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Summary /4*

Measurements behind shock waves in highly diluted UDMH-02-

Ar mixtures clearly showed a two-stage reaction. In the first

stage, UDMH decomposes via a unimolecular step; in the second

stage, clearly separated from the first one, the decay products

react further with O2. Values for the rate constant of uni-

molecular decomposition were obtained.

*Numbers in the margin indicate pagination in the foreign
text.
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EXPERIMENTAL INVESTIGATIONS ON THE REACTION KINETICS
OF UDMH AND OXYGEN

Th. Just
Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt

1. Introduction 77

The systems 1,1-dimethylhydrazine-oxygen (hereinafter

called UDMH-02) and UDMH combined with nitric oxide have

achieved some importance as propellant combinations for rocket

engines. For the further development of rocket engines, it is

often helpful to have more precise knowledge of the chemical

kinetics of propellant-oxidizer combinations. For this reason,

studies were undertaken to obtain some insight into the kinetics

of UDMH-02 reactions.

Given the complexity of the UDMH molecule and the relatively

limited funds available for this study, we could not expect a

very precise analysis. Nevertheless, certain simple properties

were found to be significant, and may be useful as pointers for

more in-depth studies.

It developed that when a UDMH-02-Ar mixture is heated

suddenly, in all cases first the UDMH molecule bursts in a

unimolecular stage very probably at the N-N bond, and the

subsequent reaction with oxygen occurs considerably later than

the first phase, after a clearly predictable time period, in a distinct second

stage." The same also applies for further reactions of the formed UDMH fractions in
oxygen-free mixtures.

2. Measurement Method

First an attempt was made to obtain information on ignition



delays and reaction times as a function of pressure and tempera-

ture at the highest possible UDMH-02 concentrations. For this,

the likely route seemed to be detonations, produced easily by

initial ignition with a spark or shock wave. Good results have

been obtained with this method for the systems H2-02, n-hexane-

02, etc. [1,2,3]. Corresponding experiments in the present

system went astray in that under the pressure and temperature

conditions of a detonation the processes occurred so fast that 78

they were no longer accessible to exact measurement. Dilution

with argon or nitrogen did not significantly improve the

results. The only result here was the good agreement of the

calculated and measured detonation speeds.

(Torr)

§0 06153
£2 0.22

S°2 \ '

0,77 0,077

0067 0.11

OCc/s)

2 150

2 320

D(B/S) b
berechnet

2 130

2 310

Key: a. initial b. calculated

The relatively simple theory of Chapman and Jouget for the

calculation of detonation speeds (see for example Jost [4]) can

thus also be applied to the system UDMH-02. The small amounts of

N2 were necessary for the decomposition-free evaporation of UDMH

in a saturation apparatus.

To get usable results on reaction kinetics, the system,

heavily diluted with argon, was studied in a shock wave appara-

tus. The pressure and temperature conditions behind the incoming

shock wave were set so low that an preliminary reaction was

prevented and the reaction was only started after the reflecting

shock wave. Measurements with initially only slightly diluted

mixtures of UDMH and 02 yielded poorly reproducible results, the

main cause probably being not the preliminary reaction after the

incoming shock wave, but the preliminary reaction at the wall of

the inlet tube and the shock tube itself. Reproducible measure-
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merits were only achieved with UDMH molar fractions of less than

0.06.

The strong continuous UV absorption at 2,500 A was used as

an indicator for the decomposition of UDMH. The start of the

further violent chemical reactions could subsequently be marked

by recording the light emission associated with this process, in

the visible spectrum range at 5,500 A. This is largely non-ther-

mal excitation. At concentrations that are not too low, XUDMH >

0.01, a pressure increase can be observed at the end flange of

the shock tube, starting at exactly the same time as the /9

light emission at 5,500 A.

2.1. Details of Apparatus

UDMH decomposes very slowly on light metal and glass

surfaces; hence the shock tube (inner diameter 72 mm) was

aluminum. All tubing and the saturation apparatus were glass.

The desired mixtures of UDMH, 02 and argon were produced by

charging an argon stream with UDMH vapor and then adding oxygen.

The final vapor pressure of UDMH developed in two successive coil

condensers, with very precise thermostatic controls (± 0.1°C).

The temperature in the saturator proper was ca. 5 to 6°C higher

than in the condensers. By observing the condensation of excess

UDMH, the exact charge of the argon stream could be determined.

The argon and 02 partial streams were measured with rotameters,

accuracy ± 1%.

The speed of the incoming shock wave was determined with

electronic meters specially developed for this job at the

institute. Thin-film probes served as sensors.

For spectroscopic investigations, a small Zeiss quartz prism

device was used. A hydrogen lamp proved well suited as a

background radiator for the absorption measurements. Observation



windows installed on the side ahead of the end flange allowed

measurements ca. 5 - 3 mm away from this flange.

3. Results

The initial conditions after the reflected shock wave were

calculated electronically by computer program from the measure-

ments of the speed of the incoming shock wave and the known

thermodynamic data of the respective mixture.

3.1. Decomposition of UDMH

First, under the typical conditions for the experiments: T

from 900 to 1,400°K, P 0.5 to 2 atm and XUDMH 0.0009 to 0.005, /10

the validity of the Lambert-Beer law was checked and confirmed,

i.e. in a very good approximation:

J _ «s»n«l

J0 = incoming intensity

J = penetrating intensity,

... both in a narrow frequency band around X = 2,500 A

a = absorption coefficient

n = concentration in mol/1

1 = layer thickness

Preliminary experiments also determined the optimum wave-

length range for the transition from the fundamental state to the

excited state of UDMH, which under the present conditions

presented only a very low dependency of the absorption coeffi-

cient on temperature, Fig. 1.

Taking account of the influence of temperature on the

absorption coefficient, which the change in temperature during

the decomposition reaction generally requires, could be neglected



here. The only necessary correction was to take account of the

initial absorption after filling with the mixture, before passage

of the shock wave.

The evaluation of the oscillograms (Fig. 2) yielded an

excellent representation of the decrease in concentration over

time, according to:

' ' n -k»t— - e
;

t = time

n = concentration at time t

n0 = initial concentration

k = rate constant

The first stage in Fig. 2 corresponds to compression due to

the incoming shock wave.

Formally, the decomposition of UDMH can be described with a

first-order law. /ll

If one graphs the half-life t05, obtained from n(t05)

= n0/2, as a function of temperature, one gets Fig. 4.

This figure also shows experiments with a reduced UDMH

concentration. The results are the same as at higher concentra-

tions. From this one can very probably conclude an absence of

effects of the decomposition products upon the UDMH decomposition

process. Thus the decomposition of UDMH is observed directly

according to:

UDMH + M -> Decomposition products + M.

A variation of the entire pressure level between 1.35 atm

and 3.0 atm likewise caused no change in the measurement

results. For reasons of equipment strength, the pressure level
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was not increased further. The measurement accuracy seemed

adequate to suggest the conclusion that under the present

conditions, the decomposition process is controlled practically

only by the natural lifespan of highly excited UDMH molecules.

The complicated UDMH molecule, with its numerous internal degrees

of freedom of vibration, makes it seem plausible that at these

relatively low pressures this limiting process is already

achieved, while smaller molecules only present the well-known

transition from the "low-" to the "high-pressure range" at

considerably higher pressures.

The half-life t05 can be connected to the decomposition

probability of UDMH. For this value k, in Arrhenius notation we

get:
-EVTTk = k • e -

7*'1
0 12 -1

with ' k = 7 « 10l£: s
i °

and E s $2 700 cal/zual.

The likely result is a decomposition with a separation of the N-N

bond, similar to N2H4, according to:

UDMH -> NH2 + N(CH3)2

The found values k0 and E seem physically reasonable, but

somewhat contradict values stated by Glassmann et al. [5]. The

flow method used by these authors possibly does not rule out an

interfering influence of catalytic wall reactions, which certain-

ly do not occur with the present method aside from preliminary

reactions during filling. The good reproducibility of our

results at different initial concentrations make such an influ-

ence appear unlikely. The scatter range of Glassmann 's measure-

ment points is considerably greater than ours. A quite justifi-

able adjustment of the slope of the interpolating lines through

Glassmann 's measurement points brings his results practically

into accord with the present ones.



Since very probably the decomposition of UDMH was measured

in the immediate vicinity of the so-called high-pressure range,

according to the various models developed by Slater [6], Kassel,

Rice, Ramsperger and Marcus [7], Troe and Wagner [8], the

influence of molecular vibrations on the value of the activation

energy is relatively slight. Thus the found activation energy is

approximately the same as the N-N bonding energy value in the

UDMH molecule. The found frequency factor k0 is also in a range

predicted by the different models. Other considerations on a

certain reaction path in the decomposition of UDMH will be

discussed below in connection with the measured intrinsic

emission during decomposition.

3.2. Reaction of UDMH with

3.2.1. Influence of (X. on

Decomposition Step of UDMH

3.2.1. Influence of (X. on Measurements of the Unimolecular

In the studied UDMH concentration range, even an addition of

six times the amount of 02 did not perceptibly affect the

decomposition of UDMH. Thus no parallel reactions occur at /13

comparable speed.

3.2.2. Light Emission at 5.500 A in Reaction with O2

With the laterally installed spectral apparatus, a relative-

ly flat emission maximum was observed at ca. 5,500 - 6,000 A. An

oscillogram of the intrinsic emission is shown in Fig. 5. The

oscillograph was triggered by the incoming shock wave. Here the

exact time of impact of the shock wave against the end flange is

shifted somewhat to the right on the oscillogram (arrow, Fig.

5) . Immediately after the shock reflection, the recording shows

a very quickly vanishing "peak" and then a more prolonged flash

phenomenon, which is strong only in the presence of 02. It was

assumed that this is the exothermal further reaction of the

decomposition products of UDMH and O2. We can only guess at the

7



genesis of the first "peak." Because of the maximum of the flash

at ca. 5,500 A this might be the radiation from non-thermally

excited NH2 (" a bands of NH3"), which possibly results during

the first decomposition step of UDMH. The fast breakdown of the

peak might be explained by a shorter lifespan of the excited

state of the NH2 radical, or possibly also by relaxation upon

impact with Ar. The UDMH decomposition process could be imagined

in that at a concentration somewhat greater than 43,000 cal/mol

in one or more appropriate normal vibrations, the N-N bond is

greatly loosened precisely when energy for this is stored in the

extended form of NH2. The extended configuration of NH2 corre-

sponds to the electronically excited state [9]. The emission at

6,000 A has an activation energy of ca. 47,300 cal/mol. The

measured activation energy of ca. 43,000 cal/mol is probably

somewhat less than the actual energy requirements when the

molecule explodes. The deficit between this and 47,300 cal/mol

might be covered by the thermal energy of suitable UDMH mole-

cules. In all, the proposed model does not seem entirely

improbable. A precise clarification of these questions would

require a considerably more expensive spectroscopic study, such

as could not be conducted here. /14

The second flash was used to define an ignition delay, for

simultaneous pressure measurements confirm that only here, in the

second phase of the reaction, was noteworthy heat of reaction

released.

At a constant gas pressure and constant temperature, the

ignition delay decreases as the 02 content increases. Moreover,

at a constant total pressure, the dependency of ignition delay on

temperature changes as the 02 content changes. The apparent

activation energy decreases. This suggests a relatively complex

reaction mechanism, in which at different 02 contents different

elementary steps determine further evolution. These relatively

coarse measurements allow no definitive statements about details

8



of the mechanism. At a constant temperature, moreover, a clear

influence of the total pressure also appears. These reactions

are accordingly at least bimolecular, i.e. they depend on the

concentration of two kinds of molecules. Unfortunately it was

not possible to get good reproducible results on ignition delay

at concentrations higher than XUDMH =0.06, so that a high-accu-

racy extrapolation of ignition delay for undiluted UDMH-O2
mixtures, which would also be desirable from the technical

viewpoint, is impossible.

The results are shown in Figs. 6 and 7.

One result to bear in mind from this initial study of the

UDMH-02 system is that in the studied range of P, T and XUDMH,

the reaction proceeds in two very clearly separated phases. The

first phase is coupled to the fast, unimolecular decomposition of

UDMH without noteworthy effects of 02 or radicals, while the

second phase is clearly connected to the exothermal reaction with

02. Figure 8 shows the half-lives for the decomposition of UDMH

together with typical ignition delays as a function of tempera-

ture. The separation of the two reaction phases at the same

temperature is clearly visible here.

Further studies apparently can only be conducted with /15

a good deal of spectroscopic equipment and using fast-recording

mass spectrometers.

4. Influence of UDMH on Ignition Behavior of H..-Air Mixtures

The very fast decomposition of UDMh also suggests other

technical applications that have nothing to do with rocket

engines. As shown by the ignition delay experiments with H2-air

mixtures at 800-1400°K and 1/2 to 2 atm at the Reaction Kinetics

Department of DFVLR [10], the ignition delays at 900°K increase

very rapidly as one approaches the conditions for the "second



explosion limit". In developing drives for fast supersonic

aircraft (M >. 5), this may be an unpleasant property, since it

might adversely effect the combustion or ignition behavior of a

supersonic diffusion flame. Shock tube experiments verified that

even small amounts of added UDMH considerably lower the ignition

delays in the vicinity of the second explosion limit [11].

Within limits, this allows an expansion of the combustion range

of H2-02 even to low temperatures without requiring the use of

expensive flame holders that increase flow losses.

As an example, consider the influence in measurements behind

the reflected shock wave both with and without added UDMH

(Fig. 9).

The ignition delays with added UDMH present less dependence

on temperature in the vicinity of the second explosion limit.

With the present relatively small-diameter shock tube, it was

impossible to determine whether a second limit, similar to the

second explosion limit but at lower temperature, exists with

added UDMH.

Our thanks to the German Research Society — for providing

funds.
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Abb. 6 ZUndvorsug von UDMH-Og-Ar. Fig. 6. Ignition delay of
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Abb. 9 Einflufi von UDMH auf dio ZUndvorzugo-soit von H2
Fig. 9. Influence of UDMH on ignition delay of H2~air




