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Symbols and Abbreviations
BL buttline of model (lateral dimension),

m.

Introduction

Nacelle/pylon/wing integration has a decided ef­
fect on the aerodynamic performance of transonic
transports. Previous studies (ref. 1) have shown the
difficulty of reducing interference drag for conven­
tional underwing pylon-mounted nacelles in a for­
ward location. However, it has been shown theoreti­
cally that a lower installation drag may be obtained
by placing the nacelles in the underwing, rearward­
mounted location (ref. 2). An experimental investi­
gation of a mixed-flow, flow-through nacelle mounted
in the rearward underwing location was conducted
in the Langley 16-Foot Transonic Tunnel (ref. 3). It
was shown in reference 3 that the rearward-mounted

"nacelle had approximately one-half the combined
value of form, wave, and interference drag (referred
to as "interference plus form drag") of a compa­
rable forward-mounted nacelle (ref. 4). Unpub­
lished results show that favorable interference can be
obtained for the rearward-mounted mixed-flow na­
celle of reference 3. The present experimental in­
vestigation compared the longitudinal aerodynamic
characteristics of configurations with pylon-mounted,
separate-flow, flow-through nacelles in forward and
rearward underwing locations. The effects of toe­
in angle of the rearward-mounted nacelle/pylon were
also investigated.

This investigation was conducted in the Langley
16-Foot Transonic Tunnel. Data were obtained for
a free-stream Mach number range from 0.70 to 0.82
and an angle-of-attack range from _2.5° to 4.0°. The
design cruise conditions were a free-stream Mach
number of 0.80 and a lift coefficient of 0.45.

z local vertical dimension, in.

The experimental investigation was conducted in
the Langley 16-Foot Transonic Tunnel. This tunnel
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is an atmospheric, transonic, single-return type of
tunnel with continuous air exchange and is capable
of operating at Mach numbers from 0.20 to 1.30.
A detailed description of the tunnel is presented in
references 5 and 6.

Model and Support System

The 1/24-scale model, representative of a wide­
body transport, is shown in figure l(a); and a photo­
graph of the model with the nacelles installed in the
rearward location is shown in figure 1(b). The model
was mounted on a sting-supported, six-component,
strain-gauge balance. It had a high wing with super­
critical airfoil sections. Details of the fuselage, wing,
and wing pressure orifice locations can be found
in references 3 and 4. The forward and rearward
nacelle/pylon locations are shown in figure 2. The
separate-flow nacelle consisted of a fan cowl and a
core cowl, which are shown in figure 3. Also given are
the internal and external contours and static pressure
orifice locations. The details of the pylons are shown
in figure 4. In addition, details of the bifurcator and
diverter (see the rearward-mounted nacelle/pylon in
fig. 2(b)) are shown in figure 5.

Instrumentation and Data Reduction

The model aerodynamic force and moment data
were obtained by an internally mounted, six­
component strain-gauge balance. The model surface
static pressures were measured by scanning, electri­
cal, strain-gauge transducers located in the model
nose to reduce the lag time required between data
points. Sting cavity pressures were measured by in­
dividual, remotely located, strain-gauge transducers.

All wind-tunnel parameters and model data were
recorded simultaneously on magnetic tape. Except
for scanning valve pressures, averaged values were
used to compute all parameters. The model angle
of attack was computed by correcting the support
strut angle both for sting deflections based on bal­
ance loads and for tunnel upflow determined from
inverted model runs in a previous tunnel entry. Sting
cavity pressures were used to correct the longitudinal
balance components for pressure forces in the sting
cavity.

Nacelle internal drag corrections were made by
using internal static pressures to determine the mass
flow for a one-dimensional flow calculation, and then
by integrating the computed internal pressure and
friction forces (ref. 7). The internal surfaces of the
fan and core cowl, the external surface of the core
cowl, and the crosshatched areas of the diverter and
pylon shown in figure 2 were included in the inter­
nal skin-friction calculations. The internal drag cor­
rections are shown in figure 6 for the forward- and
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rearward-mounted nacelles. There was a large vari­
ation of internal drag with angle of attack for the
forward-mounted nacelle. The rearward-mounted
nacelle had only a slight variation in internal drag
with angle of attack. A close examination of the in­
ternal drag results indicated that the difference in
drag was the result of the pressure acting on the
external surface of the core cowl. For the forward
nacelle/pylon, these pressures are influenced by the
flow around the wing leading edge, which changes
significantly with angle of attack. For the rearward
nacelle/pylon, these pressures were essentially con­
stant with angle of attack.

Skin-friction drag was calculated using the
method of Frankl and Voishel (ref. 8) for compress­
ible turbulent flow over a flat plate. The forces and
moments were transferred to the model moment cen­
ter, the quarter-chord point of the mean geometric
chord on the model waterline 0.0.

Tests

This experimental wind-tunnel investigation was
conducted in the Langley 16-Foot Transonic Tunnel
at free-stream Mach numbers from 0.70 to 0.82 and
Reynolds numbers from approximately 2.5 x 106 to
3.0 X 106 , based on the mean geometric chord of
the wing. The model angle of attack was varied
from -2.50 to 4.00

• Boundary-layer transition on
the model was fixed using a grit transition-strip
procedure (ref. 9). A O.I-in-wide strip of No. 100
carborundum grit was attached 1.0 in. behind the
nose of the fuselage. Strips of No. 90 and No. 80 grit
were applied on the upper and lower wing surfaces
(see fig. 11 in ref. 3) in a rearward location in order
to match the boundary-layer thickness at the trailing
edge of the wing (ref. 10). A O.I-in. strip of No. 120
grit was placed 0.375 in. rearward of the nacelle lip
of the fan and core cowls on the external and internal
surfaces.

Results and Discussion

Effect of Nacelle Location

The effects of longitudinal placement of the
nacelle/pylon on the static longitudinal aerody­
namic characteristics are shown in figure 7 over the
Mach number range. The addition of the forward
nacelle/pylon to the wing-body configuration re­
sulted in an increase in drag and the usual loss in lift.
Changing the nacelle/pylon to a rearward location
and changing the nacelle toe-in angle b slightly re­
sulted in a small decrease in drag compared with that
of the forward nacelle/pylon configuration. However,
not only was the lift loss associated with the addition



of a conventional forward nacelle/pylon regained but
a significant increase in lift over that of the basic
wing-body configuration was obtained.

Wing chordwise pressure distributions at span
stations inboard, outboard, and along the centerline
(TJ = 0.370) of the nacelle/pylon are presented in
figure 8. At the nacelle/pylon centerline, the pressure
orifices on the wing lower surface are covered by the
forward pylon. At TJ = 0.370 the orifices along the
wing upper surface and the orifice at x/c > 0.8 on
the wing lower surface were covered by the rearward
pylon.

The installation of the nacelle in the forward
location resulted in an increase in pressure coefficient
on the wing lower surface at x/c < 0.15, and then a
decrease in pressure coefficient from x/c >:::; 0.15 to
x/c >:::; 0.50 at TJ = 0.328. Similar effects were noted
for the forward nacelle/pylon at TJ = 0.440, but to a
lesser degree and at slightly different x/c locations.
The forward nacelle/pylon caused an initial decrease
in pressure coefficient on the wing upper surface at
TJ = 0.328; but at TJ = 0.370 and 0.440, the pressure
coefficients were essentially unaffected.

The installation of the nacelle in a rearward lo­
cation resulted in an increase in wing lower surface
pressure coefficients extending from the nacelle inlet
(x/c >:::; 0.70) forward to near the leading edge of the
wing at TJ = 0.328 and 0.370. With the nacelle in the
rearward location beneath the wing, the nacelle inlet
is similar to a trailing-edge flap. When the velocity
is reduced (pressure coefficient increased) below the
wing, there is an increase in lift that is the reverse of
the results obtained for the nacelle located forward of
the wing. The expected drag reduction was not ob­
tained because of the decrease in pressure rearward
of x/c = 0.6, as shown in the lower surface pressures
of figure 8(c).

Effect of Nacelle/Pylon Toe-in Angle

The effects of nacelle/pylon toe-in angle on the
longitudinal aerodynamic characteristics are shown
in figure 9 at M = 0.80 for the rearward nacelle/
pylon configuration. Increasing the toe-in angle of
the nacelle/pylon from -1.5° to -2.6° resulted in an
increase in drag in the lower lift range, but the drag
polar was rotated (induced drag reduction) such that
there was a decrease in drag above CL = 0.55. There
was essentially no difference in lift coefficients for the
two toe-in angles. Again, the pressure coefficients
are presented at TJ = 0.328, 0.370, and 0.440. (See
fig. 10.) The only effect of toe-in angle on the
pressures was to influence the wing upper surface
pressures as the pylon moved toward or away from
the pressure orifices.

Installed Drag

The installed drag coefficient

!:::.CD = CD,WBNP - CD,WB

is presented in figure 11 for M = 0.80 and CL =
0.45. The unshaded area indicates the amount
of installed drag that may be attributed to calcu­
lated nacelle/pylon skin-friction drag. The shaded
area represents the combined value of form, wave,
and interference drag. The configuration with the
nacelle/pylon installed in the rearward location had
the lowest installed drag. When compared with the
forward nacelle/pylon, the rearward-mounted con­
figuration had a slightly higher interference plus
form drag but a lower skin-friction drag because the
rearward-pylon wetted area was approximately one­
half that of the forward pylon. Changing the toe-in
angle of the rearward nacelle/pylon from -1.5° to
-2.6° resulted in a slightly higher installed drag. In
all cases, the interference plus form drag was exces­
sively high, based on the results of a similar test with
mixed-flow nacelles (ref. 3).

Summary of Results

An experimental investigation has been con­
ducted in the Langley 16-Foot Transonic Tunnel at
free-stream Mach numbers from 0.70 to 0.82 and an­
gles of attack from -2.5° to 4.0° to determine the
integration effects of pylon-mounted underwing for­
ward and rearward separate-flow, flow-through na­
celles on a high-wing transonic transport configura­
tion. The results are summarized as follows:

1. At cruise, the configuration with the nacelle/
pylon in a rearward location and with a toe-in angle
of -1.5° had the lowest installed drag. This lower
drag was due to the reduction in calculated skin
friction of the nacelle/pylon configuration.

2. In all cases the combined value of form, wave,
and interference drag was excessively high.

3. The configuration with the necelle/pylon in a
rearward location produced an increase in lift over
that of the basic wing-body configuration.

NASA Langley Research Center
Hampton, VA 23665-5225
December 24, 1985
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Figure 1. Details of model. All dimensions are in inches.



(b) Model installed in the Langley 16-Foot Transonic Tunnel.

Figure 1. Concluded.
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Figure 3. Details of separate-flow nacelles. Linear dimensions are in inches.
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Figure 3. Concluded.
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0.511 0.270 1. 552 0.397
0.560 0.281 1. 602 0.398
0.609 0.291 1. 652 0.399
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0.707 0.310 1. 750 0.400

match external surface of fan cowl
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Figure 5. Details of bifurcator and diverter. Linear dimensions are in inches.
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Figure 10. Effects of nacelle/pylon toe-in angle on wing chordwise pressure distribution at M = 0.80 and
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