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Introduction

The application of particle-hole theory and second quantization techniques to one-body composite
systems, such as atoms or nuclei, is an old and well-established field of endeavor (refs. 1 to 4). The
techniques are especially useful for calculating ground-state properties, such as nuclear binding energies,
for which one assumes two-nucleon interactions among the A nucleons within the nucleus and calculates
matrix elements for the Fermi vacuum or ground state (ref. 1). (A list of symbols used in this paper

appears after the references.) However, when there are two composite bodies (e.g., nuclei composed of
nucleons or hadrons composed of quarks) interacting via some scattering process, it is often desirable or
necessary to simplify the collision description by restricting the two-body interactions to those between
individual target and projectile constituents (refs. 5 and 6) while ignoring the constituent interactions
within the target and projectile themselves. This assumption is usually made in high-energy, heavy-ion
collisions for which solution of the full many-body problem is intractable and often not required, since
the incident-ion kinetic energy is large enough to permit nuclear binding energies to be safely ignored.

Although somewhat straightforward, the generalization of particle-hole theory and second quantization
techniques from one composite body to the interaction of two composite bodies is full of potential pitfalls
for the unwary. It is often easy to develop, for two-body potentials and matrix elements, expressions which
appear physically reasonable when applied to slightly different or more general problems but which, in
fact, lead to wrong results. The present paper avoids this through development of expressions for two-body
interaction potentials in both first- and second-quantized form. The expressions are rigorously generalized
for use in composite two-body scattering. Although the techniques presented are valid for any system of
interacting composite bodies, the actual discussions herein are limited either to the properties of a single
nucleus containing A nucleons or to an interacting nucleus-nucleus system containing Ap (projectile) and
AT (target) nucleons. In particular, these techniques are used to evaluate matrix elements for nucleus-
nucleus elastic (ref. 6) and inelastic (ref. 5) scattering. For the latter, the inelastic excitations are treated
as particle-hole states through use of a Tamm-Dancoff approximation (ref. 7). The present paper deals
only with interactions between nonidentical composite bodies, since this simplifies the treatment of overall
symmetry considerations between the projectile and target nuclei (refs. 8 to 11). Interactions between
identical composites will be treated in a future paper.

First Quantization

For a single nucleus composed of A nucleons, the total nuclear potential, written in terms of the
constituent two-nucleon interactions, is

1 A A

V = -_E E vij (1)
i j

where we assume

= v3.i (2)
Equation (1) can be alternatively and equivalently expressed as

A A

v =Z:Z:vii (3)
i j
i<j

Note that double counting (for terms where vii = vii ) is included in equation (1) and is corrected for
by the multiplicative factor 1/2. In addition, the restriction i _ j excludes terms such as vii , which
denotes self-interaction. In equation (2) the use of the restriction i < j automatically excludes both
double-counting and self-interaction terms.



We now need to generalize or extend these methods from the case of a single nucleus to one in which

separate projectile and target nuclei interact. As is customary in nucleus-nucleus collision theory, we
include only those two-nucleon interactions for which individual constituents in the projectile nucleus

interact with individual constituents in the target nucleus. For convenience, the ith and jth particles,
which belong to the projectile and target nuclei, respectively, are labeled as ip and iT. The resulting
expression for the nucleus-nucleus interaction potential is

Ap A T

V : VipiT (4)
i p JT

Note that equation (4) is not obtained, as might be assumed (especially when second quantization is used),
by merely dropping the multiplicative factor 1/2 in the generalization of equation (1). The appropriate
generalization of equation (1) to the nucleus-nucleus interaction problem is

)v : + vi 5. (5)
\ $P 3T _T JP

whereas equation (4) is actually the generalization of equation (3). Although these questions concerning
the correct generalizations appear to be somewhat trivial in first quantization, they become much more
significant in second quantization methodology, in which one labels states instead of particles and the
proper ordering of operators is crucial to obtaining correct descriptions of the physical processes involved.

Second Quantization

In second-quantized form, the composite two-body potential is (eq. C-23 of ref. 1 with notation of
current paper)

1 a+a +alak (6)V = -__ _ < ij[vlkl >
ij kl
iCj
k#l

where a is an annihilation operator, a+ is a creation operator, and the summations over i, j, k, and l
are not yet restricted to sums over individual particles but indicate sums over the complete set of states
(refs. 1, 3, and 6). In coordinate space, the matrix element is

: ff ¢:(r1)€](r2) v(rl, r2)¢k(rl ) ¢1(r2) d3rl d3r2 (7)
< ijlvlkl >

If the constituent particles are indistinguishable, then exchange is possible. If the individual matrix

element in equation (7) represents a direct term, then the corresponding exchange term (see ref. 6) is
written

]] ¢;(rl) €*(r2) v(rl, r2) Ck(rl) €1(r2) d3rl d3r2 (8)
< jilv[kl >

where the exchange occurs symbolically in the bra vector rather than in the ket, as was done in references 1,
3, and 6 (the two conventions yield equivalent results). In equation (8) the wave functions associated with

quantum numbers i and j are now associated with position coordinates r2 and rl, respectively, rather
than with rl and r2 as in the direct term (eq. (7)). In terms of a physical description, we say that the
particles with position coordinates rl and r2 have exchanged quantum numbers or, alternatively, that
the particles with quantum numbers i and j have exchanged position coordinates (i.e., the particles are
exchanged).
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Since rl and r2 are dummy variables, equations (7) and (8) could also be written as

< ijIv[kl > =//¢_(r2) ¢_(rl) v(r2, rl) Ck(r2) ¢l(rl) d3r2 d3rl (9)

for the direct term and as

< jilvlkl > = ff €_(r2) ¢_(rl) v(r2, rl) Ck(r2) C/(rl) d3r2 d3rl (10)

for the exchange term. In subsequent discussions it is assumed that

v(rl, r2) = v(r2, rl) (11)

If the generalization to nucleus-nucleus interactions is made, again with the two-nucleon interactions
restricted to those between projectile nucleons and target nucleons, then the direct-term matrix element
is

< ijlvlkl > = ]] ¢_'(_P) ¢_(_T) v(_p, _T) Ck(_V) ¢I(_T) d3_p d3_T (12)

The exchange-term matrix element is thus given by

< ji[v[kl > = ff ¢;(_p) ¢*(_T) V(_p, _T) Ck(_P) ¢/(_T) d3_p d3_T (13)

The position coordinates for the projectile and target nucleons are denoted by _p and _T, respectively.
Equations (12) and (13) may also be written as

< "ij[v[kl > = < i(P) j(T)[v[k(P)l(T) > (14)

and

< ji[v[kl > = < j(P) i(T)[v[k(P) l(T) > (15)

to explicitly indicate their actual projectile P and target T dependences. Noting that equations (12) and
(13) can be obtained from equations (7) and (8) by substituting _p for rl and _T for r2 and that integration
is over _p and _T, we can rewrite equations (12) and (13) in their alternative form by substituting _p

and _T into equations (9) and (10) to yield

< ij[v[kl > =//¢_ (_T) ¢;(_P) V(_T, _P) Ck(_T) ¢I(_P) d3_p d3_T (16)

and

ji]v]kl > = ]] ¢;(_T) ¢_(_P) V(_T, _P) Ck(_T) ¢/(_P) d3 _p d3_T (17)
<

Symbolically these equations ((16) and (17)) can be written as

< ij[v[kl > = < i(T)j(P)[v[k(T)l(P) > (18)

and

< ji[v[kl > = < j(T) i(P)[v[k(T)l(P) > (19)

Having considered the generalization to nucleus-nucleus interactions of the matrix element part of
equation (6), we now focus attention on the use and labeling of the creation and annihilation operators

a_, a+, al, and ak. Based upon physical arguments, it is possible a priori to label the operators as
belonging to either the projectile or the target nucleus to obtain a correct result. This was previously
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done in references 5 and 6, for example. This procedure, however, could lead to errors if the correct
labeling is not initially assumed. In fact, the procedure is unnecessary, since the correct application of
Wick's theorem (ref. 1) will automatically yield the correct form for the nucleus-nucleus potential when

equation (6) is evaluated for the particular nucleus-nucleus collision of interest.

Evaluation of Second-Quantized Matrix Elements

For a single nucleus, the matrix elements of equation (6) have been extensively studied (refs. 1 to 4 and
7). Recall from the previous discussion of first quantization that the generalization from the single-nucleus
to the nucleus-nucleus case produces clifferent expressions for the interaction potential. As discussed in the

previous section, this does not occur in second quantization, since equation (6) remains intact. Differences
in second quantization occur in the evaluation of matrix elements.

In the ensuing discussions, hole creation and annihilation operators are denoted by h . and h with
the corresponding particle operators denoted by p+ and p. From reference 1 (p. 657), the only nonzero
contractions of these operators are

ff__+ = 5ij (20)
and

(21)
All other possible contractions are identically zero. We also assume that the total Fock state for
nonidentical nuclei can be expanded as a simple product of projectile and target states as follows:

IPT > = IP > IT > (22)

for both the initial and final states of the system. Equation (22) is not valid when there are identical
nuclei in the initial or final states.

ElasticScatteringof Targetand ProjectileNuclei

In this section the evaluation of the matrix elements of equation (6) for nucleus-nucleus elastic
scattering is illustrated by our rederiving equation (34) of reference 6 with the notation of this paper.
Thus, we want to evaluate

1

< PoToIVIPoTo > = -__ _ < ijlvlkl >< PoTola+a+atakIPoTo > (23)
z3 kl
i#j
k#t

Noting that the annihilation operators act below the Fermi sea, we have two distinct possibilities for the
nucleus-nucleus interaction problem:

if l <_ Ap then k < A T (24a)

or

if l <_AT then k <_Ap (24b)

We exclude the possibility that k and l both act upon either the target space or the projectile space

since that would, by orthogonality, require the creation operators (ait- and %+.) to both act upon the
same projectile or target space. This possibility is not desired because we are limiting the two-body
interactions to those only occurring between individual projectile and target nucleons. Through use of
the above restrictions, the annihilation operators can be labeled so that equation (23) becomes
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< PoTolVI POTO> = _ E < ijlvlkTIp >< PoTola+ia+alpakT IPOTO>
ij \ k Tlp

i#j

Ap A T

+ _-_ < ijlvlkpl T >< PoTola+a+alTakplPoro (25)
kp l T

Utilizing the following relationship between particle operators and hole operators

a+ = h _ (26)
a h+ J

gives, in equation (24),

< PoTolVIPoTo > = -_ _ < ijlvlkTIp >< PoTolhihjh_ph_TlPoTo >
ij \ k Tlp

i#j

Ap A T

+ + (27)+ EE < ijlvlkpIT >< PoToIhihjhlThkpIPoTo
kp lT

where all operators are written as hole operators since they act below the Fermi sea. Note that restrictions

(24a) and (24b) have resulted in two distinct matrix element labelings: < ijlvlkTl P > and < ijlv[kp1T >.
Since _p and _T are dummy variables in equations (12), (13), (16), and (17), we can label these matrix
elements as either

< i(T)j(P)lvlkT(T)lp(P ) > and < i(T)j(P)lvlkp(T)lT(P) >

or

< i(P)j(T)lvlkT(P)Ip(T ) > and < i(P)j(T)lvlkp(P)lT(T ) >

If we choose the obvious convention of associating kT with _T and kp with _p, then equation (27) becomes

< PoTolVIPoTo > = -_ _ < i(T)j(P)IvlkT(T)Ip(P) >< PoTolhihjh+ph+TlPoTo >
ij k k Tlp

i#j

Ap A T

+ _--_-_ < i(P)j(T)lvikp(P)IT(T ) >< PoToihihjh+Th+p[PoT o (28)
kp l T

At this point, we must be careful in interpreting and evaluating the operators in equation (28), since

writing < i(T)j(P)], for example, does not imply that hihj is to be interpreted as hiThjp. When Wick's
theorem is used, only contractions in the same projectile or target space are allowed. Therefore, if we let

hihj _ hiThjp, then the only permissible nonzero operator contractions in equation (28) would be

+ + . . + +
hiT hip hip hkT and h_T hjp hlT hkp



since

hi h. h.+h + and hi h: h.+h +T 3P lp x T T 3P l T _p

are identically zero• Thus, there would be no exchange terms. Since the double summation _ij in
equation (28) is over the complete set, the labeling of hi and hj as either hiThjp or hiphjT is unjustified

and incorrect. The possibility of exchange occurring is accounted for by contracting hi and hj with
both the projectile and target spaces. Clearly, then, the generalization of nucleus-nucleus interaction in
equation (6) is not

1

V = _ _ _ < ij[vlkl > a_Ta+alTakP (29)
ij kl
iCj
k¢l

Evaluation of < PoTolhihjh+p h+T IPoTo > is accomplished through the use of Wick's theorem (refs. 1
and 2), which states that the value of the matrix element is given by the sum of all possible allowed
contractions. Therefore,

• • + + + + + + (30)< PoToIhihjhl+ph_TIPoTo > = hihjhl+phk+T . hzh3hlphkT = hihkThjhlp - hihlphjhk,"

where we have used the anticommutation properties of these operators. Inserting equation (21) into (30)
yields

+ .
< PoTo[hihjhlphkT ]PoT0 > = 5i&T6jl P -- 6ilp6jkT (31)

In a similar manner, < PoTo[hihjhl+T h+kp[PoTo> in equation (28) is evaluated as

< PoTolhihjh_Th_p IPoT0 > = 6ikp6jlT -- 6ilTSjkp (32)

Substituting equations (31) and (32) into (28) yields

1 (ATAp

< PoTolVHPoTo > = -__ _--_--_ [< kT(T)Ip(P)JvlkT(T ) IF(P) > - < lp(T) kT(P)[vOkT(T)lp(P)>]
L k Tlp

Ap A T

+ EE [< kp(P)IT(T)lvlkp(P ) IT(T )- < lT(P) kp(T)[v[kp(P) lT(T) >] } (33)kp l T

From appendix A,

A TAp Ap A T

_-_-_ < kT(T)lp(P)ivikT(T)Ip(P) > = _-_ < kp(P)lT(T)ivikp(P)lT(T) > (34)
k Tlp kp lT

and

A TAp Ap A T

EE < Ip(T) kT(P)lvlkT(T)Ip(P) > = EE < IT(P) kp(T)lvlkp(P)IT(T) > (35)
k Tlp kp l T
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allow equation (33) to be written as

Ap A T

< PoTolVI PoTo >= EE [< kp(P)lT(T)lvlkp(P ) IT(T ) > -- < IT(P) kp(T)lvlkp(P)1T(T) >] (36)
kp l T

which includes the exchange term.

Inelastic Scattering of Target and Projectile Nuclei to One-Particle-One-Hole States

The mutual excitation of projectile and target nuclei to one-particle-one-hole states is described in the
Tamm-Dancoff approximation (ref. 1) by

Iph > = a+Ta)_Ta+paapIPOT o > (37)

where the order of the target and projectile quantum-number labels is discussed in appendix B. Since
a particle-hole state represents a nucleus with a hole below the Fermi sea and a particle above it,

equation (37) can be written in terms of particle-hole operators as

Iph> + + + (3s)---- h:_Tp_phaplPoT 0 >

The matrix element which describes inelastic scattering of target and projectile nuclei to one-particle-
one-hole states is

1

< ph[v]PoTo > = _ _.. _ < ij[v[kl >< phla+a+alaklPoTo > (39)
_3 kl

i#j
k_l

Writing these creation and annihilation operators as particle and hole operators and inserting equa-
tion (38) yields

< phlViPoZ° > = 1 E < i(T)j(P)Iv[kT(T )lp(P) >< PoTolhapp._ph_rP_,Tpi pj hzphkr [PoTo>
2 ij [.k Tlp

Ap A T

+ + + + (40)+ E E < i(P)j(T)lv[kp(P ) IT(T) >< PoTolhapp_ph_TPUTpi pj htrhkp ]PoTo
kp l T

where we have rewritten < ijHkl > in a manner similar to that used in equation (28). As was done in the
previous section, p+ and p+ are left unlabeled with respect to the projectile or target space. Evaluating3
the operator expressions with Wick's theorem gives

+ + +h + + + +h +
< PoToIhapp._ph)_TPvTp i Pj hlp kT IPOTO > = happ._ph)_TPvTp i Pj hlp k T

I I I L__.J I i I

+ happ_ph_TPuTP i Pj hlphkT
I I i _ I I

= _apIp 5"_pjSATk T _uTi

-- _aplp_.lpi_TkT_PT j (41)



and

+ + . .

I I I _ I I

h h +++ +
"4- o_pp.Tp ATPvTp i pj hlThkp

I I I _ _ ,

- 6apkpS._pj6)_TlTS_,Ti (42)

Therefore, substituting equations (41) and (42) into (40) yields the inelastic scattering matrix element

1

< phlVIPoTo > = [ [< .T(T)"_p(P)IVIAT(T)up(P) > - < 2p(T)_,T(P)IvlAT(T ) up(P) >

+ < yp(P)_'T(T)]vlap(P)AT(T) > - < _'T(P)yp(T)lvlap(P)AT(T) >] (43)

As suggested by equations (A4) and (A6) of appendix A,

< qp(T) VT(P)IvlAT(T) O_p(P) > = < .T(P) qp(T)lvlap(P) AT(T) > (44)

and

< _'T(T) "Tp(P)[vlAT(T ) up(P) > = < "fp(P) _,T(T)lvIap(P) AT(T ) > (45)

so that equation (43) becomes

< phIVIPoTo > = < _'T(T) "_p(P)IvlAT(T) up(P) > - < "Tp(T) _'T(P)IVlAT(T) up(P) > (46)

This result is analogous to equation (36), which was obtained for the elastic scattering case. Note that a
comparison of equation (46) with equation (36) indicates that

< PoTolV]PoTo > _ ApAT < phIVIPoTo > (47)

if the summations in equation (36) simply imply multiplicative factors of Ap and A T.

Inelastic Scattering of the Projectile to a One-Particle-One-Hole State With the Target
Remainingin the GroundState

The process whereby one nucleus (e.g., the projectile) is excited to a one-particle-one-hole state while
the other nucleus (e.g., the target) remains in the ground state may sometimes be forbidden by angular
momentum conservation or by some similar selection rule. Nevertheless, the process is physically possible
and provides a worthwhile illustration of second-quantized techniques. In the ensuing discussion we
assume that the projectile nucleus is excited while the target nucleus remains in its ground state. The
techniques displayed, however, can be applied to the situation in which the target is excited and the
projectile remains in the ground state by merely swapping the projectile for the target and vice versa in
the development.

The combined target ground state plus projectile nucleus particle-hole state is written as

Iph> - + IPoTo> + + (48)aqpaap : p.TphapIPoTo >

We now evaluate the collision matrix element as

1

< ph[V[PoTo > = -_E E < ij[vlkl >< phla+a+alakIPoTo> (49)
_3 kl
i_j
k#t
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Rewriting < ijlvlkl > as before (in eqs. (28) and (40)) and substituting particle and hole operators for
the creation and annihilation operators yields

< phIVIP°T° > = E < i(T)J(P)IvIkT(T)Ip(P) > < P°T°lhapP_PPi hjhtphkT ]P°TO>
ij L kr lp

i#j

Ap A T

+ + + >) i(P)J(T)Ivlkp(P)IT(T) >+ < PoToIhc_pP'_phipJ hlphkT IPoTo + E E <
kp l T

( . ++ .++ )]× < PoToIhapp_pPi hjhlrhkplPOTo > . < PoToIh_pp'_phiPj hlrhkplPOTO >

where the additional terms result from the fact that a+i, a+_,ak, and ai are free to act on both projectile
and target spaces. Evaluating the operators through the use of Wick's theorem yields

.$

+ + + + + h+ (51)< PoTolhapp-_ppi hjhlphkTIPOTo > = happ_pp i hjhlp kT = --_plp_upi_jkT

+ + + + + + (52)< PoToIhapp_phiPj hlphkT ]PoT0 > = happqphiPj hlphkT = _pIp_lpj(_ikT
I I I

/3, T + + + " +h h+ h+ (53)< o olhapP_pPi hjhlThkflPoTo > = napP_pPi j IT kp = 5aPkPS_piSjIT

and , _ _ w

+ + + • + + + = (54)< POroIh_pp_phipj hlThkpIPOZ 0 >= hafp_ph, pj hlThkp --_pkp_pj_ilT

Inserting equations (51) to (54) into (50) yields the following collision matrix element:

y'_[< - <lr(P)_p(r)lvl_p(P)lr(r)> (55)+

lT

Again as suggested in appendix A,

A T AT

< kT(T) qp(P)lvlkT(T) ap(P) > = _ < _p(P)IT(T)lvlap(P)IT(T) > (56)
kT lT

and
AT AT

E < "TP(T) kT(P)lvlkT(T) ap(P) > = E < IT(P) qP(T)lvlaP(P)1T(T) > (57)
kT lT

which are inserted into equation (55) to give our final result:

AT

< phlVIPoTo > = _ [< _p(P)IT(T)Ivlap(P)IT(T) > -- < lT(P)yp(T)Ivlap(P)IT(T) >] (58)
lT

9



Comparing equation (58) with the elastic scattering result (eq. (36)) and with the particle-hole mutual-
excitation result (eq. (46)), we note that the summations in the final matrix element remain only for those
nuclei which remain in their ground states. The summations for those nuclei which undergo particle-hole
excitations reduce to a single term since the operators for the final particle-hole state represent a particular
single-particle configuration for that excited nucleus.

Summary

The methods of second quantization and the particle-hole model in the Tamm-Dancoff approximation

have been generalized from their usual application to one composite body (such as a nucleus) to the
study of interactions between two nonidentical composite bodies. The calculation techniques were
illustrated through their application to the following: (1) elastic scattering of projectile and target nuclei;
(2) projectile-nucleus-target-nucleus inelastic scattering with both nuclei excited to one-particle-one-hole
states; and (3) inelastic scattering in which the projectile nucleus is excited to a one-particle-one-hole
state while the target nucleus remains in its ground state.

NASA Langley Research Center
Hampton, VA 23665-5225
September 25, 1985
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Appendix A

Derivation of Equations (34), (35), (44), (45), (56), and (57)

Recall from equations (12) and (14) for the direct term that

< i(P)j(r)lvlk(P)l(r) > = i (_P)¢_(_T)v(_p,_T)Ck(_P)¢l(_T)d3_pda_T (A1)

whereas the exchange term (from eqs. (13) and (15)) is

< j(P) i(r)lvlk(P)l(r) > =//¢_(_p) ¢_(_r)v(_p,_T)Ck(_P)¢l(_T)da_Pda_T (A2)

Since the order of the wave functions in equations (A1) and (A2) is unimportant, equation (A1) yields

¢;(_T) V( _p, _T) Ck(_P) ¢/(_T) d3 _p d3 _T

=//¢;(_T) €_ (_P) v(_p, _T) ¢l (_T) Ck(_P) d3_p d3_T (A3)

or

< i(P) j(T)[vlk(P ) l(T) > = < j(T)i(P)lvll(T) k(P) > (A4)

which validates equation (45). Similarly, from equation (A2),

= ]] ¢;(_T) ¢;(_P) V(_p, _T) ¢/(_T) Ck(_P)
d3_p d3_T (A5)

or

< j(P)i(T)lvlk(P ) l(T) > = < i(T)j(P)HI(T) k(P) > (A6)

which validates equation (44).
Relabeling equation (A4), we have

< ip(P)jT(T)lvlkp(P ) IT(T) > = < jT(T)ip(P)lv[IT(T ) kp(P) > (A7)

which, for elastic scattering (ip = kp and JT = IT), becomes

< kp(P)lT(T)lvlkp(P ) IT(T) > = < lT(T ) kp(P)lv]lT(T ) kp(P) > (A8)

Summing equation (A8) yields

A TAp A TAp

}-_ _-_ < kp(f) lT(T)lvlkp(P) IT(T) > = _ _-_ < IT(T) kp(P)lvlIT(T) kp(P) > (A9)
l T kp l T kp

Since lT and kp are summed over AT and Ap, we can relabel the right-hand side of equation (A9) by
interchanging l and k to yield

A TAp A T Ap

E E < kp(P)lT(T)lvlkp(P ) IT(T) > = E E < kT(T)lp(P)]v[kT(T)lp(P) > (A10)
l T kp k Tlp

11



which validates equation (34). In a similar manner, the elastic scattering exchange term from equa-
tions (Ab), (h6), and (h9) becomes

A TAp A T Ap

_-_ _-_ < IT(P) kp(T)[v]kp(P) IT(T) > = _-_ _-_ < kp(T) IT(P)lvllr(T) kp(P) > (All)
lT kp l T kp

Again, we can relabel the summation indices on the right-hand side by interchanging l and k. Hence,
equation (All) becomes

A TAp A TAp

_-_-_ < IT(P) kp(T)lvlkp(P) IT(T) > = _-_-_ < Ip(T) kT(P)lvlkT(T) lp(P) > (A12)
l T kp k Tlp

which validates equation (35).
Finally, the validity of equations (56) and (57) is demonstrated. Relabeling equations (A4) and (A6)

yields a direct term

< ip(f)jT(T)lvlap(P)1T(T ) > = < jT(T) ip(P)lvllT(T ) ap(P) > (A13)

and an exchange term

< iT(P)ip(T)[vlap(P ) IT(T) > = < ip(T)jT(P)[vlIT(T ) ap(P) > (A14)

Since the target remains in its ground state, JT = IT and a summation over the target indices gives

AT AT

< ip(P)IT(T)[v]ap(P ) 1r(T ) > = _ < IT(T ) ip(P)]v]lT(T ) ap(P) > (A15)
lT lT

for the direct term and

AT AT

< lT(P ) ip(T)lv]ap(P)lT(T ) > = _ < ip(T)IT(P)IV]IT(T ) ap(f) > (A16)
lT lT

for the exchange term. Since lT is summed over AT, we can relabel the right-hand side of equations (A15)
and (A16) by interchanging l and k to yield

AT AT

< ip(P)lT(T)lvlap(P ) lT(T) > = _ < kT(T) ip(P)lv]kT(T ) ap(P) > (A17)
IT kT

and
AT AT

< 1T(P) ip(T)lv]ap(P)1T(T) > = _ < ip(T) kT(P)]v[kT(T) ap(P) > (A18)
lT kT

which validate equations (56) and (57), respectively.
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Appendix B

Nucleus-NucleusTamm-DancoffState

In this appendix, the validity of the projectile-nucleus-target-nucleus Tamm-Dancoff, state (eq. (37))

Iph > = a+Ta_Ta+pac_pIPOT o > (B1)

is discussed. If we start with the assumption that a two-particle-two-hole state in a single nucleus of A

nucleons (ref. 1, p. 455; ref. 2, p. 163)

12p-2h > = a_a_alak[A > (B2)

is analogous to a one-particle-one-hole state in each nucleus of a pair of nuclei, then the expression
comparable to equation (B1) would be

I(ph)' > = a+Ta+pa_Taap[POT o > (B3)

The correctness of equation (B1) rather than (B3) for the nucleus-nucleus case is supported by the fact
that the use of equation (B3) leads to a negative sign for the direct term and to a positive sign for
the exchange term, a result which is contrary to the usual convention. This correctness is because the

order of the operators a+p and a_T in equation (B3) is opposite to their order in (B1). In addition,
there is no a priori reason to require mutual one-particle-one-hole excitations in colliding nuclei to be
exactly analogous to a two-particle-two-hole excitation in a single nucleus. Finally, the single-nucleus
one-particle-one-hole state

[ph > = a+_pa_pIPoTo > (B4)

used in equation (48) follows naturally from equation (B1) rather than from (B3).
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Symbols

A mass number of an arbitrary nucleus

Ap mass number of projectile nucleus

A T mass number of target nucleus

a annihilation operator

a+ creation operator

< ijlvlkl > nucleon-nucleon two-body matrix
element

h hole annihilation operator

h . hole creation operator

i, j, k, l nucleon quantum numbers

P projectile

p particle annihilation operator

p. particle creation operator

lph > particle-hole state vector

IPT > total projectile-target state vector

IPoTo > total projectile-target initial state
vector

r position vector, fm

T target

V nucleus-nucleus interaction potential,
MeV

v nucleon-nucleon interaction potential,
MeV

a, _, % _ nucleon quantum numbers used in
particle-hole state vectors

5ij Kronecker delta

_p projectile-nucleon position vector

_T target-nucleon position vector

¢ single-particle wave function

contraction symbol used in Wick's
theorem
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