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SEMIEMPIRICAL METHODS FOR COMPUTING TURBULENT FLOWS

I. A. Belov, I. P. Ginzburg

Determination of turbulent friction and heat exchange /159*

in a wall region is based on two semiempirical theories: the

Prandtl-Karman mixing path theory and a theory using equations

for turbulent pulsation energy with additional Kolmogorov-Rotta

hypotheses.

1. Prandtl-Karman Theory and Effective Viscosity

Hypotheses~ Existing models for Prandtl-Karman's

semiempirical theory of turbulence applied to boundary layer

problems are distinguished by various assumptions regarding the

size of the mixing path and the presence of a laminar

sublayer. They underlie hypotheses that, when flow at the

boundary layer of an axisymmetric wing or body is in question,

turbulent flow may be calculated with Prandtl's equation

. 't = pl2/ lJvx I lJvx
lJy lJy'

where 1 is the mixing path.

(1.1)

According to the two-layer system, it is assumed that the

boundary layer may be broken down into a laminar sublayer in

which laws of viscous friction and heat transfer are valid and

a turbulent layer in which Prandtl's equation is valid. The

thickness of the laminar sublayer J~ is determined from the

condition of a break in the derivatives of velocity at the

boundary of the laminar sublayer.

{Jvx I - v {Jvx I-{J- .- 1\1 -{J- , ,
Y y=3,/ -0 Y y-3,+0

(1.2)

*Numbers in the margin indicate pagitiation in the foreign text.
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where Kl is a certain universal constant.

that 1 = Ky near the laminar sublayer, the

for calculating J
l

results:

If one assumes

following formula

(1. 3)

This model was consolidated for a compressible fluid and a gas

mixture. In addition to the two universal constants K and

Kl , we must introduce the concept of mixing paths for

temperaiures and for individual components in the mixture or,

respectively, pr
T

= lilT and smI = llli' where IT

and Ii are mixing paths for temperatures and for

concentrations of the i-th component in a mixture.

As numerical analysis has shown, in calculating friction /160

and heat transfer the hypothesis 1 = Ky gives satisfactory

results which correlate with experiments. The universality of

constants K and Kl produces the limit relationships derived

by Kutateladze and Leont'yev [IJ. To determine a velocity

profile in a boundary layer which correlates with experiments,

one must make more general assumptions about the mixing path,

taking into account the fact that it has a constant value near

the edge of the boundary layer. Here we might point out

various functions 1/0 = f (y/<f) proposed by several authors.

Spalding's standardized formula [6J was used at Leningrad State

University (LGU) to calculate 1/6 in numerical analyses of a

turbulent boundary layer .

.!.._IK ~ ,
0-

, i., (1.4)

L

where ~ is a certain constant close to O.l~ K = 0.4.

In a three-layer system (the Klauzer-Mellor hypothesis

[7-8]) the boundary layer is divided into three regions: a

laminar sublayer and the inner and outer regions of the

4
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boundary layer. It is presumed that:

y<f;,.

__ K 2 21. aVXI aVX--p y ---ay ay

is the boundary layer interior;

"'/'t y
V p ,,;1., ua* r.l.. u"* av r '_....:v-//{·-·-v-. 't=t'OP 0 ay

is the boundary layer exterior, where d* is displacement

thickness; ~O is a certain constant (according to Klauzer, it

equals 0.016-0.018; in calculations done at LGU, it was set at

0.02) ( U is the velocity at the outer edge of the boundary

layer.

There are also studie.s where the boundary layer is not

divided into a series of regions, but a so-called effective

viscosity is introduced, and it is assumed that 'f=:=lJ.ef(8/8y)vx,

whereby f!«f=lJ,+f!T. , where, according to Prandtl lJ.T= pl2(8j8y)vx .

Mixing path 1 is determined differently for different

regions of change in y. To account for the fact that the

mixing path near a wall approaches zero at y3/2, van Driest's

equation [9] is used to calculate it in the boundary layer

interior.

(1.5)

where A is a certain constant (according to van Driest, A =
26). According to Spalding [6], .in the boundary layer exterior

I
T=>", j ).=0.1; K=O,4. (1.6)
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To account for the effect of blowing and a pressure gradient Ll.61

for an incompressible fluid, Sebesi [10] assumes the following

for the boundary layer interior

(1.7)

whereby ~~ is determined from an approximated solution to the

equation

-: _ dp I Ot
pVw -';-- -7;- T 7ii'

. .
from which it follows that

(1. 8)

dp !.1 ( 1.1 dp ) ( pVw )'t=- ~._'_-L t +-_.- exp .--y .
dx pVw I W pVw dx. (.1.

In the case of a compressible fluid, (1.8) gives

In the absence of blowing,

dp... -- +_),·-·w dx

and equation (1.7) takes the form

l = KY[l - exp (- y~~:VI + L.:~)] .

With regard for blowing,

~ V- r ( ') . ]1:2't . ":JI dp P. p'Dw ... pvw . .
-.-::::::::: -='-d,'-- -1+exp--0.1 +exp--o, I
'tw 'tw X pvw p. r.1

(1.9)

(1.9')

(1.7')

(1.10)

_.

... K 1 .' 'i 118"wherein Sebesi assumes oJ=7("7= '7' wherev*=V'tw/p.

In Sharov and Lapin's work [11], the effect of blowing and a

pressure gradient was taken into account on the assumption that

6



" ,r " ).

(1.11)

This equation is solved numerically. Note that studies by

Sebesi, Lapin, and Sharov divide the boundary layer into

interior and exterior parts. In the interior,

where 1 is calculated according to (1.7) with regard for

(1.10); in the exterior, J.kr is determined from Klauzer's
equation

Velocity profiles are joined on the basis of the equality
of turbulent viscosity and of velocity continuity coefficients

and velocity gradients.

To evaluate the possibility of using particular models of

the semiempirical theory of turbulence, LGU numerically solved

equations for movement of an incompressible fluid in a boundary

layer in the presence of blowing and a pressure gradient
(certain calculation results have been publi~hed in articles by

G. V~ Kocheryzhenkov, S. K. Matveyev, and V. S. Ivanov [2-5]) ~

These calculations showed that discrepancies between results

for one system and for the other in functions for friction

coefficients and for K = ~*/J** from x, where x is

the distance along a plate, are within limits of calculating L!.§.~

accuracy. Figures 1-3* present certain results of the

comparison. Note that numerical analysis is naturally simpler

in the two-layer system, where there is no need to formulate.
clarifying hypotheses regarding the mixing path~

Along with numerical solution of equations in partial

derivatives, approximated integral methods of calculating
,.

friction and heat transfer ~n the case of a turbulent boundary

layer are used. These methods are based on USe of integral

*Figures are taken from [2-4].
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relationships from boundary layer theory and an approximated

concept of friction stress in the form of polynomials of y/o
and v/u such asx

V ~/~w = 1+ ~ "l - (1 + i ).,?,

't{'tw = i + m- (1 +B) ~2,

(1.12)

(1.13 )

Fig. 1 Change in surface friction

factor.

1, 2 - Numerical solution

according to Mellor's hypothesis

and the two-layer system; 3~ 4 ­

Approximated solu~ion using the

same models.

o

H

. 2 4

Figure 2. Change in H =
t,*/lJ **.
1 - Numerical solution with

Mellor's hypothesis; 2 ­

Approximated solution using the

same model.
6

b

a4

-f· cf'O
q

. "
.~11. ::..;~. \,

... 5 ~ .',........ ..s!. 0 "..._- -. " ......
" ........."'... -0-0

2a

Figure 3. Surface friction factor in the turbulent

boundary layer' of a pl~te~during blowing:

a - v~U = 0.00386; b - v~u = 0.0095; 1 - Two-layer

system; 2 - Effective viscosity system; 3 - Sebesi's data;

4 - Simpson, Kays, Moffat experiment.
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From conditions taken from motion equations, assuming that

they are valid also near a wall,'we find that

.8 dp U!,-w 1 Pw'IJwU
=-d ·-2- T 't 'X 'tw w

A= dp .~+ pt/wa •
dx 'tw l-'w

(1.14)

Comparison of numerical analyses with approximated solution (if /163

A in (1.12) is calculated from (1.14) when a pressure gradient

and blowing. are present) showed considerable discrepancy among

results. This is because the effect that friction distribution

over the surface

In studies by G.

A was calculated

In this case,

has on the equation for A is not considered.

V. Kocheryzhenkov and S. K. Matveyev [2, 12],

from the condition A . ~''t/'twl .
. O'lj 1j=1j/

A dp & +. a" dt/* (" t/* )2~2 + QwO 1 (K K U ~)=-.- -.0- - I"' --o-exp 1- -I"' •
dx 'tw V*. dx U 'I K1 'IJ*

(1.15)

where ~ = ('Vx/U)Y=0t' Dur ing calculation, it was assumed
that ~ =0.6~ With regard for A in terms,of (1.15),

approximated calculations coincided with numerical solutions.
The approximated soltitions produced on the assumption of the

law for 7/~ (1.13) and for B (1.14) showed a rather goodw
correlation with the numerical solution.

J;;[/u
0,16

o 0,4

Fig. 4 Profiles of longitUdinal

root-mean-squa~e velocity pulsation

in the boundary layer with external

flow turbulence e = 4.6%.a
1 - Calculated 'using van Driest's
ratio for mixing flow; 2 - Same as

per Spalding; 3-5 - Experiment:

3" --0u = 0.049;
x. 5

Re = Ux/. = 0.184 x 10 ;
x v 5

4 - 0.072; 10 ; 5 - 0.083; 1.53
5x 10 •.
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In summary, one might note that this comparison of the

results of calculations for different systems shows that

calculating friction and heat transmission requires numerical

computation of boundary layer equations and determination of

turbulent friction for the two-layer system. Approximation

methods should be used in evaluation, assuming -r!-rw=f(s) in

accordance with (1.13) and (1.14). To find thermal flows, one

can use well-known relationships between heat content and

velocity as applied to gas mixtures [13].

2~ Semiempirical Theory of Turbulence Involving Use of

the Equation for Turbulent Pulsation Energy. In solving the

problem of impingement of flows with external turbulence

(natural or imposed) upon a barrier, it is essential to account

for external flow turbulence when friction and heat exchange·.,,··

with the barrier are being analyzed. It is more convenient to

solve this problem using an equation for turbulent pulsation

energy, since~ in addition to friction and heat exchange, it

permits determination of turbulent pulsation energy with regard

for external flow turbulence. Note that the hypothesis on

mixing flow is'unacceptable here, since it gives zero values

for pulsations at th~ outer edge of the boundary layer. An

example of a boundary layer with external turbulence is the

boundary layer at a plate immersed in a jet flow. The results

are given below (fig. 4)[14) for experimental study of such a

boundary layer when a plate is immersed in a subsonic jet

within the limits of the initial segment of the jet

(gradient-free flow) with turbulence intensity at the nozzle

exit section

& = [Vv:2 ! UL=4,6%

As follows from data in this figure on distribution of

longitudinal (along the surface of the barrier) root-mean­

square velocity pUlsation~in the barrier's boundary

layer, velocity pulsations in the jet penetrate deep into the

boundary layer and create conditions for acceleration of the

10



transition from laminar flow (near the nozzle exit section) to

turbulent. Maximum velocity pulsations occur in close

proximity to the wall: in the- laminar flow area, at a distance

of about y/~ = O~2-0.3, where ~ is the thickness of the

boundary layer; in the turbulent flow region, at a distance y/cf

< O~05. ~he figure also presents re~ults of computing velocity

PUlsationfv'~ = IC/Oy(vx )' where vx/v* = 5.5+5.75 Ig

yv*/v; v* =~~w7f; 1 is the mixing path as per van Driest

(curve 1) and as per Spalding (curve 2). As these data show,

the results of computation correlate well with the experiment

only very close to the wall. This fact raises doubts about the

existence of a linear relationship between velocity pulsations

and the gradient of velocity averaged over time in the

turbulent boundary layer's turbulent region.

The semiempirical turbulence theory based on use of energy

equations for turbulent pulsations makes it possible to define

all flow parameters in greater detail. However, to close the

complete system of equations requires we must introduce several

additional coeffidients which are not always known and not

always. universal. Let us evaluate these coefficients. The

energy equation for -turbulent pulsations for an incompressible

fluid takes the form .

(2.1)

where v j is the constituertt in direction x j for motion

.velocity averaged over time; v'. is the pulsation of v
J
';

1 ~'-;f . J
B-2 ~ 'Vn • It is usually assumed that

n

(2.2)

11
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where ~ is Prandtl's turbulent number for turbulent pulsation

energy; T is turbulent viscosity; cD is a constant; 1 is

the scale of the turbulent pulsations; dij is Kroneker's

tensor~

With regard for (2.2), equation (2.1) is rewritten as

(2.3)

In accordance with Prandtl-Kolmogorov's equation, turbulent /165

Viscosity is expressed at vT = CVEl / 2l. One of the most

important relationship~ in (2.3) is that between the kinetic

energy of turbulent pulsations and energy dissipation.

According to Kolomogorov's hypothesis on local is6tropy, cD in

(2~3) can be considered as a universal constant when the subject

flow is characterized by very high Reynolds numbers for

turbulent pulsations, ReT = El / 2l/v. Given low and moderate

ReT values, the lower ihe ReT value, the more CD deviates

from its limit value. Rotta [15] proposed the following

approximated function for CD:

CD = ~:~ +~,202. (2.4)

From (2.4) it follows that the limit value for CD is 0.202 as

Re~ approaches infinity. According to Wolfstein's data [16]

From data in [17],

aD
Cv = 1 A R )' Av =0,263.- exp (- . D eT

(2.5)

12
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where

[1 (1 a) R2/~ ( ..::.:.))- 2. !(R)=c-2 .2:x1J3r '-3' R + exp - RS ' ,

c = 1.5; X ~ 4/3; a = 7.5; [is a gamma function;

It follows from the last function that, when ReT approaches

infiniti, Co approaches 0.15 instead of 0.202. At, low ReT

values, cD increases more quickly than is indicated in (2.4).

To find the connection between· Cv and cD in equations

for turbulent viscosity and turbulent energy dissipation, let us

study the particular case of equation (2.3), which described

.f~ow oia fluid in a state of local equilibrium [18]. For this

flow, equation (2~3) is rewritten as

But

from which

According to data in [18]

'i./pE·.~O,a2

for a uniform transverse flow and for flow in tubes near a wall,

but still rather remote from the viscous sublayer (one may
approximately state that these flows are in a state of local

equilibrium). Consequently, cDc ~ 0.1. Assuming, as did, v
Ng and Spalding [18], CD = 0.1, we obtain C v = 1.0. Taking

co = 0.416, as did Wo1fstein [16}, we obtain Cv = 0.24

(according to Wolfstein's data, Cv = 0.22). If c doesv

13



not equal 1, assuming Cv to be constant for the entire range

of change in ReT' Wolfstein recommends the following equation

[16] :

c. = a. (1- exp (- A.ReT)), A. = 0,016. (2.6 )

Prandtl's turbulent number incorporated into (2.3) varies /166

within 1.53-2.5 [15~ 16, 18]; the nature of the change in scale

1 in (2~3) must be determined in each specific case.

As an example of the use of the turbulent pulsation energy

equation, let us calculate the impingement of a flat turbulent

jet to a plate set along the normal to the jet flow. This flow

is characterized by the existence of a stagnation point on the

plate. Directions along the plate (x) and along the normal to

it (y) for th~area around the stagnation point are

equivalent. Therefore, study of this flow requires complete

Reynolds equations~ These are written in the form of a vortex

transfer equation as

,.
To equations (2.7) and (2.3), we will add an equation for

continuity

OV ·ovy - 0-L+--..ox oy (2.8)

With regard for the relationship of the components of the

Reynolds stress tensor (2.2) and the Prandtl-Kolmogorov

equation, the system of equations (2.3), (2.7), and (2.8) is a

system of three equations ~or~determiningfour unknown

functions: vx ' vy ' E, and 1. Therefore, one more

relationship is required to close this system. For an ordinary

turbulent boundary layer on the surface of a solid body, this

14



relationship is the familiar mixing path equation 1 = Ky, K =
0~4 or any other of the mixing path equations presented above.

If there are pulsations at the outer edge of the boundary
layer; this approximation may be used as the first

approximation.

The velocity profile in the jet remote from the barrier

(unperturbed flow) in a direction normal to the barrier is

represented as Schlichting's profile. Then, assuming that the

velocity constituent normal to the barrier in the area of

interaction with the barrier varies linearly with distance from

the barrie~, we obtain the following directly at the barrier

[19] if 0 ~ x £ r:

(2.9)

where ~ = (x-b)/~ ; r is the free jet's boundary; b is thec
boundary of constant velocity nucleus; b is mixing zone. c
thickness; ~ is the yelocity gradient at the stagnation point;

v is the kinematic viscosity factor. Equation (2.9) is taken

as the boundary condit~on at the outer edge of the viscous

mixing of flow and plate y V"y/v-+00. Let us formulate

boundary conditions for the outer edge of the viscous mixing

layer for turbulent pulsation energy. Flow far from the

barrier beyond the limits of the boundary layer- may be

considered with a sufficiently high degree of accuracy to be

identical to flow in a jet stream for which [20], by analogy

with an axisymmetric jet, we assume:

Then

(2.10 )

15



" ..

where

V ·,'l 1/ ,2 V ,2
. . v XC, V. v YC. V zc

are the velocity constituents of pulsations in a free jet in

the direction of the·axes of a Cartesian coordinate system x,

y; z, respectively; Y is the distance from the nozzleFexit

section to the barrier; YIO is the distance from the barrier to
the cross section in which the effect of the barrier on the

flow is· negligible (as per [12]), Y~~ d , where d is the
a a

diameter of the nozzle's,outlet section; Vc is the free jet

constituent normal to the barrier (it is described by

Schlichting's profile); x is a constant (as per (20], x =
0~0256) •

Equation (2.10) assumes a zero value for pulsation energy

at the axis and outer edge of the jet, which corresponds to

reality for small distances between nozzle exit section and

barrier Y. As Y increases; the equations for Ec suggested in

[22] are preferred

(2.11)

Upon impingement of a plate, pulsation energy changes in the

area where the jet interacts with the plate (outside the limits

of the flow/piate mixing layer). Therefore, (2.10) or (2.11)

may be used only in the first approximation as the boundary

condition for pulsation energy at the outer edge of the

boundary layer.

Boundary conditions on the plate's surface follow from the

equation for fluid adhering to that plate at y = 0:

'"
vx-;-vy~E=O, y~O. (2.12)

We seek the solution for vx ' vy ' E given the well-known

law of change in 1 in the form

16
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'. 0) 3 (m-I)

V)VIV = r Vl/'J~ (_l)m+1C-z-'-t:n-I'
m=! .

0) 3m-3
'V /"11":;:' = _ ~ (_l)m+l (3m -1 ) ~-z-·F "
~V'I -L. 2 ~ Jm-I'

m=1

Taking

where

the solution for E takes the form

(2~13)

(2.14)

where f m, Sm are functions of J subject to definition from

equations for vortex transfer and turbulent pulsation energy

3 Y )' 2.35 Va / •
a= 2 x (Y- 0) ¥(Y_ Yoo)/do '

a(~)=(C2_ClI2)2/(1 _ : C3
/
2 + ~ Car.

The last function is present in the form
i. a(C) = 1+A1C

3
/
2 + Al.3+A3~9i2+A4:6 + ASC

15
/
2 + ,4r,C9+Aj :

21
/
2 + ;

- .. - ~ . ... .

where Al = -0.4; A2 = -0~78; A3 = -0.392; A4 = -0~039S;

AS = 0~2231, A6 = 0.3033; A7 = 0.0061, etc.

After substituting (2.13) and (2.14) into (2.3) and (2.7),

equation coefficients with identical degrees of , we obtain a

system 2m of ordinary fourth-degree differential equations.

Boundary conditions for functions f,S follow from
" m m

conditions (2.9)-(2.12) when y'ftlV = 0 and y"'fY7Y= OD. The

system of equations obtained in this way was solved numerically

using the Runge-Kutt method on a BESM-6 computer with an

accuracy of 10-5 by sequential approximation. The number of

17
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o 0,4 q8

Fig •. 5. Profiles of longitudinal

average velocity in the boundary

layer of a plate when a subsonic

flow impinges upon it along the

normal: 1 - C == x/r == 0.1; 0.2; 2

- 0.3; 3 - 0.4; 4 - 0.5; 5 - O.p;
0.8; 6. 0.7.

c, 'C'w

z"jiV[
0,076 ,

0,072

. 0,008

Fig. 6. Distribution of friction
over the surface of a barrier when

a subsonic jet impinges upon it

along the normal: 1 - Current

analysis; 2 - data from [109] with

x == O.

approximations is determined from the condition

where e == f or S ; t, t+l is the number ofm m m
approximations; t is the given accuracy with which the boundary

conditions are fulfilled at yi'(/v...,..oo. Additional boundary

conditions required to begin calculation were found with
Newton's method to satisfy boundary conditions for f , S atm m
yi""y/v-l-with given accuracy E.

Figures 5 and 6 present the results of calculation with the
• -5following raw data: Va = 20 m/sec; v = 1.5 10

2 . ~m /sec; da = 10 mm; Y/da = 8; , = Valda [21]. The
following approximations were used in calculation: 1 == Ky, K =
0.4; a= 1.7; cD == 0.15; c = 0.66. Equation (2.10) was

v '"
used as the boundary condition for pulsation energy at the

outer edge of the boundary layer.

Review of these graphs shows that velocity profiles (fig.
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5) in various cross sections along the plate are typical

profiles for the turbulent boundary layer when the pressure

gradient for the exterior flow is negative. The boundary

layer's thickness initially drops as it moves away from the

stagnation point, then increases. Maximum thickness

corresponds "to the cross section with maximum pUlsation energy

at the outer edge of the boundary layer. The solution shows /169

that exterior jet flow turbulence has an effect on flow in the

boundar¥ layer throughout the subject area, including the area

around the stagnation point. Friction at the plate (fig. 6)

quickly increases due to the negative pressure gradient in the

exterior flow, then decreases near the jet boundary due to

dissipation effects. On~ might note the f~ct that friction at

the plate for this type of turbulent flow-plate interaction

increases the corresponding figure [19], obtained if the effect

of the turbulent jet on flow in the boundary layer around the

stagnation poirit of the plate, is disregarded by a factor of

1~ 8~

List of symbols used: x, y, x -- axes of the Cartesian

coordinate system; 1, IT' Ii -- mixing path, mixing path

for temperature, for the i-th component of the mixture; J, dl
-- boundary layer and laminar sublayer thickness; b -- the

boundary of the core of constant velocities for a free jet; r

-- the free jet's boundary;Y -- distance from the nozzle exit

section to the barrier; Y --distance from the barrier to the

cross section at which the effect the "barrier has on flow is

negligible; v , v , v -- components ~f velocity toward
x y z _ _'. ~

axes x, y, and z averaged over time; VV~2,VV~2, VV~2

root-mean-square pulsations of velocity components vx ' vy '

v ; u, V -- velocity components toward x and y on the outerz
edge of the boundary layer; v* -- dynamic velocity; f.--

turbulence intensity; y -- .velocity gradient at the stagnation

point of a"flat barrier set along the normal to the jet; p, p

-- density, pressure; r -- friction stress;

jU, ftT ' )Uef - coefficient for dynamic viscosity, turbulent

19



viscosity~ effective viscosity; E -- turbulent pulsation energy; 'Y/=Y/o;

a- ·vx/V; C=(x-:b)joc;H . o*ja**; K,.K t -- universal constants in (1.3);

~= (E)y=ol1; ~o -- constant in Klauzer's equation; A, B

coefficients in the breakdown of 7/~w (1.14); cD' Cv -­
constants in (2.1); x --constant in (2.10); f m, Sm -­

functions of y defined from (2.7) and (2.3); t -- approximation

numberj pr T , Sm~ -- Prandt1's, Schmidt's turbulent
1

number; d-- Prandt1 l s turbulent number for turbulent pulsation

energy;· ReT -- Reynolds number for turbulent pulsations;

dij -- Kroneker's tensor.

Subscripts: i, j, n = 1,2,3; m = 0,1, ••• , ; a --

parameters at the nozzle's exit section; c parameters in a

free jet~
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