NASH TM-7777F

NASA TECHNICAL MEMORANDUM NASA-TM-77979 19860012039 NASA TM-77979

VORTEX CONCEPTION OF ROTOR AND MUTUAL
EFFECT OF SCREW/PROPELLERS

A.M. Lepilkin

Translation of "Vikhrevaya teoriya nesushchego vinta i
vzaimnogo vliyaniya vintov,)' Izvestiya akademii nauk CCCP,
Mekhanika i mashinostroeniye (Bulletin of the Academy of

Sciences USSR, Mechanics and Machine Building), No. 5, 1963,
pp. 77-107.

5;.‘;'-' ! "Jz,/
Liddudennr d wioz

Lok W AN
FES 2180
LANGLEY RESEARCH CENTER
LIBRARY, NASA 7
HAMPTON, VIRGINIA ¥

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 JANUARY 1986



STANDAQO?ITLEpAcf

1. Repert Ne. 2. Cevernment Accession Ne. 2. Reclplent’e Cataleg No.\
NASA TM-77979
L Tule end Subiitle 3. Repert Date T
VORTEX CONCEPTION OF ROTOR AND MUTUAL January 1986
EFFECT OF SCREW/PROPELLERS 6. Pulecming Oiganitation Cade ]
1. Avcelal 8. Peslecming Orgenisetion Ro;m
A.M. Lepilkin
10, Yok Unlt Ne. o

9. Perlorm:ng Orgonization Nama and Allrese 11, Contract a¢ Cront Ne.

Leo Kanner Associates NASw-14005 —

Redwood City, California 94063 13 Trpe of Report cnd Pasiod Covared

Translation

12, Joentoriny Agency Neme end Addrese

National Aeronautics and Space AdminisJ,L h““"M,A”;'c“.
tration, Washington, D.C. 20546

1s. 50;::(4&'.1!":" Notes

Translation of "Vikhrevaya teoriya nesushchego vinta i
vzaimnogo vliyaniya vintov,” Izvestiya akademii nauk CCCP,

I Mekhanika i mashinostroeniye (Bulletin of the Academy of
Sclences USSR, Mechanics and Machine Building), No. 5, 1963,

pp. 77-10T7.

ls. A:u:g.;c

A vortex theory of screw/propellers with variable cir-
culation according to the blade and its azimuth is proposed,
the problem is formulated and circulation is expanded in a
Fourier series. Equations are given for inductive velocities
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List of Symbols/Notations/Abbreviations

X,¥,2 —- coordinate system

V,VX,Vy -- flight speed

R,r -- radii of the screw and blade cross section

Yy -- blade azimuth

k -- number of blades

ay -- angle of "blade cone"

Vg —- inductive velocity averaged over the disk of the screw

I'(r,y), Fo(r), Fnc(r), Fns(r) -- circulation of airspeed around
blade cross section and its har-
monics

v, volr), Vmc(r), vms(r) -- inductive velocity of screw T'(r,y) and
its azimuth 6 harmonics

8 -- angular velocity of rotation of screw around its axis

W —-- inductive velocity of abstract screw of radius p with constant

circulation y(y) over the radius
wn,wn,o(r), wn,mc(r), wn,ms(r) -- inductive velocity of abstract
. . . _invy

screw with circulation Y,=e and

its harmonics

x2,y2,z2 -— coordinates of center of hub of second screw

a02 -- value of aO for second screw

sgnA -- unit with sign of value of A, sgn0=1 in this case
o= 9F/dq

K =03K/dg
V,r =V, + v, A:Vyt/Vx, Yo=Y — app — Az

Yo =% P agr — AP, Y, = Yy — Azs



VORTEX CONCEPTION OF ROTOR AND MUTUAL
EFFECT OF SCREW/PROPELLERS

A.M. Lepilkin

In existing studies on the vortex conception of a screw, a
screw system with an infinitely large number of blades is used (which
permits avoidance of the extremely complicated accounting for the ef-
fect of nonperpendicular running off of the vortices from a rotor
line and the time variable circulation of airspeed around the blade
cross section), and only steady state conditions are considered.

G.I. Maykapar in 1947 [1] and A.P. Proskuryakov in 1956 [2]
used a system with constant circulation over time. G.I. Maykapar
generalized the method of Zhukovskiy for the case of a slanting vor-
tex cylinder, and he proposed breaking down the vortices into circular
(parallel to the blade planes) and rectilinear (along the cylinder
generatrices), and he gave formulas for inductive velocities only in
the planes of the blades in the form of definite integrals. A.P.
Proskuryakov considered only a flat vortex system and broke the vor-
tices down into longitudinal and transverse, and he gave formulas for
the axial inductive velocities involving elliptical integrals of the
third kind, which changed in complex planes, the parameters of which
are determined by the roots of an equation of the fourth degree.

A vortex theory of the screw is proposed below with a variable
(according to the blade and by its azimuth) circulation. A three di-
mensional vortex system is used as the base, the form of which takes

account of the conical nature of the relative locations of the blades

/

and the first harmonic of their flywheel motion. The results obtained

are suitable for all normal conditions (with the exception of the
case of axial movement of the screw against the force of gravity).

In Section 1, formulation of the problem is given, and expansion

of the circulation in a Fourier series.by blade azimuth is proposed.

¥Numbers in the mafgin indicate pagination in the foreign text.
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In Section 2 and Section 3, equations are given for the inductive
velocities in space, in which in Section 3, it is for a screw with an

infinitely large number of blades.

In Section 4, expansion of the inductive velocity of a screw by

the second blade azimuth is given.

In Section 5, multiparameter, improper integrals are presented
in the form of a combination of elliptical integrals and elementary

functions.

_ In Section 6 (Appendix), a method is shown of reduction of el-
liptical integrals of the third kind with a complex parameter to in-

tegrals with a real parameter.

1. Formulation of Problem

In steady state motion of a screw, angle € between the blade /78

axis and the plane normal to the axis of rotation of the screw changes

periodically
8 = a, 4 a,. cos ¢ +.. a;, sin $ +... (1)

The axes of the blades (if the short distance of the hinges from
the screw axis and the higher harmonics of flywheel motion of the
blades are disregarded) form a circular cone with angle of taper aO,
the axis of which is deflected from the screw axis by small angles a1,
(in the plane of movement of the screw axis) and ajg (to the right or

to the left).

We introduce a clockwise coordinate system with origin O in the
center of the hub of the screw by drawing the y axis upward along the
axis of the "blade cone" and by directing the x axis forward so that
flight speed vector V is in the xy plane (Fig. 1). We define blade
azimuth ¥ as the angle between the projections of its axis on the xz
plane and the x axis. In calculation of the forces and moments de-
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veloped by the screw, it will be easy to change to a similar coordi-
nate system with the Oy1 axis along the axis of rotation of the screw.

0° alc and als can be calculated

approximately beforehand based on axial induc-

Angles a

tive velocity V3 averaged over the propeller
"disk" (it can be determined from for example
the theory of Glauert [3]).

Because of the smallness of angles alc and

a the angular velocity of rotation of the

1s’
"pblade cone" can be considered uniform and

Fig. 1. equal to velocity § of rotation of the screw
around its axis. In analysis of the mutual ef-

fect of the screws, the axes of the "blade cones'" can be considered

parallel. The blades of the screw are assumed to be uniformly ar-

ranged and identical in all respects.

In determination of the shape of the vortices flowing away, by
disregarding the projections of inductive velocity v on the x and y
axes, which are extremely small compared to the velocities of points
of the blade V and Qr, each element of a vortex can be considered to
move parallel to the y axis from the point where it left the blade.
In order for such a (linearized in shape) theory to retain meaning

up to hovering (VX=O) inclusive, velocity Vy*=Vy+v of departure of

d
the vortices from the xz plane averaged over the "disk" of the screw

(or in the xz plane) should be introduced.

Steady state conditions, circulation T of the airspeed around
the blade cross section at radius r depends periodically on blade
azimuth .

We introduce the concept of an abstract screw of radius p with
constant circulation y(y) along the blade, and we determine corre-

sponding inductive, velocity w.



Let t be the interval of time from a given moment to the time a
vortex element flows away from the blade. The blade vortex connected
with circulation Y(y) and two "end" vortices with circulation Y¢=
y(¥-Qt), flowing away at radii p and 0, form a closed circuit filled
(because of the law of conservation of circulation) with "transverse"
rectilinear vortices with circulation dY¢=(dY¢/d¢)d¢, the ends of
each of which rest on points of the end vortices which correspond to
equal values of t. The coordinates of the vortex element in the
X,¥,2 system will be (Fig. 2)

, Vx ’ VV‘ '
E=rcoslb—q) —@-g, n=0ap —¢F (1.1)

E=—p'sin(P—9) (@=00

Only ¢ changes along the out-
side (p'=p) and inside (p'=0) ends
of the vortices (0g¢<=) and only p'
changes along the transverse vor-
tices (Ogp'<p). The equation of the
connected vortex will be ¢=0.

We call the p'=const line

(which is transformed at VX=O into
a screw with pitch Vy*/ﬂ and is pro-
jected on the xz plane in the form of

) a trochoid at V_#0) a helicotrochoid.
Fig. 2. The p'=0 line will be rectilinear to

the axis of the vortex system.

The inductive velocities which correspond to a given vortex line

with circulation TI' are determined by the integrals along this line

o = 9 1 2 1y
= 4::&“(3;:—@—51—‘“1)
1 YR a 1 ;
= z;gr(5;7—d§—-3;7—dg (1.2)
N AL 91 A
P = 4“31‘(5;-7(1,]“-@!77«15)

=V = Fu—w+e—0"




where £, n and ¢ are the coordinates of element ds of the vortex line.
These integrals can also be applied formally to vortices with circula-
tion of variable length with such integrals considered to be branching
"transverse" vortices. For construction of the velocity field in the
Xyz coordinate system semifixed to the propeller, Eg. (1.2) can be
utilized, since their result depends only on the differences of the
coordinates of the points of this system and the points where the
vortex element 1is located at a given time.

At a fixed point of the xyz system, the inductive velocity will
be a periodic function of blade azimuth ¢y with period Tt=271/k, where

k is the number of blades.

A change to a multiblade screw can be accomplished by sum-
mation of the inductive velocities of a single blade screw shifted
by ¢ in 1, 21, . . . Therefore, only the cases k=1 and « are con--

sidered further.

For a change to a screw of radius R with variable circulation
r(r,y) over radius r, the following must be used in equations for the

inductive velocities of an abstract screw with circulations y(v¥),

1) = —{5-} _ do (1.3)

and the integral must be taken along the blade axis (0g<p<R).

In order to simplify practical application of the theory, the

following expansion should be used

F(r,¢$) =Ty (r) + '3 [Tre (r) cos nY + Iy, (r) sin n] (1.4)

© et

A screw with unit complex circulation

Y, = e = cos np + isinnY (n=0,1,2,...) (1.5)

will correspond to complex inductive velocity




w_=w_ +iw (n=0,1,2, . . .). (1.6)

The inductive velocities of circulation harmonics Fo(r), /80

Pnc(r) and Fns(r) will be

1

. R : |

dF, |

no (2, Yy 2) = — Swnc(P)d—;‘dp, Vs (2, ¥, 2) = — wm(P)%dpf(l.7)
. 0 !

O'../:x

2. Inductive Velocities of k#o Screw

By applying Eq. (1.2) and (1.1), passage around the edge of the
vortex surface must be carried out so that the connected vortex
passes from p'=0 to p'=p and that the "transverse" vortices have to
pass in the same direction. The following equations are obtained in
this way:

Py

AR T ¢ i ;
e - o om0 -

H J 1 a 1 ’ ¢ . ad 1 a ."
"[Sm(‘P—q?)WTﬂ-aogT]dq’dP — T(lP)S(Sm\Pa—yv'*‘ aog—,i—)dp"./

7
0
0

o

moy = — {1 [cos (9 — 9) 2+ —sin (b — ) L] do + - (2.2)

0 . . ’
f 00 .

+ (s 0= @) 2 cos (9 — ) 2 3] dpde’ —

00, :

8. .

—;—xgn,%(4—%.,)dwmg(smp%-;o-,msxpgﬁ)dp«

o o (2.3)
0 0 a

o

P=1lz—pcos(p—q) +¢Ve/ QP + [z + psin (p — @) +

+ 0 — aop + 9V, 1 Q) (2.4)



Here, £' and la are the values of £ at p=p' and p=0 respective-
ly, and 20' is the value of &' at ¢=0. Differentiation with respect
to x, y and z is performed before integration with respect to ¢ (the
condition of convergence of improper integrals). It is easy to see

that

¥

Mw—pf 21 9 1\a Ve {0 t_ 1 /
S TTRON VRN

(o]
peoaT op ,;"(2-5)
Mo 0 4 pode’ | sl 0 1 do
By substituting Y=elm‘b and Y¢=eln(w_¢), complex functions of

the type of equation (1.6) can be obtained for each projection of the
inductive velocity.

3. k=« Rotor

As k»~ and with preservation of quantity kI', period t=27/k of in- /81
ductive velocity v(x,y,z,¢y) with respect to § tends toward zero. In
the 1limit k=«, function v does not depend on blade azimuth Y and evi-
dently equals the average value of the inductive velocity of a single
blade screw (with the same circulation) in one rotation of it

b

v° (z, ¥, z)={2—:t— Sv‘(x;, Y, Z; w)‘d;p}hl | (3.1)

The use of function kv® for a k#« screw designates approximate
solution of the problem, the inaccuracy of which decreases with in-
crease in number of blades. A k=« system, as numerous experiments
have shown, gives satisfactory results with k>3 and small values of
V/QR, when the coils of the vortex lines are located quite close to
each other. Rotor parameters VX/QR and Vy*/QR also are small (usual-

ly less than 0.3).

By applying a k=« system in determination of circulation T'(r,y),
a blade can replace a vortex line since, with k=«, function w can be

7



integrated everywhere with respect to p.

With k==, the vortex system of an abstract screw consists of a
vortex cone (connected vortices of the blades) and a vortex shell,
each cross section of which is a circle in the y=const plane. The
space inside the shell is filled with "transverse" vortices. In each
infinitely thin parallel xz plane, the circulation distribution layer
of the shell around the circumference is identical, if the calcula-
tion is carried out from the same helicotrochoid Y=const.

In determination of an Eq. (3.1) type function for each projec-
tion of inductive velocity w, a detailed accounting will only be given
for wy. Transformation of the double integrals should be performed
ahead of time for y(y)#const. After integration over ¢ by parts,
there will be

R AT RN UNEA S I
p oo P do’ (3-2)
e bt

In determination of the average value of Eg. (3.1) for a period,
variable a=y-¢ can be introduced for each fixed value of ¢. Then,
a=y can be assumed. The hydrodynamic meaning of such a transforma-
tion is that summation of the action of the vortex elements in each
parallel xz plane of the thin layer is carried out from the same

helicotrochoidal surface y=const.

In this way, we obtain

=0 2§ Wy + ap| 2 | 1Wapaq
0 —-— () —n
o | TE . (3.3)
— o VR - ) avde | [ 0T favapt

B = (:z:— p cos P +(p%f)2+(z+psintp)’+ (y—-aop-{— tp%.)’ (3.4)




Use of the equalities

(o]
Q a1 VYV, a1 a1, i
221 _ > v 2 s Td9=— -
ox 1 V. 39 I Ve oy 1° PRI

(the first is necessary only for the w

, transformation) gives

Vo) o T- %)d‘l’d?-!-PS j*‘“”cos\pd\pdw— I'.\
2 {rw to (1ed PRET T S
SS 3 S 1 cospdpdedp Say Szm ,smtpd\pdp Saz S 2az°'d‘pdp/
o0 -— 0 - .
4mvu°—p§°—§—p §7(‘p)d\pdq>+a f% | Wapag — / (3.6)
0 - 0 - ’
oo n pn ‘
AL R | (LI
4m,°=l";(1+";;,')§°% { (5 — ) dede + NERS
)
+ 3 LR — ) — o{ 3 | Wunvavar+
—_n [} —
+§§°’a%§ T(‘p)sin\pd\pdcpdp §a‘; S ;,Sp),costpd\pdp +a, S S ;(t'f),dtpdp';;
—_— 0 -— —_% i
v (Mr ==y + 1)

There now should be introduced variable g=x+¢V_/Q and nota-
tions

A=V*/Vey  ye=y—ap—Az (3.8)
BP=aw"—20 (Ecosp — zsiny) + 8 4+ 22 + (yo + AE)?  (3.9)
Then
’ 3 1 a1 (a1
8p +a0-5—l_—(30) l)m=p (3.10)
G = — & K () — K: O + 52K, () — 7= (B, (0') d’ —
P P T
-—S—%- S ;‘('f’,smq;dxpdp ——aogai S 2I£l),d‘PdP
0 - (3.11)

N
(o]
no



s = 7% K p) — K, <p>+K(0)+§Sz—‘%’a%}7d¢dp' (3.12)
o = (4 + 4 (K, () — Ky O]+ 2 { (L — Lygy = (3.13)

—T

3
_Q 0 : f
P K (2) ( ) + SK (2) (P )dP g gg}sb),COS\Pd‘pdp +ag S 32 S;Sp)d‘p dP’}

0 —_n 1] —n J
1 ’—z‘+y’+z’ |

Here, /8

Kq(p)={§ogq—§1‘—"?dtp"3§} (€= 2, 0) (3.14)

8
a

2 ¢ Corf TP o
Kv(l).___.g W S ﬁ:‘i)cosapdtpdg’ K,,"’= § -—_S“-msm\pd\pdﬁ ‘ (3.15)

x —R

I} =p*— 2p (zcosP — zsinP) + 22 + 22 + (y — acp)? (3.16)

Equations (3.14) can be presented as

: o+ ME ' D z+esing
Ko =—{ W1 gy K“")=__S,‘L§-B"id§d¢ (3.17)

Ko(p) = — S %S P—Ecosl\r+zsin\p dL dy

—_T x

Functions Ky(l)(p) and Ky(2)(p) are obtained from Ky(p) by
replacement of y(y) by y(y)cosy and y(y)siny. Since
I’ = A+ 2Bt + CE?
A=(z+psin¢)2+pzcos”ﬁa+y", B=Aky,—pcosy, C=1-+A (3.18)

then

) F o H o aye (3.19)
H = (z+ psiny)® (1 + A?) + (ye + Ap cosy)?
D* = p* — 2p (zcosp — zsiny) -+ 22 + 22 + (y — ayp)?

io_‘ﬁ_V_C—_B_‘fLC _§°Ed5_f4+=B B_ g _Ac—p

Consequently,

Ky(p) = — § 1 {(V_C_—Btfc)(y —:‘aop) + (A +22 7%) 7»} dp  (3.20)

1
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K== | B o5 ennay

2nHd

—_7

}fa(p)= - S 1) {(VZ‘-—B_ZzC)(P—{-zsin\p)—(A';’B_Vi)COS\p} (3 20)

The remaining integrals with respect to Y will be

T © ‘
i

2 1
S Tz(n)a_‘"—'d‘l’=“g ‘;f:b)xsmip;tzcoswd‘p \
o i
9 (1) —
3§ o= - pe=gemvay 5.
3 n 5{
2 S ;ﬁ)dﬂ; - g T(¢)2+F;°ZID¢ dp |

—_T
™

3 ¢ T(w)cos nC T(P) cos .
3 ) Il (0 = — (y—aep) | L2505 (4 oy

All the integrals with fixed function Y(¢) can be found nu- 814
merically. Calculation of integrals (3.20) is complicated however
by the extreme peaks of the subintegral functions at small values of

H. The case H=0 and D=0 is possible with Y—ap =AY pri—z.

The calculations are substantially simplified if the circula-
tion is expanded in a Fourier series with respect to y¢. For
Y, =einV (n=0, 1, 2, . . .), integrals (3.14) are transformed into

Spe01al functions

Km(9)={&§;§%{3-d¢d§}u @=y,z0)  (3.22)

=p
K K K (P)—Kp 4, ,(P) )
Kfslll) (p) — n+1, v(P)’; n-1, u(p) , K’f‘zl) (p) _ n+l, ¥ - 1, ¥ ( 3 23 )

The substitution yY=a sgn z should be introduced here. There

will then be

¢ 9 ¢ exp (in asgn z)
Ko @) ={{ 57 | PGT R dadt)  g=uisl 0 (3.21)

P =o—20(cosa—|z|sina) 4 & 4+ 22 + (y, + AE)?
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Functions of the type

con
.3

i i
Fl* (xv g h; @, k)=§ S %dddg ((0}0, é}O,h>0), (P»=i. 2,.. .) ;;(3 . 25)

where ;
I’=m’—-2m(§cosa——gsina)+§’+g2+(h+3\,§)’ 1(3.26)

and its derivatives over g, h and w (u=0, 1, 2, . . .) are discussed
below (in Section 5). These functions are presented in the form of

a combination of elliptical integrals and elementary functions, in
which

Fo=Fu+ iFy  Fug=Fpq + iFp (3.27)

It is now evident that, with Xe=|A| sgn (Ay,),
Knq(0) = Freq (z, [z, [y, @, M) + 5802 Freq (2, | 2|, ly,ls @, &) (3.28)
Consequently, in the equations of Section 5, it is sufficient to

assume g=|z]|, h=|ye|, where |h+kxl=|y—a0p|. It is then necessary to
assume w=p.

For y=elnw, the remaining integrals are reduced to elliptical
integrals. Actually,

%S,‘:?: () %d‘P:*(y—aop')S" “‘"*;:_;t:_::;;(l::)w db ’
_aaTS 1-'2"—:":(,%)&!?: — z_§ 2_6:1%‘1‘1’ +ip’_§ e{(nmzn—lo,:”n_lwd.p |
7%§%%h¢:—1§§%@%ﬂiemmxﬁmm¢w' (3.29)
S 3 )
Sﬂ#%i—,d a __S“j—:t? 2?;0' = —i"_gn % v

~
[ee]
Ul

With the structure of expression (3.16) taken into account, it

should be assumed that

cos® =z/r, sin@ =—z/r, r=Vaz22 4+ 22 (3.30)

12




After this, use of the substitution y-@=1-2¢ gives

§cmn¢d¢__JL (— )BT () 2 _ 4pr (3.31)
™ T T (e y— e T PE @ — )
n/3 . ;
o (-mf2) _ cos 2nQ d m=1 | .32)

0

For an abstract screw, integration must also be performed with
respect to p' from 0 to p. The way of calculation of the correspond-
ing double integrals can be indicated. For a real screw with vari-
able circulation however, I(0,y)=T(R,y)=0. Therefore, integration
over p' proves to be superfluous. Actually, for a g(p) type func-
tion with I'(0)=T(R)=0,

R » ‘R-
S(Sg(P') dp')%,%dp= —\e@rEd
V] 0

1]

Funection

E,™ (&, a) = S (4 — K3sin? Q)" cos 2ng.dg (3.33)
o

can be called a generalized elliptical integral, since

BN (k@) = F (o), B (ko) = E (ka) (3-38)

It is easy to verify by differentiation with respect to o that

Bln—v —DE, (ko) + (a v + 1) E Dk o)) 4

1 (3.35)
+2n (2 — ¥) En™ (k, @) = 2 sin 2na (1 — 3 sin? ay*t
The base here will be functions EO(V)(k,a) and
E™ (k, a) =—2‘I;"’ E™ (k, a) b _kZTEo“’”’ (k, @) (3.36)
It also is easy to determine that.
o (V1) _ 2v4-1 TN )
EMY (K, a) mgz k) Ey\" (k, a) 4
v o (v-1) _ k3 13 cing w)Y o .
+v+i(i %) E, (k,a)_m-T)(i k2 sin? a)' sin a cos @ (3.37)

13



where elliptical integrals of the first and second kinds (3.34) will
be the base.

With small k2, when recurrent Eq. (3.35) is inconvenient because
of the effect of small differences (increasing with increase of n),

it 1s better to use the expansion
V) . ) :
E, (k,a):@w—-(:)k’@n_l-i-(;)k'(bn.a—-... : (3.38)

q)n, a=ig (sin? @)* cos 2nqdg ’i (3 -39 )
J .

By using the corresponding indeterminate integral [4, p. 155],

we have
{ rins oyt _Einto)sin2nt _ n ( gousin@n— 1)@ 4o
S(sm’ @° cos 2np dp = S ) Sin’ n_HS (sin? @)* SR C2 )
But 0 0
sinkcp_{1+2[c032(p+c054(p+...+cos(k—i)(p] (k=3,5...) \
Sin® 12 [cosp 4 cos3p + ... b cos (k— 1) @] (k=24 ...)
On this basis, the recurrent formula /86

—(sin’a)’sin2na _ _ 7 _ 2 ’ :
o, , T 2(m4s ntasle@ n+3(®1"+.“+®"’l")'(3,1;0)

a

f,(@) = S (sin? §)* dg
0

is obtained, where fs(a) is a known function which can be determined

by the recurrent formula

2sfy = (2s — 1) f,_y — (sin a)¥*cosa, fo=a, 2fi=a—sinacosa

The substitution of v/1-k° tan ¢ tan 6=1 gives

d =-—w — k2 gin3 _L’C’_
? 1 — K¥sin? ¢’ 1= Kisin (P—i—kzsin’f) (3.41)
v ? a9
1 — Ksin? )’ dp — (| — ao)"*a| — @V
§ ( 9’ do = ( ) \ A= msim 0
0

where o and B are connected by the relationship tan a tan B/l—k2=l.

14



For a=m/2, integrals (3.33) will be "full,"

/2
B, (k) = g (1 — K sin?g)* cos2np dp (3.42)

0 i

According to the identity

Ca e 1 - 2s 1
m(sm ?) =[2q§ (=" %cos2(s— g) 4 ( s )]?3 !

. 1 ;
Ons= | it cosznpap =~ (2 VL 0, 0 (<n

S$—n
[}

Consequently, for n=1, 2, 3, . . .,

R R A e S TR IC 1L SERENES

For v<0, all the coefficients of this series have the same sign

(—l)n, so functions En(v)(k) do not have roots.

For a=0 when B=7/2, Eq. (3.41) gives
/2 /2
S (1 — Ksintq)’ dp = (1 — ky)**' S de (3.44)
J (1 — Ksin?g)™?

0

For v=p-1/2, it follows from this that

ERR () — (1 — PRy w=1,2,3,. .
' S (3.45)
EBRw = EO g = _‘(E:Z)lfz’;), e

It follows from Eg. (3.35) that

E LWy =—_4n 2—K p) gy _2n—1 o (-4

W) = e B - B (3.46)
Eo(—‘/.) (k) = F (k), kiEl(—l/x) (k) — 2F (k) _ (2 _ kz) F (k)

(=) _ . _hn 22— (- 2n 4+ 1 _y, ~
Eni ™0 = — P S BT ) — 2L BLS (3.47)

A=BETP W =E®, BU—E™ 0 =20— B F®) - @2— ) E®

Equations (3.46) and (3.47) are necessary for calculation of 87
integrals (3.32).
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Point k=1 is singular. As is known,

i

- u—me... | (3.48)

)

4 1
Vi—® +-4—-(ln V1

B0 =147 (s

F(k) =In

*%)U—kﬂ+.”

It is therefore convenient to introduce functions limited to
point k=1

A (B) = (— O™ (1 — K E,5 (b, Ay() =1 (3.149)
which are determined according to Eq. (3.47) by the recurrent formula

4n 2—k’A _2n+4-1
2n—1 KB " 251

Ay (K) = E (k), BA (W) = Q22— ) E(K) —2 (1 — k) F (k)

Anpy = An—p T Ag = An)

(3.50)

4. Inductive Velocity Harmonics and Mutual Effect of Screws

We discuss a pair of screws with parallel "blade cone" axes,
with origin O of the xyz coordinate system placed in the center of
the hub of the screw, the effect of which is under consideration.
We place origin O2 of the identically oriented coordinate system in
the center of the hub of the second (to be calculated) screw. As
before, let Y be the blade azimuth of the first screw and 8 simi-
larly be the azimuth to be calculated of the blade of the second
screw (Fig. 3). Actually, in a two rotor helicopter system, a pair
of counterrotating screws is used. This is then easy to take into
account, by substituting the sign of azimuth 8 in the final equa-
tions. Let L be the distance between the screw axes, B be the angle
between normal L which connects the axis and the xy plane (Fig. 3),
the "angle of slide" of the pair. The coordinates of center O2 of
the hub of the second (to be calculated) screw will then be

z, =LcosP, 1y, 2z, = — L sin B (4.1)

The coordinates of the point on the axis of the blade of the second

screw at distance r from the axis of this screw at angle "of taper"

16




a02 of the location of this blade will be

z=1x3+T1cos0, y=y,+ ayr, z=1z3—rsin® ' (4.2)

The problem 1s formulated: to find
for an abstract screw with circulation

Yn=elnlp the expansion

@n (1 0) =wno (r) + 3 [Wnme (r) cOS MmO+ W ms (r) sin mo]

m=1
(4.3)
. With complex harmonics
e 3 Wnme = Wne,me -+ Wns, mey  Wnoms = Wne,ms + Wnams
(4.h)

for unit circulation yn=elnw and using expansion (1.4) of circula-

~
(0 0]
(00]

tion I'(p,¥), the Fourier series

|

Vn (rv 6) = Up,o (r) -+ E [U'n..mc (r) €0S mB -+ Vn,ms (r) sin m()]'(l" -5)
Mam] !

can be plotted for the inductive velocity of a real screw, by cal-

culating the required number of harmonics by the equations

R R .
dT dl’
Unc,0 = — S Wre,o (r, P) Tpnfdpv Uns,0 = — S Wnas,o (r, P) d_pm dp
0 . 0 , u
R R ’( . 6 )
Pne,me _S Ve, me dl,. dp Yna,me __ _S Yne,me ar,, dp :
Vne,ms Wpe,ms dp ! Vns,ms Wne ms dp

for O<r<R,. Usually, R,=R (the screw radii are the same).

2 2

In the case x2=y2=z2=0, the harmonics of the natural inductive
velocity of the screw are obtained. Subsequently, only an analysis
of axial inductive velocity wy° of a k== screw will be given (wx°
and wZ° are unimportant for the operation of rotors). Exponent © is

dropped here.

Equation (3.6) for y=elnw can be presented as

17



2
where & function (3.4), in accordance with Eq. (4.2), will have
this form:

Po=(z—pcosy + rcosd + eV, / QP + (g + ¢¥,* / Q2 +
+(zz+PSin'¢—-rsin6)3, yv=y2+am‘r.—ao‘o (u‘8)

Differentiation is carried out in Eq. (4.7) only up to the in-
tegration operator; if n=1, 2, 3, - . ., the integrals for p=0 are
absent (this subsequently becomes less evident). On the assumption

that .
0 = p* — 2orcos(p —0) + r?, eix— =T
(6]

equality (4.8) can be transformed thus:

lz=m2—‘2(DDc°5(‘\p+X—T)+Dz+(Z/v+‘PVU*/Q)2:
where 2
D* = (z, + @V / Q) + 2, € = (z, — iz, + ¢V, / Q) /p (4.9)

It is significant that w and e X are functions of y-8. 1In Egq.
(4.7), the average value of the subintegral function for the period
is used. It can therefore be written that

n-0
m ¢-0 i
drw, = — inein8 S ( ) P

—TC -

2:rtl' ' +

Of_/‘bb

o n—0

fin(6—0) o 1 o 1 V.o 1 1
' oin® — —_— __x_/
Te€ S {p(a a0 55 ) QT _'Eo}dwdw

[] —n—O

~N
o
O

and y-e can be replaced by yY; the result will be

rub dp’
p
2n lol d‘p pl +

<]
drw, = — me‘""g
0
n

+ef-wS°_g o [+ 2o )—%%(T‘-——,’;)}wdw‘ (4.10)

ul

- |o./a;,

P=0?—20D0s®+0 +x—0) +D"+ o + 9,/ QF  (4.11)
18 o= Vo = Zproosy I, ex =Lt | (4.12)

(0]




We call this transformation the w transformation.
the series

We introduce

e{ne

- =a,+ 2 (@me c0s M + am, sin mg)

m=]1

g £in® e v Hmim)o o i(n-m)o |
= \ +=db, = — .
o _S S 20l Y 1 d0 Jl (4.13)

ams

By introducing variable 6=6-0, where o=1-x~y does not depend on
6, it is easy to obtain

P =0?—20D cos® + D? + (yy + ¢V," / Q)? (4.14)
b n I . i i .
ap = eine S " 18, O __etmtme S ilnm)d itn-m)o S giln-mo
X S 2nl a,, vV =1 J 2nl — V1 3 2nd
or ao = Aoe~iny, - Pme = A————-m tAm ing
@, V + 1

where, if the integration variables are selected from the left,

ei(nj_—m)s

Aim“%wnmf=ém1mh—mﬁm¢8 L do (4.15)

—%

Now, based on Eq. (4.10), it follows that

P
mm:—ing p Wx
: ]

at—"d

, V o
A", 0 apE —20 {145 (0o @) — 4, 0, @)1 x
)2

213

T

f X dtpd(p + pS S [%Ao (P, (P) + ao%Ao (P,(P)] d‘\l?d(p (m=0)
. 02

T

. o

. w, . A (p'v O)iA_ -(P,. 0)

\4 n,me [ m m ’

4n Dy m§_g“ V1 dy dp’ +
crro A, o) £ A (o, P) 3 A (p,9) £ A, (P, )

+p§ _g"[f’? VT Ty VIt | dwdo—

ViCl[0 4. 92 A (0.9) 0 A,(0,9) £ A, (0, )
R s o e e L L

After substitution of the order of integration over ¢ and ¢ by
introducing the notations

~N
o
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V,co ©
K,,,(m)=%g elnt S;_::;dﬁd(p (£p=1,23..) :
R - (4.16)

K. (0) = %SDT% {e""‘ —,S‘ _;;_p:d{}} dp (Ep=0,1,2,...;¢=y,3,0) \\‘

since D=L and 1=8 for ¢=0 we obtain:

for m=0, . .

| T T
R |
+7 {_S ‘2';":'(1(,,“3,—2 — inK, %) dy+ aoi " K (@) dp} — (4.17)
—_'i C Koe (0) +_§ L K (r)

for m=1, 2, 3, >

4n "’:::: - —in {‘;(/"Ili’f §_S "“";::,‘"""”’_’S: "“;Z,” dd dvp dp’ +
{2 e

n

2 ~i(n+m)X-imd 2 .
+ ‘T{_Sn ﬁ[ffmm,u (o) a—Q;' —i(n 4 m) Knim (0) %%.] dy =+

n
S e—l(n-m)x-fim*b

Vv [K,._,,,,m (m)"’g"; — i (1 — m) Kn-m (@) g—:]d\p} +  (4.18)

.

H

T

Qp T mitnem)x-imy e~in-m)X+imy
ooy {) oy Koma@ vt | S Ko oyde)

b in-mxsimy

—{ S e Hnim)X-im¢ Kn+m,z ((1)) d‘l’ + _Sn W Kn—m,z ((D) dlp} +

J 2V E]

b

+{S e—i(n+m)la-£m¢ = —i(n-m)X +im

Ty K O | e Ko (1) a)

Here and subsequently, x' and w' designate quantities x(p) and
w(p) of Egq. (4.12) with p=p', and Xg is the value of y with p=0. It
follows from Eq. (4.12) that

20



p—rcosy . __ rsiny do

P .
cos Y, = P y sy P a—p=cosx, 5§—=-—s—l};—x(419)

where yx(-y)=-x(¢). Therefore, in the notations

K+ 0K p 9K, -
| S .2 - + =
K, T dw + ® K“’ Ko 3w Ko

(4.20)

the following relationships are obtained: ' /91

for m=0

o) ay

KI“‘_W —_ ip‘KF -a—p—

w

e(x . c-(l _
ER Ay RSN

§c _Snz""dﬁd‘pdw ©(h.21)

+'§—:{";—S[003 (n - 1)x Kn'l'(m) + cos (n + 1)x K, ((1))] d\p +
0

4nlwpy = — ineind

S0

+ aogcos K ny(w) d\p} —S cos nxKn; (©) dp + Scos nYaKn: (r) dp
0 ) 0 0

gt Pnme . f elinemB e cos [(n 4 m) y’ + myp) ¢ cnima '
3} 4n = —in { §§ o S TN dodypdp’ 4

-—T

. [
+ Hn-m)p SS cos [(n — m) ¥’ — my] ’§ gin-ms
P’ 2nly
0o

o dy dp'} +

—r |

(4.22)

% Tp{§cos{(n+m— 1)x + mp] ]';*"‘( Lapt

cos[(n+m+1)x+ my] '}‘,““( Lap +

1/7

£ {cos [(n —m — 1) % — my) ""i’ dp +
e V

Knm ((D)

\ cos [(n — m + 1) — mp] - dy |+

Qe 4

ki3

ao g—p{scos[(n+m)x_i.m¢] Mdtb:i:

; VT

21



¢ n-m )

Scos[(n—- m) x— my] —V—:—%‘d\l’}— )
]
)

':{Scos[(n+m)x+mxp1 ';;""( dy |
-:.o . ?

; Ky, (@)
& {cos [(n — m) y — mp) —ERE= dv o+
) z

cos[(n + ) ya - mp) uﬁ-i—‘i dp

¢ n-m 2(r) 1
:!:Scos [(n — m) Yo — MP] ——==— V=T d‘P} !
[

It should be remembered that, for n=1, 2, 3, . . ., the in-
tegrals for p=0 (w=r) are absent. A change in Eq. (4.16) to the in-

tegration variable €=x2+¢Vx/Q with notations
A=V, IV, Ype = Yy — Az, ¢ (4.23)

in accordance with Eq. (4.14) and (4.9), gives

¢ Jur ¢ fuddd I
el = i.z“ S V o' —20D cos & + D* + (y, + AL & @0
D=VE + 22, €* = (E—iz)/D (4.20h)

By introducing the substitution 6=a sgn Z5s it can be determined
that

o T«

Kp(m)=g [ explrasens) goqe

Xy —%

P=0?—20 (§cosa— |z]sin q) 4 B 4 z2 + (y, + AL)? (4.25)

Thus, Eq. (3.25) introduced above and functions Fu(x,g,h; wWyA),
(u20) described in Section 5 arise. With Agz={A| sgn (Ayy),

Ky (0) = Fiae(za | za]s Y[ 0 M) + isgn (1sgnzy) Frape (25, ] 2z i o A

(r=1,2,..)) _ . (4.26)
Ko@) = Fipieq(z2| 73] | yals @,24) + i sgn (2581 29) Fiujaq(Zas] 2o, | |94l @, Ay)
- (E£r=0,1,..))
where q=[22|, Y, w. It 1s therefore sufficient to assume in the

equations of Sectlon 5 that

22

~



T = T3 8§ = lzzlr h= lytlv lh + M;l = lyvl

Equations (4.21-4.22) also include the integrals

p: e{ps f: e{l‘adﬁ ;
—_— = D = L =0p i- .
S dt S 2% Vﬁ)’ —20D5c08 ¢ + Dy* +y 3 ! o ® i( h.27)

-—T% -—TT

By operating as specified above in Section 3, the following can
be obtained:

C cne 2 (— 1)* - :
L _de ==~ (=Y3) (1. 2 __ 4oL :
—Sn 2nloa n VW EP- (l\-)) k = “-(m +L)2+ yva ( Ll - 28 )
n/3 . |
ECM gy — cos 2up de ; (L4.29)
v ) S Vi—kising

Functions Eu(_l/g)(k) were introduced and studied in Section 3.

We study functions w and x. According to Eq. (4.12) and (4.19),

. ’ rsiny
m="/(p-—r)’+4prsm’—‘%—, x=arctgm (u~30)
\

©=p x=0 with =0 (4.31)
= 2r sin /2P, % = Yo(n—9) with p=r
o=r, x=5rx—1% with: p=0

' e (>
o=]|p—r| x={m2@=ﬂmuw=0
: x (p<L7)
It is easy to compile tables of functions w(¥) and x(¢) for a /9

number of calculated radii, by taking the value of y every 10 or 15°
but a smaller step with small values of y. It is evident that
O<w<R+R2; usually, R2=R. R=1 can be adopted in the calculations in
compiling tables for 0O<rgl and Og<pg<l. The author has tables of w (y),

x(¢) and cos [(n+m)yx+my] for +m=0, 1, 2 and n=0, n=1.

With r=0 or p=0, w does not depend on ¥. Functions Ku(w) and

Kuq(w) can therefore be taken out of the integral sign. With r=0, we

have x=0, w=p, and it turns that w mEO, but

3
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4nw,,°=——me"‘9§§ nl’ | (4.32)
o n

+ {Knu (P) -+ aoKnv (P)) — K (P) + K. (O) (r =0)

In the case of p=0, all wn’mEO.

The practical value of the w transformation is that, with ao=0,
parameters r and p are combined in one parameter w (4.12) which, for
a given relative location of screw pairs (x2, Yoo z2), with a given
orientation of it relative to the speed of movement (angles 8 and
arctan 1), is the unique argument of functions F (x, g, h; w, A).
Even with a #0 the first three parameters of functlons F (w) and

(w) prov1de complete solution of the problem, since 1t is suffi-

Flq
cient to assume h=|yy|=]|y -rx,].

After calculating the required number of functions of w(y) for
the lower harmonics, integration with respect to ¥ can be performed

by numerical methods.
The following individual cases are of great importance:

1. z.,=0 (flight of a "longitudinal" pair without slipping);

2

2. x,=0=z, (pair of coaxial screws or screw with a,#0);
3. x2=y*=z2=0 (isolated screw with a0=0)3

b4, x2=Q=y* (flight of "transverse" pair without slipping).

In the latter case, the functions have two branches each:

(4a) L2(1 4+ 2% —2>0,(4 )L2(1 + 2) —03<0

Case (lUa) occurs in the absence of "overlap" of the screws

(L>R+R2).
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In Section 5, functions Fu(x, g, h; w, A) are written out for

M'g=0, (2 g=0=z, @) g=2z=h=0, @ z=0=h

In the first and fourth cases, the parameters of integrals of
the third kind are real. In the second and third cases, functions

Fu(w) and their derivatives are simple algebraic functions.

In the case g=0, the algebraic functions in Fu(w) and Fuq(m),
with Ah<0(Ay4<0), have two branches each with branching point h=w|A].
This must be taken into account in integration with respect to Y in
Eq. (4.21), (4.22). Transition point Y. is defined according to Eq.
(4.12) as

oAl =yl 2prcosy, =P r2— (v, [ A)? ()4-33)

in which, in segment [0, ¥.), we have |p-r|gw<|yy/A]. It is evident
that

0>y, /Al, P, =0 with (p— r?*>(y./A)?
<

>
_ (4.34)
O<Sly, /AL Y. =nwith (P N3 < (v. /A)?

Transition point ¢., in case (4), will be at w>L ("transverse"
pair of screws with "overlap"). It is determined by the equality
L2(1+A2)=m2. It is sufficient therefore in Eq. (4.33) and (4.34) to
replace (y*/k)2 by L2(1+A2).

In the second and third cases, it proved to be possible to cal-
culate all the integrals of ¥ by presenting them in the form of a
combination of elliptical integrals and elementary functions. These
results will be the subject of a separate article. In the fourth
case, half of functions Fu(w) and qu(w) are simple algebraic func-
tions, namely:

F}leappc/ah and an,/ag with p=|nim|=113v51""
Fuer OF,, [0k and 0F, /g vith p=|ntm|=2,4, ... 3Fog

Integration over Y also is successfully performed here in a

similar way.
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5.

Special Functions of Vortex Theory

N
=

We consider function (3.25) of five real variables
SoddE @ =0,1,2,..)) (5.1)
n |

F“(I)go h; mvk)=8
>0k5-2)

X =

P=o'—20(Ecosa— gsina) 4 B4 g2 4 (h 4 ADY, o >0,g2>0h

After integration by parts over o, there will be

i B _S SES'"”“““aada P=A428L 408 (5.3)
® P2

—_—T x
A=o'4 20gsina+g? 4+ h, B—=A—ocosa, C=142  (5.4)

Consequently, Fo(w) does not exist. However, derivatives

aF " ‘lpd h + lg 817“ ¢ e{p.a ¢ g4 wsina
==\ zuS S R R
—_n x —_% x (5-5)
dF ¢ ei““mm—gcoga‘?’g ina
== %) g deda
exist for p=0 Since
oo -0
Sﬁ§=ZE_BﬁwC TME_A+:B__EL . 6
A HD ' ) E S mpe v H=AC—B (5.6)
x
Da —m’—2m(zcosa—gsma)+x’+g 4 (B 4 Azt ‘
then n
P ~ B+ aC A+zB B
L S R A RN
an ne"“a = B4-zC A+ 2B B
W=—823—H{(V°“ D )"J"( D —7:0)"}‘“
= (5.7)
oF tpa -
T;__S;nH(Vc—B*I‘)’C)(g‘;-wsiuu)da
arF, cina _ + 4+zB B
Tm“_ S2nH{(V - )(m+gsxna) ( Dx —ﬁ)cosa}dﬂ
H=(g+osina)({ + A1) + (h 4 Ao cosa)d > 0 (5.8)
With w=0, only these functions are different from zero:
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oF, - e
T:"——.If_o(lfc—”‘__;o’c), Hy= g+ M)+ 8, Di=zt+ g+ (h+da)
F__ 4 ((yG—_M+aC 14 R+ zdh _ AR
= H,Kvb D, Ju+ (£ D, _iVE» (5.9)
OF, 4 [ ,= A+ g+ W4 zAh AR
do — - 2H0 {lg VC— Do —( Do -—VTE-)}
For w#0, function (5.8) should be presented as 7
H— P (o cos a)
(gf“’Sina)”(i+?~2)+(h+mcosa)3 (5.10)
In Eq. (5.10), /95
'P(x):(u’—zx(h‘wng)x—(h‘bing?)t—mﬂ(1+x')}x 5.11)

Xd—22h—igVIH M) u—(—igVIH Mi—0 (1 44}, x—o0 cosa

Equation P(k)=0 is broken down into two. The first of them

W—20(hdigVIHMx— (4 igV14A)1—0r(1 424 =0 (5.12)

has the roots

PI=AB4 g VIFD) s AVIF Vot o gViemp  (0-13)

and the second has roots K3 and Ky which are complexly conjugated

with roots Ky and Ko It is easy to determine that

L=R(m-c05a)—2g(i+i’)m sina (5.14)
H P (© cosa)
RO) =W+ 2 —x+ (24 o) (1 43 (5.15)

L 2‘,' Re)—22(1 + M osing  ocosa =j R(x)—2g(1 + ) osina

H ! (0 cosa —x,) P (x,)

v

(o cosa— %,) P’ (x,) H

v=1 v=1
P " osina < R () 0sina— 2g (1 4 A3) (0 — x,3)
. % ’ H = 21 (0 cosa — %,) P’ (x,)
V== . .

For x, and k,, with the use of equalities (5.12) and (5.13),

-

:g:g}ﬂq+wV&%yﬂdﬁmggqum44yfwfrtﬁﬁf;
is obtained_aﬁd'ifg;fof'ﬁhesé robts;‘théfe.are-ihtroducéd the radicals
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V'xlz Y

V x2® — o3

=h4igVI+MVIFT B LIA Vorb b4 ig Vit ap (5.16)

R(K)=—i2g(l+k2)/K2—wz. Therefore, by assuming that

VE— = V=0, V=, (=, = { | forqandky (5.17)

-ifor |<3andKA:

%

it can result that R(K)=—2g(1+l2)Jw2—K2 and consequently,

1 L Yoi—xi4osina 200042 |
H = _Z}l T, (® cosa — x,) P’ (x,) °* Ty="p (x,) I
|
! .18
© cos ‘ Vor—x3+ osina % ! 5 )
Tsin()=—2 Y (0 cosa — x,) P’ (% -
2 a—%) P (%) Vaoi<xp

Paired equalities are used here and subsequently. By differ-
entiating first polynomial (5.11) over k and substituting the values
of Ky and K in P'(x) and utilizing equalities (5.12) and (5.13), it
can be determined that

P'("l) = 4 isgni8g(1 + Ay Vm’+(h+igl/1+l’)’(h+l:‘)
.

g

T, = — (= 1)"isgn =1,y =2 / (5.19)
bty Vor 4+ (a+ igV1+ a)p ;

!

and, for v=3 and v=4, it is sufficient to change the sign in front

of 1.

Roots Kv can be complex. We will therefore consider separately
the real and imaginary parts of integrals (5.7), based on the nota-

tions

F, = F,.+ iF,,
» e ¥ i, (5.20)

In using identities (5.18) in Eq. (5.7), in place of A and B, /96

it is sufficient to substitute the numbers

A, =gpH 2Vl —x3 44k, B, =rAMm—x, (4,C—B2=0)(5.21)

for which C(Av+va)=Bv(Bv+xC). After noting the identities
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Vor = %3+ 0 sina

Vol —x3+ osina +YV o a

@Ccosa =x 0 — %3+ osina

®wcosa — % Wcosa—x
V“)’—""*""Sinamsiﬁna=V&)'_—-7V‘°’—"’+‘°Si“a—mcosu—x
Wcosa— Wcosa — % .
and introducing the notation
/
Hy, ) = 1 ’S‘Vo):'_nva.[.,msina (1 B, + 2C\ ¢og o (5.22)
H,, 2% ®cosa — x, ;V—'&) sin #

—T

from Eq. (5.7), it is easy to obtain the formulas

F 4 ~a  a ¢
B L gch—B\' Vm’_xv’ H}Ll 4 Tv | 2
o F —¥gl oV <C ﬂﬂmm9¢22nvax - (5.23)
- 2
¢ Vol — %3+ osing %, + @ co B, 4 2C\ o
X ( v v 3“) ( L sin
_Sn gc © +Bv © 1 Dﬁ cos 0»1(!)0'(1
oF,. /9% 4 H T ol
aF:,/a§= ch_}l g+ Vol —x3T, H:: (%) — }2[?2 T, x (5 )
X \ (%, 4 (1_ v )cos
_S" ‘(")COS a) > V‘E sin Gla)dl
aF,.[3n & KC—AB H
pe v
oFploh =2 5 Tu . () (5.25)
v=1
Wy loo & C@HegVo—xh)4Bx, H, LT
Wl o =2, VT H, S TARYEX (5.26)
¢ % F ©cosa Vol—%24 osina B, 4 zC\ ¢o
x_Sn (s’C P — B, — )(1— DV E )Si; (na)da

We transform the algebraic factors in these equations. Equality
AvC_Bv2=O’ with Eq. (5.21) taken into consideration, can be presented
as

(€ + VO =D (1 + 43) + (h 4 Ax)2=0 (5.27)

According to Eq. (5.21) and (5.27),

hC—uL=h+Am,prm—xﬁ=Wtjx§%§% (5.28)
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By applying Eq. (5.21) and (5.28),

— — Kh—ny
ngv—B,Vm’—xv’-:(thv){Ag—(V—i)vTT’;,} (5.29)

can be obtained and, according to equations of the (5.12) and (5.28)
type,

c<w=+ng2—nv=>+Bvxv=—(h+Auv){h-&(V—T),th+wi (5.30)

Further, for P(K)=Kn+alKn—1+. . .ta_, if all roots of K, are

different,

SR (1 (k=1) :
élﬂm)_k (k=2,3,...,n)

The use of this theorem for n=4 with account taken of determina- /97
tion of T, (5.18) simplifies the second sums of Eq. (5.23)-(5.26);
only terms with factor (5.30) remain in Eq. (5.23), and only terms
with factor (5.29) remain in Eq. (5.26). Therefore, with account
taken of Eq. (5.28) with the notations

Ny=B,/VI+M8, G =G(4M)T, . (5.31)
the formulas
4 Ah—x, Y H,
B ﬂm M — %y Hy,
¢ Bv"”c]sm o d_a
iZ [V‘ +(V—1)"g] S (1 DVC ®) o
oF,lon & G, H, OF,clog & ¢ He
aﬂJM_EVTm(”' a@d%“%fV1Lw7()
VOFyeld0 & A ]Hpc B
LOF, [0 gi [V' +(V —1). H,, ()
< — AM— ¢ Bv+xc)cos da
_‘glmVC[Ag_(V—i)v ve }_Sx(i DV C sin(}m) 25

are obtained and then, with account taken of the complex conjugate
nature of the roots, '
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Fue . OF,,l0h 2 2 H,, |
pra = F Ag aFPclah :Fm El Im{G"N"HM ("v)}i?
x a ;
i d Y : |
+2g { 50 oy B0 vZ_)lrm{cv(lvﬂwclfi+7u)} @ 0) , (5.32)
OF [ dh 2 2 H !
pe - pe
OF, |'0g 2 H,, g
ap“‘/ag=—2 lem{Gva" (xv)} ! (5.3”)
0Fyc /00 p 0F, loh g OF,.[dg i
OFyus ] 90~ "7 0F,, il 0k © 8F,, | dg ‘
n : 2 ;
— 2 (98 (o) 0 b VIR 2
+ oV S £93 (o) ;92 éllm{Gva(Nv-i-zVi-irm)} GFEO o ooy
2
OFy - hOF, 8 9F 2
% © oh © og mV1+A’§11m{ava}+
-2 I -
FoyiTE ) 0 2 I e 0 Y T T (5.36)

We will therefore study roots KV and functions of K, only for

v=1 and v=2.

Let a and b be real numbers. Then,

Va+ib=-‘,12:(VVa3+b"‘+a+iVVa’+b3—a) >0

Based on this, with the notation

ﬁ:=;,’—5{Vlm*+h=—g'<1+A->1=+4h'g=u+x=)i[mwhz—g’(wvn}"'-(&37)
Vot e g Vid ip=M+iM, M= Vigm (0-38)
Equations (5.13) and (5.16) can now be presented as
:'::—J\.(h-i— ig V1423 +sgnd V1 + WM + idy) (5.39)
‘};Q—“’: —VIT B+ g VIFR £IA1 (M, + idy) (5.40)
o g—r

and Eq. (5.31), with Eq. (5.21) and (5.19) taken into account, take

the form
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Ny

N = — idlg T sgn A (M, 4 iM,)

2 (5.41)

(—1)"isgnd (= 1)" sgn A (M, + iMy) 4

Gv= — (5' 2)
4Vor b+ igVitay 4Viefr—gi+ A2+ 4r3gd (1 + A3)

By assuming ela=c and applying the method of subtractions,

”

1 ( cospada _ 1 ral Vi —1+ ¥ _ i
) enny m'SQ’—-??/H-i eVyi—1 =0tz (5 83)

-—1C

can be found, where e=+1, in which the sign is selected from the con-

dition |e/y2=l+y]<l.

Since 2 sin pa sin a =cos (yu-1)a-cos(u+l)a,

™

LSsinpaSinada= 0 (=0 (5.44)
2t ) cosa—y —EVy—1+9* @w=12...)

Consequently, the first part of integral (5.22) will be

ie

YR e 4 e ® = 0)
%\ : mcos(:——*-stma?io:(}m)da= ie (5.45)
where - " T 0 @w=1,2,..)
(D(xv)=8va1:o_m2+xv=(Dv (5.”6)
and € is selected from the condition l@(Kv)|<1. According to Eq.
(5.39) and (5.40),
00 (") =@ VIT T+ h+ ig VIT 2 b esgnd (O, + 1)) (5.47)
2
Further, expression (5.6) can be presented as
D? =0?— 20L cos (@ — 6) + L? + (h + Az)? (5.48)

L=Va*+4, coso=z]/L, sing =— g /L



Let 6=a-0. Then,

D* =03 — 20L cos & + L2 + (h 4 Az)2 ' (5.49)

S sz—x’-*_msmacos

(mcosa_x)l) S Qla)da_S Vm—)l:+msln(ﬂ+0)cos

|® cos (0+g)_x 0 sin {1 IOJ 0)],10

-—T

It can be proved in succession that

1 _ ®cos S Co8® — % b ® sin o sin O
®co3s(®+0)—x  (0cos®)—2x coso (@ cus §) 4 x* — wisindo |

Vm'—x’+wsxn(04>o) VY o —%* c0s 0 — % sin ¢ + © sin ¢
®cos(®4c) —x mcosO—ucosc—Vmsino'

On this basis, the second part of expression (5.22) will be

f

3
S Vm —x34 osina o

2n(wcosa—x,) D sin (ko) da =

-7

_:Fsm( )_S sin p® sin ¢ d® + i
cos (0 cos® —x, cosc— J @ — »3sing) D
: cos( ) “”—‘xv’COSU—"vSinO“ cos pd 4
e 52 ¥ g ___
/+sm © P (wcosﬁ—x,,cOSo—-Vm"—x\.’sinc)D

As a result, after substitution of 6=m1-2¢,

H 1 S
HOJ.VEO' H (K) = =% e O (x,) — (— DY b NV + xV1+l’) X
1 aVe+LP+Gh+i)}? (5.50)
Vco’— %2coSg —x,sing i
% o) _ M, (k, p) £ g (o) T2 (k, pv)}

is obtained, where

4ol 20
B A GF I P e Taeme s Voo (5.51)
S COs 24Q dp O,k py—T11_,, (k, p) (5.52)
H(k”*g i —, 0% (k, p) = w1 15 P
J (0 + psin’e) V1—Kisintg * * _ 3

Function Hu(k, p) is a particular case of the generalized el-
liptical integral introduced and studied by the author. In the Ap-

pendix, recurrent formula

Yalllypy (b p) + My (e, )} = A+ 2 T, (k,p)— 2/ ) ES P (1) (5. 53)
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was obtained and convenient formulas for calculation of Ho(k, p) are
given for any (real and complex) value of parameter p.

Further, based on Eq. (5.48) and with the use of the substitu-

tion a-o=m-2¢, we obtain with module k2 (5.51)

¢ '
) da 2 (—1*E WD) cos
SS“‘(W) 2D~ W Ve I £ 6 der s (5.54)

~/o2+h and M,=0

0, =sgur YO R=h (YTGTH—|A), &= —sgnd (5.55)

In the case of g=0, when Ml

| —sgan YOERER (YTEB (A, e=—sgud, (<o)
©y = 2 (5.56)
— sgnh Vol +h—h (-V_1+‘ a3 A0, e=sgn'l., (2 > 0*A3)

w

VrI— o (—sgn **p, (V, 4 = V1 + M)
© V(e + L+ (b + Az)?
(—sgna)p, (N, + = VIHA)

aV (e + L+ (h 4 Az)?
4oL n 20 sgn A sgn
P T D+ GFA p T Vot 7B VIENL [10h]  osgadsgaz]

H, (x,) = ie®} + i I, (k p))

Hy () =—Of + W5 (k, p)y Hopy =0 (5.57)

and with the notations /100

G zVi+M Fsgn A Vor ¢ s
£ Vo $ BV 1+ M+[ar] 4+ w@sgnAsgnz] (5.58)

Z - _
z, =RVIF R Vaign
the following final formulas are obtained from Eq. (5.32)-(5.36):

O," + O __ (—sgn )t sgn A ngp.A (k, p) — Eﬂnp.A (k, p,)

wFy = — —
PRV WA ¥ Vi+a © TV (0 + L)+ (h + Az
Fye - @," + sgn (h* — 2) OF +
oh 2VIT+mVol 41
(— sgn )* 25,10, (k, p) + Z,5,11, (k, py) (5.59)
VitiVor+h aV(@+ L7+ (b + Ao
aFﬂ' = — sgn A M — o (— sgn z)“" © glnpA (k, py) -+ gznpd (k, py)
ag 2V 0t F B V o3 4 h? 7t Vl(ﬂ) + L% (h + Az)?
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OFye _  h OF 2 (— sgn 2)* z/

= Tpe & E 0 (g f

o0 © Oh T YVo+Lp+ (b2 ¥ :

i

OFy _ _ h oF , 2 z/o ) () — e
—66 = © o I V((D-{—L)"*‘(h‘*?xx)’ Eo (k) (I)V-1+A"

The remaining functions are absent.

Since parameters pv(5.57)

satisfy the condition 1+pv>0’ the corresponding integrals of the third

kind of I(k, pv) can be expressed through integrals of F(k, o) and
E(k, a) by Eq. (6.1)-(6.4) specified below.

If x=0, D=vw<+h® and, in Eq. (5.22),

B, +aC N+ zV1+ A8
1— =1 —_" =1 — (—1)" A
DVa D 1 (—1)" sgn

There are obtained as a result the simple formulas

2V 1+ MpFuc=(1 4 sgn V) O,* + (1 — sgn ND¥

2VTF BV T3 25 = — (14 5gu1) OF —sgn (41— o) (1 —s5g0 O
-3 _ (5.60)
sgu A2V F R = — (1 4 sgn MBF + (1 — sga N |
g .
Call S S ™ Fy _ _ hoFy
) o oh do ® oh o V14 As

The remaining functions are absent.

Equations (5.60) are simplified in the important case of x=0=h
with A30,

oo My oF, oM
W™ Tem g = e Gi=ViFm—a
oF . ={—1/0V1+l’ @ = 0) (5.61)
9w 0 @=1,2,..

In considering the case of x=0=h,
evident from Eq. (5.2) that,

it must be noted that it is

for h=0, functions Fu, 8Fu/3g, 8Fu/aw
and AaFu/ah do not depend on the sign of A.

Functions only of A>0
will therefore be tconsidered subsequently.
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According to Egq. (5.48), for x=0, L=g, cos 0=0, sin o=-1; there-

fore,

eﬂ*d — (__ i)P-’ ‘ ::;S(p,o) — (_ i)ll ;05 (P-%) v ( 5 . 6 2 )

— Hy ie i
HOJ (‘K\,) = 0, H“’ (Kv) = :t 1 (Dp' (Kv) —_ ‘ ( 5 6 3 )

_ v, cos{ T\ X% sin { = A \

Tt (© 4- L) \sin (}1 _2.) .ﬁ)—n“ (k, p) & cos (p'_Z-) 1 (6 p) } \

oo 0L 2w

T4 AT T Y 0— iV xi— o3

It is useful here to use the transformation established by the
author (see Appendix)

1+ k p, ka 2 ky
no(kv pv)=— 2 ‘Pv‘i‘i{(——i—_}?) no(kt. P‘)—-p_"F(k#)}
_i=Vi—Ee K _1=2kT bkt 2 64
e Vice GavVicer BT T ~—1 'T*_(‘+p,)(5' )

According to Eq. (5.63),

V 0t —x3 ®,? _feorL<t
‘r=—_0)_—' T’—i:— 02 ! k.—— L/(.D<1 (5'65)
and, for g=L and h=0, with Eg. (5.27) taken into account, the result
is
[_ @42yl —xa 4L G/ e<L)
— - _ 0 < |
p.={| e T : (5.66)
0 4 2L Y 0 — %3 4- L3 1
|- "3 =—rFm 2D

Parameter p, turns out to be real and the same for all Ky
Moreover, for x=0=h, function FU and its derivatives have two branches

each

@ L1+ M) —01>0, () L3 +A) —e3<0 (5.67)

where quantities K, and p,, are complex.in case (b). An extremely

v
simple case of change to integrals of the third kind with a real pa-

rameter thus occurs here (see Appendix).
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In case (a)

n 2(!)
p T oSL({A+ M EAM,

00 (2) = i@VTF R4 ) LV TT 2 £ M)

iMy=0, M,=VEG{IFm—o

(5.68)

Since LV1+) =/ﬁ22+w2, it follows from condition |¢(Kv)|<l that

O =— i LVIFR=M (yTT3m_a)  em—t l
!
[ LVIER MR —2), e=T1 ©@2>M) | (5.69)
o(u,)={ i

l iLVi-};)k’—Mx(]/m-}-x), e=1 (M<M,)(

However, M 2 _p?

5 -w A2=(L2—w2)(1+X2)- Consequently, /102
O (x,) = ie, | O (%), e, = — sgn [0 — (—1)"L) (5.70)

and, for L»>w, the first branch of @(K2) is missing. Parameters pv

(5.68) are real, and transformation formula (5.64) contains only real

quantities. We designate
n_2yi+n (M, £ L)
T2 " 0+L 0&L{A+HA)tAM

(5.71)
b 2 o Ms+AL

N My AL
87 mot+LotL(+A)E A M,

From Eq. (5.63), it is easy to obtain
() = () @ () cos (0 5) o (i )T in o )y 2 (i )
t () == (i) o () +sinlng) T v o ) e oos{pr ) 2 (1)

The final formulas will be:

for U=1: 33 53 s
| oF Bl (kup) +aamall, (kp) 2 L
=— s —1) 2 L L — CAITRY
Bl == ALt (=) {2V1+UVL’(1+?~’)—(D’ "ot L% (A)}

p+l

a | @Y 4 aa ] O,

.. OF
BF =ML _F 4 (1) 2

oh

=2}
e __ o 4y 2
— =D

p+l

aFP" 1) 2

i

5B (kP + 80,2 (5, )

2V 1+ MYV L4 A — ol
— | D | Da
2VI+MVL(t + ) —o?
nily, (k, pr) — 1201, (%, Pa)
2V1H+ VI + M) — b
oF p+l

(5.72)

pe =(_1)_2- 61'@1 |“—83|®3|P
o VoA ) — o
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and for w=0, 2, 4, . . .,

o™ a| O * 4 ai| ol *
F _ L* _ 2 1 1 2 2 0
# > Y T T evEare—o “70
. Bfomlly, (b p) 4+ amall (k,p)) 2 -
.Ll —;"L p H(=1)2 {2}/'1_{7)':]/[‘:(1_*_&:)__@2 n(m—{-—L)E(/’)(k)}
OF,. _ _yE —nlL kPl (p) @0, (5.73)
oh 2VI+MY I+ — o :
'y =(—1)2 [ Dl — [ @y ;
oh 2VIH MV + 1) — ot i
an.c = (= 1)'2: el D1|* —e,| @ |*
2VLiA 4 A — o2
OFy, _ “ 1)%51H“A (ks p1) + 811, A (k, py)
% 2V A —ar
Moreover, /—lﬁ
"Fy.lo0 L oF,. /% Fy _ _ LoFe_ 1 (5.7h)
an./a(l) @ app'/ag (u: 1., 2, 3,.« -). " ag w Vi——‘;;"

In case (b),

M= Vo—Li(1 F A3, My=0
__ — N
x:=(ikLifM1)V1+A’=—Vi+A’N: (5.75)
F aF, /oh 1 3 (__1)" i
M_xarL » i > R {%v B,
Pr,=F F u | 3k 1+k’§l 2af, Re ", (")}i
2 sin B ; E (-'%) (k) . ~
oo " 7) ¥ L - (5.76)
OFuloh. 1 & (=1
OFyyloh ~ V1+pL: 284, ’m{ ("v)}
oF /o8 (=1 pe
0Fnlog =~ I, R"{ (")}
A 01"pc/ag OFy L 3k, 1
AP, M a0, ™ " "w oF, 08 ° o T T 0 9 T oY1y
(o(D(ZZ):(V1+A’—7~)(;tM‘—LLV1+).’)
e=—1, [®()]=V1+r—A1 o (5.77)
]31 — 20 '
. opm o + L+ A)F ik M,
20 — o+ L[+ A)]FidM . ~
- — s — = p ki (5.78)
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It is difficult however to separate the real and imaginary parts
of functions Huc and Hus in general form (for any number u) in Eq.
(5.63) since, for a specific number u, it is initially necessary to
express Hu(k’ pv) through Ho(k, pv) by means of Eq. (5.53) and to
use transformation formula (5.64) with complex P,

6. Appendix

In the preceding text, complete elliptical integrals of the
third kind of Ii(k, p) are found, parameter p of which is complex or
changes from -1 to . If p>-1, N(k, p) can be expressed, based on
the Legendre equation [4, pp. 402-403], by elliptical integrals of
the first and second kinds of F(k, B) and E(k,B). With the notations

QU =T~ FREE B —EMFEH+FOFE.D (5 1)
QP =FWERP—E®FEP *F=VIi—F
|
=L1£ Qg&9+rm, Smﬁ=-;=r (r>0) i% 2)
PVi+p 1+p Vi+top .

[ —p Q:(kB)
1+pVE+p (6.3)

{
|-l/ —p Ql(kp) 1
l 1+pV— @+mf+(& sin = Vpr(H<_p<D

+FM) sms=lfzz (0<—p<k?)

According to Eq. (3.45), in the intermediate case (p=—k2), it /104
will be
v d E (k)
— ) — P —
I (k, k’)HOS Ty Al (6.1)

It is easy to see that Q,(0, B8)=0, Q,(1, B)=w,

Yy — B (k=1)
Qx(k.ﬁ)={,,,““_sinﬂ) (k — 0) 0< Q (kP <n/2 (6.5)

The case of a complex p can be reduced to the case of a real one
by means of the transformation found by the author. The results will

be presented briefly here.
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For transformations, in place of integral

1 (k, p, o) = <t .
§u+pﬁme1—Hﬁm¢ <P (6.6)
it is more convenient to consider integral
J(B,a): dq’__—zlnk_—l (6-7)
§(e—sin’q>) V1—Ksinlg © k=™ a)
The derivative with respect to ¢ of function
1 sin® cose V u
= arct >0
L g)= Vi ﬂ”+MM®VE—MﬂﬂW w9 (6.8)
‘ 1y, V_—usingcos@+ (v +sin? @ VI—Fsif e ¢, 0
2V —u V:_;Sinq)costp—(v -4- sin?@) Vi——k’sin’tp
can be presented in this form

i _f, Q@ 1 _

aq) k’R (t) V1‘_ xt ’ t = Sin 1(p
where Q(t) is a polynomial of the second degree,

Riy—p+2etu—1 3 K?—20—u, (6.9)
- PO ’ K rsa
With the corresponding numbers A, B and E,
RO=(4A+B(—E=28+A—E+ (B—AEt—BE (6.10)
The roots of polynomial R(t) will be

e A —_ A3 .

e =— 3 £iV5, szy_s%, ey = E (6.11)
and it is easy to establish such a connection between three inte-
grals of the Eq. (6.7) type,

3
KL (@) = K3F (k, a) -+ E W, J (e, a), W Q(e) (6.12)
v=1 Y R’ (ev)

If numbers A and B are fixed, number E and parameters u and v

of function (6.8) are subject toc determination. Comparison of Egq.

(6.9) and (6.10) gives the three necessary equations and exclusion

ho




of u and E leads to a quadratic equation for v. As a result,

»n _(1—K)B e 2
v 1+A+:tk’}[: ’ PE:%’ U =1-+ k(4 — E)— 2k (6.13)

K=B({-+A4DB) 1+ k%1 + kB) (6.14)

Let roots €, and e, (6.11) always be complex; in this case, /105
S>0, and it can be shown that K>0 and the numbers of Eq. (6.13) are
real, E,>E_ >1,

1" 727
W:——-Q(E)/R'(E), (6 15)
RE)=B+AE+E, QE =Q—E KE'—E+4o( —2E + BEY)
W . * 4 %p r— gp
wy=MEWN, ML, N_MoD (6.16)
9="hAU—KFB+ QR+ A KA+ v+ KA)] — @2+ A) KB4 » (1 — kB)
X=—1— KRB+ QRQ+APA+v2+BAIVS (6.17)
r=—25, p=—(A+28VS, ri+4pt=R(E)4S
Further, with S>0,
T =tV @)+ P @, T =sV@—-uP@  (6.18)

and the real parts of Egq. (6.12) form the equation

MIM (@) — NI® (@) = Y, {KL (@) — K2F (k,0) — WsJ(E.a)} = U (@) (6.19)

By taking two roots v, and P (6.13) and numbers M, N and U
corresponding to them, two equations of the (6.19) type can be

written. The solution of such a system of equations will be

IV = (— UN, 4+ UN) A, JD = (UM, — UM 1A, A=— MiN, + MN, (6.20)

Since the integral of J(e, a) of the (6.7) type with complex
e, analytical function £ or A and B (for k2<1 even with a=71/2),
(1) and J(2) exist in the case of A=0 (if it is possible).
2

In any case, with A=0 (as well as with 1+A+k“B=0), one of the subse-

quantities J

quently indicated transformations of J(e, a), of which the first

changes only €, can be used first.

Thus, for e€=a+ib, by finding the numbers
A = — 2a, B = a% 4 b2 (6.21)
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J(e, a) can be presented in the form of a linear combination of in-
tegrals J(El) and J(E2) with real parameters E1>E2>1. In the case of
complete integrals (a=w/2), functions Ll(a) and L2(a) are absent, and
integrals J(E) can be calculated simply by the above specified equa-
tions (6.1)-(6.4).

By differentiating over ¢ the function

V1— Ksin®q C(6.22)
1_ In @sinq)cos'ip‘%-}/i—k’sin’@ *>0)
lex Visin@cosg — V1 — k?sin? @

{ 4 arc t
3 g
—A

it can be determined that

a0 {1 — 2t 4 k2 1
dp 1— (4 MNt4 i VI— Kt

(t = sin? @)

and the equation
1 1
0 (55 o) = BF (@) + (1 = 00) 7 (@, 0) + (1 — 1) T () (6.23)

can be reached, where a and b are connected by the relationships

1—oa 1—b

b=1"®a  °=T—i% (6.24)

From this, with notations p=-1/a, pg=-1/b, it follows that

PP*e (PP*' G) = KkF (kv 0.) - (P + kz) I (kv p, 0') - (P* + kz) I (kt P*, J) (6 - 25)

p+ K ps 4 K3 6.
We call this transformation symmetrical linear-fractional. For

k2<—p<1, there will be O<py <e, and the transformation proves to be

extremely useful with pk-1. With a=n/2, function 6 (6.22) is absent.

We point out still another important transformation. We in-
troduce variable ¢l, with the use of the Landen substitution (pro-
posed by him for transformation of elliptical integrals of the first

and second kinds)
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-

tan; @, — _ 5in 2@ h=1—Vi—& _ k3 4k,

» pr——— ————————) k’=
ky + cos 29, 14+¥V1I—8 1+V1i—mp (1 + k)2
de itk dp, 14 &, 1 ‘
V1—Ksinlp 2 V1—k3sinte, 2 U4 Vi—e

By converting the first equality of (6.27) to a quadratic equa-
tion for cos 2¢, we obtain

cm2¢=—klsin'¢l+cm¢xvm=1_2__“,(? (6.28)
The root was selected here which corresponds to 0O<¢<m/2. Ac-

tually, ¢s¢l<2¢, ¢1=O with ¢=0, ¢y =T with ¢=w/2. It can now be
shown that

. a,
i do _ 14k, {% cos @y d, +
Jle—sin'e) VI—Ksin®e (1 + k) — 4kse J e —sin?q,
a, g:
de a9, "~ (6.29)
+(1—28+8k)8 l————k :} .
e o (&y—sin*q) V1 — k7sintq, 1(} YV 1—k7sintq,

4e (1 — &) e(l—e) N sin 2a
Q=TT h)y —dke =~ T—fe A +VI—F1 tga, = kit cos2a  (6.30)

Let a, b be real numbers, e=a+ib; parameter € will be real only

under the condition

(1—2a)(1—k’a)+k’[a(1—a)+b’]=O

By changing to integral (6.6), the following relationships can

be obtained:

n(kvaa)=1+kl#{(i +£—§->n(klvplvax)+T{‘1-F(k1»al)‘{’ (6031)
\ 1 1

4 p
¢ CO0S P1d Py k=1-—V1—k’ 1= 2Ky + K¢ = — (1.2
+§ i__“*- plsin1¢1 }v 1 1‘_*— V.i*.—k’v pl “‘T’_i ’ T ( 4" p)
1 K p* + 2p + &2
Gk, o) = oy (e £ o + ey (WA
P __P p 4 k2 6.32
-+ p+1 L(Plv (11)}, pl_P+1(1 + V1——T‘)z ( 3 )
' 8 ' Ly
L(q10)=g cosﬁt?ﬁ’ — 1_ ln1+lViSln{) (6,33)
Ttgsin®® 2 yy 41— i yYgsino

0
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Since kl<k, by using transformation (6.32) n times, an ex-
tremely small module kn can be reached, and it can be assumed with

great accuracy that

I (k a)~an s __t Vit ptgan g 3y
n Pns ﬂ~§1+PnSiﬂ’(Pn_i2V1+pn ni—iVi—f—pntgan |
Modules kn decrease extremely rapidly (for example, 1(32<1O—6 /107

8

for k2=0.6 and k42<10— for k2=0.99), and the successive approxima-

tions method proves to be quite effective.

For complete integrals (o=1/2), we have

e, =20, ,, Lip, ® =0, 2FR) =+ k) +k)...
1 K p+2p+ K } (6.35)
_ _——Hk,
I (k, p) = § l'VT_"I?{p ]k,F(h)+-(p D (p £ M) (k1s P

It can be shown that, for real numbers g and h,

n/3

S_;-ﬁ‘)__={'/mu+g>"" (1 +g>0

g Lhesie'® Lo (A + ¢ <0

/2

x df _Ni—isgnhN, (h40)
J i+ (g+ insin®® YL+ g2+ 2 2

[}

Ny _ {V(i + o+ B+ (14g }"-
N, 2

In generalizing elliptical integrals of all kinds, the follow-

ing function should be introduced,

(n) _a cos 2m@ i cin? )P (6~6
I, (k,p,a)agm(i k? sin? @) do 36)
0
Since
0s (2m —2) @ + cos (2m - 2) @ =2cos 2mgp (1 — 2sin? ¢) (6. 37)
then, s {Hm(rl) (k,p.a) + Hm(’_"l) (k, pya)} = (1 + 2/ p) r_[m(") (ky py@) — (2 / p) E"(‘n) (%, @)

where Em<n)(k, o) is a function introduced above (in Section 3),

which generalizes integrals of the first and second kinds.
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