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METHOD OF DETERMINING THE THERMAL DEFORMATIONS OF
ASTRONOMICAL MIRRORS

Ye. G. Khablo-Grossval'd

Given herein are the calculations of temperature /1891

fields of astronomical mirrors, frequently encountered
in astronomical instrument building, and the thermal
deformations which correspond to them. A procedure is
described for modeling the thermal deformations in the
case of complex fields.

Thermal deformations occur most frequently because of tempera-

ture gradients along the thickness and diameter of mirrors. In

this case, a change is observed in the curvature of the surface.

This may be traced most graphically in solar telescopes and in

extraterrestrial astronomy, with the presence of large radiation

outputs. A considerable coefficient of linear expansion of the

material of the mirror evokes deformations which may be eliminated

by refocusing only in isolated cases. And, finally, there is the

edge effect, or the Reech effect, observed in mirrors with a low

thermal conductivity and taking place because of the non-uniformity

of the temperature field in the mass and along the surface. We

know of such measures for combating thermal deformations as de-

creasing of the thickness of the mirror, selection of a material

with a small coefficient of linear expansion, separation of the

mirrors, their protection with thermal insulation, forced venti-

lation, and careful selection of the construction site of the tele-

scope .

The determination of the thermal deformations is divided into

two stages: 1) determination of the temperature field and 2) deter-

mination of the temperature deformations which correspond to it.

The task of the first stage may be formulated as follows. There

is a thick circular plate 2a in diameter and 2h thick. It is lo-

cated in a temperature field which is symmetrical relative to the

*Numbers in the margin indicate pagination in the foreign text.



z-axis. The boundary value conditions are given. Assuming the

field to be stationary and not having internal heat sources, we

will obtain the Laplace equation in the general form from the

differential equation of thermal conductivity, which will have the

following form, in operator notation, in a cylindrical coordinate

system with regard for the symmetry relative to the z-axis:

By solving this equation according to the Fourier method, we will

arrive at the Bessel equation. By applying restrictions, charac-

teristic for our problem, to its general solution, we will obtain

the solution in the form

The coefficients A, B, k are determined from the boundary value con

ditions. By examining this equation for a series of partial cases,

we obtain:

1. For the case of mirrors with a spherical surface:

7-_7 th-JTa sh kit + h) - T, sh k (z - tn . _, a*-* — M«n - - ' ' — "— -

The constant k is determined graphically for each concrete problem

according to the intersection of the curves which correspond to

two functions: Jo (ka) and T2sh (km) /Tish (kl) +T3sh (kh) , where m=h+l.

2. For the case of a mirror with a flat survace:

we will obtain k graphically from the expression 2Ta/Ti+T3= Jo(ka)/

ch(kh), and we will make it more specific by the method of iterations.

3. For a mirror with a spherical surface and a cylindrical cen- /190

tral aperture:

r _ ĝJ*r) fr.i-gh * (* -f-«) — r, sh k (h — * — *n. ,
Jo (*P) L ' sh k (2h — t) J»

where S=a2-r2/2R, TI, Ta and T3 are the temperature on the spherical,

side and lower surfaces, respectively. In a partial case, namely with

the presence of a gradient by thickness, and knowing the temperature



field of the mirror, one may calculate its deflection indicator

according to the formula [1]

X ~ 81 •

where D is the diameter of the mirror, 1 is the thickness of the

mirror, At is the temperature gradient, and a is the coefficient of

linear expansion.

In addition to this problem, we must touch on other conditions

of operation of the mirrors. In the general form, one may formulate

this problem in the following manner. We are given a circular plate,

which is located in a temperature field. The temperature Ti is

given in its upper plane, in the area of a circle of radius r. The

variant U variant

Fig. 1. Calculation of deformation
. at point C.

1—actual mirror; 2—actual illumination;
3—calculated illumination; 4—calculated

mirror.
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Fig. 2. Schematic
of interferometer,

center of the circle is shifted relative to the center of the plate

by A. Outside of the circle, the temperature is equal to T2. A

similar problem, only with a circle which is symmetrical relative to

the center of the plate, has been solved by Novatskiy [2].

For an approximated solution, we will reduce our problem to

that solved by the replacement of the eccentric region by a region



with a center on the z-axis, but a variable radius: p=AcosB+

/22-A2sin20, where 3 is the angle between the x-axis and the current

radius (Fig. 1). The deformations of the mirror will be expressed as

= 71, — T2 = const.

where 9 is the Poisson coefficient, and the remaining designations

are as before. This very same problem may be solved by another

method: assuming a region of illumination of constant radius, and

the diameter of the mirror as variable. By examining both variants

of the solution, we will find the one that is most appropriate for

our problem.

If the temperature field is complex, then the deformations which

occur in it are determined by experimental means. Work in this di-

rection has also been done in two stages: modeling of the tempera-

ture field and measurement of the deformations. Devitrified glass,

quartz and Pyrex mirrors have been studied. Monitoring of the thermal

state of the mirror was carried out at six points along the rear and

working surfaces: in the center, along the edge, and in the middle

of the radius. The temperature in them was determined by highly-

sensitive type MT-54 heat gauges, manufactured by the workshops of

the Leningrad Agrophysical Institute. The gauges operate reliably

in the temperature range from -70 to +150° C. The stability of the

nominal resistance is 0.3% in a static mode. The gauges, calibrated

on a special unit, are introduced into the schematic of the EPP-09,

and the scale of the latter is graduated for each gauge separately,

in order that continuous monitoring be carried out at all six points

of the mirror being studied. The required temperature field was /191

created in the mirror by the contact method. A vessel was con-

structed, into which water was poured and a coil spring placed.

The vessel was placed in contact with the mirror through a small

steel pivot, which possesses great thermal conductivity. Between

the remaining surface of the bottom of the vessel and the mirror was

an air gap, the optimal size of which was selected by experimental

means. It was possible to obtain the required shape of the contact

surface of the vessel, proceeding from the given temperature field.



However, a curve is obtained which is difficult to implement. By

heating the mirror and tracing the temperature data according to

the EPP-09, we established the onset of the thermal state which is

closest to the given state. Then, the mirror was mounted on an inter-

ferometer, and the interference picture was taken. The schematic of

the interferometer, specially designed and constructed for this

study, is given in Figure 2. Utilized as an illumination source in

it was an SMR-1 mercury lamp, and the line with a wavelength X=5461
o
A was picked out of the entire spectrum of the lamp using a green

filter. The light of the lamp, reflected by the flat mirror 5, is

Fig. 3. Picture of interference zones for Pyrex (a)
and quartz (b).

sent to the interferometer proper, which consists of a standard

wedge J3 and the quasi-flat surface being tested !_. The beam, having

been interferometrically processed, is reflected using a planar-

parallel plate 4_ in the direction of the flat mirror 8^, and from it,

to the eyes of the observer or the "Zenit" type photographic apparatus.

The planar-parallel plate ̂  has two-layer chemical coating of the

lower surface, and dielectric semitransparent coating of the upper

surface. The coating precludes doubling of the image, and the

dielectric coating increases the brightness of the picture. The

photographing of the interference picture was carried out with an

exposure of about 1 second. Film from the firm "ORWO" was utilized



with a sensitivity of 250 units, according to the G.O.S.T.. The

measurement of the obtained rings was carried out on a universal

measuring microscope. According to the data of the measurements,

we calculated the deformations of the mirrors, with regard for the

initial processing of the surface. Simultaneously, the films were

processed for verification on the MOL microphotometer. Experiments

were carried out with mirrors 125 mm in diameter and 16 mm thick.

As an example, pictures are given of the interference zones of Pyrex

(a) and quartz (b), for temperature gradients of 10 and 36° C,

respectively (Fig. 3).
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