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SECTION 1

INTRODUCTION AND BACKGROUND

The objective of this program is to develop a transformation toughened structural
ceramic with improved high temperature properties and scale up the process
to sizes representative of components for a heavy duty engine diesel engine.

During the first year (Phase I) of this study, the feasibility of using Zr0p-Hf02
solid solution as a toughening agent in mullite (3 Alp)3. 2Si0) and alumina
(A1203) has been demonstrated. Specimens of mullite and of alumina conta?ning
10-20v/0 of Zr0p-Hf0»> (1:1 molar) solid solution were fabricated by sintering
or hot pressing at 1590-1620°C, characterized and tested for physical, mechanical
and thermal properties. Significant toughening of both matrix materials were
exhibited.(1)*

Based on the need for a low thermal conductivity and high thermal shock resistant
ceramic in advanced diesel engines, transformation toughened (TT) mullite was
chosen as-the prime candidate material for this study. The second year (Phase
I1) efforts concentrated on the optimization of processes and scale up for
transformation toughened mullite. The material was characterized in sufficient
detail to provide the component designer/user a data base necessary for
preliminary design. l

During the second year (Phase II) effort three tasks plus a reporting task
were completed. The three technical tasks are described below:

*Numbers in ( ) refer to references.



Task 1 - Process Optimization

Process variables were investigated to achieve high strength transformation
toughened mullite. The variables investigated were:

Powder preparation method for mullite matrix material.

2. Powder preparation method for the toughening agent precursor, Zrg. s
Hfg.502.

3. Composition, namely volume % of the second plate additive or toughening
agent Zrg gHfp. 52.

4. Powder milling, blending and cold pressing (including iso-static
pressing) procedures.

5. Near net shape consolidation by sintering and/or HIP ing.

The resulting specimens were characterized by X-ray diffration (XRD) and scanning
electron microscopy (SEM). Flexural strength or modulus of rupture, compressive
strength and fracture toughness of the materials were determined at room
temperature as well as at elevated temperatures. The characterizations were
repeated for selected specimens after being subjected to a thermal soak in,
air at 1000°C for approximately 100 hours.

Task 2 - Process Scale Up

The best process developed in Table 1 was scaled up to a size consistent with
a diesel engine component. A typical size to be considered for scale up is
a piston cap approximately 5 1/2" 0.D. X 1/2" thick. The actual scale up
achieved was on the order of 1" X 1" X 6" Tong.

Billets were fabricated to the scaled up dimensions and test specimens were
cut from these billets for detailed characterization.



Task 3 - Characterization

Selected specimens from the scaled up billets were characterized as follows:

1. Microstructure by SEM.
2. Modulus of rupture at RT, 500°C, 800°C, 1000°C.
3. Compressive strength at RT and 800°C.

4. Fracture toughness at RT by indentation technique and fracture toughness
at RT, and 800°C by 4 point bend bar with multiple indents.

5. Coefficient of thermal expansion,RT to 1200°C.

6. Thermal conductivity at 110°C, 700°C and 1250°C.



SECTION 2

TRANSFORMATION TOUGHENING (TT)

Zr0p, HfO» and solid solutions of Zr0y-HfOp exist in three crystalline phases..
These are a low temperature monoclinic form, a high temperature tetragonal
form, and a still higher temperature cubic form. There have been a large number
of investigations (2-5) of transformation toughened Zr0z and transformation
toughening of other ceramic matrices such as Al703, where Zr0p has been used
as the toughening compound. Transformation toughening by Zr0p depends on the
metastable retention of the tetragonal phase upon cooling from elevated
temperature and the athermal tetragonal-monolinic (t—m) transformation of Zr0p
grains (with an incréése’in volume) under the influence of an advancing crack.
Near the t-—=m equilibrium temperature, transformation toughening does not occur
because the transition takes place thermally. TT 1is most effective at
temperatures far below the equilibrium t m temperature.

For Zr0p, the equilibrium temperature for the monoclinic-tetragonal phase
transition_ is about 1000°C (1832°F) during heat up. For HfOp, m—t
transformation occurs at approximately 1749°C (3164°F). As shown in Figure
1, Phase Diagram of the Zr0p-Hf05(6) system, a 1:1 molar Zr0p-HfO» solid solution
has a m—=t transformation temperature of about 1420°C (2588°F) and thus such
a solid solution increases the temperature range (compared to that of Zr0>
alone) where transformation toughening is effective. In this program, the

1:1 molar Zr0p-Hf0p was employed for the most part as the toughening agent.
The temperature of interest for engine applications extends to 1371°C (2500°cC),

although diesel engine operation is generally limited to a temperature <814°C
(1500°F).

In summary, transformation toughening (TT) of a consolidated, dense mullite
body by inclusions of Zr0-HfOp solid solution depends on the retention of
mestastable tetragonal phase of the Zr0-HfOp solid solution and transformation
of mestastable tetragonal to the thermodynamically stable monoclinic phase
under the influence of an advancing crack. The process is shown schematically
in Figure 2.



SECTION 3
EXPERIMENTAL PROCEDURE

3.1 MATERIALS AND PRQCESSING
Major raw-materials used for preparation of TT mullite compositions are mullite

(the matrix) and Zr0p-HfOp (1:1 molar) as the toughening phase. High purity
mullite (3A1203.25i102) powder from Baikowski International Corporation, Charlotte,
N.C., was used as the matrix material. Initially Baikowski mullite, Grade 193,
was planetary ball milled (PBM), wet, for 1% hour, dried and then PBM for 15
minutes to get the starting matrix powder. Later on, another new, finer variety.
of Baikowski mullite, grade 193 CR, became available and thus it was substituted
for the mullite used earlier. The data sheet from Baikowski International on
193 CR mullite is shown in Table I. It was found that this mullite powder in
the as received condition is equivalent to the old Baikowski mullite (193 grade)
after planetary ball milling as described above.

Ir0p-HfOp solid solution toughening phase powder was prepared from an aqueous
solution of zirconium oxychloride (Zr0C12.8H20), and hafnium oxychloride (HfOCI».
8H20) in desired proportions via sol-gel process. For the most part, 1:1 molar
ZrOg-HfOé was used as the toughening agent. The method of ZrO2-HfO2 powder
preparation by sol-gel technique followed by drying, calcination and planetary
ball milling is described in Figure 3. Zr0p-Hf0; powder in other proportions,
Tike, 2:1 molar and 3:1 molar were also prepared in the same manner and each
material was used as a toughening phase in a limited number of TT mullite
compositions.

TT mullite batch compositions were prepared by planetary ball milling both the
mullite matrix and Zr0y-HfO» toughening phase powders in requisite proportions
(90-85/10-15 vol %) for 15-30 minutes. Some batches containing Al,03 additions
to the mullite matrix were prepared using Norton Co., grade 38-900 Al03. The
alumina and mullite were pre-biended by PBM for 15 minutes before milling with
the Zr02-HfOp powder. A few batches of mullite-1:1 molar Zr02-HfOp (90/10 v/o0)
were also attrition milled in n-propanol for 6-9 hours in order to prepare much
finer particle size batch materials.



Powder batches thus prepared were pressed into billets by cold isostatic pressing
(CIP) at 40-55 KSI. The billets were then densified by sintering in air at
1600-1650°C for 0.5-1.0 hour, followed by, in some cases, hot isostatic pressing
(HIP) at 1500-1650°C, 29-30 KSI argon.

Figure 4 shows various possible fabricating processes for a TT material exercised
during this study and the precursor GE IR&D study.

3.2 CHARACTERIZATION
The resulting TT materials were characterized for fraction of retained tetragonal

phase by X-ray diffraction (XRD) as described in Reference 1 and microstructure
by scanning electron microscopy (SEM). Mechanical properties of selected samples
including modulus of rupture, fracture toughness and compressive strength of
the materials at room and elevated temperatures were determined. These mechanical
tests were performed by I1linois Institute of Technology Research Institute
(IITRI), Chicago, Il1linois. Modulus of rupture and elastic modulus were
determined on TT specimens (3 mm X 4 mm X 45 mm oh 20/40 mm supports) by 4-point
flexure test as per MIL-STD-1942(MR). .

Most of the fracture toughness Kic, measurements were performed in 4 point flexure
by multiple indent method as per Cook and Lawn(7).



SECTION 4

RESULTS AND DISCUSSIONS

4.1 PROCESS OPTIMIZATION-MAXIMIZATION OF PERCENT RETAINED TETRAGONAL PHASE
During tﬁe initial stage of the investigation, procesing of mullite-~1:1 Zr0o/Hf0>
(90/10 v/0) was optimized in order to achieve high percent retained tetragonal
of Zr0p~HfOp solid solution phase. A high percent retained tetragonal which
is transformable is desired to enhance the potential for TT during crack
propogation. The mullite matrix powder and Zr02-Hf02 toughening agent were
wet milled for various periods of time in a planetary ball mill to produce
starting powder of varying particle sizes and distributions. Ten (10.0) gm
batches were prepared by PBM for 15-30 minutes. Three pellets (0.5" diameter)
of each powder batch were then cold pressed and sintered at 1610°C/30 minutes
and percent tetragonal phase retained was determined by XRD. Details of the
materials, processing conditions and XRD results are given in Table II. Based
on the data, it seemed that further wet milling of the mullite beyond 1% hours
did not show much benefit. However, size reduction of ZrOp-HfOp toughening
phase by extended milling provides some improvement in percent tettragonal phase
retainment. The highest result of 34% retained tetragonal was obtained on
a mix composition (TT101984B) with 1% hours milled mullite and 1:1 ZrQ0p-HfO>
milled for 8 hours. Thus, such starting powders were used for further batch
preparation. It was also found (TT020785) that the new, deagglomerated Baikowski
mullite, 193 CR, was a good substitute for 1% hrs PBM mullite, type 193.

Based on the data in Table II, it was also found that percent tetragonal phase
retainment was improved to about 40% (TT7102984B vs TT101984B) by a two-stage
milling operation. Thus, later on this technique was also employed for batch
preparation. Results in Table II also show about 49% retained tetragonal for
a mullite-2:1 molar Zr0p/Hf0p composition and about 46% retained tetragonal
for a mullite-3:1 molar ZrOpHfOp composition.

4.2 SCALE UP-LARGE BILLET PREPARATION AND MICROSTRUCTURAL CHARACTERIZATION
Large amounts (about 400.0 gms each prepared in 10.0 gm batches) of two mullite

IZrQp/Hf0p  compositions  were  prepared for  large-scale billets  for
characterization. Billets of mullite and a mullite-Zr0p composition were also
made for comparison.



Batch compositions, processing methods, sintered density and percent retained
tetragonal by XRD of sintered pieces are described in Table III. Each powder
batch composition was pressed into a large billet (approx. 8 3/4" X 14" X 1")
by CIP'ing at 40 KSI. The billets were then cut into about 2.5" long pieces
and sintered at 1610°C for 30 minutes. XRD studies indicated quite high fraction
of tetragonal phase retainment. Figure 5 illustrates the XRD patterns for
the Zr02-HfO02 and ZrQp containing specimens.

4.3 MECHANICAL PROPERTIES OF TT MULLITE

Test specimens from sintered TT ceramic billets, as mentioned above, were
machined and fabricated by BOMAS Machine Specialities, Inc., Somerville, MA.
The test specimens were finished and tested in accordance with MIL-STD-1942(MR)
by IITRI, Chicago, Il1linois, for mechanical properties (4-point flexural
strength, elastic modulus and fracture toughness) at room temperature and
elevated temperatures (500, 800, 1000°C). They were also characterized for
their microstructures by SEM as well as optical microscopy. Table IV shows

the test matrix for these TT materials.

Mechanical properties of various TT mullite materials, as described in Table
III, are given in Table V. The mullite-10 v%1:1 Zr0/Hf0p composition showed
the best mechanical properties of the various compositions studied. It showed
a flexural strength or MOR of about 38.2 KSI at room temperature and 33.3 and
35.4 KSI at 800°C and 1000°C respectively. MOR showed a dip (27.2 KSI) at
500°C probably due to some intrinsic mechanism. This trend was also seen in
other compositions. Fracture toughness, Kic, for mullite-10 v% 1:1 ZrQ0p/HfO2
was 2.73 and 2.44 MPa at room temperature and 800°C respectively.

Complete mechanical test results are given in the Appendix I authored by J.
W. Adams of IITRI.

4.4 MICROSTRUCTURE AND EDX ANALYSIS
Figures 6 to 9 show SEM fratographs of the fracture surfaces of flexure test

specimens (described in Table V) after test at room temperature. Figures 10
to 12 show fracture surfaces after 1000°C flexure tests of mullite, mullite-~10
vk Ir02 and mullite-10 v% 1:1 Zr0p/HfOp respectively. Figure 13 shows the
microstructure of mullite-10 v% 1:1 ZrOpHfOp after polishing and thermally



etching at 1500°C, 15 mins. It shows round Ir0p/Hf02 solid solution grains
<1 um and elongated 1-5 um mullite grains. It is believed finer grain sizes
are necessary for further improvement in mechanical properties.

Also, stoichiometry of a mullite-10 v% 1:1 Zr0p/HfOp specimen was investigated
by energy dispersive X-rays (EDX) analysis. Fiqure 14 illustrates the difference
in composition in the mullite-Zr0-Hf0» grain-boundary (A) and the mullite grain
(B) showing a definite increased silicon peak in the grain boundary.

A quantitative analysis of the mullite-ZrOp-HfO2 grain boundary by EDX shows
a A1/Si wt % ratio of 67.2/32.7, which is much lower than a theoretical A1/Si
wt % ratio of 74.3/25.7 in a stoichiometric nominal mullite (71.8/28.2 wt %
A1203/Si02). EDX analysis of other TT materials (Table V) also shows Si0p rich
mullite compositions which would lead to a SiOp-rich glassy phase in grain
boundaries at processing temperatures. The presence of such a high silica glassy
phase 1in grain-boundaries 1is believed to have contributed to degrading the
flexural strength of the TT materials tested up to this point in the study.

4.5 IMPROVED TT MULLITE BY USE OF ALo03-RICH MULLITE MATRIX
In order to minimize the formation of a SiOp-rich liquid phase in a TT ceramic

at the sintering temperature, it was decided to prepare two Al203-rich mullite
matrix materials by adding 10 and 18 vol % Al203 to 193 CR Baikowski mullite.
The mullite matrix, #1A, had a calculated composition of about 72.0/28.0 wt
% A1503/Si02 and another mullite matrix, #2A, had 75.0/25.0 wt % Al1203/5i103.

Phase diagram work by Klug and Prochazka at GE-CRD(8) has shown that mullite
can contain up to 75 wt % Al1203 at 1650°C.

As shown in Table VI density of the sintered TT materials increased by about
1.5 - 2.0% after containerless HIP'ing. Density of the sintered plus HIP'ed
materials ranged between 98.0 - 99.0%. Although compositions containing 10
vol % 1:1 Zr0p-HfO0p exhibited higher percent retained tetragonal compared to
those containing 15 vol % Zr0p-HfO0p, (10 - 11% vs. 5 - 6% of the Zr0p-Hf0>
content) after sintering, further processing by HIP'ing resulted in approximately
the same percent retained tetragonal (5-6%) for both levels of ZrOs-Hf0, addition



probably due to grain growth. This is considered to be a low percent retained
tetragonal, on the order of 0.5% of the total volume of the specimen in the
case of the 10 v/o 1:1 Zr02-Hf02 addition.

4.6 MICROSTRUCTURE OF MULLITE (A1,03 RICH)

We also examined the microstructure of all the TT materials by a scanning electron
microscope (SEM).  Photomicrographs showing Zr0-HfO» solid solution (ss)
toughening phase distribution and grain size in these sintered and/or HIP-ed
materials are shown in Figures 15 to 19. They show fairly uniform distribution
of the toughening phase (Zr0p-HfO0» ss) and sizes range predominantly between
0.2 to 1.0 um. The first four materials (TT 052025-1. to 4, Table V), which
have been sintered and then HIP-ed also show some larger Zr(0;-HfO2 ss grains
(about 1-3 um) due to the extended heating cycle compared to TT 061485 specimen,

which was made by sintering only.

4.7 DISCUSSION OF MECHANICAL TEST RESULTS
The mechanical test data is presented in full detail in Appendix I. Specimen
désignations used in Appendix [ are described in Table VIIIB.

The results tabulated in Table VIII (billets described in Table VIIIA) show
that the addition of 1:1 molar Zr0p-HfO2 solid solution to mullite significantly
enhances the MOR at RT and elevated temperatures. The effect on Kyc is stronger
at both RT and elevated temperature. Thermal soak of these materials at 1000°C/
140 hrs shows a RT strength (MOR) degradation of about 25%. Scanning electron
microscopy has shown grain growth during such thermal soaks and the strength
degradation is attributed to such grain growth.

0f the TT mullite specimens, Specimen #SM6 in Table VIII appears to be about
the best of the compositions although additional work is expected to show much
improved properties over #SM6. In this specimen fracture toughness was increased
by 50% at RT and by 75% at 800°C and MOR was improved by 45% at RT, 30% at
800°C and 10% at 1000°C over straight mullite.

There appears to be a drop-off in strength at temperatures in the 500-800°C
range for mullite and the TT-mullites (for example specimens SM1 and SM6).

10



The compression data for one billet SMI1 appears encouraging. As can be seen
in Table IX. If one takes the highest data point for each condition, even at
the current state of development of the TT-mullite, very high values were measured
on single cylindrical test specimens 6.35 mm dia X 12.7 mm long. These test
points. were: RT 375 Ksi; 800°C 267 Ksi; 1000°C 174 Ksi; and after 1000°C/100
hr thermal soak, RT 178 Ksi.

4.8 SINTERING SCHEDULE VERSUS % RETAINED TETRAGONAL & GRAIN SIZE
Although the highest 4 point flexural strength of about 48 Ksi was obtained
with an alumipna-rich TT mullite, it 1is clear that further improvement in

mechanical properties of such TT materials is needed. It is believed that still
finer grain size is needed to achieve higher strength. Thus, a number of batches
of mullite #1A-1:1 molar Zr0p-HfQO» (90/10 v%) were prepared by attrition milling
in n-propanol for 9 hours. Powder batches were then CIP'ed into billet form
at 55 Ksi and sintered in air at various temperature between 1500-1650°C for
30 minutes. The idea is to keep the grain sizes of the toughening Zr0,-~Hf0O2
phase (as well as matrix phase) small as one in the range which would maximize
the percent retainment of the transformable tetragonal phase and hence increase
the strength and fracture toughness of the TT material. Density and % retained
tetragonal in the sintered TT material(s) are shown in Figure 20. It appears
that a sintering temperature of 1600°C will be preferred to 1650°C because percent
retained tetragonal reached a maximum of about 23% (at > 96% theoretical density)
at 1600°C. In addition, as shown in SEM microstructures in Figqure 21, as
expected, Zr02-HfO0p» grain sizes are also much smaller at 1600°/30 minutes than
those obtained after sintering at 1650°C/30 minutes, approximately 1.0 um compared
to approximately 0.5 um (Figure 20).

Thus, it is believed that additional optimization in mullite~Zr0p-Hf0)

compositions and processing techniques will be effective for further improvement
in the mechanical properties of transformation toughened mullite.

11



4.9 THERMOPHYSICAL
Thermophysical properties of TT materials were not measured during this Phase

11 study(l). However, thermal expansion coefficient (CTE), thermal diffusivity
and thermal conductivity data on various TT mullite and TT alumina determined
in Phase (1) are listed in Table IX. The CTE's of the mullite materials were
about 60% of those measured for the alumina matrix materials. Also, the thermal
conductivity of the mullite matrix specimen was seen to be between 23% and 40%
of the comparable alumina matrix specimen over the temperature range (110-1250°C)
investigated.

12



SECTION 5

SUMMARY AND CONCLUSIONS

Transformation toughened (TT) mullite is a good candidate as a structural ceramic
component in advanced diesel engine applications due to its 1low thermal
conductivity, low thermal expansion coefficient and inherently high thermal
shock resistance. During Phase II of this DOE-MNASA sponsored program, attempts
were made to develop optimized mullite-Zr0p/HfO» compositions and processes
for scale up and characterization in order to provide the component designer/user
the data base necessary for design.

Investigations of various mullite-Zr0p/HfO2 compositions included processing
via preparation of Zr0p-HfOp (1:1 molar) toughening phase by a sol-gel method,
planetary ball milling or attrition milling of starting materials and powder
batches, cold isostatic pressing into billet form and then sintering or sintering
followed by hot isostatic pressing. Characterization of TT materials included
percent ZrOp-HfOp solid solution tetragonal phase by X-ray diffraction, density,
mechanicgl properties, MOR or flexural strength, fracture toughness, Kic, elastic
modulus, -compressive strength at room and elevated temperatures upto 1000°C,
thermal expansion and conductivity, and microstructures by scanning electron
microscopy.

The best TT material developed so far had a composition of 85 vol % mullite
- 15 vol % 1:1 molar Zr0p-HfOp (Specimen SM-6 in Table VIII). The mullite was
a modified Baikowski mullite prepared by adding extra Al1203 (Baikowski mullite/
A1203 = 90/10 vol %) in order to eliminate high silica content glassy phase
at the grain boundaries and thus improve the mechanical properties.

This mullite - Zr0p/HfOp transformation toughened material showed a 4 point
bend flexure strength or 48 KSI and 34 KSI at room temperature and 800°C
respectively.



Fracture toughness, Kic, was found to be 3.3 MPal m at room temperature and
2.57 at 800°C. In comparison, untoughened mullite (made by the same process)
had a MOR of 33 KSI and K¢ of 2.3 MPaVv m at room temperature and a MOR 26 KSI
and Kic, 1.5 MPaym at 800°C (Table X).

However, it has been suggested that a TT material should have at Teast 60 KSI
room temperature flexural strength (4 point bend) to be seriously considered
for a piston cap design study for diesel engine as originally planned under
Phase III of the current program.

Based on the experimental data obtained so far, it is apparent that further
work towards optimization of mullite - Zr0p/HfO» compositions and processing
methods is needed.

RECOMMENDATIONS FOR FUTURE WORK
Such advanced work would be aimed at further reductions in particle size by

____attrition milling and lowest possible temperature processing. Probably, the

best approach would be to cold isostatically press the powder, relatively low
temperature sinter (bisque fire), encapsulate, and HIP at the lowest possible
temperature, +1500°C.

In addition, all sources of defects such as large pores, large, uncomminuted
particles in the batch, and defects in the CIP'ed green body will have to be
eliminated since many flexural fracture surfaces during the investigation showed

such flaws, as described in Appendix I.
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TABLE I

HIGH PURITY MULLITE
REF. 193 CR

(BAIKOWSKI, INTERNATIONAL
CHARLOTTE, NORTH CARQLINA)

Chemical Formula: 5A1,02-2810,
Minimum Purity: > 99.2%
% Converted to
Mullite Phase: > 98%
Surface Area: 2 mz/gm
Bulk Density: 0.6 gm/cc
Tap Density: 0.9 gm/cc
Pressed Density: 1.30 gm/cc (2000 psi)

Agglomerate Size Distribution
Cumulative Weight Percent

<1.0um 24
<1.5um 34
<3.0um 85
<6.0um 100

Mullite can also be supplied in an
as-calcined agglomerated form with
a larger particle size distribution.
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TABLE IV TEST MATRIX

Temperature, °C3
Property 25 500 800 1000

Flexure strength and
elastic modulus

Unexposed 3 3 3 3
Exposed 100 hr/
1000°C 3 3 3 3
Fracture toughness
Unexposed 3 3
Exposed 100 hr/
1000°C 3 3
Fracture surface A1l samples optically,
analysis selected samples in
an SEM

ANumbers in table represent sample repli-
cates.
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TABLE X

COMPRESSION TEST RESULTS FOR MULL 1:1 ZH
AT VARIOUS TEMPERATURES

(IITRI SM1l)

Compressive

Sample Strength Elastic Modulus Poisson's
Number ps1 MPa 100 psi GPa Ratio
25°C
1 375,250 2587.3 32.6 224.7 0.29
2 144,600 997.0 -- -- --
3 122,200 842.5 26.8 184.6 --
Mean 214,120 1475.6 29.7 204.7 --
800°C
4 260,710 1797.5 -- -~ --
5 266,870 1840.0 -- -- -
6 132,480 913.4 - -- -
Mean 220,020 1517.0 -- -- --
1000°C
7 - - -- -- - -
8 173,980 1199.5 -- -- --
9 52,150 359.6 -- -- --
Mean 113,065 779.6 -- -- --
25°C After 1000°C/100 hr Exposure
10 177,780 1225.7 26.7 184.1 0.26
11 36,360** 250.7 -- -- --
12 137,370 947.1 13.9 95.7 0.28
Mean 117,170 807.8 20.3 139.9 0.27

**Sample contained large open pore at surface.
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1:1 Zr02 - HfO
Spec. No. T111684

2:1 1Ir0p - HfO2
Spec. No. TT120784A

A11 Zr0,
Spec. No. TT20784B

0.40

0.66

0.78

X-RAY DIFFRACTION PATTERNS FOR SPECIMENS

SHOWING FRACTION OF RETAINED TETRAGONAL
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OF POOR QUALITY

FIGURE 15 MICROSTRUCTURE OF MULLITE NO. 1A/Zr02-Hf02, 85/15 V%
(TT052185-1), SINTERED AND HIPed

FIGURE 16 MICROSTRUCTURE OF MULLITE NO. 1A/Zr02-Hf02, 90/10 V%
(TT05218502) , SINTERED AND HIPed
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FIGURE 17 MICROSTRUCTURE OF MULLITE NO. 1A/Zr0p-Hf0p, 85/15 V%
(TT052185-3), SINTERED AND HIPed

FIGURE 18 MICROSTRUCTURE OF MULLITE NO. 2A/Zr02-Hf02, 90/10 V%
(TT052185-4), SINTERED AND HIPed
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FIGURE 19 MICROSTRUCTURE OF MULLITE NO. 2A/Zr02-Hf02, 90/10 V%
(TT061485), SINTERED
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FOREWORD

This report contains the results of mechanical property evaluation of
various toughened mullite compositions that General Electric is developing for
DOE/NASA. The materials employ mullite as a matrix for a dispersed toughening
phase of ZrOz/HfO2 solid solutions.

Flexure strength and fracture origin analysis, elastic modulus, and
fracture toughness were evaluated for eleven developmental materials. Data
were compared to transformation-toughened zirconia values where appropriate.

Respectfully submitted,
IIT RESEARCH INSTITUTE

Associate Engineer

Approve

7 o
. \. At—
QL_A\ S Rs Bortz, Manager ;
Nonmetallic Materials and Composites
Materials and Processing Technology
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1. FLEXURAL STRENGTH

The flexural strength was determined in the quarter 4-point configuration
on test samples that were of nominal dimensions 3 x 4 x 45 mm. The upper and
lower spans were 20 and 40 mm, respectively, and the strain rate was 9.5 x
1075 sec”! (a crosshead speed of 0.5 mm/min). The sample and fixture dimen-
sions conform to fixture configuration B in MIL-STD-1942 (MR), "Flexure
Strength of High Performance Ceramics at Ambient Temperature."

The static elastic modulus was determined by measuring the outer fiber
tensile strain during flexural strength testing. Resistance strain gages were
used to measure deformation at 25°C. At elevated temperature a precision
electromechanical instrument was employed, where deformation was recorded at
three positions on the sample tensile face within the region of pure bending
(i.e., within the upper span length). This was accomplished by extending SiC
rods from an LVDT coil and core up through the furnace to the sample. In this
manner, the outer fiber tensile strain was directly recorded, without the need
to employ potentially inaccurate methods of subtracting out the fixture/load
rod deformations.

The fast fracture bend strength results are presented in Tables 1 to 10
and Figure 1. The results of samples that were eprsed for nominally 100 hr
at 1000°C in static laboratory air prior to residual room temperature strength
measurement are also included in the tables. Both toughened and non-toughened
materials were tested. Generally the toughened materials retained ~75% of
their room temperature strength in fast flexure testing at 800°C, although
MULL 1:1 ZH, 10 v/o, and MULL 2A ZH, 10 v/o (a) retained only about 50%, while
MULL 2A ZH, 10 v/o (b) retained 88%. Samples which were expoéed at 1000°C/140
hr then tested at room temperature also had strengths ~75% of the unexposed
room temperature values, with the exception of MULL 2A ZH, 10 v/o (a) which
had a 25% increase in strength. In most cases the elastic moduli decreased as
a function of temperature and exposure by a few percent, with MULL 2A ZH, 10
v/o (b) showing the least variation (although this material was not exposed at
1000°C).

II'T RESEARCH INSTITUTE
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Al11 fracture surfaces were examined in a stereoscopic optical microscope,
and selected samples in an SEM. Fracture origins are indicated in Tables 1 to
10. Most fracture origins were related to processing. Open or closed pores
were small, singular, and generally round, either below the tensile surface,
or exposed during test sample preparation by diamond grinding. "“Processing
defect" is a more general category, encompassing poorly sintered regions, pore
clusters, or large irregularities in the overall structure, which may have
appeared during cold pressing. Subsurface large grains in these materials
were glassy in appearance. Examples of the various types of critical flaws
are shown in Figure 2.

I'T RESEARCH INSTITUTE
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TABLE 1. FLEXURE TEST RESULTS FOR MULL (IITRI SM1)
AT VARIOUS TEMPERATURES
4-Point Failure
Sample Flexure Strength Strain, Elastic Modulus
Number psi MPa % 106 psi GPa
a. Strength at Various Temperatures
25°C
1 32,840 226.4 0.12 27.0 186.4
2 32,580 224.6 0.12 27.8 191.6
3 34,880 240.5 0.13 26.8 184.6
Mean 33,430 230.6 0.12 27.2 187.5
500°C
4 24,350 167.9 -- -- --
5 23,030 158.8 0.07 32.5 223.8
6 21,550 148.6 0.06 36.7 253.3
Mean 22,980 158.4 0.07 34.6 238.6
800°C
7 27,670 190.8 0.08 34.3 236.4
8 23,180 159.9 0.07 33.4 230.0
9 26,970 186.0 0.09 29.3 201.7
Mean 25,940 178.9 0.08 22.6 222.7
_ 1000°C
10 31,740 218.9 0.13 23.9 165.0
11 31,760 219.1 0.11 28.2 194.38
12 35,410 244.2 0.14 25.4 175.5
Mean 32,970 227.4 0.13 25.8 178.4
b. Fracture Origins
Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-
Number Pore Pore Defect Large Grain Flaw mined
1 B
2 °
3 a
4 =
5 °
6 B
7 .
8 Kl
9 >
10 °
11 'Y
12 °

[ITRI-M06138-1



TABLE 2. FLEXURE TEST RESULTS FOR MULL-Z (IITRI SM2)
AT VARIOUS TEMPERATURES
4-Point Failure
Sample Flexure Strength Strain, Elastic Modulus
Number psi MPa % 106 psi GPa
a. Strength at Various Temperatdres
25°C
1 29,980 206.8 0.11 27.1 187.2
2 46,390 319.9 0.17 27.7 191.3
3 36,550 252.0 0.13 27.9 192.1
Mean 37,640 259.6 0.14 27.6 190.2
500°C
4 24,040 165.8 0.06 37.9 261.3
5 22,280 153.6 0.06 35.3 243.5
6 29,210 201.4 0.09 34,1 234.9
Mean 25,180 173.6 0.07 35.8 246.6
800°C
7 32,000 220.7 0.13 28.2 194.2
8 25,240 174.1 0.09 27.3 188.5
9 33,990 234.4 0.10 33.1 228.5
-Mean 30,410 209.7 0.11 29.5 203.7
1000°C
10 32,220 222.2 0.13 25.3 174.3
11 24,880 171.6 0.10 23.7 163.7
12~ 36,530 251.9 0.17 21.2 145.9
Mean 31,210 215.2 0.13 23.4 161.3
b. Fracture Origins
Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-
Number Pore Pore Defect Large Grain Flaw mined
1 )
2 B}
3 Bl
4 °
5 E)
6 °
7 )
8 °
9 )
10 .
11 °
12 °

IITRI-M06138-1




TABLE 3. FLEXURE TEST RESULTS FOR MULL 1:1 ZH (IITRI SM3)

AT VARIOUS TEMPERATURES

4-Point Fai]uré
Sample Flexure Strength Strain, Elastic Modulus
Number psi MPa % 106 psi GPa
a. Strength at Various Temperatures
25°C
1 37,160 256.3 0.13 27.7 191.0
2 41,070 283.2 0.15 27.2 187.4
3 36,210 249.7 0.13 28.0 193.2
Mean 38,150 263.1 0.14 27.6 190.5
500°C
1 27,540 189.9 0.08 34.9 240.8
5 28,030 193.3 0.08 37.4 257.7
6 25,410 175.3 0.10 26.4 181.8
Mean 26,990 186.2 0.09 32.9 226.8
800°C
7 34,130 235.4 0.13 26.4 182.1
8 32,300 222.7 0.12 27.0 186.0
9 33,440 230.6 0.12 28.0 193.1
Mean 33,290 229.6 0.12 27.1 187.1
1000°C
10 32,410 223.5 0.15 21.4 147.7
11 35,830 247.1 0.20 18.3 126.0
12 38,130 262.9 0.17 22.8 157.1
Mean 35,460 244.5 0.17 20.8 143.6

b. Fracture Origins

Critical Flaw Type

Sample Open Closed Processing Subsurface Machining Undeter-

Number Pore Pore Defect Large Grain F1aw mined

1 °

2 .

3 °

4 .

5 °

6 B

7 .

8 °

9 s
10 3

11 °

12 °

[ITRI-M06138-1



TABLE 4. FLEXURE TEST RESULTS FOR MULL 2:1 ZH (IITRI SM4)

4-Point Failure
Sample Flexure Strength Strain, Elastic Modulus
Number psi MPa % 106 psi GPa

a. Strength at Various Temperatures

25°C
1 33,700 232.4 0.12 28.5 196.7
2 22,410 154.5 0.08 27.7 191.3
3 35,330 243.6 0.12 28.4 195.6
Mean 30,480 210.2 0.11 28.2 194.5
500°C
4
5 No material tested at 500°C
6
Mean
300°C
7
8 No material tested at 800°C
9
Mean
1000°C
10 29,080 200.5 0.17 17.0 117.5
11 33,050 227.9 N.16 19.9 137.3
12 25,710 177.3 0.13 19.8 136.5
Mean 29,280 201.9 0.15 18.9 130.4

b. Fracture Origins

Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-
Number Pore Pore Defect Large Grain F1aw mined

10

12 °

7 [TTRI-M06138-1




TABLE 5. FLEXURE TEST RESULTS FOR MULL-ZH-HIP* (IITRI SMS)

4-Point Failure
Sample Flexure Strength Strain, _Elastic Modulus
Number psi MPa % 105 psi GPa

a. Strength at Various Temperatures

25°C
1 39,050 269.3 0.12 32.6 224.6
2 36,550 252.0 0.11 32.8 226.3
3 42,140 290.6 0.13 32.3 223.0
Mean 39,250 270.7 0.12 32.6 224.6
800°C
4 29,310 202.1 0.09 33.3 229.6
5 19,610 135.3 0.06 33.1 228.5
6 27,500 189.7 0.08 33.8 233.4
Mean 25,470 175.6 0.08 33.4 230.6

b. Fracture Origins

Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-

Number Pore Pore Defect Large Grain F1aw mined
1 .
2 °
3 °
4 »
5 °
6 .

*Billet No. T041285-2.

8 [ITRI-M06138-1



TABLE 6. FLEXURE TEST RESULTS\FOR MULL 1:1 ZH (IITRI SM6)

4-Point Failure
Sample " Flexure Strength Strain, Elastic Modulus
Number psSi MPa % 10® psi GPa

a. Strength at Various Temperatures

25°C
1 43,990 303.3 0.14 31.8 219.3
2 47,690 328.8 0.15 31.9 219.9
3 52,540 362.3 0.17 32.3 222.7
Mean 48,070 331.5 0.15 32.0 220.6
800°C
4 32,320 222.9 0.09 36.6 252.3
5 36,950 254.8 0.10 35.9 247.8
6 32,100 221.4 0.10 32.0 220.5
Mean 33,790 223.0 0.10 34.8 240.2
25°C After 1000°C/140 hr Exposure
X1 33,630 231.9 0.12 29.0 199.8
X2 32,360 223.2 0.11 29.5 203.6
- X3 41,900 288.9 0.15 28.7 197.9
Mean 35,960 248.0 0.13 29.1 200.4

b. Fracture Origins

Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-

Number Pore  Pore Defect Large Grain Flaw mined

1 °
2 °
3 °
4 a

5 °

6 a

X1 °

X2 °

X3 .

9 [ITRI-M06138-1




TABLE 7. FLEXURE TEST RESULTS FOR MULL 1:1 ZH (IITRI SM7)

, 4-Point Failure
Sample Flexure Strength Strain, Elastic Modulus
Number psi MPa % 106 psi GPa
a. Strength at Various Temperatures
25°C
1 45,510 313.8 0.14 32.7 225.5
2 38,000 262.0 0.12 32.7 225.5
3 42,120 290.4 0.13 32.7 225.5
Mean 41,880 288.7 0.13 32.7 225.5
800°C
4 21,580 148.8 0.07 31.3 214.4
5 23,560 162.5 0.07 32.8 226.0
6 22,710 156.6 0.07 32.4 223.3
Mean 22,620 156.0 0.07 32.1 221.2
b. Fracture Origins
Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-
Number Pore  Pore Defect Large Grain Flaw mined
1 °
2 °
3 a
4 °
5 .
6 °

10
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TABLE 8. FLEXURE TEST RESULTS FOR MULL 2A ZH (IITRI SM8)

4-Point Failure
Sample Flexure Strength Strain, Elastic Modulus
Number ps1 MPa A 10% psi GPa

a. Strength at Various Temperatures

25°C
1 38,700 266.8 0.12 32.8 226.1
2 47,410 326.9 0.15 32.0 220.6
3 37,360 257.6 0.12 31.6 217.9
Mean 41,160 283.8 0.13 32.1 221.5
800°C
4 24,490 168.9 0.09 27.5 189.7
5 : 30,440 209.9 0.09 31.7 218.5
6 24,550 169.3 0.07 33.8 233.2
Mean 26,490 182.7 0.08 31.0 213.8

25°C After 1000°C/140 hr Exposure

X1 29,880 206.1 0.10 29.8 205.8
X2 38,000 262.1 0.13 29.6 203.8
- X3 27,860 192.2 0.09 31.0 213.5
Mean 31,910 220.1 - 0.11 30.1 207.7

b. Fracture Origins

Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-

Number Pore  Pore Defect Large Grain F1aw mined
1 °
2 °
3 °
4 °
5 °
6 @
X1 ®
X2 s
X3 ?

11 [ITRI-M0O6138-1




TABLE 9. FLEXURE TEST RESULTS FOR MULL 2A ZH (IITRI SM9)
4-Point Failure
Sample Flexure Strength Strain, Elastic Modulus
Number psi MPa % 105 psi GPa
a. Strength at Various Temperatures
25°C

1 29,960 206.6 0.09 33.9 233.7

2 27,190 187.5 0.08 33.7 232.4

3 36,720 253.2 0.11 34.0 234.4
Mean 31,290 215.7 0.09 33.9 233.5

800°C

4 15,040 103.7 0.05 31.2 214.9

5 18,740 129.2 0.06 32.4 223.5

6 14,380 99.2 0.05 29.8 205.8
Mean 16,050 110.7 0.05 31.1 214.7

25°C After 1000°C/140 hr Exposure

X1 36,960 254.9 0.12 31.2 215.5

X2 40,780 281.2 0.13 31.8 219.0

X3 39,140 269.9 0.13 30.5 211.7
Mean 38,960 268.7 0.13 31.2 215.4

Fracture Origins

Critical Flaw Type

Sample Open Closed Processing Subsurface Machining Undeter-
Number Pore Pore Defect Large Grain Flaw mined
1 °
2 2
3 .
4 °
5 L)
6 °
1X 3
X2 .
X3 @

12
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TABLE 10. FLEXURE TEST RESULTS FOR MULL 2A ZH (IITRI SM10)

4-Point Failure
Sample Flexure Strength Strain, Elastic Modulus
Number psi a % 10% psi GPa

a. Strength at Various Temperatures

25°C
1 43,720 301.4 0.14 31.8 219.3
2 32,750 225.8 0.10 32.0 220.6
3 40,020 277.5 0.13 31.0 213.7
Mean 38,830 268.2 0.12 31.6 217.9
800°C
4 28,650 197.6 0.09 32.3 223.0
5 41,700 287.5 0.14 30.5 210.4
6 32,320 222.9 0.10 31.4 216.7
Mean 34,220 236.0 0.11 31.4 216.7

b. Fracture Origins

Critical Flaw Type
Sample Open Closed Processing Subsurface Machining Undeter-

Number Pore Pore Defect Large Grain Flaw mined
1 °
2 .
3
4
5 °
6 °

13 [ITRI-M06138-1
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1006, 100.08U0 IITRI

(a) Subsurface elongated pore was the fracture origin
for this MULL 2A ZH, 10 v/o, (b) sample tested at
800°C (sample number SMIOF6).

"

898 LA00 U VITIRE

(b) Higher magnification view of (a) above.

Figure 2. SEM micrographs of representative types
of fracture origins (tensile surface is uppermost
in each photograph) of samples tested in 4-point
flexure at various temperatures.

14
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(c) This MULL 1:1 ZH sample failed at a subsurface pore
cluster in flexure at room temprature (sample
number SM3F2).

Figure 2 (cont.)
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(d) Fracture surface of MULL 1:1 ZH, 15 v/o ZH tested
at room temperature after 1000°C/140 hr static air
exposure. An open pore was the critical flaw

(sample number SM6X1).

PSKY X300 - 100.0U I1ITR})

(e) Detail of (d) above.

Figure 2 (cont.)
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(f) A large subsurface inclusion was the fracture origin
of this MULL 1:1 ZH, 10 v/o sample tested at room
temperature (sample number SM7F2).

25KV %360 7602 V10000 I1TRI

(g) A higher magnification view of (f) above. In an
optical microscope such inclusions appeared
glassy.

Figure 2 (cont.)
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(h) This exposed (1000°C/140 hr) MULL 2A ZH, 15 v/o
sample tested at room temprature had a process-

ing defect fracture origin in the form of an

incompletely sintered region at the tensile
surface (sample number SM 8X1).

(i) Detail of (h) above showing the lower density
region which is 20 um diameter.

Figure 2 (concluded)
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2. COMPRESSIVE STRENGTH

Compression testing was performed on one batch of material at room and
elevated temperature, and at ambient temperature after static air exposure at
1000°C/100 hr. Elevated temperature testing was performed in a Kanthal wire
wound furnace placed in an Instron testing machine. The load platens used for
all tests were made of Udimet 700.” The upper platen fitted into a hemispher-
jcal seat in fhe upper load rod to give some self-alignment to the load train.
At elevated temperatures, flat and parallel plates of Norton NC-132 HP-Si3N“
were placed between the sample and platens to lessen the chance that the small
diameter sample would cause an indentation on the loading platens.

Samples were 6.35 mm diameter by 12.7 mm long. The crosshead speed was
8.5 x 1073 mm/sec. Elastic modulus and Poisson's ratio were determined at
room temperature using 2-element, 90°, "Tee" rosette resistance strain gyages.
Modulus was not measured at elevated temperature. The results are presented
in Table 11. Compressive strength varied from 250 to 2587 MPa (36 to 375
ksi). ~Whether this is due to material variation or nonuniform loading during
testing is not known. Samples were completely destroyed during testing
(explosive brittle fracture), so fracture analysis was not possible. In the
case of sample 11, the large pore (which presumably contributed to the
sample's low strength) was discovered prior to testing. The low strength of
sample 8 may also be the result of a similar subsurface processing defect.

*Specia1 Metals Corp., New Hartford, NY.
IIT RESEARCH INSTITUTE
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TABLE 11.

COMPRESSION TEST RESULTS FOR MULL 1:1 ZH* (IITRI SM11)
AT VARIOUS TEMPERATURES

Compressive

Sample Strength Elastic Modulus Poisson's
Number psi MPa 100 psi1 GPa Ratio
25°C
1 375,250 2587.3 32.6 224.7 0.29
2 144,600 997.0 - - —
3 122,200 842.5 26.8 184.6 --
Mean 214,120 1475.6 29.7 204.7 --
800°C
4 260,710 1797.5 -- - _—
5 266,870 1840.0 -- - -
6 132,480 913.4 - - -
Mean 220,020 1517.0 -- . -
1000°C
7 - - - - -
8 173,980 1199.5 -- - -
9 52,150 359.6 -- - -
Mean 113,065 779.6 -- - -
25°C After 1000°C/100 hr Exposure
10 177,780 1225.7 26.7 184.1 0.26
11 36,360** 250.7 -- - -
12 137,370 947.1 13.9 95.7 0.28
Mean 117,170 807.8 20.3 139.9 0.27

*Notes on mailing package for this material were:

#1 AM-5, sinter

1650/1 hr, same composition as TT052185-2, except attrition mill

batch

9 hr.

**Sample contained large open pore at surface.
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3. FRACTURE TOUGHNESS

Fracture toughness values, Kc’ were determined using a modified indenta-
tion-strength method. The objective was to observe the relative toughness of
each material as a function of temperature.

The indentation-strength method of Chantikul et al.,! was used for this
work, where strength is related to material toughness by the equation:

K. = ny (E/H)

4
1/8 (0P1/3)3/
where: "5 is a dimensionless constant
E/H is the ratio of elastic modulus to hardness, GPa/GPa
o 1is the indentation flexure strength, MPa
P is the indentation contact load, MN

Initial measurements were necessary to determine the proper indentation load,
P. To determine the proper indentation load, samples having indentation loads
“of 5 to 10 kgf (4.9 x 1075 to 9.8 x 1075 MN) were tested in 4-point flexure at
ambient temperature. An indentation load of 10 kgf (9.8 x 1075 MN) was chosen
as the one which would assure a controlled flaw large enough (relative to
grain size and natural flaws) to be the fracture origin.

Indentations were made using a Vicker's Hardness test machine. They were
made at room temperature, in ~40% relative humidity, just prior to flexure
testing. The indentation load duration was 15 sec. The indentation axes were
oriented parallel to the sample length and width. The samples were not post-
identation annealed, nor was any oil placed on the indentations, since it was
felt that at elevated temperature those treatments would be ineffectual.

Table 12 summarizes the test and calculation parameters. The material
toughness was calculated according to the equation above. Two assumptions
were made in order to perform the calculations. First, the constant ”5 was
assumed to be 0.59, based upon the reference work!*2 and work done by Schioler
at AMMRC on transformation-toughened zirconias.3*“ Second, the ratio of

IIT RESEARCH INSTITUTE
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TABLE 12. PARAMETERS FOR K. CALCULATION

Samples
o 3.00 x 4,00 x 45 mm flexure bars

® As-receijved, as-machined surfaces

Controlled Flaw

e One Vicker's indentation at center of
tensile surface

e Indentation load 10 kg = 98N

o No post-indentation anneal
@ Indentations not covered with immersion o0il

Flexure Testing

4-point configuration

Lower span = 40 mm, upper span = 20 mm
All testing in air

Relative humidity = 41%

OIO.OO

One break per sample

K. Calculation

*
o K. = ns (E/H)l/8 (o D1/3)3/4
”5 - 0.59 assumed

e E/H considered equal to 17 for all test
conditions

e Fracture surfaces of all samples examined
for valid failure

*
Reference 1.
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elastic modulus to hardness was calculated from the average modulus and hard-
ness values and was assumed constant over the range of temperature. Lawn5
notes that variations of 10 < E/H < 50 adds no more than +10% erfor in K.
measurement. This is true primarily because E/H is raised to a small power
(1/8) in the equation to determine Ke e

Tabular results of fracture toughness as a function of temperature are
presented in Tables 13 and 14, and is plotted in Figure 3. The highest tough-
ness, 3.8 MPa‘ml/Z, was exhibited by the hipped material at room temperature.
At elevated temperature the MULL 2A ZH (15 v/o, SM8) material had a toughness
twice that of mullite alone (i.e., 3.0 vs. 1.5 MPa‘ml/Z). Non-toughened
mullite experienced a 35% decrease in toughness at 800°C, while the toughened
materials maintained about 90% of their room temperature values. For compari-
son, commercially available transformation-toughened zirconias evaluated by
the same method showed loss of toughness at 750°C (as compared to room temper-
ature values) of 60% for Mg-PSZ materials and ~70% for Y-PSZ.6

II'T RESEARCH INSTITUTE
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TABLE 13. FRACTURE TOUGHNESS OF UNEXPOSED TOUGHENED

MULLITES DETERMINED 8Y THE INDENTATION-STRENGTH

METHOD AT ROOM TEMPERATURE (P = 98 N)

Indented 4-Point

Sample Flexure Strength K.,
No. DS MPa MPa*m1/ 2
MULL (IITRI SM1)
1 11,460 79.0 2.2
2 12,200 84.2 2.3
3 12,830 88.5 2.5
Mean 12,160 83.9 2.3
MULL-Z (IITRI SM2)
1 16,930 116.8 3.0
2 18,200 125.5 3.1
3 17,730 122.3 3.1
Mean 17,620 121.5 3.1
MULL 1:1 ZH (IITRI SM3)
1 14,570 100.5 2.7
2 16,360 112.8 2.9
3 14,290 98.6 2.6
Mean 15,070 104.0 2.7
MULL 2:1 ZH (IITRI SM4)
1* 19,740 136.2 2.8
2* 20,450 141.0 2.9
3 16,030 110.6 2.9
4 17,260 119.0 3.0
Mean 18,370 126.7 2.9
MULL-ZH-HIP (IITRI SM5)
1 23,940 165.1 3.9
2 23,510 162.3 3.8
Mean 23,730 163.7 8

*These samples were indented at P = 49N,
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TABLE 14. FRACTURE TOUGHNESS OF UNEXPOSED TOUGHENED
MULLITES DETERMINED BY THE INDENTATION-STRENGTH
METHOD AT 800°C (P = 98 N)

Indented 4-Point

Sample Flexure Strength KC,
No. psi MPa MPa®ml/ 2
MULL (IITRI SM1)
4 7,110 49,0 1.6
5 21,690 149.6 Fracture not
at indentation
6 6,460 44 .5 1.5
Mean 6,790 5 46.8 1.5
MULL-Z (IITRI SM2)
4 32,910 227.0 Fracture not
at indentation
5 13,420 92.5 2.5
6 18,210 125.6 3.2
Mean 15,815 109.1 2.8
MULL 1:1 ZH (IITRI SM3)
4 13,020 89.8 2.5
5 12,150 83.8 2.3
6 13,860 95.6 2.6
-Mean 13,010 89.7 2.5
MULL 1:1 ZH (IITRI SM6)
1 13,810 95,2 2.6
2 13,520 93.3 2.5
3 14,310 98.7 2.6
Mean 13,880 95.7 2.6
MULL 2A ZH (IITRI SM8)
1 16,580 114.3 2.9
2 17,610 121.5 3.1
3 17,570 121.1 3.1
Mean 17,250 119.0 3.0
MULL 2A ZH (IITRI SM9) ‘
1 11,970 82.6 2.3
2 10,420 71.9 2.1
3 12,770 88.1 2.4
Mean 11,720 80.9 2.3
MULL 2A ZH (IITRI SM10)
1 9,870 68.1 2.0
2 10,330 71.2 2.1
3 11,340 78.2 2.2
Mean 10,510 72.5 2.1
25 IITRI-M06138-1
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Figure 3. Fracture toughness determined by the indentation-strength method
at ambient temperature and 800°C (Vickers Indentation, P = 98 N).
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4. SUMMARY

The toughened mullites of this study had higher strengths and KIC values
than non-toughened mullite. There were trends toward higher room temperature
and elevated temperature strengths. Retained room-temperature strength after
static soaks in laboratory air at 1000°C seemed to indicate that overaging is
not a problem for this material, as with some transformation-toughened
zirconias (TTZ). The elastic moduli decreased slightly as a function of tem-
perature and exposure. Processing defects such as pores, large grains, and
poorly bonded regions were the primary fracture origins. These materials are
less tolerant of defects than are TTZ's; it might be expected that strengths
would increase as they are removed. Compression strength was evaluated for
one material, giving strengths of ~1500 MPa (220 ksi) at 25° and 800°C.

Fracture toughness was evaluated by the indentation-strength method using
the same sample and fixture size as used for flexural strength evaluation.
Although these toughened mullites are not as tough as transformation-toughened
zirconias, they retain toughness better at elevated temperature than do TTZ
materials. Strength and toughness did not always correlate well for these
materials: MULL 2A ZH, 15 v/o, had the highest toughness at 800°C, but only
nomimal strength at that temperature. MULL 2A ZH, 10 v/o (b) had one of the
highest strengths overall and retained it well at 800°C, yet had low toughness
at 800°C.

II'T RESEARCH INSTITUTE

[ITRI-M06138-1
27



REFERENCES

P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, "A Critical
Evaluation of Indentation Techniques for Measuring Fracture Toughness:
IT," J. Am. Ceram. Soc. 64[9], 539-43 (1981).

R. F. Cook and B. R. Lawn, "A Modified Indentation Toughness Technique,"
Communications of the Amer. Ceram. Soc., C-200 (1983).

L. J. Schioler, AMMRC, personal communication (1985).

L. J. Schioler, R. N. Katz, A. C. Gonzalez, and B. R. Lawn, "Effect of
Overaging on the Room Temperature Strength of Partially Stabilized
Zirconia," Amer. Ceram. Soc. Bull., 64[2], pp. 326-327 (1985).

B. R. Lawn, NBS, personal communication (1985).
D. C. Larsen and J. W. Adams, “Long-Term Stability and Properties of

Zirconia Ceramics for Heavy Duty Diesel Engine Components," DOE/NASA/
0305-1, NASA CR-174943 (August 1985).

IIT RESEARCH INSTITUTE

28

[ITRI-MO6138-1




1. Report No.

NASA CR-175054

2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitie

DIESEL ENGINE TECHNOLOGY PROGRAM PHASE II

TRAHNSFORMATION TOUGHENED CERAMICS FOR THE HEAVY DUTY

5. Report Date

December 1, 1985

6. Pertorming Organization Code

7. Authort(s)

S. Musikant, S. C. Samanta, P. Architetto, E. Feingoid

8. Performing Organization Report No.

10. Work Unit No.

9. Performing Organization Name and Address

General Electric Company - Space Division
P. 0. Box 8555
Philadelphia, PA 19101

11. Contract or Grant No.

DEN-3-339

12. Sponsoring Agency Name and Address

U. S. Department of Energy
Gffice of Vehicle & Engine R&D
liashington, DC 20585

13. Type of Report and Period Covered
Contractor Report
August 1984 - July 1985

14. Sponsoring Agency Code

DOE/NASA/0339-2

15. Suppliementary Notes

Center, Clevland, OH 44135.

Phase II Final Report Prepared Under Interagency Agreement DE-AI01-80CS50194
Project Manager, !i. Bailey, Propulsion Systems Division, NASA Lewis Research

16. Abstract

solution (ZHSS).

This report covers the second year (Phase

of the TT mullite.

II) effort.

The objective of this program is to develop an insulating structural ceramic for
application_in a heavy duty "adiabatic" diesel engine.
employ transformation toughening (TT) by additions of zirconia-hafnia solid
The feasibility of using ZHSS as a toughening agent in mullite
and alumina has been demonstrated in the first year (Phase I) of this work.
The results of the Phase I effort are documented in NASA CR-174689.

The approach is to

Based on Phase I results,
a decision was made to concentrate the Phase II effort on process optimization

A strong factor in that decision was the low thermal con-
ductivity and high thermal shock resistance of the mullite.

Results of the Phase II effort indicate that optimum toughening of mullite by
additions of ZHSS is difficult to achieve due to apparent sensitivity to

morphology. The 48 ksi room temperature modulus-of-rupture (I'OR) achieved in
selected specimens is approximately 50% of the original strength target. The
MOR deteriorated to 34 ksi at 800°C. The Kic was measured at 3.6 MPaym
at room temperature,

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Diesel Engine, Ceramics, Mullite, Trans- Unclassified-Unlimited
formation Toughening, Fracture Toughness, STAR Category 85
Zirconia, Zirconia-Hafnia, Hafnia, Pro- DCE Category UC-96
cesses, Properties

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price*
Unclassified Unclassified &5

“For sale by the National Technical Information Service, Springfield, Virginia 22161






