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SUMMARY

An unsteady lifting surface theory for the counter-rotating propeller 1s

presented using the linearized governing equations for the acceleration poten-

tial and representing the blades by a surface distribution of pulsating acous-

^ tic dlpoles distributed according to a modified Blrnbaum series. The Blrnbaum
CM
00
•^ series coefficients are determined by satisfying the surface tangency boundary
LU

conditions on the front and rear propeller-blades. Expressions for the com-

bined acoustic resonance modes of the front prop, the rear prop and the combi-

nation are also given.

LIST OF IMPORTANT SYMBOLS

h ,h? (hub/tip) radius ratio of front and rear propeller

I *• Laguerre function of order a and degree b

r(r,e,z) position vector of a point 1n space

R (rear propeller/front propeller) tip radius ratio

W axial velocity of free stream
d

Z ,Z? number of blades of front and rear propeller

a. ,<*2 blade angles of the front and rear propeller

cL trailing edge angle of the front blade

«,,*2 Interblade azlmuthal pitch of front and rear propeller

*Case Western Reserve University, Cleveland, Ohio and NASA Resident

Research Associate.



x,,\2 advance ratios of the front and rear propeller

x. ,« radial eigenvalues of the front and rear propellerka m
wJ ,w free stream fluctuation frequencies of the front and rear propeller

8. ,£2- angular velocity of the front and rear propeller

o-j.o,, Interblade phase angle factor of front and rear propeller

p(p»<p,C) position vector of a point on the blade

*.„,¥ normalized elgenfunctlons ofj the front and rear propeller
K!l aki

INTRODUCTION

Interest 1n propeller propulsion has been revived recently by the need to

economize on fuel consumption and fuel costs. Besides, with the development

of transonic airfoil sections, even with airscrew propulsion, 1t 1s now pos-

sible to attain cruise speeds comparable to those of current turbofan trans-

port aircraft at similar operating altitudes. Preliminary studies appear to

Indicate possibilities of realizing a clear 15 to 20 percent superiority (see

Mlkkelson et al.) of propulsive efficiency for the advanced turboprops over

that of turbofan propulsion. For commercial acceptability 1t 1s Important to

keep the noise levels of the propeller system low. Consequently, NASA has
I

mounted a program for advanced turbopropeller development to realize these

objectives.

It has been known for a long time that both the power absorption charac-

teristics and the efficiency of propellers at high forward speeds may be

Improved by Increasing their solidity. Solidity can be Increased by Increas-

ing the blade chord and the number of blades. In addition, the use of a

counter-rotating propeller mounted closely behind on a common axis provides

great Increases 1n the efficiency since the energy losses due to slipstream

rotation can be eliminated. When the two propellers are close together both

of them will have nearly equal Inflow velocity. But', due to the rotational

component Imparted by the front propeller, the rear propeller operates at an



effectively higher rotational, velocity or equlvalently lower advanced ratio

than the front one.

An extensive survey of recent NASA theoretical and experimental research

on propellers has been published by Hlkkelson (ref. 2), Bober and Mitchell

(ref. 3). Methods available for the aerodynamic analysis of propellers may be

classified broadly Into Euler equation methods (ref. 4), vortex lifting line

theory (refs. 5 to 11), lifting surface methods (refs. 11 to 18) and the Ffowcs

W1ll1ams-Hawk1ngs equation solution method (ref. 19). It will be seen that a

calculation of the acoustic Intensity distribution 1n the flow field of the

propeller requires a knowledge of the aerodynamic loading on the propeller

blades. Hence 1t 1s necessary to determine the pressure distribution on the

blade surfaces prior to a noise field calculation.

A lifting surface theory will be presented here for a subsonic counter-

rotating propeller (fig. l(b)) using the acceleration potential formulation.

Unlike the velocity potential perturbation, this method has the advantage that

1t does not have to deal with the discontinuities arising from the potential

vortex sheets emanating from the front and rear propeller and their Inter-

action with the blades. It will enable us to determine both the aerodynamic

load distribution on the blade surface and the acoustic pressures 1n the flow

field concurrently. We shall adopt a coordinate system 1n which the front

propeller 1s stationary so that the free stream approaches 1t with an axial

velocity W and a rotational velocity fl r. In this coordinate system, the
3 ' I

rear propeller rotates with an angular velocity, Q ± n ( + sign for counter-

rotation and - sign for corotatlon). .The,axial velocity 1s assumed to be the

same as for the front propeller but the airflow acquires a circumferential

velocity (fi,r - W tan a0) 1n passing through the front propeller. The rear
I a L.

propeller removes this rotation and converts 1t Into useful thrust. The sur-

face boundary conditions on the front propeller blade are satisfied 1n a
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rotating coordinate system while on the rear propeller they are satisfied 1n

the same moving coordinate system but with the blade surfaces nonstatlonary.

This method gives a unified treatment of both the front and the rear pro-

peller of a dual rotation propeller system taking Into account their mutual

Interference 1n unsteady subsonic axial flow. Thus, 1t 1s possible to calcu-

late the resultant aerodynamic loading on the blade, the performance of the

dual rotation propeller and Its acoustic field at any point 1n the flow for

blades of arbitrary geometry. Expressions will be given for the blade surface

loading, the acoustic pressure at a point 1n the flow and the acoustic reso-

nance characteristics for the front propeller, the rear propeller and the

combination.

FORMULATION

We now consider a counter-rotating propeller with the angular velocities

Q and Q_ for the leading and the trailing propellers of equal hub and tip

diameters, W the axial velocity of the airflow Into the leading propeller.

The leading propeller develops a thrust T. by accelerating the free stream

by the Induced velocity w, 1n the wake far downstream. In addition, the

propeller also Imparts a rotational velocity to the airflow 1n the same direc-

tion as n,. When the number of blades Z1 1n the propeller 1s large, the

air passing between the blades 1s guided closely so that we may assume the

flow through 1t 1s similar to that through an axial compressor cascade except

for the different boundary conditions at the tip. The air angle a,, at the

trailing edge nearly equals that of the mean line of the passage between the

two blades. Assuming that the two propellers are close together, the axial
i

velocity for both of them may be regarded as nearly equal. The free stream

velocity components for the front and the rear propellers are given 1n cylin-

drical coordinates by



(0,Q1r,Wa) and (O.̂ r - Wfl tan '̂"â

In this event, the linearized differential equations for the pressure field of

flow singularities on the blades of the counter rotating propeller are the same

as those for the blade rows of a stage of an axial compressor.

We shall represent the propeller blade surface by pressure singularities.

Since the rear propeller lies downstream of the front propeller, 1t experiences

a periodic wake which would cause the pressure pole on the rear propeller blade

to fluctuate 1n strength with time. When the free stream has periodic fluctu-

ations, of angular frequencies w and &>. for the front and rear propellers,

the nondlmenslonal linearized differential equations for the perturbation field

of an oscillating unit pressure monopole on a blade of the front and rear pro-

peller situated at p, (p,, <p,, £,) may be written respectively as

ar

"2M

(2.1)



1n which we have defined the dimenslonless parameters

r, = r/R Z-, E Z/R

C1 = C/R

X, = W./O.R
I a I

= U

= H tan <*

B =

- tXt fl -

u, =

(2.2)

Since the rear propeller 1s rotating with an angular velocity (QI + Q_) rela-

tive to the front propeller, the azimuth angle <p of the pressure pole 1s also

changing with time as (<p + n t). We express the perturbation pressures PI

and p 1n terms of the Green's functions

p,; k«, a,J as

; k^ , a^ and P2(
r-|

da,

i r 1|
P2(r1,p

>
1,t1) = —2 I I P2(r1,p1;k2,a2)e

2 J o

(2.3)

da.

(2.4)

Combining equations (2.1), (2.3), and (2.4) and equating the corresponding

terms, we get the differential equation for the front and" rear propeller mono-

pole Green's functions P.. and P given by

d2P,
dr2 rl

M <ai * -r
Mr, -

1
- a

.* *l-J*?pS-;v-
r2 ~

1/2

(2.5)



where

=

M

'2 -̂

2- \ 2-^ \ U^-

B4

~ - i / o _
P2 = P2 rl ' a

k2(l

= B2k2
X = -

(l),

2- \2

la 2-

(2.6)

We can expand the delta functions 6(6 - «p + ut,/\,) and i(z, - f.) 1n

Fourier series-Integral form as

1k

6(6 - <p)6(z,- £,) = -*-=
d

)6(z, -
'

da.

(2.7)

which can be used to determine the Green's functions P and P for the

monopoles on the front and rear propellers governed by the nonhomogeneous

differential equations (2.5).



FLOW SINGULARITIES FOR THE TWO PROPELLERS

Equation (2.5a) for the front propeller 1s a nonhomogeneous Bessel's

differential equation while equation (2.5b) 1s the nonhomogeneous Whlttaker's

differential equation. We can write the complementary solutions for these two

equations as

P ( r"> • c * - < > + D * ,
Kp -a £ I c

(3.1)

2 i i • * , - i *
_ o i £

These solutions must satisfy the mixed type boundary conditions given by

P1 = 0 at ^ = 1 P2 = 0 at ^ = R]2

dP dP

d?7 ' ° at rl - hl d?7 - ° at rl ' R12h2

(3.2)

where A^f B,, C^, and D^ are arbitrary constants. We shall assume here

R,p = ratio of tip diameters of the front and rear props =1. We look for

solutions such that there 1s no radial flow at the hub and the pressure per-

turbation vanishes at the blade tip. From these boundary conditions we can

obtain a transcendental equation

Jkri
(\v -y^v yy

Vi(V]) - W1' = VV (3'3)
giving the eigenvalues x ,a for the front propeller. The corresponding

1
Green's function for the oscillating unit pressure monopole on the front

propeller 1s given by

VV
' Pl<ri> "Jif^VV1' * VV1' (3 '4)



The Erdelyl's form of Whlttaker function used 1n equation (3.1) can be

related to generalized Laguerre functions through Kummer's function by the

relations

a-1/2

Va<z> Mx,«(z)
0 7e z

iFi(a + i - x;

-Z/2,2a /x + a - iZ/2z2a / X * a - 2 \ I '

1 *2«> l 1 L

2«; z)

(2a)

( 2 ) (3 .5)

where M 1s Whlttaker's first function, ,F, 1s Kummer's confluent hyper-
Xt<» I I

geometric function. In general there are three distance cases giving

transcendental equations for the eigenvalues of the rear propeller. We shall

consider here only the case (1 ± 2a) * - m, m = 0, 1, 2, 3, ... for which

the eigenvalues are given by

bi - 2
(2a)

(y)
5 b 1 0

b - "*L
,y) -

-25)

1n which

r 3 - 13~

I", 1^
(h?y) !5L|-2">

Ib3

I - o

b6 = * - 2 * - 4
- 3 - 1 3

- i * 2 « - - 4

7 3 - 3 k
* - 2 a - 4 b ! 3

12 J y . v^ R12

(3.7)



The Green's function for the pressure monopole on the rear propeller 1s there-

fore given by

(3.8)

4<x (2a)

C ^ L (r2) -
ri 2 c

5 b!0

(-2a)

H D L (r?)
2 . *
5 b4

where the coefficients (C,D) are given by

(-2a)

C = - Ib4

(fbl3)

D =

|
I

,
(n)

-(! -„)
(3.9)

I b!0

It 1s seen that the pressure monopole on the propeller has a characteristic

Bessel function variation radially. The pressure monopole on the rear propel-

ler has a characteristic radial variation described by the Whlttaker's func-

tion. In the presence of an external forcing function, the differential

equations (2.5) are nonhomogeneous and the pressure variation due to the mono-

pole may be expressed by expanding 1n terms of appropriate orthonormal elgen-

functlons. We shall choose the elgenfunctlon for the front propeller as the

function *. (r..) given by a linear combination of Bessel functions of the
1
0 . .
Jt I

first and second king, J (r.̂  and Y (r ) normalized to satisfy the orthogo-

nality condition

Jh
 rlPl(Xk*rl)Pl(Xkmrl)drl ' VW

§ (r ) = P (X. r)/m^Q* T T «0 i ^0l\ X> I I IV *• I N 3L

(3.10)

For the second propeller, since the Whlttaker functions do not possess orthog-

onality properties, 1t 1s convenient to relate them to generalized Laguerre

10



polynomials using the relations of equation (3.5). The normalized generalized

Laguerre polynomial | _ * (r9) satisfies the orthogonality condition

f
I
•'

a
R12 - (2a) (2a)

-
?-a (r ) (r ) dr =

' — ~ ' — ~

(2">„ (r,)

R hK12n2

a /
(3.11)

The solutions of the nonhomogeneous equations (2.5) may be expressed as the

elgenfunctlon expansions given by

? ?
P ^ (r ,P.;a J = I I h (a )* (r )? (Pl)(rP)2 112 ~ a u z ak2a ' aka ] 2 2

ak i

(3.12)

(k,) (k )
where g. (a ) and h (a0) are coefficients of the expansion to be

1 aa 2

determined. We shall now expand the D1rac delta functions «(r. - p,) 1n

equations (2.5) 1n terms of the elgen functions corresponding to the front and

rear propellers as

2 (r p )a ̂ (P

(3.13)

11



Then, the elgenfunctlons $. 0(r,) and ¥ (r,) satisfy respectively
1 Tk 9.I X,F^f\JL

the Bessel and Laguerre differential equations

d2*

dr

d*

2
2

ar r2 a
= 0

(3.14)

where a 1s the degree of the Laguerre function defined by the relation

-3/2

(3.15)

1n terms of Its eigenvalues v The Independent variables p and r?

are defined 1n terms of r by the relation given 1n equation (2.6). In the

above X, are the radial eigenvalues of the front and rear propeller,
V

respectively. The elgensolutlons of the Laguerre differential equation exist

1f the degree I 1s an Integer. Considering the oscillating unit pressure

pole on the front propeller, the expansion coefficient g 1s obtained by

substituting for P and 6(r1 - p ) from equations (3.12a) and (3.13a) Into

equation (2.5) and equating the corresponding terms. Thus,

-1
B (3.16)

where

vk,a
M
2 '*

kl)Al' '
(3.17)

12



Both H and x. are always real. When the axial flow 1s subsonic, M < 1,K,a
2 2B > 0 and the sign of A. . depends on the relative magnitudes of X.

and M/B. But, for supersonic axial flow H > 1 , B2 < 0 and A? 1s
K.,1

always positive.

The perturbation pressure p, 1n equation (2.3a) may be expressed 1n

terms of the elgenfunctlon *. using the Fourler-Bessel expansion (3.12a)Kr
as

(kj .

k 9.Kl *

(3.18)

where

(k ) . f° 1a Z (k )
[,] (Z,) =| e \ (a1)dar

«/n

(3.19)

The Integral may be evaluated by contour Integration methods and written as

(k ) .
T d (7 \ "

^ A HM/B2- Z,M MM/B2+Ak /B
^ V (3.20)

If A. - > 0, the second term 1n equation (3.20) 1s rejected since the

Integral diverges with Z,. We therefore put

V— "•« Z1(k,).
(3.21)

13



Thus, the solution 1s always bounded and the sign of A. 1s assigned as

follows:

l f A > ° p u t = '

(3.22)

Thus, the pressure field p, of a pulsating unit pressure pole situated at

(p-,, <P, £••) on a propeller blade becomes

A

.-» -» . . 1 y y . . , . -1 gl * 0 1+W1 1 1 ̂ ^ ~3\

k 0 1 1 1KI x. i i i

The field of a pressure pole situated at (p,, <p + <p + m,6 , f.) on the m.

-th blade of the front prop 1s given by

-» •* 1 -1

k1 ». 1 1 1

1 [k, (6-<p, -<p-m, a,) -Hi), a, 6, +f Z, i-w, t, /\, ]
x e ] ] ] 1 1 1 1 o 1 1 1 1 (3 24)

where 0, 1s the uniform Interblade phase angle factor of the front prop,

o, = 0, 1, 2, 3, ..., (Z, - 1), and 6, 1s the Interblade azimuth pitch angle

2w/Z1. The pressure field of a pulsating unit pressure dlpole situated at

PI. <p + <p-i + m-6,, C-i) ̂ s obtained from that of the pole by differentiating p..

along the normal to the local camber line giving

14



(m^ 1 cos a-! _-,
PD = - ~4^0 I J *kia

(rl)*k1il
(pl)Aki

K -I A> I I I

1 [
X i « c

kif, = — - fA tan a,2 PI o 1

(3.25)

Putting

k, = v.|Z.| + «1 (3.26)

the pressure field of unit dlpoles situated on all the Z , blades of the front

propeller 1s obtained by summing over m.. and we get
^ I

1" (m-j) 1Z-J COS a.j _1
Pn = I PD 4*3 f

Kl

x f2e ' " ' ' ' ' (3.27)

Again considering an oscillating unit pressure pole on the rear propeller, the
(k )

expansion coefficient h (a_) 1s obtained by substituting for P0 and
U 2 Z

6(r - p ) from equations (3.12b) and (3.13b) Into equation (2.5) and equating

the corresponding terms as

la2) =
«>3[v

,2 _

2MM 2 k 2 (a 2

"2<\

* wk^] [a2 ~ ao£

~ - 1

O T T/9
2 21

'2> -'oj

(3.28)
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The perturbation pressure p 1n equation (2.3b) may be expressed 1n terms

of the elgenfunctlon * (r..) using the Fourler-Laguerre expansion
aK2a '

equation (3.12b) as

1 1 +

Potf i .Pi . t , ) - -Lj I X v l / 2 * (r )^ (p-^rfpf 2 e~ 2 VP2
£ ' ' ' ' *

(kj .
M2,)exp[lk?(e - <p) + 1(w t k njt/x,] (3.29)

1 9 . e l l

where

/•
1
J«/ _e

(
la0Z9 (kj

e * X * (a2) da2
 Z

2 = zi - ^2
 (3 '30)

This Integral may be evaluated by contour Integration methods and written as

/,, 2 <z 2 ) = ~4~ e 4 2$* < 3 - 3 1 )

where

1 . _ .
/ 2 2x 3/2

Mpk9 U^ - aM
2 <J \ 0 0 /

2-2M u /
fA= —5^ I1 + ir~ sgn

4 o2 \ Mco.
|J ^

(3 .32)

We can then write p_ as

P2(r1.P1>t1) = 1
 3 X Z I «1/2 ^ (r^^ ^ ] ) r2p2 2e 2 2 2

if .z9+1k9(e-<p)+l(co+k,n)t1/x1
S*e * ^ * £ \ i (3.33)

giving the field" of a pulsating unit pressure pole situated at the point

(P-I, <p, C?) on the rear propeller. When the pole 1s located at the point

16



(p-it <PO + <PO + m2*2' ^ W^ a un^orm Interblade phase angle 52,

pressure field 1s given by

- - 1/9 ~ a 9
P(r1 ,p1 , t1) = — y- X X X vy

2 *_ <r,)*_ (pOrJp. Ze
' ' ' ^ ~ k2 a. ak2a ak2a ak2a ' £ i

S^exp 1 f4Z2 + k2(e - <p2 - <p - m2«2) + m2o2*2 * (u +

(3.34)

Again, the pressure field of a pulsating unit pressure dlpole at the same

point on the blade 1s obtained by differentiating p2 normal to the blade

mean camber line and 1s given by

(m ) -cos a - a+ - - - (r +P )
2 - ^ i ^ ̂  ^

2 321T01 M ~

f5exp lf4Z2
 + k2(e ' *2 ~ *^ ~ m2*2(k2 " ~°2> + (" +

(3.35)

where

fs . I- — + f4 tan 0.5^ (3.36)

62 = 2ir/Z2 = Interblade azimuth pitch angle o7 the rear propeller and <*2 =

Interblade phase angle factor of the rear propeller, <?2 = 0, 1, 2, 3 .....

(Z2 - 1). For the Z2 blades, the perturbation pressure of the unit dlpole

situated on all the blades of the rear propeller 1s obtained by summation over

m? and 1s given by

17



, ,m_=l 2

COS a? ,,„ _

— E I » * <r)* (Pi)rp 2
e
 2

332*6 M ~ k2 8. fck2

f5exp l f 4 Z 2 + k2(e - j>2 - <t>) + (u +

(3.37)

where

k2 = W2Z2 + ~°2 (3.38)

The dlpole solution for the second prop consists of an axial component which

1s wavellke 1n Z, the axial distance from the rear propeller.

2 2When (A - M*) -» 0, S^ -» » and Pn •* °° and is termed acoustic

resonance. At resonance, a = ±M*. The elgen-numbers a and k_ ato x c
resonance satisfy the relation

2
2M M k

(3'39)

the * and - sign corresponding to the advancing and retreating waves

respectively.

In equation (3.27) 1f A. = 0, pn -» « and we have acoustic resonance
*la ul

of the front propeller. The corresponding circumferential mode number and the

eigenvalue \. satisfy the relation
K1E

M(l + k )= * ~ (3-40)
The resonance condition for the counter-rotating propeller system 1s obtained

by setting the azlmuthal elgen-numbers k and k of the front and rear

propeller equal. We then obtain a relation between a and x. 0 given byKr

18



-I ±
The condition k ,= k. leads to the relation

(3.42)

connecting the Interblade phase angles of the front and rear props.

Equations (3.27) and (3.37) give the pressure field of a pulsating unit

pressure dlpole situated at a point of the front and rear propeller blade.

If Apn and ap be the upward acting pressures at the point (p , <p, c, )

(p-i. <P. C?) of the front and rear prop blades due to both the camber and

thickness distribution and a,, a» are the blade angles of the front and rear

propellers at radius p, , considering an element of area (dp, dc./cos a,) and

(dp1 df /cos a.) at these points, the strength of the pressure dlpole at these

points would be

front: Ap1 dp.. df,/cos a rear: Ap« dp dc,/cos o_ (3.43)

The perturbation pressure field P.. and P~ fr°r tne whole blade 1s given by

1Z1 f1 TZ1TE
Pl = " 4^0 I I I I Ap1(p1,<P,f1)*ik(r1,p1,t1) dPl d^

1 •'i, J -,
l 1LE

where (Z,|F, ZIT_) and ' Z?TE

(3.44)

) denote the axial positions of the leading

and trailing edge of the front and rear propeller blade at any radius p, and

and are the kernel functions defined by

19



9

f5e " " < '' 'e

(3.45)

If the blade loadings Ap^ and Ap2 are known, the resultant acoustic

pressure at an arbitrary point 1n the flow at time t^ 1s given by

Pfr,.^) = P-ĵ .t.,) + P̂ .t.,) (3.46)

Since P, 1s a function of the mode numbers (k, a) and P2 1s a function of

the mode numbers (a, k, a), the resultant acoustic pressure P at a point 1s

a function of the mode numbers (a, k, a). Summation over a (a = 1, 2, 3 ...),

k (k = 0, 1, 2, 3 ...) and a (a = 0, 1, 2, 3 ....) of equation (3.46) gives

the total sound pressure level at any point for all modes together.

20



PERTURBATION VELOCITIES

We shall split the surface pressure distribution Ap and Ap on the

blades Into thickness and camber components for blade. The thickness and

camber contributions will be separated Into radial and chordwlse variables as

Ap ^
aks.

Ap (p.)

where w 1s a Glauert angle defined by

(4.1)

y^ cos < y. < + o < , «_ < -ir

(4.2)

The functions F., F2, G,, G~ will be expressed 1n a Blrnbaum-Glauert series

expansion as
i

~ 00 / ~ \ CO

F,(u) = A cot £ + X A sin mw F5(u) = B (cot ~ - 2 sin u) * E B_ sin mw
1 ° i m=l m * °V d I m=l m

~ ~
G,(u) - C cot J + X C sin mZ> G_(w) = D

1 ° £ m=l m £ °

/ ~
(cot !jf -
\ £ 2 sin u O sin

(4.3)

assuming the coefficients Am, Bm, Cm, Dm to be Independent of I, k, and a.

Combining equations (4.1) to (4.3), we have

~.p^k.l) = Ap, = [J cot j- * I J sin riko, *. (
m=l

~cot ̂  + X ̂ m sin mu)2J^ (

(4.4)
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The coefficients ^ and 38 are determined by satisfying the surface tan-

gency boundary conditions on the blades. To satisfy the boundary conditions

of flow tangency on the blades, we have to obtain the perturbation velocities
-» -»
u, and u_ from the perturbation pressures PI and P2 by Integration of

the unsteady Euler equation of motion. For this purpose we Introduce the heli-

^ a^, i^) for the front and rear

prop based on the undisturbed free stream for each (fig. 2(c)). We define the

cal coordinate system (r, , a.., T,) and

helical angles e and e defined by
nl n2

tan tan e. - tan cL = tan e. - tan <x2 (4.5)

In addition, we also Introduce the blade section coordinates (r,, y', z') and

(r,, y' z') (fig. 28) which are related to the cylindrical coordinates

(r,, 0, z.) by the transformation

/drA /I 0 0 "N/drA /drA /l 0 0 Wdr \

w V

sin

COS a

COS a

1
sin

de

V

sin

COS

COS a.

sin

de

(4.6)

We also have the transformations between the (u->rt u , u ), (iL , tip , Up ) to

the (url, uol, UTI), and (ur2> u^2, UT2) coordinates
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ly.

A

V
AiA /> °

0 cos e, sin e, u ,

1 sin e1 cos

yly, 0 cos 6 sin

\V V
s1n

where

cos

0 cos 64 sin 64

e4 cos e4

= 0 cos e0 sin e

\
0 sin e_ cos e

6=6 - <x
2 h i

e. = e - o
4 h- 2

(4.7)

(4.8)

The first matrix transforms from the (r., c,, i^) to (r,, y^, z') coordinates;

the second matrix transforms from (r^ a*, TZ) to (r,, yi, z2); the third

matrix transforms from the (r,, o-, T_) to the (r,, y', zJ); and the fourth

matrix transforms from (r-j, a^, t^) to (r-j, y2', z2') coordinates. The resultant

velocity Including the respective free stream components are given by
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V

o \ / o \ /i o o \ /SA

0 Sin a, COS a
1

ll

\° - cos
0 cos e, sin e1 7l

0 sin e, cos e, V W

0 cos sin e. • o02

/"2r\ /'
0 \/ 0 \

r
0 sin cos

0 COS a. Sn a

r1 - tan

/I

sm aly/ \ i

0 0

0 cos e0 sin

Vo sin 63 cos

=rA

0 cos e.

'3/ ° s1n

(4 .9 )

The dlmenslonless equations of motion 1n the corresponding helical coordinates

(r, o, T) may be written 1n the form

-» -»
au _ au,

atT + "01 aoT

-» -»
ail- _ au,
aT," + U02 a^

faP1 aP] aP1

ar, ' a<j, ' a-

aP aP

(4.10)
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where

1/2 vl/2

J02

UQ1 - w = . . + 2 l = «c „

a \ Xl/ 1

o 1/2 _
y — ?

wa - <rftr - Wa tan •?>
waa

f l - \ 2
1 •*• 1 . - tan o5 1\ i /^ ' / -

,11/2

= sec e.

ul = Ul/Wa U2 = u2/Wa

so that we have

(4.11)

1 1-1 + sec e. r-1-
u n-, do-,

3u2 au2 1 /aP2 a?2 3P2

at; + sec % ̂  = - ̂ 2 ̂  • ̂  • *T2 (4.12)

We shall assume that the perturbation velocities u-j and u2 corresponding

pressures P.. and P vary harmonically as follows:

ui ' ui e

Pl - pl P - P eK - \> e

(4.13)

Substituting Into equation (4.12) we obtain the equations

au cos e, u.
+ 1 — cos e. u,

, \, h, 1

h1 a?

i2 \ari * aoi

cos e.

3o,
cos e. u.

52 3P2

25
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which can be Integrated with respect to o and o2 respectively giving the
-» -*

perturbation velocities u1 and u2 produced by the front and rear propellers

each 1n Isolation as

1w,o, cos eu A, ^ cos e. /•1u10,
ul e

3P, 3P
a • a •

cos e cos
= u.

cos e

(4.15)
-» -»

where u, and iL are the free stream values of the perturbation velocities

corresponding to a,, a -> » which we shall assume to be zero so that we have

cos eh,Al
cos cos eh/xl /ap, ap

• ay

cos

cos e.

cos

d°

(4.16)

The helix angles e. and e. can be related to the variables e and z,

by the relations

Q. = 9 - r — u = 6 - , ,h2 wa = Q - (4.17)
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the differential transformation from (r , e, z ) to the helical coordinates

rr <» , T^ and (r^ a^ t£ Is given by

/drl \
r1 de

\dzl )

=

/I 0 0 \

0 sin ek -cos e.
hl hl

V cos V S lneh,/

/dri\

do.

IdTj

:
/drl \
r1 de

ldzl 1

s

/i
0

\°

0 sin ek -cos ek do0h2 hJ 2

0 cos e. sin ek /\ d-r
V

When moving on a given helical stream line, e. = constant, drn = tit
ll-i I C.

we have

front prop: do.. = dz1 sec e. ; rear prop: do0 = dz. sec 6.

Integrating and putting z = 0 for a = 0, we have

(4.18)

= 0 and

(4.19)

a.. = ZT sec e.1 1 h ,
- = z. sec e.2 1 h (4.20), 0

Hence, performing the Integrations 1n equation (4.16) along the helical

'streamlines of the respective free streams for the perturbation velocity
i
vectors we obtain

dz

(4.21)

*^ «

where the amplitudes of the perturbation pressures P, and P_ are given by
I I C.

(4.22)
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with

~z , sin co, sin 2u, ... sin mco,.. .

= f ~ *k l(pl} dpl *! = / ^ *~ ^l1 A pi kr ' ' ' • / R h aki ]
1 2 2

I /*R12 2 - p P2 a+ 2
tan a dp, < = / '^r (p,)e % ^ tan a dp

' ' * ^Rh t ka

, = kn^ - ̂ Of - - 5 r . ..3 1H 2 o ^ a 2 2-1/2
yen ~ T~ I ' i ' ' o v v~

(4 .23)

Introducing the expressions for PI and ?2 from equation (4.22) Into

equation (4.21) we can write the perturbation velocity components of u, and
-»
UP 1n concise form

u^i = K^T^ u i = K -\s& u , = Krl rl ol ol T\ t

( 4 . 2 4 )
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where

"7 A * * ' rf / ^ r i/ / a \ -*.£ 7 11
ZnC // ^ I ' L KI \ °~<Pl ~Vl ) "*"^«^1 J| IW1 *•! ' "•!

K - + —' y y IT— If We ' ' V ° 1 >e ] ] ] dfN
rl - * •> L L I I n **. S^on^e (e uti

-1u.Z1A1

1Z,e /*/* a ( Hk^e-^-cpTJ+e^ZJ) IUTZ^X!
K , = + —L

ol

K . = K , cot 2 6. ,
Tl Ol hi

K-j,. = -j 3 i. i i.
^ ~ k2 a

~ k 71" exp

n tan eh - cot eKh2 h2
K = - - - — K
T2 2Q - tan e. tan e. °2

hl h2
(4.25)

are row vectors. In the above, the Integration over z. 1s an Indefinite

Integral valid over the range (-», + ») , the Integral over £-, 1s a definite

Integral extending over the domain (C-,,E, C1TE) for the front propeller and

over the limits (Coir. foTE^ for the rear Pr°Pel1er-

BOUNDARY CONDITIONS AND BIRNBAUM COEFFICIENTS

The equations to the upper and lower surfaces of the front and rear pro-

peller blades can be expressed 1n terms of the mean camber line and thickness

and may be written

zui =zui(rryi) ZLI •zLi ( rry i )

Zu2 = Zu2(rry2'tl) ZL2 = ZL2(rl'y2'tl)

(5.1)
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assuming that the profile of the blade 1s Independent of the radius r. In

the coordinate system chosen, the front rotor blades are stationary and the

equation of the front blade surface 1s Invariant with time. But, since the

rear propeller moving relative to the front prop with an angular velocity n ,

the rear prop surface 1s a function of time. We can write the d1mens1onless

equation for the m-th twisted, tapered and swept blade 1n the (r, e, z)

reference frame as front:

F = z - r. cot a. tan (e - - «) - C - 2- + Y- cot + zc esc = 0

-F - zl - rl cot «2 tan Q ' »2 - 62m

- Z2 + Y2 C0t "2 + Z2C2 CSC V

(5.2)

where

C the dlmenslonless axial displacement of the propeller from the

origin (fig. l(b)).

Y! , Z! the dlmenslonless Y and Z coordinated of the blade half-chord

line S (fig. l(a)) such that Y1 = Y/R and Z1 = Z/R.

C. dlmenslonless blade half-chord at any radius (fig. 2(a)).

Z' dlmenslonless ordlnate of the blade profile.

o. blade angle distribution.

^ off-set angle of the first blade (fig. 1(a)).

the subscript 1 = 1,2 to designate the front and rear prop blades respec-

tively. From these the upper and lower blade surfaces are given by the

equations:
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ziu = foi * zi ~ Yi cot ai ~ ziuci csc ai * ri cot c' tan (e " *i " *im)

ZIL = C01 + Z-j - Y^ cot a, - z-jLc., csc a-! + r] cot ^ tan (e - ^ - «lm)

Z2U = C02 * Z2 " Y2 Cot a2 ~ Z2UC2 CSC a2 * rl C0t °2 tan *6 " *2 " *2m * ®V

Z2L = C02 * Z2 " Y2 cot a2 " Z2LC2 CSC a2 + rl C0t a2 tan (e " *2 ~ *2m + ^/

(5.3)

The flow tangency condition for the front prop may be expressed as

(
=

z = , z = -
(5.4)

T U I = d y = u T L I

where U, , and U, , are the y.j and z.j components of the resultant

velocity at the front prop due to both the propellers. For the rear prop, the

surface boundary condition 1s obtained by equating the substantial derivative
,

OF/Dt = 0 where F(r, e, z, t) = 0 1s the equation of the rear prop blade

surface. For an arbitrarily chosen first blade, m = 1, this may be written as

/ at A 2/ _ at
U9rs1n 2 e - », + —) + 3U0ft - 2(r9c9 + tan a,)U,_ cos* 6 - <P9 + H
11 I t \^ I c 0 cC bcZ y t ^

2/ 5tA= 2 tan a0 + 2(T,c, + tan a,) cos 6 - <p, + -— - 4fl tan eh (5.5)
i. t I t y £ X1 J ^

Since the dlmenslonless free stream for the rear propeller has the velocity

components

uor = ur-o • uoo = tan e. - tan o. + ua. ; U_ = 1 + u _- (5.6)
tT ic to M-. , ,- t , ,Dc. £.L f̂-£.,, ,. .. .

The boundary conditions on the rear blade will be satisfied at an arbitrary

time t, = 0 on the upper and lower surface and can be written
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sin 2(e - <p2) + 2U2Q - 2(TU2c2 + tan <*2)U2z cos
2(e - <p2)

2= 2 tan a2 + 2(Tu2c2 + tan a2) cos (e - (?2) - 4Q tan eh

sin 2(e - v2) + 2U2Q - 2(-rL2c2 + tan a2)U2z cos
2(e - v2)

2 e - <P - n an e.= 2 tan o. -i- 2(T -c- + tan o2) cos (e - <P2) - 4n tan e.

(5.7)

The velocity components U, , U, , and IL , can be expressed 1n terms of the

components (url, ufll , UTI) and (ur2, uo2, UT2) as

Ulr = "rl

U, , = cos a, + tan e. sin o, + u cos e, + u , sin e,

+ u cos e + u sin

U, , = sin a, - tan e. cos a, - u , sin e, + u , cos e,Iz 1 h, 1 ol IT! 1

s1n 6
2 *

 U
T2

 COS

(5.8)

Substituting Into equation (5.8) we can write the boundary conditions for the

front prop as

(5.9)
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Ml (FV
where RjjV and <<f are defined by

Ai,' = sin e, + -rL' cos e, fii2 = - (cos e, - T*..' sin e,)

A^3 = sin 62 + Ty. cos 62 A^4 = - (cos 82 - T*...' sin 82)

A-, = sin e, + T|, cos e, A22 = - (cos 8, - t|, sin e,)

A"23 = sin e2 + T[,' cos e2 SL' = - (cos e2 - rf,' sin 82)

! ci = s1n a
r ~

 Tui cos ar ~ ̂ cos ar * TU1 s1n ar^ tan eh

' CM) = sin ar - T[,
I) cos ar - (cos a_ + Tf,

1) sin ar) tan ehf. r LI r r LI r n1

(5.10)

Considering the rear propeller, we have on substituting for the velocity

components (u 0, u,,0f u 0) the followingrc oc 2£

U2r ' "rl + \2

U0 = u , sin 8. - u cos 8. + U sin 6. - U cos 8.26 ol h, TI h, o2 hp i2 n~

U_ = u , cos e. + u i sin e. + u 0 cos e. + u 0 sin e.22 ol n, T! h, o2 hp i2 hp

(5.11)
i '

Into equation (5.11), the equations for the boundary conditions on the upper

and lower surface of the rear propeller become

! /c \

•2 60 * Ko2 63 * Kt2 64

rK »(D + K »(D + K Xd
i ^^^"Trt '^ ^ O**T1 "^ 1*^"l Jl^. r2 70 o2 73 T2 74

(5.12)
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2
COS ^6 " *2^ cos eh

m (Vwhere we have defined S* ' and C0 as follows.
it 1** at

S6] = 2[sin 0h - <Ttj2
c
2 +

 tan <*s)
 cos (e - <P2) cos 0h

A&2 = - 2[cos 0h + (tU2c2 + tan <*2) cos (0 - ?2) sin

A?1 » 2[s1n 0h - (\2c2 -»• tan a$)

p
A?2 = - 2[cos eh <- (tL2c2 + tan a$) cos (0 - »2) sin ©h ]

A63 = 2[s1n 0h ~ (tu2c2 + tan a$) cos
2(0 - ̂ } cos ©h ]

A&4 = - 2[cos eh * (tygCg * tan c»2) cos
2(0 - ̂ ) sin 0h ]

_ 2
A?3 a 2[s1n 0h - (tL2c2 * tan a$) cos (0 - ̂ 2) cos 0h j

2 -A74 = - 2[cos 0^ * (TL2c2 t tan a$) cos (0 - ep2) sin 0. ]

(SJ
*«6 =4 tan a2 - 2(1 + 25) tan 0h + 4(Tu2c2 *• tan a$) cos

<:(0 - ^2)

^^ = sin 2(0 - v2)

(SJ
^7 =4 tan a2 - 2(1 * 2Q) tan 0h * 4(tL2c2 t tan <xs) cos (0 - 92)

A^} = sin 2(0 - v2)

(5.13)
Therefore, the boundary conditions, equations (5.13) and (5.12) can be written

1n the compact form
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m - Y2 H - KolA2l * KTlX N . K^A * K^A

Q0 - Y3 P - knA<^ * KolA<]) * KTlX<J> Q - Kr2A<J> * K^ J> * K^J

S0- Y4 R - KrlA5J> * K^A^ + KTlA^ S . K^ + K^^ * K^^

(5.14)

The four equations may be written as the pair of matrix equations

(5.15)

where the matrices KM, Lw, PD, Qc, r, and r0 are defined by
1 p| n K O I f.

\ - tt) s, • (i) p« • (I)

: (R-,) (R,) (Ŝ  (Ŝ

(5.16)

Solving this pair of nonhomogeneous simultaneous equations for A and B we

obtain the Blrnbaum coefficient vectors A and B as

(5.17)

The matrices KM, LM, P_, and Qc are primarily aerodynamic 1n nature whereas
n N K ^

the matrices r, and r? are purely geometric representing the blade section

and blade planform. Truncating the Blrnbaum series at m = M^ we have

(M^ + 1) coefficients for each of the front and rear propeller. Considering

- • - 3 5 - ' . "



P* points on each side of the blade at which the boundary conditions are

satisfied, we have 2P equations to determine the 2(M^ + 1) coefficients of

the front and rear propellers. Hence, we must have 2P* = 2(MA + 1) giving

the relation between the number of points on the blade and the number of

coefficients of the Birnbaum series. The matrices Ku, L.., P_, and Qc are
n N K o

of order (2P* by 2P*) and the matrices r^ and r2 are of order 2P* by 1.

Each of the vectors ^ and $ 1s of order 2P* by 1.

The vectors $4 and $ are functions of the off-set angles <j>-. and <p».

For purposes of numerical study, we may set <p, = 0 and <p? = Q t = Qt,/x,.

Since the blade passing is periodic, it is only necessary to vary the time t^

in the range 0 ̂  t, •$ S^X-i/Q an<^ obtain the values of s& and $ at desired

Intervals.

From a knowldege of sA and $ the pressure loadings H.. and H~ on

the front and rear propellers can be calculated using equations (4.4) from

which the thrust and torque for each blade can be calculated for performance

estimation of the counter-rotating propeller system. If the free stream were

steady, w' = 0. The Inflow Into the rear propeller would experience the

Inviscid periodic wake of the front propeller with an angular frequency

"2 - Vl '

The above solution is applicable for calculating the unsteady and steady

aerodynamic behavior of the blades which are assumed to be rigid. However,

this assumption may be relaxed by allowing the blade geometry parameters

Y', Z', and a. in equation (5.7) to be functions of the blade loading and

stiffness characteristics for an aeroelastic analysis of the system. It has

been mentioned earlier (cf. eq. 3.46) that the time dependent perturbation

pressure P at any point in the flow equals the sum of the perturbation

pressures P, and P due to the front and the rear propellers. This

can be calculated from eq. (3.44).
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CONCLUSION

The lifting surface theory for the counter-rotating propeller has been

presented above. It 1s possible to obtain the acoustic modes and the cor-

responding sound pressure levels of the combination using the Blrnbaum coeffi-

cients d and $ together with the Blrnbaum series. Further, them. m
i

aerodynamic performance of the dual rotation propeller system can also be

calculated.
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(b) Counter-rotating propeller blades.
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(a) Single rotation propeller

Figure 1.

Y'lnl

(a) A view of a blade and it's cross section.

FREE STRI

(b) The blade section coordinates.
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(c) The Helical coordinate system for blade.
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