the BER

embedded in the decoded frame conditioned on the decoded frame contain-

ing undetected errors, respectively, when the frame is transmitted in

state j. (In the following we will always use the subscript j, j =1,

2, to denote that a frame is transmitted in state j.) Then P^ (e.)>

P̂ Oj). eaj, and e /£ are given by C3.2), (3.5), (3.7), and (3.9),

respectively, with e. replaced by e., j = 1, 2.

Now define E , , 0 <_ 1 <_ h _<_ m, to be an event such that h of the m
x/ j n *—i ""™ ~~~*

decoded frames contain undetected errors (the other m-h decoded frames

are error free) and £ of the h containing undetected error frames are

transmitted in state 2 of the inner channel. Let P {E } be the prob-r x. 9 n

ability that event E occurs. Then after deinterleaving of the mx y n

segments (with the n-k parity bits removed from each decoded frame), the

BER embedded in the n, -bit block, conditioned on the occurrence of event
b

E£ h, is given by

» , O £ < h < m . (3.60)

We call the channel specified by (3.60) and the probability distribution

P {E ,} the outer channel (see Figure 3.12).T x* } n
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3.6.5. Performance of the Concatenated Code on a Burst-Noise-Channel

If the n, -bit block is transmitted over the component channel A, ,b x ,n

of the outer channel, the probability of undetected error of the outer

code is n

With the aid of the above outer channel model, the average probability

of undetected error of the concatenated code is

m

For large m, the computation of (3.62) is very complex and time

consuming. To reduce the computational work to a manageable amount,

we seek an approximation to £3.62).

Define

emax= maXf£al/E> Ea2/E] ' (3'63)

It follows from (3.60) that

and equality holds when e. and z~ are equal, i.e., the inner channel is

a memoryless BSC. Assuming that pud C^) is an increasing function of z,

0 <_ z <_ 1/2, we obtain from (3.62) and (3.64)

m ,, , h m
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where

BOO = £ P {E , }, 0 <_ h _< m, (5.66)r x.,n
£ =

is the probability that h of the m decoded frames contain undetected

errors (and the remaining m-h decoded frames are error free). $(h) can

be readily computed by a recursive method. To find 8(h), we model the

decoded frame status as a Markov chain (see Figure 3.15). In state j,

3 = 1 , 2 , the decoded frame contains an undetected error with probabil-

ity P*- '(e.) and is error free with probability P^ (e.).

Define G(h,m) = P {h of the m decoded frames contain undetected

errors / the inner channel starts in state 1} and B(h,m) = P {h of the m

decoded frames contain undetected errors / the inner channel starts in

state 2}. By applying a similar argument as in [40], we have

S[h) = ~ G(h,m) + - B(h,m), 0 <_ h <_ m. (3.67.1)

G(h,m) and B(h,m) can be found recursively from

GCh.m) = G(h,m-l)Q p£f) 0^) + B(h,m-l)P

+ G(h-l,m-l)Q P^CEj) + BCh-l,m-l)P P C ) , (3.67.2)

B(h,m) = B(h,m-l)q P^f) Ce2) + G(h,m-l)p

* B(h-l,m-l)q P̂ (£2) + G(h-l,m-l)p P (e) , (3.67.3)

GCO,1) = P^C^) , BCO,1) =

GC1,D = Puf C^) , BC1.1) = Pu(e2) C3.67.4)

we must also assign the values GCh,m) = B(h,m) = 0 when h < 0 or h > m.
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Note that if e . = e 0/c, the upper bound of (3.65) is very closea 1 /1 a<^ 11

to (3.62). Fortunately, this is usually the case for 0 < e.. < e_ < 1/2,

especially for small e and e , for then E /P a d-/n.
X ^- 3. J./ t L

Although in general the computation of (3.62) is very involved, in

the following two important cases it can be handled quite easily.

1) EI = 0. That is errors are not allowed to occur in state l.Then

(3.62) reduces to

m

where

m> 0 < h < m , (3.68.2)

G(h,m) + - B(h,m), 0 <_ h £ m, (3.68.3)

and both G(h,m) and B(h,m) can be found from (3. 67. 2) -(3. 67. 4) by

letting P^Cej) = 1 and P^Ce^ = 0.

2) P = 1-p, i.e., the inner channel of Figure 3.11 becomes a BI

channel, as shown in Figure 3.14. P and P are the probabilities

of being in states 1 and 2, respectively. The probability P {£ , }
• i Xr j 11

is given by

P ( E } = f f W ~ U
r i b£,h ) i0

U iKh-£ J L ud
S *~ x»

,.,h-x, r ,s^ ,m-s^ _ s _ m-s
- Lfud ^2J Lrud LVJ sf;£ ^^h-Ji-

1 P2 Pl :

0 < i < h < m. (3.69)
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P =
1 P+p

Figure 3.14. A BI Inner Channel
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P can be computed by using (5.69) in (5.62).

To evaluate the system throughput, again assume that selective-

repeat ARQ is used. Let P ,, P , and P denote the probabilities of an

undetected error, of a block retransmission, and of correct decoding,

respectively. Of course,

P . + P + P = 1. (3.70)
ud r c ^

In order to simplify the problem, we assume that retransmissions do

not depend on the previous inner channel states. This is a reasonable

assumption if the channel round-trip delay is large. Then the through-

put of the system is [2]

n = i-li (l-p ) = H-H. (p +p ) (3.71)
n n, r n n, ud cj

k
:-— P , (3.72)
nnb c

and

3(m), (6.73.1)

G(m) = G(m-l)Q P (e^ + B(m-l)P P'(e^ , (6.73.2)

\

B(m) = B(m-l)q \ + G(m-l)p P̂ Ĉ ), (6.73.5)

- (6.73.4)

3.6.4. Examples on a Burst-Noise-Channel

Example 3.4

The same frame and outer codes are used as in Example 3.1. The
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probability of undetected error, P ,, and the system throughput, n, are

plotted in Figures 5.15(a) and 5.15(b) for t=l, and in Figures 3.16(a)

and 3.16(b) for t=0, respectively.

Example 3.5

The same coding scheme is used as in Example 3.3. P , and n are

shown in Figures 3.17(a) and 3.17(b).

The performance of the concatenated coding scheme on burst-noise-

channels heavily depends on the channel's parameters, especially on the

high-to-low BER ratio, £-/£,. As shown in Figures 3.15(a)-3.17(b), for

a given average BER "e, with other parameters fixed, as the e2/
ei ratio

becomes large, the system performance becomes poor. Our results indi-

cate that on a burst-noise-channel for the same average BER, the system

reliability degrades greatly, while the system throughput remains almost

the same, compared with the same coding schemes on a memoryless BSC.

For moderate values of average BER, high system reliability and through-

put are still achievable using the concatenated coding system on burst-

noise-channels .
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CHAPTER IV

ON THE OPTIMAL CODE RATE IN AN FEC SYSTEM

4.1. Problem Statement

A problem which frequently arises in forward-error-correction (FEC)

coding is how to select a code from among various existing codes to ob-

tain the best system performance. More specifically, what is the opti-

mal code rate and code length that should be chosen?

Consider a discrete memoryless channel (DMC) with Q possible

channel inputs x = {a., a_, •••, a-J, which are specified by a distribu-

tion vector cj_ = q{(a1), q(a2), •••, q(an)}, subject to the constraints

qCx) _>_ 0 , for every xeX,

and

£qCx) =1. (4.1)
x

The channel transition probabilities are denoted by p(y|x) for every

output yeY and input xeX. For such a channel, the Gal lager function

is defined by [22]

1
1+p 1+pE CP, 3) = -10S2 H£qCx)p(y|x)
+p ]+p , 0 1 p <_ I, (4.2)

y x

and plays a central role in the channel coding theorem. The channel

transition probabilities p(y|x) in (4.2) depend on a parameter EN/
N
O» a

nonnegative real number, called the channel symbol signal energy-to-

noise power density ratio. When coding is used, if R is the code rate,

as defined in Chapter II, then



EN/N0 = R'VV (4'V

where E,/N' is the information bit signal energy-to-noise power density

ratio. For a given communication system, the average transmitter power

is fixed, and so is Et/N
0- Therefore, changing the code rate R varies

the channel parameters. Most previous work on error control coding has

not considered the influence of code rate on the transmission channel.

As a result, a communication engineer who must design a practical

coded communication system may find little theoretical guidance in

selecting the best code rate for the system. In this chapter we attempt

to partially remedy this situation by finding the optimal code rate in

an FEC system. By otpimal code rate, we mean the code rate which gives

the smallest decoding error probability, or equivalently, the largest

coding gain for a given E /N and code length (for block codes) or con-

straint length (for convolutional codes). We begin by considering ran-

dom coding error probability bounds [21,22] as a measure of system

performance, and then proceed to consider random bounds on minimum dis-

tance. Both kinds of bounds will be used to study the optimal code rate

problem.

4.2. The Optimal Block Code Rate

4.2.1. The Optimal Code Rate in Terms of the Error Probability Bound

The channel coding theorem says that the average decoding error

probability over the ensemble of all block codes of length n and rate R

for the Q-ary input DMC described in section 4.1 is bounded by [21,22]

-nE,(R)
P < 2 D , (4.4)
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where

Efe(R) = max max [EQ(p, 3) - pR], (4.5)
q 0<o<l

and EQ(p, 3) is given by (4.1). It follows from (4.4) that at least one

code in the ensemble must have P_ no greater than this ensemble bound.

Note that E_(p, oj is also a function of R. If we use the code

length n as a measure of decoding complexity, from (4.4) and (4.5) we

see that the code rate R should be chosen such that E,(R) is as large

as possible. Formally, the optimization problem is

maximize: E. (R)

subject to: E,(R) > 0. (4.6)

The code rate R which satisfies (4-6) is defined as the optimal code

rate and is denoted by R .opt

Another important quantity in describing the performance of coded

communication systems is the computational cutoff rate R~. It is de-

fined as the largest number for which there is a bound with a linear ex-

ponent, i.e., a bound of the form [21,22]

__ -n(R -R)
PE < 2

 U , (4.7)

on the average decoding error probability of all codes of length n and

rate R on the Q-ary DMC described in section 4.1, where

EQ(1,
a

max{-log2 [£<lCx)/p(y|x) ]}. (4.8)
q y x

If we define
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= R0 - R, (4.9)

the optimization problem is

maximize: E,n(R)

subject to: (̂R) > 0, (4.10)

and the code rate R which satisfies (4.10) is denoted by R .

It can be seen from (4.1), (4.5), and (4.8) that as long as p(y|x)

is continuous in R, both EL (R) and E, n(R) are continuous functions of R

over a closed region. Therefore, there exists at least one value of R

which satisfies (4.6), and at least one value of R which satisfies

(4.10). More general statements about (4.6) and (4.10) cannot be made

because the channel transition probabilities p(y|x) depend on R, E,/N ,

the modulation/demodulation scheme used, the channel noise characteris-

tics, the channel output quantization method, etc. This fact is made

more clear by the following examples.

Example 4.1

Suppose that BPSK or BFSK modulation is used over an AWGN channel.

If the demodulator makes hard quantization, a BSC results with bit error

rate e = e(R*E,/N_), where e is a decreasing convex U function of R, as

shown in Appendix A. From (4.1) and (4.5) we obtain

L .

"= P0 - (l+P0)log2[e

- pQR, (4.11)

where
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1
1+p,

1
l+o.

Eo(po} = po

and p is the value of pe[0, 1] which maximizes E, (R)

show that

It is easy to

(p )
<0 •

and

0 , 0 < e < .

(4.12.11

(4.12.2)

We also have

dR de dR " P0 '

and

dR de
d2E

dR

(4.13.1)

(4.13.2)

Since

that

= (R'E,/N ) is a decreasing convex U function of R, it follows

> 0

, R > 0 ,

R < 0 .

(4.14.1)

(4.14.2)
dR

Now let C(R) denote the channel capacity, which is a function of

the code rate R. From (4.12.1)-(4.14.2) we can draw the following con-

clusions:

D 2 ~< 0, if
dR de

for 0 < R < C(R),

dE0(o)
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and the optimal code rate R is the unique solution of the follow-

ing equation

de ' "dR = P0'

dR
if .

de

de
dR de

d]

(4.15)

for 0 <_ R <_ C(R),

and

Ropt = R' >

where R maximizes C(R );

3) If E,(R) is not a convex function for 0 £ R _< C(R), R must be

found numerically.

By replacing pQ with 1 and C(R) with R», respectively, similar conclu-

sions apply to the function E, 0 (R) .

This example is used to indicate that even for the particularly

simple, often studied, BSC, finding the optimal code rate R^ ̂  is rather

complex. The computation of R for explicit channels is generally

very involved, because the function (̂R) (or E^CR)) depends on R,

E,/Nn, the modulation/demodulation scheme used, the channel noise char-

acteristics, the channel output quantization method, etc. Fortunately,

direct numerical computation can be carried out easily by computer. The

optimal code rate R for BPSK modulation over an AWGN channel withopt

demodulator output hard quantization is given in Table 4.1 and depicted

in Figure 4.1 as a function of
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Table 4.1. R for BPSK Modulation over anopt
AWGN Channel with Output Hard Quantization

Eb/No

1.1 (T)

1.2

1.5

2.0

2.5

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

opt

0

0.06

0.17

0.27

0.32

0.34

0.37

0.38

0.38

0.37

0.36

0.34

0.33

C

0

0.064

0.209

0.392

0.522

0.610

0.746

0.828

0.879

0.910

0.931

0.942

0.954

b opt

0

0.0001

0.0024

0.0121

0.0388

0.0691

0.1429

0.2238

0.2938

0.5520

0.4010

0.4420

0.4780
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Figure 4.1. Optimal Block Code Rate for BPSK Modulation over an
AWGN Channel with Output Hard Quantization
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Example 4.2

For M-ary PSK modulation over an AWGN channel with no demodulator

output quantization, the computational cutoff rate is given by [23]

M L
RQ = -log2i I exp[-R^sin^ p, (4.17)

k=l 0

where M is a power of 2 . It can be shown that [see Appendix B]

dRo• - ^ 0 , f o r / N - > _ 0 , R > _ 0 , (4.18)

and

d2R
•^-4lO , for L /N >_ 0 R^O. (4.19)
dR D U

Equality in both (4.18) and (4.19) holds only when Ey/N̂  = 0. It

follows from (4.19) that

dR
2—_< 0 , for ^/NQ _> 0 , R^O. (4.20)

Therefore, ̂ nCR) = RO - R is a strict convex n function of R _> 0 for

E, /N > 0. The equation for a stationary point of E^CR) with respect

to R is

dRo

2 2Since d Rn/dR < 0, any solution of (4.21) in the range 0 < R < 1, sub-
U "*•"

ject to Ê 0(R) ̂  0, maximizes E,Q(R), and hence gives the optimal code

rate RCb0)rate *opt ' . : .

If M=2 and 4, i.e., BPSK and QPSK modulation, the optimal code rate

can be found explicitly by solving (4.21) and is given by
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C-
• for BPSK ' VNo i

l for 9PSK'

For Eb/NQ < 2£n2, we always have EbQ(R) < 0, so with BPSK (or QPSK) mod-

ulation on an AWGN channel, any block coding technique will require an

E,/N of greater than 10 Iog.-C22.n2) = 1.42 dB for small error rates and

reasonable implementation complexity, regardless of the code rate or of

how many quantization levels are used at the demodulator output, as

stated in [41]. Therefore, we call E./N = 2£n2 the "information bit

signal energy-to-noise power density ratio threshold", and denote it by

T. The optimal code rates as a function of E./N for this example are

listed in Tables 4. 2 (a) -4.2 Cd) and plotted in Figure 4.2.

The optimal code rates R^ . , for BPSK modulation over an AWGNopt

channel with demodulator output hard quantization and for MFSK modula-

tion over an AWGN channel with demodulator output hard quantization are

listed in Tables 4.3 and 4.4 and depicted in Figures 4.1 and 4.3, re-

spectively. In the tables we also indicate the E, /N threshold, T, for

each case.

From these examples we observe that the value of R^ ' (or R^ ) is

relatively small and is inversely proportional to E./N- for relatively

large values of Eb/NQ. For small values of R. (or R), E
N/

N
0
 =

R^ ^•E./N. (or = R^ ,. •E./N.), and the "channel symbol signal energy-to-
opt b 0 opt bO

noise power density ratio" becomes small compared with E,/N , and conse-

quently results in a "noisy" channel, or a "higher" channel bit error

rate. The interesting fact is to note that the "high" bit error rate is
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Table 4.2(a). IT for BPSK Modulation over

an AWGN Channel with no Output Quantization

VNo

1.39 (T)

2.0

3.0

3.15

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

RCbO)
opt

0

0.317

0.401

0.402

0.391

0.365

0.339

0.315

0.294

0.276

0.260

0.245

0.233

0.221

0.211

0.202

Ro

0

0.386

0.621

0.635

0.726

0.784

0.823

0.849

0.869

0.884

0.897

0.906

0.915

0.921

0.927

0.932

E fR ( b 0 ) lEbOCRopt J

0

0.069

0.220

0.233

0.335

0.419

0.484

0.534

0.575

0.608

0.637

0.661

0.682

0.700

0.716

0.730
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Table 4 . 2 ( b ) . R for QPSK Modulation over

an AWGN Channel with no Output Quantization

VNo

1.39 cn
2.0

3.0

3.15

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11,0

12.0

13.0

14.0

15.0

R(bO)
opt

0

0.634

0.802

0.804

0.782

0.730

0.678

0.630

0.588

0.552

0.520

0.490

0.466

0.442

0.422

0.404

Ro

0

0.772

1.242

1.270

1.452

1.568

1.646

1.698

1.738

1.768

1.794

1.812

1.830

1.842

1.854

1.864

E fR C b 0 ) lEbOCRopt }

0

0.138

0.440

0.466

0.670

0.838

0.968

1.068

1.150

1.216

1.274

1.322

1.364

1.400

1.432

1.460
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Table 4 . 2 ( c ) . R for 8-ary PSK Modulation over

an AWGN Channel with no Output Quantisation

Eb /No
R(bO)
opt

Ro E f R C b 0 ) lt bO l opt }

1.59 cn
2.0

5.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

15.0

14.0

15.0

0

0.645

0.855

0.879

0.864

0.846

0.825

0.807

0.792

0.780

0.765

0.755

0.741

0.726

0.714

0

0.785

1.308

1.584

1.764

1.902

2.010

2.100

2.178

2.250

2.510

2.564

2.412

2.451

2.487

0

0.158

0.455

0.705

0.900

1.056

1.185

1.295

1.386

1.470

1.545

1.611

1.671

1.725

1.773
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Table 4 . 2 ( d ) . R(-b°') for 16-ary PSK Modulation over

an AWGN Channel with no Output Quantization

VNo

1.39 (T)

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

R(bO)
opt

0

0.64

0.84

0.88

0.88

0.84

0.84

0.80

0.80

0.80

0.80

0.76

0.76

0.76

0.76

Ro

0

0.780

1.292

1.584

1.780

1.896

2.024

2.092

2.188

2.272

2.348

2.376

2.436

2.492

2.548

F fR (b°^EbOCRopt >

0

0.140

0.452

0.704

0.900

1.056

1.184

1.292

1.388

1.472

1.548

1.616

1.676

1.732

1.788
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opt

4.0

M=16

J L Eb/No10 11 12

Figure 4.2. Optimal Block Code Rate for MPSK Modulation over an
AWGN Channel with no Output Quantization
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Table 4.3. R for BPSK Modulation over anopt
AWGN Channel with Output Hard Quantization

VNo

2.1 CT)

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

nO>0)
opt

0

0.26

0.36

0.38

0.38

0.37

0.36

0,34

0.33

0.32

0.31

0.29

0.28

0.27

Ro

0

0.308

0.500

0.604

0.674

0.722

0.761

0.782

0.808

0.829

0.846

0.850

0.861

0.870

E f R ( b 0 ) )EbOCRopt }

0

0.048

0.140 '

0.224

0.294

0.352

0.401

0.442

0.478

0.509

0.536

0.560

0.581

0.600



Table 4 . 4 ( a ) . R for BFSK Modulation over anopt
AWGN Channel wi th Output Hard Quantization

VNo

9.5 (T)

10.0

12.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

R(bO)
opt

0

0.49

0.50

0.48

0.43

0.39

0.35

0.32

0.29

0.27

0.25

0.24

0.22

0.21

0.20

0.19

0.18

Ro

0

0.508

0.609

0.699

0.781

0.832

0.859

0.881

0.892

0.905

0.913

0.927

0.927

0.934

0.940

0.943

0.945

E fR ( b 0 ) )E b O l o p t }

0

0.018

0.109

0.219

0.351

0.442

0.509

0.561

0.602

0.635

0.663

0.687

0.707

0.724

0.720

0.753

0.765
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Table 4 . 4 ( b ) . R for QFSK Modulation over an

AWGN Channel with Output Hard Quantization

VNo

5.5 (T)

6.0

7.0

8.0

8.5

10.0

1S.O

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

80.0

RCbo)
opt

0

1.04

1.06

1.04

1.02

0.96

0.78

0.66

0.56

0.50

0.44

0.40

0.36

0.34

0.32

0.30

0.28

0.26

0.24

Ro

0

1.088

1.272

1.392

1.434

1.534

1.708

1.792

1.828

1.864

1.876

1.894

1.898

1.916

1.928

1.934

1.938

1.938

1.950

E fRC b 0 )- |
Wopt J

0

0.048

0.212

0.352

0.414

0.574

0.928

1.132

1.268

1.364

1.436

1.494

1.538

1.576

1.608

1.634

1.658

1.678

1.710
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Table 4 . 4 ( c ) . FT for 8-ary FSK Modulation over

an AWGN Channel with Output Hard Quantization

VNo

4.5 CO

5.0

6.0

8.0

10.0

13.0

15.0

18.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

80.0

R(bO)
opt

0

1.71

1.65

1.47

1.29

1.11

0.99

0.87

0.81

0.69

0.60

0.54

0.48

0.45

0.42

0.39

0.36

0.33

0.30

0.27

Ro

0

1.881

2.130

2.400

2.529

2.664

2.694

2.745

2.775

2.823

2.853

2.880

2.889

2.913

2.928

2.934

2.937

2.937

2.928

2.937

F fR C b 0 ) 1E b O C o p t 1

0

0.171

0.480

0.930

1.239

1.554

1.704

1.875

1.965

2.133

2.253

2.340

2.409

2.463

2.508

2.544

2.577

2.604

2.628

2.667
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Table 4 .4 (d ) . R - f o r 16-ary F S K Modulation over

an AWGN Channel with Output Hard Quantization

VNo

3.5 CT)

4.0

5.0

6.0

8.0

10.0

13.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

75.0

RCbO)
opt

0

2.44

2.36

2.16

1.84

1.60

1.32

1.20

0.96

0.80

0.72

0.64

0.56

0.52

0.48

0.44

0.40

0.36

0.32

Ro

0

2.464

2.924

3.136

3.392

3.536

3.640

3.704

3.772

3.812

3.872

3.892

3.892

3.916

3.928

3.932

3.928

3.916

3.928

E fR^b°-hbO opt '

0

0.024

0.564

0.976

1.552

1.936

2.320

2.504

2.812

3.012

3.152

3.252

3.332

3.396

3.448

3.492

3.528

3.556

3.608
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10 20 30 40 50 60 70 80 90

Figure 4.3, Optimal Block Code Rate for MFSK Modulation over
an AWGN Channel with Output Hard Quantization
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compensated for by the powerful error correcting capability of the codes

of rate R for R . ) , and the net effect is that we obtain the lowestopt opt

decoding error probability, or equivalently, the largest coding gain.

The trade off is in a reduction of the system throughput. However, a

relatively small optimal code rate need not reduce throughput if addi-

tional bandwidth is available on the channel. Satellite and deep space

channels, in particular, are not nearly as much bandwidth limited as

they are power limited.

In the practically interesting range of values for E./N , the

values of R^ £ (or R ) remain quite stable. For example, in Figure

4.1, for BPSK modulation with output hard quantization, when ET/NO
 6

(5,9), which approximately corresponds to a channel bit error rate e =

10"3 - 10~5, the optimal code rate R = 0.321 ± 0.045. This fairly

stable optimum code rate shows that optimum system performance is not

overly sensitive to the channel noise.

Note that E,(R) 1 0 for 0 <_ R <_ C, while EbQCR) ̂ _ 0 only for

0 < R < Rft [21,22]. The channel capacity C is the absolute upper limit— — (J

on the rate of a code. The channel cutoff rate Rn is the upper limit

for practically implementable systems [42]. Following the same line of

reasoning, we believe that R i is the upper limit on the optimal code

rate, while R^ more closely matches the real optimal code rate. For

BPSK modulation on an AWGN channel with demodulator output hard quanti-

zation, Figure 4.1 shows the difference between R^ J and R . . For0 opt opt

large E./N , they are the same. This fact can be explained as follows.

It has been shown [21,22] that for small R, Efe(R) = EbQ(R) . As Eb/NQ

becomes large we have seen that both R^ •* and R becomes small.5 opt opt

Therefore, for large E./N , the optimal code rates found in terms of
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both E, CR) and E, .(R) must be the same,b bO

4.2.2. The Optimal Code Rate in Terms of the Minimum Distance Bound

For an Cn>l<) binary block code with minimum distance d . , we de-

fine the asymptotic coding gain in the hard quantization case [see

Appendix C] as

R-d .
Y = 10 log1Q - |i2-dB, (4.23)

for large E./N . The asymptotic lower and upper bounds on d . are

[43]
d .

lira -2iS. > H" OR), (4.24)

where HCx) = -x log_x - Cl-x) log-Q-x) , for 0 <_ x <_ -j, is the binary

entropy function, and

IOR), (4.25)

respectively.

Define

d .
F. CR) = R'lim -- . C4.26)b n

From C4.23) we see that the optimal code rate in terms of the minimum

distance bound, denoted by R , should maximize (4.26). By numerical

calculation, we find that

f 0.3778, from the lower bound (4.24),

°P ^0.5 , from the upper bound (4.25)

These results show that for large Eb/NQ, the optimal code rate
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An apparently contradictory fact is that the optimal code rate

found in terms of the error probability bounds is a function of E./N_,

while the optimal code rate found by using minimum distance bounds is a

fixed number for large E /Nn. If one notice that the coding gain of

(4.23) are defined by using only the first term of the decoding error

probability expression [see Appendix C], the data become comprehensive.

4.3. The Optimal Convolutional Code Rate

4.3.1. The Optimal Code Rate in Terms of the Error Probability Bound

The channel coding theorem for convolutional codes states that

[21]: For a Q-ary input DMC, there exists an (n,k,m) time-varying con-

volutional code of constraint length n. = nCl+m) , and arbitrary sequence
A.

length, whose bit error probability P , resulting from maximum- likeli-

hood decoding, is bounded by

PK 1 C2k-l) ~ - 5- , 6 > 0, . (4.28.1)
D -6nE CR)

[1-2 C ]

Ec(R) = RQ , 0<. R <_R0(l-6), (4.28.2)

Ec(R) = max EQCp, £) , 0 <_ p £ 1,

£

R = (1-6)max — , Rn(l-6) <
 R < C(l-6), (4.28.3)p 0 — —

where 6 is an arbitrary positive number, and EQ(P» £) and R are given

in C4.1) and (4.8), respectively. We define the optimal code rate R
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as the code rate R which

maximizes: E (R),

subject to: E (.R) > 0- (4.29)

If the value of R is restricted only to 0 < R < R (1-6), from— — u
(4.28.1) and (4.28.2) we obtain

k 7

P <. (2K-1) — - =• , 5 > 0, (4.30.1)
b -<5nE (R)

[1-2 C° ]

EcOCR) = R0 ' °- R - R0C1~6)- (4.30.2)

In this case the optimization problem is

maximize: E (R) ,

subject to: EcQ(R) > 0, (4.31)

and the code rate R which satisfies (4.31) is denoted by R .

For most real channels, EO(P> Q) (and consequently RQ) is an in-

creasing function of E /N = R«E,/N . Therefore, without loss of

generality, we can make the following assumption:

En(p, £) (and RQ) is an increasing function of R for fixed

E, /N- and an increasing function of E, /N. for fixed R.
D U D U

Under this assumption, the optimization problems of (4.29) and (4.31)

can be reduced to:

("clR1- J = max R,
0<R<C

subject to: EcCR) > 0, (4.32)

and



4.26

= -x R,

°1R1R0

subject to: ^cQW > 0» (4.33)

respectively.

Note that R I is always greater than or equal to R^c •*. Also, by

our assumption, E (R) and E (R) are increasing functions of E, /N_ for

fixed R, and this implies that the optimal code rate is proportional to

L /N . Because E (R) and E (R) approach log-Q on a Q-ary input DMC as

N goes to infinity, the optimal code rate R (or R t ) also

approaches log2Q asymptotically. The. optimal code rates as a function

of E, /N for the same modulation schemes considered for block codes are

given in Tables 4.5-4.8 and shown graphically in Figures 4.4-4.6.

Note that in Figures 4.4-4.6, the optimal convolutional code rate

is very close to log Q in the practically interesting range of E, /N-.

This implies that no coding is necessary. The reason for obtaining such

a rather surprising result is that the convolutional coding exponents

E (R) and E Q(R) are not as accurate as the block coding exponents E,(R)

and E_(R) at low code rates. To obtain a more meaningful optimal code

rate, a tighter bound on decoding error probability at low code rates -

the expurgated upper bound - should be used. The expurgated bound for

convolutional codes states that [21]: For binary-input, output -symmetric

channels, there exists a time-varying convolutional code of constraint

length n and rate R = k/n bits per channel use for which the bit error
t\

probability with maximum likelihood decoding satisfies
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Table 4 .5 .
opt for BPSK Modulation over an

AWGN Channel with Output Hard Quantization

VNo

1.0 (T)

1.1

1.2

1.3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

9.5

R(c)
opt

0

0.01

0.09

0.15

0.26

0.42

0.51

0.65

0.70

0.79

0.85

0.89

0.92

0.94

0.95

0.96

0.97

0.98

0.99

C

0

0.0101

0.0945

0.1641

0.3015

0.5391

0.6921

0.7888

0.8973

0.9473

0.9719

0.9845

0.9913

0.9950

0.9970

0.9982

0.9990

0.9994

0.9999

F fR^c)-lEc(RoPt-
1

0

0.0001

0.0048

0.0159

0.0525

0.1924

0.3652

0.5511

0.7011

0.7933

0.8541

0.8950

0.9239

0.9440

0.9578

0.9683

0.9764

0.9824

0.9923
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Figure 4.4. Optimal Time Varying Convolutional Code Rate for
BPSK Modulation over an AWGN Channel with Output Hard
Quantization
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Table 4.6(a). R for BPSK Modulation overopt
an AWGN Channel with no Output Quantization

Eb /No

1.3 CO

1.4

1.5

1.7

2.0

2.3

2.5

3.0

3.5

4 .0

4.5

5.5

RCcO)
opt

0

0.02

0.20

0.44

0.65

0.77

0.82

0.90

0.94

0.97

0.98

0.99

EcO<CKR0>

0

0.0201

0.2002

0.4409

0.6523

0.7733

0.8253

0.9062

0.9472

0.9705

0.9826

0.9938
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Table 4.6(b). R- for QPSK Modulation overopt

an AWGN Channel with no Output Quantization

VNo

1.3 (T)

1.4

1.5

1.7

2.0

2.3

2.5

3.0

3.5

4.0

4.5

5.5

RCcO)
opt

0

0.04

0.40

0.88

1.30

1.54

1.64

1.80

1.88

1.94

1.96

1.98

ECO<?)KV

0

0.0402

0.4004

0.8818

1.3046

1.5466

1.6506

1.8124

1.8944

1.9410

1.9652

1.9876
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Table 4.6Cc). R t
 f°r 8-ary PSK Modulation over

an AWGN Channel with no Output Quantisation

VNo

1.3 (T)

1.4

1.5

1.8

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

8.0

9.0

R(cO)
opt

0

0.03

0.39

1.05

1.35

1.77

2.04

2.25

2.40

2.52

2.61

2.70

2.76

2.79

2.85

2.88

2.94

ECO<?'KV
0

0.0303

0.3912

1.0575

1.3527

1.7838

2.0562

2.2569

2.4072

2.5275

2.6223

2.7027

2.7639

2.8095

2.8521

2.904

2.9412
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Table 4.6(d). R t
 for 16-ary PSK Modulation over

an AWGN Channel with, no Output Quatnization

VNo

1.3 (T)

1.4

1.5

1.7

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

9.0

R(cO)
opt

0

0.04

0.40

0.88

1.32

1.76

2.04

2.24

2.40

2.52

2.64

2.76

2.84

2.92

3.00

3.04

3.12

3.24

cO opt

0

0.0404

0.4004

0.8840

1.3332

1.7788

2.0564

2.2556

2.4136

2.5412

2.656

2.7612

2.8472

2.9276

3.0024

3.0632

3.1300

3.2436
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,(cO)

M=16

Eb/N0

Figure 4.5. Optimal Time Varying Convolutional Code Rate for MPSK
Modulation over an AViGN Channel with no Output Quantization



4.54

Table 4.7. R' for BPSK Modulation over an

AWGN Channel with Output Hard Quantization

VNo

2.1 (T)

2.2

2.5

3.0

3.5

4.0

4.5

5.0

6.0

6.5

7.0

7.5

8.0

9.5

RCcO)
opt

0

0.02

0.28

0.55

0.70

0.79

0.85

0.89

0.94

0.95

0.96

0.97

0.98

0.99

ECO«£?»V
0

0.0201

0.2810

0.5503

0.7011

0.7933

0.8541

0.8950

0.9440

0.9578

0.9683

0.9764

0.9824

0.9923
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Table 4.3(a). RC for BFSK Modulation over an

AWGN Channel with Output Hard Quantization

VNo

9.5 (T)

10.0

10.5

11.0

11.5

12.0

13.0

14.0

15.0

R(cO)
opt

0

0.64

0.72

0.77

0.81

0.84

0.89

0.92

0.94

E«o<C)CV
0

0.6409

0.7221

0.7740

0.8142

0.8448

0.8912

0.9207

0.9411
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Table 4.8(b). R for QFSK Modulation over an

AWGN Channel with Output Hard Quantization

VNo

5.5 (T)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

10.0

11.0

12.0

R(cO)
opt

0

1.40

1.60

1.72

1.80

1.86

1.88

1.92

1.94

1.96

1.98

•wC'tv
0

1.4012

1.6086

1.7288

1.8064

1.8602

1.8926

1.9214

1.9532

1.9726

1.9840
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Table 4.8(c). R' for 8-ary FSK Modulation over

an AWGN Channel with Output Hard Quantization

VNo

4.5 (T)

5.0

5.5

6.0

6.5

7.0

7.5

8.5

RCcO)
opt

0

2.46

2.67

2.79

2.85

2.91

2.94

2.97

ECO<C»V

0

2.4639

2.6817

2.8011

2.8695

2.9163

2.9442

2.9745
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Table 4.8(d). R for 16-ary FSK Modulation over

an AWGN Channel with Output Hard Quantization

VNo

3.5 CO

4.0

4.5

5.0

5.5

6.0

6.5

7.0

RCcO)
opt

0

2.76

3.52

3.72

3.82

3.88

3.92

3.96

wC)(Ro>
0

2.7648

3.5208

3.7404

3.8556

3.9140

3.9496

3.9708
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(cO)

Figure 4.6. Optimal Time Varying Convolutional Code Rate for MFSK
Modulation ove.r an AWGN Channel with Output Hard Quantization
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2k-l
-n.E (R)

A (~PY
2 * CeX , (4.54.1)

where

EcexCR) = - R f l n » 0 < R < R / ( l + 6 ) , (4.34.2)C6X Jin [2 RC1*6M] ~ ~ 0

6 > 0 is an arbitrary positive number, and

Z = /P(y|0)p(y|l) . (4.34.3)
y

Since the exponential term dominates the error probability expression,

the optimal code rate, denoted by R*-c® , satisfies

maximizing: E (R) ,
cex ' '

subject to: E (R) > 0. (4.35)

The optimal code rates as a. function of E. /N-, for BPSK and BFSK modu-

lation on an AWGN channel with output hard quantization are shown in

Tables 4.9 and 4.10 and plotted in Figures 4.4 and 4.6, respectively.

Note that R0 is around 0.75 for large ^/N .

4.3.2. The Optimal Code Rate in Terms of the Free Distance Bound

With maximum-likelihood decoding of convolutional codes, for large

E,/N , the asymptotic coding gain is given by [2]

Y = 10 log1Q Y^~ dB > for hard quantization, (4.36)
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Table 4 .9 .
opt for BPSK Modulation over an

AWGN Channel wi th Output Hard Quantisation

VNo

2.2 (T)

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.2

3.4

3.6

4.0

5.0

10.0

15.0

R(cex)
opt

0.02

0.12

0.21

0.28

0.35

0.41

0.46

0.50

0.55

0.62

0.67

0.72

0.75

0.75

0.75

0.75

Ro

0.0201

0.1205

0.2102

0.2810

0.3506

0.4104

0.4610

0.5028

0.5503

0.6204

0.6734

0.7222

0.7753

0.8482

0.9790

0.9970

E CR(cex))cex opt

0.0201

0.1203

0.2102

0.2811

0.3507

0.4105

0.4612

0.5038

0.550S

0.6206

0.6758

0.7241

0.8021

0.9906

1.9019

2.7881
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Table 4.10. R (cex) for BFSK Modulation over anopt
AWGN Channel with. Output Hard Quantization

VNo

9.65 (T)

9.70

9.90

10.0

10.3

10.5

10.8

11.0

11.5

15.0

20.0

25.0

30.0

35.0

40.0

R(cex)
opt

0.51

0.54

0.62

0.64

0.69

0.72

0.76

0.77

0.79

0.78

0.78

0.77

0.77

0.77

0.77

Ro

0.5102

0.5408

0.6201

0.6410

0.6925

0.7221

0.7601

0.7740

0.8040

0.8945

0.9593

0.9835

0.9937

0.9976

0.9991

f_(cex),
Ecex(Ropt }

0.5102

0.5412

0.6201

0.6415

0.6944

0.7239

0.7605

0.7784

0.8215

1.1155

1.5369

1.9590

2.3811

2.8033

3.2255
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Y = 10 log R-df dB , for infinite fine
quantization (4.37)

where d is the free distance of the convolutional code. The

asymptotic bounds on free distance are given by [44] :

(4.58.1)

lira
_ 1

> H (1-R), (4.38.2)

for systematic fixed codes, where n. is the code constraint length;

lim < \ , (4.39.1)

, . freelira - >

2R(1 - 22R-1) 3
2 R _ n ' u — K _ sTR 1J + 2R-1 8

2H"1(1-R) , (4.39.2)

for nonsystematic fixed codes; and

U,
n.-x» A H(2 ) + R-l
A

(4.40)

for nonsystematic time-varying codes,

Define

F (R) = R-lim free .
c nA

(4.41)

The code rate R which maximizes F (R) is called the optimal code rate,

and is denoted by R0 . If follows from (4.36) and (4.37) that
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is the code rate which maximizes the coding gain for large L /N .

The optimization probelra can best be solved by computer. By

numerical calculation, we find that

For systematic fixed codes

, ,. (-0.5 , from the upper bound (4.38.1),
Ropt = - - C4.42)v I 0.5778, from the lower bound (4.38.2);

2) For nonsystematic fixed codes

, ,-. r 1 , from the upper bound (4.39.1),

°pt 1 0.3778, from the lower bound (4.39.2);

3) For nonsystematic time varying codes

= 0.7580, from the lower bound (4.40). (4.44)

These results indicate that for systematic fixed codes low code

rate should be used while for nonsystematic codes high code rate should

be used for optimum performance. It is interesting to compare (4,44)

with the optimal code rate R found in terms of the expurgated

bound, they both indicate that the optimal code rate is around 0.75 for

large

4.4. The Optimal Concatenated Code Rate

The complexity of conventional coding systems grows exponentially

with the block length for block codes or with the constraint length for

convolutional codes. To overcome the complexity of very long codes,
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Forney [24] first introduced concatenated codes as a practical means of

implementing codes with long block or constraint lengths. Concatenated

coding systems are usually implemented by employing two levels of cod-

ing, as illustrated in Figure 4.7. Binary data from the data source is

serially partitioned into k..-bit blocks that are subsequently used as
k l

input signals to a 2 -ary block encoder kno\m as the outer encoder.
klUsually Q = 2 -ary RS codes are used for this purpose. The output of

the RS encoder is converted back into bits and serially encoded by the

inner encoder, which may be either block or convolutional (only block

inner codes are considered here), and the resultant sequence of channel

symbols is sent over the physical channel - the inner channel. Decoding

is accomplished in the reverse order.

To evaluate the optimal code rate of the concatenated code

described above, let us investigate the performance obtainable with the

following concatenation scheme. The inner code is a block code of

length n and rate R , where R = log M/n , and M is the number of code

words in the inner code. The inner decoder is a maximum-likelihood

decoder which puts out an estimate of which code word was sent, with

average probability of error p. The outer code is a block code of

length n2 and rate R . Given an estimate, the outer decoder makes no

distinction between the outputs other than the estimate. Therefore, we

regard the outer channel as an equierror channel, and the outer channel

has transition probability matrix

• 1-p X = x,

p(/|x) = - R -1 (4.45)
l 11P(2 L -1) , y 1 x.

The overall rate and length of the concatenated code are R = R..R-
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Figure 4.7. Concatenated Coding System
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and N = n n respectively. Define R* = n,R. Note that the total num-
1 2 r ' I n n r > +noK_n1K. n_R ._

ber of code words in the concatenated code is 2 = 2 ~ = 2' .

First, we derive a random coding bound for the concatenated code in

terms of the channel cutoff rate. Suppose that the best inner code of

length n and rate R is used. Then

-n (R -R )
PI 2 l U1 , O J C R I : < R O I , (4.46)

where R... is the inner channel cutoff rate. The outer channel cutoff

rate, denoted by R 2, is given by (4.8). By symmetry, the probability

vector £ for which the left hand side of (4.8) is maximized is

-n R
q(x) = 2 i X , for all x. (4.47)

Substituting (4.45-4.47) into (4.8), we obtain

R02 * - l°*2 2 t ' 1 - 2

nR -n (R -R ) "
+ / (2 -1) 2 L ] ' (4.48)

As n1 becomes large, (4.48) is reduced to

R°2"
or in another form

RQ2 >_ n i min[(R01-R1), Rj] . (4.49)

Now define
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EnO(R ) a R02

- R}. (4.50)

In order to maximize performance, for a given overall rate R, R and

R may be varied subject to the constraint R = R,R2-
 We then define

E»°CR) ' *

_> max {min[(Rn -R,), R, ] - R>. (4.51)
U1 A

Therefore, we can claim from the coding theorem (in terms of the cutoff
n R

rate) that if there exists an equierror outer channel with 2 inputs

and average error probability p, then there exists a concatenated code

of overall length N and overall rate R such that

.
PE _< 2 , 0 _< R _< RQ1. (4.52)

Note that in (4.51), R is a function of R and R2, and so is E 0(R).

To emphasize this fact, we rewrite En0W as E 0(R-,» R2^'
 an(^ conse~

quently

-NEnO(Rl' R2}

Now the optimal inner and outer code rates, denoted by R^ ' and

R^- , respectively, should satisfy

maximize: E
n0(

Ri» R2^'

subject to: EnQ(R1> Rp > 0. (4.54)
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A tighter bound on Pp is given by a concatenated coding theorem in

Reference 24. But in [24] the inner code rate is restricted to R <

R <_ C , where R , and C are the inner channel critical rate and the

inner channel capacity, respectively. For our optimal code rate

problem, the inner code rate can be any value between 0 and C . This is

done by slightly modifying Forney's theorem in [24]. From the block

coding theorem, the outer channel average probability of error is

bounded by

-niWp < 2 i D i , 0 < R, < C., (4.55)
_ _ ^ J_

where ECR,) is given by (4.5). Using (4.55) and following the same

line of reasoning as Forney, we obtain: If there exists an equierror
n R

outer channel with 2 inputs and average error probability p, bounded

by (4.55), then there exists a concatenated code of overall length N and

overall rate R such that

-NE (R)
P < 2 , 0 < R < C. , (4.56)
t — — — i

where

E (R) = max {min[E, (R.), R ](1-R~)}. (4.57)
Tl n n n DA i. £•

Again note that E (R) is, in fact, a function of R^ and R2, so we can

rewrite it as E (R,, R-), and (4.56) becomesn i -

-NE (R R )
P c < 2

 n i L , 0 < R < C . . (4.58)
b — — — J-

Therefore the optimization problem is



4.50

maximize: E (R,, R-),n 1 I

subject to: E (R , R2) > 0, (4.59)

and the inner and outer code rates R and R which satisfy (4.59) are

denoted by R^ ]_ and R ]_, respectively,opt opt r '

Example 4.3

Assume that the inner channel is a BSC derived from forcing hard

decisions on an AWGN channel with BPSK modulation. This channel is

representative of the deep space channel where concatenated codes have

met with a great deal of success. The numerical values of optimal

inner and outer code rates in terms of both E n(
R-|» RO and E (R , R_)

are listed in Table 4.11 and shown in Figure 4.8 as a. function of E, /N ,

From Figure 4.8 we see that low inner code rates and high outer code

rates should be used in such a concatenated coding system.
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Table 4 .11(a) . opt and R- for BPSK Modulationopt
over an AWGN Channel with Output Hard Quantization

VNo

4.4

4.5

4.7

4.9

5.1

5.3

5.5

5.7

6.0

6.4

6.7

7.1

7.6

7.9

8.5

9.1

9.7

10.2

11.1

11.8

12.8

R(10)
opt

0.01

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.25

0.26

0.27

0.30

0.51

0.32

0.33

0.34

0.36

R(20)
opt

1.0

0.98

0.96

0.94

0.92

0.90

0.89

0.87

0.85

0.82

0.80

0.78

0.76

0.74

0.70

0.69

0.66

0.64

0.60

0.58

0.56

Roi

0.0200

0.0398

0.0809

0.1204

0.1604

0.1999

0.2410

0.2790

0.3202

0.3615

0.4002

0.4420

0.5013

0.5200

0.5404

0.6005

0.6205

0.6402

0.6597

0.6815

0.7206

CIO) (20)
EnOtRopt ' Ropt J

2xio'6

0.0002

0.0016

0.0036

0.0064

0.0099

0.0132

0.0172

0.0240

0.0324

0.0400

0.0484

0.0600

0.0675

0.0810

0.0930

0.1054

0.1152

0.1317

0.1428

0.1584
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Table 4.11(b).

an AWGN Channel with Output Hard Quantization

and R for BPSK Modulation over

VNo

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.0

2.1

2.3

2.5

2.8

3.2

5.8

4.3

5.0

5.75

6.75

7.75

8.75

9.75

RU)Ropt

Q-.OS

0.08

0.11

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.35

0.36

0.37

0.38

0.38

0.38

0.38

opt

0.98

0.96

0.94

0.93

0.91

0.90

0.89

0.86

0.86

0.84

0.82

0.80

0.78

0.75

0.73

0.71

0.69

0.67

0.64

0.61

0.58

Cl

0.0522

0.0870

0.1237

0.1634

0.1917

0.2226

0.2540

0.2928

0.3277

0.3690

0.4093

0.4604

0.5201

0.5900

0.6365

0.6923

0.7427

0.7963

0.8256

0.8475

0.8637

n opt' optj

ixio'6

2.6x!0"5

7.1xio"5

1.5xlO"4

2.7xlQ"4

0.0004

0.0009

0.0012

0.0021

0.0031

0.0051

0.0084

0.0147

0.0211

0.0312

0.0435

0.0613

0.0795

0.0971

0.1138
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1.0
C3a

<s 0.9 r

c.o
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0.5
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Figure 4.8. Optimal-Concatenated Code Rate for BPSK Modulation over
an AWGN Channel with Output Hard Quantization




