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ABSTRACT

A methodology for performing fault-tolerant system reliability analy-
sis is presented. The method decomposes a system into its subsystems,
evaluates event rates derived from the subsystem's conditional state
probability vector and incorporates those results into a hierarchical
Markov model of the system. This is done in a manner that addresses
failure sequence dependance associated with the system's redundancy man-
agement strategy. The method is derived for application to a specific
system definition. Results are presented that compare the hierarchical
model's unreliability prediction to that of a more complicated standard
Markov model of the system. The results for the example given indicate
that the hierarchical method predicts system unreliability to a desira-
ble level of accuracy while achieving significant computational savings
relative to a component-level Markov model of the system.
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1.1 __Background

Analytic reliability modeling is required to support the design and
validation of h}ghl} reliablé fault-tolerant systems (Ref{1}). The most
accuréte. method for evalqa;ing system reliability involves the life
testing of many systems. Relfability statistics are subsequently
derived from the test data. However, for large.»highly reliable complex
systems thfs is‘impractical due to the time and expensev involved in
testing such a system. Consequen;fy it is.necegsary to analytically

" model the reliability of large highly‘reliable systems.

There are two general apprﬁaches to system reliability modeling, both
of which rely upon knowledge of component failure rates: (that can be
found through life te#fing). First, there are‘combinatorial methods
(Ref {2}, {3}) in thch component reliabilities and unreliabilities are
~used in conjunction wiih an enumeratfonlof failure events to arrive at a
system reliability prediction. Secondly;. there is the Markov model
aphroach (Ref{4}). This approach associates failure combinations. with
Vstatés of a Markov cﬁain wherein component failufe réte§ define transi-

tion rates.



1.2 Motivation

Both approaches en¢ounter difffculties with the evaluation of large
complex systems; A common combinatqrial hethod is the event'ﬁpace meth-
od. Thig method utilizes an enumeration of combinations of failed and
unfailed components. Each of these combjnation§ defines tﬁe condition
of every compongnf ;in thg sfstem >;o that. combinatiéns are ‘mutgally
exclusive and hehce the probabi)itfes are addftive. FQr é large complex
system; the large nqmber of cqmpénents'will lead té'mahy‘complex terms,
énd thus a Iarge algebraic expression to be evaluated.

'This situatjon can'be'mitigated somewhat through';he"QSe of struc-
tuEai decomposition ‘(Ref{s}).v Sfrﬁctural decomposition consists of
dividing _é system ihtorsmaller independent subsystéms (redundancy man-
‘agement is local to the subsystem), analyzing the subsysiéms and:chen
combining the éubéystam f§§ults cbmbinatorially t6 obtain the:results
for theﬁ systém. However, this approéch ‘breaks down. whgn the iime» o

sequence of events is an issue.

- There are two tYP¢§ of §equence’depehdencies that arise'in tﬁe.evalu;
aiion>6f fault-foleraﬁt s}steﬁs.- firét, tﬁere are time-ordered evenf
sequénces associated with‘false alarmé. Thfs probliem hés been_invéSti-
gateé ‘byALuppold et él'KRef{G}). Seconq'fheré‘afe time-ordered event

" sequences that'resUIt from,the'sys;em‘s redundancy management»“pdlicy{>



In particular, Schabowsky et al (Ref{5}) show how system reconfiguration
can introduce time-ordered event seduenceé which greatly complicate a

combinatorial approach.

In order to demonstrate the probiem of tfme ordering of events
resulting from a reconfiguration strategy, the unreliability of an exam-
ple system (described in Chapter 2) is examined using three methods.
These methods are: the event-space method, a compbnent-level Markov
model,>-and the ‘hierarchfcal approach ‘that is explored in this study.
The results in Figure 1.1 clearly show that thevabSence of time-ordering
con;fderations in thé combinatorial; analysis leads to a coﬁservative
unreliability prediction. This is due to the fact that some operatiénal

_statés areAactually considered non-operational states in the event space

method while they are accdrately represented by the other two methods.

Al though a Markov model approach.;onveniéntly'ﬁandles time ordered
eQents. this approach encounters difficdlty when a system with a Iarge
number of component; i# considered. withvmany components (and thus many
combinations of failures to be_considered) the Hafkov mode mayAhéve a
very.large state space. A large state spacé franslates into a largé
system of differential equations that must be solved to produce an Qnre-
liability predittion; The broposed hi@rarchi;al approach»mftigates the

probiem of state proliferation while stfll addressing the problem of
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sequence dependancy, and furthermore, produces state history probabili-

ties for the system whereas the combinatorial approaches do not.

1.3 MHethodology

The underlying concept of the hierarchical apbroach is that of aggre-
gating cohbonent-leve\ Markov model states fnto hierarchical states.
The associated hierarchical state transitions are often'time-varying to
reflect multipleA(non-simultaneous)‘failures within a given subsyéfem.
These transitions correspond to sﬁbsystem-level events sﬁch as ﬁerform-
ance degradaiion and sdbsystem loss..and in turn usually imply system-
levél performancé degradation. Consequently, the hierarchical model
becomes semi-Markov beéause the holding timé probability density func-
tions for eaﬁh hierarchicai state are generally no longer the same for
all transitions from a particular hierarchical state to other hierarehi;
cal states. In fact, the holding time distributions in the the hierar-
_chical states are often Erlang (Ref{7}) (ér-more gengfal) and this léads.'
to a problem. For a semi-Markov chain where the failure rate fr;m St;te

i to state j can be expressed as A, (t) and A (t) = 3 x,,(t),
, _ J

t . t _

, . -[, A (Dar t - A (nar
p.(t) = P (0)e® 2 1 for g tme 0 ax
i 3 i 5 . |

(1.1)
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(Ref {8}) . Even for absméll.number of states this is a computétional
‘nightmare to solve. Note that the second term in equation 1.1 contains
a convoldtion integral. This arises due to the dependence of a semi-
‘Markov state's holding time on the time at which the state was entered
(1ocal iihe)._ The hierarchical approach exploits the Markov property
and thus the local tiﬁe dependence is memoryless. This makes the sol-
dtién to the hierarchical model easier by assuming a single common hﬁld-
ing time distribution for all -exit transitiohs "from a particular

hierarchical state which allows us to write differential equations for

the :system state probabilities and eliminates the need to explicitly

convolve.

~In the hierarchical iapproach subsystem level events are addressed
thr0ugh the use of tihe-varying event rates computedAfrom the compo-

nent-level Markov models of the system's particular subsystems.. These

‘event rates are imbedded into the hierarchical system model. The

"~ resulting model is then evaluated over a mission time. Note that the

subsystem events of interest are application-dependent beéahse. they

dépéhd on the system's redundancy management strategy. For example, 6ne4

- of -ihe subsyéthm event rates mighi be associafed with a ,pariicular

degraded‘s;ate while another event rate is the subsystem'failure rate.

It is important to note a current restriction on the hierarchical 4

s approach. At this juncture the issue.of Eépair'has not been addressed

11
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in the hierarchical approach. We also hote'that White, Butler and Lee
(Ref {9}, {10}, {13}) examine a semi-Markov approach to unréliability eval-
uﬁtipn. However, their approach does not address the state prolifer-
ation problem in that it utilizes component-level events ratﬁer than
subsystem level events as in the hierarchical approach and thus does not

reduce the state space of the fault-occurrence model.
I I u - ll

The purpose of this thesis is to present a hierarchical approaéh to .
reliability modeling of fault-tolerant systems made up_of fault-tolerant
'building blocks' (Ref{5}). The technique is'deveioped in the context of
an example architecturé. The first section of Chapter Tw6 charactefizes
the develobment of a hierarchical modei. Section 2.2 defines fhg terms
to be uéed in the derivation of the hierarchical approach and defines a
hierarchical Markov state. Section 2.3 presents the sample architecture
to which the hierarchical approach is applied. Section 2.4 gives a gen-

eral foronf the soiution'of a hierarchical model.
Chapter Three describes the implementation and simulation of the

hierarchical aﬁproach as it is applied to the sample architecture of

Section 2.3.

12



Chapter Four presents the results of the various test cases imple-

mented.

Chapter Five summarizes the approach, the résults of this study and

presents topics for further research.
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2.1 _Outli £ Hi hical Model D ] I

Hierafchiéal model development is a four stage process as shown 1in
figure_2.1. The process begins with a system definition. For a fault-
tolerant system, a system definition involves defining the architecture
and redundancy ménagement strategy. From the system definition we iden-
'tify the set of subsystem level events that are of interest. These
include évents which trféger reconfigurations gnd the reaching of vari-

ous performance levels in a subsystem.

For the identified set of events, a set pf component-level event mod-
els.are developed{ _The(e will be an event modei for each unique event
defined. Ff&m each of these models,‘an (approximate) event rate can be
derived. Using the event definitions and event rates, a hierarchical
model of the system is developed. Each hierarchical state représents
the system stétus with respect to the occurrence or non-occurrence of
the set of subsystem events. Thevrates of occurrence‘of these . events

appear as the transition ‘rates among the states of the hierarchical

model .

14
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The hierarchical model state descriptions are unique. We know tﬁat a
full (no state aggregation or model truncation) unique component-level
model -of the system can be developed from the system definition. We
also know that each state from that model maps uniquely into a hierar-
chical state. | Thus the hierarchical model state descriptions are
unique. Next we define the terms to be used in our development of the

hierarchical approach.

2.2 Definiti
22' u Eo oI. EI

In deriving_the hferarchical approach it is impbrtant‘to define the
contéxi and relationships between the terms used."Those terms are: com-
ponent, subsystem, system, reconfiguration rules, component-level ﬁod-
els, subsystem models, and hierarchical models. We begin with a simpleb
gxamplé. Then a general foronf the solution is presented for a more

complex example which is used in_the remainder of this work.

A simple example is used here to introduce the terms used in the
hierarchical approach. The Laulx;xglg;anz__sxsxgm is made up of two
fault-tolerant subsystems and is shown in figure 2.2. '

16



FTP1

component A

component A

" FTP2

cunporm£ B

component B
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Each fault-tolerant subsystem is made up of two like components. However
. the two subsystems may have different comﬁonents. A component is an
element of a sussystem and often»has a constant failure rate. Without a
loss of generality (see Appendix A) we shall assume constant component
failure rates throughout this study. £un;119n4mig;aiign means fhat sys-
tem operation with respect to a particular function moves from one sub-
system to the other subsystem according to the system reconfiguration
rules. The system has‘the reconfiguration scheme given graphically‘in

figure 2.3 and uses the following definitions.

18



subsystem 1

A degraded subsystem is one that has one or more failed components. A

failed subsystem is one that has two failed components.
‘Traditionally the component-level system model is fdfm_ed‘ as in figure

2.40 :

.19



For the hierarchical approach, component-level subsystem models are

formed as in figure 2.5.

20



.Froin this.'.'compoﬁent-lvevel sﬁbsystgm -mo..del, subsystem event rates are
| der_vived- (this.‘r process is aevscribedv in 'sectionv 2.4). ,'Ther_'e are generally
‘>two‘ types of subsysteth event 4rates to be consi_dered.' These are: the
rates ét which a sdbsjstefn reaches vafious degrat_:led states énd the raté "
. at wh‘ich é_ subsystem bécomes failed. Using such subsystem event rates,

a hierarchical model of the systeln is formed (figure 2.6).

21



Compar i ng fi§ures 2.4 and 2.6 we see that the hierarchicél mode aggre-‘

 gates component-level system mode] states.



Now that the essential elements have been introduced, a compiete

characterizatjon of a hierarchical Markov state is given.
2 z 2 n Ea oIn E II. - It ] II | SI I

The essence of the hieréfchical approéch lfes in the definition of a
hiefarchiéal‘ Markov state. A hierarchical state captures the §ystem
stafug in terms¥of:sUbsystem-level events rather th;n _component-level
events (as in the standard component-level _Markov mode{ approach
Ref{4}). Normally, a Hérkov model generates the probability of having
experiencedba'sequencé of component failures. However, in the propqséd'
approach, the hierarchiéal model generafes .the' probability of. having
experienced a séquenée of events which reflect tﬁe status of'the sys-
tem‘s‘subsystems. This is due to the faét that a hiérarchical'.médel
state is an aggreg#tion of those component-levél system model states
which have thé same system status with respect to the pertinent subsys-
tem-level events. Consequently, a hierarchical state probaﬁility is
'(épproximately) the suﬁmation of the corresponding componeﬁt-levei sys-

tem model;étaté probabilities.

In order to derive the exit'trahsition_rates for the hierarchicali
states additional information must be associated with each hierarchical .
 .s£ate, In pafticular. for each subsystem-level event correspondfng to

an exit transition from a given hierarchical state we must formulate an

23



event model which reflects both the time of entry into that particular
hierarchical S;ate and the poSsible states that the subsystem can be in
whenthat hierarchical state is entered. The solution of the event model
:provides fhe timeAevolution of a conditional subsystem stéte probability
| vector (conditioned on being in a barticulaf hierarchical state) which
in turn provides the informatipﬁ nece;sary to derive the corresponding
~exit transition rate. The event models are.readfly derived from the
component-level subsystem>mode|s as will be shown in Section 2;4. The
derivation of the transition rates among hierarcﬁical states will also
- be prescribéd in Section 2.4. Présently we will describe the Samp}e
" architecture used to illustrate these steps in the formulation of a
' hierafchical model. AThis éxample is also utilized to-provide the numer;

ical results of Chapter 4.

2.3 Sample Architecture

The sample architecture is a distributed processing system that con-
sists of a collection of pfocesSing subsystems that are completely
cross-stragped such that fnfbrmationvcan be eichanged beggéen'any pro-
cessors. In formulafing the'hiefarchiéal'model in section 2.4, Qe.will
find that only tw§ subsystems érevvﬁéeded in the sample architecture
(fiéure 2.7) to fully describe therapproach. its'impiementétion; and

associated prbblems. The ground rules for this system's operation pre-

scribe that a quad fault-tolerant processor (FTP) (Ref{14}) is said to

24
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be operational if it has suffered no more than fhree channel (component)
failures, and is said to be degraded (i.e., loses masking capability) if
"it has had two or more channel failures. A particular system function
. will remain in the initial supporting processor until that processor
becomes degraded. The system will then migrate the function to a sub-
system that is not yet degraded (if one is available), otherwise the
function will remain jn-that subsfstmm until a third channel failure
results in a system loss (see figure 2.8).> In this example, the fun;-
tion of interest starts in FTP1 and migrates to the other subsystem as
indicated in the hierarchical model in figure 2.9. Note that in this
analysis, intercomputer network failures are neglected for the purpose
of clarity. Note also that failure.detection and isolation (FDI) of
éhannel failures is assumed to be local to the subsystems.  This is a
‘necessary ‘condition for the application of the hierarchical approach.
However,bcoverage at the system level (i.e., probability of success of
function migration) although not included fn this example, can be readi-
ly "incorporated in the state transitions of the hierarchical model. The
derivation of the transitidn rates among the hiefarchical sfates (see

figure 2.9) is given in section 2.4,

26



:m\ degraded FTP! and nat degraded FTP2

‘For this'samplé architecture two different event models are required
" for each subsystem. This is because for each subsystem there are two
distinct subsystem-level events intrinsic to the system definiiion, As

previdusly stated, separate event models are néeded to prqducé the con-

27
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ditional subsystem state probability vectors associated with the calcu-
lation of hierarchical state transitions. These conditional subsystem

state probability vectors obey the differential equation:

x(t) = aml(t) + I ult) ' ‘ (2.1)

where n(t) is a conditional_ﬁubsystem state probability vector associ-
ated with the hierarchical state for which exit transitions are to' be

derived. The u(t) term is decomposed as follows:

transition to the appropriate

ule) = pdf{hieratchical state at time t }p‘t) (2.2)

Thst'ig u(t) i§ the joint probability which reflects the probability._
that the particular hiérarchical state fs fransitioned into at some time .
t and the possible staté; tha; the subsy#tém can be in when that hierar-
chical State.is entered. Fpr exampie,.if a function migrates'té a sub-

system at time 1, u(x) will be:

W = paf(oeln (2.3)

20



where p, (1) is the conditional probability (conditioned én the reconfig-
uration rules) that-the'functioning subsystem is in state i at time +.
p(t) is a conditional subsystem state probability vector for the samé
subsystem as II(t) but reflects the possible states thé(subéystem can be
in upon entry to the hieraréhicaf state for which exit transition rates
are to.bé derived. At this time is necessary to explain the pdf(:) and

p () terms in detail.

2:1 E llolnl D .I E I' nl . I-

The pdf (1) term represents the.probability deﬁsity function of-the
entry time to a particular hierarchical state. Ah isolated example is
used to derive the pdf(r) term in equation 2.3 and then the ?esult is
generalized to the hierarchical model given in figure 2.9. Given the
simple four state hierarchical model in figure 2.10 (analogous but unre-
lated to the hierarchical system model given in figure 2.9), we need to
know the'probability dengity functioh.of_the time of transition to a
particular state. Let the time of entranc§ to state i be the random
variable r,. Given that the function of.interest starts in state 0 with

probability one, 1, = 0 with certainty, ie.,

pdf(ro) = §(0) (2.4)

30



(a Dirac delta function at = 0). \Using the definitions of expected
value and mean time to failure (MTTF) (Ref{11}), the pdf(:,) is derived.
.Defining the state 0 to state 1 transition as a subsystem failure, we

"have

. - wme | fo-f1r.n('lr1-)dt1' 3 . 2.

31



where m(r,) is the mortality function:

m(r1) n A(r1)R(r1)

and, R(1,) is the reliability function,

S ARILE
R(r1) = e = wé(t1)
(for this example). Thus,
m(r,? = A(r1)n6(r1)
and,
MTTF = fs R AL E LS

32
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And using the expected value result for a random variable X:

E{x} = [ xpaf(x)ax = (2.10)

it can be seen by comparing equation 2.9 and equation 2.10 iﬁat:

pdf(r1) = 1(11)n6(r1) s (2.11)

Tﬁe pdf term is found in'tﬁe same way for higher subsystem event lev-A
els, aithough it is not obvious that this is the case.' Béyond the first
subsystém event level the distribution of times to ente? a hierarchical
state would seem to becom§ more inyoived coﬁputationafly. Referrin§
back to odr_iSolated gXampie in ffgure 2.10, theAtime of transitioﬁ to
: sta;é i js fhe random variable 1,. Let the ﬁblding time in state i be a
random variable hi,l(whicﬁ depends on 1,)._’Thus. tb find the probabilf-
ty density %unctioﬁ of time to enter state n (1n’, an.n-2-f61d convo-
Jution is necesséry. This is due to the facf that contained in.thé time
_ to transition ‘to 'statg 'n are tﬁé hdlding times inv.all the states'
upstream of state n -(whibh are all indeppndent. randémi variables).

Because the ﬁolding times in the hierarchical sﬁates involve a cascade

33



of entry time dependencies, an exact determination of the'density func-
tion of the time of transition to a hierarchical‘state at these higher
event levels is computationally difficult. This difficulty increases

rapidly with the event level of the hierarchical state in question.

The Markov property demands that the time vspent .in any state be
“memoryless," thus a heavy constraint is imposed upon the distribution
of'times that a process can remain in a given state. To satisfy the
Markov property, the holding time in a state of a continuous time proc-
ess must be exponentially distributed with a parameter that depends only
upon the_state in question. That is, the holding time distribution is
the solution to a first-order differential equation (Ref{7}). We have
noted (see Section 1.3) that an exact formulation of the hierarchical
model violates this restriction and is computationally difficult. Thus

we must now introduce an appoximation.

If a hierarchical model! is a semi-Markov process th§ holding time for
a transition from some state i to any other state j may have an arbi-
trary distribution. We are imposing a restriction to force the hierar-
chical model to obey the Markov property. That is, in the hferarchiéal
model we will assume that the holding time distribuiion for a transition
from each state i to énx other state j is exponential, satisfies the
Markov property and is‘the same for 5ny exifing transition. We hypothe--

size that this is a good approximatioh if all trahsitions out of each



hierarchical state have approximately the same holding time distrib-

utions.

Due to the above approximétibn,' the pdf :term for an event model
‘(éqqation 2.11) at ahy eyent'level can'eésilf be included in a differ-
ence equation which determines a subsystem's conditionai state probabil-

ity vector and does not contain a convolution to reflect the cascade of

. 35



lJocal time dependencies. To start, we write the event models associated

with a hierarchical state as differential equations of the form:

n(t) = Aanlt) + pdf(t)p(t) : (2.12)

where A is the system matrix for the model shown in figure 2.11 énq e is
‘as given in equation 2.2. The pdf term is broken into its parts from.

equation 2.11:

paf(t) = ¥ A (£)H, (t) (2.13)
g & i

where H,(t) is the;probability of being in a hierarchical state with an
exit transition into the hiérarchical state gsscciated with'equatjon
2.12 >and .xi(t) is the corresponding »transition rate. Substituting
equation '2.13 into equation.2.12, the exact solutiop to equation 2.12

is:

at) = ePtnio) + [T ePETy A (DE (1) p(T)dT (2.14)
| 0. i
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which, when converted to discrete time is:

i=k-1
w(tk) = O(tk,to)w(to) + jz; O(tk'tj)pdf(tj)p(tj)At (2.15)
where:.
A(t -t )
v O(tk,to) = e ‘ . (2.16)

Equation 2.15 is a convolution sum. However, it can be solved as a dif-

ference equation, stepping forward in time:

w(tk+1) = Q(tk+1,tk)w(tk) + pdf(tk)p(tk)At (2.17)

A§ mentioned earlier, the o term in the context of our example repres-
ents the conditional staie probaBility vector for a subsystem when the
-  function'migfates_there.' The,pdf(tk)gt term reprgéents the probability
, that the‘function'migrates to tﬁat éubéystem at time t,. Both of these

-quantities are expressed in terms of the same global time argument.
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Because both of these terms (pdf and p) are formulated in terms of the
same time argument and are available at each time step, equation 2.17
can be updated at evéry time step. The hjerarchical transition rates for
the hierarchical model can then be construqted.from n(t,) as prescribed

in Section 2.4.4.
2.4.2 Conditi | Probabili Der i .

The term p(s) in u(s) ié a conditional gubsystem state probability
‘'vector which reflects both the entry time to the hierarchical state
~associated with Ii(t) of equation 2.11 and thé possible states that the
subsystem can Sé in given the-transition event and the asséciated source
‘state. For the sample architecture we know fhat when a function
: migrates'to a new processor, that the post-migration processor either in
the zero channel failure state or the one channel féilure state. And,
given that all subsystems are éctive at sYstem startup, there will be a
Qnique conditional state probability (conditioned on having never
entered states three of four) vector associated with the time of entry

into a hierarchical state.

The Markov Model for a FTP Subsystem_is the same as that given in
figure 2.11 and eq. 2.17. Thus, this model will have to be evaluated to
produce the conditional subsystem state probability vector. The behav-

ior of the mode! in figure 2.11 obeys the equation:
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. : 4 -3) 0o . o
n{t) = , ‘ ' n(t) (2.18)
0 37 ~2) 0 o
0 0 20 0

The conditional subsystem state probabiltix vector o (t) is computed by
evaluating this subsystem state probability vector and normalizing it_at
each time step so. that the subsystem can‘only’be in statés'one and'twb.

This 'is done as follows:

5 n e ‘(2‘19)'
.p1(t) = 7.0 + n(t) * :
| 2
and,
n.{t) ,

p,(t) r
2 | n‘(t) f.ﬂz(t)
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for every time step. This gives the desired p(t) for equation 2.12 and

does so in a way that requires little computational overhead.

2.4.3 Initial Conditi

The initial conditions for each of the models associated with a
hferarchical state are determined in a straight forward manner. Since
system operation begins with no failures, the Markov subsystem models

associated with hierarchical state one have the initial condition:

(2.21)

o o o =

For subsystem models'associéted with the other hierarthi;al states, the

initial conditions are:

‘2.22)

a0



The subsystem models are formulated as Hafkov chains in which states
are reached via transitions which reflect component level events. - A
subsystem event rate must be computed for each of the_events pertinent
to a particular subsystem. To compute a sub;ystem event rate, a full
ﬂarkpv'model of a subsystem (figure 2.11) is reduced to a simple two
state Markov Model (figure 2.12)' containing énﬂ Qperationai' state, a
failed or degkaaed state (depending on the event in qqestion) and a

time-varying transition rate.

. ' A(t)
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For the example in figure 2.11, state 4 is the failure state and states
1-3 are the operational states. The transition rate in figure 2.12 is

computed as follows:

system occupies an '
Me) = ) A“P{in state 1 at t|operationa1 state at t} (2.23)
ie{operational states}
So, for this example,
' + A, % (8)
S AR (8 X W8+ AT (2.24)
Me)y = T (8 + 1, (0 + 15,0 |

however, A,, and A,, represent the rates of simultaneous failure events,

which are negligible, Thus, for the given example,

T .
%3473 | (2.25)

Ale) =  1 - 14(t)

is the rate of the event of subsystem failure which corresponds to
A (1) and a,'(t) in Figure 2.6. The subsystem degradation rates A, (t)

and A, (t) of Figure 2.6 are obtained ina similar manner.
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Another factor in determining the accuracy of a hierarchical model is
the ability of'thé derived event rate to accurately model! the dynamics
of the component-level system model states that are aggregated into the

source state for the rate in question.



Unreliability prédictions for the sample architecture are obtained in
two ways: a component-levef Markov chain (exact model) and the hierar-
cﬁical procedure described in Chapter 2. The event models associated
with the ﬁierarchical approach are also component-level Markov chains
and because we have assumed constant component failure rates<(see Appen-
dix A) these models and the exact‘model can Se readily solv?d via a dis-
crete-time time~invariant state transition métrix (STM) formulation. In
the case of the hierarchicai mode | fime'varying transftion rate$ appear
and consequently this model must(be numerically integrated. Both meth-

ods are described below.
3.1 Simulati Impl tati
3.1.1 Solution of Event and Exact Models

Since the event and exact models are linear time-invariant Markov
chains, a discrete-time time-invariant state transition matrix formu-
lation can be used to propagate the state probability vectors through

time. The general system to be solved is:



x(t) = Ax(t) + Bu(t) (3.1)

Because the homogeneous solution is a degenerate case of the complete

solution of the state equation (equation_3.1), that result will be shown

later. The solution of equation 3.1 is:

, ' N 4 :
x(t) = ex(0) + [ P Dpu(nar (3.2

The terms é*t and e‘(”‘)'are"thé STM for the system in equation 3.1.

Putting equation 3.2 in terms of a STM o

[, ot - DBu(rar > ¢ (3.3)

Cox(®) = e - ex(e) + .

To obtain a discrete-time representation of equation 3.3 a constant time

step, At, is needed. Defining

'K = 1,2,00e (3.4)

TN - e
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and,

% = kb (3.5)

Withl

to = (k - 1)At k = 1 ‘ (3.6)

Assuming u(t) is constant over each time step, equation 3.2 becomes:

At
xt) = M%ie )+ ([ eMar)Bate, ) (3.7)

Using the single step STM ¢, = e*4', equation 3.7 becomes:

At . "
_ ‘ AT
x(t,) = SoglBEIX(E, ) + (e ar)suftk_1) (3.8)



Given that B is a constant matrix,

x(t) = °ss(At)X(tk-1) + Bult, _)At (3.9)

The single step STM must be put in terms that can easily be computed.

We know that:

& (At) P At o (3.10)
ss : ,

which expands to:

A ® (ase)t
Al _ g

. (3.11)

For At much smaller than the féciprocal of the largest magnitude eigen-
value of A, the expansion can be truncated after a few terms and still
‘retain'thg desired accuracy (Ref {2}).'50 for this implementation, the

single step STM is abproximated as:
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® (At) = I + AAt : (3.12)‘
sSs -

For the purely homogenous cases (i.e. the exact model and event mod-
els associated with the first hierarchical state), u(t) = 0 and the sol-

ution of the state equation becomes:

= 3.13
Cxle) =8 (sOx(t ) (3.13)

-for the subsystem models of FTP1 and FTP2 in the sample architecture,

1 0 0 O -4 0 0 0
o (At) = 0 1 o0 O . 4y =32 0 0 |4
88 0 - 1 0 0 37 -2\ 0

0 0o 1 0 o 2y O

(3.14)

For the exact model, the single step STM is (see Figure 3.1):



@ (At) = I, +A_At ‘ (3.15a)
ss E .

11

A_ = | See next page , (3.15b)

The homogenous mbdels are solved simply by stepping forward in time

using equation 3:.13.

For' aetefmfning the.conditionai‘;qbsystem state prbbability véctors
: assocfated wfth-the hierarchical states at the first and éreater event
levels, the B matrix js ;he identity matrix ahd u(tk) is as ‘given in
équation 2.3. So again the model is solved simply by stepping forward

in time using equation 3.9.

As fofmulated, the hierarchical model is simply a first order, homo-

‘geneous, linear system of differential equations with time-varying coef-

ficients. The general form of this system is:

x(t) = A(t)x(t) T (3ae)
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~4(2+2) o o . 0 0 0 o 0 0 0 0
4 -3)-4%, .0 o 0 o o 0 [V} o 0
a9, 0 -4A‘-3x2 o 0 0 0 0 0 o o

0 3, 0 -4, 0 0 0 0 [V} 0 0
- {
0 49, aQ, 0 -3(A+1,) oi 0 0 0 0 0
0 0 3, o . o -4 0 0 0 0 0
0 0 0 4, 3 o -, o 0 0 0
0 0 0. 0 3, 42, 0 -3 0 0 0
0 0 o 0 0 0 33, o0 -2), o0 0
0 0 0 (V] [\] [} 0 3z 0 -2, O
] (] 0 0 0 o o0 0 23, 22, o0

(3.150)

Component-Levei Exact Model Matrix
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This is a simple .initial value problem that must be integrated to pro-

duce the result.

There are generally two ways in which an initial value problem cén be
solved: a single-step method (Euler method, Runge-Kutta method) and mul-
tistep methods (Predictor-Correﬁtor methods) (Ref {12}).' The choice con-
sists of a trade-off between accuracy.gnd computational efficiency. The
" method used in this study is a 5 and 6 stage Runge-Kutta method. This
was chosen due to the moderate relative error requirement based on the
small number of significant digits (1 or 2 at best) in the inbut and
consequently the solution of the truth model. An outline of the Runge-
-Kutia method foilows:

1. Take a step At forward from t using the Euler method.

2. Evaluate x(t) at this point and use x(t+ At) to adjust
derivative to be used at t.

3. Use adjusted siope to take a second step from t.

4. Evaluate x(t) at this poin£ and fﬁrther adjust slope
to be used at t{ o

5. Repeat 3 and 4 to the or&er desired.

6. Combine'all e#timates to take actual step to t+at

It i§ pbintless to rederiVevthe Runge-Kutta formulas here. The reader

is direc;ed to Rice for the details of tﬁe formulas.
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The actual subroutine uséd here is DVERK from the IMSL package. It
- was chosen bec;use it solved the hierarchical models to close agreement
with the exact models. If we loosen our relative error requirement, a
less computationally expensive method (such as the single step, single
étage Euler Method) could be used and introducg even greater 'computa-

tional savings through the use of the hierarchical approach.
3.1.3 Program Outline

The hierarchical model and event models are soived simﬁltaneously as
the evgnt models provide inforhétioh needed to construct thé time-vary-
ing tranﬁitiqn-ratgs for fhe hierarchical mﬁdél.The exacf model is also
solved simultaneously so that the hiérarchical results can easily .be.
compargd'to thg exact model, An outline of the simulation program fol-
lows: | |

e Read initial data

Initialize subsyétem and hierarchical state probability vectors

Initialiie exact model stéte probability vector

Assemble event model STMs

Assemble exact model STM

by At

b For t"O t°, tnission,

Update exact model

Compute hierarchical transition fa;es from event hodgl results

Assemble hierarchical system matrix



e Integrate hierarchical system state equations

e Output time,hierarchical unreliability prediction, exact model

unreliability prediction

o Update conditional subsystem state probqbility vectors

e Output run statistics



4,1 Computational Efficiency

-Probably the most important résUlt_of the hierarchical modeling tech-
nique is the fncreased computational efficiehcy compared to the compo;
nent-level modeling approach.  When a large number of subsystems exist"
in a system and-man* combinations of reconfigurations are of intérest,
the state-spa;é of a component level model“brows rapidly Qith the number
and complexityA of ;ubsystems; In contrast, the hiérarchical approacﬁ
does not add néarly as many states torthe system-l;Vél model when anoth-
er subéystem is’adqu. Consequently there is potentially a considerable
diffefencé in the computational burden associated with each Aapproaéﬁ.
To demonstrate this observation we will examineithe hierarchical and
exact models for ;ﬁree systems ;omprised of different-subsystems, The
three cases examined_are: two dissimilar subsystems, two dissfmilar sub-
systems wi;h imperféct cerrage at the subsystem level, and three‘dis-

similar subsystems.

We shall count the numbef of multiplications needed per time step.
The assumption is made that, for the purpose of comparing cdmputational
éfficiency. the hierarchiéa) model and the exact mode! are solved using

the'same'numerical technique. Note that in formulating the exact mod-



els, conSiderable state reduction was performed via state aggrégationA
based upon common exit transition rates. In addition we exploited the
observation that ;nce a FTP loses two channels, ;dditidhal channel fail-
ures need not be tracked since that FTP is no longer a candidate post-
migration site; the only exception is the casé of the final‘supporting
" FTP where channel! failures must be tracked to ;he point of total system
failure. Also note that the operation of mﬁltiplying a N-vector by a

NxN matrix is of order N2.

For the case of two dissimilér subsystems each subsystem model is
fourth order (see Figure 2.11) and the hierarchical model is fourth -

order. Counting multiplications per time step we have:

model multiplications/At

Oth level svent 2432
st level event : 2x(42+2)
" hierarchical 42
sum 70
Table 4.1
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Notice that -the two evgﬁt modgls associated with the btﬁ event level
have only three states. This féllows from the observation that we are
only interested in the transition‘between states 2 and 3 in Figure 2.11
as this transition corresponds to the event that triggers the function
migration; This observation will bé utilized in the other two cases.
~ The cdmponent-level e*act.model for this case has the‘folipwing order of

.execution:

model | ‘multiplications/At

exact o112
sum ‘ 121
Table 4.2 .

The next two cases show, when compared to the first, that a hierar-
~chic$l model's'computational advantage.over_a_compénent-levef'hodel of
the system increasés és the SUbsystem models‘becqme more cohplex and
;lso aé more subsystems are added to the’ﬁyﬁ;em. ' To address the issue
of more comple* subsystem_models; we will'no longer assume perfect cov- =

erage at the subsystem ]evél; Instead we will include a vulnerable
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state in the subs'y§tem model to capture near-coincident failures in a
subsystem which will lead to the loss of that subsystem. Sﬁch near
coincident failures arise when an adjucjicéti_on is to be made on the
occurence of a failure among three components. If two components fail
coincidently, the '-ability to correctly isolate the failed components' may '
be lost. C'o-nsequen'tly the vulnerable state i‘s included between states 2
and 3 ovaigure 2.11.. This' state has two exit transitions one_' of‘whiéh" ,
.reflectsAthle automatic failure detection, is_olation and reconfiguration
(FDIR) rate and Athe other the occurance of a second channel failure
which yields a su‘bsystem failure. The addition of the vulnerable state
makes the sub_system models fifth order. Counting multiplications per

" time step in the hierarchical model we have:

model multiplications/At
Oth level event , 2142
I1st level event 2%(S52+2)
hierarchical 42
sum : 102
Table 4.3
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Note that the Oth level event model is reduced in order as before. The
componeni-level exact model for this system has the following order of

execution:

modet ‘multiplications/At
exact 182
‘sum : 324

Table 4.4

Our third case addresses the inclusfon of additional subsystems in the .
“system. The Qyétem.' now inclu&es 'three dissimilar "sul':systems "and once
again we’ assume perféct coverage ‘in the subsystems. The event mode.ls
'ar.e‘ again fou_rth order, but ;he hierarchical model'> is now eighth order.

 Counting multiplications per time step we have:
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_model multiplications/at
Oth level event | 3%32
1st level event 8x(42+2)
2nd level avent 3%(42+2)
hierarchical ' _ 82
sum 253
Table 4.5

The componént—level exact models for this case has 30 states and the

follbowing order of execution:

model o multiplications/At
exact a 302
sum 900

Table 4.6 i

The above results clearly demonstrate the savings ‘in computation when

the hierarchical approach.is utilized. The worst case for the hierar-
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chital approach from.a computational viewpoint océurs when ail the sub-
s}stems are different. Then, there mUsf be a distinct event model for

each .s;ate tran;ition of the hierarchicél modeli. Even in this case,
however, the hierafchical approach requires les$ compqtation than é com-
ponent-level mpde1 for non-trivial systems. For systems wherein somg"
(or all) subsystems are.identfcal tﬁe number of event models required is
less thah'the nuﬁber of state transitions appearing in a'full (i.é. no
stafe reduction perfdrmed) ﬁierarchical model. The number of event mod-
els reqﬁired is equal to the number of state transition; remaining after

the order of the full hierarchical mode] has_been reduced>by performing

state aggregation on the basis of common exit transition rates.

4.2 Two Subsyatem Results

As mehtioned vpreViously, “the tw§ .subsystem architecture: fuily
describes the hierarchical approath_and associ;téd probl;mé.  ThQs, all
-test cases utilized the modelstdevelobed ‘for.the sample architecture
descfibgdlin'Chapter 2. Two sets o% cases are presented: similar sub-

systems, and dissimilar subsystems.

TheAparameter to be,variedAin this section is the ratio of component

MTBF (mean-time-between-failure) tolmission time. All piots are compar-
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isdns of the unreliability predictions of the hierarchical and of the
tomponent-lével approaches for the given sys;em'versus time. Figure 4.1
shows the results for a MTBF to mission time ratio of one. Figure 4.2
rgives the results for a MTBF to mission time ratio of five. Figure 4.3
is tﬁe result for a MTBF to mission tihe ratio of ten. We see fhat all
plots show good agréement‘between-the two approaches. Figure 4.4 shows
the absolute value of the percentage of rélative efror between the
hierarchical ;odel's and exact model's unreliability prediction given in
figure 4.3. 'We see that there is indeed an approximation introduced
utilizing the hierarchical model as the percentage of relative error is
larger tﬁan expected errors due-fo machine precision. Note that the
~large relative error e;rly in the mission is a result of the reduced
observability for the firstrfew}time steps in the hiérarchical model .
The error plots for the previous two cases dehonstrateAsimilar behavior

and therefore are not included.

I. 2 2 D- . -] sl I y
In this section, the component MTBF to mission time ratio are differ-

ent for the two subsystems. In the first case (figure 4.5) sqbsystém 1

has an MTBF to mission time ratio of ten. In this case for subsystem 2
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this ratio is equal to one. 1In figure 4.6 sﬁbsystem 1 has an MTBF to
missionvtime ratio of 10-while this ratio for subsystem 2 is équal to
.1,' Again the plots show the predictiong of system unreliability by the
‘hierarchical apprbach and by the component-level exact model against

time.

We see that thére is disagreement between the curves in both figure.
4.5 and figure 4.6: Note that.the amount of disagreement is larger for
the smaller difference in componént failure rate.befween the subsfstems
(figare 4.5). Also note that the hierarchicél app;oach is nefther con-
sistently conservative.hor consistently opfim}stic in its prediction of
system unreliability. Figures 4.7.and 4.8 givé tﬁe a;solqte Qalue of
the percentage of relative error bétween the hierarchical.lmodel‘s and
exact model's unreliability predictions given in Figures 4.5 and 4.6
respectively. Again we see‘that the approximation introduéed usiﬁg the
hierarchical médel is.larger>than can be attributed ﬁo computer round-

off error.

Figure 4.3 has tﬁe 'same mission time‘as'figures 4.5 and'4.6‘but has
identical . componeﬁt 'faf]ure rates in the subsysteﬁs.. "In this case,
there is exce]lent.agreement with the exact model. So, thé trend we see
in figures 4.3, 4.5 and 4,6 islthat:as~thé difference in,the.campongnt

failure rates between the subsystems is increased, the error in the

]
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hierarchical approach increases, and then decreases for the example

given.

In Chapter'Two we said the validity of the hierarchical approach
depends on whether all transitions out of a,hierarchical state to any
other hierarchical state are first-order and the same for any transi-
tion. Iﬁ light of this, the hierarchical method is expected to givg
very small error for identical subsyétems. If the subsysfems are iden-
tical, A, (t) equals i, (t) in figure 2.9. As the combonent failure
rates are varied, our assumption breaks down. However, when one subsys-
tem's component failure rate is muqh'largef than the other subsystem's,
the exit transitions frbm hierarchical state 1 in figure 2.9 become
essentially a single transition rate. .Put another way, a dominant féil-
‘ure mode surfaces and the other mode becomes negligible in the computa-
tion ' of unreliability by both .the hierarchical approach and
‘component-level exact model. So we-see thét the hierarchical approach
~is not always conservative, but the associated error is small for the

cases studied.‘
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5.1 Summary

The objective of this research has been t6 éXtend>present reliabilify
analysis techniques to conveniently capture sequence dependencies within
thé framework of a structqfal decomposition approach. The requirement
has. been to do this in a way that is accurate while being both less
labor intensiv; and‘less'.computationally expensive than combinatérial
-approaches and éompohent-fgvel Harkov m§¢els. The motivation for thfs

research is a need for less difficult "first cut" analyses of fault-to-

lerant systems cémprised of fault-tolerant "building blocks."

Tﬁe methodolégy is based on defining unique subsystem-ievel events
and‘computing'associated ev?nt rates for a‘given';ystém definition;> The
event rates afe determined from subsystem models and are imbedded in a
hierarchicai Markov model of the system. The method_is derived as it is
applied to a specific system definition cbmprfséd of two fault-tolerant

subsystems.
‘In foémulaffng a hierarchical model we have made the'assumption that

the Markov property appliés:even though we recognize that a hierarchical

model is truly‘semf-ﬂarkbv as indicated by the unreliability predictiohs
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for the case of dissimilar subsystems (see Figures 4.4 and 4.5).

Encouragingly However. the exercises performed indicate that for the
given system gefinitioﬁ the unrelfability prediction of the hierarchical
“mode] clbsely approximates the unreliability prediction of an exact com-
ponent-level Markov model. The predictions for different subsystems
substantiate the claim of .semi-Markov behavior. Thus the results of
this study show that the hierarchiéal approach-is a viable and useful '
method for fault-tolerant system reliaﬁility modeling. With some addi-
tional investigation the applicabf!fty of the approach can potentially

be broadened. Some additional research topics are discussgd below.
5.2 Topics for Further Regearch

As. stated previously, the issue of repair at the subsystem level
should be examined in order to extend the usefulness of the hierarchical

approach.

The‘effects of the hierar;hiéal model's éemi-ﬂarkov pehavioE can be
studied further if.three suﬁsystems are considered in the system defi-
nition. This would produce a hierarchical model which would have a cas-
cade of local time dependencies for the holding time distributiohs of a

hierarchical state.
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When architectures cémpriseq of different subsysfems are addressed,
error is introduced dﬁe to the appquimationg inherent in the hierarchi-
cal approach. Although the error in our exercises was acceptably small,
the approximations were not consistently conservative or optimistic.
Thus.‘tWO'problems should be examined. First._given the present hierar-

chical approach, a measure of the error which does not require a exact

model should be produced. Sgcond, a methodology to force the error to

be either conservative or optimistic should be investigated. The asso-

ciated results would consequently bound the system unréliability.

The hieéarchical modelling technique used in this study should be
further examined to investigéte the impact on state probability pred-

_ittions for sdbsequent performability énalyses.
5.3 Conclusion

Although the hierarchical approach has nét beén investigated cém-
pletely, the-cohcept has‘proved to be viéblg and to have ;evera[ useful
features wifh respect to the analysis éf large coﬁplex systems comprised
of fault-tolerant building blocks. Through the use of sfructurél decom-
position,  the model formulation for such'sysfems is simplified. Fur-

thermore due to the high degrpe'of’state aggregatfon,intrinsic to the

hierarchical approach, model 4solution is less computationally burden-

some. The computationél sévings increase, in comparison to a compo-
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nent-level modelling abproach. as the number and complexity of the
subsystems in#reases.' Additional savings occure when some or all of fhe

subsystems are equivalent.
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Throughout this thesis, the component failure rates have been assumed
to be constant. This is a large restriction and should be examined. It
is desirable to give the component failure rates an arbitrary distrib-

ution. The Weibull distribution is commonly used {Ref.(2)}.
The Hgibull distribution can model a constant failure rate 6r mona-

"tonically increasing dr decrea#ing failure rates. This probability den-

sity function takes the form:

f(t) = kmtm-1exp(-ktm) t >0 (A1.1)

=0 -t < 0 : (A1.2)

where k and m are positive, non-2ero real numbers. The failure rate

. corresponding to this distribution is:
A(t) = kmtmf1 : ' ‘ (a1.3)

From equation A1.3 we see that if m = 1 the Weibull distribution produc-

es a constant failure rate.
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A preliminary result indicates that the hierarchical approach models
system reliability adequetly, and introduce# little error with »réspect.

to the truth model (see figure Af.1).
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