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SUMMARY
An unsteady 1ifting surface theory for the counter-rotating propeller is
presented using the linearized governing equations for the acceleration poten-
tial and representing the blades by a surface distribution of pulsating acous-
tic dipoles distributed according tp a modified Birnbaum séries. The Birnbaum
series coefficients are determined by satisfying the surface tangency boundary
conditions on the front and rear propeller-blades. Expressions for the com-
bined acoustic resonance modes of the front prop, the rear prop and the combi-
nation are also given.
LIST OF IMPORTANT SYMBOLS
h1,h2 (hub/tip) radius ratio of froﬁt and rear prope]]er
L_ éa) Laguerre function of order a and degree b

?(r,e,z) position vector of a point in space

R]2 (rear propeller/front propeller) tip radius ratio

wa axial velocity of free stream

Z],Z2 number of blades of front and rear propeller

a0, blade angles of the front and rear propeller

&2 trailing edge angle of the front blade

61,62 interblade azimuthal p1tgh of front and rear propeller
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k],xz advance ratios of the front and rear propeller

kkg,uikl radial eigenvalues of the front and rear propeller

wi,wz free stream fluctuation frequencies of the front and rear propeller
91,92 angular velocity of the front and rear propeller

31,32 interblade phase angle factor of front and rear propeller

o(p,9,l) position vector of a point on the blade

Qka'w~ normalized eigenfunctions of the front and rear propeller
ke '
INTRODUCTION

Interest in propelier propulsion has been revived recently by the need to
economize on fuel consumption and fuel costs. Besides, with the development
of transonic airfoil sections, even with airscrew propulsion, it is now pos-
sible to attain cruise speeds comparable to those of current turbofan trans-
port aircraft at similar operating altitudes. Preliminary studies appear to
indicate possibilities of realizing a clear 15 to 20 percent superiority (see
Mikkelson et al.) of propulsive efficiency for the advanced turboprops over
that of turbofan propulsion. For commercial acceptability it is important to
keep the noise Tevels of the propeller system low. Consequently, NASA has
mounted a program for advanced turbopropeller development to realize the;e
objectives.

It has been known for a long time that both the power absorption charac-
teristics and the efficiency of propellers at high forward speeds may be
improved by increasing their solidity. Solidity can be increased by increas-
ing the blade chord and the number of blades. In addition, the use of a
counter-rotating propeller mounted closely behind on a common axis provides
great increases in the efficiency since the energy 1psses due to siipstream
rotation can be eliminated. When the two propellers are close together both
of them will have nearly equal inflow velocity. 'But, due to the rotational

component imparted by the front propelier, the rear propelier operates at an
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effectively higher rotational. velocity or equivalently lower advanced ratio
than the front one.

An extensive survey of recent NASA theoretical and experimental research
on propellers has been published by Mikkelson (ref. 2), Bober and Mitchell
(ref. 3). Methods available for the aerodynamic analysis of propellers may be
classified broadly into Euler equation methods (ref. 4), vortex 1ifting 1ine
theory (refs. 5 to 11), 1ifting surface methods (refs. 11 to 18) and the Ffowcs
Williams-Hawkings equation solution method (ref. 19). It will be seen that a
calculation of the acoustic intensity distribution in the flow field of the
propeller requires a knowledge of the aerodynamic loading on the propeller
blades. Hence it is necessary to determine the pressure distribution on the
blade surfaces prior to a noise field calculation.

A 1ifting surface theory will be presented here for a subsonic counter-
rotating propeller (fig. 1(b)) using the acceleration potential formulation.
Unlike the velocity potential perturbation, this method has the advantage }hat
it does not have to deal with the discontinuities arising from the potential
vortex sheets emanating from the front and rear propeller and their inter-
action with the blades. It will enable us to determine both the aerodynamic
load distribution on the blade surface and the acoustic pressures in the flow
field concurrently. We shall adopt a coordinate system in which the front
propeller is stationary so that the free stream approaches i1t with an axial
velocity wa and a rotational velocity Q]r. In this coordinate system, the
rear propeller rotates with an angular velocity, 9] + 92 (+ sign for counter-
rotation and - sign forucorotat1on). :The.axial velocity 1s assumed to be the
same as for the front propeller but tﬁe airflow acquires a circumferential
velocity (Q%r - wa tan &2) 1n_passing through the front propeller. The rear
propeller removes this rotation and converts 1t into useful thrust. The sur-
face boundary conditions on the front propeller blade are satisfied in a
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rotating coordinate system while on the reaﬁ propeller they are satisfied in
the same moving coordinate system but with the b]ade surfaces nonstationary.

This method gives a unified treatment of both the front and the rear pro-
peller of a dual rotation propeller system taking into account their mutual
interference in unsteady subsonic axial flow. Thﬂs, it is possible to calcu-
late the resultant aerodynamic loading on the blade, the performance of the
dual rotation propeller and its acoustic field at any point in the flow for
blades of arbitrary geometry. Expressions will be given for the blade surface
loading, the acoustic pressure at a point in the flow and the acoustic reso-
nance characteristics for the front propeller, the rear propeller and the
combination.

FORMULATION
We now consider a counter-rotating propeller with the angular velocities

Q. and Q. for the leading and the trailing propellers of equal hub and tip

1 2
dﬁaméters, W the axial velocity of the airflow into the leading propeller.
The leading propeller develops a thrust T] by accelerating the free stream
by the induced velocity Wy in the wake far downstream. 1In addition, the
propeller also imparts a rotational velocity to the airflow in the same direc-
t1on.as Q]. When the number of blades Z] in the propeller is large, the
air passing between the blades is gquided closely so that we may assume the
flow through it is similar to that through an axial compressor cascade except
for the different boundary conditions at the tip. The air angle &2 at the
trailing edge nearly equals that of the mean 1ine of the passage between the
two blades. Assuming that the two propellers are close together, the axﬁa]
velocity for both of them may be regarded as nearly equal. The free stream

velocity components for the front and the rear propellers are given in cylin-

drical coordinates by



(0,91r,wa) and (0,91r - wa tan az,wa)

In this event, the linearized differential equations for the pressure field of
flow singularities on the blades of the counter rotating propeller are the same
as those for the blade rows of a stage of an axial compressor.

We shall represent the propeller blade surface by pressure singularities.
Since the rear propeller lies downstream of the front propeller, it experiences
a periodic wake which would cause the pressure pole on the rear propeller blade
to fluctuate in strength with time. When the free stream has periodic fluctu-

ations, of angular frequencies ., and o, for the front and rear propellers,

1 2
the nondimensional Tinearized differential equations for the perturbation field
of an oscillating unit pressure monopole on a blade of the front and rear pro-

peller situated at 21 (p], ®q> C]) may be written respectively as

2 2 2 2
ap‘+]_f£l+ 1——£>ap]+82m_nz?_p_]
2 ar 2 2 2 2 2
ar] 1 1 r1 x] 36 az1 at]
ap a%p a%p §(T1 = py) dwjt,/A
M2 1, 1, ] Ak G L b M
az]at] k] aeat] aeaz] r]
2 2 2 2 2
d p2 1 323 1 2 2r]MM2 M r] ] p2 2 d pz 2 9 p2
arZ ' " 9% ) re % * Mo a2 /el "8 a2 " at?
" i ] ] 1
) a"’p2 (r, - A tan ay) a2p2 a2p2 87, <Tpy) taty /A
_2M S+ o e — 1 @
3z, 3t, M aeat, * 203z, r



in which we have defined the dimensionless parameters

ry = r/R Z, & z/R A = wa/91R M2 = M tan @,

by = PR ¢y = R N, = W /2R B =Y1 - M
t, = t/t, t, = RM,  &-e/e B, =y1 - M2
w = ©1/Q © = 0,/ Q =9 +Q

1 2/% r - 2
' (2.2)

Since the rear propeller is rotating Q1th an angular velocity (9] + Qé) rela-
t1ve’to the front propeller, the azimuth angle ¢ of the pressure pole is also
changing with time as (¢ + Qrt). We express the perturbation pressures P,
and' p2 in terms of the Green's functions P1(r], Pys k], a1) and Pz(r],

[k, (0-9)+a (2~ )+t /0]
rpys ],a e 1 11 ™ 1717 da]

P (F.pq4ty)

(2.3)

i

> 9
pz(r-‘,P]vt]) vP]r 2 2)8 da2

a_

2 f

] 1[k2(e-¢)+a2(z]-c])+5t]/x]]
_._2 (r

(2.4)
Combining equations (2.1), (2.3), and (2.4) and equating the corresponding

terms, we get the differential equation for the front and rear propeller mono-

pole Green's functions P, and P2 given by

]
d%p dp 1+ K\ k2 §(ry - pq)
1 1.9 |2 1 2 K 17 A
2 toroar TM ol B 3 Lo B
dr 1 9 1 I 1
1 | 1
2= 1 -2 o
TP (1,82 )y _ 3r %)
2 AN L A VRNV
2 2 2

(2.5)



where

. 2 MG, MG,
Po = Ve, T, = oI vo =48"la, - ) - —
2 1 2 1 2 BZ B{
~ ~1/2 - -
Py = Py ry’, o= Bok, MMk, (a, + wp) ;
X = -
- 5 A G
o+ k(1 + Q) k k
2 Blitla, - -
w, = A 2 B, By
% T 1
(2.6)
We can expand the delta functions &(6 - ¢ + mt1/k1) and  §(zy - g;) in
Fourier series-integral form as
® 1k, (6-9) +1a, (Z,-Z.)
86 - 9)8(z1-¢) =53 [ e ! VAT da,
1 1 2
4 k] ™
N ] 7 ik, (0-9) +1a,(2,-2;)
8(0 - ¢ + mt1/x1)6(z] - §1) =~ 3 e da2
4 k2 -
(2.7)

which can be used to determine the Green's functions P] and P2 for the

monopoles on the’front and rear propellers governed by the nonhomogeneous

differential equations (2.5).



FLOW SINGULARITIES FOR THE TWQ PROPELLERS
Equation (2.5a) for the front propeller is a nonhomogeneous Bessel's
differential equation while equation (2.5b) is the nonhomogeneous Whittaker's
differential equation. We can write the complementary solutions for these two

equations as

P1(r],p]) = A*Jk (xk r]) + B*Yk (xk r])
1 1 1 1
2 172
Polryspy) = JCN, - (o 1) DN (v T Ty
k,’a 2 k,’-a 2 2
2 2
(3.1)
These solutions must satisfy the mixed type boundary conditions given by
P1 =0 at ry = 1 P2 =0 at ry = R]2
dP] dP2
E: 0 at ry = h] F_I-= 0 at ry = R12h2
(3.2)

where A_, B,, C,, and D, are arbitrary constants. We shall assume here
R]2 = ratio of tip diameters of the front and rear props = 1. We look for
solutions such that there is no radial flow at the hub and the pressure per-
turbation vanishes at the blade tip. From these boundary conditions we can

obtain a transcendental equation

3, (n h) -3, (A h) 3 (A )
ky=1""k, M k#1170 kG
Y, (A h) - Y, (n h) =Y (n )
kp=1""k, M ky+14 Mk, ky K,

(3.3)

giving the eigenvalues kk ,v for the front propeller. The corresponding

1
Green's function for the oscillating unit pressure monopole on the front

propeller is given by

Y (» )
BRI e
k] K,

Jk](kk ry) ¢ Yk](kk]r]) (3.4)
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The Erdelyi's form of Whittaker function used in equation (3.1) can be

related to generalized Laguerre functions through Kummer's function by the

relations

Ny,al?) = r(1 + 2a) M el

where M
xX,a
geometric function.
transcendental equations for the eigenvalues of the rear propeller.
consider here only the case (1 + 2a) # -m, m=0, 1, 2, 3, ...

the eigenvalues are given by

e 'z 1 ) .
S r(1 + 2a) 1F1(“ t5-x 1+ 25 2)

ST + 2a)

is Whittaker's first function, ]F]

In general there are three distance cases giving

for which

hp¥ b10|—2 (hyy) - bydy | (hyy)

b
b
in which
b] =9
b4 =%
b8 =9

N |~
N |~

™)
N o)

N |~
N |~
N jw

N oo
©Q
N
-y
& W

o
N~
R
Fy ]

(3.5)

s Kummer's confluent hyper-

We shall

(3.6)

(3.7)



The Green's function for the pressure monopole on the rear propeller is there-

fore given by

4a  (2a) (-2a) 1 -1
r -5, -\2at+ o
poole2 L ryeobl (rle 22k ( 2) (3.8)
2 n > 2 > 2 2
5 Dy 5 Dy

where the coefficients (C,D) are given by

(-2a)
) L_2 (n) )
r(30,,) %0, - r<§ b12) (3.9)
> - .
5

It 1s seen that the pressure monopole on the propeller has a characteristic
Bessel function variation radially. The pressure monopole on the rear propel-
ler has a characteristic radial variation described by the Whittaker's func-
tion. 1In the presence of an external forcing function, the differential
equations (2.5) are nonhomogeneous and the pressure variation due to the mono-
pole may be expressed by expanding in terms of appropriate orthonormal eigen-
functions. We shall choose the eigenfunction for the front propeller as the
function Qk ﬁ(rl) given by a linear combination of Bessel functions of the

1
first and second king, Jn(r]) and Yn(r]) normalized to satisfy the orthogo-

nality condition

,
2
./; 1P e TP im0y = Sy
:

2alry) = Py rd/my
(3.10)
For the second propeller, since the Whittaker functions do not possess orthog-

onality properties, it 1s convenient to relate them to generalized Laguerre
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polynomials using the relations of equation (3.5). The normalized generalized

Laguerre polynomial L_izc)(r2) satisfies the orthogonality condition
'

er12
-2.2a 2
e "z (r ) (r ) dr = n_
o L L :

12M2 ~ 2m ke

(2)
ke ] lkﬁ
(3.11)

The solutions of the nonhomogeneous equations (2.5) may be expressed as the

eigenfunction expansions given by

(k ) (k. )
(r ’P]9a ) = 2 g 1 (31)§k11(r1)§k]&(P])

(k) Yo s Py (r)r (e )Ml
(ry,pq,:4,) = . a,)¥_ ro)¥. (p)(roe
172 ~ 3 W 2 k.2 ! ke 1 272
L 2
1
-3 (r2+P2)r51/2vl/2
Lk ¢
1
(3.12)
(ky) (k)
where 9, (a) and h_ (a2) are coefficients of the expansion to be

e
determined. We shall now expand the Dirac delta functions 6(r1 - p1) in

equations (2.5) in terms of the eigen functions corresponding to the front and

rear propellers as

8(ry - py) = 4f1A E"k a(”l)"k1g(r1)

1
oo T2 (rptey) a
’ 6(r'l - P]) =1 L e 2 272 (rzpz) ?N (P])
Y '} lkzl

(3.13)
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Then, the eigenfunctions & _(r,) and V¥ (ry) satisfy respectively
k]Q. 1 Tk.e 1

the Bessel and Laguerre differential equat1oﬁs

2
d % T d§k1n ) kf
i AN T 2 % = O
arl AN 1 2]k
d2w~ ay_
Lkt | (2& « 1 ]> ot B ¢ -0
2 r - dr r, =~ -
dr2 2 2 2 lkzl
(3.14)
where % 1s the degree of the Laguerre function defined by the relation
-3/2
v~
k.2
T oy o+ (a N l) (3.15)
ke (k) 2
2 h_
e
in terms of its eigenvalues »_ . The independent variables Py and ry
9.k29.
are defined in terms of r] by the relation given in equation (2.6). 1In the
above xk N are the radial eigenvalues of the front and rear propeller,

1
respectively. The eigensolutions of the Lagquerre differential equation exist

if the degree % is an integer. Considering the oscillating unit pressure
‘ (ky)
pole on the front propeller, the expansion coefficient 9 ! is obtained by

substituting for P] and 6(r] - p]) from equations (3.12a) and (3.13a) into

equation (2.5) and equating the corresponding terms. Thus,

(ky) v \2
1 2 2 MM
1 8
where
2 2 gz o
Mo - *k1n v M= M1+ kA (3.17)
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Both M and Xk g are always real. When the axial flow is subsonic, M < 1,

1

82 > 0 and the sign of AE N
1

and M/B. But, for supersonic axial flow M > 1, 82 <0 and A

depends on the relative magnitudes of Xk 0
2 is ]
k11
always positive.

The perturbation pressure p] in equation (2.3a) may be expressed in

terms of the eigenfunction Qk using the Fourier-Bessel expansion (3.12a)

19.
as
(ki) - [k (6-¢)+w t /A ]
> o 1 1 1 111N
4o k] . 1 1
where
(ky) - ® 12,2, (k;) .
In (Z]) = e 9, (a])da1, Z] =2 - 41 (3.19)
0

The integral may be evaluated by contour integration methods and written as

-~

(k2) A , Z](; MM/Bz- Ak]k/ﬁ> Z]<1 MM/32+AK]Q/é>(
e

_1r -
Ig (21) = A gﬂ e (3.20)
1
If AE 0 > 0, the second term in equation (3.20) is rejected since the
1 -
integral diverges with Z]. We therefore put
(k,) \f 7 - M a
173 o 0 1 MM 1
In 21) = Ak !B e , fo = 82 + 1 8 sgn Z] (3.21)
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Thus, the solution is always bounded and the sign of Ak . is assigned as

follows:
if AE >0 put A = 1Al
1 1 2
if a2 <0 . M>0 A 1A, |
) ' K. % )
1 1 1
1 A2 <0, M<0 A, = 1]A, . |sgn Z
k2 ' k,2 k2 1

(3.22)
Thus, the pressure field Py of a pulsating unit pressure pole situated at
(p], @, C1) on a propeller blade becomes
1 1[k](9~¢)+f021+w]t]/K]]

1 -
PrT P t) = g I 5 8 o (r8 (o)A e (3.23)
k.| ) 1 1 1
The field of a pressure pole situated at (p], @+t o + m]61, (]) on the m,
-th blade of the front prop is given by
At = 3 Al
PrTpppty) =g 2 3 a(r) B (e
1

V(Ko (0= ~@-M ;) M. 5, 81 +F 7.+ t. /Ay ]
R e M A M A M R R T (3.28)

where 81 is the uniform interblade phase angle factor of the front prop,

E] =0,1,2,3, ..., (Z1 - 1), and 61 is the interblade azimuth pitch angle

2«/21. The pressure field of a pulsating unit pressure dipole situated at
P1» ¢ + ¢ * m]s], C]) is obtained from that of the pole by differentiating Py

along the normal to the local camber line giving

14



(m1) 1 cos ay 1
Pp =~ " 28 E Lo o (r)g o(e)hy
A 1 1

1[Ky (8- -9) +m, 8. (3, -k ) +f T +a £, /0]

X f2e
kl
f2 = — - f_tan ay
"
(3.25)
Putting
k1 = v1Z] + 81 (3.26)

the pressure field of unit dipoles situated on all the Z_ , blades of the front

"’

propeller is obtained by summing over m] and we get

1 (m1) 121 €os o,
Po, = Lo Po T TaE DD e(MI% (o) 8
: ke kpd

1[k](9-61-¢)+f021+m1t1/x1]

X fze (3.27)
Again considering an oscillating unit pressure pole on the rear propeller, the
(k,)
expansion coefficient h_ 2 (az) is obtained by substituting for P2 and
e
6(r1 - p]) from equations (3.12b) and (3.13b) into equation (2.5) and equating
the corresponding terms as
(k )
(a ) =
2 2 3/2
21 3 2
aa[a] MM,k (2, + k)][ —aB) -ao]
2 "Z‘j’i . -1
208 b hshrery

(3.28)
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The perturbation pressure p2 in equation (2.3b) may be expressed in terms

of the eigenfunction ¥ _ (r1) using the Fourier-Laguerre expansion

QKZQ

equation (3.12b) as

T - T (rytey)
v (e 2 "~ 2 T2

2k2£ £k22 ka

(k,) - - ~
ﬁ} Egz (ZZ)GXD[1k2(e -¢) + (o + kZQ)t]/X]] (3.29)

a at
Q(P])rz Po

© ™
e

> 9 1
p2(r’l’p]’t1) = 2 E E
'3

where

(k,) - ® 4a,1, (k,) A
2 2°2 2
81y =] e %% “(a,) da 1, =12, - ¢ (3.30)
‘;QQ 2 ‘,i 1) 2 2 2 1 2

<

This integral may be evaluated by contour integration methods and written as

~

(K,) - 1f,2
g0, - e s, (3.31)
(%} SB°M
where
) 62
5. - 1 A = — - x
. =
» (A2 ] az) 3/2 To T MMk, T g2
2°2 0 0
Moy 5 5
f4= > (1 * Mo sgn Z)
B “k
(3.32)
We can then write p2 as
ar L - 2 (r,ee,)
j 1 a T2
po(Prupoty) = =53 T2y (re (er5 e, e 2
320B°M § ky & Bk, Tkt vk,8

V7. 41K (0-0) +1(a+k. ) t. /A
5o 472"k ARAITAS (3.33)

giving the field of a pulsating unit pressure pole situated at the point

(p], 9, cz) on the rear propeller. When the pole is located at the point

16



(p], 62 eyt m262, C2) with a uniform interblade phase angle 32, the
pressure field is given by

-1 ]
] - at 5 -5 (r,+p,)
P ppety) = == 18 T2 e (e ()15, Ze 20277
32vB°M o k2 % !kzﬁ &kzl kal

s.exp 1 f422 + k2(e - 62 - ¢ - m262) + m28262 + (0 + k2§)t]/k1
(3.34)
Again, the pressure field of a pulsating unit pressure dipole at the same
point on the blade is obtained by differentiating Py normal to the blade

mean camber line and 1s given by

-1 1
-c0S a - at 5 -5 (r,+p,)
1/2

33 e (e (erSe, Ze 2272
Y k2 L 9.k29. kaﬂ. 9.k29.

(m,)
2’ » -
(r]9P]’t])

T
2 32«3 M

fsexp 1[%422 + k2(0 - 62 - @) - m262(k2 - 82) + (0 + k2§)§1/k1]
(3.35)

k?
fs = |- ;; + f, tan oy)s, (3.36)

= 2«/22 = interblade azimuth pitch angle of the rear propeller and o, =

where

)
interblade phase angle factor of the rear propeller, g, = 0,1, 2, 3, ....

(Z2 - 1). For the Z2 blades, the perturbat1oh bressure of the unit dipole

situated on all the blades of the rear propelier is obtained by summation over

m, and is given by
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2 (m,)
5 9 2’ ,» -
pD (r]:P]yt]) = Z pD (r]’P]vt])
2 m,=1 2
2
-1

Z, CO0S a - at 7 - = (ry+p,)

= 2 3 2 2 Z Z vl/z ‘1’~ (r])‘yvv (P])rg P2 2 e 2 272
32xB°M 'i k2 L 9.k22 Q.k29. 9.k29.

fsexp 1[f422 + ky(o - 52 - ) + (0 + kzﬁ)t]/x]]
(3.37)

where
I, + a (3.38)

The dipole solution for the second prop consists of an axial component which

is wavelike in 2, the axial distance from the rear propeller.

When (Ag - Mf) »0, S, »= and Pp ? and is termed acoustic
resonance. At resonance, Ao = *M,. The2e1gen-numbers % and k2 at
resonance satisfy the relation

2

. 1 2M M2k2 o
L= - 2 - BZKZ + —32—’— mk(wk 1) (3.39)
the + and - sign corresponding to the advancing and retreating waves
respectively.
In equation (3.27) if Ak Q" 0, Pp. * @ and we have acoustic resonance

1 1
of the front propeller. The corresponding circumferential mode number and the

eigenvalue satisfy the relation

k]ﬁ

M(T + k])

+
ky2 Bx]

A (3.40)

The resonance condition for the counter-rotating propeller system is obtained

by setting the azimuthal eigen-numbers k1 and k2 of the front and rear

propeller equal. ﬁe then obtain a relation between % and Xk . given by
1
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2
A, BA ) 2M°M A LB )
~ 1 ke~ 2 ke 1) - -
L = - 5 - BZ(—] + M + 5 <—1 t m wk(wk 1) (3.41)

R B
The condition k 1= k2 Jeads to the relation
Oy - 0y = v]Z] - v222 (3.42)

connecting the interblade phase angles of the front and rear props.

Equations (3.27) and (3.37) give the pressure field of a pulsating unit
pressure dipole situated at a point of the front and rear propeller blade.
If Ap] and Ap2 be the upward acting pressures at the point (pl, ¢, (1) and
(p], ?, C2) of the front and rear prop blades due to both the camber and

thickness distribution and @y, @ are the blade angles of the front and rear

2
propellers at radius Pqs considering an element of area (dp] dc]/cos a]) and

(dp1 dc1/cos a2) at these points, the strength of the pressure dipole at these
points would be

front: Ap1 dp1 dc]/cos o rear: Ap2 dp] dc]/cos a (3.43)

1 2

The perturbation pressure field P] and P2 for the whole blade is given by

_l
P1 -7 B f f Ap](P] ,(p,C])Q*(l" vP]ot ) dP] dC]

Z, Ri2 221 ..
32«8 ~ Kk, %
R 2 R12h2 z

1LE
(3.44)

where (Z ) and (Z ) denote the axial positions of the leading

1LE’ 1TE 2LE’ 2TE
and trailing edge of the front and rear propeller blade at any radius Py and

®, and ¥, are the kernel functions defined by
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1K (8- @) +f Z.+w ty /A ]
> o _ -1 1 1 o"1 1717 M
2(Fyopynty) = °k]g(r1)°k]a(pl)Ak1nf2e
> o ;o % - % (ra+es) 12
‘y*(r'l'p]’t]) = ‘1’,,, (r1)‘l’~ (P-l)rz P2 e v

kal 2k2Q 2k22

] e1{f422+k2(e—¢2—¢)+(w+k29)t]/k]]
5

(3.45)
If the blade loadings ap, and Ap2 are known, the resultant acoustic

pressure at an arbitrary point in the flow at time t] is given by

- > >
P(F oty) = P(Tyot) + PRyt (3.46)

] is a function of the mode numbers (k, &) and P2 is a function of

the mode numbers (E, k, ), the resultant acoustic pressure P at a point is

Since P
a function of the mode numbers (%, k, ). Summation over % (L =1, 2, 3 ...),

k (k =0,1, 2,3 ...)and 2 (2 =0, 1, 2, 3 ....) of equation (3.46) gives

the total sound pressure level at any point for all modes together.
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PERTURBATION VELOCITIES
We shall split the surface pressure distribution Ap] and Ap2 on the
blades into thickness and camber components for blade. The thickness and

camber contributions will be separated into radial and chordwise variables as

Bpyy = Fyle)) g, (py) 8Py = Fpley)dy,(ey)
AP,y = Gy(0,)Y_ (pq) 8Py, = Gy(w,)¥ _ (pq)
2t 1V72 ) 1 2¢ 2\2 LK 1
(4.1)
where o 1is a Glauert angle defined by
yi = - €y COS -¢ < yi S+ 0L w, w, <
yé = - C, COS o, - ¢ < yé < + c,
(4.2)
The functions F], F2, G], 62 will be expressed in a Birnbaum-Glauert series
expansion as
|
k . - - ©
Fi(w) = A, cot g + Ay sinmo  Fy(w) = B°<cot % -2 sin m) + B, sin mo
m=1 m=1
~ o ~ - -]
~ © ~ ~ © ~ ~
G](w) = CQ cot 5>t Cm sin mw Gz(m) = Do(%ot 5 2 sin m) + 3 Dm sin mw
m=1 m=1
(4.3)
assuming the coefficients Am’ Bm, cm, Dm to be independent of E. k, and %.

Combining equations (4.1) to (4.3), we have

5 e

H](m1,p];k,1) = Ap.I = (db cot 7t mz]Jﬂn sin ﬂhﬁ)le(p])

w ©
~ ~ 2 ~
Hy(w,,py:%,k,R) = Ap, = C@ cot 5=+ 3 @ sin mo,|¥  (p,)
22’1 2 o 2 mey o m 2 7 1

(4.4)
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The coefficients 5ﬂn and gﬂm are determined by satisfying the surface tan-
gency boundary conditions on the blades. To satisfy the boundary conditions

of flow tangency on the blades, we have to obtain the perturbation velocities
E] and 52 from the perturbation pressures P1 and P2 by integration of
the unsteady Euler equation of motion. For this purpose we introduce the heli-
cal coordinate system (r], oy 1]) and (r1, Sy 12) for the front and rear

prop based on the undisturbed free stream for each (fig. 2(c)). We define the

helical angles © and o defined by
h] h2

r
_l - -
tan eh1 = r1/x] tan eh2 = . - tan ay = tan eh1 - tan o, (4.5)
In addition, we also introduce the blade section coordinates (r], yi, zi) and
(r], yé, zé) (fig. 28) which are related to the cylindrical coordinates

(r], o, 21) by the transformation

dr] 1 0 0 dr1 dr] 1 0 0 dr.l

dyi ={ 0 sin oy COS ay |1, de| ; dyé =t 0 sin a, oS a, 1y de

dzi 0 oS ay sin o dz] dzé 0 cos a, sin o, dz]
(4.6)

We also have the transformations between the (u]r, uy, uz), (u2r, u2y’ UZZ) to

the (ur1, U uT]), and (urz, Usos u12) coordinates
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1 0 0 Uy, 1 0 0 Upo
= 0 cos e] sin e] ; u2yl =0 cos e4 sin 94 ud2
1 sin e1 cos e] UZZ' 0 sin 94 cos 64 ut2
Uy, 1 0 0 Upo [P 1 0 0 U
;1y, =[0 cose, sine,| u,|; EZy' ={0 cose; sineg|u,
Uy, 1 sin 92 cos 62 Uys Uy 0 sin 93 cos © Ugsg
(4.7)
where
6. =6 - a 0. =6 - o
1 h] 1 2 h2 1
e=e - 0=9 - &
3 h1 2 4 h2 2
(4.8)

The first matrix transforms from the (r], S 1]) to (r], yi, zi) coordinates;
the second matrix transforms from (r], Iy 12) to (r], yé, zé); the third
matrix tr;nsforms from the (r], Y 12) to the (r], yi, zi); and the fourth
matrix transforms from (r], % 1]) to (r], yé. zé) coordinates. The resultant

velocity including the respective free stream components are given by
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U 1 0
U1y. =1 0 sin a
Uy 0 - cos e
U2r 1 0
U2y' =10 sin a,
Us g 0 cos a,
1 0
+/ 0 cos ©
0 sin o

ri
cos ay r]/k1 +| 0 cos e] sin e] U
sin o 1 0 sin e] cos 61 uT]
1 0 0 ur2
+{ 0 cos 92 sin 62 u02
0 sin 92 cos 62 u12
0 0
"
cos @y {; - tan @y
sin ay 1
0 Upq 1 0 0 Upo
sin 93 ud] +] 0 cos 02 sin 62 u 2
cos 65/ \ U 4 0 sin 0, cos o, U,
(4.9)

The dimensionless equations of motion in the corresponding helical coordinates

(r, o, t) may be written in the form

- au2 . 1 3P2 8P2 3P2
02 302 Y 2 ar] 302 a1

2
SRR
1 M 1 1 1

»

(4.10)
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where

1/2 1/2
o (eea)” 2
|.101 = W =171 + _2 = SecC eh
a A 1
_.‘ -
172
W _(re_ - W_ tan )2 Qr 2 /2
‘60 = a r wa 2 =11 + K—1 - tan -0-2
102 a 1
-’
u] = u]/Na u2 = u2/wa
I
so that we have
2 2
ifl s cec 6 au, ] (aP1 aP, ffl)
. at1 h] 301 YMZ ar.| 301 i
> >
ifg+ coc o W (ap2 ap, apz\)
; at] h2 302 YM2 ar1 do a

-
» . ! R

e

(4.11)

(4.12)

We shall assume that the perturbation velocities 51 and U, corresponding

pressures"P and P, vary harmonically as follows:

1 2
a2 E em]'c]/)\.l s E e1(w+k29)t1/k]
1M 2~ 2
o . e1m1t]/x] o . e1(w+k2$2)t]/k1
TN 2 2

Substituting into equation (4.12) we obtain the equations

»
~ coS © ~ = =
I . o e 3 . hy (?P] aP, aP]>
30, \ hy R I T 12
2 cos ©
3, (& + k,R) > h, (3P, aF, P,
3s. | L A cos eh U = - 2 ar, ' 3o, ' at
2 1 2 YM 1 2 2

)

(4.13)

(4.14)



which can be integrated with respect to % and % respectively giving the
> e ]
perturbation velocities 51 and 52 produced by the front and rear propellers

each in isolation as

N 1w]c] cos eh]/k] 5 cos eh] J/ﬂw]o1 cos eh]/k] <aF] 351 aﬁ})
u e - © e ’ » dd
1 1 YM2 ar, ’ 3s; ’ Bt 1

A
=1
|

> 1(w+k29)/k] % cos eh2 » cos eh2
u, e = U J R —1
2 . 2 . YMZ
e ’ » dO'
ar1 802 312 2
(4.15)

> >
where 510 and ﬁzm are the free stream values of the perturbation velocities

corresponding to Iys Oy > @ which we shall assume to be zero so that we have

71w]d] cos 6, /x]

1
e cos eh] /1«»]01 cos eh1/x] <aP] aP] aP.|>
e , . do
YM2 ar 3o 3, 1

=y

—
[}

)

—1(w+k29)/k1)02 cos eh
e % cos 6,

2 : YM2

(=R R

1(m+k29)/k] % cos eh2 aP2 apz aP2
€ ar. ' 30, ' a1, ) 9%

1 2 2
(4.16)

The helix angles eh and eh can be related to the variables o and z1

by the relations

6, =60-— O =0 -y =0 -3 (4.17)
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the differential transformation from (r], o, z]) to the helical coordinates

(r], Iy 11) and (r], Y 12) 1s given by
dr] 1 0 0 dr] dr] 1 0 0 dr]
" dej ={ 0 sin eh] -cos eh1 do] il de] ={ 0 sin eh2 -cos eh d02
2
dz1 1 cos eh sin eh dt] dz] 0 cos eh sin eh drz
1 1 2 2
(4.18)

When moving on a given helical stream line, eh = constant, dr1 = d12 =0 and
1
we have

front prop: do] = dz] sec eh] ; rear prop: da2 = dz] sec eh2 (4.19)

Integrating and putting z =0 for o = 0, we have

o, = Z, Sec ©

14 =1

2

]

sec o (4.20)
1 1 h,

Hence, performing the integrations in equation (4.16) along the helical

h

'streamlines of the respective free streams for the perturbation velocity
|

vectors we obtain

> e"“ﬁ 2/ to2,/7, (3P, 3P, oF
U, = - ———— fe , . dz
1 " ar, * 3a; * 37, ) °A1

“A(o+k,R) 24 /A - = - ~ ~
5 . 22y 1‘}/;1(w+k29)z]/k1 ab, oF, oF,

2 | YM2 ar1 ’ 362 812 1

(4.21)

~

where the amp11tudes of the perturbation pressures P] and 3; are given by

1Z
R L [Ty exp 1T - By )+ £2 2,1 de
]

ot

|

- Z
P

33T [Tty e 1F7, + ky(0 - oy e) 4
2 L

27 30083 K

(4.22)
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with

o = (b oy oy )

@= @0@2,.@2,'-'-@“]9"-)

Ty 2
U, =“/ﬂ' o ¥ g (Py) e
h P K

1
2

/ - 9~(p]) tan e d,o1
h] 1

Y
Uy = Ky - Bf,

I = Qk]n(r1)/Ak]1

Introducing the expressions for 3]

= (FOt % , sin @, sin 2w, ... sin m$,...)
1 = (kYy - £7p)s,
R 21 oo a- 1
"V] =/ 12 WE (P'l)e 2 2P2 2 Y. dP2
R]2h2 akzk kaﬁ
1 - ]
R - 5 Py Gt o
v, = 12 Yz (pq)e 2 2p tan «., dp
2 R h. Tk.g 1 2 2 T2
1272 72
S
750 - w~ (r1)r; e 2 2‘0:1/2
Q.k29. ke
(4.23)
and 32 from equation (4.22) into
Q

equation (4.21) we can write the perturbation velocity components of E] and

->

52 in concise form

= K

(=

ri ri

= K

=
l

re re

=

- K'r'l‘d

ol = "ol €1

17 u., =K. %
12

a? a? 12

(4.24)
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where

2 11T , 1Ky (0-3y =01 ) +F 2, 1) Yy 23/,
K., =+ Y 3 7T'5'r— %0"2146 e d(.l dZ.|

r AryBM2 ky & 1

12,6 117 : z//'n' s sy 1[k](e-51-¢1)+eoi]]} Yoy 2, /A ,
K = + - e e d; ¥4
ol srBn s 30, 720" 1 97
KT] = K 1 cot 2 eh1
'22 F) Z
Kor = 3.3 % 1 2//7"? Foo?s exP MFyZy + ky(0 -0 -0 )] d(, dz,
32vyB™M 1 k2 ) 1
Z, 5 - }
Ke2 = - 3321 szﬂ'&:_ Tty exp A[F 2, + k(0 - 0, - ,)] 42, dz,
324yB"M i k2 ) 2
Q tan °h2 - cot eh2
K . = K
12 74

2Q - tan eh tan eh

1 2 \

(4.25)
are row vectors. In the above, the integration over z] is an indefinite
integral valid over the range (-», + =), the integral over C] is a definite
integral egtend1ng over the domain (ClLE’ C1TE) for the front propeiller and
over the T1imits (CZLE' CZTE) for the rear propeller.

BOUNDARY CONDITIONS AND BIRNBAUM COEFFICIENTS
The equations to the upper and lower surfaces of the front and rear pro-
peller blades can be expressed in terms of the mean camber 1ine and thickness

and may be written

]
Zu]

] ] [] ] ]
Z5(ry0¥9) 2y = Z4(rye¥)

] ] ] [] ] )
Zy2 = Zyolry¥aety) Zi5 = Zp(rypty)
(5.1)
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assuming that the profile of the blade is independent of the radius r. 1In
the coordinate system chosen, the front rotor blades are stationary and the
equation of the front blade surface is invariant with time. But, since the
rear propeller moving relative to the front prop with an angular velocity Qr’
the rear prop surface is a function of time. We can write the dimensionless
equation for the m-th twisted, tapered and swept blade in the (r, 0, 2)

reference frame as front:

[ =
) - o1 - Z; + Yy cot o + z{c] st «, = 0

F = zZy - " cot e tan (o - @ - 61m ] 1 1
i at,
F = Zy -1 cot a, tan {6 - @y - 52m + {;—
i i U -
- c02 - Z2 + Y2 cot @, + 22c2 csc a,= 0
(5.2)
where
Z the dimensionless axial displacement of the propelier from the
oi

origin (fig. 1(b)).
Y!, I} the dimensionless Y and Z coordinated of the blade half-chord

1ine S (fig. 1(a)) such that Y' = Y/R and Z' = Z/R.

C1 dimensionless blade half-chord at any radius (fig. 2(a)).
Z% dimensionless ordinate of the blade profile.

ay blade angle distribution.

51 off-set angle of the first blade (fig. 1(a)).

the subscript 1 = 1,2 to designate the front and rear prop blades respec-

tively. From these the upper and lower blade surfaces are given by the

equations:
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Ziy=fm * Zi - Yi cot ay - ziuc1 CSC ay + T, cot «. tan (e - ¢ - é]m)
Zy =& ¢ Zi - Yi cot @y - ziLc] CSC ay + 1y cot o tan (e - ¢ - élm)
Zoy = €p2 * Zé - Yé cot ay - zéucz CSC a, + Ty cot a, tan (6 - ®y - Sy * Qt1/k])
= 1 ) - 7! e O
ZZLl' €02 * Z2 - Yz cot @y = Iy €y CSC ay + Ty cot a, tan (o ®y - Sp0 * Qt]/x])
(5.3)
The flow tangency condition for the front prop may be expressed as
] '
.. 21y (U1z'> . - 2, (Ulz'>
ur - dyy, T \U LY~ dy! T \U
1 Ty! 2! = 0+ 1 1y! 7' = 0-
(5.4)
where U1y, and U]z' are the yi and zi components of the resultant

velocity at the front prop due to both the propellers. For the rear prop, the

surface boundary condition is obtained by equating the substantial derivative

1

DF/Dt = 0 where F(r, ©, z, t) = 0 1s the equation of the rear prop blade

surface. For an arbitrarily chosen first blade, m = 1, this may be written as

- ét] 2 _ S_Z‘I:1
Uy.sin 2{e - ®y * {;— + 3y, - 2(12c2 + tan az)U22 cos“(e - ¢, + i;_

Qt
- 2 Y -
= 2 tan @, + 2(12c2 + tan az) cos (% -9yt X1 ) - 4Q tan eh1 (5.5)

Since the dimensionless free stream for the rear propeller has the velocity

components

u 1+ u

U 22,

u = tan- @

Upr = Upp + Uy h

e By Uy 50

The boundary conditions on the rear blade will be satisfied at an arbitrary

time t1 = 0 on the upper and lower surface and can be written

3



- - p) -
U2r sin 2(e - ¢2) + 2U26 - 2(1U2c2 + tan “2)U22 cos (6 - mz)

- - 2 - _
= 2 tan ay + 2(1U2c2 + tan a2) cos (6 - ¢2) - 4Q tan o

- - 2 -
U2r sin 2(e - wz) + 2U26 - 2(1L2c2 + tan az)U22 cos (0 - ¢2)

_ - 2 - _
= 2 tan a, + 2(1L2c2 + tan az) cos (e - ¢2) - 49 tan eh]
(5.7)

The velocity components U]r’ U]y, and U.lzl can be expressed in terms of the
components (Gr]’ Ed], GT]) and (Gr2’ Ea2' GTZ) as

Uip = U1 * U2
Upyr = €0s ap + tan eh1 sin o, + 501 cos 0 + 611 sin e,
+ 502 €os 62 o, sin 0,
Uy, = sin a; - tan eh] cos ay - EO] sin e + 511 cos o,

_ - U, sin 62 tu, cos 92

(5.8)
Substituting into equation (5.8) we can write the boundary conditions for the

front prop as

(R,)
=(1) (1) =(1) () 4 i
<K01A11 +Kahy, )54 + <K02A12 * K12A14))‘Z =

(R,)
(1) z(1) z(1) z(1) i
(Kd A + K A )54 + <K02A23 + KT2A24 ):ﬂ = %E
(5.9)
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(Ry)

L are defined by

(1)

where Alm and %3

(1) _ (1) (1) _ (1)

A]] = sin 8, + Ty  cos 6, A12 = - (cos 8, - ™ sin e])

=(1) (1) =(1) (1)

A]3 = sin 8, + 1,  co0s 6, A]4 = - (cos e, - W sin 92)

(1) (M) (1) (1)

Az] = sin e] + 14 cos e] A22 = - (cos e] - T, sin 91)

(1) (1) (1) _ (1)

K23 = sin e, + v ;' cos 6, K24 = - (cos 8, - 1y’ sin 0,)
‘ 1 1 1
: Cg ) = sin a, - 161) cos o - (cos a. + 1&]) sin ar) tan eh_I
| (1) (1) (1)

C2 = sin a. - Tq C€OS @ - {cos e, *+ T, sin ar) tan °h1

(5.10)
Considering the rear propelier, we have on substituting for the velocity
components (Urz, 592, 522) the following
Upp = Upq + Uy
U26 = uo].s1n eh] - u_y cos eh] + U, sin eh2 - u_, cos eh2
U22 = U, cos eh1 tu g sin eh] +u_, cos eh2 t U, sin eh2
| (5.11)

into equation (5.11), the equations for the boundary conditions on the upper

and lower surface of the rear propeller become

(K 5(1) + K! K(1) + K K(1))54 + (K

r1760 ol 61 t1762

(x KD LR A(”)d + (

ri-i10 ol 71 1772

!
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(s,)
(1) i (1) i
rofeo’ * Kaziés) + K oheq )9" = €
(S,)
(1) (1) (1) i
Keah70" * Koohya' * KRy )93 =€
(5.12)



(sy)

N as follows.

where we have defined Ké;) and €

- 2 -
A61 = 2[sin eh] ~ (Tuzc2 + tan as) cos {6 - ¢2) cos 6h1]
- 2 -
A62 = - 2[cos eh) + (tU2C2 + tan a2) cos {o - wz) sin eh1]
- 2 -
A?] = 2[sin eh] ~ (TL2C2 + tan as) cos (® - ¢2) cos 6h1]

2 -
A72 = - 2[cos B, *+ (TLZCZ + tan as) cos (6 - wz) sin eh]}

1

A

63 2(sin o

2 -
- (ruzc2 + tan as) cos {6 - ¢2) cos eh ]

hy 2

2 -
A, = - 2[cos @ + tan az) cos (9 - @2) sin eh ]

+ {1,,4C
h uz-2 2

64 ]

- 2 - .
A73 = 2{sin ehz - (rchz + tan us) cos (6 - mz) cos ehz)

- 2 - .
A74 = - 2[cos eh1 + (rch2 + tan us) cos (& - ¢2) sin eh2]

)
3 - 2, -
‘?6 = 4 tan o, - 2(1 + 20) tan eh] + 4('U2c2 + tan « ) cos®(e - 95)

Kég) = sin 2(6 - 52)

- 2 -
4 tan ey - 2(1 + 2Q) tan eh] + 4(1:L2c2 + tan as) cos (o - @2)

)
#

ﬂg%) = sin 2(e - 52)

{(5.13)
Therefore, the boundary conditions, equations (5.13) and (5.12) can be written

in the compact form
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=(1) (1) =(1) =(1)
= Kah * Kahye L= Kpohiz' + Kiohyy

o
i

Ksd + u%==¥1 0?2

Kk A Lk gD

=(1) (1)
Karha1™ + KA N = Koho3 +2R24

ol 21 1722

Mol + NB = Yo M

(1) (1) =(1)
Krahgo' * KoRea * Kiohes

z(1) (1) 7(1)
P+ QB = vy P =k Agp" + Kl  * Khea' 0

R+ SB=v, R=K AV e B L B s Lk AW L AOY L g8

ri-10 o1 1 17172 r210 02 13 2 13
(5.14)
The four equations may be written as the pair of matrix equations
KM_gd*r LN.%‘= Ty
' PR;&*‘ ng'—' r2
(5.15)
%here the matrices KM’ LN' PR' QS’ r] and r2 are defined by
| K L P>
| Ky = (M> by = (N) Pr = (R
|
| | Y Y
W@ ae()one ()
: , 2 Yq
~(Ry) (R,) (s,) (s,)
(5.16)

Solving this pair of nonhomogeneous simultaneous equations for A and B we
obtain the Birnbaum coefficient vectors A and B as
-1 =1 \-1/ -1 -1
o = (LN Ky ~ Qs PR) (LN ry -~ Qs rz)

1 1 \-1/-1 1
% - ( miy - PR 05) (KM ry - Pg rz)

(5.17)
The matrices KM’ LN’ PR’ ahd bé are primarily aéfodynam1c 1n‘naturé‘whereés
the matrices r, and I, are purely geometric representing the blade section

1 2
and blade planform. Truncating the Birnbaum series at m = M, we have

(M, + 1) coefficients for each of the front and rear propeller. Considering




P, points on each side of the blade at which the boundary conditions are
satisfied, we have 2P equations to determine the 2(M, + 1) coefficients of
the front and rear propellers. Hence, we must have 2P, = 2(M, + 1) giving
the relation between the number of points on the blade and the number of
coefficients of the Birnbaum series. The matrices KM’ LN’ PR’ and QS are
of order (2P, by 2P,) and the matrices r] and r2 are of order 2P, by 1.
Each of the vectors o and 4 1is of order 2P« by 1.

The vectors o and @ are functions of the off-set angles 51 and 62.
For purposes of numerical study, we may set 51 =0 and 52 = Qrt = Qt]/x].
Since the blade passing is periodic, it is only necessary to vary the time t1
in the range 0 < t] < ézx]/é and obtain the values of & and # at desired
intervals.

From a knowldege of o and # the pressure loadings H1 and H2 on
the front and rear propellers can be calculated using equations (4.4) from
which the thrust and torque for each blade can be calculated for performance
estimation of the counter-rotating propeller system. If the free stream were
steady, wi = 0. The inflow into the rear propeller would experience the
inviscid periodic wake of the front propeller with an angular frequency
wy = Q1.

The above solution is applicable for calculating the unsteady and steady
aerodynamic behavior of the blades which are assumed to be rigid. However,

this assumption may be relaxed by allowing the blade geometry parameters

Y%, Z%, and a in equation (5.7) to be functions of the blade loading and

stiffness characteristics for an aeroelastic analysis of the system. It has
been mentioned earlier (cf. eq. 3.46) that the time dependent perturbation
pressure P at any point in the flow equals the sum of the perturbation
pressures P] and P2 due to the front and the rear propellers. This

can be calculated from eq. (3.44).
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CONCLUSION
~The 11fting surface theory for the counter-rotating propeller has been
presented above. It is possible to obtain the acoustic modes and the cor-
responding sound pressure levels of the combination using the Birnbaum coeffi-
cients 54n and gq“ together with the Birnbaum series. Further, the
aerbdynam1c performance of the dual rotation propeller system can also be
calculated.
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