DOE/NASA/031O 1
NASA CR—J|74723

DEVELOPMENT OF A MICROPROCESSOR CONTROLLER
~ FOR STAND-ALONE PHOTOVOLTAIC POWER SYSTEMS

- Alan R. Miliner. and Dav:d L. Kaufman

TriSolarCorp.
: Bedford Massachusetts 01730

- - . -) - C e = - - - iy ."» .-. \'
(NASA-CR 170723) DEVELOPHENT CF A : N86—21979 -
MICROPROCESSOR CCRTRCLLER FOR STAND-ALONE g _ S |
PHOTOVOLTAIC PORER SYSTEMS Final Report N ’ ‘

Solar Corpe.) 192 HL AGQ/MF A01. e - Onclas
(Frisola i P U CSCL 10B _G3/44 : 05822

June 1984

Prepared for

‘National Aeronautlcs and Space Admmlstratlon
Lewis Research Center _
Cleveland, OH 44135

For

U'S. DEPARTMENT OF ENERGY
Conservation and Renewable Energy

Division of Photovoltaic Energy Technolog
“Washington. D.C. 20545
Under Interagency Agreement DE- A101-,/9:T20d63

DOE/NASA/0310-1
NASA CR-714723

DEVELOPMENT OF A MICROPROCESSOR CONTROLLER
FOR STAND-ALONE PHOTOVOLTAIC POWER SYSTEMS

Alan R. Millner and David L. Kaufman
TriSolarCorp.
Bedford, Massachusetts 01730

June 1984

Prepared for

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, OH 44135

For

U.S. DEPARTMENT OF ENERGY
Conservation and Renewable Energy

Division of Photovoltaic Energy Technology
Washington, D.C. 20545
Under Interagency Agreement DE-A101-79ET20485

FORWARD

The authors wish to acknowledge the
excellent software development effort
of Dr. Thomas Maiér and others of the
staff of the Mellon Institute.

PRECEDING PAGE BLANK NOT FILMED

PAGE_//___INTENTIONALLY BLANE

iii

FINAL REPORT

NASA FINAL "REPORT

DEVELOPMENT OF A MICROPROCESSOR CONTROLLER FOR STAND-ALONE
PHOTOVOLTAIC POWER SYSTEMS

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY 1
1.1 The Problem 1
1.2 Hardware Description 1
1.3 Software Description 3

1.3.1 Battery Control 3
1.3.2 Array Control L
1.3.3 Load Control 5
1.3.4 Control Panel 6
1.3.5 Self Testing 6
1.3.6 Serial Port Functions 7
1.4 Test Results and Conclusion 7

2.0 DESIGN CONSIDERATIONS 9
2.1 Industry Needs 9
2.2 Major Cost Impact Items . 1

2.2.1 System Level Items 1"
2.2.2 Battery Control Considerations 11
2.2.3 Array Control Considerations 15
2.2.4 Load Control Considerations 19
2.2.5 User Service Considerations 20
2.2.6 Self Test Considerations 21
2.2.7 Other Considerations 21
2.3 Options Deferred 21
2.3.17 Zero Option 22
2.3.2 Layer Power Stages for Maximum Power Control 22
2.3.3 Multiple MPC Control 22
2.3.4 Variable AC Motor Control 24
2.3.5 Multiple Battery Strings 24
2.3.6 System Topologies 24
2.3.7 Other Processors : 29
2.4 Controller Specifications ‘ 32

PRECEDING PAGE BLANK NOT FILMED
PAGE_LI/__ INTENTIONALLY. BLANR

FINAL REPORT

3.0 DESCRIPTION
3.1 Hardware

Power Supply
Power Modules
Processor

3.2 Software

Array Control

Self-Testing

3.3 System Configuration
4.0 PRODUCTION COST ANALYSIS

4,7 Material and Labor

4,2 Modelling of Industrial Producer

5.0 TESTING
6.0 CONCLUSIONS

APPENDIX I: Schematic Diagram

APPENDIX II: Pseudocode Listing

Battery Control

3.1.1

3.1.2 Display and Control
3.7.3 PResistor Divider Board
3.1.4
3.1.5

1

2

3 Load or Auxiliary Charger Control
.4 Control Panel Functions
5

6

Serial Port Functions

35
35
35
35
38
38
38
4o
U1
4y
46
52
52
55
59
59
59
65

69

71

NOTICE: Certain material contained in this report is proprietary to
TriSolarCorp. In particular, the improved solar array control
method is the subject of a patent application, and the software is

copyrighted by TriSolarCorp, 1984,

PRECEDING PAGE BLANK NOT FILMED

vii

PAGE_V [menTionALLY BLAMK

FINAL REPORT

LIST OF FIGURES

FIGURE NUMBER PAGE NUMBER
2.1=-1 Preliminary PV Industry parameters 10
2.2-1 Design Considerations 12
2.2=2 Major Functions of the Controller 13
2.3.1-1 Specifications for "Zero Option" Controller 23
2.3.6-1 15 kW System Alternatives 26
2.3.6=2 FMEA System Level 27
2.3.6-3 FMEA TImpact Chart 28
2.3.7=1A Commercially Available CMOS Microprocessors 30
2.3.7-1B " n " " 31
3.1=1 Block Diagram — Microprocessor Controller 36
3.1-2 Microprocessor Controller 37
3.2-1 Control Parameter List b2
3.2.1-1 Battery State of Charge Control Algorithm us
3.2.2-1 Maximum Power Control Algorithm u7
3.2.3-1 Corrected State of Charge Thresholds 48
3.2,3-2 Product Storage Algorithm 50
3.2.3=3 Product Storage Algorithm Thresholds 51
3.2.4-1 Publie Functions 53
3.2.4-2 Password Accessible Functions 54
3.2.6-1 Debug Monitor Functions 56
3.2.6-2 Maintenance and Logging Functions 57
3.2.6-3 Data Format 58
3.3-~1 Typical Pumping System Wiring 60
3.3-2 Typical Battery System Wiring 61
3.3=3 Microprocessor Control Funections 62
4,2-14 Balance Sheet and Income Statement Summary 66
u . 2_1 B n " " " 1" " 67
Lh,2-.1C n n " " " " 68

PRECEDING PAGE BLANK NOT Fll.hieDd

PAGE_L/[1] _INTENTIONALLY BLANK

ix

FINAL REPORT

1.0 EXECUTIVE SUMMARY -

1.1 THE PROBLEM

Photovoltaic systems need controls of varying scope depending on the
system size and application. While low cost voltage regulators are
adequate and available for small battery chargers, many larger or
more complex systems require control algorithms which until now could
only be achieved by costly custom engineered products. The problem
is made more difficult because the modular nature of photovoltaice
systems results in a great variety of controller requirements.

As the cost of photoveltaic modules decreases, system control and
related engineering costs become very important. To meet this need
for flexibility with a minimum of customizing cost, and yet consume
only a few watts of power is within the capabilities of today's
microprocessor.

The first unit was produced under D.O.E. contract DEN3-310 and tested
for NASA at TriSolarCorp. This unit is photographed in Figure 1.1-~1.
It is a S5kW maximum power controlling battery charger which can also
be configured as a SkW batteryless motor drive.

The entire controller interfaces with existing 500 watt MPC power

modules, operates in a NEMA-U enclosure over an ambient temperature
range of =25 degree C to +45 degrees C, operates from either a 12V
battery or a 40V to 300V DC unregulated solar array or battery bus.

1.2 HARDWARE DESCRIPTION

The prototype microprocessor PV system controller consists of a NEMA-
4 enclosure containing the following major electronic assemblies:

. Power Supply

. Display and Control Interface
. Resistor Divider Board

. Power Modules (10)

. Processor

Moo o>

The power supply consists of a wide input range DC to DC down
converter and a multi-output flyback DC to DC converter. The

downconverter accepts 40OV to 300V DC.

The display board consists of a U4 1/2 digit LCD display, a 16 key
membrane switch pad (calculator style), an audible alarm, and three
LED's: RED, YELLOW, and GREEN. The keypad allows manual control
(under password security) of the system and calls up any one of over
50 different quantities to be displayved. The display normally shows
battery state of charge but can display the voltage, current, or
power of any array string, load bus, battery, motor, or other
monitored point, monitored temperatures, or time of day. The LED's
summarize system status: The GREEN LED shows that the processor is
running and servicing timer interrupts. The RED LED indicates that

FINAL REPORT

the battery is dangerously low and loads have been shed, and the
YELLOW LED indicates that stored energy is in short supply and should
be conserved.

The resistor divider board serves as an interface between the high
voltages in the power system and the low voltage signals measured by
the processor.

The power modules are 500 watt DC to DC converters used, for the
prototype, to couple the 180 volt nominal solar array inputs to the
120 volt nominal battery and load bus. These are 20kHz switching
type bucking converters, with typical efficiency of 98%. They
include internal fast current limiting. Ten power modules are
provided in the prototype.

The processor is a large board containing the following parts:

1. Central Processor: CPU, timer, ROM, RAM
2. Analog input section: differential current,
multiplexer, single-~ended voltage multiplexer,
and 10 bit plus sign A/D converter
3. Display and control interface: UART for RS232
interface support:; PIA for keypad, LED, LCD,
-and interrupt support; 6 optoisolators for
locad control .
4, Array control buffers: 10 digital outputs
which can be used as pulse width modulated
20kHz signals for the power modules for
maximum power point tracking, or can be used as DC level
digital switech drive signals for discrete array control.

The central processor is built around a 65C02 CPU, which operates at
MMHz with an 8 bit data bus and a 16 bit address bus. This addresses
16k bytes of CMOS EPROM and up to 6k bytes of CMOS RAM. (This
program requires only 2k of RAM.) The heart of the analog input
section is the AD7571 analog to digital converter. This new device
is a CMOS low cost unit, with 10 bits plus sign accuracy, and
internal interface to an 8 bit microprocessor bus.

The RS232 port is provided by an IM6U4D2 CMOS UART, which with a few
discrete driver elements, makes a complete bi-directional
asynchronoeus communications interface. This port allows data
logging to an external printer, automated testing during manufacture,
or computer interfacing in special applications,

The array control functions consist of a set of latches, gates, and
buffers allowing 12 digital outputs toc be driven as independent relay
drive signals for discrete array control, or as separately buffered
pulse width modulated 20kHz signals for maximum power point tracking.
A watchdog timer turns off the array control and load outputs if the
processor fails to reset it within 240msec. An additional analog
output, 0 to 10V, is available for continuous analog control of
variable loads such as variable speed motor drives. This is realized
by low pass filtering of a second PWM signal.

FINAL REPORT

1.3 SOFTWARE DESCRIPTION :

The software design was based on two decisions. First, the software
is modular. This allows an orderly linking of software modules using
the principles of structured programming and allows modules tc be
modified without interfering with the rest of the program. Second,
the modules were defined using "pseudocode", an explicit definition
of each algorithm in plain English with a program format. This
allowed clear communication between system designer, hardware
-designer, and software designher in advance of actual programming and
eased the task of writing assembly language code.

The MAC unit is designed to operate without needing any human
intervention. It performs the following funections automatically:

1. Battery Control

2. Array Control

3. Load or auxiliary display on the
control panel

4, Status display on the control panel

5. Self-test ‘

6. Data logging via RS232C port

In addition, the MAC unit provides the following facilities for
manual control:

Manual battery charge initialization

Manual array control

Manual load or auxiliary charger control

Control panel display of system

operating parameters

5. Manual test calibration mode and time of
day

6. Remote control and parameter measurement

or automated testing via the R3232C port

=W N~
. e

Each function is described below, with the automatic and manual
functions described together for ease of understanding.

1.3.1 Battery Control

The state of charge describes the battery's condition at an instant
in time. The initial battery state of charge can be entered manually
from either the keyboard or the RS232C terminal. This can be based
on a hydrometer reading of battery acid density, or simply an
estimate. If it is wrong, the system will eventually correct it
without damage to the battery. Default value at power-up is 50%.

The state of charge is increased by the number of ampere-=hours
flowing into the battery, and decreased by the number of ampere-hours
flowing out of the battery. Rate of increase is modified by a
tabulated coulombic charging efficiency which depends on state of
charge. If the battery voltage exceeds expected limits, the state of
charge is automatically adjusted to account for the variation.

FINAL REPORT

For every ampere-hour of discharge by the battery, one equalization
fraction ampere-hour of extra or equalization charging is
automatically programmed when energy becomes available and 100% state
of charge has been reached, This is needed to bring all cells up to
full charge and to stir the acid by generating small amounts of gas.
This prolongs battery life.

If the battery goes through many partial charge and discharge cycles
before equalizing, the total equalization charge is limited to the
equalization total percentage to avoid excessive water useage.

During charging and equalization, the battery is allowed to rise to
the equalization voltage. After equalization is completed, the
battery voltage is limited to the float voltage, which is below the
point of significant gassing and so uses up less water, This float
level charge makes up for internal battery self-discharging.

1.3.2 Array Control

If the battery is not fully charged and equalized, the voltage limit
is the equalization voltage. If fully equalized, the voltage limit
is the float voltage. Until reaching voltage limit, the solar array
charges the battery as much as the available energy allows.

There are two automatic modes of array control resident in the
program. The first is discrete array control. This turns strings
on, one per second as long as the battery voltage is less the 94% of
its maximum limit. It makes no change until the battery voltage
reaches 97% of its maximum limit. Between 97% and 100% of its
maximum limit, strings are turned off one per second. Above 100% of
maximum limit, all strings are turned off. The battery voltage used
for this algorithm is averaged over U samples to minimize noise
problems,

The second mode is maximum power tracking. The controller drives up
to 10 power modules with a 20kHz pulse width modulated drive signal,
13 volts = high = OFF, O volts = ON. The pulse width is set in 1/4
microseconds inecrements, It is initialized to O and changed in small
(1/4 microseconds) or large (2 microseconds) steps every 100
milliseconds. At each step, the total delivered power is calcualted
and compared with the power delivered at the previous duty cycle. If
the power changed by less than 1.5%, and if no limiting conditions
were encountered, small steps are used, otherwise big steps are used
to speed up the process. '

If the power level was found to be constant or increasing, the next
step is taken in the same direction as the last. If the power was
found to be decreasing, the direction of step in duty cycle is
reversed. Therefore, the duty cycle is adjusted to the maximum power
operating point, and hunts there +/-~ one or two small steps,
representing an operating point within +/- 1% of maximum power.

This improved array control method is the subject of a patent
application.

FINAL REPORT

1.3.3 Load Control

The battery is assumed to be loaded by up to 5 separate load busses,
with separate voltage sensing, current shunts in the negative load,
and relay control responsive to the optoisoclator output 1-5 of the
controller., These may in fact be auxiliary chargers as well as
loads. .-

Each load bus is also automatically monitored for excessive current,
providing a built in eircuit breaker function. Each load or charger
bus can also be manually controlled from the keypad or the serial
port.

It is often desirable to use more energy if it's going to be a sunny
day. This may be to avoid short cycles of load useage or simply to
increase energy useage efficiency. Therefore, between 8AM and
12Noon, if the sunlight level is high enough to provide at least 10%
of the maximum charger current limit to the battery, all the battery
corrected SOC levels for load shed and restoration are decreased by a
constant preset SOC, called DELTA SOC. This allows loads to turn ON
earlier on a sunny morning than would otherwise be the case,

The MAC can perform a control strategy to allocate available energy
into two different forms of storage. One of these is electrical
energy stored in a battery. The other is a form of "product
storage." This might be water stored in a tank, or thermal storage of
cold in a refrigerator, freezer or ice stored in an icemaker. To use
this capability, it is necessary to be able to measure the amount of
product stored. This combination of trip points creates a set of
four states of the controller, defined by the amount of product
stored and the battery state of charge. By setting various values
for the boundary parameters, various priorities can be placed in the
use of energy.

FINAL REPORT

1.3.4 CONTROL PANEL

The control panel has a keypad for manual inputs, a U4-1/2 digit LCD
display for selected quantities, a set of red, yellow, and green
LED's for quick status summary, and an audio alarm. There is also an
emergency switch located at the bottom of the unit which, when turned
OFF, will turn OFF all array strings and loads. When turned ON, it
will restart the program.

The LCD display can be thought of as a multimeter which will display
one of a menu of system parameters. The default condition is state
of charge, and after a data dump each half hour, it returns to this
parameter setting. It can also display any array string voltage, any
charger output string current, (not the array current, but the
converted output from that string at the battery voltage level), the
delivered string power to the battery, the battery voltage current or
power, any of five load bus voltages or currents or powers, the
battery temperature, one other temperature (used here for freezer
product measurement), the pulse width, the equalization charge
needed, the system zero voltage and 4.00 volt reference level, the
temperature corrected state of charge, the time of day, and the
software version number. These are selected using the keypad.

The keypad can also be used to change control functions. To do this,
the correct password must be entered. Password accessible functions
include setting a new load and restore thresholds for each load bus,
setting initial state of charge and setting the manual control for
each load bus ON or Off.

1.3.5 Self-testing

The autcmatic tesing of battery SOC and load currects is described
elsowhere, Also, the unit can be placed in a test/cal mode where
data is refreshed but the states of charge, max power tracking and
load controls do not automatically change. This allows them to be
manually set and measurements taken. For example, a fixed pulse
width can be set from the serial port, or a lamp test can be
performed,

The display performs one more automatic test. If one of the charger
power module output currents is less than a constant (lamp) below the
average of all such currents, the "Continuity" segments of the LCD is
turned ON. This means that one string of the array or one power
module- of the charger is either shadowed or broken. Examination of
array voltages and currents will show the cause.

Besides these external tests, the unit performs an automatic test of
its RAM and ROM access whenever it is started up. When running, any
error causing the program not to execute properly will result in a
watchdog timer fault turning off all loads and the solar array and
causing the green LED to go out.

FINAL REPORT

1.3.6 Serial Port Functions -

The manual test/cal mode was partially described in the previous
section. However, with an RS232C terminal, much more extensive
manual testing is possible. A standard debug monitor is implemented
which can examine memory locations, insert bytes into memory, begin
execution at a given memory location, insert or remove breakpoints,
and downlocad and program into memory.

A data dump of all system voltages, currents, temperatures, switch
positions and states of charge is sent to the serial port every half
hour or whenever requested. A printer there will provide data
logging.

This powerful access allows many possible uses. The processor can be
automatically tested during manufacture this way. A printer attached
at the site can serve as a data logger. A telephone modem or other
communication interface would allow automatic remote data logging or
even, remote system control.

The use of a small RS232C terminal by a repair technician allows

fault isolation and diagnosis beyond the capabilities of the keypad
and display, since small special test routines can be run. Software
modification is greatly eased as well.

1.4 TEST RESULTS AND CONCLUSIONS

The battery charge control algorithm works as described., Its
estimate of the fraction of capacity available is limited mainly by
the accuracy of the battery's rated capacity at a given discharge
rate which is supplied by the battery manufacturer. Long term low
current operation is dominated by internal battery self-discharge,
typically 1% to 2% per week, and current offset errors of 0.1% of
maximum, which is often a similar percentage per week. This is
corrected whenever the battery is fully charged, so that batteries
cyecled daily or weekly are not affected.

The array control modes, both max power tracking and discrete
switching, work very well and provide a nice tapered current
finishing charge for a battery with very low water loss. The max
power tracking with two step sizes is a real advance in the state of
the art, as it provides a combination of more accurate tracking of a
statie max power point plus a faster acquisition time for a varying
load or insolation. A chart comparing these performance figures is
given here.

FINAL REPORT

COMPARISON OF MPC FUNCTIONS

Previous State of the MAC
Art Equipment

Acquisition 3 sec 1 sec
time +/-2%

Max Dither, stable 3% 1%
load

Product 9 1

This means that, for example, a volumetric pump or other slowly
eycling loads can be dynamically matched to the solar array with
reduced need for expensive or lossly load-levelling mechanisms as
large flywheels, batteries, ete. This opens up additional
applications for the controller. :

Load management in response to battery state of charge is very good.
It is free of the chattering and instability characteristices of many
voltage~related load management schemes. The algorithm for product
storage and apportioning energy to several types of loads works as
expected. However, its sophistication makes it difficult for a user
to verify that it is operating properly, and this may make it less
popular than other approaches based sclely on battery status.
Instrumentation of the system using the keypad and LCD display is
very effective, A permanently posted list of command codes on the
unit near the keypad was found to be useful.

Data logging via the RS232C terminal to an inexpensive printer is
very helpful in village systems. Of less use in smaller
applications, it is quite helpful for maintenance or fault diagnosis
using a small hand held battery-powered RS232 terminal. The
possibilities inherent in a phone coupler or other communicaions port
for remote system control have not been explored, but they are
potentially very interesting. The self-test functions of the
controller are an effective means of allowing unskilled personnel to
monitor a complex PV system.

In conclusion, the microprocessor automatic controller works as well
as, or better than, any existing PV system control equipment, and can
be adapted to a wide variety of systems simply by plugging in an
EPROM. This makes it a very attractive controller for PV systems
where large size (over 1kW), remote location or special control
requirements justify this type of unit,

FINAL REPORT

2.0 DESIGN CONSIDERATION -

2.1 INDUSTRY NEEDS

The photovoltaic industry is growing today at an annual rate of
nearly 65%. This growth includes a varied mix of small simple
battery chargers, pump drives, large sophisticated battery chargers,
and utility interactive systems. As the cost of the PV module
decreased, the fraction of the system cost represented by controls
and engineering becomes more important. In order to allow the
continued growth of volume and reduction of system prices, a
controller is needed which is flexible enough for all applications
while easy to apply without high recurring engineering costs. The
microprocessor represents an opportunity to supply that need.

In order to determine the range of system parameters required for a
controller, a preliminary analysis of the near term PV market is
useful. The following figure 2.1~1 indicates the breakdown of the
1983-84 PV market, using a variety of various documented and informal
sources, to ascertain the relative market share of various types of
systems. The first rows of figures give the breakdown by system
size, first a typical size, then a range of sizes, by half-decade
logarithmic steps. The percent of power sold represents the fraction
of PV kilowatts used in that size system. The percent of systems
so0ld gives the fraction of the total number of systems regardless of
size. A typical installed system price in $/watt is indicated for
reference. ’

The next section characterizes the controls, including power
conditioning, for a PV system in terms of the dollar cost of controls
at the OEM level divided the peak watts of PV in the system. These
are divided into systems with Maximum Power Controllers (MPC) and
those without. The difference represents the incremental cost of the
MPC. The approximate fraction of systems without MPC's is indicated,
and multiplied by the number of systems in each category, to give the
number of controllers with and without MPC's in each system size
category. This shows that the market for MPC type controller falls
primarily in the 300 watt to 30 kW size range. The large number of
systems at smaller sizes indicates the attractiveness of marketing a
small, inexpensive controller which might be able to capture the 100
W to 300 W market even without maximum power control. The high cost
of controls below 100 watts size indicates that any controller will
be hard to sell for such small systems.

The last row of figures estimate the incremental value of an MPC

for 1983 and 1986 PV systems. These estimates are based on the
following rows of figures for typical system voltage, typical
controllers and PV utilization, efficiency, and typical incremental
PV array installed prices. Comparing these figures with the
controller costs determines the utility of an MPC in such a system.
Note that MPC's are probably worthwhile for systems over 300 watts at
present and over 1 kW in 1986.

Based on these results, it appears that a controller intended for the

PRELIMINARY- PV INDUSTRY 83-84 PARAMETERS
ESTIMATED 5 MEGAWATTS/YEAR, 10K SYSTEMS

Typ.(W) 50 200 500 2K 5K 20K 50K 200K
Range 100w 100-300 300-1K 1K-3K 3K-10K 10K-30K 30K-100K 100K
SYSTEMS '

£ of power

sold 5 10 15 15 20 15 10 10
% of systems

sold 55 25 15 3 1.5 .38 o1 .02
Inst.$/watt

cost 30 27 25 22 20 17 15 10

CONTROLS, $/W COST (INCLUDING POWER CONDITIONING)

MPC 3.00 2.00 1.00 0.80 0.70 0.60 0.50 0.40
No MPC 2.00 1.00 0.60 0.40 0.30 0.20 0.15 0. 10
% with MPC O 1 5 15 20 4o 50 50
W/0 MPC 5.5K 2.5K 1.5K 255 120 22 5 1
W/ MPC 0 25 75 45 30 6 5 1
Incr.value

of MPC

1983 $/w -.30 .20 .70 1.0 1.20 1.20 .80 .80
1986 $/W -.15 .10 35 ° .50 .50 .60 b0 .40
Typ. Sys.

Voltage 12 12-24 24-48 48-90 120 120 240 240
MPC effic. .82 »87 «92 - .95 .97 .97 " .98 .98
No MPC

effic. .85 .85 .85 .85 .85 .85 .90 '90

Assume incremental PV array prices.
$/W installed

1983 1984 1985 1986
10 8 6 5

FIGURE 2.1-1

FINAL REPORT

100 watt to 300 kW size range will-market well if it:

1) includes MPC capability at an incremental cost of under
$.UO/watt

2) is also useful for battery management without an MPC

3) costs less than $300 in a minimal configuration without the
power electronics of an MPC, (The cost of a no-MPC
controller for a 500W system)

The needs of the industry can then be segregated into at least two
different types of controllers. The very small, very inexpensive
controller (typically one quad comparator today) for systems of a few
hundred watts or less is not the same as the flexible, sophisticated
unit for larger systems. The small controller is discussed later as
the "zero option". The larger controller can then be examined in
terms of those characteristics which have a major affect on the unit
cost.

2.2 MAJOR COST IMPACT ITEMS

2.2.17 System level items

The items affecting controller cost fall into two categories: those
which describe the system, and those which describe the controller
itself. These are listed in Figure 2.2-1. System characteristies
affect the controller by the number of analog currents or voltages to
be measured, by the number of counter/timer functions, and by the
power or energy level of those parameters. This last group impacts
the sizing of relays, power converters, shunts, and terminals in an
obvious way which is separate from the control function itself; and
is easy 'to design as required. In particular, any inputs or outputs
of the control system which are continuously variable rather than
switched are most expensive because they require either A/D or D/A
converters, analog multiplexers, or counter/timer functions., Extra
array measurements, maximum power controllers for the array, and
variable loads (such as motor drives) are in these categories, Also,
since battery control is the most complex function of the controller,
dominating its accuracy and speed requirements, the number of
batteries to be controlled independently is a major factor.

The effect of controller characteristics on cost requires further
description of these tasks. Figure 2.2-2 lists major control
functions.

2.2.2 Battery Control Considerations

The basic algorithm to be used for battery state of charge (S0C)
estimation will be ampere-hour integration. Total ampere-hours into
and out of the battery will be used to estimate change in SOC,
Beyond this, a variety of checks, adjustments and corrections might
have been used.

11

12

II.

DESIGN CONSIDERATIONS HAVING STRONG EFFECTS
ON THE DESIGN OBJECTIVES AND COSTS

PHOTOVOLTAIC SYSTEM CHARACTERISTICS

1. Photovoltaic array size
2. Type, number and total energy of storage elements
3. Type, number and total power of variable controlled loads

CONTROL SUBSYSTEM CHARACTERISTICS

Array control

Battery SOC algorithm

Load management

Product storage load management

Requirement for independent manual control override
Manufacturability

Adaptability

Maintainability skill, test equipment and MITR
Reliability - MIBF

) . .

o~

Figure 2.2-1

Major Functions of the Controller
Battery State of Charge estimation

~ amp hour accumulation

- temperature compensated voltage limits
and float voltage

- MPC inhibit

- automatic charge equalization

Maximum Power Controller

- input filtering

- comparison and duty cycle stepping
-~ limits

- direct digital PWM control

— output buffering

Load Control

variable load setting

nultiple fixed loads

response to SOC

backup generator control
product storage status response

User Service

keypad input scan
parameter settings
multimeter readout
SOC readout

diagnostic readout

1

Self Test Capability

— Array and battery and load monitoring programs
-~ Self monitoring programs

RS232C Interface

Figure 2.2-2

13

14

FINAL REPORT

The coulombic efficiency of the battery is not 100%. As the battery
becomes more fully charged, this value drops from near 100% until the
battery is fully charged and equalized and the coulombic efficiency
reaches zero. One correction then is to discount some fraction of
charging current based on SOC. This was implemented.

The battery's self-discharge rate represents internal reduction of
SOC without external current flow. This depends on battery
chemistry, temperature, and age. Therefore, some estimate of
internal self-discharge rate based on temperature might be used as an
approximation. However, this was not included in fthe present unit
because it is so dependent on manufacturing parameters of the-
battery. '

Battery terminal voltage depends on age, temperature, SOC, rate and
past history. However, at full charge and at full discharge, the I-V
characteristie of the battery can be well established, with a
suitable temperature correction. This means that at a temperature-
corrected float voltage, the SOC is corrected to 100%, or at a
minimum voltage the SOC is corrected to 0. Another alternative is to
measure the current drawn at the float voltage at a given temperature
and extend the charge cycle (lower the calculated SOC) if it is too
high. This last was not implemented because it again is very battery
dependent. The first alternatives were implemented, however.

Equalization of cells is done as a voltage~limited (temperature
compensated) charge based on a number of ampere-hours required equal
to a fraction F of ampere-hours discharged from the battery. After
the completion of equalization, the charge may have been terminated
to save water, or a lower voltage trickle charge may might be
maintained. Based on our experience with systems, the latter was
chosen.

An estimate of the time to next required battery watering of amount
of water required could be made by the processor. This would be
somewhat inaccurate, but might be of some use in warning of required
maintenance before actual failure, This was not implemented.

The battery state of charge is defined to be the fraction of
nameplate ampere-hour capacity which can be delivered at a nominal
discharge rate before dropping below a voltage threshhold (typically
1.75 volts per cell). This changes with the battery temperature. (If
the value is corrected for temperature, the result may exceed 100% on
a warm day.) This value was chosen for load control functions, and
for front panel display of system status. "

Estimates of state of charge by combining voltage, current, and
temperature using a ROM look-up table at intermediate SOC level has
been found previously to be inaccurate during charging periods, and
was not used. Another approach, modelling the battery internally by
a series of coefficients representing internal circuit elements, has
been proposed by researchers at Tel Aviv University. See for example
"Measurement of the State of Battery Charge using Improved Loaded
Voltmeter Test," E. Ofrey and S. Singer, IEEE Trans. in

FINAL REPORT

Instrumentation and Measurement, Vol. IM=31 No.3, pp. 154-~158, Sept.
1982. This approach was found to give good long term results, but
only after a particular make and model of battery was characterized
extensively. Since this implies a practical limit in the flexibility
of the controller, this approach was not utilized either., Instead, a
current integration (amp-hour meter) approach corrected for coulombic
efficiency based on state of charge was used. This is in turn
corrected if it exceeds the extreme temperature-compensated voltage
limits expected for that battery; a much easier parameter to specify.

To measure battery current within half the rate of the internal self-
discharge current, it was necessary to resolve to the nearest 550
hour rate. This compares with typical maximum charge/discharge rates
of 4 hours typically, or 1 hour in an extreme case. Therefore
resolution within 9 bits was required. Since the full scale range of
the shunt may not correspond to the maximum rates (by a factor of 2
or 3), resolution to 10 bits minimum was required. 12 bit resolution
would be nice but not absolutely necessary. If 100 millivolt shunts
are used, this implies offsets near 25 microvolts will be visible.
Therefore, the design should strive for 12 bit or 25 microvolt
resolution of battery currents, with only 10 bits or 100 microvolts
actually required. The use of a 10 bit plus sign A/D converter and
LX signal averaging was selected.

One major expansion of the controller's task would be to separately
calculate SOC of multiple parallel battery strings. This takes up
some extra RAM, processing time, and implies a higher level of system
costs to implement for equalizong strings separately. However,
reliability and cost savings warrant the added complexity in some
cases. This was not implemented in order to keep controller cost
down.

2.2.3 Array Control Considerations

The PV array must be controlled under the following circumstances:

1. If a battery is used and is fully charged, to avoid excessive
water useage. .

2. To avoid excess voltage on the load.

3, To allow the load(s) to be turned off if the array dconnects
directly to it, as discussed under load control.

4, To allow a portion of the array to be safely repaired while
the remainder of the system is running.

5. To avoid discharging the battery at night if no isolation
diode is used.

6. To protect the array in case of fault.

Typical means of array control include:
1. Series contactors or switch elements, usually with series
diodes in all but some low voltage configurations.

2. Parallel switch elements acroll the solar array, with a
series diode batween array strings and the battery.

15

16

FINAL REPORT

4, Switching DC-DC converter elements between array and battery
usually providing maximum power control.

The control signals required by these schemes are different. Series
or shunt regulators require a digital signal for each array string.

A parallel shunt element might require no signals, or might have a
digital input to modify the set point voltages for equalization. The
switching converter requires a pulse width modulated square wave at
the switching frequency, typically 2kHz to 100kHz being extreme
values and 20kHz most common.

Instrumentation of such systems over and above what is needed for
control, would normally provide one voltage and one current
measurement for each array string. Since the instrumentation
provisions are the same, design of the cohtroller must concentrate on
providing signals for control in the various cases. The first two
cases (series or parallel) require the same signals. Since
dissipative shunts are cost effective only in small systems, the
third case has no impact on microprocessor system design. The last
case is very well matched to microprocessor systems capabilities.
Note that many systems are cost effective without built ~in
instrumentation, but with provision for multimeter readings via test
points.,

Therefofe, the most useful way to deal with the series, shunt and
switching converter array control options was to provide a different
ROM sub-program for the same basic system design. The maximum number

"of independent subarrays to be controlled must be set and 5

optoisolated or 10 direct coupled cutput signals was chosen as good
number. This number of optoisolated output signals must then be
supplied, and could be used for either array inputs or load busses
dependiqg on system requirements and ROM programming.

Next, considering the option of maximum power control, the ability to
distinguish small changes in the combined output voltages and current
generally limits maximum power tracker performance. Therefore,
careful treatment of the signal to noise ratio and the filtering of
the input signals is important. This was carefully analyzed during
design.

Typically, the power is an insensitive function of the duty cycle
near a maximum. Therefore, a 2% change in duty cycle F produces a 1%
change in output power. 1In the resistive load case, Vo and Io may
each change 1/2%. Therefore, to find the max power point within 1%,
6 bit resolution of duty cycle F and 8 bit resolution of V and I are
required. Since the system must run at a fraction of full scale, an
extra 3 bits is needed. Therefore, use of a 10 bit plus sign A/D
gives adequate resolution. Filtering must recognize the presence of
20kHz and its harmonics as switching noise, and must produce the
cleanest differences possible at 100 msec intervals. This means
averaging a number of samples in the 100 msec window. Four samples
were averaged.

Timer capability for 8 bit duty cyecle resolution requires, for 20 kHz

FINAL REPORT

carriers, a timer speed of 5 mHz. “This is fast for CMOS, so perhaps
a 7 bit capability would suffice, or a non-CMOS timer could be used.
The non-CMOS timer was implemental.

It is necessary to recognize when some other limit is operating to
disable the max power tracker. In such a case, no change in output
oceurs except noise, and the duty cyecle should then move toward a
nominal value or remain fixed. Remaining in a "dither" pattern was
chosen,

Ability to manually move the duty cycle up or down can be useful for
array string testing, although it is not often required in an
operating system. Therefore a test/cal mode was implemented.

Based on our experience, it is felt that up to 10 power elements
should be driven by one MPC controller, each with a separate buffered
output. These may be assumed to have their outputs in parallel, with
separate subarrays. Therefore, 10 buffered outputs, all with the
same pulse width modulated signal were provided. 180 DC currents and
one output voltage were sampled.

With present production power modules rated a 500W, TriSolarCorp
could handle up to 5 kW with one controller. Larger systems could
use multiple controllers or a larger power module (perhaps 3 to 5 kW)
could be developed.

There are two basic cases in our experience when it is useful to have
two max power controllers (MPC) operating from the same solar array.
The first occurs with a shunt wound DC motor driving a pump or other
device. The field winding requires power for start-up and so must
have high priority on solar input from a portion of the PV array.
After 30% sun or so, the field winding is fully excited and the rest
of the power from this portion of the array can be used by the
armature., The field usually represents 3% to 5% of the total power
dissipation at full load. Use of separate arrays and MPC's results
in waste of 6% to 10% of the system output at full run. Idealy, this
can be recovered by using extra DC-DC converters to divert some power
from the field portion of the array to the armature.

A second instance occurs when a water pump and battery charger are
combined, The battery may be small and ideally, after the battery is
charged, the water pump could be used for excess energy use.

Separate arrays waste the PV output to the battery when it is fully
charged. Running the pump off the battery requires a bigger battery
and loses energy in the battery.

Ideally one set of DC-DC MPC drives would power the field of the
motor or charge the battery until it reached a limit. Then another
set of MPC drives would pull extra energy from the same PV strings
for variable load use.

Each maximum power controller function added to the control unit

requires whatever power conditioning elements are needed, extra
output V and I sense lines, and extra PWM timer, an output on-—off

17

18

FINAL REPORT

control bit, a few bytes of RAM, and a small anount of extra ROM,
plus the program execution time on a 100 millisecond loop. Since the
power conditioning can be used as needed, the inputs and timer are’
the biggest penalty to a minimal control element configuration. For
the prototype, the second MPC was not implemented, but the provision
of an extra timer was made to allow later implementation.

FINAL REPORT

2.2.4 Load Control Considerations -

A variable load would be controlled by a proportional analog signal
of 0-10 volts. Therefore, one such output was provided, with
programmable direction, and SOC programmable set points for load
shedding and load restoration. Resolution is not important since
only approximate energy useages need to be controlled.

Most loads are not continuously power controlled and up to 5 discrete
outputs should be provided for. These would be 1 bit isolated
outputs, with programmable SOC "ON" and SOC "OFF" set points. These
could also include back-up generators or other such devices.

Manual override capability is probably best placed in the loads
themselves rather than in software. However, for self-test purposes,
artificial counting up and down of the SOC control signals should be
possible. Therefore, a manual SOC setting capability was included.

At least one output circuit for latching relay drive should be
provided. However, this was left for external hardware rather than
internal software.

Multiple variable DC loads must be assumed to be in parallel,
otherwise the number of PWM counters becomes unmanageable for a
single CPU controller and controller networking is required.

AC loads, to be variable, would require a variable voltage and
frequency inverter. Drive signals for the poles of such an inverter
might be useful, but might be used for this function only when it is
needed, for variable speed AC pumps or compressors. These were not
included.

Product ‘storage can occur in a number of forms. EZxamples of this
are: :

. Water tankage (pumping).

. Ice making (refrigeration).

. Phase change thermal storage (refrigeration or heat pump).
. Fertilizer making.

. Water heating (resistive).
. Salinity (water desalination).

[, 00 BN VIR \ VI

Because of the diversity of types, the control interface must be
relatively simple to be standardized. Typically, the product storage
system must indicate when it is full and when it is empty. Provision
for this can be flexibly accomodated with two relay contact inputs,
one normally closed and one normally open. Either one in the
abnormal state should cause the PV system to turn OFF, under the
assumption that product storage capacity has been reached. In most
cases, a pair of level switches or thermostats can provide the
desired signals. The capability of accepting other analog inputs
would be provided in hardware anyway. One algorithm for sharing
power between an analog measured product and a battery was be
developed.

19

20

FINAL REPORT

Output to load control may have to operate over hundreds of feet in
electrically noisy environments. Grounding of such signals can cause
problems for the control system. Therefore, all discrete load
control signals were optoisolated. In low cost applications, the
optoisolators can be omitted to avoid excessive cost of unnecessary
options. (This same consideration applies to discrete array control
signals for series or shunt regulated systems. The same outputs ecan
be used, with a programming change.)

Predictive load control algorithms must take into account primarily
the state of charge of the battery, and secondly the time of day and
present insolation., This allowed correction of the load shed
threshold to a perhaps 10% lower value if the time were 8 to 11 AM
and the array current was 20% of the maximum, for example. This
would avoid innecessary cycling of loads. Further use of predictive
control requires algorithm development and field experience which is
a good subject for research, but was not currently available for
implementation in this controller. The controller will facilitate
the data logging required to obtain parameters for evoclutionary
development of these methods.

2.2.5 User Service Considerations

As a minimum, any controller must allow the user to turn the MPC ON
and OFF, and display the battery status. Given the data available to
this controller, it also provides readouts of all sampled voltages,
currents, or temperatures. It also provides alarm functions for
system malfunctions (for example: output over voltages, output over
current ,motor over temperature, array string output zero for more
than 24 hours) and perhaps some diagnosis of problems (power module
shorted). Most alarms are visual, with provision for an audio option
for critfical failures.

Also, parameters of the system might to some extent be field or user
reprogrammable to allow a single stock controller design to be
produced for distribution. These parameters might include state of
charge, number of power modules or array strings, motor voltage,
battery voltage or capacity. The use of a back-up battery for
internal memory or electrically reprogrammable ROM (EPROM) becomes
necessary for this. It was decided to provide manual reassignment of
load priorities, but all other parameters were fixed in EPROM,

The interface itself waschosen to be a low cost ($5 to $10) membrane
switch keypad for input, and a 4 1/2 digit display for output. A
buzzer or loudspeaker would be optionally plugged in. These features
were mounted on an inner hinged panel, behind the weatherproof NEMA
front panel and in a location protested from user contact with any
live parts.

This also allows initiation of self-diagnosis routines from the
keypad, which could test all elements of the processor and
interfaces.

FINAL REPORT

Further diagnosis might be done via an RS-232 port. This port could
also provides for data logging of the signals sampled by the
processor. These included array string input voltages, output
voltages, and MPC power module output currents, From our experience,
these facilitate fault diagnosis and isclation as well as permitting
delivered power and efficiency calculations.

2.2.6 Self Test Considerations

At the highest level, the processor tests the solar array strings to
determine if one is weaker than the other. It warns if the battery
is too deeply discharged. It announces if a load draws much current.

At the next level, the controller tests itself. A test of RON, RAM,
and all output audible and visible alarms is performed on demand. A
watchdog timer checks of the processor is running at all times.

To allow both production testing and field repairs, an RS-232
interface and a small monitor program is useful to exercise the data
collection, processing, output control, and timing functions of the
controller under manual control. With only the keypad input and LCD
readout, a more limited manual checkout of the system and the
controller is possible. This simply displays voltage and current on
demand, and allows manual unit turn ON and OFF, plus a scan of all
parameter settings in the controller,

A standard hexadecimal 16 keypad suffices for the development systems
with two preliminary letter keystrokes for function and numbers 9-9
for string or parameter identification. In production quantities,
the letters could be replaced by more explicit labels of the
functions.

2.2.7 Other Considerations

In addition to the these functional requirements, the need for a
product which is easily reproduced without custom drawings for each
application is important. Also the adaptability of the unit to a
particular system without large numbers of selector switches, ports,
jumpers or custom trimmed resistors is vital. Extensive use of
EPROM, for system parameter and algorithm specification was chosen as
the most viable approach. The use of replaceable modules at the
board level into the unit, was found to be necessary for user
acceptance in locations where PV is to be used.

Finally, the unit has to be very reliable if it is not to compromise
the inherent advantage of reliable electric power which makes PV
systems attractive. This implies use of proper temperature range
components and minimization of parts count.

2.3. OPTIONS DEFERRED

In designing the controller, a number of decisions were made which
might be re—-examined at some future date as component technology
changes. These are deseribed here to facilitate such future project

21

22

FINAL REPORT

planning.

2.3.1 "Zero Option"

In looking at the market analysis for PV controllers, it appears
that there may be a place for a very inexpensive (well under $100)
controller without many of the features needed in large systems.

Such a controller would be simply a battery regulator, with a single
array input and a single load output. It would be intended for
systems from 100 watts to 1kW peak, where the site access cost for
battery maintenance or replacement would make state of charge control
worthwhile, It would have no instrumentation or data logging.
capabilities, no sequential load shedding, no maximum power point
reacking, and would be designed only for 12 or 24 volt batteries.

However, it would provide a readout of battery state of charge based
on ampere~hour accumulation and would provide better battery charge
control than the ten dollar voltage limiter with temperature
compensation which would compete with it. Such a controller would
require very little memory (RAM or ROM) and could be implemented with
an 80Cu8, 146805, or equivalent processor. Inputs for voltage,
current and temperature of the battery would be adequate. Latching
relay drives would be appropriate for input and output.

The economies of such a controller are marginal at present. In the
future, sufficient volume (several thousand per year) would allow a
masked—-ROM memory and an inexpensive 8 bit multiplexed input,
resulting in parts costs under $40, Until such time as this market
becomes better defined, the viability of such a product is not clear.
However, a specification has been generated for future reference.

The concept is labelled the "Zero Option" because it is not one of
the five recommended options for the next phase of this contract.
Figure 2.3.1-1 gives these specifications,

2.3.2 Larger Power Stages for Maxpower Control

The TriSolarCorp MPC power modules available at present are rated
500W each. The control of systems larger than about S5kW requires
that more than 10 such power modules be used. This can be
accomplished using the present MAC microprocessor controller only if
not all of them are monitored, or if more than one MAC be used, or if
relays instead of MPC power modules are used. A better solution is
to develop power modules of near SkW power rating. This requires
interfacing to the MAC with a pulse modulated waveform of the proper
frequency, since 20K HZ implemented at present may be too fast for
larger devices. Alsc the dynamics of the control functions must be
compatible with the slower filters of a larger power module,

This development was beyond the scope of the present contract.

2.3.3 Multiple MPC Control

In many systems more than one max power control function is needed,

SPECIFICATIONS FOR "ZERO OPTION"™ CONTROLLER

’

Array Voltage:
Array Configuration:

Array Control:

Single Ended Inputs:

Differential Input:

Control Inputs:

Battery:

Battery SOC Control:

Battery Voltage Limits:

Control Digital Outputs:

Manual Entry or 1/0:

Display:

+10.0V to +60.0V

Single input

Discrete ON/OFF

Battery voltage, battery
temperature sensed by 10k ohm
thermistor

+100mV battery current shunt

Relay contact closures; One NC, One
NO

12V or 24V Nominal, 10 to 10,000
ampere-hours, required for
operation

Ampere-hour accumulator, accuracy
+10%, precision +2%

Maximum absolute limit, maximum
temperature-compensated limit,
minimum absolute limit

One for .array, one for load,
lateéhing relay drives

None

Battery SOC, 2 1/2 digits, LCD

FIGURE 2.3.1-1

23

24

FINAL REPORT

since more than one power flow path from an array to a load must be
controlled, No extra hardware in the CPU would be needed to
implement the feature, but extra power conditioning hardware would be
needed as well as appropriate software. This was not implemented in
the prototype since no specific use was foreseen at present.

2.3.4 Variable MPC Control

The ability to drive standard sumersible AC motors for pumping
applications would enhance the controller. However, the relation
between an AC motor and its variable speed drive is particularly
intimate in terms of protective features and optimal drive
strategies.

Implementation of this function was left for a separate unit, with a
simple interface to the MAC controller via an analog control voltage
0-10V F.S. This task is well worthwhile when resources are available
to support it.

2.3.5 Multiple Battery Strings

If a large system consists of several parallel-connected battery
banks, it is possible to compute the state of charge of each one and
check that each is sharing the load. However, this is not eritical to
the PV system control task and so was not implemented at this time,
since it impacts the size and speed of the controller.

2.3.6 System Topologies

The most fundamental choice in applying a microprocessor controller
to large PV systems is the overall topology. How many controllers
will be used, and how will they communicate? Three basic topologies
were studied. These are described as follows:

Distributed Controller

The distributed controller is conceptually a number of independent
microprocessors, each performing a different funetion in the overall
system and each located with the equipment it controls. For example,
in a village power system some control elements might be array
controllers or max power controllers for separate subarrays, another
might perform battery management, another control load management
funetions, and another might perform data logging and display
functions. Only a small amount of slowly changing information would
be exchanged between them via a bus structure of some kind. Any one
controller could function in a backup mode without any information
from other controllers.

Star Controller

In the star configuration, a master controller operates the central
elements of the system and communicates with remote slave units ar

FINAL REPORT

the ports of the "star". These sldve elements are simpler, more
spreialized units and communicate only with the master controller.

In a village power system, for example, the master unit might perform
battery and load management and data logging functions while the
array controls or max power controllers were slaves. Diagnostic
displays might be divided among the elements as required.

Information on battery status would flow from the master unit, and
array status would return to it. Backup operation would require
manual control of the battery and loads.

Central Controls

In a central control scheme, all control functions reside in one
controller with no processor or "smart" controls in any other place.
In a large village system, all array switches or max power trackers
and loads have their operating states set by the central controller.
All data logging and most of the instrumentation would also be
centralized. This configuration allows the most complex algorithms
since a;; data is available for all functions. It also provides the
least redundancy and backup capability, unless the central controller
has it built in.

Assuming a microprocessor of even minimal complexity at each mode, a
trade-off study showed that the central topology was the least
expensive for all but the smallest systems. This was basically
because the cost of memory, power supply, enclosures, and so on was
too high for very small units of the distributed or star networks.
Therefore, the central topology was pursued as the basic requirement
for the MAC controller.

However, it should be noted that the MAC can be used in either
distributed or star configuration under some circumstances.

If a large system required independent operation of several parts for
higher reliability, several MAC units could be operated
independently. No information would be exchanged between them,
unless further development of a multi-station R3232C bus were
completed.

Also, if a system had a number of "dumb" controllers such as the low
cost TriSolarCorp BCR unit, each of these with its subarray could be
treated as a discreet-switched string and controlled and monitored by
a sequentially switched segmented array control, a very good way to
handle large low voltage DC systems. The MAC would provide
everything except max power tracking for such a system. The three
basic topologies are diagrammed in Figure 2.3.6-1.

As part of the trade-off of system topologies, a Failure Mode and
Effects Analysis (FMEA) was done for each option. Figure 2.3.6-2
shows the system level failure modes of the unit and their results.
Figure 2.3.6-3 takes these failure modes and compares the impact of
each of failure on overall system operation. As is easily seen, the
impact of distributed system failures is far less than star system

25

RS 232

26

DISTRIBUTED:

5 kW
Array

Variant 1

5 kW
Array

5 kW
Array

Variant 1

variant 1

Printer

STAR:

5 kW
Array

Variant 2

RS 232 bus
Printer Printer
5 kW 5 kw
Array Array

Variant 2

Variant 2

‘FIGURE 2.3.6-1

I Variant 1 RS 232 Printer
1 |
Battery
Loads
CENTRAL:
5 kW 5 kW 5 kW
Array Array Array
Variant 1 plus extender} RS 232 Printer
Battery Loads

Function
. Lost

FMEA. SYSTEM LEVEL

Distributed

Star

Centralized

Array Control
Partial

Total

Battery Control

Load Control

Instrumentation

Data Logging &
Communications

Self Test

Reduced output
until scheduled
maintenance

Greatly reduced
output until

scheduled main-
tenance

manual operation
modular replace-~

Manual load
operation, mod-
ular replacement

Operational,sched-
uled maintenance

Manual operation,
modular replace-
ment

Operational,

scheduled mainte- °

nance

Reduced output
until scheduled

maintenance

Greatly reduced
output until
scheduled main-
tenance

manual operation
master unit re-
placement

Manual operation,
Master unit re- -
placement

Operational,
scheduled mainte-
nance

Manual operation,

modular replace-
ment

Operational,
scheduled mainte-
nance

FIGURE 2.3.6-2

Reduced output
until scheduled

maintenance

Total shutdown

controller re-
placement

totally manual

. operation,con-

troller replace-
ment

Totally manual
operation, con-
troller replace-
ment

" Manual operation

Controller re-~

‘placement

Operational,
scheduled main-
tenance, modular
replacement

Operational,
scheduled mainte-
nance, controller
replacement

27

28

FMEA IMPACT CHART

ANY ONE ELEMENT: FAILURE DISTRIBUTED) STAR CENTRAL
Power Supply

Low 1 2 3

High 1 2 3
A/D Converter

Calibration 1 1 2

No output 2 2 3
Display and Interface

Partial 1 .2 2
-~ Total 2 3 3
Array Control

Partial 1 1 1

Total 2 2 3
UART/RS-232

Total 2 .2 1
CPU & Memory

Total 1Tor 2 2 3
Current Meas. Max or Analog Mix

Partial 1 1 2

Total 1 2 3

NOTE: 1=degraded performance, scheduled maintenance
2=manual operation until maintenance

3=total failure

FIGURE 2.3.6-3

FINAL REPORT

failures, which in turn are less than central system failures.

2.3.7 Other Processors

The choice of processor is very fundamental to the realization of the
controller. Based on the previous decisions, we needed a processor
with 8-~bit data bus, 16=bit address bus, and instruction times below
5 microseconds. A list of these are attached in Figure 2.3.7-1. In
addition, memory requirements were estimated to be 2K of RAM and 12K
of EPROM.

This was too much for the chips with on-chip memories which were
available for the "zero option". Also, using a chip with all address
and data lines available allowed system expansion for larger
applications.

Major considerations then became power level (CMOS preferred),
availability, support, and cost. These reduced the field to two
major competitors, the national NSC 800 and the various suppliers of
the 65C02. The main attractions of the NSC800 were availability

and low power. In particular, the modular MAZ2000 version of the
NSC800 looked attractive as a compact package. However, availability
of the MA2000 in the time frame required was a problem, and the cost
of the NSC800 in any form was higher because of the interfacing
needed for its address and data busses. Development support for the
65C02 was more available at the facilities which needed it, and the
cost was very low, the CPU only $10 in large quantities. After
evaluations of samples from both GTE and Rockwell, this bacame the
choice for the project. The availability of NMOS versions of most of
the family at lower cost for breadboarding was also useful.

Analysis of the cost of the 65C02~based processor, which is suitable
for any -of the three geometries and can meet all the preliminary
design requirements, shows that its hardware cost, in small quantity
production, in materials alone will exceed the $300 cost target,
smeant to include labor and overhead as well. This problem motivated
a careful look at lower cost alternatives which could be used in some
topologies (perhaps as a peripheral unit of a star configuration) or
with reduced capabilities. The number of analog inputs and load bus
econtrols, plus the UART support requirements, were the driving force
behind the processor choice., Therefore, a lower cost alternative was
generated which approached the operational requirements of the system
with less input and output.

The dramatic cost reduction possibilities lay in the use of a single
chip computer with inboard EPROM., The chip selected for closest
approach to the 65C02 in instruction set and largest memory capacity
was the MC1468795G2. This has 2106 bytes of EPROM, 112 bytes of RAM,
internal timer, 32 I/0 lines, bootstrap programming and is plug
compatible with a masked ROM version for future cost reduction in
larger quantities. It combines CMOS power levels with a versatile
instruction set. Its limitations for our application are expected to
be the number of I/0 lines and the amount of ROM. Its advantage is a
cost reduction of almost a factor of two.

29

COMMERCIALLY AVAILABLE CMOS MICROPROCESORS WITH 8 BIT WIDE DATA PATHS AND INSTRUCTION TIMES BELOW 5 MICROSECONDS

@ , .
ANUFACTURER DEVICE T. MEMORY (B) INSTR CIC INSTR # 1INTERRUPT REGILSTERS MEMORY ADDITIONAL FEATURES & COMMEN
: _ 2. RAM (C) MIN/MAX (E) LEVELS MAPPED
3. ROM (D) 1/0
OMMONORE MCS-65C0X b4K 0.5/3.5 ° 56 1 ACCUM. YES 1. 6502 NMOS COMPATIBLE(MCS-6
MCS-65C1X X; Y 2. HIGH LEVEL LANGUAGE SUPPOR
STACK PTR EXTENSIVE
ITACHI HD6301 64K 2/12 82 1 ACCUM A, B YES 1. 6801 NMOS COMPATIBLE
128 BYTES/ X, ' 2. MULTIPLY INSTRUCTION
2K BYTES STACK PTR 3. 31 I/0 LINES
4. DOUBLE PRECISON OP CODES
ITEL MD68SCO2AC 64K 2/5 72 1 ACCUM A, B YES 1. MOTOROLA 6802 NMOS COHPATI
128 BYTES X, STACK PTR 2. 1V. STANDBY CAPABILITY
. 3-7V OPERATION
JTOROLA MC146805E2 8K 2/4 Q"g 61 1 ACCUM, X YES 1. 32 I/0 LINES
[TACHI MC146805G2 112 BTYES 3 % “ IRQ STACK PTR 2. TIMER .
HD6305 O ¥ TIMER . 3, 20MW ACTIVE, 1MW STANDBY.
A SWI 4. 3-6V OPERATION
© T
- ==
1) NSC 800 64K 1.6/9.2 gg 158 5 14GP YES 1. 2 80 INSTRUCTION SET
- . & CODE COMPATABILE
= & 2. SUPERSET OF 8080/8085 SET
3, HIGH LEVEL LANGUAGE SUPPOR
EXTENSIVE
iC INS80C48 4K 2.5/5 36 1 16GP NO 1. SUBROUTINE NESTING LIMITEL
1 IN8SOCX48 64 BYTES 37 ACCUM : 8 LEVELS
3C MPDBOC48 1K BYTES 2. 27 1/0 LINES
)SHI BA TMPBOC48P 3, TIMER
4. 8048 NMOS COMPATIBLE
5. NO HIGH LEVEL LANGUAGE SUI
ITEL 80C49 4K 1.4/2.8 80 1 16CP NO Y. SUBROUTINE NESTING LIMITE]
C MPD80OC49 128 BYTES 8 LEVELS :
1 TMP8OC49P-6 2K BYTES 2. 27 I/0 LINES
)SHIBA 3+ TIMER
BROTL

4.

NO HINH LRURI TANCIACD ofr

COMMERCIALLY AVAILABLE CMOS MICROPROCESORS WITH 8 BIT WIDE DATA PATHS AND INSTRUCTION TIMES BELOW 5 MICROSECONDS (CON'T)

POSHIBA

TMP8OC3GP-6 4K 2.5/5 96 1 16GP NO 1. 8039 NMOS COMPATIBI
IsC 64 BYTES ACCUM 2. 27 I/0 LINES

JKI 3. NO HIGH LEVEL LANGL

SUPPORT
iCA 1805 64K 4/6 113 1 16GP NO 1« 8 BIT COUNTER-TIMEF
64 BYTES 2. SOME HIGH LEVEL LA?!

SUPPORT
HTERSIL IM6100 4X 2.5/5.5 81 1 ACCUM NO 1. PDP-8 INSTRUCTION ¢
MQ 2. 4V TO 11V OPERATIO!

3. 12 BIT DATA PATH

IOTFS: A) All units have expansion I/O capability °

B) Memory direct addressing capability
C) RAM on CHIP
D) ROM on CHIP

E) In microseconds

1€

TICURE 2.3.7-1 B

32

FINAL REPORT

To allow use of this chip, the array string currents are summed prior
to sampling., The individual array string currents and voltages, if
needed for instrumentation, must be switched manually to a metering
input of the processor. Also, the two (not five) output bus lines
are not measured automatically, although these too could be manually
metered the same way. Only one PWM output is supported, with no
analog output signal. Finally, the limited I/0 of the chip will not
support a UART for R3-232 linkage in addition to its other tasks.
Communication via two dedicated digital inputs and one analog input
is provided. 3Self test functions are minimized.

However, with these reductions, the processor can perform the key
array control, battery charge control, load management,
instrumentation, and self test functions in the system design
requirements. The unit would be able to meet the requirements of the
many small applications at a competitive cost, with the sacrifice of
more complex system capability.

To meet more complex system requirements, the small processor optioﬁ
could be used in the following ways:

1. As a peripheral unit of a star configuration, with the two
digital and one analog input lines to the hub element, the unit
works, The central unit might be the 65C02 based controller or
another small controller configured with no analog inputs but UART
interface for data logging and a sinplifies link to the peripheral
units.

2. As a multiple processor central unit, with one major funection
for each chip.

As a distributed processor element, the limited I/0 capability makes
the small processor option unfeasible. The small processor was not
implemented in the prototype. ‘

2.4 CONTROLLER SPECIFICATIONS

Having selected the important functions of the MAC unit, and deferred
the options not to be included how, the requirements for the unit can
be summarized as a specification. This is done in Figure 2.4-1,

Array Voltage +10.0V to +18.0V or
+40 to +300.0V,
Input power under 5 watts

Array Configuration 1 to 10 string
40 to S00W per string

Array Control Discrete string ON/OFF or maximum
power control by Pulse Width Modulator
(PWM) down converter

Tracking Accuracy Within 1% of maximum output power

Control PWM Interface

Single Ended Sense Inputs

Differential Inputs

Control Inputs

Battery

Battery SOC Controls

Battery Voltage Limits

Control Digital Outputs

Control Analog Output

Test and Logger Output

Display

Manual Input

Power Dissipation

FINAL REPORT

12.5V (#1V/~.05V) pulse width modulated
20kHz CMOS logic level, up to 10 buffered
outputs which can be connected to either
one of 2 independent PWM drivers or are
usable as 10 separate discrete control
signals.

+/= 4V DC full scale, +/- 2% accuracy,
10k ohm source impedance maximum. 16
voltage channels plus 2 thermistor
channels

+/= 100mV full scale, +/- 2% accuracy,
+/= 2V common mode maximum, 1K ohm
source impedance maximum, 16 channels

Two contact actuated inputs, one for
normally open and for normally closed
contacts. One manual system is shutdown.
Normally open is ON. Contact rating
required is 15V DC, 2 mA DC.

No battery is required, or with battery,
12V to 240V nominal, 100 to 10,000
ampere~hours.

Ampere-hour accumulator accuracy +/- 5%,
precision +/~ 1%.

Maximum absolute limit, maximum
temperature compensated charging limit,

~maximum temperature compensated float
"1limit, minimum absolute limit, all

programmable

Optoisolator outputs, 6 total; pairs may
be used as latching relay drivers,

1 output +10V full scale, accuracy +/- 2%
resolution 8 bits minimum.

RS232 interface, 300 baud, full duplex
Other rates programmable by EPROM change.

LCD 4 1/2 digit display of battery SOC,
any analog sensed input, calculated
parameters, or error codes,

16-key keypad to select displayed
quantities or self-test

5 watts or less for control elements only
not including power modules or relays

33

34

Power to Other Elements

System Loads

Ambient Temperature

Enclosure

FINAL REPORT

+12.5V (+1V/=0,5V) at O to 50 mA

Battery, resistive DC, permanent magnet
or wound field DC motor, inverter/battery

Operating -25 degrees C to +45 degrees C,

, shipping -U45 degrees C to +85 degrees €

NEMA--U

3.0 DESCRIPTION :

3.1 HARDWARE DESCRIPTION

The prototype microprocessor PV system controller consists of a NEMA-
U4 enclosure containing the following major electronic assemblies:

Power Supply

Display and Control Interface
Resistor Divider Board

Power Modules (10)

Processor

L]

MOoOQm >

A block diagram is shown in Figure 3.1-1. A photograph of the unit
with internal cover open is shown in Figure 3.1-2. Schematic diagrams
are attached in Appendix T.

3.1.1 Power Supply

The power supply consists of a wide input range DC to DC down
converter and a multi-output flyback DC to DC converter. Total tare
leoss is 0.35 watts. The downconverter accepts 40V to 300V DC and
produces 13.2 volts (referred to as a nominally +12V level) at up to
0.6 amperes, with an efficiency of approximately 64 percent. This
can charge a 12 volt battery and can directly drive the flyback stage
whether a battery is present or not. The flyback converter produces
regulated +5V DC at up to 0.7 amperes, plus unregulated outputs of
nominally -5V and -12V DC. 1Its efficiency at the +5V output is
approximately 84% The processor logiec runs on the basic +5V ocutput,
the analog signal conditioning amplifiers and RS232 interface run on
+/-12V, the analog multiplexers run on +5V, and the power modules run
on +12V.” Total dissipation in the controller from a high voltage

PV array, with NMOS EPROM's (CMOS units were not yet readily
available) was 4.7 watts, distributed as follows:

Processor and display 2.0W
Power supply 2.3W
Power modules 10 at L4OmW = O.4W

The largest single power use is in the 9513 timer chip on the
processor board, which uses about one watt at five volts. If a
separate 12 volt supply or battery is used, thus avoiding down
converter loss, total dissipation is only three watts.

The power supply is fully short ecirecuit protected, all outputs are
over-voltage clamped, and the five volt output has an over-voltage
erowbar reset by power off.

3.1.2 Display and Control Interface

The display board consists of a 4-1/2 digit LCD display, a 16 key
membrane switch pad (ealculator style), an audible alarm, and three
LED's: RED, YELLOW, and GREZEN, The keypad allows manual control

35

9¢

Arrays

PHOTOVOLTAIC SYSTEM

BLOCK DIAGRAM

 MICROPROCESSOR AUTOMATIC CONTROLLER

A\

Power

Display Board

Modules

Processor Board

Switching
Gear

Power Divider
Supply Interface
7N\
\V/
Battery

Figure 3.1-1

I\
v

Backup
Generator

Loads

CRicrn:

e Gy

OF Pook

FIGURE 3.1-2
MICROPROCESSOR CONTROLLER

37

2R

(under password security) of the system and calls up any one of over
50 different quantities to be displayed. The display normally shows
battery state of charge but can display the voltage, current, or
power of any array string, load bus, battery, motor, or other
monitored point, monitored temperatures, or time of day. The LED's
summarize system status: The GREEN LED shows that the processor is
running and servicing timer interrupts. The RED LED indicates that
the battery is dangerously low and loads have been shed, and the
YELLOW LED indicates that stored energy is in short supply and should
be conserved. A listing of the keypad-accessible functions is given
in the software section of this report.

3.1.3 Resistor Divider Board

The resistor divider board serves as an interface between the high
voltages in the power system and the low voltage signals measured by
the processor. High voltages above 40 V are attenuated by a ratio of
100 to 1 before measurement while voltages from four volt to 40 volt
full scale are attenuated by 10 to 1.

3.1.4 Power Modules

The power modules are 500 watt DC to DC converters used to couple the
180 volt nominal solar array inputs to the 120 volt nominal battery
and load bus. These are 20kHz switching type bucking converters,
with typical efficiency of 98 ¥4 They include internal fast current
limiting. Ten power modules are provided in the prototype.

3.1.5 Processor
The processor is a large board containing the following parts:

1. Central Processor: CPU, timer, ROM, RAM

2. Analog input section: differential current,
multiplexer, single-ended voltage multiplexer,
and 10 bit plus sign A/D converter

3. Display and control interface: UART for RS232
interface support; PIA for keypad, LED, LCD,
and interrupt support; six optoisolators for
load control

4, Array control buffers: 10 digital outputs
which can be used as pulse width modulated
20kHz signals for the power modules for
maximum power point tracking, or can be switch
drive signals for discrete array control.

The central processor is built around a 65C02 CPU which operates at
1MHz with an eight bit data bus and a 16 bit address bus. This
addresses 16k bytes of CMOS EPROM and up to 6k bytes of CMOS RAM.
(This program requires only 2K of BAM,) Address and data bus buffers
separate the central portion of the processor from the rest of the
controller. A multiple timer, the AM9513, is used to generate the
UMHz master crystal oscillator clock, 1MHz system clock, the time of
day, the two pulse width modulated 20kHz outputs, the 16X baud rate

clock for the RS232 port, and a Umséc interrupt used in the program.
All "glue" chips (assorted small gates) are of the TUHC family for
adequate speed at CMOS power levels. An address decoder for other
major sections of the controller is also included in this section.

The heart of the analog input section is the AD7571 analog to digital
converter. This new device is a CMOS low cost unit, with 10 bits
plus sign accuracy, and internal interface to an 8 bit microprocessor
bus. It is used in its "RAM mode", externally clocked at 500kHz, to
give an 88 microsecond conversion time, with an external TLU431
precision reference. Simple external address gating and buffering
included here also provide multiplexing ontc the data bus of
converter status, as well as two time of day alarm outputs and two
external control switch status bits.

The input to the converter comes from an analog multiplexer. This
consists of a low offset buffer amplifier, channel selectiocn latch,
three 8-input single-ended CMOS multiplexers, and input filters.
This services inputs for 16 voltage sampling channels, 16 currents,
two thermistor inputs, a Uv reference, a ground reference, and the
current measurement differential multiplexer, Zach voltage sense
input, with +/-4volt range, includes a diode clamped anti-aliasing
filter to avoid averaging errors when sampling at the Umsec interrupt
rate, and which also filters out RFI and protects against high
voltage spikes. Filtering throughout the multiplexer system is
extensive, but settling time is limited mainly by the slew rate
requirements of the buffer amplifiers.. Measured room temperature
accuracy through the A/D converter is +/-~0.2 percent,

Current sense inputs, with +/-100mV range, utilize a differential
muliplexer with gain of 40. This consists of an address decoder, an
instrumentation-amplifier style buffer amplifier, four U-~input dual
CMOS multiplexers, and a differential anti-aliasing filter on each of
16 channels. This is alsc clamped for spike suppression and can
tolerate +/-2volts common mode without significant accuracy
degradation., This is needed to allow current shunts at reasonably
remote locations in a large system, where wiring resistance drops can
cause common mode offsets. Accuracy of 2% can be irimmed to better
than 1%, with a DC common mode rejection ratio of 60db minimum,

Crosstalk in each stage of multiplexing is less than 0.1%, channel to
channel, occuring with 10k signal sources at the voltage sense lines,
This is limited by the "offY resistance of the low cost multiplexers
used, and is adequate for this application but could be improved,

since a worst case effective offset of just under +/-2% could result,

Anti-aliasing filter design of the current sense inputs is based upon
the possibility of 100 or 120Hz square waves on the battery current
line, sampled at the UYmsec rate and averaged 16 times, resulting in
an accuracy of better thap five percent.

The display and control interface consists of a 653C21 peripheral
interface adapter (PIA) and an octal lateh. The latch drives six
UN32 optoisolator outputs via a hex buffer and series resistors.

39

40

These resistors determine the output drive capability, and are
presently set for 30 ma output drive,

The PIA provides two programmable 8 bit input/output ports and two
pairs of dual programmable interrupt latches. The input/output ports
service the LCD display, the keyboard, and the signals for the LED's
and audioc alarm, and are inputs for the UART status flags. The
interrupts provide for the 4msec timer and the panic shutdown switch
funetions as well as UART service,

The PS232 port is provided by an IM64O2 CMOS UAPRT, which with a few
discrete driver elements, makes a complete bi-directional
asynchronoeus communications interface. At present, the parity,
frame, and overflow error flags are ignored because a single system
setting of baud rate and framing bits make these errors unlikely and
error recovery in an unattended, stand alone system is impractical.
This port allows data logging to an external printer, automated
testing during manufacture, or computer interfacing in special
applications.

The array control funections consist of a set of latches, gates, and
buffers allowing 12 digital outputs to be driven as independent relay
drive signals for discrete array contreol, or as separately buffered
pulse width modulated 20kHz signals for maximum power point tracking.
A watchdog timer turns off the array control and load outputs if the
processer fails to reset it within 80msec. An additional analog
output, O to 10 V, is available for continuous analog contrel of
variable loads such as variable speed motor drives. This is realized
by low pass filtering of a second PWM signal. Alternatively, the 12
array control outputs can be partitioned between the two PWM signals
to provide max power tracking into twe independent loads, although
the present software doesn't yet fully support that mode of
operation.

3.2 SOFTWARE DESCRIPTION

The software design was based on two decisions. First, the software
is modular, This allows an orderly linking of software moudles using
the principles of structured programming and allows modules to be
modified without interfering with the rest of the program. Second,
the modules were defined using "pseudocode!, an explicit definition
of each algorithm in plain English with a program format. This
allowed clear communication between system designer, hardware
designer, and software designer in advance of actual programming and
eased the task of uniting assembly language code.

The MAC unit is designed to operate without needing any human
intervention. It performs the following functions automatically:

1. Battery Control

2. Array Control

3. Load or auxiliary display on the
control panel

4, Status display on the control panel

-

5. Self-test
6. Data logging via RS232C port

In addition, the MAC unit provides the following facilities for
manual control:

Manual battery charge initialization

Manual array control

Manual load or auxiliary charger control

Control panel display of system

operating parameters

5. Manual test calibration mode and time of
day

6. Remote control and parameter measurement

or automated testing via the R3232C port

2w~
. e ®

Each function is described below, with the automatic and manual
functions described together for ease of understanding. A complete
pseudocode listing by subprograms is given in Appendix II, The key
parameters for a sample system personalization of the MAC are given
in Figure 3.2-1. A detailed listing of the object code is available
in the Task ITII Interim PReport,

3.2.1 Battery Control

The state of charge deseribes the battery's condition at an instant
in time. The state of charge of the battery is defined tc be a
percentage equal to 100 times the number of ampere-hours the battery
can deliver at 25 C at its specified rate, divided by the battery's
rated ampere-hour capacity at 25 degrees centigrade. This is always
less than 100 percent.

The corrected state of charge is defined to be a percentage equal to
100 times the number of ampere-hour capacity at 25 C. Note that this
can be greater than 100 percent.

The initial battery state of charge can be entered manually from
either the keyboard or the RS232C terminal., This can be based on a
hydrometer reading of battery acid density, or simply an estimate.
If it is wrong, the system will eventually correct it without damage
to the battery. Default value at power-up is 50 percent.

The state of charge is increased by the number of ampere-hours
flowing into the battery, and decreased by the number of ampere-hours
flowing out of the battery. Rate of increase is modified by a

tabulated coulombic charging efficiency which depends on state of
charge as follows:

41

4

CONTROL PARAMETER LIST

Array Voltage

Array String Current

Number of Strings

Battery number of Cells
series

Ampere-hour Capacity

Float Voltage/Cell

‘Equalization Volts/Cell

Min. Voltage/Cell

Battery Current

Charger Current Limit

Load Current Limit
Temperature Measurements
Charger String Current Limit
Number of Load Busses

MAC-P10 S.N.

MIN
156

FIGURE 3.2-1

001

TYP

180.
2.
10.

o O o©O

54.
400.

- - -
- - - = g

- - - -

—————

- e -

- . e -

CHARGING EFFICIENCY

S0C EFFICIENCY
6 TO .7 100
.7 TO .8 .875
.8 TO .9 .8125
.9 70 1.0 ‘ .6875

If the battery voltage reaches 97% of its float voltage (corrected
for temperature), it is automatically determined that the battery's
state of charge is increased at one percent per second until that
value is reached.

Battery capacity at temperature is estimated by an increase of 0.2%
per degree C above 25 C, and reduced by 0.75% per degree C below 25
degrees centigrade.

If the battery voltage drops below the minimum allowed, it is
automatically determined that the battery's real state of charge is
lower than the estimate, and the estimaed state of charge is reduced
at 1% per second until the voltage rises above minimum due to load
shedding or until O state of charge.

For every ampere-hour of discharge by the battery, one equalization
fraction ampere-hour of extra or equalization charging is
automatically programmed when energy becomes available and 180% state
of charge has been reached. This is needed to bring all cells up to
full charge and to stir the acid by generating small amounts of gas.
This prolongs total percentage to avoid excessive water useage.

If the battery goes through many partial charge and discharge cycles
before equalizing, the total equalization charge is limited to the
equalization total percentage to avoid excessive water useage.

During charging and equalization, the battery is allowed to rise to
the equalization voltage. After equalization is completed, the
battery voltage is limited to the float voltage, which is below the
point of significant gassing and so uses up less water. This float
level charge makes up for internal battery self-discharging.

The float and equalization voltages are equal to a nominal voltage
per cell minus 0.22% per degree C above nominal (temperature in
degrees C minus 25 C), or equal to the absolute maximum battery
voltage, whichever is lower. The battery minimum voltage has the
same temperature compensation and an absolute minimum value.

The result of these calculations, then, are the battery voltage
maximum limit, the battery voltage minimum limit, the state of
charge, the temperature corrected state of charge, and the
equalization charge needed.

Battery state of charge is channel DOO and battery corrected state of
charge is channel D40 on the LCD display and the serial port. These

43

b4

-

are the most frequently read values, and so corrected state of charge
is put on the display by default at power up or after a data dump at
half hour intervals., A diagram of the battery control algorithm is
given in Figure 3.2.1-1.

3.2.2 Array Control

If the battery is not fully charged and equalized, the voltage limit
is the equalization voltage. If fully equalized, the voltage limit
is the float voltage. Until reaching voltage limit, the sclar array
charges the battery as much as the available energy allows.

There are two automatic modes of array control resident in the
program. The first is discrete array control. This turns strings
on, one per second as long as the battery voltage is less the Q4% of
its maximum limit. Tt makes no change until the battery veocltage
reaches 97% of its maximum limit. Between 97% and 100% of its
maximum limit, strings are turned off one per second, Above 100% of
maximum limit, all strings are turned off. The battery voltage used

for this algorithm is averaged over four samples tc minimize noise
problems.

The second mode is maximum power tracking. The controller drives up
to 10 power modules with a 20kHz pulse width modulated drive signal,
13 volts = high = OFF, 0 volts = ON. The pulse width is set in 1/4
microseconds increments. It is initialized to O and changed in small
(1/4% microseconds) or large (2 microseconds) steps every 160
milliseconds., At each step, the tctal delivered power is calcualted
and compared with the power delivered at the previous duty ecycle. If
the power changed by less than 1.5%, and if no limiting conditions
were encountered, small steps are used, otherwise big steps are used
to speed up the process.

If the power level was found to be constant or increasing, the next
step is taken in the same direction as the last. If 'the power was
found to be decreasing, the direction of step in duty ecycle is
reversed., Therefore, the duty cycle is adjusted to the maximum power
operating point, and hunts there +/- one or two small steps,
representing an operating point within +/- 1% of maximum power.

If the charger current limit or battery maximum voltage limit is
reached or if switech 82 is open, the duty cycle is always decreased
one step. This converts the controller into a constant voltage or
constant current power supply, normally used for finishing charge of
batteries or for motor starting without batteries.

Also, if the inhibit switeh S1 is closed, the duty eyele is set to O,
turning off the solar array. Switeh S2, normally closed, is usually
used as a motor thermostat, while ST is often used as a water tank
float switch level control. A manual switeh in parallel with S1,
normally open, provides a manual array shut-off funection.

BATTERY STATE OF CHARGE CONTROL ALGORITHM

MeEASURE BATTERY
VoLTAGE, CURRENT &
TEMPERATURE
CaLcuLATE SOC ‘
FROM AMPERE-HOUR ~——-———D-SOC
CALCULATE £
: QUALIZATION
FouaL1zATiON CHARGE —>
CounT
REQUIREMENT
CAFCULATE CHARGING
VOLTAGE-LIMTTS : > CONTROL
ApuyusT c
STATE-OF-CHARGE |y “ORRECTED
For TEMPERATURE S0C
SHED AND RESTORE Load Control &
LoaD Power | ——J» Warning Lights
AS REQUIRED '

FIGURE 3.2.1-1 45

46

-

The sequence of events for max power tracking is as follows:

1. Pulse width is set on the previous program pass.

2. 12 milliseconds settling time elapses.

3. 16 values of each of the 10 charger string currents, the battery
voltage, & the battery current are stored in an array. The table is
filled by taking a sample of all values once every 4 milli-seconds,
which generates a column of "instantaneous" data. After 64 milli-~
seconds, all the rows of data are full and average values are
calculated.

4, User output power is calculated. .In order to avoid start-up
problems with low impedance (motor) loads, the actual parameter to be
maximized is (total charger amps) X (battery volts + 100).

5. 01d and new power are compared. If power is increased, the
direction of pulse width step is left the same. If power is
decreased, the direction is reversed,

6. The size of the pulse width change is calculated based on the size
of the power level change. This is a novel feature which allows fast
acquisition and accurate tracking of the max power points,

7. The pulse width is changed, and the process repeats at 100
millisecond intervals. This algorithm is diagrammed in

Figure 3.2.2-1.

3.2.3 Load or Auxiliary Charger Control

The battery is assumed to be loaded by up to five separate load .
busses, with separate voltage sensing, current shunts in the negative
load, and relay control responsive to the optoisclator output 1-5 of
the controller. (Optoisoclator ON=load ON,) These may in fact be
auxiliary energy sources as well as loads,

Each load bus is automatically monitored for extessive current. If
current exceeds 120 percent of the nominal value (50mV on the shunt),
the load is turned OFF, the audio and red LED alarms turned ON, and
manual reset is required via keyboard or serial port. Under normal
conditions, each load bus has two corrected state of charge
thresholds; one below which the load is turned OFF (shed) and one
above which the load is turned ON (restored). By reversing the
function of the optoisolator, an auxiliary generator can be properly
controlled the same way. This provides fail-safe operation, since
the optoisolator going off turns loads OFF and generators ON, Note:
for either case, shed level is less than restore state of charge by
an amount which avoids cyelice behavior. A list of sample control
levels is given in Figure 3.2.3-1.

Each load or charger bus can also be manually controlled from the
keypad or the serial port. To be turned ON, (Load ON, Charger OFF,
Optoisolator ON), an optoisolator must be ON aécording to all
automatic control algorithms and the manual control function.
Otherwise, it is in the load OFF/charger ON condition.

Tt is often desirable to use more energy if it's going to be a sunny
day. This may be to avoid short cyeles of load useage or simply to
increase energy useage efficiency. Therefore, between 8AM and

MAXIMUM POWER CONTROL ALGORITHM

-

WAIT FOR
SETTLING TIME

v

MEASURE
POWER

v

FILTERING AND
AVERAGING

v

CompARE WITH
PrRevious Power LEVEL

v

CHECk LIMITING
CONDITIONS

:

ApyusT DuTy CYCLE
oF PWM
CONVERTER

— Nuty CycLE

FIGURE 3.2.2-1

47

8%

.CORRECTED STATE OF CHARGE THRESHOLDS

(Percent)
LOAD SHED RESTORE

1 20 40

2 30 50

3 40 60

4 50 70

5 50 90

MORNING DELTA SOC 10
S0C TOP 80
EQUALIZATION FRACTION - ' 20
EQUALIZATION TOTAL | 40

ARRAY CONTROL MODE: Maximum Power Tracking
SWITCH CONTROL:

Charger ON if S1 open = 0 and S2 closed = 1.
Product storage path = Load Bus 6.

“Auxiliary Equipment

Load Bus Shunts 50A
Thermistors 25C

50my
10k ohms

FIGURE 3.2.3-1

12Noon, if the sunlight level is high enough to provide at least 10%
of the maximum charger current limit to the battery, all the battery
corrected SOC levels for load shed and restoration are decreased by a
constant preset SOC, called DELTA SOC. This allows loads to turn ON
earlier on a sunny morning than would otherwise be the case.

The MAC can perform a control strategy to allocate available energy
into two different forms of storage. One of these is electrical
energy stored in a battery. The other is a form of "product
storage." This might be water stored in a tank, or thermal storage of
cold in a refrigerator, freezer or ice stored in an icemaker.

To use this capability, it is necessary to be able to measure the

amount of product stored or at least to indicate one of three product
storage levels:

1. There is less than the critical minimum ameunt of product (water
level or cold temperature in the freezer) and it has a high priority:
PROD < PROD 1

2. There is an adequate amount of product, but more can be stored if
energy is available. PROD 1 < PROD < PROD 2.

3. The product storage level is full (tank is full of water or
refrigerator is at minimum temperature): PROD > PROD 2.

This product is assumed to be produced or pumped using energy from
the same battery which is used to supply other electrical loads. To
avoid over-discharge of the battery and to be sure the other loads
get their share of energy, various state of charge (SOC) of the
battery are defined:

1. Battery minimum charge: below this, the battery is below its
minimum allowable state of charge and all load are off, above this
non-product electrical loads are allowed: SOC1?

2. The battery can be used to produce product but not other
electrical loads above this point: S0C2

3. The battery can power both electrical loads and non-critiecal
product levels above this point, but only non-product electrical

loads below this point: SOC3 4, The battery will power all loads
above this point: SOC4

This combination of trip points creates a set of four states of the
controller, defined by the amount of product stored and the battery
state of charge., This state diagram is shown in Figure 3.2.3-2. By
setting various values for the boundary parameters, various
priorities can be placed on the use of energy. To avoid limit cycles
during operation, a buffer or hysteresis of specified amount is added
to each boundary value when crossed in the increasing direction. The
parameters for the product storage algorithm are given in the tables
in Figure 3.2.3-3

49

Increasing Amount of Product
Stored

-q

PRODUCT STORAGE ALGORITHM

Increasing Battery State of Charge

STATE 1
Electrical Loads
OFF
Product Load OFF

STATE 3

Electrical Loads OFF
Product Load ON

STATE 4

STATE 2

Electrical Loads ON
Product Load OFF

Flectrical Loads ON
Product Load ON

FIGURE 3.2.3-2

PRODUCT STORAGE ALGORITHM THRESHOLDS

(Percent)

PROD =
DEFINITION

Elect loads above
High Priority
PROD only above
Low Priority PROD
~ above
Low Priority PROD
& Elect above
High Priority
PROD only til
No PROD above

s

(25 - T2)
SYMBOL
SOC1

S0C2
SOC3

S0C4
PRODI
PROD2

FIGURE 3,2,3-3

*3.3

VALUE

20

50
70

70
50
80

T2 in degree C

HYSTERESIS

BUF

BUF
BUF

BUF
BUF
BUF

S0C1

S0C2
SO0C3

SOC4
PRODI
PROD2

VALUE
10

20
10

10
10
10

52

FINAL REPORT

-

3.2.4 Control Panel Functions

The control panel has a keypad for manual inputs, a 4-1/2 digit LCD
display for selected quantities, a set of red, yellow, and green
LED's for quieck status summary, and an audio alarm. There is also an
emergency switch located at the bottom of the unit which, when turned
OFF, will turn OFF all array strings and loads. When turned ON, it
will initialize the controller.

The audio alarm will sound if any "eircuit breaker" funetion
(overcurrent on a load bus) is activated, or if an array fault is
detected,

The red LZD will light if any cirecuit breaker function is tripped or
if bus NO,?1 has been shed due tc low state of charge (extreme low
battery)., The LCD "Low Battery" warning will alsc turn ON,

The yellow LZD will light is load bus NO.S has been shed due to low
state of charge, but load bus NO,1 has not. This is intended to
signal that energy is in short supply, but not an emergency. (Lower
number loads usually have higher priority.)

The green LED is 1it as long as the program is running. If a
watchdog timer is not reset by the program, this LED goes out and the
array is turned OFF,

The LCD display can be thought of as a multimeter which will display
one of a menu of system parameters. The default condition is state
of charge, and after a data dump each half hour, it returns to this
parameter. It can also display any array string voltage, any charger
output string current, (not the array current, but the converted
output from that string at the battery voltage level), the delivered
string power to the battery, the battery voltage current or power,
any of five load bus voltages or currents or powers, the battery
temperature, one other temperature (used here for freezer product
measurement), the pulse width, the equalization charge needed, the
system zero voltage and 4.00 volt reference level, the temperature
corrected state of charge, the time of day, and the software versiocn
number, See the attached signal channel list. Enter the desired
channel code (a letter, two numbers, and a #) for display. The #
sign has the effect of an "enter" command. The ¥ sign cancels an
incomplete entry. A list of public acess functions is given in
Figure 3.2.4-1, 1In addition, after entry of a password on the
keyboard, an additional set of protected funetions becomes available,
listed in Figure 3.2.4-2,

3.2.5 Self-testing

The keypad can alsc be used to change control funetions. To do this,
the correct password must be entered: U4 digits followed by a #.
Password accessible funetions are summarized on the attached command
list, These include setting a new load and restore thresholds for
each load bus, setting initial state of charge and setting the manual
control for each load bus optoisoclator to "ON = 1% or "OFF = 0Ov,

€<

PUBLIC FUNCTIONS

SEQUENCE FUNCTION

* Clear Function

aaaa# Activate password-accessible functions
if user password matches (see below)

Ann# Read channel nn voltage (mult)

Bnn# Read channel nn current (mutlt)

Cnn# Read channel nn power (mult)

Dnn# Read misc data channels (mult)

AA# Display software version number

BB # Read time, hours and minutes (mult)

CC# Initiate "dump" of machine state to

serial port

DD# not used

FIGURE 3.2.4-1

&

| PASSWORD ACCESSIBLE FUNCTIONS

SEQUENCE

Anmmm#
Bnmmm#
Cmmm#

Dnnm#

AA#
BB #

CChhmm#
DD#

device
device
device
device
device
device

1 — O

PO N — O
NN.——J—I
O W~

oot

FUNCTION

Set load shed threshold for load
n at mmm

Set load restore threshold for load
n at mmm

Set the initial percentage SOC at
mmm%

Set device nn to condition m, where m
must be either a "1" (ON) or a "0" (OFF)

Audible alarm

User l1oad requests 1 through 6

Overload trip resets for loads 1 through 5
PWM buffer #1 controls 1 through 6

PWM buffer #2 controls 1 through 6

Yeliow and Red LEDs

Initiate lamp and annunciator test
(accessable only in test/cal mode)

Toggle from run to test/cal mode
(system comes up in the run mode)

Set time, hours and minutes

Cancel password authorization

FIGURE 3.2.4-2

FINAL REPORT

Also, the unit can be placed in a test/cal mode where data is
refreshed but the states of charge, max power tracking and load
controls do not automatically change. This allows them to be
manually set and measurements taken. For example, .a fixed pulse
width can be set from the serial port, or a lamp test can be
performed, Note that this mode is not well protected and the system
should not be left in this condition unattended.

A lamp and audio alarm test can be performed in this mode. This
lights all LEDs, sounds the alarm and put test digits in the display.
The keypad in password-access mode can also be used to set the time
in hours and minutes on a 24-hour clock and can cancel the password-
access mode.

The display performs one more automatic test. If one of the charger
power module output currents is less than a constant (1 amp) below
the average of all such currents, the "Continuity" segments of the
LCD is turned ON., This means that one string of the array or one
power module of the charger is either shadowed or broken.
Examination of array voltages and currents will show the cause.

Besides these external tests, the unit performs an automatic test of
its RAM and ROM access whenever it is started up. When running, any
error causing the program not to execute properly will result in a
watchdog timer fault turning off all loads and the solar array and
causing the green LED to go out.

3.2.6 Serial Port Functions

The manual test/cal mode was partially deseribed in the previous
section. However, with an RS232C terminal, much more extensive
manual testing is possible. A standard debug monitor is implemented
which can examine memory locations, insert bytes into memory, begin
execution at a given memory location, insert or remove breakpoints,
and download a program into memory.

In addition, any of the keyboard command functions can be performed
from the serial port. A list of these commands, plus the debug
monitor commands is in the serial port section of the command list.
Note that no password is requried via the serial port. The debug and
monitor functions are listed in Figure 3.2.6-~1, and the maintenance
functions are listed in Figure 3.2.6-2.

A data dump of all system voltages, currents, temperatures, switch
positions and states of charge is sent to the serial port every half
hour or whenever requested. A printer there will provide data
logging. The format of this data is given in Figure 3.2.6-3. .
This powerful access allows many possible uses. The processor can be
automatically tested during manufacture. A printer attached at the
site can serve as a data logger. A telephone modem or other
communication interface would allow automatic remote data logging or
even, remote system control. A tape recorder will allow post-~
processing of recorded data.

9¢

DEBUG MONITOR FUNCTIONS

SEQUENCE

“H, backspace, del

~U
~7
M addr

G addr

B addr

1 addr

F start_addr end addr datum

FUNCTION

Deletes last character entered. Echoes
backspace, space, backspace to allow
overwriting the last character entered when
a CRT terminal is used

Causes CPU to ignore present command line
Return to command mode

Opens a memory location at the specified
address (requires 4 hexadecimal digits).
Successive "" (space) characters increment
through memory, while "-" characters decrement
through memory. At any time the contents of a
location may be altered by entering the new
data followed by a carriage return.

Begins execution at the specified address. If
no address is specified, execution begins at
the present PC location

Places a breakpoint at the specified address.
This trace mode will only work on code located
in RAM

Removes existing breakpoint

This permits a program to be downloaded from a
host machine to memory starting at the specified
address.

Fills the specified memory range with specified
byte of data.

LS

MAINTENANCE and LOGGING FUNCTIONS

SEQUENCE FUNCTION

W pwm timer no. duty cycle Set the Power Module duty cycle to
specified value. If duty cycle
max pwm, the default duty cycle is
set to max pwm.

0 digit no. value Display the value in the specified
digit on the LCD display.

Enn Read channel nn voltage

Inn ' Read channel nn current

Pnn Read channel nn power

Dnn Read misc data channels

Qnn Query channel nn for "raw" A/D data

FIGURE 3.2.6-~2

DATA FORMAT

TIME: hh:mm

EOO = xxx.x VOLTS 100 = xxx.x AMPS
EOT = xxx.x VOLTS 101 = xx.xx AMPS
E02 = xxx.x VOLTS I02 = xx.xx AMPS
E03 = xxx.x VOLTS I03 = xx.xx AMPS
EO0O4 = xxx.x VOLTS I04 = xx.xx AMPS
EQ5 = xxx.x VOLTS 105 = xx.xx AMPS
EO6 = xxx.x VOLTS 106 = xx.xx AMPS
EO7 = xxx.x VOLTS [07 = xx.xx AMPS
EO8 = xxx.x VOLTS I08 = xx.xx AMPS
EO9 = xxx.x VOLTS 109 = xx.xx AMPS
E10 = xxx.x VOLTS I10 = xx.xx AMPS
E31 = xxx.x VOLTS I31 = x.xxx AMPS
E32 = xxx.x VOLTS 132 = x.xxx AMPS
E33 = xxx.x VOLTS I33 = x.xxx AMPS
E34 = xxx.x VOLTS 134 = x,xxx AMPS
E35 = xxx.x VOLTS I35 = x.xxx AMPS
D36 = xxx.x DEG C D37 = xxx.x DEG C
E38 = x.xxx VOLTS 139 = x.xxx VOLTS
DO0 = xxx% D40 = xxx%
D41 = xxx% D42 = xxx%
S1-1 $2-0 Ltr-1 L2-0 L3-1 L4-0
L5-1 L6-0
Al-1 A2 -1 A3-1 B1-1 B2-1 B3-1 B4-1
Ad -1 A5-1 A6-1 B5-1 B6-1

TOT CHGR I = xxx.x AMPS
NOTE: 1=0N, 0=0FF

FINAL REPORT

The use of a small RS232C terminal by a repair technician allows
fault isolation and diagnosis beyond the capabilities of the keypad
and display, since small special test routines can be run. Software
modification is greatly eased as well,

3.3 SYSTEM CONFIGURATION

To utilize these rather sophisticated control algorithms is very
simple. Typical system configurations for a pumping unit without
batteries is shown in Figure 3.3-1. Note that this is just the
minimal amount of wiring required for such a system. Similarly, the
system configuration for a battery-type system is shown in Figure
3.3-2. The processor contains all the control complexity, making the
system designer's job easier. The functions performed by the
processor are summarized in Figure 3.32-3, To implement these, only
the proper system parameters need be inserted in the processor ZPPOM
memory. In this way, the user or installer needs the minimum
knowledge of system theory to be able to use the controller.

4,0 PRODUCTION COST ANALYSIS
4,1 MANUFACTURUNG COST

The results of costing the system can be summarized by several
points. Each extra analog channel to be measured is expensive
because the filtering and multiplexing associated with each channel
quickly adds 3 to 5 dollars per channel to the overall cost. The
analog input section of the processor represents almost half the PC
board area and about 1/3 of the cost.

The largest single area of cost is the CPU itself, dominated by
memory cost, mainly from ZPROM's, These are rapidly becoming less
expensive, and in a few years, a single larger EPROM and a single 2K

RAM will probably enable the entire system to be built at lower cost
and less power.

The power supply, rather expensive at pfesent, can be simplified for
most applications in the future, since the total controller power can
be reduced. Also, a separate +12V output from the flyback stage is

not needed, and -5V power can be derived from a Zener diode operated
from the -12V supply. This cuts its cost by perhaps 1/3.

Availibility of a CMOS timer chip with the capabilities of the 9513
would help a great deal in reducing power and perhaps costs. 1In
general, the increasing industrial use of CMOS is expected to bring
costs of many components down. The power handling section of the
controller, consisting of DC to DC power conversion modules, can be
replaced in low cost battery systems with eleectromechanical or
mercury displacement relays or solid state DC switches and the
discrete array control algorithm., It will also cost half as much.
This will be the direction of choice for battery charging as solar
arrays become cheaper., Also, eliminating these PWM outputs would
allow replacement of the 9513 timer chip with a lower power, less
expensive timer., However, for many motor drive applications, the

59

09

TYPICAL PUMPING SYSTEM WIRING

ARRAY
STRING 1

B M.A.C.

STRING N

ARRAY J

D'C' L-_-
MOTOR

GND

MOTOR
THERMOSTAT

(Normally
Closed)

GND
ARRAY FRAME =

Figure 3.3-1

FLOAT SWITCH
(Normally Open)

T9

TYPICAL BATTERY SYSTEM WIRING

+
ARRAY + ™~
STRING 1 - M Battery
Disconnect
. MICROPROCESSOR AaUA
. AUTOMATIC
. | CONTROL - +
: Load
"R + : Control - LOAD
STRING N - ’f M
— {
! OTHER
I - -] — ———— » LOAD BUSSES
- AS REQUIRED
ARRAY FRAVE M

FIGURE 3.3-2

29

MICROPROCESSOR CONTROL FUNCTIONS

1.

BATTERY CONTROL

A. State-0f-Charge Estimation and Correction
B Equalization Charging

C. SOC Initialization and Enunciation

D Warning Lights

PHOTOVOLTAIC ARRAY CONTROL

A. Discrete Subarray Switching
B. Maximum Power Point Tracking

LOAD MANAGEMENT

A. Priority Load Sector Management
B. Backup Generator Control

C. Manual Load Control

D Product Storage Energy Allocation

SYSTEM STATUS

DC Voltages, Currents, Power Levels
Temperatures

Battery SOC, Corrected SOC
Variable::Control Level

Relay Status

mDﬁm>

AUTOMATIC TESTING

Processor Self-Test

Load Circuit Breaker Functions
Array Continuity Test

Battery Level

Audible and Visual Alarms

monw:b

DATA LOGGING AND COMMUNTICATIONS

A. System Status Log Each 30 Minutes
B. Remote Telemetry

C. Remote Control

D RS 232 Port

FINAL PEPCRT

MPC arrangement is superior,

The power module is the only proprietary element in the controller.
It is a standard product of TriSolarCorp.

A material cost breakdown of the controller subsystems is given below
for present day quantities of 10:

DESCRIPTION COST
Current Measurement Mux $ 34,04
Analog Mux 56.69
A/D Converter 27.83
PWM Buffers and Array Control 24,75
CPU 108.29
Power Supply 83.14
Display and Interface Board ug, 82
Resistor and Interface Board 5.00
Processor Subtotal 499,56

The resulting material costs are then calculated below for the T1KW,
5KW, and 15 KW systems:

18 K 25K

PROCESSOP 459.56 499,56 559,5

POWZR SZCTIONS 100.00 1121.20 3363.60
ENCLOSURE 165.00 165.00 495,00
TERMINALS 20,00 27.00 81.00
HEAT SINKS 0.00 . 138.00 416,64
SHUNTS AND HARDWARZ 36.25 36.25 68.75
TOTAL MATERTAL 780.81 1987.89 498455

Material prices are assumed to be reduced by 25% for each 10X
increase in quantity.

FINAL REPORT

-

Labor costs are very volume dependent., Use of automatic test
equipment, wave soldering or automatic component insertion are
examples of labor-saving techniques which can be applied at various
levels of production.

Total labor costs for various models and production levels are
estimated below:

MODEL
QUANTITY/YEZAP TKW SKW 15KW
10 u76 768 1400
100 280 us2 819
1,000 168 266 - ug2
10,000 100 1608 282
100,000 60 100 170

Labor is broken down into wage levels. For example, for each model
given, the following hours are needed for quantities of 1,000 per
year:

$/hr KW 5KW 15KW
Class 1 22.60 1 2 3
Class 2 13.50 3 6 10
Class 3 7.00 15 20 40

These labor estimates are conservative; the actual number for such
volume of production will probably be lower., However, these seem to
be reasonable based on our limited experience with the protopype
unit.

Pesulting total direct costs per 5KW unit, ineluding labor and 100%
overhead plus material are therefore just under $2400 in quantities
of 100 per year. The 1KW unit in the same quantities costs under
$1200. These are quite reascnable costs compared to alternative
custom designed controllers. The real payoff, of course, occurs at
higher volumes.

The total direct cost of the three models, ineluding material, labor,
and 100% overhead is summarized in the following table.

QUANTITY/YPR 1KW SKW 15KW
10 1732 3528 7785
100 1145 2395 5377
1000 775 1650 3768
10000 529 1158 2667

106000 367 - 829 1916

FINAL REPORT

-

4,2 MODELLING OF INDUSTRIAL PRODUCER

In order to capture all the costs associated with producing this
controller in a rapidly growing commercial environment, a model was
constructed of a company which would make only this unit in
quantities of 10; 100; 1,000; 10,000; and 100,000 per year in
successive years. Industry standard or typical ratios were used for
the computer electronies industry in Massachusetts, based on advise
of consultants experienced in this area. Overhead, inventory,
equipment, G&A, and other costs were captured in this model., The
result gives a picture of cash flow and return on investment as well
as profitibility.

The costs of the controller are used for this hypothetical company
producing various quantities of 1, 5, and 15kW controllers, the
resulting income statement, balance sheet, and cash flow projections
apply. Note that for quantities under 1080/year, a dedicated company
for just this purpose is not feasible, and losses result. For very
small numbers of units (10) per year, costs go up and prices reflect
the custom nature of the product. However, for larger voclumes,
prices are quite reasonable and return on investment becomes very
attractive. Figure 4.2-1 (3 pages) shows these figures.

The first three lines show the unit sale price of each of the
three controllers: 1=1kW, 2=5kW, 3=15kW. The next three lines,
labelled unit sales, show projected sales numbers for each type. The
following three lines, labelled number of people, give the number of
employees needed at each of three salary levels, defined on three
wage level lines immediately below. The following three material
cost lines give cost of material per unit for each of the three types
of controller. The last line, miero dollars per unit, indicates the
equivalent material cost of the PV panel needed to power the
controller. The interest rate for each year is indicated below,

The next section is an income statement for the model company.
Sales and cost of sales are computed from the above values, G and A
and overhead are calculated using typical electronies industry
ratios. The resulting net after tax shos profitability after sales
pass a few million annually, and look good at large volumes as a
fraction of sales.

The next lines are a balance sheet showing assets and
liabilities. Typical industry ratios for inventory, receivables, and
payables are used. The line marked "plug" represents extra
capitalization needed, loan or equity, to fund this rate of rapid
expansion.

The last page shows cash flow, and points up the negative cash
flow from operations due to the rapid growth rate. The use of
investment cash is divided mainly between inventory increase and
purchase of fixed assets. The return on investment can be seen by
company inerease in long term debt with net after tax profits.

65

IS¢y . " YO CEXTR

BALANCE SHEET AND INCONE STATEMENT SUMMARY

SALES PRICE 1
1
3
UNIT SALES 1
!
3
§ OF PEOPLE LEVEL!
LEvEL2
LEVEL]
VACE LEVELL 47000
1 20000
3 14500
NATERIAL COST!
1
3
MICRO $ PER UNIT
INTEREST RATE
SALES
COST OF SALES
CROSS HARGIX
ceA
OTHER INCOME
NET INCOME
NET AFTER TAX
CURRENT ASSETS
CASH
ACCOUNTS RECEIVABL
DEPOSITS
INVENTORY
OTHER

TOTAL

FITED ASSETS

-=1983-~
1700
000

20000
l

47000
28000
14500
1
1982
4985
50

75400
196494
-12125¢
14128

-14542¢
-145424

15000

73400

15400

175800

TRISCLARCGRE

"

--1984--
1400
2000

18000
60
35

47000
28000
14500
L1
1321
3738
b
.18

64000
324134
14184¢
149120
47744
-34979

-54999

13000

70604

10037

185443

ORIGINAL PAGE i3

OF POGR QUALITY
—-1785-- —-1984-- —-1987--
1400 1200 1000
5000 3000 2204
10000 7000 5000
§90 £009 60004
350 1500 35000
50 500 5004
5 15 100
' T 15¢
1 90 300
47000 7000 7000
18000 28000 28000
14500 14500 14508
) 19 17
1118 839 029
2804 1103 1577
30 10 T
17 16 16
1090000 11100000 162000000
1703578 9640836 74154770
1336412 11559164 87845230
197210 409400 25596000
60273 139413 -1008203
528928 7009745 §1241027
371244 3645068 ~31845334
15000 15000 15000
$61818 5170731 39512193
508421 (810418 37077385
11935239 10014150 76614580

FIGURE 4.2-1 A

TLETASKOP

OFFICE EGUIPMENT
OEPRECIATION
OTHER LESS AMORT
TOTAL

TOTAL ASSETS

CURRENT LIABILITY
ACCOUNTS PAYABLE
NOTE PAYABLE

TAI VITHHELD
ACCRUED EXPENSES &
PROGRESS BILLINGS
TOTAL

LONG TERK DEET

NOTES

TOTAL

TOTAL LIABILITIES

COMMON STOCK
ADD PAID IN CAPITL
RETRINED EARNINGS

TOTAL EQUITY

o —————

SOURSES OF CASH

SALES

§543

4845

1439

3170

184070

30371

33849

64240

64240

-145424

-143424

-31184

1652353

,

30685

30063

901%

S1110

1387353

39044

£3543

82627

82617

-100423

-200423

~117797

354549

§64000

FIGURE 4.2-1 B

176154

14713935

241309

183396

426704

424704

170823

1708122
5973517

8738468

3o90000

1304348
768114
§1035

3021429

13037378

14472171

1473244

1920412

1910418

38132890

3B15E9C

£736308

§3011271

21200000

17608874

5869563

344513

23133748

99748328

11072044

11271341

22343415

12343423

354611224

35661224

58004850

41743478

162000000

67

1173 BEC INIZEASE ¢ 84 TEPER: eliias Ciais

TOTAL £70794 1595788 16591086 13768
LIPENSES 520999 R I 17554932 13015
LESS NONCASH EXPEN) 7560 -3410 ~38406 .29
CHC DEPOSITES) 0 0. 0

CHG INVEKTORY ‘ 14637 518384 4211997 3125
CHG OTHER 0 ? 0

CHG ACCT PAYABLE 8493 202245 -1205862 -962
CHC NOTE PAYABLE 0 0 0

CEG VITHHOLDING 0 0 0

CHG ACCRUED EXPENS 9694 141833 -1287851 -975
CHG FROSRESS BILL 8 0 ¢

TOTAL OP CASH USE 509¢90 1869450 19134811 14269
CASH FROM OPER 38894 290662 ~1643724 -1503

SALE OF FIXED ASST)
INCR ING TERM DEET 89294 319318 S417403 3544

CRG STOCE &PD IN €] 0]
TOTAL SOURCES 30400 128658 1783479 1040

PURCHASE FIXIED ASS 50400 128658 1783479 2040

BECREASE LNC T DT

TOTAL USES 50400 218656 1783679 2040
NCIDEC IN CASH o 0 g

CRIGINAL pPraz s
OF POOR QUALITY

FIGURE 4.2-1 C

FINAL REPORT

5.0 TESTING

The MAC S kilowatt prototype was tested in several stages. Its basic
hardware was tested at TriSolarCorp. Its software was tested at the
Mellon Institute. Then the integrated hardware and software was
extensively tested at TriSclarCorp, resulting in further development
of some algorithms. Finally, testing in four system configurations
was planned for NASA's STF system test and completed at TriSeclarCorp
The test facility included a 2.4kW power supply, a 480W solar PV
array, a 100A-hr 108V lead acid battery bank, a 5KW resistive
adjustable load, a 1HP DC motor driving a jack pump with adjustable
hydraulic load, and assorted control and sense elements. A schematic
of the test set-up is included in Appendix A. The first set of tests
used power supplies to calibrate the various inputs and to simulate
battery charge and discharge cycles. These tests showed that all
systems worked properly, with accuracy within the +/- 2%
specification., It became clear that accuracy better than 1% could be
attained by replacing the discreet resistors on the divider board
with precision resistor networks, a change involving very little
extra cost, During this test phase, a subtle program bug in the
battery state of charge subroutine was found and fixed. Power module
efficiency was verified to be 97 to 98% at these voltages. The
second test phase used the controller with the battery, solar array,
and resistive loads.

The battery charge control algorithm works as deseribed. Its
estimate of the available capacity is limited mainly by the accuracy
of the battery's rated capadity at a given discharge rate. This
figure is reproduceable only to about 19% accuracy, and is usually
based on 5 years or fixed cycle life end of life capacity. The
initial capacity increases for a few cycles then slowly decreases
with life. Therefore, the displayed battery capacity and the load
management algorithm tend to be conservative by 10 to 20% over the
first years of battery life. Long term low current operation is
limited by internal battery self-discharge, typically 1% to 2% per
week, and current effect errors of 0.1% of maximum, which is often a
similar percentage per week. This is corrected whenever the battery
is fully charged, so that batteries cycled daily or weekly are not
affected.

The array control modes, both max power tracking and discrete
switching, work very well and provide a nice tapered current
finishing charge for a battery with very low water loss.

Load management in response to battery state of charge is very good.
Tt is free of the chattering and instability characteristics of many
voltage-related load management schemes.

Instrumentation of the system using the keypad and LCD display is
very effective. A permanently posted list of command codes on the
unit near the keypad was found to be useful.

Data logging via the RS232C terminal to an inexpensive printer will
be very helpful in village systems. Of less use in smaller

69

70

FINAL REPORT

-

applications, it is quite helpful for maintenance or fault diagnosis
using a small hand-held battery powered ES232 terminal. The
possibilities inherent in a phone coupler or other communications
port for remote system control have not been explored, but they are
potentially very interesting. The self-test functions of the
controller are an effective means of allowing unskilled personnel to
monitor a complex PV system.

The third set of tests used the MAC to operate a jack pump without
batteries, Combinations of insolation (simulated by moving the
array), total dynamic head, and load-levelling flywheel size were
compared. The controller successfully performed its maximum power
tracking task here as with a battery load, unless the variation in
load current was faster than a fraction of a second over a range of
over 50% change in load current. The MAC was also compared to
previous models of max power trackers. The max power tracking with
two steps sizes is a real advance in the state of the art, as it
provides a combination of more accurate tracking of a static max
bower point load and faster acquisition time for a varying load or
insolation, A chart comparing these performance figures is given
here, Note that this control method is proprietary and a patent has
been applied for.

COMPARISON OF MPC FUNCTIONS

PPEVIOUS STATE OF THEZ ART MAC
EQUIPMENT
Acquisition Time 3 sec 1 sec
Max Dither, stable 3% 1%
Product 9 1

This means, for example, a volumetric pump or other slowly

cycling loads can be dynamically matched to the solar array with
reduced need for expensive or costly load levelling mechanisms such
as large flywheels, batteries, etc. This opens up additional
applications for the controller. Flywheels previously sized for 5
strokes of energy for the pump at full speed can now be made to store
only 1 stroke of the pump at full speed, saving considerable cost and
energy.

In fact, operating the jack pump without any flywheel resulted in no
loss of output. However, system parameters were poorly controlled
under this condition, and the array and motor voltage varied for

FINAL REPORT

-

short periods of time over a wide range.

In very low light levels (dawn or dusk) the operation of the
controller was irregular as it alternately started and stopped
internal operation. This is common with many solar devices, and it
caused no damage or loss of output, but it is not well controlled.

A change of control parameters is suggested to improve this: reducing
the step size at small pulse widths, and reducing the minimum pulse
width.

The last set of tests used the battery, array, power supply,
resistive load, and simulated product storage to test the product
storage dual-use algorithm. This operated as it should, but showed
sensitivity to the programmed threshold values and was difficult to
diagnose, It may be a bit complicated for remote village use,
although it can be used to allocate energy between several uses., 1Its
sophistication makes it difficult for a user to verify that it is
operating properly, and this may make it less popular than other
approaches based solely on battery status.

The overall result of the testing was that the MAC unit works and
works very well. In comparison with other existing controllers, the
microprocessor automatic controller worked as well as, or better
than, any existing PV system control equipment, and can be adapted to
a wide variety of systems simply by plugging in an ZPROM, This makes
it a very attractive controller for PV systems where large size (over
2kW), remote location or special control requirements justify this
type of unit.

6.0 CONCLUSIONS

The battery charge control algorithms in the MAC provide stable,
predictable operation of the system and will do a good job of
extending battery life, minimizing maintenance, and accurately
estimating state of charge. The load management controls are
flexible and provide good prioritized control without any problems of
chatter or noise sensitivity.

The array controls work well in either the maxpower tracking, pulse
width modulated mode or in the discrete array switching mode with
sequential operation. In the maxpower tracking mode, the dual step
size algorithm is a real advance in the state of the art and allows
tracking of varying loads which is both faster and more accurate than
previous controllers.

The metering and data logging functions provide a good picture of
overall system status. The self-test functions auch as array string
continuity testing will be very useful in substituting for skilled
operators at remote sites and allowing scheduled system maintenance.

The potential for remote system control and monitoring is
considerable. The full use of the RS232 port capabilities of this
controller have not yet been fully explored. PRemote system
monitoring or control, various types of data logging, or other

71

72

FINAL REPORT

-

maintenance or communications funections are possible. This may make
the microprocessor controller attractive in other Kinds of systems,
such as utility interactive PV systems or non-PV applications.

The success of this development will allow rapid production of the
unit for field application.

APPENDIX I

SCHEMATIC DIAGRAM

I-1

FINAL REPORT

APPENDIX T

The following drawings show the microprocessor automatic PV
system controller at the system level, P10 (5 kilowatt) box

level, and the board

level.

The drawings attached include:

C02-00414-01
C02-00416-00
C02-00418-00

D02-00413-01
D02-00413-02
D02-00420-00 Sheet 1

D02-00420-00 Sheet 2
D02-00420-00 Sheet 3
D02-00420-00 Sheet 4
D02-00420-00 Sheet 5

Microprocessor Power Supply
Microprocessor Controller Test Configuration

Microprocessor Display and Control Logic

Microprocessor P10 Wiring Diagram - Busses
Microprocessor P10 Wiring Diagram - Single Wires
Microprocessor Schematic ~ Central Processor
Microprocessor Schematic - PWM Buffers and Array Controls
Microprocessor Schematic - A/D and Interface Logic
Microprocessor Schematic - Analog Multiplexer
Microprocessor Schematic - Current Measurement Mux

PRECEDING PAGE BLANK NOT FiLMED

BAGEL 2 renmionaiLy BLANK

I-3

Tt [roTyE—————y y DATE Jovia| NEVILION SED0RD mojox
-"'"°:":gm“?:";w%=5 tplal B0 V0 DR W
N S R
0 2 4% 5. 55 BT [vezanam pioinaiag
- L7 - Q3 ENGe78 L ig N R78
P2 Licoy oN kU O , 3 pg 9,06/ K
O- LSk == | 55 Qi TNAIAG - Q12 SR5Y —> el LASY v d
ARRAY Sa - R lvegps RH2907 2n290Mga9K |
POS IN 130-3C8 4A0T.Ho. 2.6 cey L
+ R34 fooMR5V, l°°ﬂ-
1 cue 4y ¥~ b8 ;H.OK =X AMAL LE € sa
Wt v o ¢ = "Ti.B VRS 706 T AHALLER) mq.qg
534 005 K c29 ON ¥T. SiNK . a4 %l b 36
Goov ‘anf 450V -”_C' YN fokM] 53 v3
.5 D25 {
H’: 2 4N47:st6v 6315' Do var L0aD
{ : -] - D Mo
= ND —_ : L.OAf 50 'L—i"'—l * -5V BPTIek
B (,‘,31 ‘I [L R70 D19
KL '3’205“, '5“0\,.r oo N .
100K " R1o7 R S5 . ReY A149 Rio} %'n.
W Aas | ookt 3 4k uz B.25K 1000 2o.
4 y4 R 109
TiP50 3 48K
. -2 yes ' ag Q0 :
tﬂ%m 3 . IN2907A L
¥ At] e .
3 ce2 ;‘j &' RT2 tntag R‘sil;\l8 4 — -
4 i
RS5S e =2 Res Re4 RerT D8 |, S.B,E‘Nfﬁfq;_i our ¢ _f;;’J_ I e el
2:665” o9k %g.‘ix 2Oo0K 20K NA!-::’ Inyg 4NA|§BM @ 7555 T T OA
,b——— v BEREEA A Cane S ANAIAE] GITHRESH |c20
»§0517x EA T AN cie L Ry o Hy u2 Sparg
: 0A 1000pT" SMKE 2 lraie contst i L2402
RE9 - b/ A I
i ToAk}S 4 s) a4 - <
AT RE% 10K 293
D22 R4 cey Vo
ANS2d68 “; 7.5V v 10K 000y}]
-~ B) ' o
Lé OfmM 0FA —Eﬁ Py
A OISV VP Yo O5A
pRg 133 Lisooly pr-1
1n47454 10038 LD IN5135 B €8V O +5V 0.8A @%‘f
R 1A \ sy
ok »2g T e NEer Liew pis &
c35 In4148 47 S0 €43 c 45 oo Ri2y et =
o YHE 14D, 41000 L+ 25D 23] R ! =
o e R ks A TR OO T 3 £
¥ Je M 6‘ p s ST OC,N_D PI" o,‘w
[V} Rt
5 Ru3 $30.1K [1t if D3 04‘J_+ ﬁvLm"{ Yty D:% Wy e &=
16 2 |! 6 7 “ |A ENN‘A\"SPIK ” & 'NA‘AS * ﬁ %‘3
AT LTI S el WA | [0 smho O-5v oA 11T &
uC 2524 AT o e 44 35 3 —
} A0 ey +
ol s R i i SRl E Z
oo -J-n/ cont - G- 53 X . G -12v 01A PIF
8 1o 19 c¢37 | "W
IN4148
- claf LS Lipod
Toont — 5 Sk 5
oasy Ru4 af 3k Ry
A
Ris <39
took |, f ocmancEs 10 De Drive
| o == | TriSolarCorp oiiWaoro
v w\;;\r ’ —ry — o o
‘u; '7 m,‘.n,ﬁh, o

“ v

2w

Axfar PAmLL L 1
STRIMEVLAD F g b N i 1
‘ g T
1A SoL P LA . l l
era 1 SiA) T82-4 CuriTRoLLER
Wi goveza ¢ k T3 ol cw,»‘tw"
=) 131 {sa BANVE LRT
A ia \ T8 u-)1 ~— WA AMAME
N ‘18 ‘o V21 T oaen Vz4 Fryunest NeTE. Do NOr arracH
L 1R | 'S ofriow Foerodeet ambd use
FH vz QAITERY AT SfAME Mag
F
— f82 1
A . b o
LACH SRS PR\~ C AN 7 N
: < E 1BM-)L ——
o Sfarps 10 A 190VbC i83-3) g Orwe —
§PC G250\, Swaones ’
MmonuLE) —1T82-4 g1t £
Th2-a1t
I . T8 1 —_— ¥ ;:-,LL
T8 3 ER
TR — B
—— rea-S
TBS-13
- drss-y Té5-14 —_ b1
T81- | 2 '.\
— 1781 € ”;;‘!‘ . 697 rrovc
E_z’;} AR PATTERY $witcn o o
——] . - rmEn oty SLatyg
.|33 ¢ 19s-1© ! | wo A He 108vk
' LEAD actD R AYTIEAY own
- . PAVEL
—J181 7 raz- T
e 1 e v LN I *
P TR IA V‘(“ *
RS, >
~dre3? -t o ¥ OO
—t167 8 18 5-u L[o 5 M Eg
18 502 A
el q o &
1wz [T O ot
o O i
TE -0 > X * X A
— . . 1GHT Butd §, ¥
1824 T¢1-13 ¥ T oagsnnve Loﬂ‘;‘
TOI-2 X 502 a | osez2ew £ N
—t T34 78Sy o l Manvasy GY. ﬁ e
Tes-3 R l % P
R
—t 1820 " |- sﬂa
U] - sesT =
[) e—— [xTEAMAL o9C S 3
—f ThY-i0 Py L2 1.;.3&“; ;)‘ '-——-—————/l'———-—k (omT AR HwrlEH(S
| PR phim 0N
N W f1 v ctoFEbYeN
NoT o, 16 RS§232¢C no, B wiep n Swi¥CE famel Klasd K2
(RsunbLD Wik L e
Vi e) C18L€ re fM: meror coaTALYBAY
Ex1LRmat Fon Akénry To QLG TUERmAATAT AATLS 25A 120V DC
Yo vemlaatrin TEamvAL GAovaD ~.C
Y. B vt %
FoA AAYILR ArL roARg SRt act SHR
S0A 00wV sHumTS
No. M w/mt A1 v
IR I Y 15C srurftien
:g: Tw ITE0 ¢ fu-tidlh F Ferridin
TOLERANCES 10 De Angelo Drive
zee | TriSolarCorp oo oo
g [ORCMAL aTIAL [T A B
: | ax AP A
H o * o8 AP Y G 4 p,
‘ FacTIoNAL TRE MR RToCLSy R (O TALIEA Ve T
: * e COAF L UN AT o U
. s+ ow fL-9-43 C02-004l§-00 A

E<35H

L€8 S nhat ciatn

Leh Dnas tava
L D2 ST

Row sersy |

ot Ll

PRSI O 4
(o1 BFvi 2

Baw s @it S
Cag Vhivl 3

Row oML 4
coL BRive Yy

Avbe sleb

ReD
Yiliew

wartutet ay AN

Lcoi
3¢ SEGMUNT Y5 Mo

LPSeN LD -HT1940

Low gar

S T I
|

CoNTINUITY

g N
7

£1 514 3

v LMD
19 20

wholal w] opst siteln2] 1313j2] 10| 4413
o-!\(. AL @) & AT 62 (L AI BRI LS Ay 8y Cy
" iy “YWANET —fe ME T PAIVE§ e 5
Sk v ory 7 Led BRIVER s I 15y
<o x or boe t a.{-LL L;’I.L file
13 A es Py L ERLEN W e
- Lopd toomlb 1
Sev 25v
k81 Kgi8aaky
!
=
it d kAYO Q
1 i 1
) do ¢%o
13
4)
i ol Qo
§
5 ¥)
. A gol ol
r 7
"y .
Tx\
- apart
3 TRambPuCt R
2>
1 — .]: Q4
p Vas L—{"a:z a\ ‘—1 VKoM
PYILBA Priasiea PNZ22:4 Ry
03 Rz " H\.’U(%
Joln 3on Join 1
br 011 51
""ugw 14 Titun 1, Ris
13 ‘lvr!’rv o Auaen
)

FiPvces

C oloevon-o0

mevm | TriSolarCorp XS oweine
=Ty MATINAL Loand el AtM

P 2 Resisrom pvines (13

[y

DISPLAY £O
P :
3 5§ & 1 ¢ L L I S LA L T L I
- > P SN . To B - i
N A 2. F TR LE S
H Y M 3 <3 - 1
L R T A IR ol WA IR S 5] e
sl 2 HEE 1R ne & » H g i3 i N i Nle
3 25 ¢ % i HE ¥ £ -1 Y Bl
;| 3 [HE R i| ol 5l ¢
3 g3 3 L2l i) SLd) gl ey 2l ‘
LY = | i
z E) 5 9 T] o 1L 15 th M5 e 1Ty 1 30 Xl 4% <3 Ik 1
P2 : "r.r"" !
. PRTCTRTIPRIIY \ L ﬂ.‘r“t‘ L - —v
. Ll e A L.
DR s A s - >
o /L eamnn GuD é_ e LI A
B a1 L] § s i 5
L ‘g
B2 g - |4 0 [¢
2 /7 5 o [) .
r 7
Powes supmyy Pifé < . “w 8 - 1
4 Bi/s ? MICRO \ " . '
B3 L T w10 _ "
PROCESSOR 8D 0 gl T ey vmmes seme M
” Lost sus § veutsas agvd gy
Gy
L) L 3 . Y
L A th
wi
Tou/t orto [e . .
1L A e oz [e— L 5] .
:\uIL — - }) [t e IELTSEPE S |
s474 e i i
Teuis .v v:\ e 2] ity gun w0
4 ._taman : J
Tl DR '
Yih‘ . e & — {
ve
Il s ‘.{.r_... w7y ' ratipay TOMP . TBS/N
TBh/ " o | w o CLELNSRETY 741
ALY :.:: s b z aqegen Temr . THS/13
N
™y nd soc 1 " s 3 ——temem Tos/th
- slg ualoly wyveyy r.;/ 5
T X .) RETvuy T85/1¢
~ A5 i Fleay switid YBR[
Yo 10 rk mapE - -1_5.,“—. o 2t Tah/th
v oy 7ot
PN L —1 o L e A AL
546 Bawt WO b %) R e L RLL A)
Doz 003 - OL 1 - 3 Tumnet Swrtgy "
! s aud [-1
P 8 E e
1y, L& ¥ 2% iy kY 15 16) (34 .
g 4
*
3 5\ 13 g - [t - i
& -k ifF P § ; Sk L
fel sFal 3 s 108 §f¢ '
HE RIS
3l 3] 3 8 % S| «f 2] w2
- o o -
HAE IR I] . MOTE & ALLWIRES #2, 4 Awly
2 2 2 2 2 UMLESS OTHERWISE NOTED

Tbs/l'-sufs7|'l|o

FOm 15 PaR Mo
sfasmat cuanénl { Py ‘ P-/A)
anY Tk suunt (4.

K66 JRw w0 L DOR -ODUIY -OR

|

TriSola

rCorp

10 De Anpeio Drve
Badtord, A 0170

1

o
l‘“ " .IA;

i

i

=
(o pionesion BIg winina Liaceam

!

bowre[P0T-0043 201

SIe Pt

Ay

140108 18w

[_.ﬂ Tl Powsn and
el EEEN
Ll =
T3
- -—1
&fs TN e e . ' '
; i e "-& P BV EE)
A Fiaing | cuangur ” fos in | £e t 1-4 i Bys
PR -4 PN— V)% + ” ryrran LY] e ang ozt 18210 Pos i ™ 2t A STURG 10 cunssnt 2910
r B ko - ki X ot B 0 Rl e LT Pwh 183110 nea I ! ' Ratunn)
. LA caourp Besom o L e PL-3)
2. to o] it ™ suPpLY T et ou PMIO o puive 1o 5.8 r
-y nea w" aia Pl T nee OuT o AT V-
e Mo R R DIVIDER e~ ‘
h—-l?.—lr— 1o g
* - Lo/ ¥
P6 < i VoLTAGE SENEE wuF P2, l " 3 z S 25
owBR Bu
o — B - P
.2 bt nnedodd ™ Pos L/t " Los In r TERTE
- o] Mo A » LLTVL QLA N Y 7 " o STuna q cusnent o .1
Bs .34 ruan 0 -] ¢ Te5/n 1L3aseT8ae 18 15 T/ D™ - : 2) G
2. Deive & PM2 ,our Sor our ol q £} Dos ou (] e = v
v-A 24 W /i T8/t (-'T—”—'—— +wr PMO dijve 9§
et/ Axy —ouT New ouy Toi 2 M our B 2 -k
LT 3 e 2 —our
i _Rtho T8 sLscTtiie ; TR b
B {,/l D ti M“'me;gg oo 26
2
28 < CURRGNT S0HEE Bus JHd
COMTROL. SadAL BUS > P7
Bl B S
-3 Signg 3 cumagor e 27,,‘ 4+ Pos iy - 23 TB2/8 Pos ™ Em N-—:.;;- craima & Cutnint ;
ey D Ty . Bye o
Pe- 28 . Rorunny 5] AL e T®Y/> TB3/8 }_““_"'“_"‘_ - ‘ EI, - . Reruan e
Pi.¢ deive 3 24 PM3 | our Ror our > O n!':lbl)[nls‘lcirl!li Ilolu!llllﬂlﬂ.[ﬂl:l i " Yo our 4 our PHS{ N =G — 2g.3>
e - our] na our e 2 TNz T i our e & -3
Mg #ho Ten / e . - Rohie e
23 OPTO - LXOLATED OUTPUT BUS i ‘ H
<, £
- 5 0T f
s By wmalviaalalseirsia]ofn 13 i
Pt -n Stiue § cunesay an Pos 1w rea/y L] hishinfasia -)23 172
CLS7A70 Byu Tex/7 dmamy—————+™ ~ BThing T cusasnt
237 ik ?_S Y -m L e/ TBIT D™ fom Bl el Iy- 7
. - ; L) vy
P Inive & 24 PMA L ar Ro¥ cur BV ™ho¢ Pod our oer PM7‘ i O— e 23-34
AT w6 our o Mg Drive 7 Pr.2
—our > ™ oL/ (_‘___"“' ovy ot . ST -
2jg _Phe e uf
G fn[v ltl)l\l;l:[vl;’g l::lul.;l.,l..l,,'.‘] the Rjc
2 MHEHH R T
i ; i
4 P/
b5 Ry {
(36 Do 1n L
K. s e § Cuanent o] 140 " ToL/ S 82/6 Los 1n - Dfv s BTN 6 Curatnt
s - 3¢ s Rerenn éﬁmi.‘_ 2y -m boedi o TONE -5Ih o Haw) PRy '-‘nuw? LR
2. & pave 5 by PMS ot Bos qur ol we|r talslaise] v |s]o]ofwfufinin >‘T“;;" o - ME By O b Ig - 35
oz h wr Naa oot bl it = I» I», e Toufs T 2 swr PME I duive & [
_— - t 13 BRI -
2.4 2.5 v r “'Iz' .u‘ncr. auy - v (3]
L l A . : £1.30 244
3 | SATTERY CUARINT ROTURNW : o) .
, N PATTEAY CURIER] x
=] 1® . . 7 CLliis)
4l [o1 , 2 anun
z
b —
3 x
Y Syg niul fosour X #
il I by i NOTES:. KL winas # 22 awg =—=1TriSolarCorp SmiTerms
€5 - g i ve ' UNLESS OTuguwise Wersh e e
Tmuap? . s Berr Ped o Ld 2
wre 2 an o , i o .‘a” L TRE L mmsatann Vgt okt o m N il 7
\ ¢ e I sty STat e Tay ks Lot (yieogag) L -,\’.cw P aesn PO wieinazo e

fror <Lt dua)

sa. ©7 WATA BUS : wea
-~ 3 A - ———
o e Y N TR B i
n " A%
oy n Yy
v i - ra :
& 4 od A
o] '4 % 2Dk
- . s o o X8
a £ by "l it (1
3] e 3 - e
5 h :) 4 A 3 =
3 ' e Al o e
vy — PR -
'—‘.u, voss f—‘*_ud o - R es)
sl ternr 2 Y B 2y
) —biers A4, Py - i H
PAEY D e 4
fortian) =19 ¢
" » [_‘;,m 7 :}
" h |
Ad.AMIS Mengess Bug j w. Y
b I h A 14
. g o[2777 e ¢ I
¢ 1) -2 LY B
IS N —d D)
1 N £ ey b3 N
a - i < ;
G -1 Y 4 Pd
Y e ? «
1} $7 3 3
) Xy N
] s
15 (8] vF 1
3y, Sees st Fepsp- L-coe .
- il el ¥
- A s
ij S i e -y &
paEve < 2
A 1 L.\N.\i \
l_\‘ B P oS ——t 4 iy
—» ‘ pooaf cor p——uae (o]
- Al g . s | -
4
% - ray €A {
L] "0
A ey LY
o — o]
Sk 20—} dfer: =
Rl afm ba man . <©
= ey ey i b= I
. ane :_ ooy oy P2 Tk Yo
‘Jhm + B L v ME— T -
P .9 Fream e iy ot st ot £ ¢
& Totbony MR i Py poid -4 -SRI APy c: n\:.,
4 »
i p— g . ‘ ¥ i
ury 2 o am omel a 3%
A e 5|y . peitds LT LSS N q |
\
geser ncia ua‘" ok | o e
' e ot LI S { = 7
"
Iy] '
v - 2 —tor ot EER T '
Yox Fout I !
a 49 - . . .
" s E W s
T = AL L
o Cln 2 802 areanp tmeSd |
068 “Tocemts CouoinL it
_ het, AN vt qu '
- cree “Em-u
NnTES | g ¢ s oy Toen i
v = 1 S - -
A M DBl Powi€R ConndeNali - — '
1. WLESS oTaerwiSC NOTED AL REUSTORS !ﬁ..,'n. Fium Tyer, T icey Py I ANy
ALL CAPAGITORS wirw PoLAry maaxs AT fug ThuThuim, 2263 Gushasscl uA W WY ocog ¥
ALL NOL.POLAR CAPAGTORE ARC CtFAmie, 2307 TartPanct BT h!‘ BEITAL POWER CoubmeTinsit
2. MUt VECAPLIIE CAMGTIRS ADSACENT To NRICMEY Te Piug [vl es | Je os E Y N AN RTE Y P %0 Do Angaia O
B - " | TR N w3z, 013 LN SN L - ====| TriSolarCorp A vr)
3 CRVATAL T OPENATE n) FubiPAmEuTAL MIDE, PAkALEL RESMIINCE IR RY K] UR5A047,40 49 gl-]l-1x 1 T
! WiTH 16PE uaminal Lean cammory, :'_Q‘_.*u.;’u‘v‘q" .' -,-.. 7 by o == 7
. ’_D_I_!‘ID_L‘I_IJl‘!I‘IY‘!",g" & (1] d
.—, GO IR R * 3
1 [v > 3 el I
U35,] o Y lD Oz OO 0-0G0 0 .

0
[y
(=)

i #x1 L5 gug ‘- .
: e
i " H e 6] i i S— ¢
aETme b e 4
| bee 3 IR TV Wever r:
! Y cbaoigap DEXNIO !
! hp_ 4 Pl 4
loy ¥ .=
| hea aht
Moy %
. Mg 4
Tawavavcd 1 3 2 .
»
3
y
14
| 4§‘v L ?
470K [} y
e2%, Shex €31
Gy 0080 AARLL 23
> arem e) + B K
iy et B AL Y
' (3 2 " sy &0
5 Lovsomn . ‘;:'f,,“ t Nt W
- on e 2Lt H
- Toos Tec e} e
ry - T o WHECTY AmpaeyY 1
o I s T Ul Urgons et a
— —— [— '
I . i S
gk WATSEE hd s
o .Yn' | ___g !
R25S | v, P
ROK
e w L | 5V I "o N
DIR
10 Bus \ - | = v
N ‘ =
E wd = -
(= E 9 o
" BN
le bkt ' Pwm -
0T i 1-" w l
: ne e A Loty '
2w 3% bty W
Koss s U3 1 me - |
Fi Rl
5 e vAsT MY
el gy peaszc :
. Teas n“ I £
o I
o iy
i
W g ™ 3 NECRAR MATA Guver)
- L3 e
e ® ParIT2A 0BK (]
= & [=
v (Xl
- " 1 saeeTy GRpsb 4 < MALDGL OUTPEY meTuRN
= -._.LC: =
et ' o - T steaaL eteenD I POLE, 200K Fruver
_4.::- LY I ANALDG OUTPUT OPTiON
L ‘:‘ L
BhUb WA i, e oc 2. L v '
aee o 4 e asry . -
feaeT ;“{‘:;}'__!_‘—H A
T Argaio Orve
. ‘ === TriSolarCorp XoiTom
. i = —
! — - e, kasEh s
S o=
NN
—— ™ Pwm BUFFERS FARRAY 700 LS

Lo

=

Tamal m wend gmis 'l

froar
STt 4.

G tem e

s,

-5

[T T T

1 ectwn gy

R TR g
RRCTIAURLE L

roTY

ves

Fhom Timy 8 e
ouny Gy paty

ARV

43 B

AvALec Bata

1
ey

wia dus
8 sninsSON

Peen paux

LWause

AV
N ousy
?vH
o AL
1"
Awl-) le L2
8 STt
?m v
Vi Tire3s
b
Acer h\’]‘.
\
Vi
- reme “F?
o use
‘..r: e inn
LT
T vt T
A Wi
1358 :
“ly
,; .
Afp SecTion

ALivi0 ¥00d

§! 29vd

; [
; et s
' i
o 238 £
N nAEL 0.
Ans TG ity Tt e
TR
ot " v
car j2 —_
PRy L] PTG Bamc awTTaRUPT fAre Paet bas i ds e
v
(2] 2 = BLoW pgpiay Tuset
CX1L PUPA L gis o SaTE
Q! : v [N BT T TN d
. {
hy -‘—-}‘———--——————4 [T TR
3 : - IRV TVRTINTE Y
ne < N des sEMsc S

3 & S T T Y

[ITIE] cel bawE b
i - PL-v§ teL Bavul 3
=‘u - Cor DaVVE D
hs " o1 con BAAVE M
Ry é PoIN AUDI BEIP/ ALsam
Al taang coer
20 P
ny 1n

Fes 171 L1 SRS A 23
aln - TALL I FROM UAAT 3TAIUs FLACS Uity

owa Yoo i

b }._l" 8/ viu

1 B e JarcssfL- Phom wan ot A g P13 BPEEN TR

e PLoL YEIL™

proa 4cd

. J.L_l gy I ues

vk e 2 aShad Y
1 D| v

L 3L

vre Y

-;——"
h:]uu 2

THCIN [

e5-i

“ P
(4181 voarate

vsr {o
ourpurg

-t fi

[Z R

e #]0

TYNIDRO

L Gl : ten | um 5'1 L1273
D “(‘“‘.) L
- \ 1 wwse it eris
L4 J— !.,.D._‘J. b 2y
i
1 v
" D_;" ‘";, ‘: f ur; 1 wese

T aEy

Cidp- €12k v Mfec,s

113 "
4 (3]
P32
' Ve BRL21 et P B
12, 13 y .t BRI O e
1 ¥ 10 4 3 A
'1_'"'; ywie [T 8
i b
l <
rish
1 it

DAY PAT wavg Ri.onvl PV 1O etv
WGy Carticuies 4 ik BuTE PR4- B3Y
Cav IE Pracsaumiy ™ @5 Law, wrre

AVM £ RLUITS A st 1ATIRAc T T r
Lot DsvEl cAs by PEFELY 10 imu Awb J— rCo Anguo
Cwrmeues Faen AFAS (2) 10 wa.v¥ 1D === TriSola P sawriam
BEidt tns J O Avel YL Py Cerd " e, ol s A
SMEAY DATHE LF 1 #& MOAL Wil 1A - - "
O N I I TR T T T R Y R R TNV (e
16D, ¥ 0w 1622 40 D.C win tan[T [Asp awd woeb ATEpr
TS T TR STE I A T A T N L (i # o
o huant ey LT E
4adil Dol MouIn T

c1-1

P)

a5V
8ATi6key
Vourant 4P
k n_gA;l' Ko y :.,1,. Py s‘v;:‘-Aﬁ Wk
© To $4 oAy P
____..'.;>_ faskihd
VAt [
10K Lyt
<
— -5 .
Foor
¢ —
TRWE L >> o ‘{ AnTy A

QW >ﬂ:’ [

M3
e B] i}
29bte g >>""' ["_"‘“—;‘:‘ q
kw10 \>“"' [:] iy, _J
1
et - 2

« >>l "

WSV e -6V

MUK CHADNEL SELECTION
LoGIC LEVELS

-
g P wi | 4
o - — 2] SN ——] 57
o it ¥ 2a.096VF8
LR TARL sox 107 coaasip L L 3
Ry RGA FROM LIFFCAATAL]
’ 1 MUy BUFFER It L3
I~ @5%T N T‘-'" MAPLIEIER OG- A
oy %7 ixy o
(5] 3 A] - 8 ——— ‘E
I (GO g WM ‘]'Cn c
3
SR \>-!‘ L ™ 1 &
sy e o =
I i Dt
- Vst
SYSTEM, b ANy L1k
UeuwAL, ™ AN 3l
S1NAT PmatT) b(@(n $HOL
Shaul

e AL
sarecrr —3Y] 'ﬂu‘? Weng

L 14

[3

<oy
LG Diex
u:o,,-.‘g,- v < S0k

HIOTAVES

¥ LAIA EUZ ExTEMID

ll__'i To BIFFERNTIAL MUK F -
o CnECTH ﬁ oh - '
——tap hJ] i
. :
- T oo, i
L Baoa__J i
>
e A
uly Al . “—*ﬁo‘
< 4 x5
s . 2 TS A
LY T xve A ;
crnc Ba, V33 i om M
e [£ e H
MUY CHRRIEL N
SELELTION BEGICTER .
i
!
1
k)
AN am LBy nf ust e
IR & " a |
2 2 3 TBLOSA ‘,
x ,_ ;7‘5"39 +5IY - T 'gmv
k o ws. 52 X
M o, ®pE . ved N
y
A Lo, f8m by TS
F L | B
i :
x4
) Thew

- —— 10 De Angsio Drve

==.| TriSolarCorp i ere

T ~"Peceiren =Ly

¢ on NETEoUTS ————
TRNALOG muUiTi € 5 e et

did i

.

1F SV
Ly
R1% rs
N [T adl i Y
CuRagENT —AAN- "7y
ATIEN Y -»““‘:TFS R3y% - A
N oty .
 PowsR e A3 T s '
moBuL i 4 /4 v . VA4
RN ’c%‘: Jsﬁ:‘
1w MY 10 MSTEM
oA NEUTRAL. -5V
STENTIAL N
?2:4 Commerd MOBE MAX PP L TYPICAL ANTI-AUASHG FiLTer —/ ol
ouE To WRE © gmat Jyy (T | RO
ﬂES\C"hN(E J o 21
. A
M 192 NTI-AUATHE FiiTER, - A
» Qe e B
Y
] ™™ [y
; N =1 KAT-ROREING FICTER uhiy
- 3
N > L —w
45N &D -tW
N4 23] ' tE‘-g‘Li
I a'
s S
4
245 €
= . o wab Y
Z R era— TR —
N oy Al
-7 \ B
Hay
o
N7 2
» rn-:l vy
. (7]
10 11 ‘ :
1\ M-
farmi Lerm %5
CURRENT L1t " L]
r-n ;
e
3 L ecAD Bus ’"-
CLRRENTS 7 Al “ :
on 2 LoABS € 1 &xria f 1 »
YYE: ko >> 216 ' s [t
Laed ot . "%
[T 2.3 SO __] g l
LI P g)}.[l _"—ﬁ

44 4
NS
s, AR ¢
Y b
‘; a
H
S |
A
»

NOTED VALUES i FiLT

P
&4

1

Losre LEVELS

FROM MUX GRNEC
SELECTION REGISTER

IRy ¢~ A
. L

0 34.054vers PS

TO SINGLE SwEd
nux IupvYT

(e s)
n 3
i
' g £
"' 8%
. o~)
i . -
; O 10
IS c 2=
H > m-
™ i
=
g .
=< U3 i
i
{
H 3
€RS SuRTECT To CHANGE,
RA /R2 RATIO DEPENDENT ON ActowABLE
LEAKAGE OFFSET buE To DIOBE CLAMPS £7¢,
' !
R ‘
)
vyt ta
S
b
BN i
b
R '
i
|z=m=| TriSolarCorp S Tiam
— [“FExcesren l"" T
o == | remtzanc -
[[TuRRenT mEarLa imEnT mus
2
oo [4es10 [DO2 £0420-00 S S

APPENDIX 1II

PSEUDOCODE LISTING

II-1

APPENDIX 1II

SUMMARY OF SOFTWARE DESIGN
MAXIMUM POWER TRACKING PHOTOVOLTAIC SYSTEM CONTROLLER

prepared by Thomas A. Maier
Fellow
Mellon Institute Computer Engineering Center
March 22, 1984

PRECEDING PAGE BLANK NOT FILMED

PAGE 7L~ 2 INTENTIONALLY BLANK

II-3

I1-4

B
.

- CONTENTS

- The Use _i Pseudocode

- General Comments

nalog to Digital Converter Interrupt Routine
. = A/D Channel Allocations

- Signal Averaging

« = A/D Channel Storage Locations

2.2. - Operator Interface
2.2.7. - Hexadecimal Keypad Functions
2.2.1.17. - Public Functions
2.2.17.2. - Password-Accessible Functions
2.2.1.32, - Debug Monitor Functions
2.2.7.4. - Maintenance and Logging Functions
2.3. - Calculating And Interpreting System Parameters

- Appendix #1 - Generatino System Lookup Tables

- Appencdix #2 - Pseudocode Listings

I~

-2 - ORIGINAL PAGE I3
OF POOR QUALITY

1. The Use of Pseudocode

——————

The majority of the information regarding the software package
developed by the Mellon Institute Computer Engineering Center (MI/CEC)
for the captioned TriSolar project 1is <contained 1in. the pseudocode
listings which accompany this summary. The pseudocode is a fictitious
high level language used to document and describe the assembly code
used in each of the routines. The use of flowcharts hes, in the past,
been cumbersome to keep updated as corrections and modifications are
incorporated into a piece of code. A pseudocode listing, on the other
hand, is easily understood and can be incorporated as part of the
comments 1in the assembly language code. The size of the source code
file in this particular project, however, required that the pseudocode
be kept in a separate file.

The syntax of the pseudocode generally follows the PL/M-86
language which was selected because it was more "english-like" then
many of the other programming languages. It should be pointed out
that occasionally constructs not supported by PL/M~-86 were required.
When this happened, the syntax rules were “bent" somewhat to allow
english phrases or carefully selected syntax from other languages to
fill the void. The meaning is still clear to anyone with familiarity
with programming in general.

By first writing the routines 1in the pseudocode and then
translating the resulting pseudocode, Line by Lline, very clean,
structured assembly code can be generated. If this technigue was
carefully adhered to, routines containing hundreds of lines of code
can be generated with few, if any, errors,

2. General Comments

The remainder of this summary details some of the other
information that is not reflected in the pseudocode listings, such as;
information about the A/D routine, A/D <channel =allocations, Signal
Averaging and similar topics.

2.1. Analog to Digital Converter Interrupt Routine

As a resutt of a negative transition on the &4 millisecond NMI
line, the A/D interrupt handler gathers 13 channels of data, one at a
time, and stores the results in memory. To accomplish this, the
routine sets a mux channel address, waits for settling to occur,
starts the conversion, polls for <conversion complete, formats and
stores the result and then repeats the process for each successive
channel. In order to conserve time, the formating, which amounts to
rearranging the word bit pattern and changing from sign magnitude to
2's completement notation, is interleaved with +the 80 microsecond
conversion time of the next channel.

The data read from the A/D is returned in 2 bytes, shown here

I1-5

msbyte first:

-

b7 b6 b5 bbb b3 sign b9 b8 : bsy t1 sw2 swl w b2 b1 bl
where bX = data bit X

sign = sign bit, "1" = negative

bsy = A/D busy Line, "1" = done

t?1 = 30 minute alarm signal

w = watchdog/panic interrupt line

swl = inhibit switch,

sw2 = motor thermostat
which must be rearranged to the form:

sign sign sign sign sign sign b9 b8 : b7 bé b5 b4 b3 b2 b1 bD

_ Notice the extended sign bit and the elimination of th
miscellaneous 1input bits. It is important to retain the other dat:
bits, which are used elsewhere, because random reads to the A/l
(without @2 corresponding write, to initiate a conversion cycle) place
the A/D into an indeterminate state. Since these data bits are
available during each read of the A/D, they are retained when the A/l

is read during the seldom read ¢
use at a later time.

2.1.1. A/D Channel Allocations

Channels are broken up into
the “seldom-read's". As
the first group contains 12 chan
battery <current and voltage) t
catled. The latter group contai
read in a2 "round robin" fashi
following is a Llist of the "oft
showing the mux addresses and ch

OFTEN RE

signal name mux
address

battery volts $00
battery current $20
branch #1 current $21
branch #2 current $22
branch #3 current $23
branch #4 current 24
branch #5 current $25

#6 current $26

branch

11-6

hannel and are stored in alarm‘SO for

two groups, the “"often-read's" and

implemented in version 1.X of the software,

nels (i.e. 10 branch currents ard the
hat are read every time the routine is

ns all of the other channels and &are
on, one per paess thru the routine. The
en read"” and "seldom read" channels

annel number associcated with each.
AD CHANNELS

often-read
channel number

NOUMBRUNS O

branch #7 current $27 - 8
branch #8 current $28 G
branch #9 current $29 A
branch #10 current $2A B

. SELDOM READ CHANNELS

signal name mu X seldom-read
address channel number
branch #1 volts $01 0
branch #2 volts $02 1
branch #3 volts $03 2
branch #4 volts $04 3
branch #5 volts $05 4
branch #6 volts $06 5
branch #7 volts $07 6
branch #8 volts $10 7
branch #9 volts $11 8
branch #10 volts $12 G
load bus # 1 volts $13 A
load bus # 2 volts $14 B
Load bus # 3 volts $15 c
load bus # 4 volts £16 D
load bus # 5 volts $17 E
load bus #1 current $28 F
load bus #2 current $2¢C 10
load bus #3 current $2D 11
load bus #4 current $2E 12
load bus #5 current $2F 13
battery temp $30 14
freezer temp $40 15
80% of Vref $50 16
zero voltage reference $70 18

2.1.2. Signal Averaging

— a— —

The raw, often_read channel data is stored (2's complement form)
in a 12 x 16 WORD array based at often_read base (at location $0320).
The array is arranged in the following manner. The table shows the
address at which the lsbyte of each reading for each channel of the
"often_read's" is stored.

I1-7

Signal Averaging Array

channel numbers~—-=>

0 1 2 3 4 5 6 7 8 G - A
reading
number
] 1 320 340 360 380 3A0 3c0D 3ED 400 420 440 460 ¢
| 2 322 342 362 382 3A2 3C2 3E2 402 422 442 462 &
| 3 324 344 364 3B4L 3AL 3C4L 3EL 4LD4L 424 LLL Lb64L &
| 4 326 346 366 3B6 3A6 3IC6 3E6 4LD6 426 446 L6664
vV 5 328 348 368 388 3A8 3C8 3IEB 4LD8 428 4L4LB O 4L6B 4
6 32K 34A 36A 3BA 3AA 3CA 3EA LDA 4L2A LLA LO6A 4
7 32C 34C 36C 38C 3AC 3CC 3EC 40C 42C &44C 46C &
8 32E 34FE 36E 3IBE 3BAE 3CE 3EE 4O0E 42E 4L4E 4L6E &4
G 330 350 370 390 3BO 3p0 3F0 410 430 450 470 4
10 332 352 372 392 3B2 3D2 3F2 412 432 452 472 4
11 334 354 374 394 3IB4L 3D4 3FL 414 434 454 L7404
12 336 356 376 396 3IBS 3IDE6 IFE6 416 436 456 4TE6 4
13 338 358 3I7B 398 3IBB 3ID8B 3IFB8 L18 438 4L58 478 4
14 33A 35A 37A 39A 32BA 3IDA 3FA 4L1A 43R 45A 4T7A 4
15 33C 35C 37C 39C 3BC 3DC 3FC &41C 43C 45C 47C 4
16 33 358 3I7E 39E 3BE 3DE 3IFE 41E 4L3E 4LSE LTE &4

Note often_read_base = $320

When 16 sets of data have been gathered the dataset_ready_flag i
set. This flag 1is used &as the handshake semaphore. While thi
dataset_ready fleg = 1, the background program has not, as yet,
converted and used the last data set. When the dataset_ready_ flag i:
found to be asserted, the signal av routine, which runs din the
background, sums the 16 individuasl readings of each channel (i.e. one
of the above columns) and divides the result by 16 to produce ar
average for that channel. This result dis placed into the proper
location in the dump_state array.

The calculation of total_chgr_I, i.e. the total array current s
done 1in this routine as well. Each of the branch currents is summed
and the total is stored in the dump_state array as outlined below.
Since the A/D reading of any given branch is a maximum of 10 bits, the
sum of the 10 strings can never exceed the 16 bit word reserved for
it.

ALl of the seldom_read <channels are Lloaded directly into
dump_array as they are read without signal averaging.

The following figure shows the arrangement of the data in the
"dump_state" array.

II-8

ORIGINAL PagE 5

2.1.3. A/D Channel Storage Loeations F POOR QUALITY

O0ften Read Channels:

addr variable description

0008 battery_V: averaged battery voltage
000A battery_1I: averaged battery current
000cC branchi: averaged branch 1 current
DOOE branch?2: averaged branch 2 current
0010 branch3: averaged branch 3 current
0012 branché: averaged branch 4 current
0014 branch5: averaged branch 5 current
0016 branché: averaged branch 6 current
0018 branch?: averaged branch 7 current
001A branch8: averaged branch 8 current
p01cC branch9: averaged branch 9 current
001E branch10: averaged branch 10 current
Seldom Read Channels:

0020 br_volts?: branch 1 voltage

0022 br volts2: branch 2 voltage

0024 br_volts3: branch 3 voltage

002¢6 br_voltsé: branch 4 voltage

0028 br_volts5: branch 5 voltage

002A br_voltsé: branch 6 voltage

ooz2¢c br_volts7: branch 7 voltage

DD2E br volis8: branch 8 voltage

0030 br_volts9: branch 9 voltage

0032 br_volts10: branch 10 voltage

0034 bus_volts1: load bus #1 voltage

0036 bus_volts2: load bus #2 voltage

0038 bus_volts3: load bus #3 voltage

O03A bus_voltsé: load bus #4 voltage

003¢C bus_volts5: load bus #5 voltage

0O03E bus_amps1: load bus #1 current

0040 bus_amps2: load bus #2 current

0042 bus_amps3: load bus #3 current

0044 bus_ampsé: load bus #4 current

0046 bus_amps5: load bus #5 current

0048 bat_temp: . battery temperature

004A frez_temp: freezer temperature

004cC V_ref: reading of .8 Vref

004E zero ref: zero voltage reference
0050 total_chgr_I:

current total charger current

Since the 4 millsecond interrupt is the only means for providing
system timing, the one_second and 80_msec timers and flags are both
controlled by this routine. Both timers (located 1in memory) are
decremented each pass and reloaded when they reach 0. When either

C oo -

II1-9

C ORIGINAL PAGE 5
OF POOR QUALITY

timer "times out", the respective flag is set to indicate to th
background routine that the time period has ellapsed.

Settle_time is set by the max_pwr_track routine every time that
change is made to the PWM counters. If settle_time is non-zero, all o
the data gathering code in this routine is skirted. This gives th
power module time to settle before data is again taken.

This routine also invokes scan_kybd on each pass to handle th
scanning of the hex keypad on the front panel.

2.2. Operator Interface \

The following four sections outline the functions that ar
available to the user either via the hexadecimal keypacd on the fron
panel or the serial port (300 baud only). The <channel numbers wuse
for @accessing the different oquantities are as follows: (Ncte th
difference between the user channel number and the raw channel number
which is used only with the @ command through the serial port.)

OFTEN READ CHANNELS
signal name user ch user ch display raw ch

number number pattern number
(serial) (keypad)

battery volts EDO ADD XXX .o X Q0D
battery current 100 800 XX X.X 001
branch #1 current I01 BO1 XXaXX a0z
branch #2 current 102 BO2 XXaoXX Q03
branch #3 current 103 BO3 XXaXX Q04
branch #4 current 104 BD4 XX.oXX Q05
branch #5 current 105 BOS XX . XX @06
branch #6 current 106 BO6 XXaXX Q07
branch #7 current 107 BO7 XX XX QD8
branch #8 current 108 BO8 XX XX @09
branch #9 current 109 BO9 XXaXX @10
branch #10 current 110 B10 XXoXX Q11

SELDOM READ CHANNELS

signal name user ch user ch display raw ch
number number pattern number
(serial) (keypad)

branch #1 volts ED1 AD1 : XXX.aX @12
branch #2 volts EDZ2 AD2 XXX.X Q@13
branch #3 volts ED3 AD3 XXX, X Q14
branch #4 volts EO4 AD & XXX o X Q15
branch #5 volts EQS AQS XXX.oX Q16
branch #6 volts ED6 AD6 XXXl X Q17

branch #7 volts EO7 AD7 XXXaX Q18
branch #8 volts ED8 ADS8 XXX o X Q19
branc? #9 volts EQ9 AQ9 XXXaX @20
branch #10 volts EOQ1 A10 XXXaX Q21
load bus #1 volts E31 A31 XXXeX Q22
Léad bus #2 volts E32 A32 XXXaX Q23
load bus #3 volts E33 A33 XXX X Q24
load bus #4 volts E34 A3 4 XXXaX Q25
load bus #5 volts E35 A35 XXXaX Q26
load bus #1 current 131 B31 XXXaX Q27
load bus #2 current 132 B32 XXX o X Q28
load bus #3 current 133 B33 XXXaX Q29
load bus #4 current 134 B34 XXX, X Q30
load bus #5 current I35 B35 XXXaeX Q31
battery temp D36 D36 XXXaX Q32
freezer temp D37 D37 XX XX Q33
80% of Vref E38 A38 X e XXX Q34
zero voltage reference E39 A39 X XXX Q35
total charger current 140 B40O XXX.X Q37
state of charge DOO b0O X X X -

corrected state of chg D40 D40 X X X -

equal count D41 D41 X X X -

pwm_value D42 D42 X X X- -

The following are calculated at display time:

signal name user ch user ch display
number number pattern
(serial) (keypad)

battery power POO c00 XX XXX
branch #1 power P01 €01 XX XXX
branch #2 power P02 €02 XX XXX
branch #3 power P03 co3 XXXXX
branch #4 power PO4 €04 XX XXX
branch #5 power POS €05 XX XXX
branch #6 power \ P06 c0é6 XX XXX
branch #7 power PO7 co7 XX XXX
branch #8 power P08 co8 XX XXX
branch #9 power PO9 co9 X X X X X
branch #10 power P10 c10 XXXXX

2.2.1. Hexadecimal Keypad Functions

Some of the following functions, i.e. those noted with (mult),
are "multimeter functions". This means that when this function is
selected, every 320 msec the quality is measured, converted as

II-11

necessary and redisplayeq.

pefinition of notation:

a - any of the alphanumeric keys (i.e. not "*" or "“#™)

nn = channel/device specification consisting of any two numeric keys
mm or mmm - data specification consisting of any two or three numeric
NOTE: all inputs are assumed to be "fixed format" J.e., if the specif

calls for 3 digits, leading zeroes must be added to make the inmput 3
tong.

2.2.1.1. Public Functions

sequence function
* clear function
aaaa# acttivate pessword-accessible functions

if user password matches(see below)

Ann# read channel nn voltage (mult)

Bnn# read channel nn current (mult)

Cnn# read channel nn power (mult)

Dnn# read misc data channels (mult)

AAH display software version number

BB# read time, hours and minutes (mult)
cCc# initiate "dump" of machine state to

serial port

DDH not used

z.g.l.g. Password-Accessible Functions

In order to access these functions, the wuser must have
successfully entered the 4 character password

sequence function

L 2 2 2 2 1 2 T 1 1 T T 1 2 3 E E R 1T 3 E T 1 T 2 1 3 3 3 3 3 1 T T T R T T T T X S X
e i e R R L 2 - 22 T - 3 2 2 3 3 4 44 5 3B S5 F X E & B H 554

II1-12

- 10 -

Anmmm# set load shed threshold for load n at mmm
Bnmmm# set load restore threshold for lLoad n at mmm
Cmmm# set the initial percentage SOC at mmm%

Dﬂﬁm# set device nn to condition m, where m must be

either a "1" (ON) or a "0" (OFF)

device 0 audible alarm
device 1-6 user lLoad requests 1 thru 6
device 7-11 overload trip resets for loads 1 thru 5

device 12-17 PWM buffer #1 controls 1 thru 6
device 18-23 PWM buffer #2 controls 1 thru 6
device 24-25 Yellow, and Red LEDs

AA# initiate lamp and annunciator test
(accessable only in test/cal mode)

BB# toggle from run to test/cal mode
' (system comes up in the run mode)

CChhmm# set time, hours and minutes

bD# tancel password authorization

2.2.1.3. bebug Monitor Functions

These functions are accessed via the serial port. They are
listed 1in upper and lower case letters for comparison with the
commands above. In order to permit maximum flexibility with respect to
terminals, either case is useable in practice.

sequence function

P e e e e T]
PSP S S R L T T P~ i =i i~}

“H, backspace, del . Deletes last character entered. Echoes
backspace, space, backspace to allow
overwriting the last character entered
when a CRT terminalt is used.

U Causes CPU to ignore present command Lline

A Return to command mode

M<addr> Opens a memory location at the specified
address (requires 4 hexadecimal digits).
Successive " " (space) characters increment

thru memory, while "=" characters decrement
thru memory. At any time the contents of

I1-13

- 11 -
ORIGINAL PAGE, IS
OF POCR QUALITY

a location may be altered by entering the
new data followed by @ carriage return,

6<addr> Begins execution at the specified address.
no address is specified, execution begins
the present PC location

B<addr> Places a8 breakpoint at the specified addre
This trace mode will only work on code
located in RAM.

X Removes existing breakpoint.

L<addr> This permits 2 program to be downloaded fr
@ host machine to memory starting at the
specified address.

F<start_addr end_addr datum>
Fills the specified memory range with spec:
byte of datsa.

2.2.1.4. Maintenance and Logging Functions

Many of the following functions are essentially ddentical t
those invoked from the hexadecimal keypad, the exceptions beinc thos
commands requiring password authorization.. The main difference i
that the system response is returned via the serial port. This coul
be used for data Logging by having an external device recuest th
desired data.

sequence function

e e T e T T T T N T N I T TD AT TE M N Ch e WR W e e S EE M e m e e e e A e e e e S e e e e e W e e e T e e m e S e Y e e e e = e W
e - e e . T T T - - - - 2 - - - - T 2 - 2 2 - T

W<pwm timer no.><duty cycle>
Set the Power Module duty cycle to specified
value. If duty cycle > max pwr, the default
duty cycle is set to max_pwm

0<digit no.><value> Display the value in the specified digit on t
LCD display.

Enn ' Read channel nn voltage

Inn Read channel nn current

Pnn : Read channel nn power

bnn Read misc data channels

Qnn Query channel nn for “raw'" A/D datea

1I-14

PR EETEE

- 12 -

N Display software version number

T Read time, hours and minutes

Snmmm Set load shed threshold for load n at ﬁmm
Rémmm Set lLload restore threshold for Load n at mmm
Ymmm Set the initial percentage SOC at mmm¥%

Jnnm Set device nn to condition m, where m must be

either a "1" (ON) or a "0" (OFF)

device 0 audible alarm
device 1-6 user load requests 1 thru 6
device 7-11 overload trip resets for loads 1 thru 5

device 12-17 PWM buffer #1 controls 1 thru 6
device 18-23 PWM buffer #2 controls 1 thru 6
device 24-25 Yellow, and Red LEDs

A Initiate lamp and annunciator test
(accessable only in test/cal mode)

z Toggle between run and test/cal mode, note
the system comes up in the test/cal mode
Chhmm Set time, hours and minutes

K Initiate "dump"” of machine state

2.3. Calculating And Interpreting System Parameters

In order to calculate the hexadecimal values used for system
parameters, it is first necessary to classify the type, because each
type of parameter must be calculated somewhat differently.

Currents are broken inte two types. Battery and Lload currents
have & maximum value of 102.3 amps while the branch currents have a
maximum of 10.23 amps. Hence, full scale, i.e. $3FF has two different
meanings depending on which current you are referring to. In the first
case the reading corresponds to the number of "1/10's" of amps being
measured, while in the second case to the number of "1/100's" of amps.
Once the desired current has been expressed 1in the proper units,
converting the decimal number to hexadecimal results in the correct
parameter value. For example: ‘

1. battery_I 82 amps
820 "1/10's of an amp”
(3 % 256) + (3 * 16) + (4 x 1)

$0334

Howounn

II-15

2. branch
= 72

Calculati
exceptions, a
volts. As wi
represents th
the thermister
ctount represe
reading of $3F
shifted left
Hence, to conv
voltege by 4 a

1. V_ref

409274

o nnou

2'

)]
o
wn
32
-t
o

Binary pe
variables are
located 1 bit

To caelcul
binary %
For example:

1. maximum

2. shed_th

II-16

1 7.2 amps

0 "1/100's 6f an amp"

(2 * 256) + (13 * 16)
$0200

ng voltages is somewhat simpler because, with only 3
Ll voltages are based on a full rance value of 409.2
th the <current measurements, most voltage readings
e number of "1/10's of a volt". However, in the case of
signals (frez_temp and bat temp) anc V_ref the raw A/D
nts the number of "1/1000's of & volt". A full scale
F corresponds to 1023 (base 10). If this number s
2 places, $3FF becomes $FFC which corresponds to 4092.
ert from decimal volts to hexadecimal volts, divide the
nd convert the result to hexadecimal. For example:

4,092 volts
4062 "1/1000's of a volt"

1023
(3 « 256) + (15 * 16) + (15 = 1)
$O3FF
_bat_volt = 95 volts
= 50 "1/10's of a volt"
850/4 = 237
= (14 * 16) + (13 * 1)
= $00ED

rcentages for state_of_chag, equal_count and similar
represented by a 8 bit number with the binary pcint
in from the MSB, as shown here.

MSEB

I
X.XXXXXXX

binary point

ate binary percentages, use this relation:

= ((decimal % * 128)/100) expressed in hexadecimal

binary % = (100% =* 128)/100
= 128
= (8 *x 16)
= $80

= (20% « 128)/7100

-

26
(1~ 16> + (10 > 1)
$1A

) To calculate the constant used for state_of_chg use the following
réelation:

iscal_bat_cap = 5.49 » 10710 * iscal * 1/bat_cap
For example, if iscal = 1/45000 and bat_cap = 40 A-H then,

iscal_bat_cap = 5.49 * 10710 = (1/(45000 * 40))
= 30470

3. Appendi x #1 - Generating System Lookup Tables

Appendix 1 contains copies of the programs, written in the "(C"
programming language, for the generation of tables to speed the
calculation of those variables involving <corrections for battery
temperature. "C" is commonly used in academic circles and is becoming
quite popular in industry. It was used for generation of the values
since it 1is the normal language used here at MI/CEC. The algorithms
are quite straight-forward and can be easily translated to BASIC or

any other Llanguage of choice. For the details of the Llookup
technique, refer to the Pseudocode Llistings for +the appropriate
tables. The first program generates tables for float wvoltage,

equalization voltage and minimum battery voltage, while the second
generates the table of values for use with the corrected state of
charge routine. Notice that the program outputs each of the tables in
two different formats; human readable and machine readable. For
examples of the output, see the pseudocode listings for calc_sys_volts
and correct_stat_of_chg.

I1-17

APPENDIX #1
PROGRAM #1 - Generates tables for float_V, equal_V and min bat vy,

#include <math.h>
finclude <stdio.h>

main()

{

int i, i, v, t;
float X7

double value, temp;

/* NOTICE!!! THE CONSTANT 2.5 FOUND IN THE EQUATIONS BELOW COMES FRONM
THE FACT THAT THE VOLTAGES ARE STORED IN A FORM THAT IS EQUAL TO
THE NUMBER OF TENTHS OF VOLTS. FOR DISPLAY THIS VALUE IS MULTIPLI
BY 4, SINCE $3FF ==-> 1023 =--> 409.2 VOLTS.

so, stored value = (input volts * 10)/4
or, stored value = (input volts * 2.5) */

printf("\n\t\tFLOAT VOLTAGE TABLE\n\n"):;
for(i=0xD;i <= 66; i=i+1)
{
temp = 25-.,02092%((64%i)-2560);
value=2.4 * 54 % 2.5 » (1 + (,D022 * (25-temp)));
t=ixb4é;
v=value;
value=svalue * _4;
printf("%4.0f deg C\t%02x\t%03x\t%04x\t%4,.1f\n" , temp,
i-0xb,t,v,value);
}
printf("\n");
for(i=0xD;3i <= 66; i=i+8)
{
printf(".word\t");
for(j=0;j <= 7;3i=j+1)
{
temp = 25-,02092% ((64*(j+i))=-2560);
value=2.4 % 54 * 2.5 * (1 + (.0022 * (25-temp)
v=value;
printf("$X04x, ",v);
)
printf("\n");
3
printf("\14");
printf("\n\t\tEQUALIZATION VOLTAGE TABLE\n\n");
for(i=0xD;i <= 66; i=i+1)
{
temp = 25~-.02092* ((64xi)-2560);
value=2.5 * 54 % 2.5 x (1 + (.0022 * (25~-temp)));
t=ivb4;
v=value;
value=value * .4;
printf("%X4.0f deg C\t202x\tX03x\t%04x\t%4.1F\n" , temp,
i=0xb,t,v,value);
}
printf(”"\n");

I1-18

for(i=0xD;i <= 66; i=i+8)
{
printf(".word\t");
for(j=0;3j <= 7;3i=j+1)
{
temp = 25-.02092*% ((64*(j+i))-2560);
value=2.5 * 54 * 2.5 x (1 + (.0022 * (25~-temp)));
v=value;
printf("$%04x, ",v);
3
printf("\n");
>
printf("\14");
printf("\n\t\tMINIMUM BATTERY VOLTAGE TABLE\n\n");
for(i=0xD;i <= 66; i=i+1)
{
temp = 25-.02092*((64%xi)=-2560);
value=1.9 * 54 « 2.5 % (1 + (.0022 * (25-temp)));
t=i*b4;
v=value;
value=value * .4;
printf("%4.0f deg C\tZ02x\t%03x\t%04x\t%4.1f\n" ,temp,
i-0xD,t,v,value);

)
printf("\n");
for(i=0xD;i <= 66; i=i+8)
{
printf(".word\t");
for(j=0;3j <= 7;:i=i+1)
{ S
temp = 25-.02092*% ((64*(j+i))~2560);
value=1.,9 % 54 % 2.5 *« (1 + (.0022 * (2S5-templ));
v=value;
printf("$%04x, ",v);
b
printf("\n");
>

PROGRAM #2 - Generates table for correct_state_of_chg.

#include <math.h>
#linclude <stdio.h>

main()

{

int i, i1, v, t;
float x, coeff;

double value, temp;

printf("\n\tCORRECT STATE OF CHARGE TABLE\n\n");
for(i=0xD;i <= 66; i=i+1)

{

temp = 25-.02092*((64%xi)-2560);

I1-19

3f (temp > 25)
coeff = .0022;
else .
coeff = .0075;
value=256 * (1 + (coeff * (temp=-25)));
t=i*x64;
v=value;
value=value/2.56;
printf("%4.0f deg C\t%02x\t%03x\tZ04x\t%4 . 0f%%\n" ,te
i=0Oxb,t,v,value);
}
printf("\n");
for(i=0xD;i <= 66; i=7+8)
{
printf(" . .word\t");
for(j=0;3 <= 7;j=i+1)
{
temp = 25-,02092% ((64x(j+i))=2560);
if (temp > 25)
coeff = .0022;
else
coeff = ,0075;
value=256 * (1 + (coeff * (temp=25)));
t=i%x64;
v=value;
printf("s$%04x, " ,v);
3
printf("\n");
3

E L

II-20

- 18 -

4. Appendix #2 - Pseudocode Listings

The following is a table of contents for the pseudocode Listings.
Note that the order of modules is the same as in the machine code
PROMs.

TABLE OF CONTENTS FOR PSEUDOCODE LISTINGS

module name page no.
abs_cnvt 31
adc_hndlr 64
a to h 5
battery_state_of_chg 66
break 41
bf_div10 32
calc_equal_count 73
calc_sys_volts 66
calc_state_of_chg : 72
chk_for_ovrtd 76
cmd_intrp 63
cntrl_pwm_output 54
correct_state_of_chg 73
deter_mach_state 78
discrete_array_cntrl 77
display_clr 10
display_digits 10
display error 9
display_hndlr 8
display_huh 9
do o watts 21
do_p_watts 21
d_to_h 7
dump amps 24
dump_arrays 58
dump_soc 56
dump_state L4
dump_sw_states 57
dump_temp 26
dump total I ‘ 32
dump_volts 23
dwnld 47
fill 46
find_amps 16
find_percent 30
find_prod 55
find_time 12
find_temp 27
find volts 14
find _watts 20
getbyte 3
get_data 4

II-21

go
_h_nyb_to_a
h_to_a

h to d word

key intrp
kill_passuord
lamp_test
max_power_track
mp_div

mp_mult
msg_hndlr

msg hndlr wo
multimeter func
open_mem
out_time

out amps
out_csoc

out data channel
out_equaT
out:pwm

out soc
out:version
out_volts

out wetts
put_amps
putbyte
putbyte wo
putchar
putchar_wo

put csoc
put_data_channel
put_eaual

put huh

put out of range
put_pwm

put raw channel
put_soc
put_time
put_temp
put_version
put_volts

put watts
rem_brkpt
run_task_master
scan kybd
serial port
set_bit

set brkpt
set_digit
set_duty_cycle
set init soc
set_load_shed
set_Load_restor
set_tim_kybd

I1-22 .

19 -

set_tim_term
set_up_dump
set_up_dump_kybd
shed_restor_Lloads
shift_L4

signal av

sp_mult

test (initialization)
test_string_ 1
toggle_run_bit

- 20 -

27
43
43
75

82
49
79
56
43

I1-23

Feb 17 12:17 1984

/u/tam/solar/PSEUDOCODE Page 1

XXXXX XXXXX XXXXX
X X X X X X X
X X X X X X X
X X XX XXX XXXXX X
X X X X X X
XXXXX X X X

11-24

XXXX

XXXX

M X > X

M X X MM > X

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 3

putchar:
disable system interrupts;
call putchar_wo(accum);
enable system 1nterrupts,
end putchar;

dkkkdkdkkkdkkkkdkdkokokdkdkkdkrsbokobobdkobdkdk kb kbbb k kb kA kb ktdhkkkkkdrddddkhdhddrhrhhhdhs
This routine places the string defined by the starting address in string_p-
and place it, character by character into the output buffer by calling
the putchar routine that does not re-enable system interrupts, putchar_wo.

This routine is used in the serial port handler,
X222 222222 SRRt R st RS E R Y R R Y R e R AR RS

e %o %o N8 e N

Pseudocode:

msg_hndlr_wo:

save regs;

i=0;

do while (string_ptrl[il <> 0)
catl putchar wo(string ptrlil;
i =93 + 1;

end;

unsave regs;

end msg_hndlr_wo;

chkdhkdhkkhhkhkhdhdkhkhhddhhkdhhdhdhkhkhkhhhhdkkhkhdkhhkkhkhdkhdkkkhhhhhhhhkkhkhkhkhhkkhkhkdhhhkhkhkdkhkdkdkhkhkk

This routine is identical to the above, except that it uses putchar instea:
of putchar_wo and is to be used under normal string output circumstances.
dkhkkhkhkhkdkhkhkdkhkhkkdhhkkdhkdhdbhhkhkhhdhhhkhkhkdhhrhhkhbhkhd bk kkkhkh kA kkdkhkkhkdkdkhkkdhkkkkokkkhk

Ne %Nr W We

Pseudocode:

msg_hndlr:
save regs;
i=0;
do while (string ptrfil <> 0)
call putchar(string ptr[iJ;
i= 3+ 1;
end;
unsave regs;
end msg_hndlr;

dhkkhkkdkkdkkkdkhhkhkhhhdhhkhkkhkhhhkkhkdbhdhhkkdkdbhhkhhkdhdhhhkhdhhbkdkkhdhhkhhhdhkbbhhhhkhkhkhkhkkkhkdk

This routine retrieves the next two ascii characters in the command buffer
converts them into a single hexadecimal value and return it via the
accumulator. Should either of the characters be something other than

0-9, a-f or A-F; the ascii hex flag is cleared.
hkhkhkhkkhkhkkhkhkhkokhkkkhkkkk ok hkh kA hkhhkdhhhhkkhhhkhkhhhhhhdkkdhhhhdkkhkhkhkhrhkhkhkkkdkhkkk

we N Ny Ne S N

Pseudocode:

getbyte:
save regs;
accum = command_bufferlcmd in_ptrl;
cmd_in_ptr = cmd_in_ptr + T;

I1-25

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 4

call a_to_h(accum);
jf Caccum <> SFF) -
then do;
temp = accum << &;
accum = command_bufferlemd in_ptr];
cmd din _ptr = cmd in_ptr + 1'
call a to hCaccum);
if (accum <> S$FF)
then do;
accum = accum + temp;
ascii_hex_flag = 1;
end;
else ascii hex flag = 0;
end; - =
else ascii_hex flag = 0;
unsave regs; -
end getbyte;

2RSS RS R AR R R SRR s s 2 R 2 2 S L R T P P R A AR

This routine retrieves the next two ascii characters in multimeter dat
converts them into 2 single hexadecimal value and return it via the
accumulator, Should either of the characters be something other than
0-9, a-f or A-F; the ascii_hex_flag is cleared. 1In this way it is alm
identical to the previous routine, except for the location that the
data is retrieved from. This routine is used by multimeter func.
*****************************i*******************i**********:********i*

e e %e NE Ne Wa Np N

Pseudocode:

get_data:
save regs;
accum = multimeter_data;
call a8 to h(accum);
if (accum <> $FF)

then do;
temp = accum << &4;
accum = multimeter_data + 1;

call a_to_ h(accum)
if (accum <> $FF)
then do;
accum = accum + temp;
ascii hex flag = 1;
end; - -
else ascii_hex flag = 0;
end; -
else ascii_hex_flag = 0;
unsave regs;
end get_data;

dkkhkkkhkhkdkkdbdkh ko h ko kA kA ko ko k ko kkkkkk ok
This routine takes the hexadecimal value in the accumulator, converts
it into two ascii characters and places them into the output buffer.
This routine assumes that the system interrupts are to remain disabled,

so that it uses putchar_wo instead of putchar,
IR RS RS RS2 s R s Rl IR s R N P R R R R R R R R AR X]

Wo We N N3 Np N

I1-26

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 5

Pseudocode:

putbyte_wo:

call h_to_a(accum);

call putchar wo(asc'i _chars+1);
call putchar wo(asci chars);
end putbyte_wo;

dhkkhkkhkkkkhddhdkkdhhkhdhhkdkhkhkhdkhdkhhhhhkdkrkk Ak hhk ok khkkhkhkkhkhkhhkkhkhhhhkhdhdkkhkhkkkk

This routine takes the hexadecimal value in the accumulator, converts

it into two ascii characters and places them into the output buffer.

This routine wants to turn off the system interrupts so that the serial po
handler cannot interfere so it uses putchar instead of putchar_wo.
222 X2 S 2222 RSS2 R R ER SR SRS TR R R B L R TR T R R TR R R I T IR T R S U A G S A Ry

e %o %o %3 Ne W

Pseudocode:

putbyte:
call h_to_aCaccum);
call putchar(ascii_chars+1);
call putchar(ascii chars);
end putbyte; -

(22 S SRR ERR R AR SRe R AL eI AR R TR EEEEE R LR TR ERE X EE B R B R I R g N eI R R,
This routine converts the ascii character contained in the accumulator to
the corresponding hex value which is returned in the accumulator. 1If the

character is something other than 0-9, a~-f or A=F; $FF is returned instead
Ihkkkhkhkhkhkhkhkhkhkhhhkkkhkhhkkkhdkhkkhhrhhhhhkkk ko khkhkkhk bk hhkkhrdhkhkkhkhkhkhkkodhkkkk

e Ne me Ny N

Pseudocode:

a_to_h:
save regs;
if (accum >= $30)

then do;
if (accum <= $39)
then accum = accum - $30;
else do;
accum = accum AND $DF; /* force to upper case *x/
if ((accum >= $41) AND (accum <= $46))
then accum = accum - $37;
; ‘ else accum = S$FF;
: end;
|) end;
else accum = $FF;

, unsave regs;
end a_to_h;

This routine converts the hexadecimal value contained in the accumulator
into two ascii characters for transmission. The two characters are stored

in the word value, ascii chars

RN

we No W

Pseudocode:

I1-27

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 6

h_to_a:
save regs;
temp = accum;
call _h_nyb_to_a(accum);
lsbyte of asciji chars = accum;
call _h_nyb to a(temp >> 4);
msbyte of ascii_chars = accum;
unsave reg:;

end h_to_a;

'**i*******i
This captive subroutine converts the lower nybble of the accumulator

intoc the corresponding ascii character and returns it in the accurulat
**********************************i***t*******i************************‘

Ws %e %o N

seudocode:

Y

_h_nyb_to_a;
accum = accum AND $0F;
if (accum < $A)
then accum = accum + $30;
else accum = accum + $37;
end _h_nyb_to_a;

222 RS R RS RS R RSl RRR RS R SRR R R X R TR R E R R IR IR I R N U N G A e i G e G
This subroutine shifts the contents of dec value into the accumulator

4 bits 2t a time, and converts the nybble into ascii by clearing the ut
nybble and adding $30., It is assumed that only decimal digits will be

in dec value.
'k****'A

e %r Ny Ve N Ny

Pseudocode:

shift Lé:
shift dec value << &;
place & msb's into accum;
accum = accum AND $0F;
accum = accum OR $30;
end shift_Lé4;

dhkdkkkhkdkkhkkdkb ok k ok kh kb drk ok k ke kA kA ko kkk ke ks &k
This routine converts the 16 bit hexadecimal word contained in the cnvt

into a packed decimal word that is returned in dec value.
kb kde kb kb kkok sk k kb kA ko ok sk kA Ak kA k kAR Rk krhk

Ne N N N

Pseudocode:

h_to_d_word:
save regs;
dec value = 0;
mem byte = (lsbyte of cnvt_data) AND S$OF
if (mem_byte <> 0)
then dec value = table 1Ilmem bytel;
mem_byte = ((lsbyte of cnvt_data) AND $FD) >> 4;

11-28

Feb 17 12:17 1984

/u/tam/solar/PSEUDOCODE Page 7

if (mem byte <> 0) -

then dec_value =

mem_byte

dec_value + table 16[mem_bytel;
(msbyte of cnvt _data) AND $OF

if Cmem _byte <>0)

then dec _value =

- mem_tyte

dec_value + table_256[mem_byte];
((msbyte of cnvt _data) AND SF0) >> %4

if (mem _byte <>0)
then dec_value =
unsave regs;
end h_to_d_word;

dec_value + table_4096[mem_bytel;

R T R R L T 2 T R el il refl oo ol ofos il g o]

. e e e G mm W e A WD M e S MR e e e MR M A S R N S S S e ew e e e W S A S e W G v M M G W e e N Gt e e M GHe m mee e W W e e e W W e Ao T A
e R R R = T T T T - - T -t T T T Tttt -t 2 2t T - T 4 % % %

table 1:
- .byte $00, $01, $02, s$03, $04, $05, $06, $07, $08

.byte $09, $10, $11, %12, $13, $14, $15

table_16:
.word $0000, $0016, $0032, 30048, $0064
~.word $0080, $0096, %0112, $0128, $0144
.word $0160, $0176, 80192, $0208, $0224
.word $0240

table_256:
.word $0000, $0256, $0512, $0768, $1024
.word $1280, $1536, $1792, $2048, $2304
.word $2560, $2816, $3072, $3328, $3584
.word $3840 '

table_4096:
.byte $00,%00,%00, $96,%$40,%00, $92,%$81,%00
.byte $88,%22,%01, $84,%363,301, $80,%04,%02
.byte $76,%45,%802, $72,$86,%02, $68,%27,303
.byte $64,$68,803, $60,%309,%04

Ne Ne We Ne No Ve Ne % N Ve Ny

dkhkhkdkdkdhkhkhkhhkhhkdkhkhkhhkdkdhdhhhkhkdkhhhhdhdhdbhhdthhhrhrhhhhkhkkhkhkkkhkhhkdkkhhkhhkkhhkhkhhhhdhhkkk

This routine is used to convert the packed decimal byte in the accumulator
into its hex equivalent. 1If either nybble is > $9, the over 10 flag is se
The result is returned via the accumulator. To accomplish this, the most
significant nybble is multiplied by 10 and added to the least significant
nybble.

Since 10X = (2 + 8)X = 2X + 8X, it follows that:
10X = X(shifted left by 1) + X(shifted lLeft by 3)
trick: 10 * X = (8 * X) + (2 * X)
hkddkkhkhkhkhkhkhdhhhhkhhhhhhhkhkdhkkhdkdkhhkhbhkhhkhkhkhkdhkhrdhdrhhkhhkkhhkdkhkhkhkhkhhkdhhkhkkhkhkhkhkdhkkhkhk

Pseudocode:

d_to_h:
- save regs;

temp1 = accum;

over_10_flag = O;

accum = accum AND $FO0;

if C(Caccum < $AQ)

then do;
temp2 = (accum >> 1) + (accum >> 3);

II-29

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 10

display_digits:
save regs;
dsply_port = #dsply_clk_off OR dsply_sel _dsb;
dsply_port = dsply_ port AND #dsply_ sel enb
do i = 0 to 4
temp = digitslil;
do j = 0 to 7
if (digits[il AND #3%01)
then dsply_port = dsply port OR #send 1 bit;
else dsply port = dsply port AND #send 0 bit;
digits[il = digitslil »> 17
dsply_port = dsply_port OR #dsply_clk_on;
dsply_port = dsply port AND #dsply clk _off;
end;
digitslil = temp;
end;
dsply_port =dsply port OR #dsply sel dsb;
i_o_ flags = i _o ftags AND #lcd dspLy dun;
unsave regs;
end display_digits;

***tr
This routine will set up the array dwsplay word with "blanking"” inform:
in all digits, and then call dwspLay hndlr() in order to clear the LCD

display.
*i***j*****************i

Ne ¢ Ws N N

Pseudocode:

display_clr:
save regs;

display_wordl4l = 0;

display_word[3] = #%$80;
display_wordl2] = #$80;
display_wordl[1] = #8%80;
display_wordl01 = #$80;

call display_hndlr;
unsave regs;
end display_clr;

kdkkkdkkdkddbkdhkdbdkdkhkdkdkdkdhkkhhkhh bk kkh ok kh kb kh kb kb ok ok kkkkkkkrdrkd
This routine, called from the terminal, allows the user to set one digit
of the LCD display to a specified character, while blanking the rest of
the display. The accessible digits are the rightmost 4, and they are

number 1 - 4 starting from the right.
HAASEEE L2 RS AR RSl YRR R R X R R X R B g g g e S T AL L &

N S Vo Se N N

Pseudocode:

set_digit:
save regs;
if ((command_bufferl1] < $31) OR (command_bufferf1] > $34))
then call msg_hndlr("INVALID LCD DIGIT NUMBER');

else do;

1I-30

‘eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 11

i = command_buffer[1] - #$31;
if ((command buffer[2] < $30) OR ((command_buffer[2] > $39)
AND (command buffer[2] < $41)) OR
(command buffer[21 > $46))
i then call msg_hndlr("DIGIT OUT OF RANGE');

else do;
j = command_buffer[2] - #$30;
if(j > $09
then j = j - #8$07;
multimeter flag = 0;

do k = 3 to 0 step -1;

display_wordlkl = #8$80;
display_wordl[4] = 0;
display_wordlil = j;
call display_hndlr;

end;
end;
end;
unsave reg;
end set_digit;

khkkhkhkhkhkhkhkhkhkdhkddhkhkhhhkhhkdkhkhhkkhhbhhkdkhkhkhkkhdhdhkhhhkhdkhkkhrhhhhhkhdkhddhkhkhhbhkhkdhhkhkdhdhkdkdkkk
This routine is an unsigned multiply that takes the two 16 bit words in
multl and mult2 and produces a 32 bit product which is returned,
surprisingly enough, in "product". The technique used is the commonly
used shift and add algorithm.

dkhkkkdhkkkhkhkhkhkhkkhkhkhkkhkdbhhkdkkhkhkhhbhhkhkhkkhkdhhdhohkhkhbhdhhhhkhhhkhkdhkhkhkhkhkhhkkhkkhkkhkhkhkkhkhkdhkhk

seudocode:

p_mult:
save regs;
product = 0; Zero out product memory location)}
scratch = mult2; Load multiplicand into lLlower 2 bytes 2}

of scratch area in memory 2}

Zero out upper two bytes of scratch areaz J}
do y_index = 0 to 1; For both lower & upper byte of multiplier 2
accumulator = multl + y index; get the multiplier byte 2}
do x_index = 8 to 0 step -1 For each bit in the byte 2}

accum = accum >> 1; shift it right to see if bit)
is set.... 2}
If so, then ...}

A A

AN AN

if (carry_bit = 1)

then do;
product = product + scratch;

add (shifted) multiplicand J}

to product)

In any case, shift the }

'go to next bit of multiplier 2

get next byte of multiplier 2

scratch << 1;
end;

A AN

end;
end;
unsave regs;
end mp_mult;

S22 22422222 S22l R i 2 2 2 2222322222222 8222322 22X RS XTSRS RS L &

This routine is au unsigned multiprecision division where the 32 bit
dividend is stored in, get this, dividend; and the 16 bit divisor is

1I-31

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 12

Ne Ne N Ne N %9 W Ne we Gy

stored in divisor. The algorithm used was a "brute force" shift and
subtract. The quotient is returned...yep, you guess it...in quotient.
As for the remainder, well you get the picture. To save space in zerc
page, quotient and remainder overlay dividend. .

In order to test to see if there will be an overflow, i.e. if the quot
will be bigger than 16 bits we compare the divisor with the upper two
of the dividend., 1f the dividend is Less, then we're 0K, since the ur
two bytes can be no more than 32768 * the divisor and the result of th

divsion must then be less than 32768 (16-bits, max.).
dkdhkdkdhkkdkkdkdkdkkddhkdkodhkddkbkkdkkkdkkhthkhdorkkdkdkkdkkbkdkdhkddkdbhhhkhkdkhdhkdhkhkhkdhkrdkkkhkkk

Pseudocode:

mp_div: o %“mw
OF PODR QUALITY

Ne %o %o Ve N

copn
“5 oo

L s ;pu ot
i WZ

save regs;
if divisor = D
then set_div_by_flag;
else do;
if (dividend > S$FFFF * divisor)
then set_div_overflow_flag;

else do;
tempguot 0; { zero out temporary quotient ar
tempdivr divisor * $10000;

upper two bytes of tempdivr get divis

and lower two bytes get 0 3}

for x_index = 2 to 1 step -1 { Do two bytes wor
for bit_cntr = 8 to 1 step -1

{ Do &2 shift for each bi

Al

tempagout << 1;
tempdivr >> 1;
tempdiff = dividend - tempdivr;
{ Long word operation 2}
if (tempdiff >= 0O)

then do;
tempquot = tempouot + 1;
dividend = tempdiff;
{ Make subtraction reeal
end;
end;
end;
quotient = tempquot;{ load up quotient in correct ar
end;

end;
unsave regs;
end mp_div;

dkkdkhkhkhkdkkhkdkhkhkkkdhkhdkdkhkhkkhhkkddkkhhddhhkhdkhkhkdhhdhddhdkhbhkkhkddkdkdkhkkrdhkdkkrhkkkkkok

This routine reads the contents of the Time of Day counters in the
Am9513 timer and stores the hours and minutes information away in zero

locations "minutes” and “hours" for use by out time and put time.
dkhkkkkokhdkkkkdhkdkkkkhdkhhkhkkddkkdhkhkkhkdkhkdkhkddkddk ok hk ko kkkkkkkkkAkkkohkdok

Pseudocode:

find_time:

save regs;

II-32

‘eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 13

timer_csr = #SA3;)
timer_csr = #319;
i = timer_data;
i =1 OR timer_data;
if (i = O
then do;
timer_csr = #$A2;
timer_csr = #314A;
end;
minutes = timer dats;
hours = timer_data;
unsave regs;
end find_time;

%k J J ke ke dk g %k Kk vk ok ke de gk ok ok sk %k sk e ok dk ok g g ok ok k% %k % %k e e e b gk sk ok %k ok %k Tk g o kv ok ok ok ok Jk ok b b ok ok sk ok ok vk gk %k ok %k %k
This routine reads the contents of the zero-page locations "minutes"” and

"hours" and formats the information for display on the LCD display.

seudocode:

ut_time:

save regs;
display_word = minutes AND #30F;
display_word+1 ((minutes AND #$F0) >> 4);
display_word+2 hours AND #%0F;
display_word+3 (Chours AND #SFO0) >> 4);
display_word+é #302;
call display_hndlr;
unsave regs;

end out_time;

W oo

kdhkkhkhkdkhkkkdkhkhddhkhkkhkkdkdhkdkkhkhkhhkhhhhhkhkhkhkhdhkdhkdkhkhkhdkkdkhkhdhdhkhkdhddhkkkhkdkdhdhkdkdkhkhkdkkhkad
This routine locates the "raw A/D count" for a specified channel and
converts it into decimal volts and formats the value for the front panel

display.
khkkkhkhh ARk hhkkkhkhhkdkhhkhhh ko hhkhkhhkhkkdkhkkdkkhkhkdhkhkkhbkdrhhkhhkhkdbkhdhhdkhkhhhkhkdkk

suedocode:

it_volts:
save regs;
mem_byte = get_data();
if (ascii_hex_flag = 1)
then do;
call find_volts;
if C(error flag = O B
then do;
dec_value = h_to_d_word(cnvt_data);
if (dec value >= 10000
then do;
accum = $03;
call display_error;
end;
else do;

II-33

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 14

do index = 3 to 0 step ~1;
- call shift_L&4;
display wordlindex] = accum;
end; -
end; .
display_word[4] = dot_position; /* this includes
sign flao dat
call display_hndlr;
end;
end; _
else call display_huh;
unsave reg;
end out_volts;

kR AR A A Ik khkkk ko ko kk bk ko ko kb ks ke kv kb ko &k k ok k% % &k &+
This is the subroutine which actually does the location of the "raw A/|

count" for a specified channel from the dump array, put volts or out vt
AL SRR RS E SRR R SRR AR AR SRR E AL RS EREEE LR K E R R E IR BRI I R I g S . L e

Ne %o wWe w

Psuedocode:

find _volts:
save regs;
if (mem byte <= $39)
then do;
if ((mem_byte = $38) OR (mem_byte = $39))
then dot_position = 3;
else dot_position = 1;
mem byte = voltage channelslmer byte];
if (mem byte <> S$FF) -

then do;
error_flag = 0;
tnvt data = dump arraylmer bytex2];
if (tnvt_data < D) -
then do;

cnvt data
sign_flag
end;
else sign_flag = 0; /* sign flag is in msb of
dot_position x/
cnvt_data = cnvt_data << 2;

2's comp (cnvt data);
1; -

end;
else error_flag = 1;
end;
else error_flag = 1;
unsave regs;
end find volts;

B Sh o T T e M v M M W S me R SR WD SR SR MR W E T Wr Sm W NI SN G wh G e G G G En MR EI W M S Ae S e WD G e G T G M e v me e W G e W e e e e e ST G M e e e

B oEs T ST S AT m YT AT S Tm S Me Sh En oA S G WD e SR S ST N G S S W G G e M G e e AP S e G NI S M G MR e G S G e G W e G G M e e W WP e Gk e W G G e W W e e we §

.byte $00, $0OC, $Op, $DE, SOF, $10, $11, $12

11-34

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 15 OF PGOR Guaiiry

Ne Se Ny

e N

¥

PRI Ty
ORIGNEL pooy o
Lol

.byte $15, SFF, SFF, $FF, $FF, SFF, $FF, $FF

.byte $FF, $FF, $FF, $FF, $FF, $FF, SFF, SFF

.byte SFF, SSFF, $FF, $FF, SFF, SFF, SFF, SFF

.byte $FF, SFF, SFF, SFF, $FF, $FF, $FF, SFF

.byte $FF, $16, $17, $18, $19, $1A, S$FEF, SFF
. .byte $22, %23 ‘

dkkhhkkhkhkkhhhdhhdbhhbhkhkhhkhhhkhkhkhkhbhkhhddhhhhhkhhdkhrhhdhhhkdddhddkkkhhkhhhhhdhkhkhhhk

This routine locates the "raw A/D count"” for a specified channel and
converts it into decimal ampss and formats the value for the front panel

display.

kkkhkdhkkhkkkhkhkdhhkdhkhkdkkhhhkkhkdkkdhhkdkdhdhkdhbhkkdkhkhddhhkhddhddhhkhkhdhhdhhkhhkhkhhkhkhkrhhkhbhokhkhkhhkkk

Pseudocode:

out_amps:

save regs;
mem_byte = get_data();
if (ascii hex flag = 1)
then do; —
if (mem_byte = $40)
then do;
cnvt_data = abs_total_chgr_I;
dot_position = 1;
if (total chgr I < O
then sign_flag = 1;
dec_value = bf_divi0(cnvt_data);
end; -
else do;
call find_amps;
if (error flag = 0)
then Eec_value = h_to_d_word(cnvt_data);
end;
if (dec_value >= 10000)
then do;
error_num = $03;
call display error;
end; -
else do;
do index = 3 to 0 step -1;
call shift_L&4;
display_wordlindex]l = accum;
end;
display_word[4] = dot_position;
call display_hndlr;
end;
end;
else call display_huh;
unsave reg;
end out_amps;

khkhkhhhhkkkhkdkhhkhkhkhkhhdhhhhhhhhhhhkhdhhrdrhkkhkdhhkhhkhkhkhkhhhkhdhhkhkhhkhhrhkkdbkbhkkhkhk
This is the subroutine which actually does the location of the "raw A/D

count” for a specified channel from the dump_array, put_amps or out_amps.
dkhkhkkhkkhkkdhkkkdkhkdkhhhkhkdkdhhdkhkhkhkhkhbhkhkhdhkdkhkhhkhhdhkhkhhkhdkhhkhkdrhrkhhkhbhkdkddhdhhkkkkx

I1-35

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 16

Pseudocode:

find _amps: y
save regs;
if (mem_byte <= $35)
then do;
mem byte = current_channelsimem_bytel;
if (mem_byte <> S$FF)
then do;
if ((mem byte <= $10) AND (mem byte <> 0)
then dot_position = 2; -
else dot position = 1;
error flag = 0;
cnvt_data = dump_arraylmem bytex2];
if (cnvt data < 0) -
then do;
cnvt_date
sign_flag

2's comp(cnvt_data);
1, /% sign bit 9s ms bit o
dot_pocsition */

end;
else sign flag = 0;
end; -
else error_flag = 1;
end;
else error flag = 1;
unsave regs;
end find_amps;

T N T T T o C o N T T o - e oo o o o o e e mr A e e W m w Sr Er S M e e e e A ar = e S o o = m— o o e - - am e e o -
.-——-——-—_‘—————---———--——-»—————-—--—-———-O———————--——-—_———-————-———-——.

B Mn TE oM e A S e G s e ST me Ee A M W R TR ED GD e e SR e MR e S S G M e M e S e e A e S e e A e e A G G G mb me e A TR M M e e W e e G - e <
e R R R R - R P - 2 2B BBl ol

current_channels:

.byte £01, 802, $03, $04, $05, $06, 307, $08
.byte $09, $O0A, SFF, SFF, SFF, SFF, SFF, S$FF
.byte $0B, $FF, SFF, SFF, SFF, $FF, SFF, SFF
.byte $FF, $FF, $FF, $FF, $FF, FF, SFF, SFF
.byte $FF, $FF, SFF, SFF, $SFF, $FF, FF, SFF
.byte $FF, $FF, $FF, SFF, SFF, SFF, FF, SFF
.byte $FF, $1B, $1C, $1D, S$1E, $1F

LSS R SRS RS E R R AR SR 22 2R R R R R R B R R R R T O R e L2 X
This routine displays or arranges for the display of 6 data channels t
the front panel LCD display. The data channels are:

channel 00 - state of charge

channel 36 - battery temp

channel 37 - freezer temp

channel 40 - corrected state of charge

thannel 41 - equalization count

channel 42 - pwm_value

e Ne Yo Ne %o N N Ne %o W

Pseudocode:

out_data_channel:
save regs;

II-36

‘eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 17

mem byte = get_data();
if Cascii_hex_flag = 1)

then do;
if (mem_byte = 0) then call out _soc;
else if (mem _byte = $40) then call out csoc:

else if C(menm byte = $41) then call out equal;
else if (mem_byte = $42) then call out_pwm;
else do;
call find_temp;
if (error_flag = 0)

then do;
if ((div_by_zero = 0) AND (div_overflow) = 0)
then do; -
dec value = h _to_d _word(cnvt_data);
if (dec value >= 10000)
then do;
accum = $%$06;
call display error;
end; -
else do;
do index = 3 to 0 step =-1;
call shift L&;
display_wordlindex] = accum;
end;
display_word[4] = dot_position;
call d1splay hndlr;
end; .
end;
else do;
error_num = $06;
call display error;
end; -
end;

else call display huh;
end; -
else call display_huh;
unsave regs;
end out_data_channel;

.'**
This routine locates the msbyte of state_of_chg, cstate_of_chg, pwm_value,
or equalization count (depending on the entry point), converts it into a
percentage and returns the value in dec_value ready for shifting and output
State_of_chg is stored: X.XXX XXXX XXXX XXXX
implied binary point

Where this value represents (decimal percent)/100) * 32768

To convert back to decimal for display, we first multiply by 200 (base 10)
resulting in:

(decimal percentage/100) * 32768 » 2 x 100 = (decimal percentage) * 65566

So, by taking the msbyte of the result, rounding it up or down by looking

I11-37

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 18

at the msb of the previous byte, and converting to decimal we have a v
for output. Although the pseudocode shows this to be 5 separate routi

in the assembly code they are condensed to just one, with 4 entry poin
;*****************************'k**i**************************************1

w%e Wy

“s

Pseudocode:

out_csoc:
save regs;
msbyte of multl = msbyte of cstate_of_chg;
lsbyte of multl = $80;
call _display_soc();
unsave regs;
end out_csoc;

out_soc:
save regs;
msbyte of multl = msbyte of state_of chg;
Lsbyte of multl = 2nd msbyte of state of chg;
call _display_soc(); -7
unsave regs;
end out_soc;

out_equal:
save regs;
msbyte of multl = msbyte of equal count;
Lsbyte of multl = 2nd msbyte of equal count;
call _display_soc(); T
unsave regs;
end out_egual;

out_pwm:
save regs;
msbyte of cnvt_dats
lsbyte of cnvt_data
call _display_pwm:
unsave regs;
end out_pwm;

0;
pwm_value >> 2;

_display~soc: procedure;
mutte = 200;
call mp mult;
cnvt data = productl2];
if (product[1] AND bit 7 <> 0)
then cnvt_data = cnvt_data + 1; /% round up if necessary */
display pwm:
- d?c_value = h_to d_word(envt_data);
display_word[4] D;
display_word[3] $80;
call shift_Lé4;
call shift_LA;
if (accum = $30)
then display_word[2]
else display_word[2]
call shift L4;
display_word[1] = accum;

w ni

$80;
accum;

I1-38

‘eb 17 12:17 1984 /Ju/tam/solar/PSEUDOCODE Page 19

call shift_Lé4;
display_word[0] = accum;
call display_hndlr;

end _display_soc;

dhkkk A Ak kA Tk h TRk Ak hdkhhkhkhdkhkdhkkdkhhohkdhkhkhkhhhkhkddhkhkkhkhkdkkdhkhkidhkdhkkkdhkkki
This routine calls the proper routines to retrieve the channel current
and. voltage, multiply them and places the result to the serial output
buffer.

hkkkkhkhkhkkdkhhkhkhhkkbthhhhkhkdhkhhdkdkkhhkkhdhkhdhkhhhdhhhkdkhrhdhhhkrhkhkhhkdhkhrhhkhrhrhdhhk

'seudocode:

ut_watts:
save regs;
call do p watts;
if (error_flag = 0)
then do;
if (dot position AND $80 <> 0)
then call putchar('-');
call putchar(msbyte of dec value + $30):
call shift Lé4; -
call putcharCaccum);
call shift_L4;
call putchar(accum);
call shift_Lé&;
call putchar(accum);
call shift_L4;
call putchar(accum);
call msg hndlr ('WATTS');
end; -
else call msg_hndlr("INVALID CHANNEL OR DATA');
unsave regs;
end put_watts;

I ZZ XS XTI LSS S LSS ZE S S S SIS ST E LSRRI A S S LSRR EE SR TS ISR ERSEEZES SRS SR RS S S S RS X X & &4
This routine calls the proper routines to retrieve the channel current

and voltage, multiply them and sets up the result for the front panel

LCD display. Notice that the maximum power that can be displayed is

19999 watts.

hkkdhkdkhkhkhkkdkhdkhkdkhhhkhkhkhhkdkhkhkhkhkdkhkdkhkhkhhkhkhhkhkhhhkhhbhhhdhkhkdhkhkhkhhkhkhhkhkkhkhkhkhkhkhkhbkkhkhkhkhkhkk

seudocode:

ut_watts:
save regs;
call do_o_watts;
if (error flag = 0)
then do;
if (dec_value >= 20000)
then do;
error_num = $03;
call display_error;
end;
else do;
do index = 3 to 0 step =-1;

I1-39

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 20

call shift Lé4;
display_wordlindex]

-

L

accum;

end;

if (msbyte of dec value
then display word[4]
else display wordl&l

call display_hndTrQ);

»
dot_position OR $40;
dot_position;

end;
end;
else call display huh;
unsave regs; -
end out_watts;

hkkkkkhk ko dkd ok kb ok ko ko Ak kA A A Ak k kS k kk ko khkhkkk ko ko ko kr kb ek k k%

This routine does the actual retrieving, multiplying and conversion tc

"displayable watts" for out watts and put watts.
**********i*******************************‘*_***************************i

Ne N Ne mg

Pseudocode:

find_watts:
save regs;
sign_flag = 0;
if (mem_byte <= 10)

then do;
save_watt_ch_num = mem_byte;
mem_byte = 0; /* this forces battery V to be used f

the calculation =/
call find _volts;
mem_byte = save_uatt_ch_num;
end;
else call find_volts;
if (error_flag = 0)
then do; »
volt_sign = dot_position; /* get volt sign */
multl = cnvt_data;
call find amps;
if (error_flag = 0)
then do;
dot_position = (dot_position XOR volt sign) AND !¢
/* include amp sign *,
mult2 = cnvt_data;
call mp mult;
dividend = product;
if ((mem byte >= 31) OR (mem byte = 0))
then divisor = 100; -
else divisor = 1000;
call mp div;
cnvt data
dec_value
end;

quotient;
h_to_d_uord(cnvt_data)

end;
unsave regs;
end find_uatts;

;*t******************i***

I11-40

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 21

This routine retrieves the channel number, tests to see that it is

acceptable and calls find watts if it is. Otherwise it sets the error flag
Both find_amps and find volts test for channels, but there are couple othe
channels, such as channel 38 that are not meaningful in this context. Heni
the double-check. Notice, that although the pseudocode implies that there

3 routines, they are actually written as one routine with 2 entry points.

AT TR VIR TR TR TR WY

Pseudocode:

do_p_watts:
save regs;
cmd_out_ptr = 1;
mem byte = getbyte();
caLL _do_watts;
unsave regs;
end do_p_watts;

do_o_watts:
T save regs;
mem byte = get data();
call do watts;
unsave regs;
end do_o_watts;

_do_watts: procedure;

error_flag = 0;
if (ascii_hex_flag = 1)
then do;

if (mem_byte < 36)
then call find watts;
else error_flag = 1;
end;
else error flag = 1;
unsave regs;
end do_watts;

khkkhkkhkdkhkhkhhkkhdkdhhhkkhkhdkhhkdhhhhhhhkkhrhdhhhbhhdkhhhk ok hhkdhdkkh bk hkkdhkkhhkdkkdkki
This routine routes or arranges for the routing of 6 data channels to
the serial port. The data channels are:

channel 00 -~ state of charge

channel 36 - battery temp

channel 37 - freezer temp
channel 40 - corrected state of charge
channel 41 - equalization count

channel 42 - pwm value
Ahkhkkhhkhkhkhkhhkkdkhkdhhhkdkdhhkhkhhkkhkhkhbhkhbhkhhhhbhhdhhhhhkhkkdkdkhkhhhdhhkhkhhkhrhhkdkhkhkhkdkhkdkkkkk

seudocode:

ut_data_channel:
save regs;
cmd_out_ptr = 1;
mem_byte = getbyte();
if (ascii_hex_flag = 1)
then do;

II-41

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page ZZQF ?

Mo e N Ve Nr Ve %o Ve Ve NE Ne Ny Ve e N Ny Ns Ve Ve N N

f’aﬁf"}‘ JRama

Wikt

if (mem byte = 0) then call put soc;
else 7f (mem _byte = $40) then call put_csoc;
else if (mem _byte = $41) then call put_eaqual;
else if (mem _byte = $42) then call out_pwm;
else catt dump_temp,
end;
else call put huh;
unsave regs;
end put_data_channel;

dhkdkkhkhkkkhdkhhkhhkkd ko h ko kh ok k kb h vk ko k ek kok ks

This routine locates the msbyte of state_of_chg, cstate _of_ chg, pwm_ve
or equalization count (depending on the entry point), converts it intc
percentage and returns the value in dec value ready for shifting and ¢

State_of_chg is stored: X.XXX XXXX XXXX XXXX
implied binary point
Where this value represents (decimal percent)/100) % 32768

To convert back to decimal for dwsplay, we first multiply by 200 (base
resulting in:

(decimal percentage/100) * 32768 * 2 % 100 = (decimal percentage) * §

So, by taking the msbyte of the result, rounding it up or down by look
at the msb of the previous byte, and converting to decimal we have a v
for output. Although the pseudocode shows this to be 5 separate routi
in the assembly code they are condensed to just one, with 4 entry poin

kA AR AR A A A AR b b Rk bk kb kA kR kR kA kA ATk Ak ko kA ke kA dkkkkkrkkk k-

Pseudocode:

put_csoc:

put_soc:

save regs;

msbyte of mult?

lsbyte of mult?

call put_soc();

unsave regs;
end_csoc;

msbyte of cstate_of_chg;
$80;

save regs;
msbyte of mult1
lsbyte of mult1
call put_soc();
unsave regs;
"end_soc;

msbyte of state of_chg;
2nd msbyte of state _of_chg;

put_equal:

save regs;
msbyte of mult1 msbyte of equal_count;

lsbyte of mult1 2nd msbyte of equaL tount;
call _display_soc();
unsave regs;

11-42

eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 23

end put_equal;

Jt_pwm:
' save regs;
msbyte of cnvt_data
Lsbyte of cnvt_data
call _put_pwm:
unsave regs;
end put_pwm;

0;
pwm_value >> 2;

>ut_soc: procedure;
mult2 = 200;
call mp_mult;
cnvt_data = productl2];
if (productl13 AND bit 7 <> O)
then cnvt_data = cnvt_data + 1; /* round up if necessary */
>ut_pwm:
dec_value = h_to_d _word(cnvt_data);
call shift Lé&;
call shift_Lé4;
if (accum = $30) then accum = $20;
call putchar(accum);
call shift_Lé4;
call putchar(accum);
call shift L4;
call putcharCaccum);
call putchar('2');
end _put_soc;

thkdkkhdkkhkhkhkhkdkhkdkdhkhkhhdhhkhbhbhdbhbhkkhkkdkhhkhkhhkhhrhkhbhkhkhhhkhhkhkhkhkhdkhkhkdbhkhkhkhhkhkdhbhkhkkhkhrhkhhk
This routine locates the "raw A/D count” for a specified channel and
converts it into decimal volts and formats the data for the serial

port.
Fkhkkhkhkdhkkhkkhkhkhkhkhkhkhhkhddhkdkdhhhkhkdkhkdhdhkhthdkhkkhkkhdkdkhkkhkkhkdkhhkhkhrhdkhhkhhkkhkhkhkhkhkrhdhkhkhktk

seudocode:

it_volts:
save regs;
cmd out ptr = 1;
mem_byte = getbyte();
if (ascii_hex_flag = 1)
then do;
immp_volts:
call find_volts;
if (error flag = 0)
then do;
dec_value = h_to_d_word(cnvt_data);
if (dec value >= 10000) -
then call msg_hndlr('READING OUT OF RANGE');

else do;
if (sign_flag = 1)
then do;
call putchar('=');
sign_flag = 0;
end;

IT-43

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 24

else call putchar(' ');
- call shift_Lé4;

call putcharlaccum);

if (dot_position = 3)
then call putchar(*.');

call shift_L4;

call putchar(accum);

call shift_Lé4;

call putchar(accum);

if (dot_position = 1)
then call putchar('.');

call shift Lé&;

call putchar(accum);

call msg_hndlr('volts');

end;
end;
else call put_huh;
end;
else call put_huh;
unsave reg;
end put_volts;

[E R P EE X2 2 A XX EEERE LSRR SRR RS SRS AR ESESEZEZEERE RIS TEZIETEREEEEEEE R X R ER TR R
This routine locates the “raw A/D count" for a specified channel and
converts it into decimal amps and formats the data for the serisl

port.
I P A A 22222 R R R RS A XS E TR R ESE SIS EEE LIS AR A RS A EEI A EZEZ R EEE RN EEEEE R EEEEE X XXX XX

S %e e %o N

Pseudocode:

put_amps:
: save regs;
cmd_out_ptr = 1;
mem byte = getbyte();
if (ascii_hex_flag = 1)
then do;
if (mem byte = $40)
then call put_total_I;
else do;
dump_amps:
call find_amps;
if (error_flag = 0)
then do;
dec_value = h_to_d_word(cnvt_data);
if (dec_value >= 10000
then call msg_hndlr("READING OUT OF R
else do;
if (sign = 1) then call putchar (
call shift L&;
call putchar(accum);
call shift L4;
call putchar(accum);
if (dot_position = 2)
then call putchar('.');
call shift Lé&;
call putchar(accum);

11-44

eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 25

- if (dot_position = 1)
then call putchar('.');
call shift_Lé4;
call putchar(accum);
call msg_hndlr('amps');
end;
end;
else call put_huh;
end;
else call put_huh;
unsave reg;
end put_amps;

kkhkkhhkhkhkhkhkdkdhkkkhhkhdkhkdhkhkdhhkddkhkhkhkhhkhhkhkkkhhdhhkhkhkhhkdhhkhhhhkhkddkhdhhhkhkkhkhkhhdrikikhhkhkk

This routine takes the raw channel number from the command buffer and
uses it as an offset into the dump_array and outputs the contents in

ascii format to the serial port.
dkhkhkhkkhkhhkhkhkhkkhkhhhbhkbhbhhkhhhdhdhhbhhhdhhdhhbhhhdhhdhdhdhhbdhkidhhhkdhhhhhhkdhkhkdhkhkhkdkkdhhkkkk

seudocode:

ut raw channel:
- “save regs;
cmd_out_ptr = 1;
offset = getbyte();
if (ascii_hex_flag = 0) then call put_huh;
else do;
if (offset > $37) then call put huh;
else do; -
if (offset = $37) then offset = $36;
offset d to h(offset);
offset (offsetx2) + 1;
mem_byte = dump_arrayloffset];
call putbyte(mem byte);
offset = offset - 1;
mem byte = dump arrayloffsetl;
call putbyte(mem byte);
end; -

end;
emd_out_ptr = 0;
unsave regs;
end put_raw_channel;

dkdkhkkkhkdhkhkkhhkkhhhdkdbhdhhhkdhdkhkdkhkhkdkhhkhkkdhbhdkdhhhdbdkdkhhhkhhdhbhkhhhhhhhhhhkhdkhkhrhhhhhhdkdhi

This routine outputs the current time to the serial output port. It is

called by itself and also from dump state.
dhkkkhkhkhhkhkhhrhkhkhkhkhkhkkhhdhkhkhhkhhkhdhkhkhkhkhkkhkhhhkhbhkhhkhkhrhkhhhkhhkhkhkhkhkhkhkdkhdkddhikhhdkkdhkhkkhkik

seudocode:

ut_time:
save regs;
call msg_hndlr('TIME:");
call putbyte(hours);
call putchar(':*%);
call putbyte(minutes);

I11-45

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 26

call putchar('cCR');
call putchar('LF*);.
end put_time;

**1
This routine collects the "raw A/D count" for the specified channel,
converts it into »a dec1mal temperature, format it and outputs it to tt

serisal port.
***********************************i****i*****************************i

Ne N %o %o N

Pseudocode:

put_temp:
save reons;
emd_out _ptr = 1;
_mem byte = getbyte();
if (ascii hex _flag =
then do,
dump_temp:
call find_temp;
if (error _flag = O)
then do,
if (div_by_zero = 1)
then call msg hndlr('DIVIDE BY 0');
if (div_overflow = 1)
then call msg_hndlr('DIVIDE OVERFLOW');
dec_value = h_to_ d word(ecnvt _data);
if (dec value >="10000)
‘then call msg_hndlr(*READING OUT OF RANGE');
else do;
if (sign_flag = 1)
then call putchar('="');
call shift L4
call putchar(accum);
call shift L4,
call putchar(accum);
call shift_Lé4;
call putchar(accum);
call putchar('.');
call shift_Lé;
call putchar(accum);
call msg hndlr('DEG C');
end; -
end;
else call put_huh;
end;
else call put_huh;
unsave reg;
end put_temp;

t*k***
This routine is where the actual look up and conversion to degrees of t
"raw A/D count”™ is accomplished. The final value is actually 10=*Ts to
permit display of temperature to 1 decimal place. Only channels 36 and .
are considered valid.

Rwa %o e Ne N

1I1-46

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 27

;***

-

Pseudocode:

find_temp:
save regs;
error_flag = 0;
sign_flag = 0;
dot_position = 1;
if ((mem byte = $36) OR (mem_byte = $37))
then_do;
mem_byte = mem_byte - $16;
cnvt_data = dump array[mem bytel;
cnvt_data = cnvt data << 27
cnvt_data cnvt_data - 2560;
if (envt_data < 0)
then do;
cnvt_data = 2's comp (cnvt_data);
sign flag = 1;
end; -
strobe watchdog timer;
cnvt data = cnvt data > 2092;
cnvt_data = cnvt_data / 10000;
if (sign_flag = 1)
then cnvt data = 250 + cnvt data;
else do; -
cnvt_data = 250 - cnvt_data;
if (cnvt_data < 0)

then do;
cnvt_data = 2's comp (cnvt_data);
sign_flag = 1;
end;
else sign flag = 0;
end; -
end;
else error_flag = 1;

end find_temp;

khkkhkdkkkddhkhkhkhkhkhhkhkhhkhdkkhhkhkhkhkhkhkbhkhhhhkhhkhkkdkhhkdhkddbhhkhkhhdhhkdhhhhkdkhkhkhhkkkkkhrhkdrdh
This routine sets the Time of Day counters to a new value (i.e. sets the
clock). User input is checked for two types of errors: 1) if an entry

is not between 0O and 9; and 2) if the hours value > 23 or the minutes
value > 59, If error type 1 is encountered, an Er04 is signalled to

the LCD or the message "Bad digit value for set _tim\n" is sent to the
terminal. If error type 2 is encountered, an Er0S is signalled to the

LCD display or the message "Invalid hours/m1nutes value" is sent to the
terminal. This routine has two entry points. Which one is used depends
upon which input device generated the command, terminal keyboard, or

front panel keypad Although the pseudocode 1nd1cates 3 routines, the
assembly code is actually 1 routine with 2 entry points.

% % % o s de g ok ok ok ok ok ok sk % e ok ke ok % %k ok sk %k kI % ok ok sk % e 3k ok sk ke ok ok 3 % ok ok ok %k ok ok gk 9k 9k 3k ok ok ok ok ok 3 3k ok gk b ok vk ok ok ok ok g

eudocode:

t t1m term:
“cflag = O;

I11-47

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 28

_set_tim1();
end set_tim_term; -

set_tim_kybd:
“cflag = 1;
_set_tim10);
end set twm _kybd;

_set_timl:
save regs:;
i =1+ cflag;
minutes = 0;
hours = 0;
k = (hours << B) OR minutes;
do 3 = 3 to D step -1;

if((command buffer[i] < $30) OR (command buffer[id > $36))

then do;
if (cfltag = 1)
then call display_error(#804);

else call msg_ hndTr('DIGIT OUT OF RANGE');

goto set_t1me_done,

end;

else do;
k = k << &4;
k = k OR (command buffer[il - #330);
i= 14+ 1;

end;

end;

minutes = k AND #$FF;

hours = (k >> 8) AND #SFF;

if ((hours > 23) OR (minutes > 5%))

then do;
if (cflag == 1)
then call display_error(#3805);
else call msg_ hndTr(*INVALID HOURS/NINUTES VALUE');
end;
else do;
timer_csr = #3(3;
timer_csr = #309;
timer data = ¥#3%00;
timer_data = #300;
timer_csr = #$0A;
timer data #300;

timer_data = #300;

timer csr #%43;

timer csr #$0A;

timer_data = minutes;

timer_data = hours;

timer csr = #$0F;

if ((minutes >= #$00) AND (minutes < #3320))
then do;

-—
-
-
-

timer_data = #$30;
timer_data = hours;
end;
else do;
timer_data = #3800;

II-48

‘eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 29

timer_data = hours + 1;
end; -
timer_csr = #8$43;
timer csr = #$0A;

timer_data = #300;
timer_data = #3$00;
timer csr = #%$23;
end; -
set_time_done:
“unsave regs;
end _set_tim1;

KThkkdkkkkhhdkhkhhkddhdhdhdkdhdkkhhhhhkhkhkhdkkdhhkdhkdkdhkhhkhkdkhkhhkdkhdhhhhhhkhdkhhkhhkdkhhkhkkkhkhhkiohdk
This routine which can be called from both the front panel keypad and the

serial port, sets the lLoad shed threshold of the indicated load to the
tevel specified.

seudocode:

et .load_shed:
save regs;
mem_byte command bufferl[1];
load num a_to_ h(mem _byte);

if ((Lload num <> $FF) AND (load num <= 5) AND (load_num <> 0))
then do;

emd_out_ptr =.2;

prent = find percent();

if (accum <> $FF) ~
then shed_threshfload _num-1] = msbyte of precnt;
else call™ put_huh;

end;
else if (kybd _cmd_flag = 1)
then call display huh;
else call put_huh7
unsave regs;
end set_load_shed;

k**
This routine which can be called from both the front panel keypad and the
serial port, sets the Load restoration threshold of the indicated lLoad to
the level specified.

kkdkdkhkddkhdhkhkhkdhhhkhkhhkdkkdhhkhkdbhdrhhhdhdrhkrhhkkhkh ko hkdkrhhhkkrkkhkhhkhkhkhkrhkhkik

seudocode:

et_load_restor:
save regs;
mem byte = command buffer[1];
load_num = a_to_h(men _byte);

if ((load num <> $FF) AND (load_num <= 5) AND (load _num <> 0))
then do; -
cmd_out_ptr = 2;
prent = find_percent();
if Caccum <> $FF)
then restor_threshfload_num=-1] = msbyte of prcnt;

1I-49

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 30

else call put huh;
end; T
else if (kybd emd flag = 1)
then call display huh;
else call put_huh;
unsave regs;
end set_load_restor;

S22 XXX 2828848232 8t 2l il il 2 282822 A2 RXXNTS IR IIIREEE EA SR & R E R EE T
This routine which can be called from both the front panel keypad and th

serial port, sets the initial battery state of charge to the level spec¢
kA Ak ks dk kb kddkk ko dhkkdkdkdkdkdkddkdkkdkkdkdkdkhkddbhdkkkddkdkdkdkkdddrkkrdkhdkddhkkdka

e Ve Ne N

Pseudocode:

set_init_soc:
save regs;
emd out ptr = 1;
prcnt = find_percent();
if (accum <> $FF)
then do;

2 msbyte's of state_of_chg = prent;
3 lsbyte's of state_of_chg = 0;

end;
else if (kybd_ecmd_flag = 1)
then call display huh;
else call put huhj
unsave regs; -

khkhkkhkhkhhkkhkhkhkkhhkhkhkhkkhkhkhkhhkhkkhktdhkdrdkddkhkddkhkhkdthkdrhhkhhhkddhkhkdkhthdkkhkddrhdodhhkodd
This routine is used by the pervious 3 routines to convert the 3 cheracH
in the command buffer starting with the position pointed to by cmd in pi
into the fraction corresponding to the percentage of state of charge.
This value is returned in percent. For example,

value of %1000 0000 0000 0OCOO
value of %0110 0000 0000 0000
value of %0100 0000 0000 0ODOO
value of %0010 0000 0OO00 0000
value of %0000 0001 0100 0111

100 percent results in
75 percent results in
50 percent results in
25 percent results in

1 percent results in

o 0o o

1f the 3 characters represent a value over 100% or contain digits over
9, SFF is returned in the accumulator,
hkkEh R Ak kkkkkk kb ko ko dhkkhkdkokhkdkhdkkddkdkdkkkdkdkdhkhkhkdkhkdbkkrkhkkdkkhkdhkddhy

%o e Ne Ww Ne Ve Ve NE %E % Ne e N Ne N

Pseudocode:

find;percent:
save regs;
temp = cmd_out_ptr;
cmd_out_ptr = ecmd_out_ptr + 1;
mem_byte = getbyte();
if (ascii_hex_flag = 1)
then do;
mem_byte = d_to_h(mem_byte);

II-50

‘eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 31

ORIGINAL macs 15

\,)
OF POOR QuaLITY

mem_byte = mem_byte * 2;
if (over_10_flag = O
then do;

if ((mem_byte = 0) AND (command buffer[templ = $31))
then prcnt = percent_tblI$C8];
else if ((mem_byte <> 0) AND
(command bufferlLtempl = #30).
then prent = percent_tb(Imem_bytel;

else accumulator = S$FF;
end;
else accumulator = $FF;
end;
else accumulator = $FF

unsave regs;
end find_percent;

R - e R Y et R T T T T T %
1 e

P T T T Ty T T T T T 2 T I I F T T T 3 s P X ¥
4+ 34 2ttt -t 2t T -t 2 3ttt R

>ercent_tbl:

.word $0000, $0147, $028F, $03p7, $051E, %0666, $07AE, $08F5S
.word $0A3D, $0B85, $0ccC, $0E14, $0F5C, $10A3, $11EB, $1333
.word $147A, $15C2, $170A, $1851, $1999, $1AE1, $1Cc28, $1p70
.word $1EB8, $2000, $2147, $228F, $23p7, $251E, %2666, $27AE
.word $28F5, $2A3D, $2B85, $2CCC, $2E14, $2F5C, $30A3, $31EB
.word $3333, $347A, $35C2, $370A, $3851, $3999, $3AE1, $3(28
.word $3D70, $3EB8, $4000, $4147, $428F, $4307, $451E, $4666
.word $47AE, $48F5, $4A3D, $4B85, $4CCC, $4E14, $4F5C, $50A3
.word $51EB, $5333, $547A, $55C2, $570A, $5851, $5999, $5AE1
.word $5C28, $5p70, $5EB8, $6000, $6147, $628F, $63D7, $651E
.word $6666, $67AE, $68BF5, $6A3D, $6B85, 36CCC, $6E14, $6FSC
.word $70A3, $71EB, $7333, $747A, $75C2, $770A, 37851, $7999
.word $7AE1, $7Cc28, $7070, $7EB8, $8000

Tk kdkkkkhkhkkkhkhhdkhkhhkdhhdhdkhkhkdhhkhdhhhkdhhdkhkkhkhkhhkhhdkhhdhhkdhkhkhkhkkhhdhhkddkhhhkhkhkhkhkdkdkhkkhd
This routine, called every 100 msec. by the run_task_master, provides the
absolute values of battery V and total_chgr_I for use by the max power

tracking routine as well as several others.
rhkkkkk kA Ik kA Ak kA hkhr kA khkkhkhhkhkhhhhhkkkhhdkhkrhhhkhhkdhhkhhkhhhhkhhkhhkkhhhhkdx

’seudocode:

ibs_cnvt:

save regs;

if (battery V < 0O)
then abs_battery V = -battery_ V;
else abs battery V = battery V;

if (total_chgr_I < O) - ‘
then abs_total_chgr_I = -total_chgr_I;
else abs_total_chgr_I = total_chgr_1I;

unsave regs; - -

end abs_cnvt;

;***
: This routine is called to dump the current total charger current as part

II-51

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 32

; of the dump_state routine. The put_ total I entry point is used by ou
; data_ channel and put_data_channel.
;*****************************i**

Pseudocode:

dump total I:
T save regs;

call msg_hndlr(*TOT CHGR I =');

put_total_I:
cnvt_data abs total chgr I;
dec value bf d1v10(cnvt data)'
if (total chgr I <0

then call put char('="');
call shift Lé&;
call putchar(accum);
call shift_Lé4;
catl putchar(accum);
call shift_Lé4;
call putchar(accum);
call putchar(*.")
call shift_Lé4;
call putchar(accum);
call msg_hndlr('amps');
unsave reg;
end dump_total_1I;

i***************i
This routine does a BRUTE FORCE divide by 10 (base 10) of the number i
cnvt data and returns the quotient 4n dec value because due to this ¢l
algorithm, it is also converted into decimal at the same time(!). ALl

of this is necessary to convert the current in the form xx.xx to Oxx.x

Ne We e Ne Ny N,

Pseudocode:

bf_div10:
save regs;
dec value = 0;
do while (cnvt data > 1000); 1000 (base1D)
cnvt_data cnvt_data - $3ES8; 1000 (basel16)
dec value dec value + 100;
end; - -
do while (cnvt data > 100); 100 (basel1D)
cnvt_ data cnvt_data - $64; 100 (base16)
dec value dec value + 10;
end; - -
do while (cnvt data > 10); 10 (base1d)
cnvt_data cnvt_data - $A; 10 (base16)
dec_value dec_value + 1; '
end;
unsave regs;
end bf_div_10;

II-52

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 33

XXXXXX XXXXX XXXXX XXXX X X
X X X X X X X XX XX
XXXXX X X X X X X X XX X
X XXXXX XXXXX X X X X
X X X X X X X X
XXXXXX X X X XXXX X X

I1-53

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 34

% % % % % %k o ok vk ok %k %k ok k%
This routine,
will turn on a
and the warnin
delay, the rou
indicator LEDs

sk ek gk ko k koo

e %5 Ve NI Ne %o N

Pseudocode:

lamp_test:
save reg
if ((com

‘ ORIGINAL PAGE S
OF POOR QUALITY

dkhkdkhkdhhkddhhkdhhdkdkkhkdkkdrhdkhhkhhbhhkhkhk kbbb Ak hkk %k
called at system reset, and from the serial port for te
Ll segments of the LCD display, all warning LED indicat
g buzzer for a period of (about) 1 second. After the ¢
tine will return the LCD display, warning buzzer, and

to their original state before this routine was called
khkkkkkhkdhhkdhkdkhkh ok rhkkhkdhkkhkkhdkdkRkdkkkkod koo dkokdkohkkskohok

s,

pute_flags AND #run_flag) <> 0)

then do;

end;

digitsl4] = #dspy_sync_ctrt OR #%0F;
digitsl3] = #SFF;

digitsl2] = #8FF;

dicitsl1] = #$FF;

digitsl0] = #SFF;

call display digits{();

led_out_latch = stow_leds OR #leds_on;

dis;ble—interrupts;
kybd wr port = “(column number AND #80DF) OR #bell on;
enable Tnterrupts; - , -
do i = 2 to D step -1; /* waste ° 1 second =*x/
do j = 255 to D step =-1;
do j = 255 to 0 step -1;
end;
end;
end;
led out_Llatch = stow_leds;
disable interrupts; -
if(alarm_flags < 0)
then kybd wr_port
else kybd wr port
enable interrupts;
catll display_hndlr();

'(column_number AND #$0F) OR #bt
“(column_number AND #$0F);

fHoH

unsave regs;
end lamp_test;

display functi

Ve N Ng Ne %o % N

Pseudocode:

II-54

Y P e XIS EE S I I RS EELAE LS EIEETIEEISEEZIESZ L ESLIEIZI ST IRT XL EEEREEEEEEE LRSS
This routine performs the "MULTIMETER FUNCTION",

Five of the front pe
ons operate continuously like a multimeter. Each time t

routine is called, which is once every 100 msec , it reactivates the ¢
function whose starting address is stored in multimeter_addr. If

multimeter_flag is zero, this routine is skirted.
Ak Ak Ak kA ko kA ko kbhk bk kb ko kkhkkkkkhkkkkhkhkhkkkkkkkhkd

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 35

muttimeter func:

save regs;
if (multimeter flag = 1)
then do;
call display_function @ multimeter_addr;
end;
unsave regs;

end multimeter_func;

***'k**

e e %W Ne %o %o Ne Wy

a LR or =&

backwards.
'ﬁ***************************i

This routine "opens" memory at the indicated address and sends the
contents to the serial port, Successive CR's cause the next location
be read, while "=" characters will back up to the previous location,
Any locatwon can be changed by entering the new data and hitting eithe
"~". The CR will take you forward, while the "=" witll take

Pseudocode:

cpen mem:

1I1-56

save repgs;
cmd_out_ptr = 1;
msbyte of mem_addr = getbyte();
if (ascii hex flag = 0)
then put huh;
else do;
lsbyte of mem_addr = getbyte();
if (asciji hex flag = O
then put huh
else do;
call show _mem;
do while (cntri 2 _flag = O);
do while (serial ecmd flag
strobe watchdog timer;
end;
serial cmd flag = 0;
mem _byte = getbyte();
if ((ascii hex flag =
then do:
call put_huh;
cmd_out ptr = 0;
command _bufferl0] = O;
end;
else do;
if (command bufferl0] <>0)
then memtmem_addrj = mem_byte;
if (look_bkward = 1)
then do; :
look_bkward = 0;
decr mem addr;
call show _mem;
call msg hndlr('CRLF')'
end;
else do;
incr mem_addr;

PRECEDING PAGE BLANK NOT FILMED

o

0) AND (command_buffer[OJ

<>

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 36

- call _show_mem;
end;
end;
end;
end;
end;
cntrl z flag = 0;
unsave regs;
end open_mem;

_show_mem:
call putbyte(mem_addr+1);
call putbyte(mem addr);
call putchar(' '7;
mem byte = memImem addr];
call putbyte(mem_byte);
cmd_out_ptr = 0;

end _show_mem;

rhkkhkhkhkkhkdhkhkhhkhkhhdhkdhhhhkdhkdhdhhhhhhhhhhhhhhddhhkkhkhkdhhkdhhhkhkhhkhkhkkkhkdkhhhkhhhhhkhhk

; This routine is called from the 4 MSec interrupt handler to control keyboa
; scanning. If no key is pressed, reset the debounce counter and skip to th

» next keyboard column. If a key is pressed, decrement the debounce counter,
» and if we've reached zero, interpret the key. After the key has been
; interpreted parse it: if it's a NAK (Control-U) clear the emd_in_ptr;
v §f it's a NULL (EOF), null terminate the command buffer and set the

kybd_cmd_flag bit; otherwise just shove the character in the command buffe

update the cmd_in_ptr (adjust it for overflow if necessary) and continue
! scanning.
ok dkkkkkkkkkhkhkdhkdhkhkdhkhkdhkdhkdhkdhkdhkhhkhbkkhhhkdhkhkhkhhhkhhkhhkhhhbhkhhAhhdrhhkhhkkkkdhkhkhkhrkhkkrhkkhkhkhkkxk

’seudocode:
scan_kybd:

save regs;
row_number = (“kybd rd _port) AND $FO;

i¥ (row number = 0)
then call no_key pressed;
bounce_count = bounce_count -1;
if (bounce_count <= 0)
then do;
if ((i_o_flags2 AND #key_parsed flag) = 0)
then do;
i_o_flags2 = i_o_flags2 OR #key parsed_flag;
j = key_ 1ntrp(row number);
if (3 <O
then do;
if (3 = $81)
then column number = $01;
call no_key pressed();
end;
else if (j = 0O
then do;
command bufferlfcmd in ptrl = j;
emd_in_ptr = j; - T

i_o flags = i_o_flags OR #kybd_cmd_flag;
11-57

Feb 17 12:17 1984 /[u/tam/solar/PSEUDOCODE Page 37

‘end;
else if (j = $15)
then cmd_in_ptr = 0;
else do; .
command_buffer[cmd_in_ptr] =3;
cmd_in_ptr = cmd_in_ptr + 1;
= if (emd_in_ptr = $20)
then do;
call display_huh;
ecmd_din_ptr = 0;
end;

end;
end;
end;
unsave regs;
end scan_kybd;

no_key_ pressed:
i_o_flags2 = i_o_flags AND "#key parsed_ flag;
bounce count = max bounce_count; -
column number >> 1;
if (column number = 0)
then column_number = $08;
if (alarm_flags < 0)
then do;
kybd _wr_port = ((“column_number) OR ($20 AND write_port_
OR #bell _on;
write portb = ((“column_number) OR ($20 & write _port_b))
TOR #bell _on;
end;
else do;
kybd wr_port = (("column_number) OR ($20 & write_port_b)

write _portb = ((Tcolumn_ number) OR ($20 & write port b))
unsave regs;
end no_key pressed;

dkhhkkhkhkhkhkhkkhkhkhkhkhkdkhbkkhkhkhdkkhkhkhkhkhhkhkhkhkhkhhkhkhhkhbhkhkhkhhkddhkkhkdhhdhkhkhkhrthkrkhdkrhkkhkkd
The following routine is called with a (hopefully) non-zero value in t
accumulator which represents the sensed keyboard row mask (in bits «<7-
This row number and the corresponding column number are mapped into ar
index into an array of ASCII values. The appropriate ASCII value for
the key pressed is returned in the accumulator, If 2 zero row mask we
provide to this routine, $80 is returned. 1If the column number was ot
of its allowable range $81 is returned. If more than one key is press
(row mask has more than one bit set), the "first key" (first bit set)
is the one that is mapped to an ASCII value. The "#" key is mapped to
the>ASCII value $00 so that it can easvly be recognized-as the EOF
character.

If the mapped ASCII value is a number (0-9) then the front panel displ
is updated by scrolling the new digit in from the right (lLeast signifi
digit). If the “*" key was pressed indicating an operator entry error
we get real fancy and clear the display.
dkhkhkhhkhkhkhhkhkhhkAkhkhhkhkhkhkhhkhkhhhkhhkhkhkbhkhkhkhhkhkhkhkhkhhkbhkhkhkhhkhkhhdbhkdddtdhkdkhhkhkhhkhhkkd

%Mo NE e N We Na Ne Ne %5 e %r N3 N %o NE N N N

Pseudocode:

II-58

‘eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 38

ey_intrp: -
save regs;
if ((j = row_maplvalue >> 41) >= 0); /* j = $80 =%/
then do;
j = 3j 4+ col_maplcolumn_number];
if ((j = keybrd_map[jl) > 0); /* § = $81 or j = 0 %/
then do;
if (3 = $15)
then do;

do i = 3 to 0 step -1;
display wordlil = #%$80;
display_word[4] = 0;
call display_hndlr;

end;
else if (emd in ptr = 0)
then do;”
do 1 = 2 to 0 step -1;
display wordfil = #$80;
multime?er_ftag = 0;
end;
k = keybrd_hex[y]l;
do i = 3 to 0 step =-1;
display_word[il = display_wordli=11;
display wordl0] = k;
display_word[4] = O;
call display_hndlr;
end;)
end;

end;
end;
unsave regs;
end key_intrp;

—-—— - A T e e e M W . W W A A S e e e M e e S M A Em e am G R G e e e e e W R G e G M A G e S e W W S A T e W S G S e e e S W
e dinldi it i el —— R — R — S~ g R GGG G e 2 -

- e i W e - T G R e S e A - M AL AT S G S G S e e e S M WA A e M W L e A Ser e e e S A e S S e e G e et e e G W e e T e M we W e S
foiedp gt gl — B g S g g L T e R e T

The following array provides the mapping for converting the sensed keyboard
row number into the next level array index. This array also performs the
function of finding the "first set bit" (in case multiple keys are pressed)
and returns an error value ($80) for no key pressed at all.

ow_map: ‘

.byte $80,%$03,$02,$02
.byte $01,%$01,$01,%01
.byte $00,$00,$00,$00
.byte $00,$00,$00,$00

The following array provides the mapping for converting the "column scanned
mask into an array index that can be added to the index from the row map

in order to find out which one key has been pressed. For index values

into this array that have none or more than one bit set, a "next-level"
index is returned that will map into an invalid ASCII key value (i.e.

the key will be $81).

I11-59

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 39

col_map:

LTI T YT

F.oA TIR TR T T Y]

No NT N vr N N N Ne N N Ne NE N NE N2 NE N NE Ne Ne % e N N N

.byte $10,$0C,$08,$10

.byte $04,$10,%$10,%10

. .byte $00,%$10,%$10,%10 .
.byte $10,%$10,$10,$10 5

Th+s array is the one that actually produces an ASCII value correspont
to the key pressed. It also produces error indications for malformed

column scan values.

eybrd map:

.byte $44,843,842,$41
.byte $00,$39,$36,$33
.byte $30,$38,835,832
.byte $15,%37,$34,$31
.byte $81,$81,$81,$81

"D"’"C","B"’"A"
ll#ll’"9ll,ll6",ll3ll
"0","8"’"5","2"
ll*",n7ll,"4"’ll1ll
Column scan error return

Ne %e “wa “s N

This array is analagous to the one above except that it contains hexat
values of the keys pressed to speed up the display update funct1on. ¢
having to convert ASCII back to HEX.

eybrd _hex:

.byte $0D,%0C,%$0B,%30A
.byte $00,%$09,%$06,%303
.byte $00,%$08,%05,%02
.byte $00,%07,%04,%01

kkkkkdkhhkhkhhkhkhhkhkhkhdkkkdkhhhhhkdkhkhhhhhhhhhhhhkhhhdhhkhhkkkhkhkhkhkhrhhkkhhhhhhhkkhkhd

This routine tests for rcve and xmit interrupt condx from the serial 1
port, services all valid ones and aborts if none exist. This routine
not a true subroutine, in that, it Llies "in-line" as part of the over:
IRQ service routine which also includes break.

It supports such user amenities as:
1. "H, del, backspace - delete lLast character

2. "U

“"flush"” command buffer
3. adds a LF whenever a CR is received
4. "7 - return to cmd_dintrp

- 5. "=" = used to "backup" when using the open memory
command in the monitor

Upen receipt of a CR, a LF is sent out, and the serial _tmd_flag is set
ALl spaces are deleted as they are input.

The command buffer is assumed to be 32 bytes long and lLinear, j.e. the
pointers must be zeroed when the data has been used by the called func

kkdkhkkdkhkhkhkhdkkdkhdkhkhkhhkhhkhkhkhkhkhhkkhhhhhhkhkhkhhhhkhkhkhkhkkhhkkkhkhkhkhkddtrhhkhdkhkhrhkdkka

Pseudocode:

serial_port:

II-60

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 40

save regs; .

uart_status = pia_portb;
if (uart_status AND bit 7 <> 0)
then do;
entrl_z_flag = 0;
char = vuart;
if (char < $20)
then do;
if (char = $08 OR char = $7F)
then do;
call msg_hndlr('"H “H");
emd_in_ptr = ¢md_in ptr - 1;
end; -
else if (char = $0A OR char = $0D)
then do;

call putchar(*CR");
call putchar('LF');
command bufferlemd in ptrl = 0;
emd in ptr = 0; T
serial_cmd _flag = 1;
end;
else do;
call putchar('"");
char = char + $40 ; make it printable
call putchar(char);
if (char = $15)
then do;
cmd in ptr = 0;
call putchar('CR'");
call putchar('LF');
call putchar('x');
end;
if (char = $1A)
then do;
cntrl_z_flag = 1;
call putchar('CR');
call putchar('LF');
end;
end;
end;
else do;
call putchar(char); /* echo the character x/
command bufferfcemd in ptrl] = char;
cmd_din_ptr = cmd_in_ptr + 1;
if (multimeter_flag = 1)
then multimeter_addr = ddisplay_default - 1;
if (char = $2D) then look_bkward = 17;
end; ‘
end;
if (uart_status AND bit 6 <> 0)
then do;
if (byte_count <> 0)
then do;
usrt = output_bufferlput_out]
put_out = put_out + 1;
decr byte_count;

II-61

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 41

end;
else disable xmit ints;
end;
unsave regs;
end serial_port; =

ddkhkkhkhkhkhkhkhkhkhhkhkhhkhhrhkdhhhkhhkhhdhhkhkhhkhkhkhkhkhhhkkrkhkhhkhkhkhkhhrrhdhkhkhkhkkhhkhkhkhkik
This routine services the BREAK instruction trap and the IRQ interrup
It determines which of the two it was that vectored the CPU to this
routine. If it was a breakpoint, it continues, if an IRQ occurred in

control is passed to serial port for servicing.
222222 82222 s 2 s a2 a2 s st 2 s s s d s s s X s 3 2 X232 222222222822

e %o Ve Ne Wy N

Pseudocode:

break:
if (B_flag <> 1) then go to serial_port;
else do;
x_reg_stor
accum stor

contents of X reg;

_ contents of accumulator;
flags_stor psw popped off stack;

y reg stor contents of Y reg;

pop "useless" PC off stack;

pc_stor = brkpt_addr;

sp stor = contents of the stack pointer;
call msg_hndlr ('PC = *);

call putbyte (msbyte of pc_stor);

call putbyte (lsbyte of pc_stor);

call msg_hndlr (' A = ");

call putbyte (accum_stor);

call msg_hndlr (' Y = ');

call putbyte (y_reg _stor)
call msg hndlr (' X = ')
call putbyte (x reg stor)
call msg_hndlr €' Sp =
call putbyte (sp stor);
call msg hndlr (V P = ");
call putbyte (flags_stor);
call msg_hndlr (*CRLF');
call rem_brkpt;

enable interrupts;

go to run_task_master;

Huunu

»
r
.
[4
-
1 4
);

end;
end break;

hkkkhkkhkhkkkhkhkkhkhhkhkhhkhhkhhkhdhhhhkhkhhkhhkhhhdkkhkhkhkhkhhhkhkdhhhhhkhbhkhhkhhkdkhhdhrhkhkrthkhki
This routine begins execution at the current user PC location or at t!

location specified in the command buffer, if any. A, X, Y, P, and S

always loaded from their respective storage lLocations.
KK AA K KT IEE A A A AR A A A AT A I A AT A A AT hkdhh ko dh ok ddkdkdkdk gk dkdk ok khkdhkdhkhdkkkdkkkkkhkkih:

“e Ne N Ne N

Pseudocode:
go:
cmd_out_ptr = 1;
if (command buffer[1] <> 0)

11-62

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 42

then do;)
msbyte of pc_stor = getbyte();
if (ascii hex flag = 0)
then do;
cmd out_ptr = 0;
call put huh;
go to end go;
end;
Lsbyte of pc_stor = getbyte();
if (ascii hex flag = 0)
then do;
cmd_out_ptr = 0;
call put huh;
go to end go;
end;
end;
unsave 8 addresses and regs saved by emd_intrp;
cmd_out_ptr = 0;

stack po1nter = sp_stor;

X reg = x_reg_stor;

Y reg = y_reg_stor;

accumulator = msbyte of pc stor;
push accumulator; -
accumulator = Llsbyte of pc stor;
push accumulator; -
accumulator = flags_stor;

push accumulator;

accumulator = accum stor;

rti -

end go;

® %k ok %k gk Kk Kk gk k% kg ke ke %k ke ke %k vk ok vk k% dk ke % %k % vk % sk k% gk ok %k vk ok ok ok ke ok %k %k %k %k %k % %k vk ok v e vk ok ok %k %k %k %k ok ok o ke de ke ok ke ok

i1 This function places a "BRK" opcode ($00) at the address specified in the
: command buffer. Only one breakpoint is supported. The replaced opcode 1is
7 stored in rep_opcode. The breakpoint address is stored in brkpt_addr.

;***

>seudocode:

set_brkpt:
save regs;
cmd_out_ptr = 1;
msbyte of brkpt_addr = getbyte();
if (ascii hex fLag = 0
then call put huh;
else do;
Lsbyte of brkpt_addr = getbyte();
if (ascii_hex_flag = 0)
then call put huh;
else do; -
rep_opcode = menlbrkpt_addrJ;
memCbrkpt_addrl = 0;
end;
end;
unsave reg;
end set_brkpt;

II-63

Feb 17 12:17 1984 /Ju/tam/solar/PSEUDOCODE Page 43

-

dedhkdhhkhkhkhkhkdkhkdkhhkkdkhhkddhhkhdhhkhhkdkdkkhkhdhdhhdbkhkkdkhkhhhkhbhhhdkhkhkhhkhhdbdhhdkhkhkhkkhkhkhhdd

This routine returns the opcode that was replaced with the "BRK". It

be called by the user and also the break subroutine. B
[2212222822 222222 f st i s IR T 28X LRI L LIS LLE LI A EEZEIEI I LS E L X L]

Ne %e No we

Pseudbcode:

rem_brkpt:
save regs;
mem[brkpt_addrl = rep_opcode;
unsave regs;
end rem_brkpt:

dkhkhhhkkkkkddekkhkhkhkhkhkhrhhhh kR Ak kdohkhhhhhhhhdhhhdhhhdhdhdkdhhhhhkhkdhhkhrhkkhhda

This routine set the dump_state flag to initiate dump_state from the

serial port or the front panel keypad.
hhkkhkkhkhkdhkhkhkhdkhkhkhhkhhkhkhkhkhkhhkhhkhAhkrrdhkh bt dkrhhkhkhkhkhbhkhkdhhkhhbtrthhkhhkhkkhhdkhdkhhkhhkhkkir

LT TR TR T

Pseudocode:

set_up_dump_kybd:
set_up_dump:
save regs;
dump state flag = 1;
unsave regs;
end set_up_dump;

shdkhkkkkhkdhkdhhkhhkhkhkdhhhhkdhhhhhhhhbhdhhdhbhkhdhhhhhhhhkhhkhkhhhkhkhkhkhhhhhhkhkhkhhkhkhkhhkhdhk
This routine, called from the front panel keypad, clears the valid pas

flag.
khkhkhkhkkhkkkhkhkhhkhkkhkhkkkhkhkhhhbhdhkhkhdkdbhhkhkhkhkhkdhkhkkhdkkhkhkhkhkdhkhkhbdkhkhhhhhkhkhdhkdrhkhkhhkdik

N %o Ne %Ny

Pseudocode:

kill_password:
save regs;
valid_password = 0;
unsave regs;
end kill_password;

dkkkhkhkhkhkhkhkdhkhkhkhkkhkhkhhkkhhkhkhhkhkhbrhrdkhhkhkhkhkhhkhbhrhkhbhkhkhkhhkhkhhdkkhkhkhkhkkhhkhkhkkhkhkhkkhkhk
This routine is called via the serial port and the hex keypad and "tog
the-state of the run bit so that the system alternates between RUN and

TEST/CALIBRATE modes.
hokkkkdkkkdkkdkkkkhkhkhkhkdkhkkdhhkhhhkhhhhhkkhhhhhhkhhhkkkkkhhkkkrkhkkkkhkkhrkkkdkk*

Ne s Ne N5 %

Pseudocode:

toggle_run_bit:
save regs;
compute_flags = compute_flags XOR run_flag;
unsave regs;
end toggle_run_bit;

shhdkkkkkhkkkhkhkhhhkdkhkdkhdhhhhkhkdhhkhhkhhhhhhhhhhhhhhhhhkhkhhhkhrhkkhkhkhhkdhhrrdhhdd

II-64

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 44

TE WE We WE WEe %8 %e %e Ve Ne %s Ne N W

This routine is called whenever the dump_state_flag is set to dump out the
"state of the machine" to the serial port. The output is composed of the
contents of the dump_array with each element converted dnto the appropriate
units. The format for the output is as follows:

TIME: hh:mm

EOD = xxx.x VOLTS I00 = xxx.x AMPS

ED1 = xx.xx AMPS I01T = xx.xx AMPS

EQ02 = xx.xx AMPS I02 = xx.xx AMPS

EO3 = xx.xx AMPS I03 = xx.xx AMPS

EO4 = xx.xx AMPS I04 = xx.xx AMPS

EOD5 = xxa.xx AMPS I15 = xx.xx AMPS

ED0é6 = xxx.x VOLTS I06 = xxx.x VOLTS

E07 = xxx.x VOLTS I07 = xxx.x VOLTS

EODO8 = xxx.x VOLTS 108 = xxx.x VOLTS

EO9 = xxx.x VOLTS I09 = xxx.x VOLTS

E10 = xxx.x VOLTS I10 = xxx.x VOLTS

E31 = xxx.x VOLTS I31 = xxx.x VOLTS

E32 = xxx.x VOLTS 132 = xxx.x VOLTS

E33 = xxx.x VOLTS I33 = xxx.x AMPS

E34 = xxx.x AMPS 134 = xxx.x AMPS

E35 = xxx.x AMPS I35 = xxx.x AMPS

P36 = xxx.x DEG C P37 = xxx.x DEG C

E38 = x.xxx VOLTS E39 = x.xxXx VOLTS

D00 = xxx% D40 = xxx% D&1T = xxx¥% D42 = xxx¥%
$1-1 s2-0 L1-1 L2-0 L3-1 L4&-0 L5-1 L6-0
A1-1 A2-1 AZ-1 A4-1 AS5-1 A6-1 B1-1 B2~-1 B3-1 B4-1 B5-1 B6-1
TOT CHGR I = xxx.x AMPS NOTE: 1=0N, O=OFF

Each Lline is formated and placed into the serial output buffer, The
routine is called again when the buffer is empty. When all of the data
has been transmitted, the dump_state_flag and valid_password are both
cleared. In add1t1on, the address of the proper display default routine
is loaded into multimeter_addr, the channel data (in ascii), if needed,
is loaded into multimeter _data and finally, the multimeter_flag is set.

Every one second after th1s, the indicated display routine is re-initiated.
kkkhkkhkhkhkhkhhkhdhhhhhkhkkhkhkhhkhkhhhbhkdbhkbhkrhhhhhkhkkdhkhhkhhhkhhkkdbhkdhhkkhkdhkhkhddbhdkhkhkk

seudocode:

ump_state:
save regs;
if (entrl z flag
if (dump_channel
dump_count = 0;
do while (C(dump_count <= 1) AND (dump_channel < soc_channel_num));
accum = label _Llistldump_ channell;™
catl putchar(accum)-
mem_byte = user_ch_tableldump_ channel]
catl putbyte(mem byte);
call msg_ hndlr(* = ');
conv dump addr = conv_dump_tableldump_channel*2];
call™ convert and output routine;
dump channel = dump channel + 1;
end; -
if (dump_channel = soc_channel num)

1) then goto _cntrl_z crash;
0) then call put t1me,

I1-65

Feb 17 12:17 1984

then do; -

end;

call dump_soc;

call dump_sw_states;
call dump_arrays;
call dump_total I;
call msg_hndlr("
ntrl_z crash:

dump_channel =

dump_state flag

valid password

multiﬁeter_flag
multimeter addr
call putchar('CR");
call putchar(*LF');
call putchar('*');

else do;

end;

call putchar('CR');
call putchar('LF');

unsave regs;
end dump_state;

H o~

/u/tam/solar/PSEUDOCODE Page 45

NOTE: 1=0N, O=0FF');

display_default - 1;

PR e R o e e S ——
P R 2 L R e — e e i el o]

@ o W T e T e o mm mm e Y T e Sm TR T S e e e S G S M SR S M i G A e e G G G e R R G e e O TS e e e e G W e e S S ——
P e R AR p-F-P— RSP - A 2 T T - - -

label_Llist: .ascii

user_ch_table:
.byte

.byte
.byte

conv_dump_table:

NOTE:
6502.

RTS to impliment an indirect JSR, the address stored in the tabl

The -1

$00, $00, $01, $01, $02, $02, $03, $03, $04, $04&,
$06, $06, $07, $07, $08, $08, $09, $09, $10, $10,
$32, $32, $33, $33, $34, $34, $35, $35, $36, $37,

"EIEIEIEIEIEIEIEIEIEIEIEIEIEIEIEIDDEE"

in each of the following is due to a peculiarity of
Namely that the address stored on the stack during a jsr
1 LESS THAN the return address.

So in order to use the stack ar

must conform to this rather "arbitrary" condition.

.word
- .wWord
.Wword
 .word
= .word
.Wword
-Word
«Word
.Wword
-word
.Wword
-word
-word
«word

IT-66

dump_volts - 1
dump_amps =~ 1
dump_volts - 1
dump_amps = 1
dump_volts - 1
dump_amps - 1
dump volts - 1
dump_amps - 1
dump_volts - 1
dump_amps - 1
dump_volts - 1
dump_amps - 1
dump_volts - 1
dump_amps - 1

‘eb 17 12:17 1984

/u/tam/solar/PSEUDOCODE Page 46

.word dump_volts = 1
.word dump_amps - 1
.word dump_volts = 1
.word dump_amps - 1
.word dump_volts - 1
.word dump_amps - 1
.word dump_volts - 1
.word dump_amps - 1
.word dump_volts - 1
.word dump_amps = 1
.word dump_volts - 1
.word dump_amps = 1
.word dump_volts - 1
.word dump_amps - 1
.word dump_volts = 1
.word dump_amps = 1
.word dump_volts = 1
.word dump_amps = 1
.word dump_temp = 1
.word dump_temp = 1
.word dump_volts - 1
.word dump_volts - 1

;***
This routine fill s specified region in RAM with a specified byte of data
The starting address, the ending address and the datum are contained in the
command buffer. '

WATCH USING THIS ROUTINE BELOW LOCATION $320, THE RESULTS MAY BE
UNDESIREABLE BECAUSE IT MAY OVERWRITE ZERO PAGE, THE STACK OR THE
1/0 BUFFERS.

;***
'seudocode:

ALt
save regs;
cmd_out_ptr = 1;
msbyte of start addr = getbyte();
if (ascii_hex_fTag = 0) then call put_huh;
else do; :
lsbyte of start addr = getbyte();
if (ascii_hex_flag = 0) then call put_huh;
else do;
msbyte of ending _addr = getbyte();
if (ascii_hex_flag = 0) then call put_huh;
else do;
lsbyte of ending addr = getbyte();
if (ascii_hex_flag = 0) then call put_huh;
else do; ‘ -
mem_byte = getbyte();
if (ascii_hex_flag = 0) then call put_huh;
else do;
if (ending addr - start addr < 0)
then call put_huh; -

TT-67

Feb 17 12:17 1984

en
end;
end;
cmd out ptr
unsave regs;

end fitl;

-

en
end;
d;

= 0;

/u/tam/solar/PSEUDOCODE Page 47

else do;
do while (ending_addr - start_addr >= 0)
memLstart addr]l = mem byte;
incr start addr; - -
end; - .
end;
d;

shkkkdkhkhkhkkhkhkkhkhkhhkkhhdkhhkhhhhhhkhkdhhdhkhkhkhkhhkhkhkhkhkhhkhkhhkhkhkhkhhhhhkhkhrrdhdhkhds

e %E W N NE e NE s N Ne Yo % Ne Ne N N N N

make the routine
buffers of undefined form.
the download.
dkkhkhkhkhkhkkkhkkhkhkhkdkhkkkhkkkhkhhkhkkhkhkkhkhkhkhkhkhkhkkhhkdhbhhkhhhhhkdkhkhhkhkhkhbhkhkhkhkhkkkhkdkkhkkhky

This routine handles the storage function of data which is downloaded
another computer via a serial Link. The selected download format is 1
used with the DATA I/0 PROM Programmer, i.e.:

"B$A<address>, XX XX XX XX XX..."CS<checksum>,zzzzzzzzz222

Pseudocode:

dwnlid:

I1-68

turn off int

wher

errupts;

checksum = 0;

first_nyb_fl

error:flag =

char = p_get

ag = 0;
0;
char();

e 1. XX = ascii encoded hex digits
2. address and checksum are represented ir
hex digits
3. the acceptable delimiters are space, Cf
LF.

In order to maintain as much universality as possible, it is desireabl
independent of interrupt service routines which may t

Hence, IRQ's are disabled for the duratior

/* this routine uses polled ACIA only =,

do while (char <> $02); /* lLlook for "B *x/

end;

char

= p_get

char();

do while ((char <> $03) AND (error_flag = 0)); /* look for "C 3

S if (char = '$')

then do;

end;

char = p
do while
char
end;
mem_addr
offset =
call p_g

_getchar();
(char <> 'A");
p_getchar();

= p_getword(); /* get the address %/
0;
etcomma(); /* get the comma */

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 48

else do; -
if (char <> $0A) OR (char <> $0p) OR (char <> * 1)
then do;
if (first_nyb_flag = 0)

then do;
nybble 1 = a8 to h{(char);
if (nybble 1 = $FF) then error_flag = $F
first_nyb_flag = S$FF

end;

else do;
nybble_2 = a_to_h(char);
if (nybble_2 = $FF) then error_flag = $F
byte = nybble 1:nybble 2;
memCmem_addrl™ = byte; ~
checksum = checksum + byte;
first_nyb_flag = 0;
mem_addr = mem_addr + 1;

end;

end;
end;

char = p getchar();
end;
if (error_flag <> O
then call p msg hndlr('bad data')
else do; -7 -
char = p getchar();
do while (char <> 'S§'); /* look for the S */
char = p getchar(); '
end; -
xmt_chk_sum = p _getword();
if (checksum <> xmt chk sum)
then call p_msg_hndTr('BAD RUN');
else call p msg hndLr(*GOOD RUN');
end; -7
end download;

dhkhkhkkhkhkhkdkhkdkhkhkhkhkkhkkkhkhhkh kA kA A Ak A A A Ak kAR R AR AT kT Ak hkhkhkhkhhkdhhkhkhkhkhkdhkhkhkdhdhdkhkhkdhkk
This routine obtains the current version number of this software, and
transmits it to the serial port.
IMPORTANT: the assumption is that the version number is always

. two BCD digits of the form M.N
kkhkdkhkkkdkkhkhkhkdkhkhkhkhhkhhkhkhhhkkrRhkkkhkdhhhhhkhkhhkhhhhkhkhkhkhkhhkhkhkhkhdrhkhkhhhkkhhhhrdhdkhkdkkkhkk

we Ve e Se %o N

Pseudocode:

put_version:

save regs;
accum = (version num AND $F0) >> 4&4;
call putcharCaccum);
call putchar('.');
accum = version_num AND $OF;
call putchar(accum);
unsave regs;

end put_version;

sghkdhhkkhkkdkhhdhhkhhkdhhhhhhdhhhhdhhhhhdrkkhkhhhddkhhkhhdddhkhkhkhdhkhkkkhdrrhkhhrdhkdhdx

I1-69

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 49

This routine obtains the current version number of this software, and
displays it, properly formatted on the hexpad display panel.

“e

IMPORTANT: the assumption is that the version number is always
two BCD digits of the form M.N .
**1

e N9 Ve Wo %

eudocode:

out version:

- save regs;
display_wordl41]
display_word[31]
display_word[2]
display_word[13] $80;
display_word[O3] $80;
call display_hndlr;
unsave regs;

end out_version;

3;
(version_num AND $F0) >> 4;
version_num AND $0F;

LIS LI L 1 I 1

**i
This is 2 8 x 8 multiply similar to mp__ mult except used only for singl
precision multiplication. The multiplier is toaded into sp_multl, the

multiplicand in sp_mult2 and the 16 bit product is returned in sp_proc

N N3 Ws Ns N

Pseudocode:

sp_mult:

save regs;

msbyte of sp_mult2 = 0;

sp_product = 0;

do i = 0 to 7;
sp_multl = sp_multl >> 1;
if (carry = 1) then sp_product = sp_product + sp_mult2;
sp mult2 = sp mult % 2;

end; -

unsave regs;

end sp_mult;

Fhkkhkhkhkhkhkhhhhhdhdhdkhhkhkhhkhkhkhhkdhhkdhhdrhkrhdhkhhhhkhkkhhkbhkkhkhdhkdrhkhkdkhhhhrhrhdhk
This routine sets the duty cycle of the selected PWM timer to the desi
value. The value input by the user is given as a %-age duty cycle, wi
the input %X-age being the “time high"™. The value for selecting the ti
can be either "1" or "2". 1If invalid entries are made, error messages

are sent to the terminal.
****%**f*************

LTI T T TR TR IR

Pseudocode:

set_duty_cycle:
save regs;
if ((command_buffer[1] < #$31) OR (command_buffer[1] > #$32))

then call msg_hndlr('DIGIT NOT 1 OR 2';
else do;
temp = command buffer[1] - #831;

I1-70

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page

emd_out_ptr = 2;
X = getbyte();
if ((i o flags & #ascii hex flag

-

50

)y = 0

then call msg_hndlr('DIGIT OUT OF RANGE O-F');

else do; ‘
y = d to h(x) % 2;

if ((?omEute_flags & #over_10_flag)
then call msg_hndlr('DIGIT OUT OF RANGE 0~-9');

else do;
if (y > #$AE)

= O

then caltl msg hndlr('DUTY CYCLE VALUE OU’

else do;
timer_cs
if (temp

OF RANGE O-

r =

then do;

end;
else

end;

unsave regs;
end set_duty_cycle;

timer_csr
timer csr
timer data
timer _data
timer_data
pwm value =
timer_data
timer csr
timer_csr

nou

do;
timer csr
timer _csr
timer data
timer data
timer_data
timer_data
timer csr
timer_csr

Hn

B7%');

#%C4;

#$0B;
= duty_low_tblly];
= duty_low_tblly+1
= duty_hi_tblly];
duty_hi_tblly];
duty_hi_tblly+1]
HSE3;

#%$24;

"

#8C8;

#80¢C;
duty_low_tbllyl;
duty low tblly+1
duty_hi_tbllyl;
duty_hi_tblLy+13]

#SESL;

#%28;

fowun

T R L T Y L 2 Xkttt
e 2 Y 2 2 T e R e R g

T T et T - T T T T T T T T X S -2 2 %
BRSSP —R- SRS P S S S S S S Nt R R

uty_Llo_tbl:
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

$C6,$00,$C6,$00,%C4,$00,$¢2,800
$c0,$00,$BE,$00,$BC,$00,$BA,3$00
$88,300,$86,$00,$B4,$00,%82,$00
$80,$00,$AE,$00,8AC,$00,$AA,$00
$A8,300,3A6,800,$A4,800,8A2,$00
$A0,$00,$9E,$00,$9C,$00,39A,%$00
$98,$00,%96,%00,$94,%$00,%892,$00
$90,$00,$8E,$00,$8C,$00,$8A,800
$88,$00,$86,$00,$84,800,$82,$00
$80,$00,$7E,$00,$7C,$00,$7A,$00
$78,$00,$76,$00,$74,$00,$72,$00
$70,$00,$6E,$00,%$6C,$00,$6A,$00

II-71

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 51

.byte $68,$00,%$66,%00,%64,3$00,$62,300
.byte $60,%00,$5E,$00,$5C,$00,$5A,300
.byte $58,$00,$56,$00,$54,$00,$52,$00
.byte $50,$00,$4E,$00,$4C,$00,84A,$00 -
.byte $48,$00,%$46,$00,%44,800,$42,$00 -
.byte $40,$00,$3E,$00,%$3C,$00,%3A,800
—~ .byte $38,%00,$36,%00,$34,$00,%32,800
.byte $30,%$00,$2E,$00,%$2C,$00,%$2A,$00
.byte $28,$00,$26,$00,%$24,$00,%$22,$00
.byte $20,$00,$1E,$00,%$1C,$00,$1A,$00

duty_hi_tbl:

AT I IE T TIIETIETETETETIETEE VI FEETELTE YTE TE I TR Y

I1-72

.byte $02,$00,%$02,$00,$04,$00,$06,%00
.byte $08,$00,$0A,$00,%0C,$00,$0E,$00
.byte $10,$00,$12,$00,$14,$00,%$16,$00
.byte $18,$00,$1A,$00,$1¢C,$00,%1E,$00
.byte $20,$00,$22,$00,%$24,$00,826,$00
.byte $28,%$00,%2A,$00,%2¢C,$00,$2E,$00
.byte $30,%00,$32,$00,%34,$00,%$36,$00
.byte $38,$00,$3A,$00,%$3C,$00,$3E,$00
.byte $40,%$00,$42,$00,%44,$00,846,%00
.byte $48,300,$4A,$00,$4C,$00,54E,$00
.byte $50,300,$52,$00,$54,$00,$56,$00
.byte $58,%$00,%5A,$00,$5C,$00,$5E,300
.byte $60,%00,$62,$00,$64,$00,866,$00
.byte $68,$00,$6A,$00,$6C,$00,$6E,$00
.byte $70,$00,$72,$00,%74,$00,$76,%00
.byte $78,%$00,3$7A,$00,$7C,$00,$7E,$00
.byte $80,%$00,$82,$00,$84,$00,$86,300
.byte $88,%$00,$8A,$00,$8¢,$00,$8E,%$00
.byte $90,%$00,$92,%00,$94,$00,$96,%00
.byte $98,$00,$9A,$00,$9C,$00,$9E,%00
.byte $A0,300,$A2,$00,$A4,$00,$A6,$00
.byte $A8,$00,$AA,$00,$AC,$00,AE,S00

hhkhkhkdkhkhkdkhhkhhkhkhkhkhkhhkhkkhkhkhkhkhkhdhrhhbhdkhhAhkrhhkhrhhkhdhkhkhkkhhkhhhkhkhkhkhkhkdhkhkkhkkkhd

This routine, called from either the terminal or the front panel keyp:
allows the user to set and clear individual bits that control various
"devices". These devices are divided into various "classes'" which det
which section of code handles the device specific functions. The "de\
which can be controlled include the audio buzzer, the warning LEDs, tt
user's load requests, the PWM control ports, and the load current over
trip control bits.

device O audible alarm
device 1-6 user lLoad requests 1 thru 6
27 device 7-11 overload trip resets for loads 1 thru 5
device 12-17 PWM buffer #1 controls 1 thru 6
device 18-23 PWM buffer #2 controls 1 thru 6
device 24-25 Yellow, and Red LEDs

If a digit out of the range of 0 to 9 is entered for either digit of t
bit number or out of the range O to 1 for the desired state (1=0N), or
the bit number exceeds 25, then an appropriate error message is sent t
controlling I/0 device (terminal or keypad). 1In addition, if the user
attempts to set a bit in the range 6 - 10, the equivalent of "tripping

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 52

a load's circuit breaker, a warning message is displayed and no action is
4

taken.
KhkkAhkhdkhdkhhkkhhkhkhkhkhhbhkhkhhkdkkdhhkdhdhhrhdhhhdhhhkhkdhhhhdhhhdkhdhkhhkhkhrhhhhhkdrhhkhkhhkhkn?d

%y %o W

Pseudocode:

set_bit:
save regs;
if((command_buffer[1] < $30) OR (command_buffer[13 > $39))
then do,
if (command buffer[0J = 'D')
then call display error(#%$04);
else call msg hndlr('DIGIT OUT OF RANGE 0-9');
end; -
else do;
sb_temp = command buffer[1] << &4;
1f((command bufferL2] < $30) OR (command buffer[2] > $39))

then do;
if (command buffer[0] = 'D')
then call display_error(#3804);
else call msg_hndlr('DIGIT OUT OF RANGE 0-9');

end;
else do;
sb_temp = sb_temp OR (command buffer[2] AND #S0F);
if ((command _buffer[31 < $30)" OR
(command buffer[3] > $31))
then do;
if (command bufferfDJ = 'D*)
then call display_error(#3%07);
else call msg_hndlr('DIGIT NOT A '1' OR '2'");

end; |
else do;
if(command_buffer[3] = $30
then cflag = 0;
else cflag = 1;
if(sb_temp >= max_num_devs) ,
A max_num_devs = #3$26 x/
then do;
if(command _buffer[0] = 'D')
then call display error(#%$09);
else call msg_hndUr(*INVALID DEVICE NUMBER

end;
else do;
if(sb_temp >= $20)
then sb_temp = sb_temp - #30C;
else if(sb temp >= $10)
then do;
sb_temp = sb_temp - #$06;
sb temp = sb _temp << 1;
sb_msk tbL[sb _temp];
sb msk tbL+1[sb _templ;

i
j

switch (j);
case D:
if (cflag = 1)
then alarm flags alarm flags OR i;

else alarm_flags = alarm_flags AND ~4;
11-73

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 53

break;
case 1:
if(cflag = 1)
then user_Lld_reg

_ user_Lld req OR -i;
else user_Lld req

user_Ld _req ANR "i;

break;
=" case 2:
if (cflag = 1)
then do;
ovrld trip = ovrld trip AND ~i;
ovrld cnt = ovrld cnt_max(sb_temp = 7);
i= #enable_bell;
alarm_flags = atarm_flags AND ~i;
end;
else do;
if (command bufferf0J = 'p")
then call display_error(#$08);
else call msg hndlr('CAN'T TRIP OVERLOAD
- PROTECTOR');
end; .
break;
case 3:

if(cflag = 1)
then call cntrl_pwm_output(i OR #%80);
else call cntrl_pwm_output(i);
break;
case 4:
if(cflag = 1)
then stow_Lleds =
else do;
stow_leds = stow lLeds AND ~i;
led_out_latch = Stow_leds;
end;
break;

stow_leds OR i;

end;
end;
end;
end;
unsave regs;
end set_bit;

R T S T T L N L L L N N N T S I T e o I o o T I T T o o 2 o oo e =0 = e o e o o e i = o = Ao o e G oo o o o A i e . o o e e o v o 2
R3]

T N T o L o T o T O o T T T e o o T o . o T T o I 7o i o o = o o o i o o o o e e - o Ao . S - S T ————
22— -t g P

sb_msk_tbl: ,
5 Class $0 :

2 .byte $80,%00 ; audio buzzer, -

.byte $08,%$01 ; User load requests 1 - 6, Class 1
.byte $10,%$01

.byte $20,3%01

.byte $40,%01

.byte $80,%01

.byte $04,%01

.byte $08,%02 ; Overload trip controls 1- 5, Class 2
.byte $10,%02

.byte $20,%02

11-74

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 54

AT TIR TR YA TRA TR T T T T T Y]

.byte $40,%02)
.byte $80,%02

.byte $00,%03

.byte $01,%03

.byte $02,%03

.byte $03,%03

.byte $04,%03

.byte $05,%03

.byte $06,%03

.byte $07,%03

.byte $08,%03

.byte $09,%03

.byte $0A,%03

.byte $0B,%03

.byte $01,%04 ; LED controls (Yellow,Red) Class 4
.byte $02,%04

PWM Control arrays 1 & 2 (6 outputs each)
Class 3

Ne “»

Thkhkkkkkhk ko ko hkkkk kA k kA Ak hk kA kA Ak kA kA Ak k kA kk kA kA kkkkkhkhkkhkhkkkk
This routine takes as its input the contents of the accumulator and
sets or clears the selected PWM control output bit. The contents of
the accumulator are encoded as follows: Bit 7 is a2 "1" if the PWM control
bit is to be set, a "D" if the PWM control bit is to be cleared. Bits 0-3
are the number (or "address" if you will) of the bit to be set/cleared.
Values between $00 and $05 are in PWM control array 1, and values between
$06 and $0B are in PWM control array 2. The bit number is used as an
index into the array pwm_msk_tbl whose entries are the bit pattern to
be used in turning on or off the PWM control. In addition, if bit 7 of thi

pwm_tbl msk array entry is on then the mask is for PWM control array 2.

Pseudocode:

cntrl_pwm_output:

save regs;
i = pwm_msk_tblLvalue AND #$0F]

if (i o>= 0
then do;
if (value < 0)
then do;
stow_pwml = stow _pwml OR i;
array_sel1 = stow_pwmi;
end;
else do;
stow_pwml = stow_pwm1l AND "i;
array_sell = stow_pwmi;
end;
end;
else do;

i = i AND #3$7F;
if (value < 0)

then do;
stow pwm2 = stow pwmZ2 OR i;
array_sel2 = stow_pwm2;
end;
else do;

stow_pwm2 = stow_pwm2 AND ~1i;

TT~75

Feb 17 12:17 1984 /Ju/tam/solar/PSEUDOCODE Page 55

array_sel2 = stow_pwm2;
end; -
end;
unsave regs;
end cntrl_pwm_output;

B e Sie S R R e W i o S U W S e W S S S G M G S e A e M e S M G - S e G G e Gt T S e e S e G G e e e . e T S S W - = e S o
e L T e - e T T T R]

- G T e mm e S - A M S S T M T T S M S SR S e e e W mm e M e wm e o T M S M S SR Gt Em S e G S S e S S e e e e S e A S S dm T A e e S -
S SN L T L S R N S N L S S S R S S S S T S S S T S S S SN S S S S ST S S ST S S I s s R s S e oSS m=

pwm_msk_tbt:
.byte $01,%02,%04,%$08,%$10,%20
.byte $81,%82,$84,%$88,%$90,%$A0

hhkhkhkhkhkhkkhhkhkhkhkhkhkhkhkhhhkhdbhkdkhdhhdhkkhdhhhhhhkkrhhkhhhhhkhhhdhhkhkdrhkkhkhkhkhkhkhdhkhkd

This routine converts the A/D reading in frez_temp into a "%-age coldr
product, which is an indication of the state of the freezer lLoad.
kdkhkkhkdkkhkhkdkkhhhkhhkhhhhkhkhkkhhkhkhkkhhhkhdhhhhkhkhhhrhhbhhhkdhdrhhkhkdhhkhhhkhkkhkrhhhkkkhkd

N %wr Ne N

Pseudocode:

find_prod:
save regs;
if (frez_temp[1] < 0)
then i = 0;
else do;
i= frez_temp[1] >> 1;
save flags;
i= 9 >> 1;
save flags;
i = (frez_templ[0] >> 3);
unsave flags;
if (carry bit = 1)
then 1 = 1 OR $40;
unsave flags;
if (carry bit = 1)
then i = i OR $20;
i =43 - $50;
if (i < 0)
then 1 = 0;
else if (i > $35)
then i = $35;
end;
prod = prod_pct_tbl[il;
-- unsave regs;
end find_prod;

@ m o e e e e S T TR T e BT MR S T M G e e am e G mm ST WS T T S e M S MU S e T e m A e e A e e e W S S e S M v S e A e A e

B S oo e S SE M TR TN G S e i T ST TR MR M TS M e S S G et S e A G R e M S e S e S - e T S e WA SEe e W S T W ey G T W G m WED G G e T DY e Amm W
——— WS G - —————————— . —— am ————— e e T L S N N S SR TSN SNz

prod_pct_tbl:
.byte 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26
.byte 28, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 52
.byte 54, 56, 60, 62, 64, 66, 68, 70, 72, 74, 78, 80
.byte 82, 84, 86, 88, 90, 92, 94, S8, 100, 102, 104, 106

1I-76

Feb 17 12:17 1984

.byte 108,

/u/tam/solar/PSEUDOCODE Page 56

110, 112, 116, 118, 120

This routine, called on a one second interval, tests to see if any of the

expression is false for any of the strings, then the string_fault flag is

set.

branch current(N) >=

;
3 string currents have fallen below a specified level, i.e. if the following

(total_chgr_I/number of strings) - str fault offset

*suedocode:

rest_string_1I:

save regs;
lsword of dividend
msword of dividend
lsbyte of divisor = n
msbyte of divisor = 0;
),

total_chgr_1I;
0;
um_pwr__ strings;

quotient = mp_div(

x = 0;

guotient = guotient - str fault offset;

do while ((x < num_pur_st?ings)—AND (branchil x J >= gquotient))
x = x + 1;

end;

if (x = num_pwr_strings)
then string_fault = 0;
else string fault 1;
unsave regs; -

end test_string_1I;

dhkkkkdkkhkkkdkkdhddhhhhhdkkkhhhdkhhkhdhhkhkhkddkddkhkhkdkdkhkhkdkkdkhkhkdhhkkdkhdkhkdkkkhhdxhkhhkkk

This routine handles the dumping of state of _chg, corrected state_of charge

equalization count and pwm_value for the dump state routine.

seudocode:

ump_soc:

save regs;
call putchar('D');
call putbyte($00);
call msg_hndlr(' = ");
call put_soc;
call putchar($20);
call putchar($20);
call putchar('D');
call putchar($40);
call msg_hndlr(' = ');
call put_csoc;
call putchar($20)
call putchar($20)°
call putchar('d');
catll putchar($41);
call msg_hndlr(' = *");
11-77

Feb 17 12:17

call
call
call
call
call
call
call
call
call
unsav

1984 /u/tam/solar/PSEUDOCODE Page 57

put_equal;
putchar($20);
putchar($20);
putchar('D'); -
putchar($42)
msg_hndir(’ '); -
put_pwm; —
putchar('CR');

putchar('LF');

e regs;

11 ~e

end dump_soc;

**
This routine handles the dumping of the switch and load states for thi

;

;

s dump state routine.
;**:

Pseudocode:

dump_sw_states:

I1-78

save
call
call
accum
call
call
call
accum
call
call
call
accum
call
call
call
accum
call
call
call
accum
catl
call
call
accum
call
call
call
accum
call
call
call
accum
call
call
call

regs;
putchar('s');
putchar('1');

= alarm 30 AND inhibit bit;
put_on; -
putchar('s');

putchar('2');

= alarm_30 AND motor_temp;
put_on;
putchar('L');

putchar('1');

= stow_leds AND bit3;
put off;

putchar('L");

putchar('2');

= stow_Lleds AND bité4;
put_off;

putchar('L"');

putchar('3');

= stow_leds AND bit5;
put_off;

putchar('L');

putchar('4');

= stow_leds AND bité;
put_off;

putchar('L");

putchar('5"');

= stow_leds AND bit7;]
put_off; -
putchar('L');

putchar('6');

= stow_leds AND bit2;
put_off;

putchar('CR");
putchar('LF');

unsave regs;

eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 58

end dump_sw_states;

put on:
T call putchar('=");
if (accum = O
then call putchar($31);
else call putchar($30);
call putchar(' ');
end put_on;

put_off:
call putchar('=");
if (accum = 0)

then call putchar($30);
else call putchar($31);
call putchar(' ");
end put off;
:**********;**
This routine dumps the state of the 12 array enable lines during dump_state
thkkkkkkkkkkhk kA khkhhkhkhkhkkdkhkkkhkhkhhkkhkhh kA hkrkrkhkkkhkhkhhhkhhhhdhhkhdhdkkkhkkkhkhkkdkhhkdkhkhkhkkhk

’seudocode:

iump arrays:
T save regs;
temp = stow_pwml;
do i=31 to 36;
call putchar('A');
call putchar(id;
call putchar('="');
temp = temp >> 1
if (carry = D)
then call putchar('0")
else call putchar('1')
call putchar(' ");
end;
temp = stow_pwm2;
do i=31 to 36;
call putchar('A');
call putchar(i);
call putchar('=');
temp = temp >> 1
if (carry = 0)
then call putchar('0"’
else call putchar('1!
call putchar(' ');
end;
call putchar('CR');
call putchar('LF');
unsave regs;
end dump_arrays;

.
’
»
’

-
r

.
4

11-79

Feb 17 12:17 1984

XXXXXX

X

XXXXX

X
X
X

II-80

/fu/tam/solar/PSEUDOCODE Page 59

XX XXX XXXXX XXXX X X
X X X X X X XX XX
X X X X X X X XX X
XXXXX XXXXX X X X X
X X X X X X X
X X X XXXX X X

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 60

e Ns %o Ve Ne N2 N %o BN N %

Ne Ns %o NE %o N Ne N

dhdkdh Ak hk bk hh bk khhkhk kAR Ak Ak A kb hkh kA kdhhhkhhbhhdhkhkkhhkhkhhrhkkdhrhkhkkkkhxk
This is the "main" control module. This module invokes all of the other
modules, either directly or indirectly. The routines called directly by
this module are listed below. The functions of the run_task_master are man
but they are broken down into & regimes.

1. background regime - the most fundamental loop for the system to
be in if nothing is happening.

2. dataset_ready regime - entered only when the new dataset is
avaitable for signal averaging.

3. 100 msec regime - within the dataset_ready regime. It is within
this area that the signal averaging multimeter functions and max
power control are done.

4. 1 second regime - this area is devoted primarily with the
handling of the clock and machine state considerations.

khhkdkkkdkhkkdkkdkdkhdkhkkhkhkhhkkhkhkhkkhkdhdkdhkhkkkhdbhdhhhhhkkkdhhkhkkdhhhhbhhhhhkhkrhhhhhhkhkrhkhkhk

Pseudocode:

run_task_master:

do while (1);
if (dsply_pend_flag = 1) then call display_digits;
if (dataset_ready_ flag = 1)
then do;
strobe watchdog timer;
if (serial_cmd_flag OR kybd_cmd_flag = 1)
then call ¢cmd intrp;
if (pwm_m_flg = 13
then do;
call abs cnvt;
if (run_flag = 1));
then do;
call battery state of chg;
if (max_pw_cntrl = 1)7
then call max_pwr_track;
if ((dump state flag = 1)
~ AND (byte_count = 0))
then call dump_state;
end;
dataset_ready_flag = 0;
pwm_m_flg = 0;
mmf_update = mmf_update - 1;
end;
if (mmf_update = 0)
then do; :
call multimeter_func;
mmf_ update = 3;
end;
end;
if (one_sec_flag = 1)

II-81

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 61

then do;
call test_string I;
call find time;
if (alarm_30 AND bité6 <> 0)
then do;
"reset" the 30 min alarm; -
dump_state_flag = 1; -
end;
== if C(run flag = 1)
then do;
if (max_pw_cntrl = 0)
then call discrete _array_cntrl;
call correct_state_of chg,
call deter_ mach state,
end;
else stow_leds=led_out_latch=stow_Lleds XOR #rled
call chk_for_ ovrld-
one_sec flag = 0;
end;
end;
end run_task_master;

khkkdhkhkkkhkhkkhkkhhkkdhkhhkhhkhhhhdhkhhkhhhhhhkhkhhkhkhkhkdkhkhhhhkhhkdhkhhrhkhhhkhhkhhhhhkhkdkhkhkkhk:

This routine is awakened when the pwm_m_flg is set to indicate that
it is time to update the control point.

Note: if (direction <> 0) then duty cycle incr's
if (direction = 0) then duty cycle decr's

e %o Ns N %o Ne N N

kkkhkkkdkdhhkhhhhkdkhhkhdkhhdkhkhkkdhhhhhkhhkhhdhhdrddhhkhkhhhhkhhhkhkdkhhhhhkhdhdhhkhhkhhkhhkhhdk

Pseudocode:

max_power_track:
save regs;

old_power = new_power;
new_power = (abs_battery_V + $100) * abs_total_chgr_I;
delta_power = new_power = old_power;
if ((delta power < 0) AND (dir chg cntr = D))
then do; -7

direction = direction XOR 1;
dir_chg_cntr = 2;
step = small;

end;

else if (delta_power > old_power * 2°(-big))
then step = large;
else step = small;

if (pwm_value <= min_pwm)

: then do; -
direction = 1;
step = large;
end;

if ((pwm_value >= max _pwm) OR ((total_chgr_ I > max _chgr_1I)
OR (abs _battery_V > bat_v Timit)

TOR (motor _temp = 1)
OR (string_1_V < min_array_volts)

I1-82

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 62

then do;
direction = 0;
step = small; P
end; -
if (direction_bit = 0) then step = - step;
pwm_value = pwm value + step;

if (pwm value > max _pwm)
then if (direction <>0)
then pwm_value = max_pwnm;

else pwm_value = 1;
if ((pwm_value < 1 count) OR (inhibit = 0))

then do;
pwm_value = 1;
turn_on_flag = 0;

end;

else turn_on_flag = 1;

do;
disable ints;
timer_csr = $0B
timer_data = $C8 - pwm_value; /* load downtime */
timer data = $00 -
timer_data = pwm_value; /* load uptime */
timer data = $00

if (turn_on_flag = 1)

then array sell=array_sel2=stow_pwmi=stow_pwm2 = #$3F;
else array_sell=array_sel2=stow pwm1 stow pwm2 = #%0;
end;

enable ints;

end;
settle_time = $03;
if (dir_chg_cntr <> 0)
then dir_chg_cntr = dir_chg_cntr - 1;
unsave regs;
end max_power_track;

L2 22222222 RS RS R XZE RS2 R XSS RSS2 EELS R XSS IIEE SRS R SRS ESES L 2R X &
This routine looks through a table of commands for a match to the first
tharacter that it finds in the command buffer. The next two locations {in
the table hold the jump address of the routine to handle the requirement.
The corresponding routine is jnvoked. Since the data in the command buffer
could be the password, this is checked first. Failing this test, the input
is tested to see if it is one of the possible command words. 1If so, that
task is initiated. If no command word is matched a "WHAT?" message is
sent to the appropriate port.

If the msb of the table character is set, it indicates that the function is
a multimeter display function. 1In this case, the ascii representation of
the channel number in the command buffer is moved to multimeter _data,
the display function starting address is retained in mutt1meter addr and
the multimeter_flag is set.
Upon completion of this task the following actions are taken:

1. control is returned to cmd_intrp

2. a prompt, “"CR LF *", is sent to the serial port, using

11-83

Feb 17 12:17 1984

we e %s e

Pseudocode:

cmd_intrp:
save regs;
cmd_out_ptr

msg__

/u/tam/solar/PSEUDOCODE Page 63

hndlr

=0;

if (kybd cmd_flag OR serial_cmd_flag = 1)

then do;

if (kybd_ cmd _flag = 1
then do;
index = 0;

I1-84

do while ((command buffer[index] =
AND (index < 4));
index = index + 1;
end;
if (index = &)
then do;
valid password = 1;
call display_clr();
end;
else do;
call display clr();

3. clear serial cmd flag or the kybd cmd flag as appropr

passwordlinde

if ((command buffer[1] < $3A))

then do;
if (valid_password
base addr
else base addr
call _find_ func;

cmd_ out ptr = 0;
cmd in ptr = 0;
end;
else do;
cmd_out_ptr = 1;
if (valid password
base_addr
else base_addr
calt _find_ func;
kybd_cmd_flag = 0;
cmd_out_ptr = 0;
cmd in ptr = 0;
end; ~
end;
end;
else do;
base_addr = cmd_ tableS;
call™ _find func;
call msg hndLr(prompt)'
serial cmd _flag = 0;
ecmd_out_ptr = 0;
emd_in_ptr = 0;
end;

0) then
cmd table1;

—_cmd_table3;

0) then
cmd table?;

—cmd_table4;

eb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 64

end;
unsave regs;
end cmd_intrp;

_find_func: procedure;
index = 0;
do while ((command bufferlcmd_out_ptrl <>
($37F AND base_addrCindex])) AND
(base_addrlindex] <> 0));

index = dindex + 3;
end;
if (base addrlindex] AND $80 <> 0O
then do;
multimeter_flag = 1;
multimeter data = command buffer[11;
multimeter_data+1 = command buffer[23];
multimeter_addr = base_addrlindex + 13;
end;
if (base_addrlindex] = 0)
then do;
if(kybd_cmd_flag = 1) then call display_huh;
else call put_huh;
end;
else do;

jump_addr = base_addrlindex + 11;
call routine Located & jump addr;
end; -
end _find_func;

o d dr dc gk d de gk de vk ke gk gk kg ko gt de ok gk g ok ek %k ok ko g %k %k ok sk %k %k ok e o vk vk gk vk vk sk Sk sk vk vk ko dk vk vk %k d sk gk ke %k sk ok gk ok ok ke e ke ok
This routine gathers N channels of data, seguentially, and stores the
results in memory. The routine set the mux channel number, waits for

settling, starts the conversion, polls for conversion completion and then
stores the result.

Note: entry num, next_seldom and pass_num are zeroed at init
dhkdkhkhkkhkhkdhdkdkrddkhhkhhhkbhkdkhkhkkdhkhdhhhhkhdhdhkhhhhkhhkhkhhbhkhhhkhkhdhkdhhhhhhdhkhkhkhkhhkhhkhhhhh

seudocode:

de_hndlr:
save regs;
temp = pis_csra;

if (temp AND bit 6 <> O)
then call knock down;
if (temp AND bit 7 <> 0)
then do;
decr pwm_mod_timer;
if (pwm_mod_timer = 0)

then do;
pwm mod timer = 25;
pwm_m_flg = 1;

end;

call scan_kybd;
if (settle_time = 0)
then do;

11-85,

Feb 17 12:17 1984 /fu/tam/solar/PSEUDOCODE Page 65

if (dataset_ready_flag = 0)
then do;

-

“"OFTEN READS"

next_often = 0; -
do while next _often <= num_of_often_reads;
select the often_read mux channel-

adc_Llo = 0; to start convers-
if (next_often = 0)
else do;

rearrange adc value;
if (adc_value < 0) then remove sign b-
complement the value;
often readlentry num,(next often=-1)%*3;
- “adc_value}
end;
do while (adc_lo AND adc_not_busy = 0);
end; poll for conversion compl
adc_vaLue = adc_hi:zadc_lo;
next_often = next_often + 1;
end;
rearrange adc value;
often_readlentry num,(next_often-1)*32] = adc_v:

"SELDOM READS"

if (next_seldom > num_ of seldom reads)
then next seldom = D'

else next seldom = next seldom + 1;
select seldoﬁ;read mux channel;
adc_lo = 0; to start conversion
if (pass num >= max pass num)
then do; - -
dataset_ready_ flag = 1;
pass_num = 0;
entry_num = 0;
end;
else do;
pass_num = pass_num + 1;
entry _num = entry num + 1;
end;
do while (adc_Llo AND adc_not_busy = 0);
end; poll for conversion comp
seldom readlnext seldom] = rearranged adc;
end; - -
end;
else settle_time = settle_time - 1;

this is the settle_time that is set
when the PWM value has been changed.
A value of 5 for settle time will
suppress any current measurements for
20 msec
if ((one_sec_flag = 0) AND (one_sec_timer = 0))
then one sec _timer = 250;
else if (one sec_flag = 0)

Feb 17 12:17 1984 /fu/tam/solar/PSEUDOCODE Page 66

then do;

decr one_sec_timer;

if (one_ see timer = 0) then one_sec_flag = 1;
end;

if (Calarm_30 AND inhibit_bit <> 0) AND (alarm_30 AND panic<> 0)
then inhibit = 1;
else inhibit 0

if (alarm_30 AND panic = 0O
then call knock down;

end; -
unsave regs;
end adc_hndlr;

_knock_down:
stow leds = led _out_latch = stow_leds AND $03;
user_td_req = inhibit = array_sell = array_sel2 = 0;
strobe watchdog timer;
end _knock_down;

ddkhkhkdhkhkdkhkhkkhkdhkdhdhhkdkdhkhhkdhhhkhhhhhkhhhkhhkhrhbhkhdhhhhhhhhhkhhhbdhhhhhhdkhhhkhhkhhkhkhkhrhkdhhkkx
This routine is the "main" routine that calls all of the routines that
deal with the elements of calculating the state of charge of the battery.
It is fully executed only when the dataset _ready_flag is set. When all of
these calculations are complete, this routine assigns a new value to

bat V Limit:
I E 2 E 2 I X E R E XSS SR ST E SRS T EE RS EE TR AR R E SRR EE AT Z R T EEE T AR LT T LRI XL EE L E R XL E E X

wa e %e Ne Na %o N

Pseudocode:

battery state_of_chg:
save regs;
call calc_sys_volts;
call calc state of_chg;
call calc equal count'
if (state of chg < 1) OR (equal_count >0)
then bat_v_lvmwt = equal V;
else bat_V_Llimit = ftoat:v;
unsave regs;
end battery_ state_of_charge;

;***
; This routine takes the value of bat temp, shifts it right by 4 subtracts

: $D and uses the result as an index into the each of three tables. The

; first one is the float voltage table, the second one is the equalization

; voltage table and the last is the minimum voltage table. This technique

: greatly reduces the execution time and simplifies the software.
ddkdkdkkhkhkhkhhkhkhkhhhkhkhkhhkkhkhkhhkhkhhhhbhhkhkhkhkhhdbkhhkhkhkhkdhhhthkhkhhhkhhkhkhkdkkkdkhdhkhbhkkhkhkrkhkkkk

>seudocode:

:alc_sys_volts:
save regs;
index = bat temp >> 4&4;
index = index - $D;
if (index < O)

11-87

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 67

then index = 0;
index = index * 2;
float V = float tablelindex];
if (fToat_Vv > abs_max_bat_V)

then float V = abs max _bat_Vv;
equal_V = equal table[1ndex]' -
if (equal V > abs _max_bat_V)

then equal V = abs max bat V;

.~ min bat V = m1n bat tablelindex];

if (m1n “bat _v < abs_m1n bat_V)

then min _bat_V = abs m1n bat_V;
unsave regs;

end calc_sys_volts;

The following are the lookup tables for float_volts, equal_volts and
minmbat_volts for the equation:

“value = base_voltage/cell * num_of bat cells *
(1 + .00227* (20.92 * (Vt - 2.56)))

2.4 for float_V
2.7 for equal_V
1.9 for min_bat_V

where base_voltage/cell

In order to find the index to a value in the table, take the raw A/D
value for Vt, shift right 4 bits and subtract $0D.

NOTICE: Vt, as shown below, is represented in "real volts" format, i.e.
the number represents the number of 1/1000's of volts. To convert this
value to what is actually stored in memory, it must be divided by 4.

FLOAT VOLTAGE TABLE

temp index Vt hex value dec value
61 deg € 00 340 D12A 119.3
60 deg ¢ 01 380 0128 119.7
58 deg C D2 3c0 012¢ 120.1
57 deg C 03 400 012D 120.4
56 deg C 04 440 012€ 120.8
54 deg C 05 480 012F 121.2
53 deg € 06 4CO 012F 121.6
52 deg C 07 500 0130 122.0
50 deg ¢ 08 540 0131 122.3
49 deg C 09 580 0132 122.7
48 deg C DA 5¢0 0133 123.1
46 deg C 0B 600 0134 123.5
45 deg € 0c 640 0135 123.9
44 deg C 0p 680 0136 1246 .3 -
42 deg € OE 6cO 0137 124.6
41 deg C OF 700 0138 125.0
40 deg C 10 740 0139 125.4
38 deg C 11 780 013A 125.8
37 deg C 12 7C0 013B 126.2
36 deg C 13 800 013¢C 126.5
34 deg C 14 840 013D 126.9

I1-88

‘eb 17 12:17 1984

33
32
30
29
28
26
25
24
22
21
20
18
17
16

deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg

nnnnnnnnnnn_nnnnnnnnnnnnnnnnnnnnnn

15
16
17
18
19
1A
1B
1c
10
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2c
2b
2E
2F
30
31
32
33
34
35

loat_table:

.word $012A,
.word $0131,
.word $0139,
.word $0141,
.word $0148,
.word $0150,
.word $0158,

61
60
58
57
56
54
53

50

temp

deg
deg
deg
deg
deg
deg
deg
deg
deg

OO0

EQUALIZATION VOLTAGE TABLE

index

00
01
02
03
04
05
06
07
08

880
8C0
900
940
980
9co
AGO
A4D
A80
ACO
BOO
B40O
B8O
BCO
coo
c40
c80
cco
D00
D40
b80
DCO
EOD
E4D
E8O
ECO
FOO
F40
F80
FCO
1000
1040
1080

$0128,
$0132,
$013A,
$0142,
$0149,
$0151,
$0158,

vVt

340
380
3co
400
440
480
4cO
500
540

013E
D13F
0140
0141
0142
0143
0144
0144
0145
0146
0147
0148
0149
014A
0148
014cC
014D
014E
014F
0150
0151
0152
0153
0154
0155
0156
0157
0158
0158
0159
015A
0158
015¢

$012¢,
$0133,
$013B,
$0143,
$014A,
$0152,
$0159,

hex value dec value

0136
0137
0138
0139
013A
013B
013¢c
0130
013E

$012p,
$0134,
$013¢,
$0144,
$014B,
$0153,
$0154,

/fu/tam/solar/PSEUDOCODE Page 68

127.3
127.7
128.1
128.5
128.8
129.2
129.6
130.0
130.4
130.7
131.1
131.5
131.9
132.3
132.7
133.0
133.4
133.8
134.2
134.6
134.9
135.3
135.7
136.1
136.5
136.9
137.2
137.6
138.0
138.4
138.8
139.1
139.5

124.3
124.7
125.1
125.5
125.9
126.3
126.6
127.0
127.4

$012E,
$0135,
$013D,
$0144,
$014¢C,
$0154,
$0158,

$0130
$0138
$0140
$0147
$014F
$0157

I1-89

Feb 17 12:17 1984

49 deg
48 deg
46 deg
45 deg
44 deg
42 deg
41 deg
40 deg
38-deg
37 deg
36 deg
34 deg
33 deg
32 deg
30 deg
29 deg
28 deg
26 deg
25 deg
24 deg
22 deg
21 deg
20 deg
18 deg
17 deg
16 deg
14 deg
13 deg
12 deg
10 deg
deg
deg
deg
deg
deg
deg
deg
-0 deg
-2 deg
-3 deg
-4 deg
-6 deg
-7 deg
-8 deg
-10 deg

=N P~ On 000

nnnnnnnnnnnnnnnnnnnnonnnnnnnnﬁnnnnnnnnnnnnnnn

equal_table:

II-90

-word
.word
.word
.word
.word
~.word
.word

09
0A
0B
oc
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
18
1¢
1D
1€
1F
20
21
22
23
24
25
26
27
28
29
2A
28
2¢
2b
2E
2F
30
31
32
33
34
35

$0136,
$013E,
$0146,
$014E,
$0156,
$015E,
$0166,

580
5€C0
600-
640
680
6C0
700
740
780
7C0
800
840
880
8co
900
940
980
9co
AOO
ALD
A80
ACO
BOO
B40
B8O
BCO
coo
€40
c80
cco
00
D4O
D80
DCO
ECO
E4O
E8D
ECOD
FOO
F40
F80
FCO
1000
1040
1080

$0137,
$013F,
$0147,
$014F,
$0157,
$015F,
$0167,

013F
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
014A
0148
014¢
014D
014E
014F
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
015A
0158
015¢
015D
015E
015F
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
016A
0168

$0138,
$0140,
$0148,
$0150,
$0158,
$0160,
$0168,

/u/tam/solar/PSEUDOCODE Page 69

127.8
128.2
128.6
129.0
129.4
129.8
130.2
130.6
131.0
131.4
131.8
132.2
132.6
133.0
133.4
133.8
134.2
134.6
135.0
135.4
135.8
136.2
136.6
137.0
137.4
137.8
138.2
138.6
139.0
139.4
139.8
140.2
140.6
141.0
141.4
141.8
142.2
142.6
143 .0
1434
1437
144 1
144.5
144 .9
145.3

$0139, $0134,
$0141, $0142,
$0149, $014A,
$0151, $0152,
$0159, $015A,
$0161, $0162,
$0169, $016A,

$0138,
$0143,
$0148B,
$0153,
$0158,
$0163,
$01é68B

~$013¢,
$0144,
$014c,
$0154,
$015¢,
$0164,

$013p
$0145
$014D
$0155
$015D
$0165

Feb 17 12:17 1984

temp

deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
“deg
deg
deg
deg
deg
deg
deg
deg
deg
deg

s NeNeBesNasEsNasNeoEsEsNsEsEesEasEsNesNasEsNasNasEsNasNasNesNelsNasNslasNeNeNelNesNeNelNeNeNeoNeNesNeoNeNeNeNeNeNeNeResNeNe M)

MINIMUM BAfTERY VOLTAGE TABLE

index

00
01
02
03
04
05
06
07
08
09
DA
08
0cC
0o
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2Db
2E
2F
30
31
32
33

Vt

340
380
3c0
400
440
480
4¢0
500
540
580
5¢c0
600
640
680
6C0
700
740
780
7C0
800
840
880
8cO
900
940
980
9co
AOO
A4D
A80
ACO
B0O
B40
B8O
BCO
coo
C40
c8o
cco
D00
D40
p80
DCO
EOOD
E4O
E8OD
ECO
FOO
F40
F80
FCO
1000

hex value dec value

00EC
00EC
00ED
O0EE
OOEF
00EF
00FO
00F1
00F2
00F2
00F3
00F4
00F5
00FS
00Fé6
00F7
00F8
00F8
00F9
OOFA
00FB
00FB
00FC
00FD
OOFE
O0FE
OO0FF
0100
0101
0102
0102
0103
0104
0105
0105
0106
0107
0108
0108
0109
010A
0108
0108
010¢
010D
010€E
010E
010F
0110
0111
0111
0112

/fu/tam/solar/PSEUDOCODE Page 70

94.4
94.7
95.0
95.3
95.6
96.0
96.3
96.6
96.9
97.2
97.5
97.8
98.1
98.4
98.7
99.0
99.3
99.6
99.9
100.2
100.5
100.8
101.1
101.4
101.7
102.0
102.3
102.6
102.9
103.2
103.5
103.8
104.1
104.4
104.7
105.0
105.3
105.6
105.9
106.2
106.5
106.8
107.1
107.4
167.7

108.0°

108.3
108.6
108.9
109.2
109.6
109.9

#

TT-Q1,

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 71

min_bat_table:

W o e N Ne Ne Na e Ne e VR N N NP N Ne Ne Ne %e Ne Yo NS Ne %e N Yo %o Ne NE Ne Ne Yo NS Ns Ne Ns Ne Ne Ne Ne %o Ne N

-8 deg C 34 1040 0113 110.2

=10 deg C 35 1080 0114 110.5

-

.word $OOEC, SOODEC, $O0ED, $O0EE, $OOEF, $O0EF, $O00F0, $OOF1
.word $00F2, $OOF2, $00F3, $00F4, $O0F5, $00F5, $00F6, $OOF7
.word $O0F8, $OOF8, $00F9, $OOFA, $O0FB, SOOFB, $OOFC, $0OFD
. .word SOOFE, $OOFE, $OOFF, $0100, $0101, $0102, $0102, $0103
" .word $0104, $0105, $0105, $0106, $0107, $0108, $0108, $0109
.word $010A, $010B, $010B, $010C, $010p, $010E, $010E, $010F
.word $0110, $0111, $0111, $0112, $0113, $0114

% % % ok de ok Kk ok ok gk kg ok ok dek de vk dk ke ok ok ek % ok ok ke ek ke %k ke vk vk ok ke ok ek sk ke ko ok ko ok e Kk de ke de ok ko ke ok

This routine is called to calculate the running "sum of coulombs" whic
the battery state of charge. The basic algorithm calls for the follow

calculation to be performed:
state_of_chg = state_of_chg + (battery I * iscal /battery_cap)

The basic problem here is dealing with the extremely large range of th
numbers involved. State_of_chg is stored as a 40 bit number with a .
maximum value of 1. (followed by 39 zeros). For values of iscal and
battery capacity of 1/45000 and 400, respectively, and battery I store:
the form, xxx.x, this equation reduces to:

state_of_chg = state_of_charge + (555 * battery I * (10)°-11)

If, for the purposes of calculation, we make the binary point right ju:
by multiplying thru by (2)°39, the equation becomes:

(5.49 * (10)°11) * state_of_chg =
(5.49 * (10)°11) * state of_chg +
(5.49 * (10)°11) * (555 * battery I * (10)"-1

Which reduces further, in general, to:

(5.49 * (10)711) * state_of_chg =
(5.49 * (10)711) * state_of_chg +
(iscal_bat_cap * battery_1I)

Hence, to calculate a new value of state of chg, multiply battery I by

parameterized value, iscal_bat_cap, which is equal to: -
5.49 * 10710 * discal * 1/bat_cap.

and add (or subtract) the result to (or from) the running 40 bit value

state_of_chg.

To read the value of soc, mentally move the binary point left to the or
position (i.e. divide by (2)°39) and read the value. -

If the battery is charging, i.e. the net current is flowing INTO the ba
the battery current is multiplied by the coulombic efficiency which is
function of the state_of_chg as follows:

State_of_chg coulombic_eff
decimal binary decimal binary

11-92

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 72

Ne %o %z %o %e

0 to .6874 < 0 1011000 1.00000 -
.6875 to .8124 < 0 1100000 .9063 11101
.8125 to .9062 < 0 1110100 .8125 -.11010
.9063 to 1.000 < 1 0000000 .6875 .10110

dhkkkkhkhdhhkhkdhhkhhhdbhddhbkdhhhkhhkhhdhkh ko kk kb kkkkkkkkhkk bk k sk hhhhhkdkkkk

Pseudocode:

calc_state_of_chg:

save regs;
if (battery I >0)

then do;
if (state_of_chg >= soc_brk1)
then coultombic eff = coul _eff1;

else if ((state of _chg >= soc brk2)
AND (state of _charge < soc_brk1))
then coulombic eff = coul eff2
else if ((state _of_chg >= soc brk3)
TAND (state_ of _charge < soc _brk2)y)
then coulombic_eff = coul eff3
else coulombic eff = 1.0;
battery I = battery T # coulombic_eff;
end;
state_of_chg = state_of_chg + (battery I * iscal _bat_cap); see above
if (state of_chg > 1y

then state of _chg = 1;
if (state of chg < 0)
then state of _chg = 0;

unsave regs;
end calc_state_of_chg;

rhdkdkdkkdkkkkhdkhkdhkdkdhhkkhkhkdkkhhkhkhkhkhhkhkdhhkhkhhdhk kA r ko hdhdhkhkhkkhkhhkkkkhkkhkkhkhhhkdd

This routine is called to calculate a running total of equalization counts.
For details about dealing with the lLarge (40 bits!) equalization count,

see calc_state_of_chg.

Since there was och frac to deal with, a section of the code for this
routine is a "hardwired” multiply rout1ne so that it wouldn't be necessary
to use the long 16 by 16 multiply routine. It is assumed, in order to make
this routine as fast as possible, that the fraction is only 7 bits long,
and that it is left justified with the binary point at the left end, Like

a fraction should be. 1In order to minimize the code and the requirement
for additional zero page storage locations for the interim solutions, some
of the variable locations used in mp_mult are also used here, as shown belc

temp_och_frac
\ /
| iscal_bat_cap | bat_mult?2 | 7 |
| l | I I | | | |
| | I I | | | I l
| I

multi mult?2 | product |

The product of bat _mult2 * och _frac is shifted as it is multiplied, into

the two bytes occupied by multZ. Temp_och_frac is overwritten.
kkkdkhhhkhkhhkhhkkhkhkhhkkhkhkkhdAddhhhhhkhhhbhhdkhkhhkkhkhkkdhhkdkhhhhhhkhkkhkhkhkdkhkhkdkkrrhkrhhhhkhkkkhki

'seudocode:

I1-93

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 73

calc_equal_count:
save regs;
if (battery_I < 0)
then do;
temp = (battery_I * och_frac)/256;
equal_count = equal count + (temp * 1scal bat cap)-
end;
=~ if (state_of_chg >= 1)
equal_count = equal_count - (battery I * iscal_bat_cap)
then state of_chg = 1;
if (equal_ count < 0) .

then equal count = D;
if (equal_ count > max_equal_count)
then equal_count = max_equal_count;

unsave regs;
end calc_equal_count;

hhkkhkhkkhhkhkhkhkhkhkhdhhkhhkhkhkhhhhhhhhkhhkhkhhkhkhkhhhkdbhhdrhhdkhkdhhkhkkhhhkhkhkkdkhkkhkhkhkhrhkrhkhk

This routine corrects the current state_of_chg value for battery

temperature,
kdkhkhkhkkkhkdkhhkhhhkhkhhhdhhhhhhhkhhhkkdhkhhhhhdkhhdkhhhdhkhkhhhhhkhhkhkhhkhkhkkhkhkhkkhkhkkkkk

e Vs 29 N

Pseudocode:

correct_state_of_chg:
save regs;
if ((abs_battery V >= .99 * equal_V) OR (state_of_chg > soc_top
then do;
state_of_chg = state _of _chg + .01;
if (state _of_chg > 1. .0) then state _of _chg = 1.0;
end;
if (abs_battery_V < min_bat_V)
then do;
state_of_chg = state_of_chg - .01;
if (state of_chg < 0) then state_of_chg = 0;
end;
index = (bat_temp >> 4) - $D;
if (index < 0)
then index = 0;
cstate_of_chg = state_of_chg * csoc_tablelindex];
unsave regs;
end correct_state_of_chg;

The following are the lookup table for the values in the expression:

*

value = (1 + coeff * (20.92 (vt - 2.56)))

where coeff = .0022 for temperatures > 25 deg (
= .0075 for temperatures < 25 deg (

In order to find the index to a value in the table, take the raw A/D
value for Vt, shift right 4 bits and subtract $0D.

NOTICE 1: The value stored in the table is assumed to have a hexadecim:
point in the center of the word, e.g. $0112 corresponds to $1.12

11-94

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 74

VOTICE 2: Vt, as shown below, is représented in "real volts" format, i.e.
the number represents the number of 1/1000's of volts., To convert this
salue to what is actually stored in memory, it must be divided by 4.

CORRECT STATE OF CHARGE TABLE

temp index Vt hex value percent
61 deg C 00 340 0114 108%
60 deg C 01 380 0113 108%
58 deg C 02 3c0 0112 107% ORIGINAL Fazil o
57 deg € 03 400 0112 1077% OF POOR QUALTTY
56 deg C 04 440 0111 107%
54 deg C 05 480 0110 106%
53 deg C 06 4C0 010F 106%
52 deg C o7 500 010F 106%
50 deg C 08 540 D10€E 106%
49 deg C 09 580 010D 105%
48 deg € 0A 5¢c0 010¢ 105%
46 deg C 0B 600 010¢c 105%
45 deg € oc 640 010B 104%
44 deg C) 680 010A 104%
42 deg C OE 6c0 0109 104%
41 deg € OF 700 0109 104%
40 deg C 10 740 0108 103%
38 deg C 11 780 0107 1032
37 deg C 12 7¢O 0106 103%
36 deg C 13 800 0106 102%
34 deg € 14 840 0105 102%
33 deg C 15 880 0104 102%
32 deg C 16 8co 0103 101%
30 deg C 17 900 0103 101%
29 deg C 18 940 0102 101%
28 deg C 19 980 0101 101%
26 deg C 1A 9co 0100 100%
25 deg C 1B AQDO 0100 100%
24 deg C 1c A4O 0OFD 99%
22 deg € 1D AB0 OOFA 98%
21 deg € 1E ACO OOF8 97%
20 deg C 1F BOO 00F5 96%
18 deg C 20 B40 00F3 95%
17 deg € 21 B8O 00FO 94%
16 deg € 22 ‘ BCO OOEE 93%
14 deg C 23 coo 00EB Q2%
13 deg C 24 €40 0OOES8 91%
12 deg C 25 c8o0 O0E6 90%
10 deg C 26 ' cco O0E3 89%
9 deg € 27 D00 DOE1 887%
8 deg C 28 D40 00DE 87%
6 deg C 29 D80 o0pcC 86%
5 deg C 2A DCO 00b9 85%
4 deg C 2B EOO 00bpé 847%
2 deg € 2c E4D 00p4 83%
1 deg C 2D E8BO 00D1 82%

II-95

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 75

-0 deg C 2E ECO 00CF 81%

-2 deg C 2F FOO oocc 807%

-3 deg C 30 F40 00CA 79%

-4 deg C 31 F80 - 00c7 78%

-6 deg C 32 FCO 00cs 7%

-7 deg C 33 1000 00c2 76% -

-8 deg C 34 1040 00BF 75% 5
c 35 1080 00BD 747)

-10 deg

csoc_tabte:

Ne Ne hu NE Ne %o %a %o %o N N

.word $0114, $0113, $0112, $0112, $0111, $0110, $010F, $010F
.word $010E, $010p, $010c, $010C, $010B, $010A, $0109, $0109
.word $0108, $0107, $0106, $0106, $0105, $0104, $0103, $0103
.word $0102, $0101, $0100, $0100, $OOFD, $OOFA, $OOF8, $OOF5
.word $00F3, $00F0, $OOEE, $00EB, $O0E8, $00E6, $OOE3, $OOE1
.word $00DE, $00pC, $00p9, $00D&, $00D4, $00D1, $OOCF, $00cCC
.word $00CA, $00c7, $00C4, $00c2, $00BF, $00BD

khkkhkkhkhhkhhhhkhhkhkhkhhkhkhkhkhkdhkhhhhkhkhhhhhhhhhdhhhhkddhhkhkhdkhkhhkhkhkhhkhkhkhkkhkhhkhkhhhrkhikhk

This routine, called once per second, performs the actual control of t
loads connected to the system, as determined by the state variables
prod_mask (created by determine mach state), user Ld req (set by the u
from the terminal or keypad), and overld tr1p (set by chk for overld).
Depending upon the state of charge of the battery (as indicated in
cstate_of_chg), various loads are turned on or off so as to maximize
battery Llife. 1In addijtion, various warning indicators (RED and YELLOW
LEDs, and the Low Battery indication on the LCD Display) are turned on

or off to alert the operator to unusual or dangerous conditions.
hkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkkhkhkhkhkhkhk kA hkrAr AT hrAhkhkhkhrhkhkhhhkhkkkhkhrhhkhkhhkhkrhkhkrdhrrhkhkhhkhkhkhhk

Pseudocode:

shed_restor_loads:

II-96

save regs;
if (Chours >= #%08) AND (hours < #%$12) AND
(total_chgr_I > (5.12 * 0.1 «* *num_load str1ngs)))

then delta = #delta _soc; /* delta soc = 0.1 */
else delta = 0;
j = stow_leds;

do i = 4 to 0 step -1;
if ((cstate_of chg + delta) < shed_thresh[il)
then do;
j = i AND shed_msk_tbl[i];
ignore the next statement and continue Lloop;
end;
if ((cstate_of_chg + delta) >= restor_thresh[il)
j = j OR restor msk tblLiJ; ,
end; -7 -
j = (j OR #ldé6_on) AND prod mask);
if ((j & restor msk tbl[41) <> 0)
then j = j AND F#yled off;
else j = j OR #yled on;
if ((j AND restor_msk tbl[DJ) <> 0
then j = j AND #rled off;
else do;

“w ~ww we wEe WS We Mg

%Feb 17 12:17 1984 /Ju/tam/solar/PSEUDOCODE Page 76

j = 3 OR #rted_on;
j = 3 AND #yled_off;
end;
sr_temp = j; -

j = user_Ld_reg OR #leds_on;
sr_temp = sr_temp AND j;
if ((sr_temp & #rled on) <> 0)
then alarm_flags = alarm_flags OR #enable_ Llobat;

else alarm_flags = alarm_flags AND #disable_lobat;
if (ovrld_trip <> 0)

then do;
j = sr temp AND “ovrld trip;
stow_leds = j | #rled_on;
end;
else stow leds = sr temp;
led_out_latch = stow_Lleds;

unsave regs;
end shed_restor_loads;

kkhkhkkhkhkhkhkkhkhkhhkhhkhkdkkhkhhdkkhhdhhkhkdkhkdrhhkhhhdhkhhhhhhhhkdhhkdkdbdhhdhhhkdhrhhkhhkdrhkkdhhkkk

This routine, called every second, checks the currents in the 5 load
strings and if a current exceeds a Limit for more than a certain number
of times (this "count" being load specific), the bit corresponding to
the load number that has suffered the overload is set in the ovrlid trip
mask, and the load is immediately turned off (as opposed to waiting for
the next execution of the shed/restore load routine).

rhkkkdkkkhkhkkkhkhkkkhkkhkkhhhhhhhhkhhkdhhkkhkhkkdkdkdbhhhhdhhdbhhhhhkrddkkhdhhdhhhdhkdkhkhkdkhhkhkkhk

'seudocode:

hk_for_ovrld:

save regs;
do i = 4 to 0 step ~1;
if (bus_ampsl[il < 0D
then sr_temp = - bus_amps{il;

else sr_temp = bus_aﬁps[i];
if (sr_temp > ovrld_thresh[il)
then do;

ovrld cntlil = ovrld _cntlil - 1;
if (ovrld_entlil = 0)
then ovrld_trip = ovrld trip OR ovrld trip_msk[il;

end;
else ovrld cntli] = ovrld_cnt_maxlil;
end;
if (ovrld trip <> 0)
then do;
stow_leds = stow_Lleds AND “ovrld trip;
stow leds = stow leds OR #rled on;
led out_latch = stow_leds; -
alarm_flags = alarm_flags OR #enable bell;
end;

unsave regs;
end chk _for_ovrld;

khkdkkhkhkkkhkhkhhkhhkdhkhkhkhkkhkhkdhhkhkhhhhhkhbkdhkhhhhhhhhhkdkhhdkhkhbhhdkkdkhkhhkhhkhhkrhkhkhkkhkkkk
The function of this routine is to determine if more or less array branches

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 77

should be connected. This routine is entered every time the one sec f
is set. The pattern for the two PWM latches are held in bits 0 thru 6

stow_pwml and stow_pwm2.

wa e %e %o

Pseudocode: _

discrete_array_cntrl:

= save reg;
if (abs_battery V > bat_Vv_Llimit)
then do;

stow_pwm1l = 0;
stow_pwm2 = 0;
end;
else if (abs_battery_V > (bat _V_Llimit * 31)/32)
then do;
if (stow_pwm2 = 0)
then do;
stow_pwml = stow_pwml >> 1;
stow_pwm2 = stow_pwm2 >> 1;
end;
end;
else if (abs_battery V < (bat_V_Llimit * 30)/32)
then do;
stow_pwm1 = (stow_pwm1 << 1) + 1;
if (stow_pwm1 AND $40 <> 0)
then do;
stow_pwm1l = stow_pwm1 AND $3F;
stow_pwm2 = (stow_pwm2 << 1) + 1;
stow pwmZ2 = stow pwm2 AND $3F;
end; - T

end;
stow_pwmil;

array_sel1
stow_pwm2;

array_sel2
unsave regs;
end discrete_array cntri;

chkdkkdkhkdhkhkhkhkhkkk kb kA kA Ak A kA Ak A kA AT AR A A Ak kA kA hhk kA dhkhkhkhhkhkhhkrrkhkkhkhkki
The routine determines which of the four states of the machine (descri
below) that the machine should be in based on state_of_chg and product
levels and then sets up those conditions. It is assumed that the prio
of functions is:

1. charging the battery
2. running the lLoad
3. making product

state #1 battery is so low that product and load relays are all
7 off (state1 = 00000000 .
state #2 ‘battery partially charged, load relays closed,

product relay open (state2 = 11111000)

state #3 battery close to full charge, load relay open,
product relay closed (state3 = 00000100)

AT BT TIIAIETIE T FEL PR TI THL TI TR TR TRE TR YN 9

I1-98

Feb 17 12:17 1984 /fu/tam/solar/PSEUDOCODE Page 78

state #4 battery close to full charge, load relays closed,
product relay closed (state4é = 11111100)

note 1: When refering to the fact that the load relays are closed, tt
presumes that the overload threshold has not been exceeded.

note 2: The product relay is lLoad #1, the load relays operate as a
unit (in so far as this routine is concerned), so that
loads 2 thru 5 are turned off and on together,

State Diagram:
(00
-===5STATE 1-=>~-

I |
- l
v
(corr_soc<soc1) |
| (corr_soc>soc1+bufsoct)

TE YR WE IR YW VS WS WE WA RS NS WE W NE Ne NG NS N5 % We Ns Ne N Ve Ne %e Ne Ng Na %r %o %o %e N

v
\ /
\ /
\ /
\ (F8) /
“{mmm=Cmm==K-==K==<==STATE 2<-=-=-D-==deeeedocacdemunx
l / \ l
% / \ v
(prod<prod1i) / \ (prodi<prod<prod2)
AND | \ AND
(corr_soc>soc2+bufsoc2) - | . (corr_soc>soc3+bufsoc3)

I I - l

| (corr_soc<soc2) | v

| - (prod>prod2+bufprod?) |

v | OR |
: | et LD (corr_soc<soc3) |
; | / - v
; STATE 3<-===C==m==g=- | |
; | (04] “Kmmm=ge ===~ |
; | (prod<prod?) [
; | AND Cmmmmlemmmlemm=lm ===l ===STATE 4
; | (corr_soc<socé) | (FO)

v -

I

--—->(prod>prod1+bufprod1)OR(corr_soc>soc4+bufsoc4)--
;**
*seudocode:
jeter_mach_state:

save regs;
if (prod_mask = statel)

then if (cstate_of_chg > soct1 + bufsoc1) *kkcaselrx*
then prod mask = state?;

else if (prod_mask = state2)
then do;

11-99

reuv ar ses1r IYs4 /u/tam/solar/PSEUDOCODE Page 79

if (cstate_of_chg < soct) *kkcaselkkk
then prod_mask = statei;
else if ((prod1 <= prod < prod?2)
AND (cstate_of chg > soc3 + bufsoc3)) ***case3s
then prod mask = state4'
else if ((prod < prod1)
AND (cstate _of_chg > soc2 + bufsocZ)) *kce
then prod_mask = state3'

end;
- else if (prod _mask = state3)
then do;
if (cstate_of_chg < soc2) *kkcaseSxkk
then prod mask = state2;
else if ((prod > prod1 + bufprodi) OR
(cstate_of chg > soct + bufsock) **kcasebx
then prod mask = states
end;
else if (prod mask = state4)
then do;
if ((prod < prod1) AND (cstate _of_chg < socéd)
then prod mask = state3; kkkcaselk**

else if ((prod > prod2 + bufprod2)
OR (cstate_of_chg < soc3)) ***caseB8%xx
then prod mask = “state2;
end;
call shed_restor_loads;
unsave regs;
end deter_mach_state;

**1
This routine handles all of the initialization duties, runs the RAM

and lamp test.
**i

e %e N N

Pseudocode:
test:

disable interrupts;
make sure we're in decimal mode;
stack pointer = $FF;

pia csra = ddr sel;

pia_csrb = ddr_sel;

pia_ddra = paddr_mask;

pia_csra = pa_ edge sel OR ddr_desel;

pia_porta = dsply sel dsb AND dsply clk_off;
pia_ddrb’ pbddr_ mask'
pia_csrb pb_ edge sel OR ddr desel;
- pia_portb = $0F; -)
= led_out_latch = $00; -
do x = 0 to $FF

$0000LCx] = $FF;
end;
do x = 0 to $FF

if ($0000LCxJ <> $FF)

then call ram_error;

II-100

b 17 12:17 1984 /u/tam/solar/PStubuLuvE rage ou

end;

do x = 0 to $FF
$0000Ix1 = $00;

end;

do x = 0 to $FF -
if ($0000Cx]) <> s$0OH
then call ram error;
end; -
rom ptr = $0100;
do while (rom_ptr[1] < max_ram_size)
$0000Lrom ptrl = $FF;
rom_ptr = rom_ptr + 1;
end;
rom_ptr = $0100;
do while (rom ptrl1] < max ram size)
if ($0000Trom_ptrl <> SFF)™
then call ram_error;
rom_ptr = rom_ptr + 1;
end;
rom_ptr = $0100;
do while (rom_ptr[1] < max_ram_size)
$0000Crom _ptrl = $00;
rom_ptr = rom_ptr + 1;
end;
rom ptr = #3%30100;
do while (rom_ptr[1] < max_ram_size)
ijf ($0000Crom ptrl <> $00)
then call ram_error;
rom_ptr = rom_ptr + 1,
end;
pia_portb = bell_on OR $0F;
call lamp_test;
pia_portb $0F;

nit timer:

imer1:

imer2:

timer_csr = timer_reset;
timer_csr = ldall_timers;

timer_csr $0F;
timer_datea $00;
timer dats $00;

nnnni

timer_data master_model;
timer_data master_modeh;
timer_csr = $01;

cntri1_model;
cntri_modeh;

timer_dats
timer data

timer_data = $00;
timer_data = $00;
timer data = $00;
timer_data = $00;

cntr2 model;
cntr2_modeh;

timer_data
timer_data

timer_data = $00;
timer_data = $00;
timer_data = $00;
timer_data = $00;

I1-101

Feb 17 12:17 1984 /u

$
$

timer_csr
timer_csr
timer data
timer_data
timer_data
timer_data

nHunu

timer3:

timer_data
timer data
timer_data
timer_data
timer data
timer_data

timeré:
timer data
timer_data
timer_data
timer_data
timer_data
timer_data

timer5:
timer_data
timer_data
timer data
timer_data
start_timers:

timer c¢csr = $
timer_csr = $
timer_data =

timer_data =

timer_csr = §
timer_csr = §
timer csr = %

init_zpg: -

compute_flags
sp stor = $FF
column_number
pia_portbh = ¢

write portb
bounce_count
stow_leds = 8
led out_Llatch

stow_pwﬁ1 = $
array_sell =
stow pwm2 = $

_ array_sel2 =
next_seldom =
.do x = 4 to O
N overld cn
shed_thre
restor th

end; -

state_of_chgl
inhibit = $01
one_sec_timer
call msg_hndl

I1-102

/tam/solar/PSEUDOCODE Page 81

43 ;
OA;
$59;
$23;
$00;
$00;

-cntr3 model;

cntr3 modeh;
cntr3”ld_reg;
cntr3_Ld reg+1;
cntr3 hold reg;
cntr3 hold reg+1;

cntr4_model;
cntré_modeh;
cntré_Ld reg;
cntré _Ld reg+1;
cntré_hold reg;
cntré_hold reg+1;

cntr5 model;
cntr5 modeh;

def baud rate;
def_baud_rate+1;

compute_flags OR run_flag;

°
’

$08;

olumn_number AND $OF;
column_number AND $0F;
max_bounce_count;

00;

00;
$00;
00;
$00;
$18;
step
tIx3]
shlx]
reshlx]

$00;

-1

overld cnt_maxIxJ;
shed_th[xJ;

restor_thlxJ;

43

-
’

$40;

250;

r('WELCOME TO THE TRISOLAR DEBUG MONITOR');

Feb 17 12:17 1984 /u/tam/solar/PSEUDOCODE Page 82

call display clr;

i_o_flags = i_o_flags OR dataset_ready_ flag;
pia_csra = pa_ edge sel OR ddr deseL OR x4 _msec_enab;
enable interrupts;
goto run_task _master;

ram error:

call display_error(2);
call display_digits;
loop:
goto loop;
end ram_error;

rhhk ko khkhkhhkhkh kA ko kb kb kd bk kh kR kkhkkdkhhhkhkhhhkhhhhrhkhkhhhkhkhhkhkhkhhkx
This routine is called every 100 msec to average the 16 readings of each

of the 12 often read channels.
kAT I A AR A AR A A A A AT Ak Ak kb k kA ko kkkhkhkkhkkhkhkdhhkhkhdkhkhhhkhhkkhkhkhhkhkhkhkhkkhkhkihk

’suedocode:

iignal_av:

do next_often = 0 to num_of_often_reads;
adc temp hold = 0;
do pointer = 0 to max _Ppass_num;

adc_temp_hold = often read[po1nter next oftenx32]
+ adc_temp~hotd~

end;
often_readlnext_oftenl = adc_temp_hold/16;
end;
total_chgr_I = 0;
do index = 2 to num_of_often_reads;
total_chgr_1I = dump “arraylindex] + total _chgr_1I;
end;

end signal_av;

I1-103

f. Report No. 2. Government Accession No. 3. Recipuent’s Catsiog No.
NASA CR-T14723
4. Title and Subteie - S Report Date
Development of a Microprocessor Controller for — goJuhf’ 13?4
. -] . ef 101 Ny rg)ﬂlll [{e] e
Stand-Along Photovoltaic Power Systems ' _TSC 210F
7. Author(s) 8. Performing Organization Report No.
- Atan R. Millner
10. Work Unit No.
9. Performing Organization Name and Addresy
Tri So]arCor‘p 11. Contract or Grant No.
10 De Angelo Drive ' DEN3-310
BEdfOY‘d, MA 0] 730 - 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address . ontractor Report
fﬁs. bega;tment of Energy Contr P
Division of Photovoltaic Energy Technology 14. Sponsoring Agency Report Number
Washington, D.C. 20545 DOE/NASA/0310-1

15.

Supplementary Notes

Final Report. Prepared under Interagency Agreement DE-AIQ1-79ET20485. Project
Manager, R. Delonbard, Energy Technology Division, NASA Lewis Research Center,

" Cleveland, Ohio 44135.

16.

Abstract
A controller for stand-alone photovoltaic systems has been developed using a
low power CMOS microprocessor. It performs battery state of charge estimation,
array control, load management, instrumentation, automatic testing, and
communications functions. Array control options are sequential subarray
switching and maximum power control. A calculator keypad and LCD display
provides manual control, fault diagnosis and digital multimeter functions.
An RS-232 port provides data logging or remote control capability. A prototype
SkW unit has been built and tested successfully. The controller is expected
to be useful in village photovoltaic power systems, large solar water pumping
installations, and other battery management applications.

17. Key Words (Sutwgested by Authoris)} 1B. Distribution Staternant
Photovoltaic, Controller, Unclassified-unlimited
Microprocessor, Battery, State-of- STAR Category 44 -
Charge, Load Management DOE Category UC-63
19. Security Classit. {of this report) 20. Security Ciassif. (of this page) 2‘1. No. of Pages 22. Price”
Unclassified Unclassified 160

" For sale by the National Techmical Information Service, Springhield. Vuginia 22161

