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ABSTRACT

A methodology for performing fault-tolerant system reliability analy-
sis is presented. The method decomposes a system into its subsystems,
evaluates event rates derived from the subsystem's conditional state
probability vector and incorporates those results into a hierarchical
Markov model of the system. This is done in a manner that addresses
failure sequence dependence associated with the system's redundancy man-
agement strategy. The method is derived for application to a specific
system definition. Results are presented that compare the hierarchical
model's unreliability prediction to that of a more complicated standard
Markov model of the system. The results for the example given indicate
that the hierarchical method predicts system unreliability to a desira-
ble level of accuracy while achieving significant computational savings
relative to a component-level Markov model of the system.
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CHAPTER 1. INTRODUCTION

1.1 Background

Analytic reliability modeling is required to support the design and

validation of highly reliable fault-tolerant systems (Ref{1}). The most

accurate method for evaluating system reliability involves the life

testing of many systems. Reliability statistics are subsequently

derived from the test data. However, for large, highly reliable complex

systems this is impractical due to the time and expense involved in

testing such a system. Consequently it is necessary to analytically

model the reliability of large highly reliable systems.

There are two general approaches to system reliability modeling, both

of which rely upon knowledge of component failure rates (that can be

found through life testing). First, there are combinatorial methods

(Ref{2},{3}) in which component reliabilities and unreliabilities are

used in conjunction with an enumeration of failure events to arrive at a

system reliability prediction. Secondly, there is the Markov model

approach (Ref{4}). This approach associates failure combinations with

states of a Markov chain wherein component failure rates define transi-

tion rates.



1.2 Motivation

Both approaches encounter difficulties with the evaluation of large

complex systems. A common combinatorial method is the event space meth-

od. This method utilizes an enumeration of combinations of failed and

unfa!led components. Each of these combinations defines the condition

of every component in the system so that combinations are mutually

exclusive and hence the probabilities are additive. For a large complex

system, the large number of components wi 11 lead to many complex terms,

and thus a large algebraic expression to be evaluated.

This situation can be mitigated somewhat through the use of struc-

tural decomposition (Ref{5}). Structural decomposition consists of

dividing a system into smaller independent subsystems (redundancy man-

agement i s local to the subsystem) , analyzing the subsystems and - then

combining the subsystem results combinatori ally to obtain the results

for the system. However, this approach breaks down when the time

sequence of events is an issue.

There are two types of sequence dependencies that arise in the evalu-

ation of fault-tolerant systems. First, there are time-ordered event

sequences associated with false alarms. This problem has been investi-

gated by Luppold et al (Ref{6}). Second there are time-ordered event

sequences that result from the system's redundancy management policy.



In particular, Schabowsky et al (Ref{5)) show how system reconfiguration

can introduce time-ordered event sequences which greatly complicate a

combinatorial approach.

In order to demonstrate the problem of time ordering of events

resulting from a reconfiguration strategy, the unreliability of an exam-

ple system (described in Chapter 2) is examined using three methods.

These methods are: the event-space method, a component-level Markov

model, and the hierarchical approach that is explored in this study.

The results in Figure 1.1 clearly show that the absence of time-ordering

considerations in the combinatorial analysis leads to a conservative

unreliability prediction. This is due to the fact that some operational

states are actually considered non-operational states in the event space

method while they are accurately represented by the other two methods.

Although a Markov model approach conveniently handles time ordered

events, this approach encounters difficulty when a system with a large

number of components is considered. With many components (and thus many

combinations of failures to be considered) the Markov model may have a

very large state space. A large state space translates into a large

system of differential equations that must be solved to produce an unre-

li a b i l i t y prediction. The proposed hierarchical approach mitigates the

problem of state proliferation while still addressing the problem of
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sequence dependancy, and furthermore, produces state history probabili-

ties for the system whereas the combinatorial approaches do not.

1.3 Methodology

The underlying concept of the hierarchical approach is that of aggre-

gating component-level Markov model states into hierarchical states.

The associated hierarchical state transitions are often time-varying to

reflect multiple (non-simultaneous) failures within a given subsystem.

These transitions correspond to subsystem-level events such as perform-

ance degradation and subsystem loss, and in turn usually imply system-

level performance degradation. Consequently, the hierarchical model

becomes semi-Markov because the holding time probability density func-

tions for each hierarchical state are generally no longer the same for

all transitions from a particular hierarchical state to other hierarchi-

cal states. In fact, the holding time distributions in the the hierar-

chical states are often Erlang (Ref{7}) (or more general) and this leads

to a problem. For a semi-Markov chain where the failure rate from state

i to state j can be expressed as xn(t) and x, (t) » £ xn(t),
. J

t t
-f X . ( T ) d T t -/ X ( T ) d T

P . ( t ) = P . ( 0 ) e ° D + I /0 Vx)Xij (X>e .**'

(1.1)
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(Ref{8}) . Even for a small number of states this is a computational

nightmare to solve. Note that the second term in equation 1.1 contains

a convolution integral. This arises due to the dependence of a semi-

Markov state's holding time on the time at which the state was entered

(local time). The hierarchical approach exploits the Markov property

and thus the local time dependence is memory less. This makes the sol-

ution to the hierarchical model easier by assuming a single common hold-

ing time distribution for all exit transitions from a particular

hierarchical state which allows us to write differential equations for

the system state probabilities and eliminates the need to explicitly

convolve.

In the hierarchical approach subsystem level events are addressed

through the use of time-varying event rates computed from the compo-

nent-level Markov models of the system's particular subsystems.. These

event rates are imbedded into the hierarchical system model. The

resulting model is then evaluated over a mission time. Note that the

subsystem events of interest are application-dependent because they

depend on the system's redundancy management strategy. For example, one

of the subsystem event rates might be associated with a particular

degraded state while another event rate is the subsystem failure rate.

It is important to note a current restriction on the hierarchical

approach. At this juncture the issue.of repair has not been addressed

11



in the hierarchical approach. We also note that White, Butler and Lee

(Ref{9},{10}, {13}) examine a semi-Markov approach to unreliability eval-

uation. However, their approach does not address the state prolifer-

ation problem in that it utilizes component-level events rather than

subsystem level events as in the hierarchical approach and thus does not

reduce the state space of the fault-occurrence model.

1.4 Organization

The purpose of this thesis is to present a hierarchical approach to

reliability modeling of fault-tolerant systems made up of fault-tolerant

'building blocks' (Ref{5}). The technique is'developed in the context of

an example architecture. The first section of Chapter Two characterizes

the development of a hierarchical model. Section 2.2 defines the terms

to be used in the derivation of the hierarchical approach and defines a

hierarchical Markov state. Section 2.3 presents the sample architecture

to which the hierarchical approach is applied. Section 2.4 gives a gen-

eral form of the solution of a hierarchical model.

Chapter Three describes the implementation and simulation of the

hierarchical approach as it is applied to the sample architecture of

Section 2.3.

12



Chapter Four presents the results of the various test cases imple-

mented.

Chapter Five summarizes the approach, the results of this study and

presents topics for further research.

13



CHAPTER 2. A HIERARCHICAL APPROACH TO RELIABILITY MODELING

2.1 Outline of Hierarchical Hodel Development

Hierarchical model development is a four stage process as shown in

figure.2.1. The process begins with a system definition. For a fault-

tolerant system, a system definition involves defining the architecture

and redundancy management strategy. From the system definition we iden-

tify the set of subsystem level events that are of interest. These

include events which trigger reconfigurations and the reaching of vari-

ous performance levels in a subsystem.

For the identified set of events, a set of component-level event mod-

els are developed. There w i l l be an event model for each unique event

defined. From each of these models, an (approximate) event rate can be

derived. Using the event definitions and event rates, a hierarchical

model of the system is developed. Each hierarchical state represents

the system status with respect to the occurrence or non-occurrence of

the set of subsystem events. The rates of occurrence of these events

appear as the transition rates among the states of the hierarchical

model.

14



system definition

events

event rates

hierarchical model

Figure 2.1
Hierarchical Model Development
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The hierarchical model state descriptions are unique. We know that a

full (no state aggregation or model truncation) unique component-level

model of the system can be developed from the system definition. We

also know that each state from that model maps uniquely into a hierar-

chical state. Thus the hierarchical model state descriptions are

unique. Next we define the terms to be used in our development of the

hierarchical approach.

2.2 Definitions

2.2.1 Definition of Terms

In deriving the hierarchical approach it is important to define the

context and relationships between the terms used. Those terms are: com-

ponent, subsystem, system, reconfiguration rules, component-level mod-

els, subsystem models, and hierarchical models. We begin with a simple

example. Then a general form of the solution is presented for a more

complex example which is used in the remainder of this.work.

A simple example is used here to introduce the terms used in the

hierarchical approach. The fault-tolerant system is made up of two

fault-tolerant subsystems and is shown in figure 2.2.

16
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Simple-System Architecture
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Each fault-tolerant subsystem is made up of two like components. However

the two subsystems may have different components. A component is an

element of a subsystem and often has a constant failure rate. Without a

loss of generality (see Appendix A) we shall assume constant component

failure rates throughout this study. Function migration means that sys-

tem operation with respect to a particular function moves from one sub-

system to the other subsystem according to the system reconfiguration

rules. The system has the reconfiguration scheme given graphically in

figure 2.3 and uses the following definitions.

18
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Figure 2.3

A degraded subsystem is one that has one or more failed components. A

failed subsystem is one that has two failed components.

Traditionally the component-level system model is formed as in figure

2.4.

19
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Figure 24
Simple-System Comporent -Level Model

For the hierarchical approach, component-level subsystem models are

.formed as in figure 2.5.

20
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Figure 2.5
Component-Level Subsystem Model

From this component-level subsystem model, subsystem event rates are

derived (this process is described in section 2.4). There are generally

two types of subsystem event rates to be considered. These are: the

rates at which a subsystem reaches various degraded states and the rate

at which a subsystem becomes failed. Using such subsystem event rates,

a hierarchical model of the system is formed (figure 2.6).

21



Figure 26
Simple-System Hierarrhiral Model

Comparing figures 2.4 and 2.6 we see that the hierarchical model aggre-

gates component-level system model states.

22



Now that the essential elements have been introduced, a complete

characterization of a hierarchical Markov state is given.

2.2.2 Definition of a Hierarchical Markov State

The essence of the hierarchical approach lies in the definition of a

hierarchical Markov state. A hierarchical state captures the system

status in terms of subsystem-level events rather than component-level

events (as in the standard component-level Markov model approach

Ref{4}). Normally, a Markov model generates the probabi1ity of having

experienced a sequence of component failures. However, in the proposed

approach, the hierarchical model generates the probability of having

experienced a sequence of events which reflect the status of the sys-

tem's subsystems. This is due to the fact that a hierarchical model

state is an aggregation of those component-level system model states

which have the same system status with respect to the pertinent subsys-

tem-level events. Consequently, a hierarchical state probability is

(approximately), the summation of the corresponding component-1 eve I sys-

tem model' state probabilities. -

In order to derive the exit transition rates for the hierarchical

states additional information must be associated with each hierarchical

state. In particular, for each subsystem-IeveI event corresponding to

an exit transition from a given hierarchical state we must formulate an

23



event model which reflects both the time of entry into that particular

hierarchical state and the possible states that the subsystem can be in

whenthat hierarchical state is entered. The solution of the event model

provides the time evolution of a conditional subsystem state probability

vector (conditioned on being in a particular hierarchical state) which
•

in turn provides the information necessary to derive the corresponding

exit transition rate. The event models are. readily derived from the

component-level subsystem models as w i l l be shown in Section 2.4. The

derivation of the transition rates among hierarchical states w i l l also

be prescribed in Section 2.4. Presently we w i l l describe the sample

architecture used to illustrate these steps in the formulation of a

hierarchical model. This example is also utilized to provide the numer-

ical results of Chapter 4.

2.3 Sample Architecture

The sample architecture is a distributed processing system that con-

sists of a collection of processing subsystems that are completely

cross-strapped such that information can be exchanged between any pro-

cessors. In formulating the hierarchical model in section 2.4, we w i 1 1

find that only two subsystems are needed in the sample architecture

(figure 2.7) to fully describe the approach, its implementation, and

associated problems. The ground rules for this system's operation pre-

scribe that a quad fault-tolerant processor (FTP) (Ref{14}) is said to

24



QUAD

FTP1 Intercomputer
Network

QUAD

FTP2

FlttPE 27

SAMPLE ARCHITECTURE

25



be operational if it has suffered no more than three channel (component)

failures, and is said to be degraded (i.e., loses masking capability) if

it has had two or more channel failures. A particular system function

w i l l remain in the i n i t i a l supporting processor until that processor

becomes degraded. The system w i l l then migrate the function to a sub-

system that is not yet degraded (if one is available), otherwise the

function w i l l remain in that subsystem until a third channel failure

results in a system loss (see figure 2.8). In this example, the func-

tion of interest starts in FTP1 and migrates to the other subsystem as

indicated in the hierarchical model in figure 2.9. Note that in this

analysis, intercomputer network failures are neglected for the purpose

of clarity. Note also that failure detection and isolation (FDI) of

channel failures is assumed to be local to the subsystems. This is a

necessary condition for the application of the hierarchical approach.

However, coverage at the system level (i.e., probability of success of

function migration) although not included in this example, can be readi-

ly incorporated in the state transitions of the hierarchical model. The

derivation of the transition rates among the hierarchical states (see

figure 2.9) is given in section 2.4.

26



degraded FTP! and not degraded FTP2

Figure 2 fl
Sample Architecture Reconfi duration Rulp<t

2.4 Hierarchical Model Development for Sample Architecture

For this sample architecture two different event models are required

for each subsystem. This is because for each subsystem there are two

distinct subsystem-level events intrinsic to the system definition. As

previously stated, separate event models are needed to produce the con-

27
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Figure 29
Hierarchical System Model
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ditional subsystem state probability vectors associated with the calcu-

lation of hierarchical state transitions. These conditional subsystem

state probability vectors obey the differential equation:

Air(t) + Iu(t) (2.1)

Where n(t) is a conditional subsystem state probability vector associ-

ated with the hierarchical state for which exit transitions are to be

derived. The u(t) term is decomposed as follows:

, transition to the appropriate, .
u(t) = pdf {hierarchical gtate at time t )p(t) (2'2)

That is u (t) is the joint probability which reflects the probability

that the particular hierarchical state is trans itioned into at some time

t and the possible states that the subsystem can be in when that hierar-

chical state is entered. For example, if a function migrates to a sub-

system at time t, U(T) w i l l be:

U ( T ) = pd f ( t ) p (T ) (2.3)

29



where pi(T) is the conditional probability (conditioned on the reconfig-

uration rules) that the functioning subsystem is in state i at time T.

p(t) is a conditional subsystem state probability vector for the same

subsystem as n(t) but reflects the possible states the subsystem can be

in upon entry to the hierarchical state for which exit transition rates
•

are to be derived. At this time is necessary to explain the pdf (T) and

p (T) terms in detai1.

2.4.1 Probability Density Function Determination

The pdf (T) term represents the probability density function of the

entry time to a particular hierarchical state. An isolated example is

used to derive the pdf (T) term in equation 2.3 and then the result is

generalized to the hierarchical model given in figure 2.9. Given the

simple four state hierarchical model in figure 2.10 (analogous but unre-

lated to the hierarchical system model given in figure 2.9), we need to

know the probability density function of the time of transition to a

particular state. Let the time of entrance to state i be the random

variable TI( Given that the function of interest starts in state 0 with

probability one, TO » 0 with certainty, ie.,

pdf(TQ) - 5(0) (2.4)

30



FIGURE 2 10
ISOLATED EXAMPLE

(a Dirac delta function at T » 0) . Using the definitions of expected

value and mean time to failure (HTTF) (Ref{11}) , the pdff-r,) is derived.

Defining the state 0 to state 1 transition as a subsystem failure, we

have

MTTF = / T m( T Jd^ (2.5)

31



where m( t^ ) is the mortality function:

m ( T 1 > - A C x ^ l K T ) (2.6)

and, R(t^) is the reliability function,

T
-/ X(t)dt

e

(for this example). Thus,

) (2.8)

and.

MTTF = / T, X(T-)w'(T, )dT. (2.9)
r U 1 1 U 1 1

32



And using the expected value result for a random variable X:

E{X} = / Xpdf(X)dX (2.10)

it can be seen by comparing equation 2.9 and equation 2.10 that:

The pdf term is found in the same way for higher subsystem event lev-

els, although it is not obvious that this is the case. Beyond the first

subsystem event level the distribution of times to enter a hierarchical

state would seem to become more involved computationally. Referring

back to our isolated example in figure 2.10, the time of transition to

state i is the random variable t^. Let the holding time in state i be a

random variable h,, (which depends on T,) . Thus, to find the probabili-

ty density function of time to enter state n (-rn), an n-2 fold convo-

lution is necessary. This is due to the fact that contained in the time

to transition to state n are the holding times in all the states

upstream of state n (which are all independent random variables).

Because the holding times in the hierarchical states involve a cascade

33



of entry time dependencies, an exact determination of the density func-

tion of the time of transition to a hierarchical state at these higher

event levels is computationally difficult. This difficulty increases

rapidly with the event level of the hierarchical state in question.

The Markov property demands that the time spent in any state be

"memoryless," thus a heavy constraint is imposed upon the distribution

of times that a process can remain in a given state. To satisfy the

Markov property, the holding time in a state of a continuous time proc-

ess must be exponentially distributed with a parameter that depends only

upon the state in question. That is, the holding time distribution is

the solution to a first-order differential equation (Ref{7}). We have

noted (see Section 1 .3) that an exact formulation of the hierarchical

model violates this restriction and is computationally difficult. Thus

we must now introduce an appoximation.

If a hierarchical model is a semi-Markov process the holding time for

a transition from some state i to any other state j may have an arbi-

trary distribution. We are imposing a restriction to force the hierar-

chical model to obey the Markov property. That is, in the hierarchical

model we w i l l assume that the holding time distribution for a transition

from each state i to any other state j is exponential, satisfies the

Markov property and is the same for any exiting transition. We hypothe-

size that this is a good approximation if all transitions out of each

34



hierarchical state have approximately the same holding time distrib-

utions.

FIGURE 211
FTP I MODEL

Due to the above approximation, the pdf term for an event model

(equation 2.11) at any event level can easily be included in a differ-

ence equation which determines a subsystem's conditional state probabil-

ity vector and does not contain a convolution to reflect the cascade of

35



local time dependencies. To start, we write the event models associated

with a hierarchical state as differential equations of the form:

n(t) - Air(t) + pdf(t)p(t) (2.12)

where A is the system matrix for the model shown in figure 2.11 and p is

as given in equation 2.2. The pdf term is broken into its parts from

equation 2.11:

pdf(t) = I X.(t)H.(t) (2.13)
i

Where H1 (t) is the probabi 1 ity of being in a hierarchical state with an

exit transition into the hierarchical state associated with equation

2.12 and X1(t) is the corresponding transition rate. Substituting

equation 2.13 into equation 2.12, the exact solution to equation 2.12

is:

eAtir(0) + /* e"^ Xi(T)Hi(T)p(T)dT (2.14)
0 i

36



which, when converted to discrete time is:

i=k-1
w(t ) = *(tk'

to)ir(tn) * £ *(t ,t )pdf(t,)p(t.)At (2.15)
K K ° ° j=o * 3 j j

where:

A(Vto)
*(tk/t()) = e (2.16)

Equation 2.15 is a convolution sum. However, it can be solved as a dif

ference equation, stepping forward in time:

As mentioned earlier, the p term in the context of our example repres-

ents the conditional state probability vector for a subsystem when the

function migrates there. The pdf(tk)At term represents the probability

that the function migrates to that subsystem at time tk. Both of these

quantities are expressed in terms of the same global time argument.

37



Because both of these terms (pdf and p) are formulated in terms of the

same time argument and are available at each time step, equation 2.17

can be updated at every time step. The hierarchical transition rates for

the hierarchical model can then be constructed from n(tk) as prescribed

in Section 2.4.4.

2.4.2 Conditional Probability Derivation

The term p (T) in u(T) is a conditional subsystem state probability

vector which reflects both the entry time to the hierarchical state

associated with n(t) of equation 2.11 and the possible states that the

subsystem can be in given the transition event and the associated source

state. For the sample architecture we know that when a function

migrates to a new processor, that the post-migration processor either in

the zero channel failure state or the one channel failure state. And,

given that all subsystems are active at system startup, there w i l l be a

unique conditional state probability (conditioned on having never

entered states three of four) vector associated with the time of entry

into a hierarchical state.

The Markov Model for a FTP subsystem is the same as that given in

figure 2.11 and eq. 2.17. Thus, this model w i l l have to be evaluated to

produce the conditional subsystem state probability vector. The behav-

ior of the model in figure 2.11 obeys the equation:
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ir(t)

-4X

4X

.0

0

0

-3X

3X

0

0

0

-2 A

2X

0

0

0

0

ir(t) (2.18)

The conditional subsystem state probabiltiy vector p (t) is computed by

evaluating this subsystem state probability vector and normalizing it at

each time step so that the subsystem can only be in states one and two.

This is done as follows:

pi(t) - TTET (2.19)

and,

P2(t)
(2.20)
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for every time step. This gives the desired p (t) for equation 2.12 and

does so in a way that requires little computational overhead.

2.4.3 Initial Conditions

The i n i t i a l conditions for each of the models associated with a

hierarchical state are determined in a straight forward manner. Since

system operation begins with no failures, the Markov subsystem models

associated with hierarchical state one have the initial condition:

1

0

0

0

(2.21)

For subsystem models associated with the other hierarchical states, the

initial conditions are:

0

0

0

0

(2.22)
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2.4.4 Calculation of Subsystem Event Rates

The subsystem models are formulated as Markov chains in which states

are reached via transitions which reflect component level events. A

subsystem event rate must be computed for each of the events pertinent

to a particular subsystem. To compute a subsystem event rate, a full

Markov model of a subsystem (figure 2.11) is reduced to a simple two

state Markov Model (figure 2.12) containing an operational state, a

failed or degraded state (depending on the event in question) and a

time-varying transition rate.

0 "" •©
Figure 2.12

Transition Rate Example
Reduced Modal
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For the example in figure 2.11, state 4 is the failure state and states

1-3 are the operational states. The transition rate in figure 2.12 is

computed as follows:

- ,. . i system occupies an i ._ „.
X(t) - I Xi4P{in state i at t|ô rational

P
8tate at t} (2.23)

ie{operational states}

So, for this example,

Tt (t) + » (t) + *3<t)

however, X14 and X24 represent the rates of simultaneous failure events,

which are negligible. Thus, for the given example,

(2-25)

is the rate of the event of subsystem failure which corresponds to

A,' (t) and xa' (t) in Figure 2.6. The subsystem degradation rates x\,(t)

and X2(t) of Figure 2.6 are obtained in a similar manner.
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Another factor in determining the accuracy of a hierarchical model i.s

the ability of the derived event rate to accurately model the dynamics

of the component'level system model states that are aggregated into the

source state for the rate in question.
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CHAPTER 3. IMPLEMENTATION AND SIMULATIQM

Unreliability predictions for the sample architecture are obtained in

two ways: a component-level Markov chain (exact model) and the hierar-

chical procedure described in Chapter 2. The event models associated

with the hierarchical approach are also component-level Markov chains

and because we have assumed constant component failure rates (see Appen-

dix A) these models and the exact model can be readily solved via a dis-

crete-time time-invariant state transition matrix (STM) formulation. In

the case of the hierarchical model time varying transition rates appear

and consequently this model must be numerically integrated. Both meth-

ods are described below.

3.1 Simulation Implementation

3.1.1 Solution of Event and Exact Models

Since the event and exact models are linear time-invariant Markov

chains, a discrete-time time-invariant state transition matrix formu-

lation can be used to propagate the state probability vectors through

time. The general system to be solved is:
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x(t) = Ax(t) + Bu(t) (3.1)

Because the homogeneous solution is a degenerate case of the complete

solution of the state equation (equation 3.1), that result w i l l be shown

later. The solution of equation 3.1 is:

x(t) - eAtx(0) + / eA(t~T)Bu(T)dT (3.2)

The terms eAt and eA(t"T) are the STH for the system in equation 3.1.

Putting equation 3.2 in terms of a STH 4> : .

x(t) = *(t - t0)x(tQ) + Jt *(t - T)Bu(r)dT t > t (3.3)

To obtain a discrete-time representation of equation 3.3 a constant time

step, At, is needed. Defining

At • t - . * = 1,2,... (3.4)
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and.

(3.3)

with.

tQ » (k - DAt k » 1 (3.6)

Assuming u (t) is constant over each time step, equation 3.2 becomes:

x(tk) = e
AAtx(t]t_1) + ( /Qe

ATdT)Bu(tk_1) (3.7)

Using the single step STM 4> « eAAt, equation 3.7 becomes:

ATx(t ) = * (At)x(t . ) + ( / eATdT)Bu(t ) (3.8)
*t • S3 K^ I U K~ 1
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Given that B is a constant matrix,

X(V = *ssUt)x(tk-1) * Bu(tk-l)At (3*9)

The single step STM must be put in terms that can easily be computed.

We know that:

A At
* (At) - e (3.10)

which expands to:

i=0

For At much smaller than the reciprocal of the largest magnitude eigen-

value of A, the expansion can be truncated after a few terms and sti l l

retain the desired accuracy (Ref {2}). So for this implementation, the

single step STN is approximated as:
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» (At) = I + AAt
ss

(3.12)

For the purely homogenous cases (i.e. the exact model and event mod-

els associated with the first hierarchical state), u(t) - 0 and the sol-

ution of the state equation becomes:

(V *Ut)x(tas k-1
(3.13)

For the subs/stem models of FTP1 and FTP2 in the sample architecture,

* (At) »
as

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

+

-4X

4A

0

0

0

-3V

3X

0

0

0

-2A

2X

0

0

0

0

(3.14)

For the exact model, the single step STH is (see Figure 3.1):
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» (At) = . I + A At
S3 1 1 B

(3.15a)

E
See next page (3.15b)

The homogenous models are solved simply by stepping forward in time

using equation 3.13.

For determining the conditional subsystem state probability vectors

associated with the hierarchical states at the first and greater event

levels, the B matrix is the identity matrix and u(tk) is as given in

equation 2.3. So again the model is solved simply by stepping forward

in time using equation 3.9.

3.1.2 Solution of Hierarchical Model

As formulated, the hierarchical model is simply a first order, homo-

geneous, linear system of differential equations with time-varying coef-

ficients. The general form of this system is:

x(t) = A(t)x(t) (3.16)
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This is a simple i n i t i a l value problem that must be integrated to pro-

duce the result.

There are generally two ways in which an in i t i a l value problem can be

solved: a single-step method (Euler method, Runge-Kutta method) and mul-

tistep methods (Predictor-Corrector methods)(Ref {12}). The choice con-

sists of a trade-off between accuracy and computational efficiency. The

method used in this study is a 5 and 6 stage Runge-Kutta method. This

was chosen due to the moderate relative error requirement based on the

small number of significant digits (1 or 2 at best) in the input and

consequently the solution of the truth model. An outline of the Runge-

Kutta method follows:

1. Take a step At forward from t using the Euler method.

2. Evaluate x(t) at this point and use x(t+ At) to adjust

derivative to be used at t.

3. Use adjusted slope to take a second step from t.

4. Evaluate x(t) at this point and further adjust slope

to be used at t.

5. Repeat 3 and 4 to the order desired.

6. Combine all estimates to take actual step to t+At

It is pointless to rederive the Runge-Kutta formulas here. The reader

is directed to Rice for the details of the formulas.
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The actual subroutine used here is DVERK from the IHSL package. It

was chosen because it solved the hierarchical models to close agreement

with the exact models. If we loosen our relative error requirement, a

less computationally expensive method (such as the single step, single

stage Euler Method) could be used and introduce even greater computa-

tional savings through the use of the hierarchical approach.

3.1.3 Program Outline

The hierarchical model and event models are solved simultaneously as

the event models provide information needed to construct the time-vary-

ing transition rates for the hierarchical model.The exact model is also

solved simultaneously so that the hierarchical results can easily be

compared to the exact model. An outline of the simulation program fol-

lows:

• Read in i t i a l data

• Initialize subsystem and hierarchical state probability vectors

• Initialize exact model state probability vector

• Assemble event model STMs

• Assemble exact model STM

• For t0 to tm1S8lon by At

• Update exact model

• Compute hierarchical transition rates from event model results

• Assemble hierarchical system matrix
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• Integrate hierarchical system state equations

• Output time,hierarchical unreliability prediction, exact model

unreliability prediction

• Update conditional subsystem state probability vectors

• Output run statistics
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CHAPTER 4. RESULTS

4.1 Computational Efficiency

Probably the most important result of the hierarchical modeling tech*

nique is the increased computational efficiency compared to the compo-

nent-level modeling approach. When a large number of subsystems exist

in a system and many combinations of reconfigurations are of interest,

the state-space of a component level mode1 grows rapidly with the number

and complexity of subsystems. In contrast, the hierarchical approach

does not add nearly as many states to the system-level model when anoth-

er subsystem is added. Consequently there is potentially a considerable

difference in the computational burden associated with each approach.

To demonstrate this observation we w i l l examine the hierarchical and

exact models for three systems comprised of different subsystems. The

three cases examined are: two dissimilar subsystems, two dissimilar sub-

systems with imperfect coverage at the subsystem level, and three dis-

similar subsystems. - • •

We shall count the number of multiplications needed per time step.

The assumption ,is made that, for the purpose of comparing computational

efficiency, the hierarchical model and the exact mode) are solved using

the same numerical technique. Note that in formulating the exact mod-
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els, considerable state reduction was performed via state aggregation

based upon common exit transition rates. In addition we exploited the

observation that once a FTP loses two channels, additional channel fail-

ures need not be tracked since that FTP is no longer a candidate post-

migration site; the only exception is the case of the final supporting

FTP where channel failures must be tracked to the point of total system

failure. Also note that the operation of multiplying a N-vector by a

NxN matrix is of order N2.

For the case of two dissimilar subsystems each subsystem model is

fourth order (see Figure 2.11) and the hierarchical model is fourth

order. Counting multiplications per time step we have:

model

Oth level event
1 si level event
hierarchical

sum

multiplications/ At

2x3^
2x(4**2)

42

70

Table 4.1
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Notice that the two event models associated with the Oth event level

have only three states. This follows from the observation that we are

only interested in the transition between states 2 and 3 in Figure 2.11

as this transition corresponds to the event that triggers the function

migration. This observation w i l l be utilized in the other two cases.

The component-level exact model for this case has the following order of

execution:

model

exact

sum

multiplications/ At

112

121

Table 4.2

The next two cases show, when compared to the first, that a hierar-

chical model's computational advantage over a component-level model of

the system increases as the subsystem models become more complex and

also as more subsystems are added to the system. To address the issue

of more complex subsystem models, we w i l l no longer assume perfect cov-

erage at the subsystem level. Instead we w i l l include a vulnerable
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state in the subsystem model to capture near-coincident failures in a

subsystem which w i l l lead to the loss of that subsystem. Such near

coincident failures arise when an adjudication is to be made on the

occurence of a failure among three components. If two components fail

coincidently, the ability to correctly isolate the failed components may

be lost. Consequently the vulnerable state is included between states 2

and 3 of Figure 2.11. This state has two exit transitions one of which,

reflects the automatic failure detection, isolation and reconfiguration

(FDIR) rate and the other the occurance of a second channel failure

which yields a subsystem failure. The addition of the vulnerable state

makes the subsystem models fifth order. Counting multiplications per

time step in the hierarchical model we have:

model

Oth level event
1st level event
hierarchical

sum

mu 1 1 Ip 1 (cat tons/At

2x42
2x(52*2)

4*

102

Table 4.3

58



Note that the Oth level event model is reduced in order as before. The

component-level exact model for this system has the following order of

execution:

model

exact

sum

multipucat ions/At

182

324

Table 4.4

Our third case addresses the inclusion of additional subsystems in the

system. The system now includes three dissimilar subsystems and once

again we assume perfect coverage in the subsystems. The event models

are again fourth order, but the hierarchical model is now eighth order.

Counting multiplications per time step we have:
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model

Oth level event
I st level event
2nd level event

hierarchical

sum

multiplications/ At

3x3*
8x<42*2)
3x(42*2)

82

253

Table 4.5

The component-level exact models for this case has 30 states and the

following order of execution:

model

exact

sum

multiplications/ At

302

900

Table 4.6

The above results clearly demonstrate the savings in computation when

the hierarchical approach is utilized. The worst case for the hierar-
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chical approach from a computational viewpoint occurs when all the sub-

systems are different. Then, there must be a distinct event model for

each state transition of the hierarchical model. Even in this case,

however, the hierarchical approach requires less computation than a com-

ponent-level model for non-trivial systems. For systems wherein some

(or all) subsystems are identical the number of event models required is

less than the number of state transitions appearing in a full (i.e. no

state reduction performed) hierarchical model. The number of event mod-

els required is equal to the number of state transitions remaining after

the order of the full hierarchical model has been reduced by performing

state aggregation on the basis of common exit transition rates.

4.2 Two Subsystem Results

As mentioned previously, the two subsystem architecture fully

describes the hierarchical approach and associated problems. Thus, all

-test cases utilized the models developed for the sample architecture

described in Chapter 2. Two sets of cases are presented: similar sub-

systems, and dissimilar subsystems.

4.2.1 Similar Subsystems

The parameter to be varied in this section is the ratio of component

MTBF (mean-time-between-failure) to mission time. AM plots are compar-
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isons of the unre l i a b i l i t y predictions of the hierarchical and of the

component-level approaches for the gi.ven system versus time. Figure 4.1

shows the results for a MTBF to mission time ratio of one. Figure 4.2

gives the results for a MTBF to mission time ratio of five. Figure 4.3

is the result for a MTBF to mission time ratio of ten. We see that all

plots show good agreement between the two approaches. Figure 4.4 shows

the absolute value of the percentage of relative error between the
t

hierarchical model's and exact model's unr e l i a b i l i t y prediction given in

figure 4.3. We see that there is indeed an approximation introduced

ut i l i z i n g the hierarchical model as the percentage of relative error is

larger than expected errors due to machine precision. Note that the

large relative error early in the mission is a result of the reduced

observability for the first few time steps in the hierarchical model.

The error plots for the previous two cases demonstrate similar behavior

and therefore are not included.

4.2.2 Dissimilar Subsystems

In this section, the component MTBF to mission time ratio are differ-

ent for the two subsystems. In the first case (figure 4.5) subsystem 1

has an MTBF to mission time ratio of ten. In this case for subsystem 2
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this ratio is equal to one. In figure 4.6 subsystem 1 has an MTBF to

mission time ratio of 10 while this ratio for subsystem 2 is equal to

.1. Again the plots show the predictions of system u n r e l i a b i l i t y by the

hierarchical approach and by the component-level exact model against

time.

We see that there is disagreement between the curves in both figure

4.5 and figure 4.6. Note that the amount of disagreement is larger for

the smaller difference in component failure rate between the subsystems

(figure 4.5). Also note that the hierarchical approach is neither con-

sistently conservative nor consistently optimistic in its prediction of

system unreliability. Figures 4.7 and 4.8 give the absolute value of

the percentage of relative error between the hierarchical model's and

exact model's unreliability predictions given in Figures 4.5 and 4.6

respectively. Again we see that the approximation introduced using the

hierarchical model is larger than can be attributed to computer round-

off error.

Figure 4.3 has the same mission time as figures 4.5 and 4.6 but has

identical component failure rates in the subsystems. In this case,

there is excel lent agreement with the exact model. So, the trend we see

in figures 4.3, 4.5 and 4.6 is that as the difference i n the component

failure rates between the subsystems is increased, the error in the
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hierarchical approach increases, and then decreases for the example

given.

In Chapter Two we said the validity of the hierarchical approach

depends on whether all transitions out of a hierarchical state to any

other hierarchical state are first-order and the same for any transi-

tion. In light of this, the hierarchical method is expected to give

very small error for identical subsystems. If the subsystems are iden-

tical, X2 (t) equals X1 (t) in figure 2.9. As the component failure

rates are varied, our assumption breaks down. However, when one subsys-

tem's component failure rate is much larger than the other subsystem's,

the exit transitions from hierarchical state 1 in figure 2.9 become

essentially a single transition rate. Put another way, a dominant fail-

'ure mode surfaces and the other mode becomes negligible in the computa-

tion of unreliability by both the hierarchical approach and

component-level exact model. So we see that the hierarchical' approach

is not always conservative, but the associated error is small for the

cases studied.
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CHAPTER 5. SUMMARY AMD CONCLUSIONS

5.1 Summary

The objective of this research has been to extend present reliability

analysis techniques to conveniently capture sequence dependencies within

the framework of a structural decomposition approach. The requirement

has been to do this in a way that is accurate while being both less

labor intensive and less computationally expensive than combinatorial

approaches and component-level Markov models. The motivation for this

research is a need for less difficult "first cut" analyses of fault-to-

lerant systems comprised of fault-tolerant "building blocks."

The methodology is based on defining unique subsystem-level events

and computing associated event rates for a given system definition. The

event rates are determined from subsystem models and are imbedded in a

hierarchical Markov model of the system. The method is derived as it is

applied to a specific system definition comprised of two fault-tolerant

subsystems.

In formulating a hierarchical model we have made the assumption that

the Markov property applies even though we recognize that a hierarchical

model is truly semi-Markov as indicated by the unreliability predictions
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for the case of dissimilar subsystems (see Figures 4.4 and 4.5).

Encouragingly however, the exercises performed indicate that for the

given system definition the unreliability prediction of the hierarchical

model closely approximates the unreliability prediction of an exact com-

ponent-level Markov model. The predictions for different subsystems

substantiate the claim of .semi-Markov behavior. Thus the results of

this study show that the hierarchical approach is a viable and useful

method for fault-tolerant system reliability modeling. With some addi-

tional investigation the applicability of the approach can potentially

be broadened. Some additional research topics are discussed below.

5.2 Topics for Further

As stated previously, the issue of repair at the subsystem level

should be examined in order to extend the usefulness of the hierarchical

approach.

The effects of the hierarchical model's semi -Markov behavior can be

studied further if three subsystems are considered in the system defi-

nition. This would produce a hierarchical model which would have a cas-

cade of local time dependencies for the holding time distributions of a

hierarchical state.
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When architectures comprised of different subsystems are addressed,

error is introduced due to the approximations inherent in the hierarchi-

cal approach. Although the error in our exercises was acceptably small,

the approximations were not consistently conservative or optimistic.

Thus, two problems should be examined. First, given the present hierar-

chical approach, a measure of the error which does not require a exact

model should be produced. Second, a methodology to force the error to

be either conservative or optimistic should be investigated. The asso-

ciated results would consequently bound the system unreliability.

The hierarchical modelling technique used in this study should be

further examined to investigate the impact on state probability pred-

ictions for subsequent performabi1ity analyses.

5.3 Cone1union

Although the hierarchical approach has not been investigated com-

pletely, the concept has proved to be viable and to have several useful

features with respect to the analysis of large complex systems comprised

of fault-tolerant building blocks. Through the use of structural decom-

position, the model formulation for such systems is simplified. Fur-

thermore due to the high degree of state aggregation intrinsic to the

hierarchical approach, model solution is less computationally burden-

some. The computational savings increase, in comparison to a compo-
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nent-level modelling approach, as the number and complexity of the

subsystems increases. Additional savings occure when some or all of the

subsystems are equivalent.
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APPENDIX A. TIME-VARYING COMPONENT FAILURE RATES

Throughout this thesis, the component failure rates have been assumed

to be constant. This is a large restriction and should be examined. It

is desirable to give the component failure rates an arbitrary distrib-

ution. The Wei bull distribution is commonly used (Ref.(2)}.

The Wei bull distribution can model a constant failure rate or mona-

tonically increasing or decreasing failure rates. This probability den-

sity function takes the form:

f(t) = kmtm~1exp(-ktm) t > 0 (A1.1)

t < 0 (A1.2)

where k and m are positive, non-zero real numbers. The failure rate

corresponding to this distribution is:

X(t) = kmtm"1 (A1.3)

From equation A1.3 we see that if m • 1 the Weibull distribution produc-

es a constant failure rate.
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A preliminary result indicates that the hierarchical approach models

system reliability adequetly, and introduces little error with respect

to the truth model (see figure A1.1).
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