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ABSTRACT

In this paper we consider a model problem that simulates an

atmospheric acoustic wave propagation situation that is nonlinear. The

model is derived from the basic Euler equations for the atmospheric

flow and from the regular perturbations for the acoustic part. The

nonlinear effects are studied by obtaining two successive linear

problems in which the second one involves the solution of the first

problem. Well-posedness of these problems is discussed and

approximations of the radiation boundary conditions that can be used in

numerical simulations are presented.
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1. Introduction

In this paper we are interested in a two dimensional model of

acoustic wave propagation in the atmosphere. The propagation originates

from a point source with a high intensity of sound. It is well known that

acoustic wave propagation in the atmosphere is rather a complex

phenomenon. It is influenced by atmospheric conditions such as
pressure, density, temperature, and wind variations. To analyze the

complete problem is a difficult task. However, numerical methods have

proven capabilities of handling such problems, but it has not yet been

carried out for this class of problems. During the 1960's approximate

analytical methods have been attempted for simplified models of the

atmosphere. Axisymmetric three dimensional models were done by Cole

and Greifinger [1], and discussions on the physical nature were done by

Pierce [2]. These models essentially handle only linear wave

propagation but allow inhomogeneities in the atmospheric conditions on

pressure and density. Our ultimate goal is to treat the full nonlinear

model which can incorporate all variations of atmospheric conditions.

However, at the present time we shall be concerned with the simplified

situations of the above model, but retaining nonlinearity.

The goal of the paper is two- fold. First one is to define the problem

that governs the nonlinear behavior. It turns out that the problem can be

decomposed into two linear ones. We examine the well-posedness of

these problems, i.e., devise the mechanism that will lead to the

existence and uniqueness of the solution of these problems. The second

part will contain a brief discussion on radiation or absorbing conditions

that are suitable for numerical calculations. It turns out that



these are derived from the appropriate dispersion relations for the

linear problem. The question of well-posedness of the problem also

plays a crucial role in the numerical simulation. In this particular

study, modelling the acoustic source is a crucial part. The source

should be of the nature that does not violate the well-posedness of the
problem. Here we are interested in including sources that are rather
nonsmooth. An example is a blast wave sound such as a space shuttle

takeoff situation. The sound sources may be pulses, i.e., " delta

functions" in both space and time. However, other standard sinusoidal

types of sources can be included without difficulty. It turns out that the
well posedness of the problem yields the regularity of the source and

thus gives a guideline to approximate a source such as the delta

function type in a proper manner. The analysis of this class of

problems can be treated according to the theory of Kreiss[3] for

hyperbolic systems. Unfortunately what turns out is a characteristic

problem. This does not conform with Kreiss's analysis entirely. We

take a slight deviation from his approach. As an outcome of this

analysis, one can also derive a family of boundary conditions that can be

used for numerical computations. The numerical results will be

reported elsewhere.

As we mentioned earlier the governing equations are derived from

the Euler equations for the atmosphere. As in Cole and Greifinger [1],

we consider an isothermal atmosphere, above a ground plane with sound

produced by instantaneous energy release at a point on the ground. We

will also consider cases other than that of instantaneous release rate

such as sources of smooth sinusoidal type.



We shall begin with the statement of the fluid flow problem which

governs the acoustic phenomena. The model assumes strictly a two

dimensional field of atmosphere with a source that produces a release

of sound energy at a point ZQ above the ground. The case we treat is of

an isothermal atmosphere with the standard model of exponentially

varying pressure and density fields. We shall not be concerned with
wind speed so that the atmosphere is in equilibrium. Then the

equilibrium atmosphere is characterized by exponential distributions

for pressure and density with a scale height h,

- e -
p'

* * *where P, p, and T are sea level pressure) density, and temperature

respectively. Also,the scale height h is given by

RT*
h= — . (1.2)

o

To nondimensionalize the problem we need

= VyRT (1.3)

which is the isentropic sound speed and

c =Vgh (1.4)
O



the gravity sound speed. Then the nondimensional form of the Euler

equations (the equations of continuity, balance of momentum, and

energy) is

dp
+ d i v ( p g ) =0 (1.5)

+ (g. V)g = - 1 Vp - 1 k (1.6)

f "yp "y
T

d + g. V p 1 - e f(x,z,t) . Q -7)
8T JiT' = ^

Note that in equation (1.6) the forcing term, -1_ k (k is the unit vector
T

in the z direction) , arises due to the forcing term per unit mass -gk in

the original variables which is due to gravity. In equation (1.7), f(x,z,t)

dictates the space time dependency of the source (see figure 1) and e

measures the energy release per unit volume. For the case of an

instantaneous energy release, e is given by

(1.8)

where QQ is the total energy released at time t = 0. The initial

conditions are

p = p = e"z , q= 0 at t = 0. (1.9)

The boundary conditions at z = 0 are



9,-g (1.10)

which states that the vertical component of the flow is zero at z = 0.

source t (0,zQ)

•ground

2. Formulation of tire Acoustics Problem

The acoustic expansion is based on e « 1 and represents the flow as

small changes superimposed on the flow of the ambient state. We note

that the ambient velocity is zero , but pressure and density have the

form e . Thus the expansions are

2g_ = eu 4- e u. +

-7.1 i
P ~ e ep

-zp - e { 1 + ea + e cr. +

}

(2.1)

(2.2)

(2.3)

where u =• (u,w) , and u. - (u-,wj. Quantities u,u, and w,w. are x

and the z components of the acoustic velocities, respectively. We

substitute expansions (2.1) - (2.3) into equations (1.2) -(1.4), initial

conditions (1.7) and boundary conditions (1.8) to obtain the field

equations.

Problem that results from order e is linear and is similar to the



one reported by Cole and Greifinger [1]. This is as follows:

a + u + w - w =0 (2.5)
V A L*

Uf + PY = -
y

w. + i p - ££ = 0 (2.7)
y y

PI ' *at + (~r1)w = f(x»2't)- (2-8)

We rewrite (2.8) using (2.5) as

pt + yux + ywz - w = f(x,z,t) . (2.8)

Initial and boundary conditions for these perturbations are

p = a = u = w = 0 (2.9)

w = 0 at z = 0 , t>0 . (2.10)

For convenience we will call (2.5) - (2.10) problem PT.

2
Similarly the problem that results from order e has the form

<rl,t + ul,x + w l , z - w i = fl (2'H)

u i , t+ ( l / y )p 1 ) X = f2 (2.12)

wl,t + (i/V] P2,z" (P"a)/y = f3 (

p l , t " Y < J l , t"<" (T[} w l ~ f 4 » (



with initial conditions

PI = <7l = U[= Wl - 0 at t = 0 (2.15)

and boundary conditions w, = 0 at z - 0, t > 0 . (2.16)

Here,

f, = -[ ( CT u ) + (CT w ) - CT w ]
JL ^ &•

f 2 = <r Px /y ' ( u ux + w uz)

f. = CT ( p - p )/ y - ( u w + w.w ) } (2.17
O £- /\ b.

f4 = ( T P CT - (Y+1) (7/2 }t - u ( p - y CT )x + ( p - y CT )z

+ ( y - l ) ( p - y C T ) - ( y - l ) c j f (x,z,t) .

Again for convenience we shall refer equations (2.11) - (2.16) as

problem PTT. We allow sufficient smoothness on the right hand side

which contains terms given by (2.17) so that PTT is well-posed. In fact

this gives us the regularity of solution of PTT. Once a numerical

procedure is constructed for the solution of problem PT, the same

procedure can be used to compute the solutions of PTT since

the differential operator on both problems is the same with the bonus

of identical initial and boundary conditions. Also once the solution (p,p,

), ( CT, CT,), and ( u, u, ) are known, then the solutions of the nonlinear

field are given by:

P = PI

a = e a + e CT (2.18)

g_ - e u + e _u



This procedure can be continued to obtain higher order

approximations for the nonlinear problem. However, a sequence of study

reported by Hariharan and Lester [4,5] for one dimensional problems

and by Hariharan [6] for two dimensional problems of nonlinear

acoustic calculations shows that only two terms are needed to

investigate the nonlinearity, even for the case of shock waves. A natural
question one may ask is why not solve the nonlinear problem directly,

as in the above references, including discontinuities in the solutions

such as shock waves?. The solutions may form shock discontinuities in

the vicinity of the source, in which case considering two linear

problems Prand P™ separately will not be uniformly valid. However, we

are interested in the sound field far away from the source, and the

region of possible shock discontinuities is still considered as a source

region. A full mathematical justification may be a difficult task.

3. Formal Solutions and Estimates

Here, we discuss the existence and uniqueness of the initial boundary

value problems PT and P™. We shall accomplish this by obtaining proper

energy estimates. The first step is to write the governing equations in

the following form:

ut + A u x+ B u z + C u = f (3.1)

where
A - a. ., a- 2 - 1» a74 - i/Y» a4? - Y and all other a.. = 0,

8



B = b. , b13 = 1, b34 = i/y, b^ = y and all other b. . = 0,

C = cii, C13 ~ "*' C3i = " C34 ~ 1//Y' C43 = ° the rest °'
T TAlso, u = (a,u,w,p) for Pj and u = (c7^,u^,v^,w^) for PJJ.

Similarly the right hand side f has the following definition:

f = (0,0,0,f)T for Pj and f = (fp^'^'ty1 for Pir The boundary
conditions are:

w = 0 on z- 0 for PT

w, = 0 on z- 0 for P™.

Initial conditions are : u = 0 at t = 0 for both PT and PTT.

We want to treat the problems in the context of hyperbolic equations. Let

us collect needed relevant information from the theory of hyperbolic

equations. First consider the definition of hyperbolicity. Let A.(u)
«J

and C(u) be such that

j - f (x,t) . (3.2)
~ J AJ

Definition 3.1

If the eigenvalues of

A ( u, w) = 2 A • M w •

are real for real vectors u and w then the system (3.2) is said to be

hyperbolic. If the eigenvalues are real and distinct, then the system is

said to be strongly hyperbolic.

According to this definition it is easy to verify from (3.1) that the

eigenvalues of A w, + B w? are 0,0, (w,2+ w.-,2) * and -(w ? + w7
2) *

1 ^ \ L* i. L*



satisfying hyperbolicity, but not stong hyperbolicity. The next notion we

require is the symmetry property. Again we consider the system (3.2)
for this purpose. In general A. (u) need not be symmetric. There are va-

tj

rieties of procedures which are equivalent to saying the system (3.2)

can be written in symmetric form. One of which is in the Freidrich's

sense; i.e., there exists a matrix valued function E(u) which depends on
-1

u such that the matrices B. (u) - E(u) A. (u) E(u) are
*J «J

symmetric and then system (3.2) can be written in the symmetrc form:

v +2B.(v) vy = E(u) f (x,t). (3.3)
J J

In our considerations A and B do not depend on u implying E will not

depend on u either. Our first goal is to obtain this matrix E which we

call the symmetrizer. The construction follows from:

Lemma 3.1

There exists a matrix E such that the system (3.1) can be written in

a symmetric form

v. + P V + Q V - R v = E f (3.4)
\f /\ £

where, P and Q are symmetric and v = E u.

Proof;

The procedure consists of finding a matrix which will simultaneously

symmetrize both A and B. The first step is to find a matrix T such that

T A T is diagonal. This is easily accomplished by forming the matrix T

using eigenvectors of A. In this case T is given by

10



T =

1
0
0
0

0 1 1
1 1 -1
1 0 0
0 y y

so that T~*AT = diag (0,0,1,-i). (3.5)

The diagonal elements are simply the eigenvalues of A . This in turn
yields:

T^BT =

0 0 0 0
0 0 1 1
0 $ 0 0
0 0 0

(3.6)

This matrix is not symmetric. So we further investigate possibilities of
symmetrizing this matrix which preserves the symmetry of A.
Consider a diagonal matrix D = diag(a,/?,y,6). This gives the above
property for properly chosen constant diagonal elements. We observe
that

= diag (O.O.lrD , (3.7)
which simply shows the diagonal form of A is preserved, while

" 0 0 0 0

0 0 y/0 y//?

0 18/y 0 0

0 tf/y 0 0

(3.8)

We choose a,/S,y, and 6 in (3.8) so that the right hand side will be

11



symmetric. This restriction gives us the following relations:

Y/P = 0/2y
6/& = 0/2 y and a arbitrary.

Upon solving these equations, we find that one solution is (3 = Y2,

y=d=l. Since or is arbitrary we choose it to be 1. Then D =
diag(i,V2,l,l). Thus the matrix G = TD gives both G'^AG and G'^BG

as symmetric. Hence, we have the following symmetric hyperbolic

system:

vt + Pxv + Q y v - R v = F (3.9)

where, v = G u, P = G A G'^Q = G A G'^R = - G C G^and F - Gf.

The next step is to consider the well posedness of the problems

PT and PTT. Any definition of well-posedness of an initial boundary value

problem consists of several steps. Namely, they are:

a) Specification of spaces Hpto which F belongs,

b) the space in which the solution v is sought,

c) existence and uniqueness of the solution v e H for any F e Hp,

d) continuous dependence of the solution on the function F.

Composition of all these steps leads to a detailed analysis of the

problem. The machinery to establish such steps follows from Friedrich

[7], provided a suitable energy estimate is derived. Therefore, we shall

be concerned only with deriving an estimate for these problems. It

turns out that the energy estimate indicates the regularity of F, which

gives a guide to modelling the source in our acoustic problem.

To derive energy estimates for both problems, we define the

following quantities.

12



Denote the innerproduct of two vectors by
T( u,v ) = u v

2
Let Q C R be the half space z ^ 0, -co < x < oo. Define the

norm of a vector in & by

(M
Q. o - o o

u 112 = / (u,u) dx dz - / / (u,u) dx dz. (3.10)

We introduce functions w = e ^ v, H = e ^ F, for some positive

constant r). Then (3.9) becomes

w. +Pw +Qw -Rw + nlw = H. (3.11)
t X Z

Now consider the derivative of the inner product

fw w } — (MJ u/ ) 4- (u/ vi/1^ v » , v » / , — v w » w i / ' I1™}- I**/
V \t \r

Using equation (3.11) we have

(w,w) = -(Pw,w ) - (w,Pw ) - (w,Qw ) - (Qw ,w) +(w,(R+RT-2r)I
v X X fL L»

+ 2(w,H) .

Now using the symmetry properties of P and Q derived in Lemma 3.1,

we obtain:

(w,w)t = - (w,Pw)x - (w,Qw)z + (w,(R+RT-2;?I )w) + 2(w,H ). (3.12)

Integrating (3.12) over Q we obtain the following energy integral:

2 co
d_| |w | | = / (w.Qw)
dt o -co Q

{(w,(R+R -2/]I)w)} dxdz +

2/ (w,H) dxdz. (3.13)
Q

13



Recall our aim is to obtain an energy integral inequality. At this point

we need the notion called "maximal dissipativity." A discussion of this

concept can be found in Kreiss [8]. Suppose a boundary condition of the

form B.w - 0 at z =0 is posed where B As a rectangular matrix. Then

we have the following:

Definition 3.2:

The boundary condition B, w = 0 at z=0 is maximally dissipative

provided (y,Qy) ^ 0 for all y satisfying B, y = 0.

For the moment we shall assume there is a boundary operator B, which

satisfies the definition 3.2. This means that we need to prove the

following:

Lemma 3.2

There is a boundary operator B, w = 0 satisfying maximal

dissipativeness, provided w(x,0,t) = p(x,o,t) = 0.

Remark 3.1 The resulting boundary operator B, is exactly the

rectangular matrix:
0 0 1 0

0 0 0 1

Remark 3.2In the original statement of the problem, we did not require

p(x,0,t) = 0. This condition ensures the well-posedness of the problem

as we will see.

Returning to the equation (3.13) the energy integral, we use Lemma

3.2 and obtain the following inequality,

14



2 T
d _ | | w | | £/ { (w , (R- fR-2 r7 l )w)} dxdz + 2/ (w,H ) dxdz. (3.14)
dt o Q Q

TIf TI is big enough , r\ I > R + R , for instance, set

= 2 HR| | /<J
Then for n > 2 171 'o

-(w,(R+RT)w) + 2ri (w,w) ̂  2(rj - r}) (w,w) > rj (w,w) . (3.15)

On the other hand we have the inequality,
2

(w,H)

Take e = rj <J/2, so that
2

e/2

Thus the inequality (3.14) becomes

2 2 2
1 I H I ^ - n l M I +n/2 I M i +2n" 1 /c
dt o o o

Integrating (3.16) from time t=0 to t=T and using the zero initial

conditions, we obtain the following inequality:

2 T 2 T 2
^T v (x,T) || + rj/2 / | |e"^v(x,t) 1 1 dt <> C n"1/ | |e"^F(x,t) | |dt.

0 o 0

(3.17)

Here, x = (x,z), r\ > 2r\ and C is a constant independent of F(x,t).

Inequality (3.17) holds for both problems PT and PTT with an appropriate

forcing function F. In summary the above procedure yields the

15



desired result.

Theorem 3.1

Problem PT together with additional boundary condition p(x,0,t) = 0 is

well-posed, i.e., for any F e Lot&K there exists a unique solution v in

L7(Q), satisfying the estimate

- T 2 T t 2 i T t 2

o 0 o 0 o

for any n - 0 ^ an^ f°r some constant K independent of F.

Remark 3.3 Observe that u = G v, f = G F, and it is readily verified

that u satifies the same estimate as that of (3.18) with F replaced by f.

Remark 3.4 Theorem 3.1 suggests that the forcing function f should be

at least in L9 (Q). Thus for practical considerations even if the acoustics

is generated by pulse sources (i.e., of the "delta function" type) it should

be approximated by a function which is in

Proof of the well-posedness of the problem PTT is similar as

mentioned earlier and we merely state it.

Theorem 3.2

For any f , e L9 (&) there exists a unique solution u e L^ (Q) such that

2 T 2 T 2

0 o 0 o

(3.19)

16



holds, provided that the additional boundary condition p,(x,o,t) = 0 is
satisfied and the solution of PT, i.e., u and the forcing term f are both

Remark 3.5 The requirement u,f e H (Q) ( which is the Sobolev space of
order 1) arises because forcing term for PTT contains derivatives of the

soution of Pjand its forcing term.

Recall that the nonlinear solution is sought in the form:

uR = e u + e2 Uj . (3.20)

This is as stated in equation (2.18) the linear combination of

problems Pj and PTT. Combining therems 3.1 and 3.2 we have the

following:

Theorem 3.3

There exists a unique nonlinear solution u e H (£2) for the two term

linear solutions of PT and PTT for the nonlinear acoustic problem

provided that the forcing function f for PT is in H (Q) .

This theorem tells us that the smoothness of the source of acoustics

should be more than a square integrable function. Its first derivative

must also be square integrable. In such a situation it is necessary to

assume sufficient smoothness on it. This becomes crucial in the

numerical computations. If one uses a second order finite difference

scheme, all the spatial derivatives need to be at least in Cr(Q). Thus

rather than considering step by step the regularity of the source, it is

easier to approximate it by a C00 function. For example if we consider

source term of the form f(x,z,t) = (5(x) g(z,t), where g is a smooth

17



function, then one may approximate f by f where,

2 2f - m/V7r exp (- m x ). (3.20)

Similar modifications are easily made when the source is a pulse in

the other independent variables z and t.

To end this section let us conclude with the proof of Lemma 3.2.

Proof (Lemma 3.2)

Same proof holds for both Pr and PTT. The given boundary condition in

both problems is the normal velocity component is zero, i.e., p 5 0 on
Tz - 0. Therefore, let y = ( p,u,0,p) . For any vector in this form, we

compute (w,Qw). That is

(w,Qw) =yTGTGBG"1Gy.

Noting that G - TD, we have

i
0

0

. 0

0

V2

V2

0

1

i

0

y

i
-i
0

T .

Then simple matrix manipulations yield
2

(w,Qw) = p p/y + V2 u p/y + p y.

A variety of conditions may yield

(w,Qw) ^ 0. However, if we choose p = 0, it is clear that

(w,Qw) = 0 and the corresponding boundary conditions have the form:



0 0 1 0 p

0 0 0 1 u

w

LP .

and the rectangular matrix B, is easily identified.

Conditions such as p(x,0,t) = 0 have a physical point of view. This

condition says that the ground is "soft." A common terminology is z =0

is a no reflection boundary. Perhaps other boundary conditions that make

(w,Qw) negative may correspond to other physical considerations. At

this point we have not yet explored them.

4. Radiation boundary conditions

For computational purposes it is essential to truncate half space

into a finite region Q*. for example if one uses a finite difference

scheme, then it makes computations easier if Q* is a rectangle as

indicated in figure 4.1.

source^

> x

19



Then the pieces of the boundaries F,, F-,, and H, need to be non-

reflecting or radiating boundaries since they must correspond to wave

behavior at far distances. .For simple wave simple wave equation such

discussions are extensively known. A summary of these may be found in

Hariharan [9]. In this reference, particularly the work of Engquist and

Majda [10] is noted. What follows is an attempt to extend the idea in
[10] to obtain necessary boundary conditions for the linear problems

under consideration. For this purpose we shall be concerned with only

the problem PT . The same radiation conditions are applicable to

problem P™. Recall that problem Pris prescribed by equations (2.5) - v

(2.10) together with the additional boundary condition p(x,0,t) = 0, at

z = 0. Suppose we are interested in the radiation boundary condition

on the boundary R.It is sufficient to treat this boundary alone

for obtaining radiation conditions. That is to say treat the problem as a

half space problem, with H playing the role of of the x axis ( -co < x <

o>).

To follow the idea of [10], we take Laplace transform with respect to

time t (since the initial values are specified ) and Fourier transform

with respect to x of equations (2.5) - (2.8). Using initial conditions

(2.9) we obtain,
/\ /\ A

scr + ifu + w - w = 0s z

A /\

s u + i£/y p = 0 (4.1)

s w + 1/y p z- -1 = 0

s p + iy£ u + yw -w =0.

20



At far distances the effect of the forcing term f vanishes. Thus we seek

homogeneous solutions of (4.1) with dependence exp(Xz). This leads to

the characteristic equation

if X-l 0

del

s i

0 s

1/y 0

0

0

(yX-1)

= 0. (4.2)

This has roots

where

i 2

with

V2 = (y2-D/y.

(4.3)

(4.4)

( > 0) (4.5)

For a decaying wave we choose the negative root of (4.3). Moreover,

ju(s,£) can be written in the form

ju(s,£) - (s +<*)j (£)) (s +0;^ (£))*/s (4.6)

Indeed one can obtain a theoretical solution of (4.1) by variation of

parameters using the homogeneous solution dictated by exp(Xz) with the

values of X given by (4.3). But the dificulty will be to invert the

transforms using the boundary conditions.A similar difficulty arises

at far distances even without the source term. It is easy to see

21



that the integrand will contain terms of the form exp^z - jj(s,£)z ).

From equation (4.6) we obtain cj. and co^ explicitly as follows:

(4.7)

Let s = ir. Then (4.6) becomes

(r2-o>2 (£))]* . (4.8)

For propagating waves we require that /j to be imaginary. This is

ensured by |r| > w, (£) and |r| < w^^)- Fr0111 (4.7) one finds such a
requirement is satisfied provided |£/r| « 1 , or equivalently |^/s| «1

Thus we shall be concerned with approximating /4s,£) for large values

of s. To see this let us emphasize that the solution of X we seek is of
the form

(4.9)

Multiplying equation (4.9) by exp(Xz), we obtain an associated

differential operator

(4.10)

In the pseudo differential operator terminolgy ji(s,£) is the symbol of an

associated pseudo differential operator.. To obtain radiating solutions

equation (4.10) needs to be inverted for both the Laplace transform and

the Fourier transform. Indeed a perfectly absorbing boundary condition

arising from (4.10) is given by the inversion,

22



D oo >v t •£• i00 °° "
J p (z;£,s) e d£ds — J J p (z;£.

~~-ioo -oo -ioo-oo

The above expression simplifies to

P ioo oo « f -t
g = £ p - / / ^s,£) p (z;£,s) est " l*x d^ds . (4.11)

-ioo-oo

Equation (4.11) provides a boundary condition that is nonlocal in time

and space. A similar procedure to that discussed above will hold for

boundary conditions on the boundaries F. and Fo provided we take the

Fourier transform with respect to z and construct differential operators

in the direction of x. Boundary condition (4.11) is not easy to

implement. However, if we approximate the symbol ju(s,£) for large

values of s then it is possible to obtain approximate local boundary

conditions from (4.11). To do this we consider /j(s,£) again and

investigate its nature when |£/s| « 1. We rewrite p as

A crude approximation is ju - s. Substitution of this approximation in

equation (4.11) gives the boundary operator

(4.13)
\Jt- <U\.

This is a possible boundary condition. Using the Taylor approximation of

(1+xr for small
approximation is

(1+x)* for small x, we see from (4.12) that the next level of
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y(s,e) - s[ 1 + l/(8s2) + i £2/s2] . (4.14)

We differentiate (4.11) with respect to t and substitute the

approximation (4.14) to obtain the next order boundary condition

Pzt = * P - <Ptt
 + P/8 - * PXX) • (4'15)

Similarly, higher order accurate boundary conditions can be derived.

This process seems elegant. However, not all such boundary conditions

yield stable results. That is to say, well-posedness of the problems is

not guaranteed with the all such boundary conditions. At this point it
remains to be shown that we can derive energy estimates of the form

(3.18) with boundary conditions of the above type on the boundaries I~\ ,

n,, and [^.Discussion of these results including corresponding discrete

versions of our problems will be reported elsewhere.
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