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CHAPTER I

INTRODUCTION

Nickel 'base single crysial superalloys, because of their superior
high temperature properties, have attracted considerable interest for
use in gas turbine engines. The initlal development. of‘. these alloys as
turbine blade and vané materials began in the 1960's at Pratt and
Whitney Aircraft with the alloy PWA 1409 which is the single crystal
version of Mar-M200, [1]-[5]. Since that time a variety of similar
alloys have been developed, both by Pratt and Whitney and by other
aircraft engine companies. These include the Pratt and Whitney alloy
PWA 1480, the AiResearch alloy Mar-M247 and the General Electric alloy
Rene-N4, which i{s the alloy of interest in this research.

Durihg the manufacture of single crystal turbine blades the [001]
erystal orientation .13 the natural growth direction. The [001] axis s
parallel ﬁo, the span of the blade which 1s also in the diréction of the
centrifugal loading. At this orientation considerable improvement in
creep and r.atigue resistance is obtained over cénvehtionally cast
turbine blades. Thgre 13 some variation in the [001] orientation from
one blade to another due to the manufacturing process. Thg transverse
orientation of the cr'ystai is generally not co_ntrolled, but it can be
controlled ﬁy using a seed crystal. At the present time it {s not
possible to adequately evaluate the benefits of controlling the
transverse orientation.

One of the basic needs is the development of better mechanical

analysis methods for use in the design of single crystal engine
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components. Specifically, it is necessary to develop a model to predict
the inelastic constitutive behavior of the material and to inéorporate
the model into a general purpose finite element code. The purpose of

this research is to satisfy this need. Presented in this study is a

constitutive model for Rene Ni at 760°C and the implementation of this
model in a nonlinear three dimensional finite element code.

1.1 Alloy Chemistry and Structure

Rene N4 was developed by General Electric specifiéally for use as
a turbine blade and vane alloy. The nominal chemical compositions of
Rene N4 and PWA 1480 are presented in Table I, along with the two
specific compositions examined in this study, References [6] and [68].
The elements C,B, and Zr which are typically included in polycrystalline
high temperature, nickel base superalloys for-the purpose of
strengthening the grain boundaries are omitted.

All of the modern single crystal materials are two phase alloys

with a large volume fraction of Y' phase. The Y' precipitates have L12

type crystal structure and are interspersed in a coherent face centered
cubic Y solid solution, Figure 1. The strength of the alloy {s a
function of the Y' size and the percentage of Y', (71, [151.
Experimentally it has been determined that the peak creep strength is
achieved with a volume fraction of Y' of about 60%. In high volumé
fraction Y' alloys deformation‘must occur by shearing of the

precipitates. Much of the behavior of the alloy can be explained con
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this basis. As a result, considerable research has been devoted to

crystals with L12 structure, (8] - [14].

TABLE 1.

Composition and Heat Treatment of Rene N4 and PWA 1480

Element, WT. %

Al TL { Ta | Nb | Cr | MO | W Co c B r

3RENE NY 3.7 lu.2 Ju.0 | o.sl9.25|1.5 l6.0 {7.5 1 - | - -
NOMINAL -
[
RENE N - [3.77[4.24(3.96( 0.5]9.26[1.60{5.88{7.53] - | - -
COMPOSITION A
d
RENE N4 (3.6 4.6 [u.1 | o0.6({8.7 {1.6 [6.0 [7.4 ] - | - -
COMPOSITION B
Dpwa-11480 5.0 (1.5 12| =|10! -Is.0l5.0| - |- -

34eat Treatment: 1260°C/2h/gas quench + 1080°Cc/4n/air cool +
900°c/16n/air cool.

bHeat Treatment: 1288°C/4h/air cool + 1079°C/uh + 871°C/32h.
Cpctual composition for specimens reported in References (6], [37].

dActual composition for specimens reported in Reference [68] and
designated in VF 317.
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FIGURE 1. MICROSTRUCTURE OF FULLY HEAT-TREATED RENE' N4
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1.2 Mechanical Response of the Alloy

Elastic strains are associated with crystal lattice distortions
and are fully recoverable whereas ilnelastic strains result from the
movement of atoms within the lattice and are not recoverable. The
effects of inelastic strains on the elastic properties are assumed to be
negligible.

Rene N4, as well as other single crystal -alloys, exhibits cubic
symmetry in the elastic range, Reference [78]. There are three
independent elastic constants and in the principal material directions

the elastic constitutive equation is written as

B 1 v v =

€rq) £ g g 0 0 0 f“rﬁ

e, | -y 1l .32 9 o o o

22 E E E 22

e - A p L

.Z 33 E E E 33 { ° :

\ 0 0 = 0 o << >.

€23 Q 26 923

1
531 ‘ 0 O 0 0 3G 0. 031
| 1

\&12) L 0 0 0 0 0 ZF | 2y

The components of the stress and elastic strain tensors are denoted by

and €,,. Since the elastic modulus; E, shear modulus, G, and

%13 13

Poisson's ratio, v, are independent elastic constants the terms of the
compliance matrix depend on orientation. Rotatioﬁ of ;he elastic
compliance to another orientation can fully populate the matrix. For

example, rotation about the 3 axis gives shear/normal coupling,
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Lekhnitski coefficients and varigtipns<1n the rotated moduli E', G' and
v'! as shown in Figure 2.

The 1inelastic response of single crystal materials is quite
different from the behavior of polycrystalline nickel base superalloys.
The yield stress of single crystal alloys is a function.of the material
orientation relative to the direction of the applied stress. They also

exhibit a significant tension/compression asymmetry in ylelding. Figure

3, [15] éhows the yield stress of PWA 1480 at 593°C as a function of
orientation along the [001] - [011] boundary of the standard
sterographic triangle for tension and compression. The
tension/compression asymmetry is negligible near the (111] orientation.
Further, the orientation dependence and tension/compression asymmetry
decrease as a function of increasing temperature above a critical
temperature. "As an example, the vériation of yield stress for PWA 1480
at three orientations in tension and compression for a range of
temperatures is shown in Figure 4, [15]. 1In creep, at lower strain
rates, single crystal alloys also exhibit orientatién dependence even
though the deformation mechanisms are expected to be different.

Other observed behavior is similar to that seen in isotropic
nickel base superalloys. These materials exhibit both strain rate

sensitivity and cyclic hardening. Shown in Figure 5, [17] is the cyclic

stress strain response for PWA 1480, 871°C, at different strain rates in

the [111] orientation. An initial stress strain hysteresis loop as
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compared to a loop after cyclic hardening is shown in Figure 6, [18],

for PWA 1480 at 760°C in the [123] orientation.

1.3 Constitutive Modeling History

1.3.1 Continuum Mechanics Approach

A number of investigators have proposed anisotropic plasticity and
creep theories. The majority of these are based on a mathematical form
similar to.yield surface plasticity theory for isotropic materials, [19]
- [29). Material anisotropy is introduced by includiég an anisotropy
matrix in the yield function and kinematiec hardening is modeled by
utilizing a back stress tensor or a displacement of the yield surface.
Isotropic:hardening i{s accounted for with a chénge in yield surface
size. A recent modification of this approach involves using a unified
congstitutive equatioh while retaining the basic mathematical structure
for the flow law but without an explicit yield surface [38], [49]. 1In
order to demonstrate the general features of the approach {t is useful
to summarize one of these theories as an example.

Lee, Zaverl, and Shih have developed an anisotropic plasticity and
creep theory that successfully predicts many of the features of the
inelastic response of Zircaloy, (23], [(24], [26], and [30]. The yield
function is an extension of Hill's work [28], and is given by

2

M (o ~a, Y(o,~a,) - k™ =0 o v (1.2)

13 7%

in a six dimensional stress space, 3. The anisotropy matrix Mij
describes the variation of yield stress with orientation. The parameter

k defines an effective yleld surface size and the back stress a,

10
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describes the initial tension/compression strength differential and

subsequent kinematic hardening. All of the parameters, k, ai’ and Mij

are functions of the plastic strain increments. The flow rule,
- S (1.3)

1s a generalization of the Prandtl-Reuss equations for isotropic

materials.The effective stress o is defined by

-2
¢ = HIJ(U -a )(0J J) _ ‘ (1.4)

and the effective plastic strain increment is defined by

-

=P *= P P
(de' ) = Mijdei deJ (1.5)
S
where M1J is the generalized inverse of Mij and the generalized

deviatoric stress {3 given by

S, =2 M ) (1.6)

1 3 My (cj-aJ)

To extend the theory into the creep regime an effective creep

strain rate Ec is assumed to be a function of the effective stress 3,
defined by Equation (1.4), as well as the temperature and shear
resistance 1. The shear resistance i{s assumed to be-proportional to k.

The flow Equation (1.3) is modified slightly to become

(o]

(.n

s
[}
N R
Qlimle
(2]

[oN
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where ef are the creep strain‘rate components and the total inelastic

strain {s then the sum of the creep and plastic strain components. A
method for the:evaluation of material pa;ameters has been established
and the calculated and experimental response of Zircaloy 2 has been
presented in References [23] and [26]. The determination of the yield
function behavior requires load reversal tests and monotonic tension and
compréssion tests in the three principal directions of anisotropy. The
rate dependent material parameters are evaluated from load relaxation
tests.

A unified model that falls within the continuum mechanics approach
was proposed by Stouffer and Bodner [38], for initial or deformation
induced anisotropy. The approach, as summarized in Appendix A, was
investigated as part of the study for application to Rene N4. The medel
is based on transforming the anisotropic flow equation, when written in
a s;x dimensional space, into the eigenspace of the compliance (or
stiffness) matrix. This results in a system of six uncoupled scalar
flow equations in the compliance eigenvaldes which has some advantage
for computation. The major disadvantage is'that.the transforamation
betwéen the eigenspace and physical space depends upon the evolution of
material proﬁerties arising from the deformation and.is generally
unknown. Hoﬁever. as presented in Appendix A, it s possible to
determine this transformation exactly for various-symmetry classes
including cubic symmetry. The results in Appendix A show that once a

specific transformation is established; for example, for cubic symmetry,

13



the response will be forced to follow this symmetry class exactly for
all future deformations. Unfortunately, this condition appears to be
too restrictive. Relaxation of the symmetry restriction leads to
parameters in the eigenspace that are not physically motivated and
difficult to determine experimentally. Thus, it was decided to abandon
this eigenspace epproach in favor of an approach with material
parameters that are motivated by the physics of the deformation and
directly related to experiments.

The most significant shortcoming of the continuum mechanics
approach as described in both of the above examples is that the actual
deformation mechanisms are included in the theory only very crudely if
at all. This limits the predictive capability of the model outside the
range for which it has been calibrated. Another serious problem is
medelieg the plasticity, creep and fatigue interactions. Lee, Zaverl,
and Shih have made an attempt to correct this deficiency by assﬁming a
relationship between the shear resistance in the creep equation and the
yield surface size in the yield function. Finally, althouge not
discussed above, the current theories do not contain methods of
including temperature history effects. Current technoclogy is based on
evaiueting model parameters from lsothermal data at different
temperatures and then interpolating be;ween temperatures to determine
the response.‘ This does not aecount for a change in deformation
mechanism due to a temperature excursion.

The principal argument in favor of a continuum mechanics approach

is the relative numerical simplicity. For the purpose of implementation

14



in a finite element code it is somewhat less complicated and generally
requires less calculation than a crystallograpic approach.

1.3.2 Crystallographic Approach

Early.developments in this approach are attributed to Taylor [31],
Sishop and Hill [32], [33] and Bishop [34]. The application of the
crystallographic approach to single crystal nickel base superalloys
began with the work of Paslay, Wells, Leverant and Burck [35], [36], and
more recently by Shah [8] to the Y' phase of these alloys.

The crystallographic approach is based on identifying the active
slip planes and slip directions. The shear stresses are computed on
each of the glip planes from the applied stress. The slip .deformation
1s computed on each slip system and the macroscopic inelastic strain
rates or strain increments‘are then the sum of the éontributions of the
individualvslip systems. This approach 1Is computationallyintensive
since there are a number of slip systems to be considered at each point
in the body. Furthermore the response at the crystallographic level is
not necessarily.easy.to determine.

Thé classical constitutive assumption is Schmid's law in which it
i3 assumed that the slip on a particular system is a function of the
resolved shear stress on the slip plane in the direction of slip. This

assumpt ion, however, does not apply for L1, crystals in general or for

2
single crystal nickel base superalloys. More recently, Pope and others
[71-C123, [14]-(16], have proposed an extension to Schmid's law tha%

includes three components of stress. This approach, which is discussed

15



in Chapter 2, aphears to be successful in correlating the deformation
mechanism with several of the macroscopic anisotropic effects.

The principal advantage of this method is that a significant
portion of the model is based on the physics of the deformation
mechanisms. Presumably, this will enhance the predictive capability of
the model. Furthermore, as additional information is oﬁtained about
deformation mechanisms at different temperatures and strain rates the
local constitutive models can be modified to accommodate the new
knowledge. The major disadvantage of this.approach is that knowledge of
the metallurgy and the interface with mechanics must be understocd. A
less important objection is the Additional difficulty in numerically
implementing crystallographic models -in finite element codes and the
increased computational requirements.

1.4 Scope of the Present Study

The purpose of this research is to provide a tool for the
mechanical design and analysis of single crystal turbine blades and
vanes. This objective is achieved through the development of an
appropriate constitutive model and {ts implementa;ion in a general
purpose three dimensional nonlinear finite element code.

The important features of the nonlinear constitutive response are
to be modeled. These include the orientation dependent stress/strain
behavior and tension/compression asymmetry. The constitutive model must
also predict cyclic and creep response. Because of the extremely
limited data base, some important gspects of the material response have
not been modeled in this study. The most important aspects of the

16



response that need further investigation are the nonisothermal behavior
and the respodse of the material in a multiaxial stress state. Also of
concern and not currently included in the conStiﬁutive model is the
cyclic softening/hardening behavior and latent hardening due to
intersecting slip systems.

The consﬁitutive model has been developed using the
erystallographic approach.: The orientatlon and tension/compression
yleld asymmetry can be accounted for using the metallurgical models
developed in References [7]-[12], [(14]-[16]. The development of a
_ constitutive model from metallurgical concepts should provide a basis
for further development of both the mechanics and metallurgy associated
with single crystal technology.

The intent in developing a finite element prograﬁ is ﬁo produce a
code that {s general enough to model a wide range of geometries and load
histories, flexible enough to easily modify the local constitutive
equations and at the same time efficient. The need to model general
three dimensional geometries lead to the.choice of the twenty noded
{soparametric sclid element. The code'efficien;ly and accurately
integrates the constitutive equations over piecewise linear load
historiesAusing an initial strain method with a dynamic time
incrementing procedure.- Because of the intended application, small

displacement and small strain measures are utilized.

17



CHAPTER II

DEVELOPMENT OF AN ANISQTROPIC INELASTIC CONSTITUTIVE EQUATION

The philosophy in developing the constitutive model is to produce
a systenm pt equations that i{s as simple as possible while still
describing the important aspects of the observed material response. As
a result of an extremely limited data base, certain effects that could
have been included are omitted rather than engaging in épeculation. The
effort in this report is primarily directed toward modeling isothermal
tensile and creep response with some hypothetical extensions to strain

rate effects, stress relaxation and initial cyclic response.

2.1 Observed Deformation Characteristics
Slip trace studies of single crystal alloys indicate that one or
more types of slip may occur under different temperature, orientation and

strain rate conditions. These include: A. (Octahedral Slip) slip on the

four octahedral planes in the three directions similar to the [T 0 1]

direction (see Figure B2, Appendix B); B. (Octahedral Slip) slip on the

octahedral planes in the three directions similar to the [1 2 1]

direction; anq C. (Cube S1lip) slip on the three cube planes in the two

directions similar to the [T 0 1] direction. The slip conditions
occurring during creep and tensile tests are examined for use in
development of the model,

2.1.1 Tensile Response

Recent metallurgical research in.the behavior of nickel base

single crystal superalloys indicates that the tensile response of these

18



alloys is controlled to a large extent by the behavior of the Y' phase

alone, [7], [15] and [16]. Thus, the response of L,, ordered alloys and

2
Y/Y'! single crystals are discussed together,

In uniaxial tests the critical resolved shear stress (CRSS), or
component of stress on the slip plane in the direction of slip required
for yielding, is approximately constant or increases slightly up to a

eritical temperature and is a function of orientation. Below this

critical temperature slip occurs primarily on the octahedral (1117 0
1] slip systems and significant orientation dependence and
tension/compre531on asymmetry is observed. Above the critical

temperature there is a sharp drop in the CRSS similar to the yleld

stress in Figure 4, cube slip, (010)[7 0 1] becomes mofe prominent, and
the iension/compression asymmetry i3 reduced, [16]. There are two
exceptions to this behavior. First, test specimens near the f111]
orientation exhibit cube Slip at all temperatures., Second, loading near
the [0 0 1] orientation is thought to prodhee only octahedral slip at
al; temperatures since thé resolved shear stfess on the cube planes s
zero.

2.1.2 Creep Response

The understanding of the creep properties and.the active slip
systens auring creep.in Y/Y' alloys 13 much less complete than the
tensile response. Only a limited number of studies have been reported
in the literature; however, a few important observations can be includgd

in this review.

19



Unlike the tensile yield response, the creep properties of ordered

'L12 crystals are much different than the creep response of the Y/Y'

alloys [69]. The creep rate of Y' is significantly higher than that of
Y/Y' alloys under identical conditions.

Some nickel base superalloy single crystals exhibit an incubation
period in addition to the usual primary, secondary and tertiary creep,

see Figure 7b [7]). The incubation period and pr;mary ¢reep are
attributed to (111) [1 2 1] slip. 1In single crystal Rene N4 at

temperatures from 760°F to 1150°C the response did not include an
incubation period similar to that in Mar-M200, see Figure 7 and 11.

In secondary creep at temperatures above the critical temperature

élip is inferred to oceur by (111) [1 0 1] slip [é]., However, cube slip
is considered to be present near the [111] orientation and absent near
the [0 0 1] orientation similar to the tensile response. These
deformation modes have been verified by transmission electron microscopy
(TEM) studies for PWA 1444, [63] and in addition dodecahedral slip,
(011) planes, was observed for loading in the (001) and (011)
directions. In this study a tension/compression asymmetry was observad
and typical response showed a éreep rate that is higher in tension than
compression for a creep in the [1 1 0] direction. This response is
similar to the tension/compreésion asymmetry observed in the yield

stress.

20
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FIGURE 7. CREEP CURVES OF MAR-M200 CRYSTALS AT 760°C AND 690 MPa.
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2.2 Metallurgical Models

A major step in understanding this behavior was made by Takeuchi

and Kuramoto [10) in their study of Ni_Ga single crystals. They

3
proposed tﬁat the increase in CRSS up to the critical temperature and
non Schmid's law behavior is a result of cross slip of screw dislocation
segments from the octahedral to cube planes. The cross slipped segments
pin the dislocations and therefore increase the flow stress. They

further proposed that the cross slip mechanism is thermally activated

and {s driven by the resolved shear stress in the (010)[1 0 1] system.
However, their model did not fully explain the tension/compression

asymmetry or the orientation dependence observed in other L1, alloys.

2

An 1ﬁprovement in the Takeuchi-Kuramoto model was proposed by
Lall, Chin and Pope in [11]. 1In their theory the octahedral % [_-f 0 1]
dislocation is an extended dislocation consisting of two Shockley

partial dislocation pairs, % [21 1]+ [T 7 2]. 1In order to cross

o Y

ol

slip the pair must constrict into a single (70 1] dislocation. The

constriction 1s aided by a shear stress on the (111) plane in the

[1 2 1] direction. It is important to note that a shear stress in the
opposite direction extends the dislocation p'air and thus inhibits cross
slip. This effect is generally referred to as the "core width effect” t
and gives rise to the tension/compression asymmetry observed in these

alloys. VLall, Chin and Pope also proposed that the change {n flow
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stress AT(111) on the octahedral plane in the [T 0 1] direction, for

example, from a reference state at 0°K is given by

H
AT(111) = A exp T , (2.1)

where A 13 a constant, T is temperature, and k {s Boltzmann's constant.

The parameter H i3 a function of the resolved shear stress on the (111)

plane in the {7 2 7] direction, T and the resolved shear stress on the

The stress components T, and

(010) plane in the [T 0 1] direction, Tt 1

>°

t, are shown in Figures Bl and B2, By expanding H in a Taylor series

2

about the reference condition Ho, Equation (2.1) becomes

-H_ + V111 + V212 + ...

KT !

At(111) = A exp (2.2)

where V1 and V2 are constants.

In the orientations and at temperatures where cube siip is
dominant the orientation dependence and tension/compression asymmetry is
reduced considerably. Therefore, it is believed that Schmid's law can
be used to relate the slip rate to the resolved shear stress on the cube
planes. |

A major effort in this work is to recast the‘above results, both
experimental and theoretical, into the form of a constitutive equation
involving state variables that characterize the change in material

properties due to the deformation history. These results are valuable
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for determining the appropriate indebendent variables and functional
forms,
2.3- Kinematics

It is necessary to develop the kinematic equationé that relate the
shear stresses on the crystallograpic planes and in the directions of
interest to the stress tensor relative to the principal material axes.
The constitutive equations are_applied at the crystallographic level and
it 1s therefore necessary to also develop the relationship between the
crystallographic shear strain rates and the'macroscopié inelastic strain
rate tensor. The required stress and infinitesimal strain relations
were derived by Bishop in [34) and are summarized below. The sign
convention used in this rgsearch and the details of the calculations are
presented in Appendix B.

The relative rate of displacement of a point located at.x1 due to

8

a uniform shear strain rate Ye parallel to the a plane in the 8

direction is given by

y ‘a8 _a_ ,af
J
where ng is the unit normal to the a plane and 2:8 {s the unit vector in

the 8 direction on the a plane (no summation of repeated indices).

Summing for all planes and slip directions gives

u = Z Yasna x laB . _ (2.4

1 a8y NI

Applying the linear strain displacement relation
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. Jdu 3. . .
1,3
eiJ "2 3xJ * axi ' (2.5)

gives the desired relationship between the crystallographic shear strain

rates Y°8, and global strain rates éJ.
. 1 laB,,aB a ad_a
€y -ug 3 Y (% ny + 2J ny) . (2.6)

The stress vector o, on a plane a is given by

J
n . (2.7)
where °1J is the applied stress tensor in the principal material axes.
The local shear stress component in the B8 direction on the a plane is

given by

al (2.8)

af
T ) oJQJ .

J

Combining the above two equations gives

aB

af Qa
T = § PR 1J , (2.9)

the transformation between the global applied and local stress
components.

In summary, the constitutive model is based on separating the
total global strain at a point in a body into elastic and inelastic
components. The elastic strains are computed using Equation (1.1) and
the applied stress tensor. Inelastic strains are obtained by

integrating the inelastic strain rate with time. The inelastic strain
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rate 13 calculated by summing the contributioﬁs from each of the
crystallographic slip systems using Equation (2.6). The inelastic shear
strain rate on each of the slip systems is computed from the inelastic
cénsfitutive equations which aEe developéd in the remainder of this
chapter. In addition, the inelastic shear strain rates on the active
3lip systems are a function of the local shear stresses which are
compute#Vfrom Equation (2.9).

2.4 Inelastic Constitutive Equations

There are at least two separate flow equations required to

describe the tensile response of single crystals, i.e., cube slip and
octrahedral slip in the [1 0 1] direction. In addition dodecahedral

slip and octahedral slip in the [T 1 2] direction have been reported in
creep for some single crystal superalloys. Since no incubation period

has been observed for Rene N4 in creep at any temperature, it appears
that octahedral slip in the CT 1 2] directions may not be present. Creep
deformation is attributed to the immediate operation of (111) [1017] or

(001)LT 0 1] slip depending on orientation. Further, dodecahedral slip
has not been observed for Rene N4 in a recent study of tensile and

fatigue response, [6], [37]. Thus in this work it is assumed that only

cube slip and octahedral slip in the [T 0 1] directions are active, and
the model will be developed on this basis. |

In addition, there appear to be at least two deformation
mechanisms present. At the higher strain rates, such as in tensile

tests, deformation occurs by dislocations cutting the Y! precipitate.
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The deformation rate depends on the size and volume fraction of Y'. The
orientation dependence of the CRSS at temperatures below the critical
temperature depends on the core width effect and the cross slip
mechanism. The creep strength of Y/Y' alloys appears to be controlled
by the Y/Y' interfaces in the material. This explains the difference in
creep behavior of Y' and Y/Y' alloys. The activation energy during
creep is much higher than expected from a vacancy diffusion process.
Tien, et al [70], proposed that during steady state creep the presence
of Y! particlés leads to a dislocation network that éxhausts the vacancy
concentration. Deformation occurs by the less favorable process of
emitting and diti’u#ing interstitials, which is consistent with‘ the
higher activation energlesQ This model has been supported by many
observations as summarized in {71.

The modeling effort should include both the tensile and creep
mechanisms. In addition, it appears there shouid be a strong
interaction efréct since the dislocation network and Y' particles are
important in both cases. Unfortunately, there 1s very little or no
evidence available for the development of a model to characterize these
interaction effects. 1In the next two subsections a constitutive
equation for cube and octahedral slip is proposed.

2.4.1 Octahedral Flow Equation

The octahedral slip system is active for both tensile and creep
deformation, but the deformation mechanisms are different as discussed
above. The model for octahedral slip is proposed as the sum of two

components i.e.,
27



Ygg,r - (Yggr)1 + (che:’r)z . (2.10)
The first.component is used to characterize dislocation cutting of the
Y*' particles and the second is motivated by the interstitial emission
and diffusion mechanism. The two terms must be coupled to characterize
the effect of the dislocation network on both mechanisms. Equation
{2.10) 1is typical of classical models involving the use of both plastic
and creep strain components. The origin of this approach is clearly
bagsed on the physical motivation of two or more deformation mechanisms.
The thrust of the unified strain measure is to eliminate the need to
icent1fy the coupling between the two mechanisms. Unfortunately, many
of the unified models are reasonable for modeling plasticity or creep

but are not completely adequate for both. 1In the present study a

aB

coupling parameter 1s proposed in combination with the flow laws for Y1

and YSB that appears to be an improvement.

The functional form of the octahedral flow equations for YggT is
1

similar to the exponential form developed by Bodner et. al. for
{sotropic materials. This form has been used with success for a number
‘of materlals including isotropic nickel base superalloys a; high
temperatures, [391, T40], [50]°[60]. The Bodner flow equation was taken
from an expression for mobile dislocation velocity proposed by Gilman,

"611, [62) and is expected to capture the essential features of the
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response for Rene N4 at the higher strain rates below the critical
temperature. The form of the equation used in this study is

] zaB n
a8 _ 1
Yocr : D, exp )

1 af
T
aBl'

(2.11)

|« It

where Z?B is a state variable introduced to characterize the resistance

to inelastic flow. The parameters D, and n, are used to characterize

1 1

the limiting strain rate and the strain rate sensitivity. The
octahedral flow equation and state variable Z?B must also characterize

the orientation and tension/compression asymmetry propérties. Since the
form of the flow equation is similar to the Lall, Chin and Pope model

their results can easily be incorporated into Equation (2.11).

The functional form of the octahedral flow equation for Y°8

is
OCT2

taken in a form similar to Equation (2.11), 1.e.

. zuB n

a8 _ 2

Yoct, = Do exp b
2 Rt

2 af
T
aBI

(2.12)
|t

This form is selected because it is consistent with representationé used
to characterize thermally driven diffusion processes as well as mobile
dislocation velocities. Further, maintaining a similar structure allows

8 8

for the same interpretation of the state variables Z? and Zg ,which

should aid in establishing coupling between the two terms.

Combining Equations (2.10), (2.11) and (2.12) gives
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[ a8

8
. z 2% \n a
8 | 1 1 2 20 1
Yu =<D.exp |- (__ + D.exp| - (.——) (2.13)
0 1 8 2 8 8
e 1 Eid 1% Ead I

4 - -
The constants D1 and D2 are chosen to be 10 sec ! and 1 sec ! to allow

uncoupling at high and low strain rates. The first term is negligible
during creep and the second term is negligible during high rate tensile
tests. Both terms are active at intermediate values of stress or strain

rate. The constants n, and n2 characterize the strain rate sensitivity

and are determined independently. This is consistent with the observed

response of single crystal alloys [7]. The state variables Z?B and ng
include work hardening arising from the development of a dislocation

microstructure and include core width and cross slip effects.

The flow resistance at high strain rates, Zcxa is assumed to be

1 ’

similar to the Lall, Chin and Pope result, Equation (2.2), and is given

by
af af _ . aB af :
Z1 =2 * 9, V11 LN V12 T, (2.14)
af a8
where ¢, 1s the initial value of Z1 , Z (0) = 0 and v11 and V12 are

afB

constants. The parameter Z is a measure of work hardening and r?a and

a8

5 are the shear stress components associated with the core width

T

effect and the cross slip mechanism pr‘eviously discussed. The shear

8

a8 is on the same octahedral plane and is perpendicular to %5,

stress T]
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ag

1 is given in Appendix B. The

The sign convention used for ras and t

a
shear stress < 8

> is the magnitude of the resolved shear stress on the

cube plane in the same direction as TQB. The increase in flow

resistance due to work hardening Zae, is given by the evolution equation
798 . M1(vq--z"‘“):"‘gymB ' (2.15)

where M1 and H1 are material constants. The functional form of the

evolution equation involving inelastic work rate TBBYGB rather than

;ae alone is very similar to the form used in the Bodner model for
isotropic materials. A major difference is that there {s no recovery
term included 1n.Equation (2.15). Also absent is an explicit function
to model the effect of hardening due to intersecting slip systems. Even
though some theoretical work has been done on latent hardening due to
intersecting slip systems, [64]-[67], data to support the inclusion in

the constitutive model currently do not exist for Rene N4.

aB

The expression for the state variable 22

at low strain rates is

similar in form to Equation (2.14) and is given by

8 af

\'s ru Vo.T

Z;B- azaB . ¢2 - 211 . 2272 (2,16)
' V3J2 /3J2
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where V21 and V22 are material parameters associated with the shear

stress components,t?B and ng,and J2 is the second invariant of the

deviatoric stress tensor. Equations (2.14) and (2.16) are coupled since

8

the same work hardening term z?® appears in both equations. The

parameters a and ¢2 define the development of the dislocation structure

(hardening) at the stress-strain rate levéls assoclated with creep.
Equation (2.16) is valid for primary and secondary creep only. A
thermal recovery term may also be necessary at high temperature.
Tertiary creep is neglected because it occurs at strain levels beyond
the range of intérest for this study.

It is possible to include a component of kinematic hardening into

the model. Two values are assigned to each state variable, Zfs and Zfs,

corresponding to the direction of slip. Equation (2.15) is used to

- aB

calculate ZSD in the direction of slip. 1In the opposite direction the

hardening raté, Zc‘B

oD’ is given by

igg =q igg , : (2.17)
where q is a material parameter. Isotropic hardening occurs when q = 1
and kinematic hardening occurs when q = = 1. This form {s similar to
the system used by Bodner et al [38] for tension/compression response of

isotropic materials,
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2.4.2 Cube Flow Equation

Cube slip occurs in specimens where the loading 13 near the
{1 1 1] material direction and becomes increasingly important at high
temperature. Furthermore, Schmid's law is a good approximation for cube
slip.

The inelastic shear strain rate, YCUB

E’ on an a cube plane in the

B direction is formulated with two terms similar to Equation (2.10) for
octahedral slip and is given by

al\n aB
23 3 Zu il aB

+ Du exp | - x T (2.18)
[

|x%8]

Once again the constants D, and Du are the limiting strain rates and are

3

1

chosen to be 10“ sec ' and 1 sec-1 to allow separation of the two terms.

The constants n3 and n, reflect the strain rate sensitivity of the

af and zaB

material in cube slip, and 23 M

are the state variables that

include work hardening.
The evolution equations that account for the work hardening are
similar to that for octahedral slip except that the-oriéntation factors

are excluded. These can be summarized as

zgs - 0y * 208 (2.19)
and
238 -0, * pz®8 C(2.20)

where the evolution of Za8 is given by
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zaB _ zaB) TaB.‘,a.B

3° 2 oo (2.21)

- H3(W

where ZGB(O) =0 and w3 and M3 are determined from the high rate data.
The parameters ¢u and b relaté the hardening in the high rate and low

rate response for cube slip.
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CHAPTER III

EXPERIMENTAL DATA AND MATERIAL CONSTANTS

Most of the experimental data available for Rene N4 are from
tensile and creep tests with the spgcimens oriented_ in the [0 0 1]
material direction. Unfortunately, this is not particularly useful when
developing a constitutive model for a material that exhibits orientation

dependence and tension/compression asymmetry. The two temperatures at
which the best data base for Rene N4 i3 currently available are 760°C

and 980°C. 1In this study the temperature is limited to 760°C because-
the orientation dependence and tension/compression asymmetry are more

predominant and the repeatability of the data is better.

At 760%the stress—-strain response for several orientations in both

tension and compression, and fatigue response was determined by Gabb,

Gayda, Miner, and Voigt [6], [37]. Also availaﬁle at 760°é are tensile
stress-strain and creep data at three orientatbions for an earlier
version of Rene N4, designated as VF317, Reference}[68]. The slightly
different chemistry for VF317 may be the source of differences in the
observed response. ‘I‘ﬁe tensile response reported by .Gabb, Gayda, Minor.
and Voigt for specimens oriented in the [0 '0 1] was about .30 percent
weaker than VF317 in tension. Since the response characteristics are
significantly different for the two daﬁa séts it was not possible to
develop a single .set of material constants.for thg‘const}tutive model.
The Gabb, Gayda, Miner and Voigt d;ta were used to develop the
constants and test the model for octahedral and cube slip at high strain .
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rates in tension, compression and fatigue. The VF317 data were used to
develop the constants for octahedral slip at high strain rates in
tension and low stress levels in creep.

3.1 Rene N4 Cbmposition A Response

The tensile data reported by Gabb, Gayda, Miner and Voigt,
Reference [6], consist of seven tests at three orientations. The
specimens had a cylindrical gage section 19 mm long by 4.7 mm in

diameter. The tests were run at a constant crosshead rate with an

initial strain rate of about 2 x 10-& sec-1. Data recorded were load
and crosshead displacement. Plastic strain was estimated using the
offset from the elastic loading line and the specimen gage length.' The
resulting stress strain curves are shown in Figure 8.

It was confirmed by TEM analysis that slip in the [0 0 1] and

[0 1 1] specimens was in the octahedral system while cube slip was

observed with orientations near the [1 1 1]‘orientatiop. Tensiie axis
rotation was observed in the specimens tested to failure. The
variability bf the yield stres;_wiphiq a gryStal was small; however, the
variability between crystals was as large as 23%. This difference which
is attributed to the orientation and tension/compreﬁsion asymmetry is

typlcal of other single crystals near this temperature. However, at

980°C the orientation and asymmetry properties are much less important
and Schmid's law appears to be applicable, Reference [6]. Stresses

1

beyond yield increased initially and flattened out for the [0 0 1] and -

[T 1 2] specimens. The [0 1 1] specimen exhibited decreasing loads
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sharp serrations to about 5¢ strain. The serrated yielding, which is
observed in PWA 1480 and Mar M200, is attributed to the operation of a

small number of slip planes, typically one, two or four.

The fatigue response at 760°C reported in Pért II of Reference
{37], consisted of the monotonic yield points for specimens at six
orientations in tension and compression and first cycle hysteresis loops
for three orientations. The specimens had a ecylindrical gage section
15mm long by Smm in diameter. ' The control waveform was sinusoidal with
a frequency of .1 Hz. |

The tensile and compressive yield stresses at several orientations
are shown ianable 2. The [0 0 1] specimen had the greatest initial
yield in tension and the [0 1 1] specimen was strongest in compression.

Both specimens displayed significant tension/compression asymmetry while

the [1 1 11, (0 2 3] and [2 3 6] specimens displayed very little or

none.
The {nitial hysteresis loops for [0 0 1], [01 1 Jand (1 1 1]

orientations are shown in Figure 9. The [0 1 1], [1 4 5], (2 3 6]
and [0 2 3] specimens had serrated flow characteristics. All specimens
displayed slight hardening with continued cyecling which increased with
increasing strain range but was generally less than 10%. For all tests

the response stabilized well before half life.
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3.2 Rene N4 VF317 Response

The tensile data for Rene N4 VF317 at 760°C consist of three
specimens at three orientations. The specimens had a Codep coated
cylindrical gage section 18mm long by 3.3mm i{in diameter. The tensile

tests were run at a constant strain rate of 8.333 x 10-5 sec-1 to

inelastic strains of .2%. At .2% yield the extensometers were removed
and the specimens were ﬁulled to failure at a constant head rate of
.02117 mm/sec.

The response to approximately 1% strain, as shown in Figure 10,
displays considerable obientation dependence. Tﬁe stress increased
about 30% between the .02% yield stress and ultimate stress for all
specimens. Although no TEM work was done to determine active slip
systems 1t is reasonable to assume that cube slip is not active for
these orientations.

Tensile creep rupture tests were performed on Rene N4 VF317 at

760° for the same three orientations. The 3.175 mm diameter specimens
were Codep coated. A total of seven creep tests at three orientations
were conducted and the results are shown in Figure 11. Two of the test
at 620 MPa were terminated prior to failure. The reduction in area

ranged from 17% to 48%.
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FIGURE 10. TENSILE RESPONSE OF RENE N4 VF 317 AT 760°C.

42



0,094 LV LTE AA YN ANAYW 40 ASNOLSAY 43D °IT FUNOIA

- (S4y) FWIL

002t 008 Coov 0

|..“|\1....|....|nu.|._|
BdN 0C9

BdN SS9- / |
BdN98S

B
/ eqnggy |1 2IN0%®

BdNSS9 |
nnnnn o¥6 2ve 0]

-—— |O}}
100

T
o
P

- 06

% ‘NIVHLS

43



Note that the specimens in the LO 342 940] 6rientation were
stronger in the tensile tests and in creep than expected when compared
to the otheé data set or to PWA 1480 (Figure 3). The specimens at this
orientation were nearly as strong as the specimens in the [0 0 1]
orientation. The reason for this anomaly is not known.

3.3 Derivation of the Material Constants

The octahedral slip constants are derived from tests where cube
slip 1s not present, for example, the [0 0 1] and [0 1 1] orientations.
Conversely, the cube slip constants are derived from tests where
octahedral slip is not present i.e., [1.1 1] orientation. In addition,
the first term in the octahedral or cube flow equation is negligible in
creep and the second term isinegligible at high strain rates. When a
choice of orieﬁtations is avallable for developing constants the data
rfom the [0 0 1] orientation i3 used since it is the primary loading
direction in turbine blade applications.

Since the constitutive model is developed on the individual slip
systems it {s essential to know the relationship between the applied
stress tensor and local shear stresses and the relationship between
local slip rates and the global strain rate tensor.b To simplify this
task the kinematic equations in Appendix B were implemented i{n a
computer codé. For example, the shear stress components from an applied
stress of 100 MPa in each of four directions is shown in Table 3. The
local stress in every élip direction on each of the_octahedral and cube
planes is shown.’ The notation 1is described in Appendix B. Tﬁe stresses

in the (111) [1 2 T] system are used only for determining T, in the
44
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model, =

5 is determined from the(001)[1 0 1] slip system and 1 is

determined for either the (111)[1 0 1] or (001)[1 0 1] slip system
dependening on the active system.

For the purpose of developing material constants it i{s also
important to choose test orientations where the local stress and strain
rate on each of the slip planes can be determined. For example, a

load in the [0 0 1] direction will produce equal stresses on eight of

the (111) [7 0 1] slip systems and no stress on the other (111)[1 0 1]
systems or the cube systems. It {s expected that slip on all eight

systems will be the same. By comparison, a load on a [0 342 940]

specimen will have shear stresses in all of the (111) [1 0 1] slip
directions. Further, it is expected that these shear stress will
produce slip on more than one system and the 3lip rates are not expected
to be equal. Thus, the tests in the {00 1], [0 1 1] and [1 1 1] are
preferred to evaluating constants due to the uniformity of stress and
strain rate in the octahedral and cube systems. Table 3 also shows why
only octahedral slip is found near the [0 O 1] orientation (no stress on
the cube planes) and only cube slip is foﬁnd near the [1 1 1] direction
(dominant stress on the cube planes).

3.3.1 Flow Equation Constants

The octahedral and cube slip systems are assumed to have limiting

strain rates, D1 and D3. of 10u sec-1 in high strzin rate tests and the

limiting strain rate in creep, D is chosen to be 1 sec_T. Neither

2'
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data set contains creep tests near the [111] orientation that would
activate cube slip. As a result, it is not possible to evaluate any of

the constants associated with cube slip in creep and D,4 is set to zero

for all of the numerical exercises. The value 1(‘)’1l sec-1 has been

accepted as a constant for many materials except under extreme loading

rates. The value 02 = sec‘1 was chosen since creep rates are about

10-11 less than tensile rates.

The constants Nys Nos and n_ are all evaluated using essentially

3

the same method. To compute n,' two or more tensile tests at different

strain rates with the specimens in the [001] orientation are necessary.
Two or more _c_:reeb tests with specimens in the [001] orientation and at

different stress levels are required to determine n The evaluation of

2.

‘n3 can be accomplished with two or more tensile tests at different

strain rates with specimens oriented in the [111] direction. The
tensile tests are loaded under constant .strain rate conditions to
failure and the saturated values of stress are determined. The
secondary creep rates are used from the creep tests.

At high strain rates where the contribution of the creep rate term

is negligible, Equation (2.11) may be rewritten as

;cxe .
tn [&n ( gC’I‘> = n, in Z?B - n n 108 ' (3.1)
-
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aB

where Z1 is the fully saturated value at that strain rate. The [001]

orientation has eight equally active octahedral systems and YggT and rae

are easily calculated from the applied stress and the measured inelastic

e
strain rate. Wwhen %n | 2%n ) is plotted against &n <

1

aB

the slope

of the line will be - n1. Once n, 8

i3 known the saturated value of Z?
can be calculated from Equation (3.1) or the ordinate of the line.

The constants n2 and Z;B are calculated in a similar manner from

the secondary creep rates while neglecting the contribution from the

high strain rate term. The values for n3 and n, and the saturated

values ng and Z:B are obtained from tensile and creep tests using [111]

oriented specimens. The parameters Ny n2. n3 and n, are independent of

orientation and are also assumed constant for constant temperature. The

af

> depend on orientation.

values ZTB, and 2

Since the required tensile tests were not available for either of

the current data sets, the value for n1 was estimated from an analysis

of PWA-1480 data at 1600°F and 1800°F. The value for n3 was assumed to

be the same. Data wereavailable for the calcuiation of n2 for the

Rene N4 VF317 chemistry. Obviously the strain rate sensitivity
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predicted by the current set of material constants is at best an
estimate.

-3.3.2 Evaluation of Orientation Factors

The orientation dependence and tension/compression asymmetry of

the material in octahedral slip is characterized by the constants v11

and V12 at tensile strain rates and V21 and V22 in creep. The constants

can be evaluated from any three tensile tests at constant strain rate
(or any three creep tests) as long as the orientations and/or
tension/compression sense 1s different and cube slip is not involved.
Best results, however, are obtained if the orientations are not close
together and both ténsile and'compressive data are used. Testé close
together tend to magnify the experimental variability. 1In addition, it
is very helpful if the active slip systems are equally stressed as
explained earlier. An optimum set of tests is probably‘[objj in tension
and compression and [011] in either tension or compression. This choice
of orientation is well away from the'cube slip regime, there is a large

variation in 11 and 12, and the model is calibrated for the orientation

of greatest interest.
For the high strain rate tests where the contribution of the creep

rate term is negligible the saturated value for Z?B for the three tests

can be calculated. Rearranging Equation (2.11) gives

1 L
Y n
238 o lan [ [T , (3.2)

1
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where YggT and raB are the values when the inelastic strain rate and

stress become constant., Letting

S, = 798 ¢, = constant , A . (3.3)

Equation (2.14) can be written for each of the three tests, {.e.

af . a8 a8
(Z1 )1 =5 'V11(‘1 )1 * V12(’2 )1 '

B al aB
2%} .5 -y (r ) s v _fx ) : (3.4)
(1 )2 1 LRA R 12(2 5
B aB aB
28 =S, -V (1 ) + Vv (r ) .
( 1 )3 1 AR R L N
8 af

Since r?s and rg are known from Table 3 or equivalent and Z1 can be

computed from Equation (3.2) for each test, the constants S1, V11 and

V12. can be determined.

The calculation of the orientation factors V21 énd Véz for the

creep regime is similar. Neglecting the contribution of the high strain
rate term, Equation (2.12) can be rearranged to give

1

e\ oo
238 - |- an [ SSE) 210 , (3.5)
. 2

where YOCT is the value during secondary -creep. Once again letting
+ ¢2 . (3'6)

Equation (2.16) can be written for each of the three tests, i.e.
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'r“B 1,aB
(zgs) =Sy = Vy 1 * Va2 - ’
1 vY3d, . v3J
2N 2N
aB af
. T T
() o) v (E) e em
2 3d 3d
2 272
ag aB
T T
(de) =S~ V21.( : ) * Vo ,——2 .
3 v3J 3J
27 2
Since r?e, rgs and J?_ are known and Z;B can be computed from Equation
(3.5) for each test, the constants Sa, V21, and V‘22 can be calculated.

For the Rene N4 VF317 data set, the tensile Stress strain curves

~

for the three orientations were used to obtain the c'or'xstants S1 , V”,

and V12. These tests were not optimal for this calculation since the

strain rate was changed before the stress level was saturated and none

of the tests were in compression. The constants S v 1 and V were

2’ "2 22
calculated for the secondary creep r‘ateé- for three specimens in
different orientations. These tests also were not optimal since none
were in compression.

The Rene N4 data of Gabb, Gayda, Miner and Voigt containé only two

stress-straln curves at a constant rate that activated octahedral slip.

Recall that the test in the [712] orientation activated cube slip. This
is not sufficient to establish the orientation factors. Alternatively,
the data set contains yield stresses for the initial quarter cycle of

the fatigue loops for specimens in several orisntations. Since the
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control wavg form i{s sinusocidal, the total strain range varies from test.
to test and the strain rate varies during the loading quarter cycle, it
i{s not possible to determine the orientation factoré as described above.

Thus, to test the orientation and tension/compression aspects of
the constitutive model, some assumptions were made. It was assumed that
the yield stress variation in the sinusoidal first quarter cycle is

representative of the saturated stress in constant strain rate tensile

tests. Furthermore, a strain rate of 2 x 10-u was assumed. The
constants were calculated from [011] tension and [001] tension and

‘compression yield stresses from the first cycle. It ls obvious that
this procedure will not generate the actual constants, but it does
provide a means for exercising the constitutive model with the data that
are available.

3.3.3 Evaluation of the Hardening Parameters

The evaluation of the constants in the state variable evolution
Equations, (2.15) and (2.21), for both the octahedral and cube slip

systems proceeds in a similar way. The evaluation of M1, w1 and ¢1 for

octahedral slip and M3, W., and ¢3 for cube slip is based using the high

3
strain rate tensile data.

For the octahedral system, Equation (2.15) can be integrated to

give

aB

27" - w1 [1 - exp (- M1ras;as)] . (3.8)

Combining Equations (2.14), (3.3) and (3.8) yields
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GBYGB-. on [S‘ - TaB+ v ad _ zaB] . (3.9)

n(W,) - M7 117 * V2% 1

The quantity &n [S1 - V111?B + V1zrgs - Z?B] is log linear in the local
rate of inelastic working, chYGB. The parameter Z?B can be evaluated

8 8

using Equation (3.2) and stress-strain test data since t*°, Y®%, D1 and

n, are all known. By plotting Equation (3.9) for the [001] tensile

data, Figure 12, the constants W1,and M1 are obtained. Notice that at
a8 ab - aB a8 _ a8
T Y =0, %n (wl) ln[s1 V1111 + V12r2 Z1 1. Once w1 is

obtained, ¢1_can be calculated from Equation (3.3).

In cube slip the calculation of M3, W, and ¢3 is identical to the

3

procedure for octahedral slip. Since the creep strain rate is

negligible at high strain rates the cube flow EQuation (2.18). becomes

. zaB n3
Y°8 - D3 exp |- 3 (3.10)

|<%8

for a high strain rate test with the specimen loaded in the [111]

orientation. Rearranging Equation (3.10) gives

' . 1
aB\| —
ng = = &n (;—3—) n3 lTuBI ’ (3.11)

and at saturation

af
23 - ¢3 + w3 constant . (3.12)
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Integrating the evolution Equation (2.21) results in

2%« Wy D1 - exp (= M1 (3.13)
Using Equations (2.19) and (3.13) gives
a8 a8 a8 :
- Y = - . .14
ln(w3) M3r in [23 ¢3] (3.14)
The parameter de can be evaluated using Equation (3.11) and the stress
agB _aB ’
strain test data since v, Y, D, and n, are all known. A plot

3 3

similar to Figure 12 is used to find w3 and M3. Using the saturated

8

value of 22 , Equation (3.12) is used to find ¢3.

Unfortunately, a constant strain rate tensile_test with loading in

the [111] direction was not available and,M3 and w3 were assumed to be

the same as for octahedral slip for the numerical exercises.

3.3.4 Tensile/Creep Coupling Terms

The tensile/creep coupling constants, a and’cb2 for octahedral slip
and b and ¢u for cube slip can be calculated from the tensile constants
and creep response. The constants a and ¢2 are calculated for an

orientation where octahedral slip is dominant, such as [001]. The

calculation of b and ¢h requires data for an orientation where cube slip
i{s dominant, such as [111].

The value of de can be obtained from Equation (3.5) for the

primary and secondary creep rates. At the beginning of the creep test
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a8

prior to any hardening, the hardening parameter 2 will be zero and

Equation (2.16) reduces to

aB aB
ag._ , _lati | a2t
2 2 /33

Z

’ (3.15)

2 2

30 ¢2 can be calculated. During secondapy creep Zas_is,saturated and

equal to W,, Equation (2.16) becomes
af aB .
SV, T V,,T .
ng - aH1 . ¢2 - 211 . 22 2 , (3.16)
/3J2 /3J2

and a may be calculated.

The constants for cube slip in creep may be simiiarly calculated
using the initial creep strain rate and the secondary cfeep strain rate.
The data were not available in the current data base for the calculation

of b and ¢B'

A summary of all the constants for both data sets is presented in
Table 4. There are a total of 22 constants in addition to the 3 elastic

constants. However, D1. D D. and Du are assumed known, thus there are

2’ 73

effectively 18 constants required to model the inelastic response.
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TABLE 4 - MATERIAL CONSTANTS

GABB, GAYDA, MINER

CONSTANT ' VF317 VOIGT DATA
D, 10000 SEC™ 10000 SEC”!
n, 2.02 2.02
D, 1 SEC 7
n2 - . 708 ————

0, ‘ ' 959.1 MPA 1109 MPA

V11 3.7u454 .5752

v, 3.5799 -.5799

M, 5.656 HPA-1 8.194 MPA™ !

W, 177.9 Mpa 437.5 MPA

a 52.52 c———

s 5626 MPa | —

v, 20070 MPa R

Vo, 18690 MPa —

D -— 10000 sec |
_— 2.02

n3

D, -— ———

nu ——— -m—

% —— 1198 MPA

.M3 — 8,194 Mpa~!
— 437.5 MPa

b —_— e

8 -~ —

The elastic constants at 760°C are E = 100.0 GPa, G = 96.5 GPa and
v = _38.
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CHAPTER IV

FINITE ELEMENT IMPLEMENTATION -

The finite element implementation of the éonstitutive model was
done using a twenty noded isoparametric solid element. This element was
chosen because it {s possible to model almost any three dimensional
geometry and also allows for any orientation of the material principal
axes. Order two Gaussian integration was used both for stiffness
géneration and the calculation of body forces.

The ability to model pilecewise linear load histories was also
included in the finite element code. This capability is particularly
useful when modeling stress strain tests or fatigue loops and also for
certain analysis applications. Since the inelasti¢ strain rate could be
expected tb change dramatically during a linear load history it is
important to include a dynamic time incrementing proéedure. The current
study is restricted to isothermal conditions, consequently the finite
element code 13 limited to steady state thermal conditions during a load
case. The term "load case" is used to denote a time period for which
the initial and final loads and boundary conditions are defined and vary
linearly between the end points.

4.1 Initial Strain Method

The initial strain method is an efficient technique for
incorporating time dependent constitutive models in nonlinear finite
element codes [71], [72]. It is an economical technique because it is

necessary to reform the stiffness matrix only for temperature changes.
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The derivation of the nodal equilibrium equations follows directly

from the principle of virtual work as described below. Element strains
{eT}. in terms of nodal displacement {x} are given by

{e7} = [B](x} . (4.1)

where [B] 1s the element strain displacement matrix. Since the total
strains are the sum of the elastic strains {eE} and the inelastic
strains {eI} it follows that

{eT} - {eE} + {eI} . (4.2)

The stresses are related to the elastic strains by

(o} = [EJ(eT} (4.3)

where [E] is the matrix of elastic constants. Defining {f} as the

element nodal forces and {x} as the associated virtual displacements and

applying the method of virtual work yields

T (e} - s etTa v, (b 1)

-~

where {e} are the strains associated with the displacements {x}. The
integration is over the volume of the element. Substituting Equations

(4.1), (4.2) and (4.3) into (4.4) gives

toTier = 1 (81D TEEN (e} - (T @v . (4.5)

Since {x} 1is arbitrary and independent of the integration (4.5) becomes
(£} + (£} = [kdix} (4.8
where the inelastic pseudo force {fI} is defined as

(rfy - s re)TeEd ey v (4.7)
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and the elastic stiffness matrix [k] is defined by
(k] = s, [BITCEIB] av . (4.8)

When the elemental equations are assembled the global equilibrium

equation
[KI{d'} = (F} + (F} (4.9)

is obtained. The matrix [K] is the global stiffness matrix, {dT} is the

total displacement vector, {F} {s the vector of ;pplied thermomechanical

forces, and {FI} i3 the vector of inelastic pseudo forces.

The calculation of the inelastic strain rates and the state
variable evolution rate i{s accomplished in the constitutive subroutines.
The integration over the element volume i{s generally performed
numerically and in this study order two Gaussian quadrature Qas used.
The total {nelastic force vector 1s then assembled by summing the
contributions from all of the elements.

4,2 Linear Load History

In order to incorporate linear load histories into this scheme the
total displacement vector is decomposed into elastic and inelastic

components i.e., let
(d'y =y + 0y . , (4.10)
The vector {dE} 1s the displacement due to applied thermomechanical

forces and {dI} is the displacement due to the inelastic pseudo-forces.
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These displacement vectors can be calculated using

(@ - k1 Ver (4.11)

and

taly « tx37Neely - (4.12)
The elastic displacements are obtained for tpe initial and final
thermomechanical loads in the load case. Assuming a linear variation
the elastic diaplacements at any time in the load case are given by
t-t

E E, - o E,  ,.E ‘
{d"} = {d,}o + (tf-to)({d }f - {d }o) . (4.13)

The vectors {dg}; and {dE}F are the elastic displacements due to the

initial and final applied thermomechanical forces. The current time in

the load case 1s t, and to and tf are the i{nitial and final times in the

load caée. The displacements due to the inelastic strains at'any'tide
during the load case are given by
(@'} = ('}« I tadhy . | (4.14)
TIME .
INCREMENTS
The vector {dI}o is the vector of displacements due to inelastic strains
at the beginning of the load case, and {AdI}'is a displacement increment

due to the inelastic strains during a time step. The increment in

displacements {AdI} due to the change in inelastic strains {AsI} during

a time step is computed using

{adty = (k37 MaFly L , ' (4.15)
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The inelastic pseudo force increment {AFI} is calculaﬁed from

(oF'y = 3 s reTtEN ey av (4.16)
ELEMENTS :

where {AeI} {s the change in inelastic strain during the time increment.

4.3 Integration of the Constitutive Equations

Although the integration of the constitutive equations to obtain
the inelastic strain increment could be achieved by any number of
schemes, [4.3], (4.4], the second order Adams-Moulton predictor-
corrector method lends itself readily to the required equilibrium
iteration. The global inelastic strain and the state variables (written

as Zi for convenience) are integrated using

(t-t, )

2

I .1
€

{ae”} = | 0 B (4.17)

and

(t-t, ) .

2, = —5— (2

L 5 (4.18)

. ii) vz

1-1 i-1 )

The vectors {EI}i and {e'I} are the inelastic strain rates at times

i-1

ti and t1_1 and z1 and Zi_1 are the state variable at times t and Lioge

Since the inelastic response of the material {s computed on the
crystallographic planes, there is a state variable for éach slip system
at every integration point. The inelastic strain rate {s computed by
summing the contribution from each of ﬁhe active slip systems. The
inelastic strain rate on each of the active slip systems is a function
of the stress state and the state variable for each system as described

in Chapter II.
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4.y Iteration Procedure

At the beginning of a load case the initial and final elastic
displacements are computed using Equation (4.11) and the displacements
due to prior inelastic strains are computed using Equation (4.12). The
total strains at the beginning of the load case are recovered for each

integration point and the elastic strains are compuﬁed from
(B} = (T} - (2Ty - (1), (4.19)

where {eT] are the total strains and {EQAT} are the thermal strains.

The stresses are computed, transformed to the material axis system and
Equation (2.9) is used to find the shear stresses on each of the slip
systems.

Using ;he.currént values of the state variables and the stress
state allows the calculation of the initial values of the shear strain
rates and s;ate variable evolution rates on each of ihe slip systems.
Equation (2.6) is then used‘to compute the macroscoplic {nelastic strain
rates. Before entering the time loop an initial time increment is
computed and the inelastic strain increments are estimated using a
forward Euler integration formula. From the estimaied inelastic strain
increments an initial estimate is made fof the inelastic pseudo force
increment using Equation (4.16). The usual technique employed with the

initial strain method i3 to assume that the incremental inelastic force
{AFI}, the corresponding displacements {AdI}. and che inelastic strain

increments {AsI} are all 2ero on the first iteration of a time step.
The stability of the method can be improved considerably when a forward

Euler integration of the inelastic strain rates is used to make an
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estimate of {AsI}. [AFI}. and {AdI} on the first iteration. This method
results in an initial estimate which is much closer to the solution. In
sample cases the overall numbef'of iterations was reduced by more than
"one half.

The procedure during a time increment is to estimate the soldtion
on the first iteration using a forward Euler scheme as outlined above.
Then displacements, strains, stresses, inelastic strain rates, and state
variable evolution rates are computed at the end of the time increment.
The inelastic strains and state varlables are integrated over the time
increment and an improved 1neiastic force is computed. The procedure is
repeated until convergence is achieved at the end of the time increment.
Figure 13 summarizes the logic.

4.5 Dynamic Time Incrementing

In a computer code that allows a linear variation of loads with
time a dynamic time incrementing scheme is very désirable since large
excursions in stress‘and inelastic strain rate are to be expected. The
procedure used to compute the time increments requires a certain amount
of initial experimentation to deterhine appropriate time step control
parameters. However, once this has been done the procedure works quite
well and i{s a tremendous improvement in economy over a constant time
increment.

The time increment is based on three separate time step control
criteria. These are the maximum stress increment, maximum inelastic
strain increment, and maximum-rate of change of the inelastic strain
rate. The minimum time step calculated from the three criteria is the

value used. Since the calculations are based on values readily
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FIGURE 13. FLOW CHART OF FINITE ELEMENT SOLUTION PROCEDURE
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available from the previous time step, little computational effort is
required.

4.5.1 Stress Increment Criterion

A maximum stress increment criterion is used to control the time
increment during primarily elastic excursions. This criterion {s
necessary to prevent overshoot of the point where significant inelastic
strain rates begin. The calculation for the time increment is given by

Ao

Atk - At'k-! -(A—cl,N—C)—— ’ ‘ (4.20)
k=-1’MAX
where.Atk_1 is the previous time increment, (Ack-1)MAX is the maximgm

change in effective stress for all integration points during the

previous time increment, and AGINC is the maximum desired stress

increment. The value for Ac is'program input and will vary somewhat,

INC
depending on material constants. Typical values are about 15 MPa.

4,5.2 Inelastic Strain Increment Criterion

The inelastic strain increment criteridn controls the time step
when the stress and inelastic strain rates are not changing
significantly. This is given by

I

: Ae .
INC
- —————— . .
Atk Atk_1 . ) (4.21)

Caey i dmax

The maximum change in effective inelastic strain for all integration

' i . I I
points during the previous time incremént is (Aek_1)MAX and AEINC is the
maximum desired inelastic strain increment. The value for AE%NC is

program input and typical values are about .000100.
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4.5.3 Rate of Change of the Inelastic Strain Rate

This criterion controls the time increment when the inelastic

strain rate {3 changing rapidly such as in the "knee" of a stress strain

curve. The quantity sI is a measure of how close the i{nitial forward
Euler estimation is to the final converged solution. The backward
difference formula

;I
i

.I

.I
- (&, 51-2)/Atk~1 (4.22)

is used to estimate ei. The maximum value of el for all integration

points (eI)MAX 1s used to estimate the next time step. using

I
2Atk_1 Aeync ©

At = - . (4.23)
(el) '
i"MAX

The parameter e is the maximum desired error by which the initial
forward Euler'estimation is'in error. The value for e is program input
and typical values are about .01. Equation (4.23) is derived simply
from taking the difference between an Euler integration scheme and the
more accurate second order Adams—-Moulton method.

4,6 Convergence Criteria

Convergence is required at every integration point. Two separate
criteria must be satisfied for convergence. First, the difference in
the effective ineléstic strain increment from subsequent iterations must

be less than a prescribed value, i.e.

I.
|ae. - Aek_1| <6 . (4.24)

K
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Second the change in effective stress from subsequent iterations must
also be less than a prescribed value, i.e.

¢ < 60 . (4.25)

k = %=1
For ail of .the calculations done in this study the convergence
tolerances were set at one percent of the maximum desired effective
stress increment and one percent of the maximum desired inelastic strain

increment used in computing the time step.
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CHAPTER V

COMPARISON OF THE CALCULATED AND EXPERIMENTAL RESULTS

All of the numerical calculations were performed using the finite
elemer_lt code described in the previous chapter. .Since all of the
calculations were for uniaxial tests it was not necessary to model the
actual specimen geometry. However, to test the rérce and stiffness
assembly routines a model with two twenty noded bricks was used to
. simulate the specimen response. The calcﬁlations ‘were performed to
compare wivt;h test results and also to exerclise the constitutive model
and computer code under cond_itions for which no data are available.

5.1 Comparison of Experimental and Calculated Response for Rene NY,

Composition A

The calculations were performed using the constant_s derived from
the data presented by Gaﬁb, Gayda, Hiner and Volgt in References [6] and
'[37]. The constants are for octahedral and cube slip at high strain
réte (Table 4). The features of the model that are exercised are the
orientation‘ dependence, tension/compression asymmetry, strain rate
dependence and isotropic vs kinematic hardening for hysteresis loops.
Because qf the assumpiions required in the derivation of the material
constants due to the limited data base, most of the exercises for this
data set are inﬁended to demonstrate features of the constitutive model

rather than correlation with experimental data.
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5.1.1 Orientation Dependence and Tension/Compression Asymmetry

Recali that in Chapter III the constants were derived by
hypothesizing that the .02% yield stress for the first quarter cycle of
sinusoidal loading was representative of the orientation dependence and
tension/compresasion asymmetry for constant strain rate tests. The
octahedral constants were deriv.ed using the [001] tension and

compression tests and the [011] tension data. The cube slip constants

were derived using the [111] tension data. ‘rhg stress response was
calculated for these tests and for the tests at other orientations. The
calculated results are compared to the experimental results {n Table 5.
All of the predicted results are within 6% of the experimental values
and within thé confidence level for the experiments. It can be
concluded that the constitutive model sucgessfully predicts the
orientation dependence and terisioh/compression asymmetry in octahedral
slip. It can also be seen that the octahedral and cube flow equations
produce good results when simultaneously activated.

5.1.2 Cyelic Response

The first 1.25 cycles of the fatigue response presented in
Reference [37] are co_mpar'ed' to the predicted results using both
isotropic hardening and kinematic hardening (Figures 14 and 15). The
stress ranges for the kinematic hardening assumption are generally

better than for the 1sotropic hardening assumption.
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TABLE 5. COMPARISON OF MONTONIC YIELD STRESSES (REFERENCE [37])
"~ AND CALCULATED SATURATION STRESSES WITH OCTAHEDRAL AND

CUBE SLIP CONSTITUTIVE MODELS ACTIVE, RENE N4, 7600C

TENSION OR .02% YIELD ' CALCULATED

ORIENTATION COMPRESSION STRESS (REF [37]) SATURATION STRESS |ERROR]|
) (MPa) (MPa) (%)

. _

[001] T 956 956 )
' ’ . -

{o01] c -818 -819 .1
) 4

[o11] T T48 752 .5

fo11] o =905 -865 4.4

(g T 817 827 1.3

(1113 ¢ -842 ~828 1.7

[023] . T 695 705 1.5

[023] ¢ a7 a1 .9

[236] T 716 725 1.2

[236] c -T14 -752 5.3

[(1u5] T 656 692 5.5

[745] c -792 -763 3.6

# CONSTANTS WERE DERIVED USING THIS DATA
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There 1s a significant difference in the shapes of the curves.
The use of a sinusoidal wave form has a tendency to produce flat curves
but the predicted response even shows a stress drdp-near the peak strain
points. Probably the most significant variation between ﬂhe predicted

and experimental results is seen in the response of the specimen in the

[111] orientation after the first 1/4 cycle. These differences can at
least partially be attributed to the assumptions that were required to

derive the constants. Recall, that the values for n1 and n2 were

estimated from PWA 1480 data at 871°% and 982°%. This may not be

representative of Rene N4 at 760°c. In additioﬁ, the hardening
constants were estimated from Rene N4 VF317. These extrapolations could
causevsignificant errors in-the predicted hardéhing and strain rate
sensitivity, |

A slighg mismatch in elastic modulus ls seen between tﬁe predicted
and experimental results for the specimen oriented in the [011]
direction. The elastic moduli used {n thg analysis are the nominal
values and are entered in the principal material directions. A slight

variation in elastic modulus from the nominal value i3 not surprising.

5.1.3 Strain Rate Sensitivity

In order to demonstrate the strain rate sensitivity of the
constitutive model, first cycle fatigue loops were calculated for two
different orientations and three different rates using the sinusoidal
total strain history. The results of this exercise are shown in Figure

16. Qualitatively, it can be stated that the observed trend is as
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expected. Since no data are available, quantitative comparisons are not
possible.

5.2 Comparison of Experimental and Calculated Response for Rene N4

VF317, Composition B

The calculations wére performed using the cénstants derived from
the Rene N4 VF317 data, Reference [68]. The constants are for
octahedral slip at high strain rate and creep (Table 4). The features
of the model that are exercised are orientation dependent stress strain
curves, orientation dependent creep response and stress relaxation
behavior.

5.2.1 Orientation Dependent Stress Strain Curves

The stress strain response was calculated for a constant strain

‘rate of 8.333 x 10.S sec-1 for three orientations. The calculated

response compabed to the experimental data is shown in Figure 17.
The orientation constants were determined using all three curves so the
variation_in-the yield stress levels is reproduced well. The hardening
parameters were calculated from the [001] curve only.

Notice that there is a significant mismatch in the elastic modulus
for the predicted and experimental response for the [0 342 940]
orientation. Recall the observed VF317 response does not agree with the

PWA 1480 response shown in Figure 3 because the yield stress for the

[0 342 S40) specimen, 20° from [001] in the [011] direction, is far
above the expected level. The difference in the experimental and
calculated elastic modulus suggests that the specimens in this data set

designated as being in the [0 342 940] direction are probably much
‘ 75
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FIGURE 17. PREDICTED AND EXPERIMENTAL STRESS STRAIN CURVES FOR

1000+
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closer to the [001] direction. This inconsistency is further verified
through an example compression calculation. The predicted saturation
stress response for a [001] specimen in compression was less than a
third of the corresponding tensile [001] response. This is not
realistic, especially since the model worked very well for the previous
tension/compression exercises

5.2.2 Creep Response

The tensilé creep curves for seven gpecimens'at three orien;ations
were calculated and are compared with experimental data in Figures 18-
20. The expérimental data arefrom creep rupture tests which usually do
not yleld reliable data at the beginning of a test. Usually this type
of test produces significant variation from test to test due to pabr
al ignment ahq strain measuring systems as well as inherent differences
from specimen to specimen. The correlaﬁion between the predicted and
actual response for this ﬁype of test must bg considered to be
excellent.

5.2.3 Stress Relaxation

AAlthpugh novstress relaxation dataare ‘available the stress
relaxation response for.specimen; oriented {n the [601] and [011]
directions was caicuiated: Both predictions are for a constant
displacement boundary condition with an initial stress level of 758 MPa.
The qualitative behavior is as expected with the stress in the [011]
oriented specimen relaxing faster than in the [001] oriented specimen,

Figure 21. The strain rates in the [001] oriented specimen are in the

Same range as in the creep tests. However, the strain rates in the
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[011] oriented specimen span the range between the tensile and creep
data. Although the model behaved as expected it would be i{nteresting to

compare it to actual data in this intermediate strain rate range.
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CHAPTER VI

DISCUSSION AND SUMMARY

The constitutive model as developed in this r‘ehdrt is physically
based and is capable of modeling most of‘ the relevant material behavior
at constant temperature. However, consideration must be given to future
development Vneeds. In addition, it i3 useful to specify the data base
required to fully characterize the material parameters in the
constitutive model as it now exists.

6.1 Constitutive Model Development

In the short term it should be possible to utilize the current
constitutive model and finite element code as a viable mechanical
analysis tool with little further development. For the future a number
of potent;ial rerinemen,ts in the constitutive model are anticipated as

outlined below.

6.1.1 Coupling of Creep and High Strain Rate Response
The work hardening in the flow equation for evach slip éys_tem is

characterized by a state variable zaB. This state variable is a measure

of flow resistance at high strain rates and in creep. 1In the current
data base this approach appeared satisfactory, but questions remain for
load histories in which both high strain rates and creep occur. To
evaluate the coupling as it is formulated in this study requires a high
strain rate loading followed by creep and/or a creep test followed by a
tensile test. |

Since different deformation mechanisms are postulated for high

strain rates and creep it is reasonable to assume that two work
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hardening state variables may be neceSsary. If this is thé'case. it is
logical that coupling would occur in the state variable evolution
equations.

6.1.2 Nonisothermal Response

The most obvious problem in modeling the nonisothermal response of
Rene N4 is the lack of a data base sufficient to derive the material
parameters over a range of temperatures. A simple nonisothermal
implementation can be accomplished in the same manner as an isotropic
formulation. The material constants are interpolated for temperature,
and temperature rate and history effects are neglected.

Although the model has not been calibrated for any other
;emperatures it is possible tb propose a method for interpolating some
of the material pérameters. In the flow Equations (2.13) and (2.18) the

parametgrs D1. D2.4D3

and Du are interpreted as limiting strain rates
and are expected to be constant with temperature. The strain rate

sensitivity parameters n,, n2, n3 and n, can be represented by an
equation of the form

na= % +b ' (6.1)

as proposed by Bodner in Reference [53], where a and b are constants and
T is the absolute temperature. The thermal dependence of the

v and V should be in the

orientation parameters ¢,, ¢,, V11. V12, o1 22

form of an Arhennius function, (Equation (2,2)). The variation of the

material parameters in the state variable evolution Equations (2.15) and
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(2.21) with temperature is unknown and w§uld be postulated from the
data.

The validity of this approach needs to be investigated. A
reasonable approach would be to compare predictions of the current model
with nonisothermal experiments. It is anticipated that the state
variable evolution Equations (2.15) and (2.21) may require a thermal
rate term tollnclude thermal history effects.

6.1.3 Thermal Recovery

The treatment of secondary creep as a balance between strain
hardening and recovery was originally proposed by Orowan in 1947,
Reference [76]. Nearly all of the recently developed unified
constitutive models include a hardening term and a recovery term in the
work hardening state variable evolution equations. This form has been
successful in modeling the inelastic responsé of many isotroplic metals.
In this formulation an adequate data base for evaluating a recovery term
did not exiﬁt ahd the term was not included. Also at the temperature
studlied, recovery 1is probably not as important as at higher
temperatures. Fuﬁure work should include the investigation of a thermal
recovery term in the state variable evolution equations.

6.1.4 Latent Hardening

The work hardening state variable evolution Equations (2.15) and
(2.21) include "self hardening" only. That is, the work hardening on a
3lip system is assumed to be effected only by slip on that system. The
hardening of inactive slip systems by intersection with active slip

systems or "latent hardening" is generally considered to be an ilmportant
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part of the theoretical basis for hardening in single crystal
plasticity, References [64]-[67]. 1In a recent review, Reference [771],
_the ratios of latent hardening to self hardening for single crystal
aluminum and copper are reported in the range of 1 to 2.

There are two methods for determining the effects of latent
hardening mentioned in the literature. The first is to plastically
deform a large crystal oriented for single slip, cut the erystal into
specimens oriented to activate previously latent systems and compare the
response of the initially latent systems to that in tl;le original test.
The second method involves measuring the crystal axis rotations in a
tension test. During finite straining the slip directibn rotates toward
the loading direction and eventually a second slip system, or
"conjugate" system, becc;mes equaily stressed. If the latent hardening
of the conjugate system is identical to the self hardening of the
primary'sy“stem it will slip equally under the same stress. If the
laterit“ hardening on. the conjugate systenm is. greater than the self
har&gning on the primary system equal inelastic straining will not be
achieved until the stress on the conjugate system is greater than that
on the primary system. |

Since Rene N4 is a high temperature alloy and_ the specimens are
coated t'o prevent_envir‘onmental degradation, the testing procedures
outlined above would be further complicated. It seems that a viable
alternative testing procedure for investigating latent hardening would
be to run a combination of proportional and nonproportional tension-

torsion tests.
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For small strains and proportional loading, latent hardening will
have little or no effect on the material’s response or the predictive
capability of the constitutive modei. For nonproportional loading or
large strains the effect of latent hardening for Rene N4 is probably
important but cannot be investigated with the current data base.
Extension of the present theory to large strains and/or nonproportional
loading will require consideration of latent hardening effects.

6.1.5 Cyclic Hardening

Nickel base single crygtal alloys experience cycliq hardening
resulting in up to a 10% increase in stress between initial and
stabilized loops in a strain range controlled test, see Figure 6.
Because of the limited data base this behaviorlhas not been modeled,
One way to mode; this effect is to include an additional term in the
state variable hardness equation. A commonly used measure correlated
with cyclic hardening is accumulated inelastic work which could be the
independent variable in the cyclic hardening term.

6.1.6 Other Response Characteristics

There are a number of other response characteristics not modeled
in this study. For example, slip bursts are observed at some
orientations but have not been considered analyticaily. This effect is
of little importance and in fact would present serious numerical
problems {f these effects were included in the constitutive model.

Anelastic recovery, or negative creép strain rates at a positive
atress following a stress drop, are commonly observed in nickel base

superalloys. For isotropic materials this behavior is usually modeled
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by including a back stress tensor. A similar approach could be used for
single crystal materials by including a back stress term on each slip
syatem. In addition, the back stress model is important for isotropic
model ing because it allows the direction of the deviatoric stress and
inelastic strain rate vectors to be different and to vary as a function
of the deformation. This effect has been observed and documented in the
literature for a variety of multiaxial loading conditions. The current
formulation does not force the stress and inelastic strain ratg vectors
to be parallel; however.\there are no multiaxial tests of nickel base
single crystal alloys to evalhate this effect.

Tertiary creeb 1s not predicted by the current model. The usual
techn;que for {sotropic materials to account for tertiary c¢reep is by
including a damage meésure in the constitutive model. A similar
approach could be used for Réne N4 by fncluding another state variable
and evolution equation. However, since tertiary creep occurs at strains
above 2% to 3%, there is little need to model tertiary creep for turbine
blade and vane ;pplications. '

6.2 Summary of Data Base Requirements

For the nonlinear finite element code with the Rene NU
constitutive model to be a useful tool it is necessar} to develop the.
data base to generate the required material parameters. In addition, it
i3 necessary to evaluate the model at other temperatures.  The
development of the data base can also be used for refining the

constitutive model. 1In fact, part of the value of the constitutive
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model i1s to provide a framework for alloy development and for

understanding experimental results.

The temperature environment for turbine blades and vanes varies
from ambient up to about 1200°. Inelastic behavior during operation

would occur mostly at temperatures over 550°C. The test data for the

inelastic response of the material should therefore span the range from
about 550°C to about 1200°C. Considering the variation in response with

temperatﬁre, it i3 desireable to obtain data at about 100°C intervals.
A hypothetical test matrix at a single temperaturé is presented in Table
6. The ma;rix is based on the tests required to determine the material
parameters as discussed in Chapter III. The data base mus; be bhosen to
activate the octahedrél and cube 511# systems separately. Further, the
tests éhbuld rully span the space of the sterographic triangle in bo;h
tension and compression. The [001] orientation 1sAfayored (half of the
tests are in this Qrientation) Since this direction is coincident with
the radial direction of the bla¢e or vane. In addition, tegts should.be
runvat other orientations to verify the mogel. The matrix in Table 6 is
only for the model as presented in this report. The testing should also
include a number of fatigue tests to evaluate cyélic hardening and
further verify the model. It Is not expected that ﬁhe full test matrix

should be run at all temperatures; however, the full matrix should be

run at least one temperature above and below the critical temperature,

about 800°C, since the deformation mechanisms appear to be different.
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6.3 Conclusion

The cohstitutive model developed in this study successfully
predicts an important part of the observed material behavior. A method
has been developed for the derivation of material constants and no
special or difficult tests are required.

A The implementation of the constitutive model in a nonlinear finite
element code has been accomplished. It is computationally more
intensive than comparable rate dependent isotropic models or rate
independent anisotropic models, but it is not sfgniricantly more
expensive. Some of the features in the finite element code enhance its
usability and decrease its cost.

The gqal of dgveloping a practical design tool for Rene.Nu gas

turbine engine components has substantially been achieved.
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APPENDIX A

EIGENSPACE APPROACH

In the early stages of this research a considerable effort was made
to further develop and apply the unified constitutive theory proposed by
Stouffer and Bodner in 1979 [38]. The theory as proposed included
initial or deformation induced anisotropy.

The form of the deformation rate equation is an extension of the
Prandtl;ReuSS flow law to anisotropic inelasticity. The rate of
inelastic deformation tensor is related to the deviatoric stress tensor
by a fourth order linear transformation whose components are functions
of the stress and state variables. The constitutive équations are an
extension of earlier work by Bodner and Partom [39], [40] and do. not
employ thé use éf a‘yieid criﬁeria or separate loading and unloading
cqnditions. The state variables are introduced to characterize the work
hardening of the material due to inelastic derérmation. These variables
are shown to trénsrorm as a fourth order tensor and are a central part
of the anisotropic model.

The tensorial sfructure_of the constitutive theory i{s typical of
most anisotropic cons;itutive models, namely

€44 " xiJk£°kl (A. 1)

where € is the strain or strain rate, o is the Cauchy or deviatoric

1] ¢

is a fourth order tensor that characterizes all of the

stress and Aijkl

1ik2 may be constants as in

material broperties. The components of A

linear elasticity or may be functions of stress and the previous history
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as required by the particular choice of material and deformation

mechanisms. Frequently Equation (1.1) {s written in a six dimensional

vector gpace as

€y * XGBOB (A.2)
Where a, B = 1,2,...6 and e1J and 01J are written as vectors. In
Reference [38] these vectors were defined as 0, = G440 0y = 022' 03 =

¢ oy = /E-a23. o = /5-031. o = /5_012 and similarly.fgr the strain

33’

tensor ¢, ,.

i
The coupling between stress and deformation is obvious in Equation

(A.2). That is a single stress, ¢, for example, will produce six

1
components of deformation. One approach to modeling i{s to transform

Equation (A.2) into diagonal matrix; that is

% * »

€, " Xaaoa . (A.3)

% * *
with no sum on a, ea and oa are the transformed variables and Aaa are

the eigenvalues of Aa This approach has the advantage that the stress

8
and deformation are completely uncbupled; that is,'one component of
stress produces only one component of deformation. This could be
particularly convenlient in computational and exberimental work.
However, the major complication {s that the eigenvectors are expected to

be functions of Aa and, in general depend on the deformation history.

B
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The philosophy behind the proposed approachl is to specify the

eigenvalues and elgenvectors rather than the components of xc directly.

8
In Ref. [38], it was assumed that there existed a class of materials for
which the eigenvectors are invariant.

Let us begin by calculating the eigenvalues and eigenvectors for an
inelastic compressible isotropic material with a constitutive equation

as described by Equation (A.2). Designate ea as the inelastic strain

rate and aavas the Cauchy stress. The tensor Xﬁe {s assumed to be

symmetric, and since the components are real, then Aa's will have real

eigenvalués. Rice [41], Ponter and Leckie [42], Ponter [43] and
Abuelfoutouh [44] have shown that the strain rate can be expressed as
the derivafive of a potential function with respect to the stress for
history depenﬁent polycrystallinematerials. This result can be used to

establish symmetry in x; The constitutive equation for an isotropic

Bo

material in a six dimensional vector space can be written as

r‘& r;‘-11 M2 M2 ° 0 0 1 | (51)

52 A12 A” x12 0 0 0 02.

&3] - M2t 00 0 30 .
< €y > 0 0 0 AH—AQ 0 0] < oy >

& 0 0 0 0 M17h2 0 o

< (00 o0 0 0 A x12‘ L%
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using two independent material functions A11 and 112. The eigenvalues

are

(*) o AR
e, A p*2hy, O 0 0 0 0 o
* 0 A 0 0 | 0 *
€, 1172 O %
%* %

< & >- 0 0 A,f, O 0 0 <c3 } (A.5)
» 0 #*

€ 0 0 0 A=k, 0 o
*» o *
es 0 0 0 0 A11 x12 05
* 0 0 0 0 0 A=) *
[ 4 - ag

1™

¢ L 3\

#* #*
where ea and oc are the transformed strain rate and stress vectors in

*
the eigenvector basis. The eigen configuration is defined as A = Q QQT
where Q is the proper orthogonal transformation that can be written as

the matrix of the components of the eigenvéctors. For this case the
eigenvalue$ are not all distinct and the six eigenvectors are not
unique.‘ Thé only unique eigenvector is in the one direbtion. The other
five eligenvectors are arbitrary, however, they should form an
orthonormal basis. A typical orthogonal transformation, written with

eigenvectors arranged as the rows of the matrix, can be defined as
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[ 9
r 1 1 4 0 0
3 A N3
1 -1 9 o o o
2 /2

0 0 0 (A.6)

N |-
N |~
N In

Using Q, the components of the tranaformed strain rate and stress

vectors can be calculated in terms of the untransformed components. The

eigenvector (1/v3, 1//3, 1//3, 0, 0, 0) is the hydrostatic line in
stresas space and the other two normal stress eigenvectors are in the
deviatoric stress plane. Budiansky and O'Connel [4s] recently developed
a method to evaluate the pfopertles of isotroplic polycrystalline

material using this transformation.
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2

A.1 Cubic Materials

Anisotropic materials with cubic symmetry héve three independent

material parameters 111. 112 and Auu. The constitutive equation, [8],

can be written as

1\ - N
1(51 [}11 k12 112 0 0 0 0 . (01
82 A12 x11 112 0 0 0 0 02
< 53 >- /\12 112 X” 0 | 0 0 0 < 03 {(A.T)
€y 0 0 0 xuu 0 0 0 oy
€ 0 0 0 0 0 A 44 0 g
) . 5
&56} L.0 0 0 0 0 0 Auu \06)

in the principal directions of the material. This reduces to lsotropic
response when a relationship exists between the normal and shear

components; 1i.e. Ay = Aqp T Ao

The analysis for the eigenvalues and eigenvectors is identical to

. : . »
that for {sotropic materials. The eigenvalues Aaa’ are H1 + 2A12,

A,, = A A, = A

" 120 My 120 Mgy Ayys Ayy for a =1 to 6, respectively.
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A.2 Transverse Isotropic Materials

Since a specific application is to metal inelasticity, itvis
reasonable to impose the condition of incompressibility on the material

response. This requires that xiikl = 0 in Equation (A.1) for arbitrary

values of stress history and current loading. This result was derived
by Olzak and Urbanowski [U46] and Hill [47] for the general case of
plastic flow with an anisotropic yield criterion. ’introducing the

deviatoric stress components, s - g - (1/3)¢

13 into Equation

i3 mmslj'

(A.1) and imposing the incompressibility and symmetry conditions

Mike " Pkegg " O , (2.8)

gives

€ (1/3)s__ &

1) " *agkeSke * Migke mnke = *igkeke (A.9)

Thus, for incompressible inelastic material response let €, and S,

denote the inelastic strain rate and deviatoric stress vectors
respectively, Iin a six dimensional space. 1In this space, the

restriction of incompressibility can be written as six scalar equations

Ajq P Ay P A3 =0 Ay * Aoy P Ay =0
A12 + 122 + x32 = 0 and l1u + AZS + 135 =0 (A.10)
Mg * g3 * A3 0 Mg * dag * Agg =0
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The incompressibility condition specified in Equation (A.10) can be
incorporated into the representation for a transverse isotropic

materials [48] to yield

(€9) SIPLS PO S5 “A5¢ O 0 0 ()

€, | I Y (A),*h3) =xy3 0 "0 0 52

E3>- Bk M3 243 0 00| s SO
{ €y 0] 0 0 Auu 0] 0 1su

€5 0 0 -0 0 Ayy O Sg

5s) L © 0 0o o0 0 (23),+3,5] 8,

Equation (A.11) was written with the coordinate axes in the three-
dimensional space oriented parallel to the principal axes of the
orthotropy of the body. In this case, coupling does not exist between

the shear and normal components of the complliance matrix Aa . Again

]
applying an elementary analysis gives three unique eigenvalues in the

form

#* h
(51‘ 0 0 0 o0 0 0 fs:\
: ( A o 0 0 *
+
€, 0 2112 13) 0 s,
* »*
- 0 A 0 .1
< e3 ? 0 3 13 0 0] < 33 \ (A.12)
L 3 *
e 0 0 0 A, O 0 s (
* 0 #*
65 0 0 0 qu_ 0 55
* ' 0 0o 0 0 A=Al L) h
\EGJ _0 (2 12743 ys6/
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The eigenvectors can be arranged to give the transformation specified by
Equation (A.6). The eigenvectors for isotropic materials were defined
to coincide with the efigenvectors for incompressible transverse

isotropic materials.

A.3 Incompressible Orthotropic Materials

The material matrix A for orthotropic materials with the condition

of incompressibility can be written as>

(e [Giathy g nyy 0 0 07 (s
€2 f112 (x12+123) -A23 0 0| s,

< e3>. “X13 "X23 (X13+x23) -0 0  -< 3, >‘(5.13)
€y 0 0 Ayy 0O sy
€5 0 A 0| |sg

el L ’ ° ey L)

where ea and sa are again the componepts of the {nelastic strain rate

and deviatoric stress vectors.
Solution of Equation (A.13) for the elgenvalues yields six distinc;

eigenvalues, hence the eigenvectors are all unique. The

-~

* .
incompressibility condition requires A1 = 0 and the first eigenvector e,

« (1//3, 1/¥3, 1/¥3, 0, 0, 0) as before. However, the second two

eigenvalues cannot be directly calculated; i.e.
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» » '
2 , 2,2

Appr Agg = (Agp * Apg + A )2ldys + Ao + A5 = Aoho,

: 172
- x23131 - 131x123 . (A.14)

~ -

This further implies that the second and third eigenvectors, e2 and e3,

are functioné of the tensor components A Since the

12° x23 and A

31°
matrix can be partitioned and analyzed as two independent three space

- -~ -~

problems, the eigenvectors e+ €5 and e, are all independent and can be

3

arranged as an orthonormal basis. Since elis fixed for all

incompressible orthotropic materials under any deformation history, the

-~ -~

position of the e2 and e3 can be defined by a rotation of e2 and e3

-

about the e relative to

2

: and g

~vector. Let 8 denote the position of e 3

the vectors (1//2, - 1/¥2, 0) and (1/v%, 1/& - 2/¥6) in the three
dimensional subspace, respectively. The first three components of the

three eigenvectors can be written as

~ ) ( . N

re1 10 o /3 13 a3
< ;2 >=<0 cos 8 sine 1/2  -1//2 0 ? (A.15)

;3 ]o -sine cos e 1//8 Ve -2//6

. J \ )
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The vectors e, and e3 are still i{n the deviatoric plane {n the subspace.

The angle 8 gives the history dependent position of'e2 and e3‘and the

representation reduces to transverse i{sotropy when 8 = 0. The

transformation matrix Q, in Equation (A.6), becomes a function of & for

incompressible orthotropic materials.
The angle 8 can be evaluated in terms of the components of X in the

*
initial configuration. Noting that 1A = QAQT and that A _, =

11 0, the
*
calculation of i,, in terms of 8 gives
A, =)
tan 28 = = (12
/2 M2 13 f2 3
(A.16)
Ay, = A
11
.8 { 22 }

A2 333 7 Ay T A,

A.4 Conditions Necessary for Stationary Eigenvectors

A.4.1 Transverse Isotropic Materials

The min{mum condition for constant eigenvectors can easily be

established. If the transformation matrix Q, defined by Equation (A.6),

is used to transform the matrix, )},
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11 12 13

PO R 0 o0 ©
Mz M3 33 000
r= o0 0 0 iy 0 0 o (A.17)
0 0 0 0 1y, O
0. o0 0 o 0 (a,,=2 )}

11 %127

d

for an arbitrary compressiblé transversely isotropic matérial. the upper

left quadrant of the transformed matrix [gggTJ, becomes

1, 2 L.
3 (24,424 ¢80 o405 O = (Ayq+hg 570y 32250)
0 A17A o 0 | (a.18)
2 (A, *h=h,o=has) 0 L (a,r - la +2h,.)
g 111273733 3 *M1Th2 T M3t

13 must vanish if Equation

This implies that the off diagonal term A

(A.18) is in the eigenspace. Thus, the condition

1 ® . ’ o -
3718 A3 = *hp T Az Ty mo (A19)

is necessary to produce the constant eigenvector result.

A.4.2 Orthotropic Materials

The compliance matrix for compressible orthotropic materials has
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nine {ndependent material parameters (A11, A

a2 330 Ay Y50 A Ao

*
123. x31). Using Q in Equation (A.6) to transform A into the space X =

QQQT. also {mplies that x:Z, x;3 and x;1 must vanish if 5' is in an
eigenspace. Thus

By = gy =) * (A3 7 2p3) = 0

‘/1"5 123 - “”, = App) ~2(h 3 = 2,0 = 0 ' (A.20)

/18 1;1 = At T gy 245 = Ay - A3 =0

are the necessary conditions for the eigenvectors to remain stationary.
The first two equations of (A.20) can only be saticfied if each of the

quantities in brackets are zero. Thus

Mi =222 '
(A.21)
113 - x23 ’
and the third equation becomes
A,, - A + A - =0 .. (A.22)

11 33 12 13
These conditions are the same as that for transverse isotropy as
expressed in Equations (A.17) and (;.19). Hence, materjals with
syametry propérties defined as orthotropic can never satisfy the
stationary eigenvector condition. '
The consequences of this result can be further explained by

I

considering an example calculation with the restriction that the
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eigenvectors are fixed (this is the case presented in Reference [38]).
Let us examine the ilnelastic response of a strain habdening transverse
isotropiq metal. . Suppose the hardening is calculated by medifying the

eigenvalues in Equation (A.12), and let € designate the inelastic strain

4 * -
rates, éI. Let x22 and x33vbe the eigenvalues after an arbitrary

deformation and transform the eigenspace into the physical space

according to Equation (A.6).

The resulting flow equation for the normal strain rates is given by

1) 1 # 1% 1 1% 1 % \

€, (E X22 + 4 133) ( 3 /\33 + z X33) § 133 r31 _

. I R 1% 1 1, S 1 .
< L ISE RS - 23305 App * 5 Agq) 3 M3 <8, (A.23)

. I A - .l * - 1_ * | g *

i) L 3 %33 3 %33 3 33 Gy

Thus;'the transverse fsotropy assumption is maintained for any choice of

»

A
and 3

»
'y

3 pfovided the transformation 8 remains constant. As a
consequence, the material hardening computed in the eigenspace will also
retaln the transverse i{isotropy assumption. This result is
unacceptable ror general load histories

The ‘eigenvalues and eigenvectors must be functions of the material
hardénlng for general load histories. Relat@ng ﬁhesé functions to

actual material response becomes a difficult, if not impossible task.

In fact, the mathematical structure bears little relationship to the

- 106



physical metallurgy of the problem and merely confuses the situation

rather than leading to any significant simplification.
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APPENDIX B

DEVELOPMENT OF THE KINEMATIC EQUATIONS

This Appendix contains explicit representations for the local and

global stress and inelastic strain rate components. The sign convéntion

for positive slip directions on the (111) octahedral planes are shown in

Figure B1. The poSitive unit normals to the four octahedral planes are

given by
al 13
72 - 1/¥3 (-
n =13 (1

e 143 (-

1

+
x
S

and

(B.1)

where I, 3. and k are the unit vectors in the principal material

directions. The positive sign convention for the [1 O 1] directions on

the octahedral planes are:

E11

1/¢E (1
2 o3 (-
13 - 12 (1
TR VERE
22 o2 (1

23 ./ (5

+
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FIGURE Bl. OCTAHEDRAL PLANES AND SLIP DIRECTIONS
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i3 .12

+
[N}
~

-

BB -Je0

rEERRRYY, e :

ALY S IS ,

RauEden ., and

BB a- . - (B.2)

Substituting Equations (B.1) and (B.2) into (2.6) gives the inelastic

strain rate tensor due to shearing in the [1 O 1] directions on the

octahedral planes as:

I .1 .1 ] (" B N
€11 €12 &3 e 1 0
I .1 .1 ‘11 ‘
&5y €55 E53 /8712 ‘ Yoor |1 O -1 +
I I LI
£ € € 0 -1 =2
1 €32
31 132 133 I A
0 -1 1 2 0 1
2 |, 13 _
Yoor |°V -2 0 *Yoer |0 -2 1 +
1 0 2 1 =1 0
B B - i
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-32
YocT

3]
ocT

.u3
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-1

-1

-2
*22
* Yoer| ©
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b
2
.31
* Yocr| O
L...I
_
2
233 .
* Yocr |71
0
-2
‘42
+ YOCT 1
0

111

-1

(B.3)



The inelastic strain rate vector is relative to the principal material

axes. Substituting Equations (B.1) and (B.2) into (2.9) gives the shear

stress in each of the [1 0 T] directions on the octahedral planes as:
A

111 1 _ 0 -1 1 0 -1
' 0 -1 1 -1 1 0
'3 1 = 6o o 1 -1
23 -0 v 10 -1 ()
22
| T | 1 1 0 0 1 1 022
4123 -1 0 1 -1 =1 -1 ol |le
V4 33&
31] - _ _ _y _<
T 1 1 ‘ 0 0 1 1 012
32| oy N
r 0 1 1 1 1 of |oy4
33 - - -
1 1 0 -1 1 o 1| |o,
| 7
Rl 1o -1 1 -1 -1 o}
2 =1 o 1 -1 o -1
3 -1 1 6 o 1 -1} . (B.Y)
= pe

The stresses o,, .are relative to the material akeé.

1
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The positive sign convention for the [T 2 7] directions on the

octahedral planes are:
2 1B (-1+2] -k ,
'€ a1/ (21~ 3 - k) ,

BB -1-F200

2B (Iv2]+ ) ,
2208 (G-3- 20 .
2B oyB-2-3+00 |,

FELEE DY SIS IR B3 B
LR VY TR I :

;33

+
g ]
~
-

- 1/VE (=% =27

T aaB-21+] -0 .,

2 o8 (1 -2j-k) , and
Wl 3 s . | (B.5)

Substituting Equations (B.1) and (B.5) into (2.9) gives the shear stress

in each of the [T 2 1] directions on the octahedral planes as:
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(11) - : .
h

12 , 2 =1 -1 1 1 =2
'3 -1 -1 2 =2 1 1
2! -1 2 -1 =1 =2 - fa1\
1
22
T 1 1 2 2 1 1 022
23
- -1 -1 -1 . B.
<x L 2 1 2 <033 (B.6)
31 . _ _
T 1 1 2 2 1 1 012
0 2 1 1 1 1 2 93
33 ) I
r‘ - =1 2 1 1 2 1 _ \023
1”1 2 -1 -1 1 -1 2
e -1 2 -1 1 2 -
B[ 2 2 a1 -]

These components influence the orientation dependent yield and
tension/compression asymmetry for octahedral slip through the core width
effect.

The sign convention for positive slip directions on the (0 0 1)

cube planes are shown {n Figure B2. The positive unit normals are given

by:

= j s and
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Bk . S (B.7)
The sign convention for positive slip directions on the cube planes

are:

AR VY. N IS .

2.1/ G-0 ,

P R P ) .

2 vz (di-0 .

ELRRYY, e D , and

R B -1+ . (8.8)

Substituting Equations (B.7) and (B.8) into (2.1) gives the

inelastic strain rate tensor due to shearing on the cube planes as:

BASEtE ( 0 1 1 ]
11 512 513 '
I .1 .1 : ‘11
&5y &35 E5q -/E/h%vcuaa 1 0 0 +
I .1 .1
1
531 €32 €33 L B o 0]
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12
Yeeel 10
-1 0
| 0 1
“22
Yeusg| ! O
0 -1
[0 o
032
elo o
:1> . 1

-

-/

221
CUBE

.31
Yeuse

(B.9)

Substituting Equations (B.7) and (B.8) into (2.9) gives the shear stress

in each of the directions on the cube planes as:
f11\

T

12|
T

21
T

22
T

131

32

L-1//’2’

p—

0

0
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o 1
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—
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The total inelastic strain rate tensor is the sum of the
contribution from each of the active slip systems as computed {n

Equations (B.3), (B.6), and (B.9).
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