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SEMIEMPIRICAL METHODS FOR COMPUTING TURBULENT FLOWS

I. A, Belov, I. P. Ginzburg

Detérmination of turbulent friction and heat exchange
in a wall region is based on two semiempirical theories: the
Prandtl-Karman mixing path theory and a theory using equations
for turbulent pulsation energy with additional Kolmogorov-Rotta
hypotheses. '

1. Prandtl-Karman Theory and Effective Viscosity
Hypotheses. Existing models for Prandtl-Karman's
semiempirical theory of turbulence applied to boundary layer
problems are distinguished by various assumptions regarding the
size of the mixing path and the presence of a laminar
sublayer. They underlie hypotheses that, when flow at the

boundary layer of an axisymmetric wing or body is in question,

turbulent flow may be calculated with Prandtl's equation

0vx (1.1)
oy °

du,
day
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where 1 is the mixing path.

According to the two-layer system, it is assumed that the
boundary layer may be broken down into a laminar sublayer in
which laws of viscous friction and heat transfer are valid and
a turbulent layer in which Prandtl's equation is valid. The
thickness of the laminar sublayer Ji is determined from the
condition of a break in the derivatives of velocity at the

boundary of the laminar sublayer.

dv,

a0, |
L (1.2)
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*Numbers in the margin indicate pagination in the foreign text.




where Kl is a certain universal constant. If one assumes
that 1 = Ky near the laminar sublayer, the following formula
for calculating J results: ‘

<“>= /V~ (1.3)

This model was consolidated for a compressible fluid and a gas
mixture. In addition to the two universal constants K and

l’ we must introduce the concept of mixing paths for
temperatures and for individual components in the mixture or,
respectively, PrT = l/lT and Sm? = l/li, where 1T
and 1i are mixing paths for temperatures and for -

concentrations of the i-th component in a mixture.

As numerical analysis has shown, in calculating friction
‘and heat transfer the hypothesis 1 = Ky gives satisfactory
results which correlate with experiménts. The universality of
constants K and Kl produces the limit relationships derived
by Kutateladze and Leont'yev [1]. To determine a velocity
profile in a boundary layer which correlates with experiments,
one must make more general assumptions about the mixing path,
taking into account the fact that it has a constant value near
the edge of the boundary layer. Here we might point out
various functions 1/§ = f(y/§) proposed by several authors.

Spalding's standardized formula [6] was used at Leningrad State

University (LGU) to calculate 1/6 in numerical analyses of a
turbulent boundary layer.
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(1.4)

where A is a certain constant close to 0.1; K = 0.4.

~In a three~layer system (the Klauzer-Mellor hypothesis
[7-8)) the. boundary layer is divided into three regions: a
laminar sublayer and the inner and outer regions of the
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boundary layer. It is presumed that:

Yy, tE=p ?? ) W==%%:f%:,
_KL<V_P-V <ﬁo_ Ue* | e pran| U, avx.
XSS g =K% Ty |y
is the boundary layer interior;
V%y\ 3 Ut Crrax OUy
s 2Ry T=helUd

is the boundary layer exterior, where d* is displécement
‘ thickness;{BO is a certain constant (according to Klauzer} it
equals 0.016-0.018; in calculations done at LGU, it was set at
0.02); U is the velocity at the outer edge of the boundary

layer.

There are also Studies where the boundary layer is not
divided into a series of regions, but a so-called effective
viscosity is introduced, and it is assumed that v=p(8/dy)vy,
whereby  Mef=n+pr, , where, according to Prandtl ur=pﬂﬁﬁﬂﬂv»'

Mixing path 1 is determined differently for different
regions of change in y. To account for the fact that the

3/2

mixing path near a wall approaches zero at y , van Driest's
‘equation [9] is used to calculate it in the boundary layer

interior.

| 1=Ky[1-—eXp»(-“zyT %)]%‘<'}T (1.5)

where A is a certain constant (according to van Driest, A
26). According to Spalding [6], .in the boundary layer exterior

+=1 - Ir=01; K=04. (1.6)



To account for the effect of blowing and a pressure gradient /161
for an incompressible fluid, Sebesi [10] assumes the following
for the boundary layer interior

1=Kyt — exp(— l/ V=) (1.7)

whereby fhw is determined from an approx1mated solution to the
equation ' '

- :—-—g—p—-—-'———r UWZW)']).zoi (1.8)

from which it follows that

Uy pU

" T d, w
= Zf} it (fa ,,fj)exp("" v (L)

In the case of a compressible fluid, (1.8) gives

: T=[ S'e;p( (yww dy)a'y-i' -cw]exp(jiv-%’”—dy).
5 b

[

In the absence of blowing,

Cemey by (1.9")

and equation (1.7) takes the form
_———-—‘_—1;‘
| z—Ky[l—exp(-—-———l/ + )] (1.7")

With regard for blowing,

Py . [dp (=
= Ty dx  puy

Tw

’

n PUw '. 12
0.1)+exp—-,:—34] . (1.10)

, 5 K —
wherein Sebesi assumes _01==7%*ﬁ%==lh8f%, where o,=V<p.
In Sharov and Lapin's work [11l], the effect of blowing and a
pressure gradient was taken into account on the assumption that



=%_{_§_§_ b (1 exp o §,)+éxp a2 3']‘ . (1.11)

This equation is solved numerically. Note that studies by
Sebesi, Lapin, and Sharov divide the boundary layer into
interior and exterior parts. in the interior,

where 1 is calculated according to (1.7)vWith regard for
(1.10); in the exterior;}AT is determined from Klauzer's
equation

Velocity profilesAare joined on the basis of the equality
of turbulent viScosity and of velocity continuity coefficients
and velocity gradients.

To evaluate the possibility of using particular models of"
the semiempirical theory of turbulence, LGU numerically solved
equations for movement of an incompressible fluid in a boundary
layer in the presence of blowing and a pressure gradient

-(certain calculation results have been published in articles by

G. V. Kocheryzhenkov, S. K. Matveyev, and V. S. Ivanov [2-5]).

These calculations showed that discrepancies between results

for one system and for the other in functions for friction
coefficients and for K = §*/8** from x, where x is

the distance along a plate, are within limits of calculating /162
accuracy. Figures 1-3* present certain results of the

comparison. Note that numerical analysis is naturally simpler

in the two-layer system, where there is no need to formulate

clarifying hypotheses regarding the mixing path.

Along with numerical solution of equations in partial
derivatives, approximated integral methods of calculating
friction and heat transfer in the case of a turbulent boundary
layer are used. These methods are based on use of integral

*Figures are taken from [2-4].



relationships from boundary layer théory and an approximated
concept of friction stress in the form of polynomials of v/8
and Vx/U such as

Vit da—(1+4)e (12

o tfr, =14 Bi— (14 B)¥,
o : (1.13)

where 1=y/8, t=7,/U.

Fig. 1 . Change in surface friction
factor.

1, 2 - Numerical solution
according to Mellor's hypothesis
and the two-layer system; 3, 4 -

Approximated solution using the

same models.

Figure 2. Change in H =
8%/ 8 *x, :

) .42;552%54/ 1 - Numerical solution with
k) o 2 ' Mellor's hypothesis; 2 -

Approximated solution using the

same model.

. L . og-o
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Figure 3. - Surface friction factor in the turbulént
boundary layer of a}plateﬁduring blowing: ‘

a - vw/U = 0.00386; b - Vw/U = 0.0095; 1 - Two-layer
system; 2 - Effective viscosity system; 3 - Sebesi's data;
4 - Simpson, Kays,bMoffat experiment.




From condltlons taken from motion equations, assumlng that
they are valid also near a wall, we find that

p=Ar  Upw 4 Pu¥ul Pwva

-2 .
dx T Tt (1.14)
A = dp B U .

dx Tow 1)

Comparison of numerical analyses with approximated solution (if /163
A in (1.12) is calculated from (1.14) when a pressure gradieht

and blowing-a:e present) showed considerable discrepancy among
results. This is because the effect that friction distribution
"over the surface has on the equation for A is not considered.

In studies by G. V. Kocheryzhenkov and S. K. Matveyev [2, 12],

A was calculated from the condition A"‘“T/WH=M'

In thlS case,
a8 b du, o U - |
—@ 2L d';( )@z oy __E_exp(K,—K;;ﬁ), (1.15)
where B:%qJUb=%. . During calculation, it was assumed

that § = 0.6. With regard for A in terms of (l.15),
approximated calculations coincided with numerical solutions.
The approximated solutions produced on the assumption of the
law for T/Tw (1.13) and for B (1.14) showed a rather good

correlation with the numerical solution.

Fig. 4 Profiles of longitudinal
root-mean-squa;e velocity pulsation
in the boundary layef with external
flow turbulence €, = 4.6%.

1 - Calculated 'using van Driest's

ratio for mixing flow; 2 - Same as

per Spalding; 3-5 - Experiment:
3 - v' /U = 0.049;

= = 5,
4 - 0.072; 107; 5 - 0.083; 1.53
x 10°.. |



In summaty} one might note that this comparison of the
results of calculations for different systems shows that
calculating friction and heat transmission requires numerical
computation of boundary layer equations and determination of
turbulent friction for the two-layer system. Approximation
~methods shbuld be used in evaluation, assuming t/t,=f(£) in
" accordance with (1.13) and (1.14). To find thermal flows, one
can use well-known relationships between heat content and

velocity as applied to gas mixtures [13].

2. Sémiempirical Theory of Turbulence Involving Use of
the Equation for Turbulent Pulsation Energy. In solving the
problem of impingement of flows with external turbulence
(natural or imposed) upon a barfier, it is essential to account
for external flow turbulence when friction and heat exchange-- -
with the barrier are being analyzed. It is more convenient to
solve_this problem usiné an equation for turbulent pulsation
energy, since, in addition to friction and heat exchange, it
permits determination of turbulent pulsation energy with regard
for external flow turbulence. Note that the hypothesis on
mixing flow is unacceptable here, since it gives zero values
for pulsations at the outer edge of the boundary layer. An
example of a boundary layer with external turbulence is the
boundary layer at a plate immersed in a jet flow. The results
are given below (fig. 4) [14] for experimental study of such a
boundary layer when a'pléte is immersed in a subsonic jet
within the limits of the initial segment of the jet
(gradient-free flow) with turbulence intensity at the nozzle
exit section ‘ - |

=V [ U],=is%

As follows from data in this figure on distribution of

longitudinal (along the surface of the barrier) root-mean- /164
© square velocity pulsationjﬁngﬂin the barrier's boundary -

layer, velocity pulsations in the jet penetrate deep into the
boundary layer and create conditions for acceleration of the

10




transition from laminar flow (near the nozzle exit section) to
turbulent. Maximumvvelocity pulsations occur in close
proximity to the wall: in the laminar flow area, at a distance
of about y/8 = 0.2-0.3, where § is the thickness of the
boundary layer; in the turbulent flow region, at a distance y/J
< 0.05. The figure also presents results of computing velocity
pulsation4572'= lavay(vx); where v /v, = 5.5+5.75 1lg

YVe/Vi V4 VT _/P; 1 is the mixing path as per van Driest‘
(curve 1) and as per Spalding (curve 2). As these datavshow,
the results of computation correlate well with the experiment
only very close to the wall. This fact raises doubts about the
existence of a linear relationship between velocity pulsations
-and the gradient of velocity averaged over time in the

turbulent boundary layer's turbulent region.

The semiempirical turbulence theory based on use of energy
équations fdr_turbulent pulsations makes it possible to define
all fiow parameters in greater detail. However, to close the
complete system of equations requires we must introduce several
additional coefficients which are not always known and not
always universal. Let us evaluate these coefficients. The
energy equation for -turbulent pulsations for an incompressible
fluid takes the form

. . | — —
B . aE 0 —— v 2 4
Voo, 9E 2 : KB
Yoz %}j_‘, % [21{,2@._+ - ,p]+
N g0, | _®E U 002}
~t+ .'vj'vi -5;1-—\’ ox;0x; an ax; !
ek 4o

(2.1).

where vj is the constituent in direction xj for motion
velocity averaged over time; v'j is the pulsation of vj;

-E=-%— 2;’7 . It is usually assumed that

11




where ¢ is Prandtl's turbulent number for turbulent pulsation

energy; T is turbulent viscosity; cb'is a constant; 1 is
the scale of the turbulent pulsations; Sij is Kroneker's
tensor.

With regard for (2.2), equation (2.1) is rewritten as

B 60, au; (7‘0] E3I‘.’
e 0 D5 (3t ) e
T - . Xj Xj 0x; D ¢ (2.3)
In accordance with Prandtl-Kolmogorov's equation, turbulent /165
" viscosity is expressed at Vip ='cVEl/2l. One of the most

important relationships in (2.3) is that between the kinetic
enefgy of turbulent pulsations and energy dissipation.

According to Kolomogorov's hypothesis on local'isdtropy, ch in
(2.3) can be considered as a universal constant when the subject

flow is characterized by very high Reynolds numbers for
turbulent pulsations, ReT =, l/2l/v. Given low and moderate
Re, values, the lower the Re, value, the more p deviates
from its limit value. Rotta [15] proposed the following

approximated function for cpt -

o= 393 +0202 | (2.4)

From (2.4) it follows that the limit value for ph is 0.202 as

ReT approaches infinity. According to Wolfstein's data [16]

=TTy Ap=0.26 (2.5)

”

From data in (173,

(';D = Rerf (R)’

12
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‘infinity, c

‘equilibrium). Consequently, &

where
=y (- F)+ R
c = 1.5 x = 4/3; a = 7.5} I is a gamma function;
R=cp"*/(WE¥), (02<R < 1000).

It follows from the last fdnction'that;_wheh Re approaches'

T

p approaches 0.15 instead of 0.202. At low Re,

values, Ch increases more quickly than is indicated in (2.4).

To find the connection between'cv'and ch in equations

for turbulent viscosity and turbulent energy dissipation, let us
study the particular case of equation (2.3), which described

- flow of ‘a fluid in a state of local equilibrium [18]. For this

fiow, equation (2.3) is rewritten as

c.EY (—%’;—i)= cp E¥/L.

. S ol |
But : V== — 2L =, MY,
X
oy
. . - . 12
from which .?_zz@Dq).

According to data in [18]

</pE ==0,32

for a uniform transverse flow and for flow in tubes near a wall,
but still rather remote from the viscous sublayer (one may
approximately state that these flows are in a state of local

oCv 2:0,1. Assuming, as did
Ng and Spalding [18], Cp = 0.1, we obtain c, = 1.0. Taking
cy = 0.416, as did Wolfstein [16], we obtain c, = 0.24
(according to Wolfstein's data, c, = 0.22)., If cv.does

13




not equal 1, assuming c, to be constant for the entire range
of change in Reg., Wolfstein recommends the following equation
[16]:

C\.::av['l -—exp(— AvReT)], Av=0,016.. (2'6)

Prandtl's turbulent number incofporated into (2.3) varies
within 1.53-2.5 [15, 16, 18]; the nature of the change in scale

1 in (2.3) must be determined in each specific case.

As an éxample of the use of the turbulent pulsation enérgy
equation, let us calculate the impingement of a flat turbulent
jet to a plate set along the normal to the jet flow. This flow
is characterized by the existence of a stagnation point on the
plate. Directions along the plate (x) and along the normal to
it (y) for the area around the stagnation point are
equivalent. Therefore, study of this flow requires complete
Reynolds equations. These are written in the form of a vortex

transfer equation as

e a0 [me 4 09, & (~E_ @ 7)
"’xﬁz“'"fy ay fv‘[axz + ays + 6x6y-'(',vx Yy ) +

' i ' dv, * dv

. 93 8\ — Y
+(““ayz ‘..‘““w)"’x"’y]’ =S o . (2.7)

To equations (2.7) and (2.3), we will add an équation for
continuity '

5 =0 | (2.8)

With regard for the relationship of the components of the
Reynolds stress tensor (2.2) and the Prandtl-Kolmogorov
equation, the system of equations (2.3), (2.7), and (2.8) is a
system of three equations ﬁorﬁdetermining four unknown
functions: Vo vy, E, and 1. . Therefore, one more
relationship is required to close this system. For an ordinary

turbulent boundary layer on the surface of a solid body, this

14




relationship is the familiar miXing path equatioh 1l = Ky, K =
0.4 or any other of the mixing path equations presented above.
If there are pulsations at the outer edge of the bodndary
layer, this approximation may be used as the first

approximation.

The velocity profile in the jet remote from the barrier
(unperturbed flow) in a direction normal to the barrier is
represented as Schlichting's profile. Then, assuming that the
velocity constitﬁent normal to the barrier in the area of
interaction with the barrier varies linearly with distance from
the barrier, we obtain the following directly at the barrier
[19] if 0 € x £ r§

UV Tv=b +8& (1‘——-;4;” +—f‘-:i*) ,
VIVTi=—(1—=Cy Vip, - (2.9)

»where‘i = (X-b)/éc; r is the free jet's boundary; b is the
“boundary of constant velocity nucleus; 60 is mixing zone
thickness; Y is the velocity gradient at the stagnation point;
v is the kinematic viscosity factor. Equation (2.9) is taken
as the boundary condition at the outer edge of the viscous
mixing of flow and plate yVyw->ow. . Let us formulate
‘boundary conditions for the outer edge of the viscous mixing
layer'for turbulent pulsation energy. Flow far from the
barrier beyond the limits of the boundary layer may be
considered,with a sufficiently high degree of accuracy to be
identical to flow in a jet stream for which [20], by analogy
with an axisymmetric jet, we assume:

E=+[0T+ 73 +27]

¢’ (2.10)
- e e ) e T ave /167
. V‘U"f’c—’:‘V ﬂ'gcsz'Zé=x(Y-ﬁ—Ym) axcj

Then
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. &

where

V'o’ﬁc , V:vz |
are the velocity constituents of pulsations in a free jet in
the direction of the.axes of a Cartesian coordinate system X,
YV, z, respectively; Y is the distance from the nozzle exit

section to the barrier; Ys is the distance from the barrier to
the cross section in which the effect of the barrier on the

flow is. negligible (as per [12]), Y, ~ da; where d_ is the

diameter of the nozzle's outlet section; VC is the free jet
constituent normal to the barrier (it is described by
Schlichting's profile); x is a constant (as per [20], x =
0.0256).

Equation (2.10) assumes a zero value for pulsation energy
at the axis and outer edge of the jet, which corresponds to
reality for small distances between nozzle exit section and
barrier Y. As Y increases, the equations for E_ suggested in
[22] are preferred

0,22v2:

= 22V 2.11)
E=y—vod. (2.11)

Upon impingement of a plate, pulsation.energy changes in the _
area where the jet interacts with the plate (outside the limits
of the flow/plate mixing layer). Therefore, (2.10) or (2.11)
may be used only in the first approximation as the boundary
condition for pulsation energy at the outer edge of the
boundary layer.

Boundary conditions on the plate's surface follow from the
equation for fluid adhering to that plate at y = O0:

4

v,=v,=E=0, y=0. (2.12)

We seek the solution for v, Vyr E given the well-known

law of change in 1 in the form



3(m—1)

/Vv—er/v2< D" T fo

m==]

. 3m—3
'vy/V‘E;_ v( 1)m+l(3m-—l)t 2 fm_[ (2.13)
i ’ m=l
Taking
Ely ViR~ eo)=Ee~ (2] ~F7 0,
where
y e X—b
FO=01-0), r=5—,
the solution for E takes the form
| 3m-3 ' 2
9a2 G(C) [2( m+xc 2, qu]" (2.14)
=\

m
equations for vortex transfer and turbulent pulsation energy

where fm; S are functions of J subject to definition from

e e Al
. 1 ,4\2
6=t/ -5+ 30
- The last function is present in the form /168
LOO =14 AT + A0+ AL+ AT AL AL AT
where A, = -0.4; A, = -0.78; A; = -0.392; A, = -0.0395;
Ag = 0.2231, A, = 0.3033; A, = 0.0061, etc.

After substituting (2.13) and (2.14) into (2.3) and (2.7),
equation coefficients with identical degrees of ’ we obtain a
system 2m of ordinary fburth-degree differential.equations.
Boundary conditions for functlons fm; Sm follow from
conditions (2.9)-(2.12) when yﬁ7’ 0 and yYY/V =9°. The
system of equations obtained in this way was solved numefiéally
using the Runge-Kutt method on a BESM-6 computer with an

accuracy of 10-5 by sequential approximation. The number of

17



Vg . - Fig. 5. Profiles of longitudinal

T 1 v
a8+ 32 average velocity in the boundary
‘w— .554 - layer of a plate when a subsonic
flow impinges upon it along the
o4t ’
_ S normal: 1 - = x/r = 0.1; 0.2; 2

02 - 0.3; 3 - 0.4; 4 - 0.5; 5 - 0.6;

y\/'F_; I‘ r &~

1 L : 1 ' ] 0.8;6"' 0.7~

Cr Tw
2 T Pig. 6 tribut: .
006} : 1g. 6. Distribution of friction
. 1 - over the surface of a barrier when
- ooz . . . .
a subsonic jet impinges upon it
b,008- - along the normal: 1 - Current
2 L ' .
0,004 analysis; 2 - data from [109] with
l- i I- |t ‘ X = O~ '

approximations is determined from the condition

Iem.(éoy t+ 1) '—em (Oov t)'<a= .10—4’.

where Gm = £ or Sm; t, t+1 is the number of

approximatiogs;'t is the given accuracy with which the boundary
conditions are fulfilled at )r{§327~7c». Additional bouﬁdary
conditions required to begin calculation were found with

" Newton's method to satisfy boundary conditions for fm; Sm at

yNY/v¥*with given accuracy €.

Figures 5 and 6 present the results of calculation with the
following raw data: V, = 20 m/sec; v = 1;5'10-5
m?/sec; d, = 10 mm; ¥/d_ = 8; ¥ = V_/d_ [21]. The
following approximations were used in calculation: 1 = Ky, K =
0.4; 0= 1.7; ¢ = 0.15; c, =‘0.66. Equation_(2;10) was
used as the boundary condition for pulsation energy at the
outer edge of the boundary layer. .

Review of these gréphs shows that velocity profiles (fig.

18



5) in various cross sections along the plate are typical
profiles_fof~the turbulent boundary layer when the pressure
gradient for the exterior flow is negative. The boundary
layer's thickness initially drops as it moves away from the
stagnation point, then increases. Maximum thickness
corresponds to the cross section with maximum pulsation energy
at the outer edge of the boundéry layer. The solution shows
that exterior jet flow turbulence has an effect on flow in the
boundary layer throughout the subject area, including the area
~around the stagnation point. Friction at the plate (fig. 6)
quickly increases due to the negative pressure gradient in the
exterior flow, then decreases near the jet boundary due to
dissipation effects. One might note the fact that friction at
the plate for. this type of turbdlent flow-plate interaction _
increases the corresponding figure [19], obtained if the effec
of the turbulent jet on flow in therboundary‘layer around the
~ stagnation point of the plate, is dieregarded by a factor of
1.8.

List of symbols used: X, y, x -- axes of the Cartesian

coordinate system; 1, lT,
for temperature, for the i-th component of the mixture; é, 61

1; -- mixing path, mixing path

-~ boundary layer and laminar sublayer thickness; b -- the
boundary of the core of constant velocities for a free jet; r
-- the free jet's boundary; Y ~- distance from the nozzle exit
section to the barrier; Y =-- distance from the barrier to the
cross section at which the effect the - barrier has on flow is

negligible; Ver V v, -- components of velocity toward

| y' "z L s s
axes x, y, and z averaged over time; Vwg, Vvl V.

root-mean-square pulsations of velocity components v v

xl YI
v, i U, V -- velocity components toward X and y on the outer
edge of the boundary layer; v, -- dynamic velocity; & --
turbulence intensity; Y --.velocity gradient at the stagnation

point of a flat barrier set along the normal to the jet; p, p
-~ density, pressure; T -~ friction stress;
My /ﬂp’/Lef - coefficient for dynamic viscosity, turbulent

t
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viscosity, effective viscosity; E -- turbulent pulsation energy; m==y/s;

§=1,/V; (=(x—b)fd; H="8*3** K,K,-- universal constants in (1.3);
B=)yoss Bo -- constant in Klauzer's equation; A, B --

coefficients in the breakdown of T/Tw (1.14); Cpr C, ~~

constants in (2.1); x -- constant in (2.10); fm' S, ~-

functions of y defined from (2.7) and (2.3); t -- approximation
number; PrT, Smg ~~ Prandtl's, Schmidt's turbulent

number; ¢ -- Prandtl's turbulent number for turbulent pulsation
energy;-ReT - Reynqlds number for turbulent pulsations;

5ij -- Kroneker's tensor.

Subscripts: i, j, n =1, 2, 3;'m =0, 1, ¢eeep, 3 a --
parameters at the nozzle's exit section; ¢ -- parameters in a
free jet. ' '
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