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THERMAL DEFORMATION OF CONCENTRATORS IN AN AXISYMMETRIC
TEMPERATURE FIELD

R. Bairamov, Yu. I. Machuev, A. Nazarov, Ye. V. Sokolov,
L. A. Solodovnikova and V. G. Fokin

Paraboloid mirrors (concentrators) are widely used in solar /26'

energy technology, radioastronomy and other branches of science

and technology.

The constant improvement of designs, in order to increase

the output and efficiency of units, is accompanied by an increase

in the requirements placed on the effectiveness of all systems,

including paraboloid mirrors. One of the means of increasing the

effectiveness of mirrors and reducing the dissipation of output is

to increase the precision of manufacture of the reflecting surfaces

of the mirrors. In this connection, the problem arises of re-

taining the initial precision under operating;iconditions,. when the

design is subjected to the effect of various external factors.

One may take these factors into account by introducing corrections

into the control system, which compensate for the changes in the

parameters of the mirror, brought about by distortions of the re-

flecting surface.

The determination of the necessary corrections is possible

using measuring systems, but the effectiveness of these systems

depends largely on how accurately the behavior of the design will

be predicted >in .various positions and under, various environmental

conditions.

Units, which operate under the open sky,., are subjected to the

effects of climatic factors, including solar radiation. In this

case, the temperature field of the design, and the field of tempera-

ture deformations which corresponds to it, depend on variation in

the temperature of the surrounding air, changes in the intensity of

solar radiation, the position of the mirror relative to the direc-

*Numbers in the margin indicate pagination in the foreign text.



tion of the solar radiation, and on the wind velocity and direc-

tion.

A uniform change in the temperature of the structure causes a

similar increase or decrease in its dimensions without distortion

of its shape, with the exception of the case when the structure is

manfuactured from materials which have different coefficients of

thermal expansion.

Non-uniform heating causes temperature deformations, which lead

to distortion of the profile of the reflecting surface, a change in

the focal length, and deviation of the optical axis of the mirror.

In the given article, we examine axisymmetric temperature de-

formations of paraboloid mirrors (Fig. 1), brought about by their

heating. Such deformations take place, for example, in the case

when the optical axis of the mirror is directed towards the sun. /27

In this case, the desired magnitudes are most frequently the de-

flections and angles of rotation at individual points of the

mirror. Also of oceasioria-1 interest are the magnitudes which char-

acterize the stressed state of the mirror. These include the

forces TI, Tz/ Q and the moments MI and Ma.

Fig. 1. Paraboloid, closed at
the apex: M(V«") is a random
point on the surface of the
mirror; A is the projection of
the point M on the plane xy(z=0);
!is the polar angle.

Fig. 2. Paraboloid, open at the
apex: 1—upper edge; 2—lower
edge.



We will assume that the surface of the paraboloid mirror is

an envelope of rotation, the mean surface of which, in cylindrical

coordinates, is described by the equation

z-a, r+bt r»+c, r», (I).

where ai, bi, GI are some constants, which characterize the appear-

ance of the surface of the mirror.

The resolving differential equation of the axisymmetric tempera-

ture deformation of the envelope of rotation may be obtained on the

basis of Mushtari-Donnel-Vlasov isimplif ications , with the enlistment

of some supplementary assumptions relative to the slope of the

envelope [1], [2], [3]. This equation has the form

' i dv , r _. . . \ at i

Considering relationship (1), we obtain

r' IfrT- +'?•- 4. |f AT./ (Ar + Br* + Cr») -\\V =

where A=ai , B=2bi , C=3ci.

The homogeneous differential equation, which corresponds to (2) ,

has the appearance

The difficulty of its solution consists of the fact that it

may not be reduced to any of the known types of differential equa-

tions with variable coefficients.

Insofar as the coef f icients of equation (3) are analytical



functions of r, one of its partial solutions, according to [4],

may be found in the form of an exponential series of the type

(4)
1-0

where n, a and £ are constants to be determined
o J

By substituting the magnitude TJ into (3) and comparing the

coefficients with identical exponents of r,. we. will have .n=l.. In

this case, we will also obtain recurrent relationships for deter-

mining the coefficients a and 3 . They will take on the form:

(5)

where a=EhY"*A, b=EhylfB, C=EhY'*C.

Without disrupting the continuity of the obtained solution,

one may assume that cto=l, Bo=0.

The second partial solution of differential equation (3),

according to [4], is found according to the. formula

- V, In r . (6)

where v and 6 are coefficients which are also to be determined.1 s s

The recurrent relationships for determining the coefficients

Y and 6 are written in the form

7.=

I
(7)

(5 - 2)

where a, b, c are the very same magnitudes as in the system of equa-



tions (5) .

With regard for (7), one may represent dependence (6) in the

form

i- V(L-H»f)r"'f (8)

where YO=~
2a2

G"+b2

The general solution of the homogeneous differential equation /29

(3) is written in the form

TO-CM V,+C,.9 V,. (tf)

where C and C are complex random constants.
J. ) U Z ̂  U

We would note that, with A=C=0, the functions YX and ¥2 change

into Ii(r'VT;) and YI (rjlT,) , respectively, where Ii and YI are cylin-

drical functions of the first order, of the first .and second type,

of the argument r VT.

The partial solution of the heterogeneous differential equation

(21) is found according to the general law. Thus, it may be sought

according to the method of variation of the random constants, or by

representing it in the form of a series according to increasing

powers of r.

Thus, the general solution of the heterogeneous differential

equation (2) may be represented in the following form:

Vi-C,,, V.+C,., M't+V,, (9")

where 41 is some partial solution of the differential equation (21).

Insofar as the random constants CL Q and €„ _ and the functions

YI, Y2 and Y may be represented in the form
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o-C, HD,;

<f >«

the general solution is written in the following manner:

V- (C.̂ -D.ti-l-CjTi-Diti+f , ) -f

).; (9)

The obtained solution contains four random constants; therefore,

two each of the boundary value conditions should be fulfilled at each

edge of the envelope, which is not closed at the apex (Fig. 2, r=a,

r=b) .

For the freely-displaced edge, we have

M,-0; r,-0. (10)

This case of the boundary value conditions corresponds, for

example, to a paraboloid mirror attached at the apex. In this case,

the conditions (10) correspond to the edge of the mirror which is

not attached by any force elements whatsoever, which hinder its

free deformation.

For a rigidly fixed edge

v,-0; f,-0. (II)

Condition (11) corresponds, for example, to fastening of the

mirror at its upper edge. Also possible are combinations of the

boundary value conditions (10) and (11).

If the envelope is closed at the apex (Fig. 1), then C2=D2=0,

insofar as 2(0)=«> and \J)2(0)=°°. In this case, the general solution



contains only two random constants, which are determined from the /30

boundary value conditions on the remaining edge of the envelope,

which also solves the posed problem.

Thus, dependence (9), together with the boundary value con-

ditions (10) and (11), makes it possible to find the desired func-

tion ¥, via which all of the magnitudes, which are of interest to

us for practical calculations, may be expressed.

Thus , the angle of deflection of .the .random point of the. mean

surface is determined from the relationship

(12)

where Re^ is an actual part of the function ¥.

The deflection is expressed via the angle of deflection according

to the formula

. (13)

where the constant too may be placed equal to zero, since it char-

acterizes the overall displacement of the mirror as a rigid whole.

The bending moments and the intersecting force are found from

the relationships

4 ii -i-M,; (14)

(15)

dt*-+r™>. (16)

The normal forces, which act on the mean surface, are expressed

via the function of stresses $, which is equal to

<l>--^/mV, (17)

where Im^ is an imaginary part of the function T.



In this case

7", = -y -

rfOi
*„• (19)

The radial displacement of the random point of the mean sur-

face has the form

/V<ti \ ,/. f»

- P, '<, r. (20)

The circular deformation and the change in curvature are

written in the form

(T)~nio+Mcpi
. (20

The examined case of axisymmetric temperature deformation is /31

characteristic for the paraboloid mirrors or units which operate

in a "tracking the sun" mode.

In this case, deviations of the points of the reflecting sur-

face relative to the like points of the theoretical paraboloid

cause a change in the focal length.

This change may be determined as the difference between the

focal length of the initial and the approximating surfaces.

The surface of the approximating paraboloid may be calculated

on the basis of the obtained temperature displacements of the points

of the surface of the given paraboloid, proceeding from the con-

dition of obtaining the least deviations of the points of the sur-

fact from the theoretical profile with a new focal length.



Adopted Designations

r is the radial coordinate of the random point of the mean surface

of the mirror; u is the deflection of the random point of the mean

surface of the mirror; ^u^-iy"** is a complex function; u is the

angle of deflection of the mean surface; $ is the function of

stresses on the mean surface of the mirror; y'*=2/3 (I-y3) /Eh is the

coefficient of rigidity; E, y, g are the modulus of elasticity,

the Poisson coefficient, and the coefficient of linear expansion of

the material; h is the thickness of the envelope; RI and R2 are the

main radii of curvature,

i _<n t i j di_
~K~t ~ ~<tr* ' M

 = r rfr :

Mi=(l+y) DBi gradt=temperature moment: gradt=At/h is the temperature

gradient according to the thickness of the envelope; At is the

difference in temperatures of the outer and inner surfaces of the

mirror; t is the temperature of the mean surface; D=Eh2/12 (1-y3)m G 3.H
is the cylindrical rigidity; TI is the normal radial force; T2 is

the normal circular force; MI is the radial bending moment; Ma is

the circular bending moment; Q is the intersecting force; u is the

radial displacement; £2 is the circular deformation; x2 is the

change in curvature of the envelope in the circular direction.



REFERENCES

1. Vlasov, V. Z., Obshchaya teoriya obolochek [General Theory of
of Envelopes], Moscow, "Gostekhizdat" Publishers, 1949.

2. Novozhilov, V. V., Teoriya tonkikh obolochek [Theory of Thin
Envelopes], Leningrad, "Sudpromgiz" Publishers, 1962.

3. Vol'mir, A. S., Ustoychivost! uprugikh sistern [Stability of
Elastic Systems], Moscow, "FM" Publishers, 1963.

4. Smirnov, V. I., Kurs vysshey matematiki [Course in Higher Mathe-
matics] , Vol. Ill, Part II, Leningrad-Moscow, "GITTL" Pub-
lishers, 1949.

10




