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I am going to describe as best I can What happened during the impact of the

C.I.D., as well as discuss the planned versus the actual impact.

The scenario that we were attempting to conduct is identified on figure i. The

scenario here represents almost a year or year and a half of negotiations among the
project participants. There was a lot of interest in how this impact would take

place. The aircraft manufacturing industry and the participating government organi-

zations all had input to the desired scenario. We were changing this right up to

the last week prior to the C.I.D. mission. The FAA knew that they wanted a survivable

accident. In order to do that it seemed clear that we needed to have the landing

gear retracted so that the fuselage would not fracture aft of the wing because of the

high sink rate. The longitudinal velocity and gross weight were relatively easy to

achieve. The difficulty came with the longitudinal impact window. That was primarily

driven by the crashworthiness people wanting to have 75 milliseconds of time after

ground impact, but prior to impact with the wing openers. The AMK people did not
want the airplane to land too long and therefore be going too slow by the time that

it impacted the wing openers. So the last change that was made to the scenario was

the addition of 50 feet on the longitudinal envelope. The concern was that we would

not be able to impact the airplane that precisely with the control and guidance
system we had. In fact, that did turn out to be the case.

The approach to accomplish the objectives was to remotely control the vehicle to

an impact site prepared on the dry lakebed at Edwards as depicted in figure 2. We

utiliized many of the systems that we had utilized in the remote control of the HiMAT,

DAST, and spin research vehicles that we had flown remotely at Dryden previously. The
control system that was developed is illustrated in figures 3 and 4. The airborne and

the ground portions of the control system are respectively depicted. We primarily
used the autopilot that was in the airplane (Bendix PB-20) to provide control of the

airplane. In addition to the control functions that the autopilot performed it was
necessary to mechanize several housekeeping functions to actuate things like flaps,

landing gear, shutting the engines down, and so forth. The system had a separate

and independent terminate system that had the capability of causing the airplane to

dive into the ground if we were to lose control of the vehicle through the single

string autopilot and airborne control system. The ground-based system had almost

a totally dualized control capability. It had dual computational capability going

into the ground-based cockpit. Several radars received the data and brought it into

the ground computers so that it could be processed and displayed to the pilot. The

system had a dual transmitting capability up to the airplane. Figure 4 also shows

the independent ground-based terminate system. Basically the control concept was

single string with the terminate safety relief in case of loss of control through the

single string system.

Having a terminate system required a sterile area in which the airplane could be

terminated and not impact any property or lives. Figure 5 depicts the sterile area.

The photographers had to be located outside this sterile area, which made their task

more difficult. The terminate profile was identified and we knew that if we

terminated the airplane anywhere along the flight path, that it would impact in a

sterile area. The airplane took off on lakebed runway 17 and flew the profile.

There was no go-around accomplished on the C.I.D. mission so the flight profile was

as shown. Figure 6 illistrates the crash site. A rockbed 1200 feet long and 300

feet wide of coarse railroad gravel was laid to provide a friction ignition source.
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An aiming fence was prepared to enable the pilot to have better guidance longi-

tudinally. Figure 7 depicts the wing openers that were installed to open the wings

after impact.

Figure 8 summarizes the manned flight development of these systems. The airplane

was flown 14 times with a crew on board. The development flights totaled about 30

hours of flight time. About 52 percent of that time was devoted to RPV control

system development. The airplane accomplished 9 takeoffs and 13 landings under
remote control and about 69 approaches to the C.I.D. site down to altitudes between

150 and 200 feet. That was the lowest altitude from which a safe go-around could

be effected since the landing gear was retracted for the actual impact. The day of

impact timeline is shown in figure 9. It looks like a 9:13 takeoff time is pretty

leisurely, but we were actually out there about 4:00 in the morning preparing for

this. The mission from brake release to impact was something on the order of 9

minutes with a very short interval of time between the initial impact of the no. 1

engine and the fuselage impact. The telemetered data stayed on for a significant

period of time after the impact and total data failure occurred at 09:22:12.8.

The weight and balance for the C.I.D. mission are shown in figure I0. The

mission used 8000 pounds of fuel during the flight profile. The fuel used was

obtained by integrating the fuel flow meters. All of that fuel came out of the

center wing tank. All the fuel boost punps were on so the center wing override

boost pump was predominant. The airplane had 76,000 pounds of AMK on for the final
mission.

Figure Ii shows the wreckage distribution. This figure was provided by the

FAA's Accident Investigation Team. It shows that the airplane impacted fairly close

to the center line. Several areas of impact definition are still confusing and I

will address that a little bit later. The airplane slid into the wing openers with

a relatively large skew angle and then debris scattered throughout an area about
1500 feet long. The airplane came to rest with the right wing over the left side

of the fuselage.

The data that has been obtained on impact is compared with the goals set out

prior to the impact on figure 12. The actual sink rate was very close to the desired

sink rate. The airspeed was right on. The fuselage hit 281 feet lone of the impact
envelope and the wing hit 410 feet long. The data showed the lateral deviation was

34 feet to the right of the centerline. The roll attitude was the variable that was

probably the furthest off; it was -12 ° rather than the desired wings-level attitude.

The heading angle we have not totally defined vet. We are trying to get some

additional photographs to enable us to evaluate this.

Figures 13a, 13b, 13c, and 13d are a sequence of _hotographs that show the

airplane just prior to impact. They show the no. 1 engine impacting first and then

the fuselage. It is interesting to note that the engines on the left wing are really
distorted.
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• REPRESENTATIVE OF: A SURVIVABLE ACCIDENT

• CRASII: AIR-TO-SURFACE; FINAL APPROACH/LANDING, MISSED APPROACH,
AND/OR TAKEOFF ABORT

• AIRCRAFI" CONFIGURATION: LANING GEAR RETRACTED, FLAPS, SPOILERS
(AS REQUIRED), SYMMETRICAL/STABILIZED

+3
SINK RATE: 17 -2 FPS • IA3NGITUDINALVELOCITY'-- 150 +_' KNOTS_

L_

m GLIDE PATH: 3.3°TO 4.0 ° • GROSS WEIGHT" 175-195,000 FOUNDS

FI_d'_GIBLE AMKOBSTRUCTIONS NOSEUP: +I ° + 1°

-_'_" lj'_i_ , /--_ i-'--III
IMPACT GOAl.S: AMK--W1NG TANK RUPTURN, 20-100 GALl,tONS PER SECOND

{SINGLE [_INT RUPTURE), 4-5 SECONDS EXPOSURE WITH POSITIVE
AMK IGNITION, SLIDE-OUT TO I00 KTS
CI_J_.SHWORTHINESS--SURVIVABLE IMPACT, MAINFrAIN FUSELAGE
INTEGRITY, VERICAL IMPACT PULSE (I SECOND), LONGITUDINAL
ACCELERATION DATA

Figure i. Planned CID impact scenario.

Figure 2. CID technical approach.
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• _

,_1 Engine kill (4) H O

I X=Removedl=lplug rl Fire bottle (4) H

/y Lower antenna Terminate Main brakes I

command Throttle k
I 3, 4, and 5 command I1) Single throttle command

Terminate command 6 Disable O

Terminate Terminate Stabilizer autotdm/ _ Triplex antenna _

l I BendixPB'20D _ Elevat°r
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Uplink Rudder commands

/ command Main t L__

electric Mode select*
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(stab.)
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signal 1. Drive horiz, stab. max T.E.D.
Plug-in funct. 2. Retard throttle

(not a switch) 3. Kill engines
4. Lower gear

"Mode select 5. Apply brakes

For RPV flights this will be 6. Rudder hard over T.E.R.

in glide path/auto position. Disable switches are provided

for manned flights

7. Pilot disconnect switch

Figure 3. CID airborne RPV control system.
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__ _ Telemetry Decommutation | cmds. Idecommutation computer

I - I Relay box I control law
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relay boxare singleunits

Figure 4. CID ground-based RPV control system.
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B_Ff_er Bou'ndary_
TerminateBouncTa_-_
BufferAltitude. | ',5100F + MSL
TerminateAltitude,

i -5300F +IMSI. _

Figure 5. CID impact profile.

Figure 6. CID crash site.
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Figure 7. CID wing opemers.

* 14 manned flights flown

- Total flight time 31.4 h

- Total RPV time was 52.2 percent of
total

- 9 RPV takeoffs and 13 RPV landings

- 69 CID approaches to altitudes be.
tween 150 and 200 ft

Figure 8. CID manned flight summary.
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1. BRAKE RELEASE 09:13:12

2. INITIAL ROLL 09:13:16.8

3. ROTATION 09:14:21.5

4. LIFT OFF 09:14:24.5

5. GEAR RETRACTED 09:14:48.5

6. PUSHOVER TO FINAL 09:19:46.5

7. ENGINE NO. 1 IMPACT 09:22:10.97

8. FUSELAGE IMPACT 09:22:10.99

9. PCM POWER FAIL 09:22:11.00

10. TOTAL DATA FAIL 09:22:12.8

Figure 9. CID mission timeline.

PRE ENGINE START GROSS WT 200,455 LBS

C.G. 22.6% MAC

FUEL USED FROM C.W. TANK 8,072 LBS

IMPACT GROSS WT 192,383

C.G. 24.2% MAC

76,058 LBS OF AMK WAS LOADED FOR THE CID MISSION

Figure i0. CID missionweight and balance.
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Beginning of __T odemollshed
_Nav. Light Pole rock surface -

I *intact :hino -Striker*(Tomahawk)

J ?demolished

: I. i / |! ] , j.

- " -- " ,
• II . /

_ _ ' -- -_ I " _ , ,II(W M ,_*-* 1_oom 12oo" 11oo" 1_o" ooo" _ r_" _ _o" 2o__ loo"

AIRFRAME COMPONFNT_ ENGINE COMPONENTS '_] DAI"UMPhoto

1. Engine Lewes Cowl 21. Pylon Pert 1. Fuel degrader piece 26. Engine Oil Tank St. 7th Stage Comp. Spacer reference

2. Engine Cowl 27. Engine Cowling 2. Gear box section 27. Tlch Generator 52, Thrust Reverser Housing pole
3. Engine Cowl Segffl0nt (2"x2") 2/I. Engine Cowling 3. Section of reverser 21 Turbine Rear Bearing Sd'pl. 53. Igniter Unit
4. landing Gear I%eer 2_. Lower Fuselage Structure 4. DC Armature 2S. Filter 54. Pressure Switch

6, Engine Cowl 30. landing Gear Door I?) 5. Reverser Cascades 30, Reverser Act. Track 56, Nose Cone

E. Engine Strut Tra_tmg Edge 31. Heat Exchanger E. DC Generator 31. Engine Starter 5ii. Roller Bearing Cage

7. Engine Cowl Segment (3',3") 32. Engine Inlet Cowling 7. Reverser Actuator 32. CSD Oil Tank 57. No. 2 Engine
g. Cowling 33. Door E. 12" Section LPC blades 33. Oil Filter M. Fuel Control Shaft

9. Engine Cowl Segment iE*-3_6') 34. Fire Bottle S. Tach Generates 34. Engine Fuel Control 5S. No. 1 Engine
10. Engine Cowl Segmlmt )2"xT) 38. Tube Structure 10. Engine Starter 35. Oil Cooler Care E0. Constant Speed Drive Unit

I1. Not Identified 34. Engine Inlet Cowl 11. Dil System Comp. I_ Line 35. Engine Fuel Control 81. lit Stage Outer Shroud/Vanes
12. Not Identifled 37. Air Conditioning Heat Exchanger 12. Reverser Actuator 37. Slarlel" Housing 62. Vine Section

13. Engine Cowling Door 31. Fire Bottle 13. Reverser Clamshell Door 38. Engine Oil Regulator 63. No. 1 Engine LPC Sect.
14. Cowling 39. Fuoelage Keel Beam 14. Oil Cooler 39. 7th Stage Comp. Dish E4. Thrust Reverser Door

lS. Engine Cowl Segment 13",4') 40. Nose Cowl 15. Exhaust Duct 40. Fuel Pump _. Ignition Unit
16. Engine Cowl legmant (4':4'| 41. Door 16. Oil Pump 41. 10 inch Staler Segment 66. Inner Shroud/Vane Sect.

17. Control Surfs(:* (?) 42. Engine Pylon 17. Inlet Pressure Transducer 42. Ignitor Boa ET. Tachometer

18. Cowling 43. Landing Gear Door 18. Od Tank 43. Engine Starter 68. No. 4 Engine LPC Sect+
19. Engine Dueling 44. Heat Exchanger 19. EPR Transmitter 44. Generator 69. No. 4 Engine HPC-Turb
20. Engine Cowling 4_. Pylon Fairing 20. Oil Presser Switch 45. Oil Pump 70. CSD and Generelor

:1. Cowling 44. Right Wlnl Section 21. CSD Housing Segment 46. Generator 71. Fuel Pump
22. Cowling 47. Engine Inlet Cowl 22. EPB Transmitter 47. 7th Stage Dish Rim/Slides 72. CSD and Generate#

23. Pylon 48. Tire 23, Ignltar Unit 48. Generator Winding 73. 17 pisces Blades _ Vanes

24. Throttle Linkage 4g, Tire b Wheal 24. Igniter Unit 49. Compressor Blade Sag. 74. No. 3 Engine HPC/Turb

:r. Lower Fuselage Antenna Panel MISCELLANEOUS 25+ Engine Exhaust Section EO+ Generator Case _. Oil Pump Housing
_S. Oil Tank

1. Sttlker Polo

2. Light Pole

Figure ii. CID wreckage distribution.
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THE TARGET CONDITIONS IN TERMS OF DESIRED AND ACCEPTABLE RANGES,
TOGETHER WITH THE MEASURED VALUES, ARE AS FOLLOWS:

DESIRED ACCEPTABLE MEASURED

SINK RATE (FPS) 15-17 15-20 17.3

LONGIT. VEL. (KTS) 150-155 145-155 151.5

PITCH ATTITUDE (DEG) I 0-2 0

LONGIT. DEVIATION (FT) -75 TO +75 -125 TO +75 -128 NOTE I
OR

-410 NOTE 2

LATERAL DEVIATION (FT) -15 TO +15 -15 TO +15 +45 NOTE I

ROLL ATTITUDE (DEG) -I TO +I -I TO +1 -12 NOTE 2

HEADING ANGLE (DEG) -I TO +I -I TO +I NOTE 3

NOTE I. MEASURED AT A POINT WHERE FUSELAGE MADE INITIAL CONTACT.

NOTE 2. MEASURED AT POINT OF INITIAL GROUND CONTACT (WHERE
NUMBER I ENGINE IMPACTED THE GROUND).

NOTE 3. OVERHEAD PHOTOS ARE NEEDED TO DETERMINE VALUE.
PHOTOS NOT YET RELEASED TO NASA.

o ASSUMED AIRCRAFT WOULD BE STABILIZED AT IMPACT.

o AT 200 FT THE ClD PROFILE WAS NOMINAL LONGITUDINALLY,
OFF NOMINAL LATERALLY.

Figure 12. CID actual impact scenario.
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(a)

(b)

Figure 13. CID impact.
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(d)

Figure 13. Concluded.
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