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SUMMARY

A methodology is presented for airplane parameter estimation and confidence interval

determination in nonlinear estimation problems. In addition, as part of the methodology,
an efficient scheme to determine aerodynamic model structure is suggested and briefly
described. The algorithms described provide a unified approach to solving nonlinear airplane
identification problems. The nonlinear estimation problems of interest to this study are
further complicated by nonlinear system dynamics and in particular nonlinear aerodynamic
models.

An algorithm for maximum likelihood (ML) estimation is developed with an efficient
method for approximating the sensitivities. The algorithm is applicable to most parameter
estimation problems and is particularly suited for nonlinear, multivariable, dynamic systems.
The ML algorithm relies on a new optimization method closely related to a modified Newton-

Raphson (MNR) technique; the new method is referred to as modified Newton-Raphson with
estimated sensitivities (MNRES).

MNRES determines sensitivities by using Slope information from local surface approxi-

mations of each output variable in the parameter space. The fitted surface allows sensitivity
information to be updated at each iteration with a significant reduction in computational
effort. With MNRES, the sensitivities can be determined with less computational effort than

with either a finite-difference method or integration of the analytically determined sensitivity
equations. The type of surface (for example, nth-order polynomial or spline) and the method

of fitting the surface (for example, least squares or solution of simultaneous equations) are
chosen by the user to suit the particular need. MNRES eliminates the need to derive sen-

sitivity equations for each new model, thus eliminating algorithm reformulation with each
new model and providing flexibility to use model equations in any convenient format.

Two surface-fitting methods are discussed and demonstrated, while other possibilities
are indicated. MNRES is compared with other commonly used optimization methods, a
search method called the flexible polyhedron search (FPS) and a gradient method called
tile modified Newton-Raphson method. Several sample problems are solved to compare the
techniques. Simple linear systems are used at first, and then nonlinear aircraft estimation

problems are solved by using both real and simulated data. MNRES is found to be equally
accurate and substantially faster than the commonly used techniques. The reduction in
computational effort provided by MNRES depends on several factors: the choice of surface-

fitting method, the number of unknown parameters, data quality, accuracy of the sensitivity
calculations, and, particularly, the degree of nonlinearity of the cost function.

A search technique for determining the confidence limits of ML parameter estimates is
applied to nonlinear estimation problems for airplanes. The confidence intervals obtained
by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It

is observed that the degree of nonlinearity of the cost function is an important factor in the
relationship between CR bounds and the error bounds determined by the search technique.
Tile CR bounds were found to be close to the bounds determined by the search when the

degree of nonlinearity was small. The CR bounds were 3 to 8 times too conservative (too
small) when the nonlinearity was significant. Beale's measure of nonlinearity is developed
in this study for airplane identification problems; it is used to empirically correct confidence
levels for the parameter confidence limits. The primary utility of the measure, however, was
found to be in predicting the degree of agreement between CR bounds and search estimates.
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SYMBOLS

ak incoming parameter vector for MNRES algorithm at kth iteration

a_ outgoing parameter vector for MNRES algorithm at kth iteration

ax, ay, az acceleration in x-, y-, and z-directions, g units

A system matrix for state equation

b arbitrary vector through confidence region

bw wing span, m

B control-distribution matrix for state equation

Bi/i_ 1 covariance matrix for the measurement (Zi/Zi_l, O)

mean aerodynamic chord, m

CD drag coefficient, FD/OS w

Ct rolling-moment coefficient, MX FISwb w

Cl,o, Crn,o, Cn,o aerodynamic moments for trimmed flight

eL lift coefficient, FL/CtS w

Cm pitching-moment coefficient, My /OSw

Cn yawing-moment coefficient, Mz /_tSwb w

CT thrust coefficient, FT /CtSw

CX longitudinal-force coefficient, Fx /gtS w

Cx,o, Cy, o, Cz,o aerodynamic force for trimmed flight

Cy lateral-force coefficient, Fy /OSw

C z vertical-force coefficient, FZ /CtS w

d squared distance between P(Ow) and T(O)

dij element ij of the inverse of H or M

D sum of squares of the squared distances from P(Ow) to P(0)

e vector of equation error

ei scalar equation error at ith data point

E{ } expectation operator

f general function; also probability density function

FL, FD, FT forces along the lift, drag, and thrust vectors, N

FX, Fy, FZ forces along X, Y, and Z body axes, N

Fap F-statistic at confidence level 1 - ap

g acceleration due to gravity, 9.81 m/sec 2

Gi sensitivity matrix at ith data point

h general function

H Hessian matrix

Ha = { np82 Fap (np, Nno - np ) I-1H
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H0, H1 null and alternative hypotheses

Iij moments of intertia, where i and j are x, y, or z

J cost function

k = npFc_p (np, N -np)

_ij direction cosines where i and j are x, y, or z

L1 likelihood function

L -- - In L1

m mass, kg

M Fisher information matrix

Mg e element gg on diagonal of M

MX, My, Mz rolling, pitching, and yawing moments, N-m

n number of surface-fitting points

no number of outputs

np number of parameters

ns number of states'

N number of data points

ArC nondimensional intrinsic nonlinearity measure

Ne nondimensional nonlinearity measure

p roll rate, rad/sec

Pk least-squares-parameter covariance matrix at kth iteration divided by
O"

P(O) estimation space

Pr{ } probability of { }

q pitch rate, rad/sec

q dynamic pressure, pV2/2, Pa

Q¢ dimensional intrinsic nonlinearity measure

Q¢ dimensional nonlinearity measure

r yaw rate, rad/sec

R measurement noise covariance matrix

Rc confidence region

s 2 = J(O)/(Nno - Up)

S vector of sensitivities

Sli vector of sensitivities for first element of Y at the ith data point

S k vector of sensitivities for kth element of Y

Sw wing area, m2

skg sensitivity of kth element of Y to gth element of 0

t time, sec
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T(O) tangent plane to P(O) at P(0)

u input function or velocity along X-body axis, m/sec

U input vector

v velocity along Y-body axis, m/sec

vi vector of measurement noise at ith data point

vx, Vy measurement noise vectors for predictor variable X i and response
variable Y

V airspeed, m/sec

w velocity along Z-body axis, m/sec

Wp process noise vector

W number of different 0 chosen for N¢ computation

x i scalar element of X i

Xi vector of predictor variables at ith data point

X matrix of predictor variables: parameters in MNRES and state
variables in LR

Xs vector of states

X, Y, Z longitudinal, lateral, and vertical body axes

y scalar output

Yk kth element of output vector Y

y_ outgoing kth element of output vector Y

_i kth element of Y, at the ith data point, evaluated at the jth surface-
fitting point, OJ

Y vector of no outputs or N values of response variable
^

Yi/i-1 best estimate of the measurement at time ti given measurements up
to and including the previous point

Yli vector of j values of _i where k = 1

zj jth element of Z/

Z/ vector of measured outputs at ith data point

Z_ = Zi, Zi_l,... ,z 1

(_ angle of attack, rad

C_p probability of type I error; 1 - ap is the confidence level associated
with F-statistic

aT angle of thrust, rad

/3 sideslip angle, rad

(_a aileron deflection, tad

5e elevator deflection, rad

5ij Kronecker delta

5r rudder deflection, rad
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vector sum of process noise Wp and measurement noise Vy

0 vector of unknown parameters

0i ith element of 0

0* vector of optimal parameters

O pitch angle, rad

,_ ratio of likelihood functions, L

# general statistic equal to J(O) - J(O)

v i vector of residuals at ith data point

p air density, kg/m 3

a standard error

¢ roll angle, rad

(I) value of ¢ which minimizes Q¢

_ = O_-
¢o subset of 12

f/ parameter space

Subscripts:

E measured quantity

H, L highest and lowest costs

i, j, k, £ general indices

r, k iteration number (except as 5r, which is rudder deflection)

t true value

w index for different values of 0 during N¢ computation

0 initial condition

Superscript:

j index of surface-fitting points

Abbreviations:

CIE confidence interval estimation

CPU central processing unit

CR Cramer-Rao

FPS flexible polyhedron search

LR linear regression

MAX ML program using MNRES algorithm

MAXLIK ML program using MNR algorithm

ML maximum likelihood

MNR modified Newton-Raphson method

MNRES modified Newton-Raphson method with estimated sensitivities

MSR modified stepwise regression
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NR Newton-Raphson

LS least squares

Matrix exponents:

T transpose of matrix

-1 inverse of matrix

Mathematical notation:

estimated quantity when over symbol

derivative with respect to time when over symbol

V gradient operator

A incremental value

max0( ) maximum of ( ) with respect to 0

N(_, a2) normal distribution with mean _ and variance a2

E is an element of

such that

] I determinant of matrix

Aerodynamic derivatives:

The following aerodynamic derivatives are referenced to a system of body axes with the
origin at the airplane center of gravity:

OCy OCy OCy

% =-on cy,- o_ cYr- 8 r2_

OCy OCy 02Cy

Cv_a - 06a Czar = _ Cy,_# - Oa03

oQ
acz act ct_- o_
OCt OCt 02CI

02el OCn OC.

c,o_- o_o_ % = o-7 c_,- 0 2_

acn acn acn
Cnr- 0-_ Cn6a = Oba Cn_r- Obr

103Cy 1 03Cn OZCn

Cv_a= 6 033- C"_3 - 6 033 C._ = a_a_2__ff-
aCx acx acz

Cxa- Oa Cxee = Obe Czc, = Oa

OCz OCz OCm

CZfe = 0be CZq = _ Cma = oa

OCm OCm

Cm6e _- -'_e Cmq : -'_22_
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I. INTRODUCTION System identification theory has become impor-

tant to aircraft technology for several reasons. It pro-
Problems in dynamics may be divided into three vides an alternate approach to determining aircraft

categories. By considering a general dynamical sys- characteristics (parameters). Comparing results with
tern f with input U and output Y the categories can other techniques is always good scientific practice.
be defined as (1) the classical problem where U and f Purely theoretical approaches or purely experimen-
are given and Y is to be determined, (2) the controls tal approaches (wind tunnels) have in many instances
problem where f and the desired Y are given and U failed to accurately predict prototype characteristics.
is to be determined, and (3) the identification prob- By offering an opportunity to observe actual vehicle
lem where U and Y have been measured and f is to performance, flight testing results in better calibra-
be modeled, tion and understanding of wind tunnel results and

The theory for system identification provides a more accurate modeling for ground-based simulators.

way for modeling an unknown system on the basis The development of aircraft parameter estimation
of input and output information. Identification the- paralleled developments in estimation and system
ory incorporates a priori knowledge of the dynamic theory. Early flight test studies centered on steady-
processes and stochastic processes involved; thus, the state maneuvers and free oscillations. These studies

identification problem is not usually characterized as were time consuming and provided limited informa-
a "black box" problem. In fact, system identifica- tion. The main interest was to obtain basic aero-

tion problems are usually characterized, as in refer- dynamic parameters, termed stability and control
ence 1, by three factors: (1) class of models, (2) class derivatives, from linear dynamic models combined
of inputs, and (3) a criterion for state and parame- with linear aerodynamic models. In the early 1950's
ter estimation. The models and inputs may be de- Greenberg and Shinbrot developed a least squares
terministic or stochastic and the criterion (cost func- approach to analyzing simple transient maneuvers
tion) may be based on statistical theory or numerical (refs. 2, 3, and 4). However, without computers the
considerations, simplest flight test problem with only four unknown

Implementation of identification theory usually parameters took 24 hours to analyze (ref. 5). A ma-
follows four basic stages. The first stage requires jor development for aircraft parameter estimation oc-
the design of an experiment, that is, specification curred in the mid 1960's. Large-capacity, high-speed

of the identification objectives, statement of system digital computers and highly automated data acqui-
configuration and conditions, and selection of an in- sition systems were introduced. In 1968, when Lar-

put form. Determining an optimal input for iden- son (ref. 6)applied the method of quasi-linearization
tification can be critical; all the modes of a system and Taylor and Iliff (ref. 7) introduced the modified
must be excited in order to identify the system cor- Newton-Raphson method, a new stimulus was given
rectly and completely. The second stage is model to parameter estimation. Other contributions came
structure determination (a more comprehensive term in the early 1970's from Mehra (ref. 8), Stepner and
is model characterization). The model is assumed Mehra (ref. 9), and Rault (ref. 10).
to be linear or nonlinear, time varying or time in- During the past decade application of estimation
variant, with or without process noise, with or with- theory to nonlinear systems has become an increasing
out measurement noise, etc. The unknown parame- concern, stimulated primarily by aerospace applica-
ters in the model may include system parameters as tions. Today, nonlinear dynamics is commonly incor-
well as initial conditions, bias terms, and character- porated with linear aerodynamic models in flight test
istics of measurement and process noise. The third data analysis. The techniques are well established for

stage involves parameter and state estimation, which flight regimes where the aircraft aerodynamic model
provides mean values and standard error estimates, can be expressed as a linear function of states and
These are obtained by finding an extremum of some control inputs. However, modeling the combination
optimality criterion. State estimation can be better of nonlinear dynamics and nonlinear aerodynamics
characterized as a filtering problem; a Kalman filter and estimating the parameters associated with that
is commonly used. The fourth stage is verification, model present many difficulties. The need to identify
accomplished by comparing estimates from experi- the best mathematical representation (model struc-
mental data sets and other estimation techniques. In ture) and estimate the associated parameters for non-
addition, other sources provide comparisons; for air- linear flight regimes has motivated further develop-
planes, both wind tunnel and theoretical predictions ment of identification and estimation techniques.
are used. Verification is also accomplished through A new approach to airplane parameter estimation
sensitivity analysis and through analysis of residuals and confidence interval determination is offered in
and model predictive capabilities, this study as a contribution toward building a more



general and unified airplane identification methodol- Reducing computational requirements of the ML
ogy. The more general methodology starts with the method requires careful examination of the opti-
work done in reference 11, which suggests a useful mization methods used in the algorithm. Although
technique for model structure determination when nonlinear, unconstrained optimization problems have
nonlinear aerodynamic effects are present. The sug- been studied quite extensively (ref. 13), little has
gested technique uses a modified stepwise regression been done to improve the optimization techniques as
(MSR) along with several testing criteria to deter- they apply to aircraft estimation problems. Gupta
mine a parsimonious, yet adequate, model. The lira- and Mehra (ref. 14) considered the numerical aspects
itation of this technique (as with any least squares of computing ML estimates for linear dynamic sys-
method) is that the estimates are asymptotically bi- tems in state-vector form and methods for speeding
ased and variance estimates are based on simplifying up convergence. Bowles and Straeter (ref. 15) con-
assumptions that are valid only for the "classical" lin- sidered computational aspects for several methods

ear regression. This limitation can be skirted by ap- used in aircraft identification. Trankle, Vincent, and
plying the commonly used maximum likelihood (ML) Franklin (ref. 16) considered the difficulties associ-
technique, using the model structure determined by ated with use of a nonlinear dynamic model in ML
the regression and the regression estimates as an ini- parameter estimation and parameter covariance es-
tial guess. The ML approach has much more favor- timation; sensitivity calculation methods were also
able asymptotic properties (ref. 12), and it provides considered. More recently, Trankle, Vincent, and
estimates of the Cramer-Rao (CR) bounds for the Franklin (ref. 17) considered the overall methodol-
parameter variance, ogy of system identification for nonlinear aerody-

namic models including computational aspects of the
There is a computational cost, however, for the problem. In reference 18, a nonlinear least squaresmore favorable asymptotic properties of the ML tech-

algorithm is developed which uses a linear-surface
nique. Dynamic systems, such as aircraft, require approximation of a scalar response variable to elim-substantial computational effort at each step of the

inate derivative calculations altogether. The algo-optimization process. At each step the equations of
rithm is tested on problems that do not involvemotion must be integrated to obtain time histories of
dynamic systems. Presented in the current study

each state and output variable. In addition, most ML is a significantly improved maximum likelihood al-
algorithms use a modified Newton-Raphson (MNR) gorithm, initially developed in reference 19, which
optimization scheme, which requires integration of relies on an optimization scheme referred to as a rood-sensitivity equations. This accounts for most of the

ified Newton-Raphson method with estimated sensi-computational effort, since the number of state and
tivities (MNRES). A surface approximation is alsosensitivity equations to be integrated at each itera-
used in MNRES; however, it is treated differently by

tion is equal to the number of states plus the product developing an algorithm that retains derivative infor-of the number of states and the number of unknown
mation in a Newton-Raphson method for multivari-

parameters. Several states and 20 to 30 unknown pa- able, dynamic systems. This is done to provide direc-
rameters are not uncommon for one flight condition, tional information for the convergence process and to
If a model is desired throughout the entire flight enve- provide covariance information. With the MNRESlope, the computational requirements become over-

approach, sensitivity equations are eliminated and
whelming, particularly when analysis of various flight computational demand is significantly reduced.conditions requires more than one candidate model.
A very efficient ML estimation algorithm is desirable Another difficulty in using the ML technique is
to reduce the computational requirements for pro- that the CR inequality provides only a lower bound
cessing a large number of parameters and candidate measure of precision for an unbiased estimator. It
models, is known from practical application of ML that this

lower bound can differ from the variance obtained,
Besides the high computational cost associated for example, by repeated measurements (ref. 20). At-

with the ML/MNR algorithm, an additional diffi- tempts have been made, therefore, either to mod-
culty is that it requires the user to have prior knowl- ify the CR bounds by considering a band-limited
edge of the model structure to formulate the sensitiv- measurement noise (refs. 21 and 22) or to estimate
ity equations and, thus, to formulate the algorithm, the parameter variance directly from measured data
This can be very burdensome when modeling aircraft (ref. 10). Advances in statistical methods also came
in nonlinear flight regimes, since model structure may about with the availability of high-speed computers.
change significantly from one flight condition to an- In 1960, Beale (ref. 23) considered the problem in
other. Therefore, an algorithm that is independent nonlinear estimation of determining the approximate
of sensitivity equations is very advantageous, parameter confidence regions using likelihood ratios.
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In addition, a measure of nonlinearity was developed The development of this work begins in section II

to assess the quality of the approximation. Surpris- with a description of the airplane model and the re-
ingly, Beale's work has had very little application gression method used to determine it. Section III
since it was published (ref. 24). In 1979, Mereau and describes the parameter estimation techniques used

Prevost (ref. 25) used the likelihood ratio approach and their statistical properties. The primary estima-
to determine confidence regions for aircraft systems, tion method used in this study to determine airplane
In 1980, Mereau and Raymond (ref. 26) developed a parameters is maximum likelihood. Linear regression
search procedure to find the "iso-distances" defining methods are also presented, since special forms are

the confidence regions, developed for use in MNRES and because they are
The goal of the current study is to provide a used in the model structure determination scheme

unified methodology for solving nonlinear airplane of section II. In section IV the MNRES method is
identification problems. Improved techniques for es- presented with a discussion of its various forms and

timating parameters and their confidence limits in properties. Also presented briefly are some com-
nonlinear, multivariable, dynamic systems, in partic- monly used optimization methods, which are com-

ular, aircraft systems, are presented. The improved pared with MNRES. Section V develops the theory
techniques provide (1) increased efficiency for the for confidence interval estimation and the adaptation
estimation process, (2) elimination of the need for of Beale's work to the airplane problem. Finally, sec-
a priori knowledge of sensitivity equations, (3) more tion VI presents the results and discussion for the
accurate assessment of the parameter error bounds application of these methods to simulated and real

than those obtained using CR bounds, and (4) an data.
adaptation of Beale's approach to the airplane esti-
mation problem.



II. MODEL CHARACTERIZATION _sr_Model characterization, as discussed in the intro- _ -6a

duction, establishes the known or assumed charac- -6e_
teristics of the model to be used in the identification __\-_
process. Since system identification usually does not

involve a black box problem, where nothing is known y
about the model in advance, qualitative statements ' q, cm, c¥
describing the class of model, optimal inputs, and
statistical properties of the measurements are nor- ¢x
really provided.

Generally, the more information available to char- (" _ r. c c_ ._ " ._J. "x, u<.' ' n, vZ Relativewind
acterize the model, the greater the likelihood of suc- z, w

cessful identification. Of course, attempting a corn- Figure 1. Airplane body-axis system with forces and
plete representation of a dynamic system, such as moments.
an airplane, is extremely difficult, if not impossible.

Actually, a complete model is unnecessary. The ob- dry conditions or initial conditions are not always
jective in identification is to select the simplest model known exactly. Therefore, in many estimation prob-
that allows proper determination of the desired un- lems the initial conditions are treated as unknown

known parameters from measured data. The princi- parameters. Another difficulty is that the solution
ple of parsimony is usually applied. This principle to the differential equations can vary depending on
states that given a choice of two models having equal sometimes very small changes in the unknown pa-
residual variances, choose the model with fewer pa- rameters. For example, a first-degree system is sta-
rameters. Therefore, the objective in identification is ble or unstable depending only on the sign of the
to choose a parsimonious, yet adequate, model. Very damping term. Nonlinear systems can amplify this
complex models may be justified to obtain an accu- type of problem. The success of the estimation may
rate description of the system motion, but it is clearly depend on the initial guesses for the parameters be-
detrimental to the estimation process. If the infor- cause failure may occur when a parameter is outside

mation content in the measured data is very limited a stability boundary. Unfortunately, obtaining sta-
or if too many parameters are required, the estima- bility boundaries is really practical only for linear,
tion algorithm may provide inaccurate estimates or time-invariant systems. Finally, numerical difficul-
it may fail. ties with truncation and rounding errors are always

The models considered in this study represent present when numerical differentiation and integra-
dynamic systems, characterized by having derivatives tion are performed.
with respect to time included in the model in addition
to the dependent and independent variables. One of
the possible general forms for these systems is A. Airplane Equations of Motion

:Xs = f(Xs, U, O, t) Xs(0) = Xs0 (2.1) The particular dynamic system of interest to thisstudy is the airplane, modeled by equations in the

Y = h(Xs, U, O, t) (2.2) general form

where Xs is a vector of state variables, Y is a vector :Xs = f(Xs, U, 0) Xs(0) = Xso (2.3)
of output variables, U is a vector of input variables,
and 0 is a vector of unknown parameters. The time Y = h(Xs, U, 0) (2.4)
variable t may or may not appear explicitly. This

form is not as restrictive as it first appears; many The equations of motion used are referred to a body-
problems can be cast into the matrix differential form axis system (fig. 1). The equations were developed
above, with the following assumptions:

Several difficulties arise when estimation tech-

niques are applied to dynamic systems. A major dif- 1. The airplane is a rigid body.
ficulty is the significant computational demand asso- 2. The effect of spinning rotors is negligible.
ciated with solving matrix differential equations. In 3. The airplane has a plane of symmetry in the
an estimation algorithm these equations are solved XZ-plane.
repetitively. A difficulty can also arise when inte- 4. There are no external disturbances to the air-
grating the equations of motion because the bound- plane.

4



5. Thrust is accounted for as part of CZ and CX moments corresponding to an initial trimmed flight

where condition are represented by 00. The Xl to Xnp-1
represent any functions of the state and control vari-

Cx = CT cos aT + CL sin a- CD cos a ables chosen for the model. The row vector X i is
given as

C Z = --CT sin a T -- eL cos a -- C D sin a r 2

X i = [1 Xl x2 --" Xnp-ll (2.18)
The resulting nine equations represent a six-

degree-of-freedom, coupled, nonlinear system where In general, the form of the aerodynamic equation is
the kinematic relations are expressed in terms of di- unknown; however, for estimation it must be pos-
rection cosines. These equations of motion are given tulated. The form may vary significantly from one
as follows: flight condition to another.

The following output equations, used in this
study, reflect the measurements commonly available

u = -qw + rv + ggzz + _tS------EWCx (2.5) from flight tests:m

v = -ru + pw + geyz + _S_ Cv (2.6)
m V = X/u 2 + v 2 + w 2 (2.19)

w = -pv + qu + gezz + rlSw Cz (2.7)
m fl = sin-l(v ) (2.20)

Iz Izz

P = Izlz - I2zx F1 + F2 (2.8)
I_Iz-I2zz a=tan-l(w) (2.21)

Izz Iz - Iz _Swe p

q=w(r:-P2)+Pr--_y + -i_-y _m (2.9) O=sin-i(-gzz) (2.22)

_ {e,z) (2.23)
r Izlz - I_ Izlz - I2zzFx (2.10) ¢ = tan-1 \gzz ]

ezz = reuz - qezz (2.11)

"_yz=-r_zz+pgzz (2.12) az = _(it+qw-rv-ggzz) (2.24)

"_zz = q_zz -- Pgyz (2.13) 1

ay = -_(i_ + ru - pw - ggyz) (2.25)
where

1

FI = (Iy - lz)qr + Izzpq + _lSwbwCl (2.14) az = -(iv + pv - qu - ggzz) (2.26)g

F2 = (Ix - Iy)pq - Izzqr + _tSwbwCn (2.15) The airplane identification problem can be made
more tractable by treating longitudinal and lateral

The nondimensional aerodynamic forces and mo-
cases separately. This is accomplished by providing

ments, CX, Cy, Cz, Cl, Cm, and Cn (shown in the required lateral information to the longitudinal
fig. 1), are usually approximated by a Taylor series case (or the required longitudinal information to the
expansion around steady trimmed flight conditions lateral case) in the form of measured input variables.
or by polynomial splines (see ref. 27). The form of This has been used successfully in many other stud-the aerodynamic model equations is

ies, for example, reference 20. Thus, the states, out-

y(t)=OOWOlXlTO2x2+"'+Onp_lXnp_l (2.16) puts, and inputs for the two cases are given as follows:

For the longitudinal case,
or in vector form

Yi = XiO (2.17) Xs = [u w q exz eyz ezz] T (2.27)
where y(t) or Yi represents one of the nondimensional

aerodynamic forces or moments at time t or at the Y = [V a q 0 az az] T (2.28)
ith data point. The stability and control derivatives

are represented by 01 to Onp_l, and the trim forces or U -- [_e fiE VE PE rE eE] T (2.29)
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For the lateral case, selected. The parameters are estimated by the least
squares technique. At every step of the regression,

X = [v p r gzz gyz gzz] T (2.30) a new variable entering the model and the variables

incorporated into the model in previous stages are
Y = [t3 p r ¢ ay] T (2.31) reexamined. Any variable providing a nonsignificant

contribution (due to correlation with more recently
U = [_a 5r u E wE 0 E qE aE] T (2.32) added terms) is removed from the model. The pro-

cess of selecting and checking variables continues un-
where the subscript E indicates a measured quantity, til no more variables are admitted to the equation

and no more are rejected. Experience shows, how-
ever, that the model based only on the significance of

B. Model Structure Determination individual parameters in model equation (2.16) can
The goal of model structure determination is to still include too many terms and, therefore, may have

determine an analytical representation of the sys- poor prediction capabilities. Several criteria for the
tern that can be classified as adequate. An adequate selection of an adequate model are introduced in tel-
model is one which sufficiently fits the data, allows erence 11 and the details of the whole procedure are
successful estimation of the parameters, and has good explained in references 11 and 28. Two procedures
prediction capabilities. In aeronautical applications utilizing the algorithm in reference 11 offer certain
the form of the rigid body equations of motion is advantages by capitalizing on the use of splines for

known. The primary uncertainty, with regard to modeling (ref. 27) and large amplitude maneuvers for
model structure, is in the aerodynamic model equa- efficient data analysis (ref. 29).
tions (eq. (2.16)). One of the successful methods for The stepwise regression procedure in reference 11

determining the model structure of these equations provides a very efficient method of determining aero-
from measured data is based on stepwise regression, dynamic model structure and initial parameter esti-

In the stepwise regression approach, after postu- mates. This makes the computationally demanding
lating the aerodynamic model equation, significant problem of modeling the entire flight envelope more
terms among the candidate variables are determined tractable. Once the aerodynamic model structure is
and corresponding parameters are estimated. The determined, a more advanced method is needed to

variable chosen for entry into the regression equation improve the biased parameter estimates obtained in
is the one that has the largest correlation with y after the regression. More advanced methods are discussed
adjusting for the effect on y of the variables already in the next chapter.
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III. PARAMETER ESTIMATION equation error at the ith data point. This error may

In this study maximum likelihood (ML) and lin- contain measurement noise, process noise, and/or
ear regression (LR) techniques are used to estimate modeling error. However, no assumptions are made

about the statistical properties of ei (see ref. 28). In
parameters. ML is used to estimate both airplane application to MNRES, Yi represents one element of
parameters and their standard errors (Cramer-Rao
(CR) lower bounds) from flight data. The ML al- the output vector Y(0); X i represents the ith set of

values for the vector of unknown parameters 0; andgorithm is used with various optimization schemes,
which are described in section IV. LR is used for S is the np-dimensional vector of coefficients to be

three different applications in this study: (1) esti- computed. If a first-degree np-polynomial expansion
is chosen for Xi, then the elements of S are the

mating aerodynamic model structure, (2) estimating
airplane parameters (starting values for ML), and desired sensitivities (slopes).
(3) estimating sensitivities in MNRES. The first and Applying the LS criterion, which requires min-
second applications of LR were accomplished using imization of the mean square error, gives the costfunction as
stepwise regression as described in the previous sec-
tion. The third application was accomplished using N N

2=  (yi xis)2 (3.2)an algorithm developed in this study. J(S) = _ ei -

A. Linear Regression i=1 i=1

Linear regression analysis is a part of statistical and minimization requires that
theory that generally deals with the determination

N

of relationships between response and predictor vari- 0J(S) E XT(yi XiS) (3.3)ables. One application of LR theory is curve fitting _ - 0 = -
or surface fitting. In this application, the predic- i=l
tor variables (independent variables) are assumed to

Solving for S gives
be deterministic and known without error; response
variables (dependent variables) may have error. A -1

numerical method commonly used in curve fitting (/_i T ) N
to compute empirical coefficients is the method of S = Xi Xi E XTYi (3.4)
least squares (LS). In this method, the same model i=l
form as equation (2.16) can be used to fit the curve
or surface. The solution for the unknown parame-
ters or coefficients is found by minimizing the sum of 2. Recursive Processing

squares of the error between known data points and Recursive processing significantly reduces mem-
computed data points determined by the model. The ory requirements for the MNRES algorithm. How-
LS method is valid only for linear problems, that is, ever, a specialized form of recursive least squares is
problems where the unknown parameters occur lin- needed for surface fitting in MNRES. Normally in a
early in the model regardless of whether the model recursive LS problem the purpose is to update pc-
structure itself is linear or nonlinear. A LS problem rameter estimates based on N data points with some
can be solved in a batch mode or recursive mode and

new information, so that the updated estimates are
both modes have application for determining the sen- based on N + 1 data points. In the following deriva-
sitivities in MNRES. A comprehensive discussion of tion a LS recursive algorithm is designed specifically
regression analysis is given in reference 28. for the MNRES algorithm. MNRES requires the pa-

rameters to be updated by including new informa-
l. Batch Processing tion while removing old information, so that the es-
Batch processing of data in the LS method is timates are always based on a constant number of

probably the most commonly used approach for data points.
curve-fitting problems. The model form given by As in the batch mode, the surface fitting is per-
equation (2.17)can be written as formed to obtain slope or derivative information.

Consider the LS problem formulated as

Yi = XiS + ei (i = 1, 2, ..., N) (3.1)
Y = XS + e (3.5)

where Yi is the ith value of one response variable;
Xi is the ith vector of predictor variables; S is where Y is a vector of n data points on a surface to

the vector of unknown coefficients; and ei is the be fit by the model given as XS, S is a vector of np
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unknown coefficients (slopes), and X is an n by np Substituting equation (3.15) into (3.14) gives
matrix defined as

Ii r x r o _o T (3.16)

1 Xll x12 ... Xln p XkXk: k-lXk-l--ak ak+akak

121 x22 •.. X2n p
X ---- (3.6) Substituting equation (3.16) into (3.8) gives

: " ... "

Xnl Xn2 "'" Xnnp Pk+l = Xk_lXk-i --a k ak+aka k (3.17)
LS estimation gives a solution as

which can also be written as equation (3.9).
= (xTx)-IxTy (n > np) (3.7) Applying the same development to equation (3.7)

gives

Now define a recursive relation for the (k + 1)th
iteration T T

T -1 Sk+l : Pk+l (Xk-lYk-1 -- ak°T Yko + akYk)
Pk+i = (XkXk) (3.8) (3.18)

and substituting equations (3.7) and (3.8) delayed a
and the updating equation as step into equation (3.18) gives

I- T oT o'_ -1
P k+l

kPkl+ akak- a k ak) (3.9) Sk+l = Pk+l (PklSk --a k°T °yk+ aTyk) (3.19)

where the row vector ak is the new set of 0 to be Expanding equation (3.19) gives
included in X and a_ is the outgoing set of 0, which

produced the highest value of the cost function. The 1-, oT o T
recursive relation for S is Sk+ I = Pk+lPk 1Sk -- rk+lak Yk -4-Pk+lak Yk

(3.20)
[ oT o T Note that

Sk+l = Sk -- Pk+l [ak Yk -- ak Yk
Sk -- Pk+lp_-llSk = 0 (3.21)

+ (aTak oT-o "_- a k ak) Ski (3.10) and then add equation (3.20) to (3.21) to obtain

where y_ and Yk are the outgoing and incoming scalar
elements of the vector Y, respectively, at the kth Sk+l = sk --Pk+lPk_ 1Sk + Pk+lPklSk

iteration, n oT o T (3.22)-- fk+lak Yk -4-Pk+lak Yk
The derivation for equations (3.9) and (3.10) is

as follows. Define Z to be the common elements of Combining terms in equation (3.22) gives
X between two iterations. Partitioning X for the
(k-1)th and kth iterations results in

SkTl:Sk-PkT1[(Pk11--Pkl) Sk

oT o a T ]+
ak Yk -- k YkJ (3.23)

(3.11)
Xk_ 1 _- [Zkj

and substituting equation (3.9) into (3.23) yields

Xk=[ ak ] (3.12) equation (3.10).Zk
3. Statistical Properties of LS Estimates

From equations (3.11) and (3.12), Although the LS technique, a numerical proce-

T oT o T (3.13) dure, is not necessarily based on any statistical for-Xk-lXk-1 = ak ak + Zk Zk mulation, the LS estimator is often characterized in
statistical terms, since the estimates can be treatedT T T

XkXk + (3.14)----ak ak Zk Zk as random variables.

From equation (3.13), In the general LS problem, both process noise andmeasurement noise occur in the data. The model has
the form

T T oF o (3.15) Yt XtOq-Wp (3.24)Z k Zk = Xk_lXk_ 1 -- a k a k =
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where Yt is an N by 1 vector of the response variable while modeling the airplane with the coupled, nonlin-
for the N data measurement points, subscript t ear equations of motion. One of the advanced tech-
indicating that this is the true value of the variable niques commonly used for this problem because of its
without measurement noise, Xt is an N by np matrix superior statistical properties is maximum likelihood
of the state and input variables; 0 is the np by 1 (ML).
vector of unknown parameters; and Wp is the N by
1 Vector of process noise. The measurements provide 1. Algorithm Development

Y = Yt + Vy (3.25) Assume that the outcome of an experiment is N
observations of the no by 1 output vector Z i for

X = Xt + vx (3.26) i -- 1, 2,..., N, which depends on the unknown pa-
rameter vector 0. In general, the unknown param-

where Vy and vz are the measurement noise in Y eters are the aerodynamic parameters, initial condi-
and X. The process noise and measurement noise are tions, and measurement and process noise statistics.
typically assumed to be stationary, zero mean, and Let f(Zl, Z2,..., ZN/O) be the conditional proba-
independent random processes. The solution to this bility density function for the measurements given
LS problem (from the last section)is 0. The maximum likelihood estimate is the esti-

mate for which the outcome of the experiment Z i

= (xTx)-IxTy (3.27) for i = 1, 2,..., N is most likely to occur; that is, the
probability density is maximized with respect to 0.
The ML estimate can be expressed as

Premultiplying equation (3.24) by [xTx]-Ix T and

substituting equations (3.25), (3.26), and (3.27) re- 0 _ max0/(zl,z2 ..... zN/O) = f(Zl,Z2 .... ZN/O) (3.31)sults in

Using the property of joint conditional probability
= 0 + (xTx)-IXT(wp + Vy -- vzO) (3.28) density functions that

Therefore, the expected value of the estimate error
has the form /(Zl, z2, z3/0) =/(z3/z2, zl, 0)f(z2/zl, 0)/(zl/0)

(3.32)
allows the density function to be written as

E{O - O} = --E{(xTx)-IXTv_}O (3.29)

and the covariance matrix is /(z_, z2 ..... ZN/O)= f(ZN/Z_N_I,0)
× f(Zy_l/ZtN_2,0)

cov(_- 0) = E{(xTx) - lxTeeTx(xTx) -1 } ×---f(Z2/Zl, O)f(Zl/O) (3.33)

+ E{(xTx)-IXTvx N

OOTv_X(xTx)-1 } (3.30) = II f(Zi/Z_-l'O) (3.34)
i=l

where where
6 = Wp + Vy !

Zi_ 1 --- Zi-1, Zi-2,..., Zl (3.35)

From these equations it can be seen that the LS If the Z i measurements are treated as fixed, the den-
estimator is biased even if the measurement noise, vz sity function becomes a function of 0 only. This rune-
and Vy, and the process noise, Wp, are zero mean and tion is usually referred to as the likelihood function,
independent. Only with the additional assumption that is,
that X is known without error (i.e., vz = 0), as N

might be the case in a curve-fitting problem, will LI(0) = H f(Zi/Z_-l'O) (3.36)
the estimates be unbiased. Note that the covariance i=1
matrix is affected by all the measurement and process
noise. Consequently, the problem of finding a maximum

likelihod estimate becomes the problem of finding the

B. Maximum Likelihood 0 that maximizes the likelihood function.
To define the likelihood function, the distribution

General parameter estimation for an airplane in- of the measurements given 0 must be defined. If the
volves solving the nonlinear estimation problem in distribution of the measurement and process noise is
the presence of both process and measurement noise Gaussian, then the distribution of the measurements
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given 0 is also Gaussian and can be uniquely deter- N

mined by computing the mean and eovariance. The LI(0)-- H f(Zi/Z_=l,O)
mean is i=l

N

E{Zi/Z__t, 0} = Yi/i_l(O) (3.37) = (27r)-Nn°/2 H [a[-1/2
i=1

where Yi/i-l(O) is the best estimate of the measure- x exp - _ vTR-lvi (3.43)
ment at time ti given measurements up to and includ- i=1
ing the previous point. By definition, the covariance

is The negative logarithm of the density function is
more convenient to use and since the density function

Cov{Zi/Z__I,0 } = E{(Zi- "Yi/i_l)(Zi--_(i/i_l) T} is non-negative, there is no change to the problem
except that maximizing the density function equates

= E{vi vT} = Bi/i_l(O ) (3.38) to minimizing the negative logarithm of the density
function. Thus, the negative log likelihood function
is more commonly used:

where vi is the vector of residuals. Now the problem

is to compute the conditional mean "Yi/i_l(O), and 1 N

covariance Bi/i_ 1 (0). For systems including process L(0) -- _ E(Zi - "_ri)TR-I (Zi - _ri)
noise these values can be obtained with a Kalman i=1

filter. It has been shown (ref. 8) that for high N
sampling rates (as are commonly used to collect +_-ln[R] + Constant (3.44)
flight test data), the residuals v i tend toward a
Gaussian distribution. Therefore, the distributions The unknown R can be estimated by minimization
for both vi and (Zi/Zi_l,0) are reasonably assumed of the likelihood function with respect to R. This
to be Gaussian. In systems without process noise, produces
some simplifications are possible. In particular, the

1 N

residual error may be written as 1_ = _ E(Zi -_ri)(Zi- _[i) T
i.' 1=

v i = Z i - _'i(0) (3.39) 1 N

= -_ _ vi vT (3.45)
i----1

where Yi is the predicted value of the output vec-

tor at time ti. Without process noise the conditional After substituting the estimate 1_ into equa-
subscript is not needed since the Kalman filter up- tion (3.44), the final form of the cost function, as
date is zero. Also, assuming stationary statistics, the used in this study, is obtained:
mean and covariance of the residuals may be written
as N

1

J(O) = _ E(Zi--_Yi)TR-l(zi--_Yi)+ Constant (3.46)
i--1

E{vi} -- 0 (3.40)
The cost function given by equation (3.46) is

E{vi vT} = RSij (3.41) the same as that used in an output error technique
(ref. 12) except the measurement noise covariance
matrix is used as a weighting matrix. The prob-

where 5ij is the Kronecker delta. With these as- lem is now in the form of an unconstrained optimiza-
sumptions, the conditional probability density func- tion problem where the cost function given in equa-
tion can be written as tion (3.46) must be minimized with respect to the

unknown parameter vector 0. The unknown param-

, ( 1 T -1 _ eters determined by this method are, for this study,
f(Zi/Zi_l, 0)(= (27r)-n°/21P_l-1/2 exp _-_v i R vi/ the airplane stability and control derivatives and trim

(3.42) coefficients. In addition, measurement noise statis-
Hence, using equation (3.42), the likelihood function tics (weighting matrix) and parameter standard er-
is rors are determined.
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The standard errors determined are the Cramer- have shown that the ML method produces acceptable
Rao (CR) lower bounds, providing a measure of the estimates in many situations. The large sample prop-
maximum achievable accuracy for the parameters, erties of an ML estimate are summarized as follows
These are defined by the CR inequality (Cram_r, ref. 31, derives these properties):

(02L(O) ]-1 1. Asymptotically unbiased:
E{(O-O)(O-O) T}

>_ -E _ 0000 T ] (3.47) lim E{0} : 0N--*oo

where 2. Asymptotically efficient:

-E{O2L(O)}=M (3.48)

OOi)OT { }-1and M is usually referred to as the Fisher informa- E{(O - 0)(0 - 0)T} _>-E 02L(O)o000T
tion matrix. It is assumed in this study that the
approximated Hessian matrix H from the optimiza- 3. Consistent:
tion procedure is a good approximation of the Fisher
information matrix. The solution using a gradient lim Pr{(0 - 0) ___s} = 1
optimization scheme generally has the following form N_

(ref. 13) for the kth iteration with ¢ arbitrarily small

0k+ 1 = Ok -- I2I_-lgk (3.49) 4. Asymptotically normal:

where 0 = N(O, M -I)

OJ(O) Oo Asymptotic unbiasedness and consistency are very
gk - 00 and I2I_ M similar. However, consistency implies that if an esti-

mator is consistent for O, it is also consistent for any
well-behaved function of 0. Thus, consistency is more

2. Statistical Properties of ML Estimates significant than unbiasedness. Asymptotic efficiency
is a statement involving the CR inequality; therefore,

The maximum likelihood method is popular, es- for large samples the CR lower bounds are obtained.
pecially in flight test data analysis, because of the Asymptotic normality states that as the sample size
excellent large sample properties of its estimates. Al- gets very large, the estimates 0 approach a normal
though ML estimates do not possess optimal proper- distribution with mean and covariance given by 0 and
ties for small samples, sampling experiments (ref. 30) M -1, respectively.
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IV. OPTIMIZATION TECHNIQUES matrix or its inverse while using only first derivative

The ML parameter estimates are obtained by information.
solving an unconstrained, nonlinear optimization The derivative information can be computed in
problem; that is, find 0* which minimizes the cost a variety of ways. For dynamic systems, integrat-
function J(O). The necessary and sufficient condi- ing analytically derived expressions (sensitivity equa-
tions for this problem are as follows: tions) for the derivatives is probably the most ac-

1. J(O) is differentiable at 0". curate as well as the most time consuming. Onealternative is a numerical approximation scheme.
2. V J(0*)= 0. Finite-difference methods are often used because

3. V2J(0 *) > 0. they eliminate the additional burden of deriving
The theory for solving unconstrained, nonlinear and incorporating sensitivity equations into the al-

optimization problems is often based on the assump- gorithm. However, the finite-difference methods re-
tion that the cost function J(O) is a quadratic func- quire about the same computational effort as inte-
tion of 0. This approximation provides a more grating the sensitivity equations. Another option is
tractable theory and allows basic theorems and prop- the proposed surface-fitting method of the MNRES
erties of the optimization methods to be readily es- algorithm presented in section IV.B.
tablished. Corresponding theorems for solving gen-
eral nonlinear functions of 0 are very difficult to A. Commonly Used Methods

prove. However, techniques developed using the Two optimization schemes, representing the two
quadratic assumption are still very effective for non- main categories of methods, are selected in this study
linear functions. Many techniques for solving non lin- primarily to provide a benchmark comparison with
ear minimization problems are developed from prac- MNRES. They are commonly used in aircraft es-

tical experience, timation and control problems and, therefore, are
Optimization techniques for unconstrained prob- good indicators of the relative merit of MNRES. The

lems can be divided into two categories: deriva- two optimization methods are the flexible polyhedron
tive methods and search methods. Derivative meth- search (FPS) and the modified Newton-Raphson
ods may be further classified by the order of the method (MNR). More details are provided in refer-
derivatives used; search techniques can be divided
into direct search and random search. Some tech- ences 13 and 33 for FPS and in references 12 and

34 for MNR. In a variation of MNR the derivative

niques combine search and derivative methods; how- information is computed by using finite differences
ever, these hybrid methods are not considered in this (refs. 16 and 17). Both the finite-difference form and
study, the sensitivity equation form of MNR are used in this

The choice between optimization categories de-
pends on the particular problem. Search methods study.
determine the optimization path solely from cost

1. Flexible Polyhedron Searchfunction evaluations and, therefore, do not require

as much algorithm preparation as needed when us- Since FPS has been found to be advantageous
ing sensitivity equations. Search methods also do in some aircraft design and control applications

not need the regularity and continuity conditions for (ref. 35), it may be a good candidate for reducing
the cost functions that derivative methods need. In computational demands in aircraft estimation prob-
many unconstrained, nonlinear programming prob- lems. FPS avoids derivative calculations, where the

lems, however, derivative methods converge faster quasi-Newton methods spend most of the computa-
(ref. 13), particularly for estimation problems involv- tional time. The algorithm is independent of model

ing dynamic systems. This was demonstrated for air- form and, thus, is readily applicable to any aerody-
plane systems both in this study and in reference 32. namic model.

Various derivative techniques are available for a Consider the unconstrained optimization problem
variety of nonlinear programming problems; how- of minimizing J(O), a scalar function of np variables.
ever, no one technique is best for all problems. For The FPS method uses a flexible polyhedron surface

example, the steepest descent method works better or simplex with np + 1 vertices, each defined by a
away from the minimum, whereas Newton's method vector t_. The vertex OH, producing the highest
works better near a minimum. A compromise be- value of J(O), is projected through the centroid of the
tween these two techniques is the modified Newton- remaining vertices to define a new vertex. This new

Raphson method (MNR). MNR belongs to a class of vertex, and the remaining ones without OH, form a
methods known as quasi-Newton or large step gradi- new polyhedron. This operation is called a reflection.
ent methods; these methods approximate the Hessian Figure 2 shows two steps in this process for the case
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o2. A ___ B zero mean and uncorrelated. This leads to a nonlin-

ABCInitialsimplex ear estimation of unknown parameters. Consider the

BCDNewsimplex system equations (repeating eqs. (2.3) and (2.4)) and
F Reflectionpoint the measurement equations,
E Contractionpoint
G Extensionpoint

Xs = f(Xs, U, 0) Xs(0) = Xs0 (2.3)

°1 Y =h(X ,u, o) (2.4)
Figure 2. Two steps of a two-dimensional flexible polyhe- Zi = Yi + vi (i = 1, 2, N) (4.1)dron search. "" " '

with
with two unknown parameters. If the new vertex
produces a lower cost than 0L (the vertex producing
the smallest J(O)), then an expansion takes place
and a new vertex is located farther out along the E{vi} = 0 and E{viv T} = R_ij (4.2)
same projection. Similarly, if higher costs are found,
a contraction takes place. The minimum of the where Xs, U, and Y are the state, input, and output
cost function is found by repeatedly deleting the vectors, respectively; 0 is the unknown parameter
point having the highest value of J(O) and adding vector; Zi and vi are the measurement vector and
new projected points that produce lower J(O). The measurement noise vector, respectively, at t = ti; R
flexible polyhedron is able to adapt to the shape is a diagonal measurement noise covariance matrix,
of J(O) by stretching down slopes, contracting near which under the above assumptions is approximated
minima, and changing direction in curved valleys, by the covariance matrix of the residuals. Without

process noise the ML cost function to be minimized

2. Modified Newton-Raphson Method is given by equation (3.46) from which the added
constant and multiplicative factor of 1/2 are dropped

This report is primarily concerned with nonlin- without affecting the solution:
ear aircraft estimation problems. Since the MNR
approach is commonly used for these problems, it N

is included as a benchmark algorithm. Although J(O) = _-'_(Zi-Yi)TR-l(zi-_(i) (3.46)
estimating derivatives is computationally burden- i=1
some, this information enables relatively fast conver-

gence of the optimization process. In fact, Newton's The matrix 1_ is given by equation (3.45):method converges in one pass for cost functions that
are quadratic. Hence, Newton and quasi-Newton

1 N

techniques used for estimation problems of dynamic 1_ = _ _ Vi vT (3.45)systems are expected to converge faster when the
i=1

quadratic approximations for the cost functions are
valid. Also, these methods provide both step size where
and direction for each iteration. In some problems,
however, additional control of step size is needed to vi = Zi -Yi(Oo) (4.3)
ensure convergence. Since removing the requirement
of solving sensitivity equations is desirable, the MNR and 00 is the initial estimate of the unknown pa-
algorithm in this report uses a simple finite-difference rameter vector. The MNR method accomplishes the

minimization by expanding Y, the computed outputmethod except when otherwise noted. This is not

too costly in terms of computational time (refs. 16 vector, about 00, the initial unknown parameter vec-
and 17); however, care must be taken to obtain the tor. A Taylor series expansion of Y truncated to first
derivatives as accurately as possible, order is

0Y o0
The MNR and the MNRES algorithms are the _r(0) = _'(00)+-_-_- AO (4.4)derivative methods of interest to this study. As dis-

cussed in an earlier section, the problem is to mini-
mize the weighted square of the errors between the where A0 = 0-0o. Then substituting this expression
computed model outputs and the actual measured into equation (3.46) results in a quadratic approxi-
outputs. It is assumed that only the measured out- mation of J. The increment A0 is the unknown.

puts are corrupted by noise and that the noise is Differentiating J with respect to 0 and equating the
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derivative to zero to find a minimum results in solution). The trade-offs in choosing a surface and a

N N surface-fitting method involve the choice between ac-
OJ curacy of the sensitivities and computational effort.
0--0 -_ -- E (_Tlz_-lvi + E Gia-lGi AO = 0

i=1 i=1

(4.5) 1. Algebraic Solutionwhere

Gi = [Oyk] (4.6)
[ 00£ J i The MNRES algorithm is best described by con-

and Yk and 0£ are the kth and gth elements of the Y sidering the computationally least demanding ap-
proach of using a linear-surface approximation. Ex-

and 0 vectors, respectively. Solving for A0 gives panding Y(0) in a first-degree polynomial in 0 for

-1 each point in time and at np + 1 different points in

A0 = GTI_-IGi E GTR-lui (4.7) the np-parameter space gives
i-----1 i=1

This is often written as _i(OJ) : 8kO + 8klO_ + "'" + 8knpOJnp (4.9)

AO -lOJ] (4.8) where i indicates the ith point in time; k indicates[ the kth element of the output vector Y(0); and j
= -M _ 0o indicates one of the np + 1 sample points used to fit

emphasizing the Fisher information matrix M and equation (4.9) to Y(0). Note that
gradient terms. For the kth iteration the estimate

Ok+l is given as 0k+ 1 _-- Ok -{-A0k+ 1. In this Y{(O j) = yk(O) (4.10)
study, convergence is achieved when AJk/J k and
AOk/O k are less than 0.001. The sensitivities (_i are
determined separately from the above steps. This at each of the np -k-1 points. The sample points are
may be done by integrating the sensitivity equations, chosen by allowing a small perturbation of each pa-

by using a finite-difference approximation, or by rameter around the point where the sensitivities are
using MNRES. desired. Alternatively, the perturbation size can be

selected to reflect the relative significance of each pa-
B. MNRES Method rameter to the model. This allows for larger pertur-

bations of the less sensitive parameters and smallerThe MNRES method developed in this report is
perturbations for the very sensitive parameters andessentially an MNR optimization algorithm with an
thus provides higher quality derivative calculations.efficient method for estimating sensitivities. As in
This alternative is discussed further at the end of this

the ML/MNR algorithm previously described, the
section. The slopes 8kl to 8kn p are the desired sen-same equations (eqs. (4.1)-(4.8) and (3.45)-(3.46))

apply for ML/MNRES; however, the sensitivities G i sitivities, (Oyk/OOg)i , and sko is the value of yk(O)
are computed by using slope information from local at the series expansion point of equation (4.4). Note
surface approximations of Y(0). The approximations that because this is a linear surface, the slopes are

constant over the surface and need not be evaluatedare made near the series expansion point of equa-
tion (4.4). The sensitivities obtained from the fit- specifically at skO. If a higher degree polynomial is
ted surface are determined with less computational fit to yk(O), the slopes vary across the fitted surface
effort than that required by either a finite-difference and, therefore, must be evaluated specifically at sk0.
method or integration of analytically determined sen- Consider the matrix representation of equation (4.9)
sitivity equations, for the first element of Y and for the np + 1 sample

The MNRES algorithm is readily optimized for points at time ti:
a particular application because the user can select

both the type of surface and the method of fitting the Yli = XSli (4.11)
surface. Two very practical types of surfaces in aero-
nautical applications are nth-order polynomials and
splines. Two efficient methods of fitting the surface Note that Yk is the kth element of the output vec-

are by solving np simultaneous equations for np un- tor Y and _ is the jth element of the surface-fitting
knowns (algebraic solution) and by solving a redun- vector, Yk. Matrix X contains np + 1 rows defining
dant set of equations for np unknowns (least squares the np + 1 sample points. Expanding equation (4.11)
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to show the vector and matrix elements gives
y(O)

[ioooooo1Y_i I 01 01 "'" 01 Sll (4.12)= yJ= y(ej)
yO 1

• m " " °- * " y

Lyln/J 8In J i

0n
where n =np for the computationally least demand-
ing approach, or algebraic solution. In general, n
may be greater than np producing a least squares so-
lution. Since sl0 is known, equation (4.12) can be

simplified• The first line in equation (4.12) can be _ o1
eliminated by subtracting it from the other np equa-
tions. Thus, Figure 3. Linear-surface fit for two iterations of MNRES.

AYli = AXSli (4.13)
evaluation of Y requires that the equations of mo-

or in matrix notation tion be integrated• The linear surface (indicated by
the solid triangle in fig. 3) is fit and the slopes (sen-

r y_i - yOi l Ao_ /_01 ... Ao 1] V811 sitivities) are thereby determined. The algorithmproceeds, as in the ordinary MNR method, by us_

my2i yoil = AOl2. A022. .... A01//s12.. ing equation (4.8) toobtain"" 0r+l -- 0r -{-/k0r+i (4.17)
yOij zx0F ... Lx0nj i

(4.14) The estimated sensitivity values Ske are used to de-

where fine the elements of matrix G i in equation (4.7).
A0_' = 0_"-- 00 The new Y is evaluated (by integration of equations

of motion) at 8r+l to get y3(8). At this point theThus, at time ti, the sensitivities for the first element
in Y are given by MNRES algorithm has reduced the sensitivity prob-

lem to solving a set of simultaneous equations. This

Sli = (AX)-IAYli (4•15) is done by eliminating the 8j in X which produced
the greatest value of J(8) and replacing that infor-
mation with the newest estimate of 0. In the example

Because the AX matrix is independent of time, the in figure 3, y0 was assumed to be the high cost point
sensitivities can be calculated rapidly during each and so was eliminated to obtain the new fitted sur-

iteration of the algorithm• This is a key factor in face (indicated by dashed triangle). The slopes of the
reducing the computational effort of the algorithm; in new surface provide the sensitivities for the MNRES
effect, the integration of the nsnp (number of states algorithm to proceed. In this scheme, a check should
times number of parameters) sensitivity equations

has been replaced by a set of no (number of outputs) be made to ensure that the new YJ(0r+l) produces
matrix multiplications• a smaller value of J(0). Sometimes, step-size control

or complete restarting may be needed. Note that
Figure 3 shows, geometrically, two iterations for

the case where 0 is two-dimensional and a linear initialization of the algorithm requires that np + 1

surface is used to fit a scalar y. The expansion at integrations be performed for the np + 1 trajectories
time t i is YJ. After this initializing pass, only one integration

of the system equations is needed to evaluate the cost

[! ]][]y_ yO AOll AO_ s 1 J(O) andoutputsY(O)andtoupdateparameteres-
= [ (4.16) timates for each iteration•

LYi" yO [A012 A02 s2 i As mentioned previously, in practice it is bene-
ficial to choose the perturbation size in a different

During the first iteration, this expansion requires fashion from that used in a simple finite-difference
that y(O) be evaluated at np + 1 = 3 points: yO, yl, method. Simply using a 1-percent perturbation on

and y2. Computationally, the first iteration is the each element of 0 to obtain the corresponding per-
most costly phase of the MNRES algorithm. Each turbation in each element of Y(O) is not optimum for
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derivative calculations. Experience has shown that The least squares solution for the sensitivity vector
it is beneficial to use perturbation sizes that reflect is

the importance of the parameter to the model. By Sk ----(xTx)-IxTy k (4.20)
computing the sensitivities 02Me_ for each parameter
and then letting the perturbation sizes be scaled in- Now, dropping the k subscript and letting the fol-
versely proportional to the normalized ratios of sensi- lowing apply to the kth element of the output vector
tivities, more accurate derivative information can be Y, a recursive relation can be defined for the r + 1
obtained. Of course, this applies only when an ini- iteration
tialization, or "restart," is needed. The fundamental Pr+l = (XTXr) -1 (4.21)

issue is that the less sensitive a parameter, the larger and the updating equation can be defined as
the perturbation necessary to obtain an appropriate
size response in the outputs. This approach could
also be applied to an MNR method. Theoretically, Pr+l -- (Pr I + afar - ar-°T-°_-lar) (4.22)
the same derivative should be obtained for any suf-
ficiently small perturbation in 0; however, because where the row vector ar is the new set of 0 to
of the sometimes widely varying sensitivities of the be included and a ° is the outgoing set of 0, which
parameters as well as the numerical precision limi- produced the high cost J. The recursive relation for
tations, it is beneficial to vary the perturbation size S, which has already been derived in section III.A, is
according to the aforementioned rule. The sensitivity now

defined as O_Mee was introduced in reference 36 and
o T o

used again in reference 37 as a means of quantifying Sr+l --- Sr - Pr+l [ar Yr - afyr
the significance of a parameter to the model.

+ (afar oT o- a r ar)Sr ] (4.23)

2. Least Squares Solution where yO and Yr are the outgoing and incoming
elements of Yk, respectively, at the rth iteration.

The least squares approach to fitting the surface With the new sensitivities determined, the algorithm
Y(0) offers another advantage if a recursive least proceeds as before.
squares method is used. The recursive method re-

duces the storage requirements from np + 1 sets of 3. Properties of MNRES
output time histories to just two time histories: one

corresponding to the new response predicted by the Properties of MNRES are discussed in compari-
most recent estimate of 0 and the other correspond- son with the commonly used MNR algorithm. Thus,
ing to the outgoing 0 that produced the highest convergence characteristics and computational ad-
cost. The penalty for this advantage is the need vantages and disadvantages of MNRES are compared
to integrate equations of motion twice per iteration; with those of a well-known benchmark.

still, the least squares solution requires substantially Convergence of NR or MNR algorithms, both
less computational effort than that required with the with and without finite-difference derivatives, has
usual MNR method, been well documented (ref. 13). Convergence of

When using the recursive least squares approach, MNRES can be shown, at least heuristically, by con-
only two changes are made to the MNRES algorithm sidering several details. First, the MNRES method
just described. The first change is in the calculation is still fundamentally an NR method or, for this

of the AX matrix, and the second change is in study, an MNR method. The only critical difference
the sensitivity calculation. The development of this is that the derivatives are approximate, which makes

formulation begins with equation (4.9) in condensed MNRES closer to MNR with numerically determined
form (everything discussed up to this equation in the derivatives. Second, note that fitting a first-degree,

previous development applies here): np-term polynomial to np + 1 data points is equiv-
alent to a simple finite-difference method. In effect,

_i = XJSki (4.18) as AOJ (the distance between points on the fittedsurface for MNRES) becomes small enough, the sen-
sitivities become identical to those given by a sim-

Simplifying the notation by dropping the i subscript pie finite-difference method, regardless of the actual

and writing the matrix form of the equation (which functional representation of Y(0). The MNRES al-
removes the j superscript) gives gorithm simply relaxes the accuracy of the sensitiv-

ities in order to reduce substantially the integration
Yk = XSk (4.19) requirements; the degree of relaxation varies during
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the optimization process but can be controlled by that given by a finite-difference scheme. The see-
limiting step size. ond factor is that Newton's algorithm and variations

The relaxation of sensitivity accuracy generally like NR, MNR, and MNRES advance more quickly
appears to be a very beneficial trade-off for Newton- as the quadratic approximation of the cost function
Raphson algorithms. Before considering this relax- improves; moreover, the Newton algorithm converges
ation of sensitivity accuracy, note that during an in one step for a quadratic cost function. Since the
MNRES optimization there are two times that the quadratic approximation of the cost function gener-
MNRES scheme computes sensitivities, which are ally improves the closer 0 gets to 0", and since initial
very close to those computed by a finite-difference estimates of 8" are often given by a least squares
scheme. These times are, first, during the initial- procedure or by a knowledgeable user, 00 tends to
ization, or first pass, of the algorithm and, second, be "close" to 0". Thus, for aircraft estimation prob-
toward the end of the optimization process. During lems, MNRES generally begins in a region conducive
initialization np different 0 are chosen (a perturba- to convergence. The third factor is that step-size con-
tion on each element of 0 is sufficient) to give np trol logic can always be incorporated. Carried to the
different response time histories Y(0). The surface extreme, MNRES could always be forced to produce
given by Y(0) is fitted. The initial 0a can be chosen the same derivative estimates as a finite-difference
such that method. Of course, convergence would be very slow

I(Oj - 0°)/0° I << 1 (4.24) because of the very small steps. In practice, one lets
the algorithm take steps determined by the NR logic

for each j. For the algebraic solution form of (as done in this study); then if a convergence problem
MNRES this is completely equivalent to a simple develops, step-size control can be incorporated.

finite-difference scheme, and for the least squares The computational advantage of MNRES is tied
form it is a very close approximation. In this study, to two primary factors. The first factor is the number
the same A03 was used in the MNR with finite- of unknown parameters np. Both MNR and MNRES
difference derivatives as that used in the initialization must integrate ns + nsnp differential equations on
of MNRES. This was done for comparison purposes; the first iteration; after that, however, MNRES inte-
in practice, the choice of perturbation size for 0 may grates only ns state equations during each pass and

be very different, as discussed later. Toward the end MNR continues to integrate ns state plus nsnp sen-
of optimization the MNRES scheme again becomes sitivity equations. It appears that as np gets larger,
equivalent to a simple finite-difference scheme since so does the advantage for MNRES. A limiting factor
the A0 become very small. This forces the surface in MNRES is in equation (4.15), where AX must be
that is fit to Y(0) to become very small; thus, the inverted. This np× np matrix becomes more difficult
slope information is computed for a surface fit to a to invert as np gets larger and, unfortunately, is made
very small area. up of very small numbers as the optimization process

The relaxation of sensitivity accuracy occurs be- converges. Also, note that the information gained
tween the two stages discussed above, that is, after during each pass is not equivalent between the two
initialization and before convergence. During this methods. MNRES performs less computation dur-
part of the optimization, large A0 may occur; this is ing each pass and, consequently, has less information
characteristic of NR, MNR, or MNRES algorithms, with which to update the estimates. However, when
For MNRES, unlike NR or MNR, these large steps sufficient passes have been performed to make the
cause the surface fit area to expand, so that the slopes work done by MNRES equal to MNR, MNRES has
or sensitivities no longer approximate the slope of already performed np+ 1 parameter updates. This
the Y(0) surface at a "point," that is, no longer ap- allows MNRES to step more quickly toward the final
proximate the limit requirements of a derivative, but solution. MNRES achieves convergence faster than
rather average the slope over a larger area. This is a MNR as the cost function becomes more quadratic.
critical time period for the MNRES optimization. The second factor and primary reason for the success

Three factors aid in preventing divergence during of MNRES has to do with the degree to which the
the critical time period. The first factor is that as cost function can be approximated by a quadratic
the optimization process advances, MNRES contin- function. The quadratic approximation is inherent
ually eliminates values of 0 which are far from 0", to the Newton type of optimization scheme and,
the optimal solution. This, in effect, contracts the therefore, both MNR and MNRES improve in per-
expanding surface that is fitting Y(0) and balances formance as the quality of this approximation im-
the expansion process. As the updated estimates of proves. However, convergence occurs more quickly
0 become close to 0", the contraction process dotal- with MNRES. This makes sense in light of the way
nates and slope (sensitivity) information approaches convergence takes place.
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Convergence takes place through an iterative pro- can be held constant without causing divergence). A
cess in which estimates of the unknowns are updated compromise between these extremes is preferred.
during each iteration. The updates are estimated by MNRES provides this compromise in a very el-
equation (4.8), which is the product of the informa- ficient manner. A trade-off between computational
tion matrix and the gradient of the cost function, effort and sensitivity accuracy is made automatically
It is well-known that convergence can be speeded up by MNRES. By using the surface-fitting technique,
by holding the information matrix constant (see, e.g., only the state equations need to be integrated dur-
ref. 14) for a limited number of iterations. This dim- ing each pass, and this information is incorporated in
inates the need to integrate the sensitivity equations the solution with relatively little computation. The
for a limited number of iterations; note that integrat- sensitivities are only approximated in this process;
ing the sensitivity equations accounts for most of the however, their accuracy is controlled sufficiently to
computational effort. There are two choices, each allow convergence.
representing one extreme, for optimization: (1) inte- The primary disadvantage of using MNRES comes
grate the sensitivity equations to obtain the most ac- from the computer memory required; np + 1 sets of
curate derivative information for each iteration (this output variable time histories must be retained. The
is the most costly in terms of computational effort); recursive least squares method discussed earlier re-
or (2) hold the information matrix constant for a duces this storage requirement to two sets of time
limited number of iterations (this is the least costly histories; however, the computational effort increases
in terms of computational effort and the least desir- from ns to 2ns equations to be integrated during
able in terms of convergence, since there is no way to each pass. The user's computer system would dic-
know for how many iterations the information matrix tate which approach is more appropriate.
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V. CONFIDENCE INTERVAL N

ESTIMATION L(f_) = H f(Zi, O) (0 E _) (5.2)
i=1

Confidence interval estimation (CIE) is an inte- N

gral part of the parameter estimation problem. Point L(w) = H f(Zi' O) (0 • w) (5.3)
estimates of parameters without any qualifications to i=1
indicate their accuracy are of little value. An interval
estimate that incorporates both variance and confi-
dence level information provides a complete state- and denote the maxima of the likelihood functions as
ment of the estimate quality. Although the Cramer- L(i_) and L(&); the likelihood ratio is defined as
Rao lower bound is commonly used to qualify ML

L(&) (5.4)
parameter estimates, it is well-known that in air- A- L([_)craft applications these bounds do not accurately re-
flect the true parameter variance. They are usually

too optimistic (ref. 20). The difference between the This ratio forms a statistic having a value between
lower bound and the actual parameter variance can 0 and 1, since the numerator is limited by the H0
be due to incorrect assumptions about measurement hypothesis. The value of A reflects the degree to
and process noise, bias errors in the estimates, or which the H0 hypothesis is accepted, and therefore,
modeling error. However, the nonlinearity of the es- A can be used as a statistic to test the hypothesis.
timation problem appears to contribute significantly. If a probability density function can be defined for
In this chapter a method is discussed for determining and the relationship between A and 0 can be solved,
confidence intervals by analysis of the confidence re- then a confidence region Rc can be defined. With
gion contours using a search scheme. In addition, a the confidence region determined, the confidence in-
measure of nonlinearity is developed to further char- tervals (extrema of parameters within the confidence
acterize the problem, region) can be defined.

The confidence region Rc provides an exact de-
scription of the parameter error bounds. However,

A. Confidence Regions for the general nonlinear estimation problem, an ap-
proximation may be involved in defining the confi-

Confidence regions are described by a surface in dence level associated with Re. To resolve this prob-
parameter space representing a certain confidence lem, Beale (ref. 23) recommended that the statistic
level. The surface is defined by a statistic reflecting for the linear estimation problem be used along with
the distribution of error in 0. From the distribution a correction factor to account for moderate nonlin-

of the statistic, a statement can be made about earity in the model. Since this approach for solv-
the probability of the statistic being in a certain ing the nonlinear problem is based on a correction to
interval !. Assuming that tile relationship between the linear problem, the following development begins
the statistic and the parameters can be described, a with the linear case.
further statement can be made that the parameters
are contained in region Rc with the same probability.
Region Rc reflects the variation in 0 as the statistic 1. CIE for the Linear Estimation Problem

varies in interval I. The above procedure is the The estimation problem is defined to be linear if
general process by which any confidence interval or the model equations are linear in the unknown pa-
region is defined. This definition obviously varies rameters; the state, input, and response variables
according to the definition of the statistic. A useful may or may not appear linearly in the model equa-
statistic for composite hypothesis tests is created tions. The form of the linea_:estimation model (single
from the ratio of likelihood functions, output) is given by equation (3.5), repeated here with

Let Z1, Z2,..., ZN be N independent random 0 as the vector of unknown parameters (the number
variables with probability density functions of measurements is taken to be N for this discussion):

f(Zi, O) (i= 1,2,...,N) (5.1) Y =X0+e (5.5)

In this linear regression problem, if Y is N(XO, Ia 2)
The testing hypothesis is formulated as H0:0 • _:, and the testing hypotheses considered are
where ¢vis a subset of parameter space i2. Define the

likelihood functions as H0: Ot = 0 (5.6)
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H1 : Ot _ 0 (5.7) and the solution for 0 is

where the subscript t indicates the true value. It can 0 = (xTx)-IxTy (5.16)
be shown that the likelihood ratio has the form

The ellipsoidal surface with center at 0 is expressed

,_=exp{-_-_ff[J(O)-J(O)]} (5.8) in terms of 0 as

where J(O) - J(O) = oTxTxo -- 20TxTy

g(o) = (Y - x0)T(Y --X0) (5.9) + 2TxTy -- TxTx (5.17)

and Substituting for xTy from the normal equations

J(0) = (Y - x0)T(Y - X0) (5.10) gives

The statistic A can be equivalently replaced by J(O) - J(O) = (0 - o)TxTx(o -- O) (5.18)

#= J(O)-J(O) (5.11) which defines an ellipsoidal surface in the Up-
dimensional parameter space. For the linear estima-

or in practice by the statistic tion problem the contours form an ellipsoidal surface
with a single global minimum. The slopes and orien-

N -np J(O) - J(O) tation of the contour depend on the model and data;
Fap- (5.12)

np J(_) in addition, they give an indication of parameter cor-
relation and conditioning of the problem. If the con-

where Tap is the 1 - ap point of the F(np, N -np) tours are greatly elongated (indicating that many
distribution and ap is the confidence level. This is values of 0 give the same cost), an ill-conditioned

possible when the model is correct and J(O) - J(O) problem may exist. Inadequate data or possibly over-

is independent of J(O) (ref. 28). In addition, for the parameterization may be the problem.
linear estimation problem, it is known that (ref. 25): With the relationship in equation (5.13), a con-

fidence ellipsoid in np-dimensional parameter space

1.0 is an unbiased estimate of 0. with center 0 is defined such that the probability is

2. The Cramer-Rao bound is reached. 100(1- ap)% that the true parameter point 0 is con-
tained within the ellipsoid. This can be expressed by

The confidence region Rc in parameter space can substituting equation (5.18) into (5.13):
now be given as the set of 0 for which

J(O) - J(O) < nps2Fap(np, N - Up) (5.13) (O--o)TxTx(o--o) _- nps2FaB(np'N-np) (5.19)

The confidence limits are determined by realizing
where s 2 = J(O)/(N -np). Once the data are de- that the true value of 0 lies inside the ellipsoid if and
termined, J(O) is a function of the np-dimensional only if it lies between all points of parallel tangent
parameter space. In parameter space the func- planes to the ellipsoid. Therefore, the true value
tion J(O) - J(O) can be represented by the con- lies between the two tangent planes orthogonal to
tours of a surface. The contours are defined by a nonzero vector b if and only if (see ref. 38)
J(O) = Constant. Again considering the general lin-

ear problem (single output) in equation (5.5), the [bT(o-0)1 __ (bTH_lb) 1/2 (5.20)
cost J(O) can be expanded as

where

J(O) = (Y - x0)T(Y -- X0)

= yTy _ 20TxTy + oTxTxo (5.14) Ha = [nps2Fap(np, N - np)]-lH (5.21)

Differentiating equation (5.14) with respect to 0 and and H is the Hessian matrix of J. Therefore, the
setting the derivative to zero, the normal equations probability is 1 - ap that for all b,
are obtained

IbTO - bTOI __ [nps2Fap(np, N - np)(bTH-lb)] 1/2
0 = --xTy + xTxo (5.15) (5.22)

20

L.



This states that the probability is 1 - O_pthat for all and for the multi-output case,
Oi(i =- 1, 2,..., np),

J(O) - J(O) = nps2 Fap(np, Nno - np)

Ioi- oil<_ (5.23) [ Nno(np +2) _ ]×
[1+ (ino - np)np (5.20)

or, expressed in terms of confidence limits, the prob-

ability is 1 - O_p that simultaneously for all Oi, where 82 is now given as

- v/--kao < 0 < 0 + v/ka0 (5.24) 82 _ J(_) (5.30)
where Nno - r_p

The correction factor N¢ represents a measure of
k = npFap(np, N- np) (5.25) nonlinearity (normalized curvature) of the solution

locus near J(0). The method of computing N¢
aOi "_ sX_ii (5.26) for the multivariable aircraft estimation problem is

H -1 = [dij] (5.27) discussed in the next section.The confidence contours, defined by equa-
tion (5.29), cannot be determined analytically as
done in the linear case since the contours are not nec-

2. CIE for the Nonlinear Estimation Problem essarily ellipsoidal. The contours may be very irreg-
ular and may possibly have several local and global

The nonlinear estimation problem occurs when minima. Figure 4 shows the construction of a con-

the unknown parameters appear nonlinearly in the fidence interval for a one-dimensional problem. The
model equations. In the nonlinear problem, several solid and dashed curves in the figure represent non-
results change from those found in the linear case linear and linear cases, respectively. In parameter
(ref. 28): space, the dashed curve would form a symmetric el-

lipsoidal surface, whereas the solid curve would vary1. Assuming that e is normally distributed does not
from this shape, depending on the degree of nonlin-imply that 0 is normally distributed.
earity. The confidence interval for the nonlinear case

2. s 2 ---- J(O)/(N -np) is no longer an unbiased is indicated by 0min and 0max; for the linear case,
estimate of a 2. the confidence interval is given by the dashed verti-

3. There is no covariance matrix in general, cal lines equidistant from 0. The search algorithm
4. F-tests and lack of fit tests are not valid in used in this study for finding the contour bound-

general, aries was presented in reference 26. This method

tests a series of randomly selected points in parame-Some results remain true, however:
ter space to determine the position of the confidence

1. The sum of squares, J(O), still represents the region. Through many iterations, the limits of the

square of the distance from (Z1, Z2, Z3,..., ZN) region are determined by retaining and updating the
to a point in the estimation space, points on the boundary which maximize or minimize

2. Minimization of J(O) still corresponds to find- the unknown parameters. This search algorithm is
ing a point in the estimation space closest to computationally very demanding, even for problems
(Z1, Z2,..., ZN). with relatively few parameters.

3. Confidence regions can still be defined; however,
the confidence level is an approximation. B. Nonlinearity Measure for Aircraft

Applications
In reference 23, Beale recommends using a correc-

tion factor N¢ as a means to extend the confidence The following is a generalization of Beale's devel-
level definition of A to moderately nonlinear prob- opment (ref. 23) of an intrinsic nonlinearity measure
lems. For this case, equation (5.13) becomes N¢ and its adaptation to the multivariable problem

of airplane parameter estimation. This is an empiri-
cal measure of nonlinearity which, in this study, has

J(O) - J (O) : nps2 Fc_p(np, N- np) demonstrated some utility in CIE problems.

[ N(np + 2) ] If P(O) represents the estimation space (or solu-× 1+ (-_--np)_pN¢ (5.28) tionlocus) in sample spaee, thenP(0) is the point on
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J(O)i _, _Quadratic , ] and, thus, Q¢ is normalized as

\ V" approximation II /

x_, \)_ /// nps2Q¢ (5.33)

r\, //I[ /m./I I "%.. _/ ! ) / L/AINL
j(_) .... _--_--- ,'-_r_ _ _ . • The values of this measure may still depend on the

, , I ' ' configuration or orientation of the points P(Ow) rel-I I I i i

I I , I _ _ ative to P(8), but it should not depend significantly
0 • e emax

mm on the number of points P(Ow) chosen or on their

AIL=npS2Fp(np, N-rip) AJNL=nps2Fp(np, N-np) (1+ N(np+2) N /_p 0! distances from P(8) (if not too large).To obtain the intrinsic nonlinearity N¢ that Beale

Figure 4. Construction of confidence intervals for one- recommends, N O must be further restricted: N¢ is
dimensional problem, the value of N O when the parameters 0 are chosen

such that T(O) is always at the foot of a perpendicu-

Y(t2) lar from P(O) onto a tangent plane at P(0). In other

words, N¢ is the minimum value of N O if the model
and the experimental design are fixed (see fig. 5).

P(0 )/P(0) The practical computation of the intrinsic non-

Minimumd-__ T(0) linearity measure is described as follows. The sen-

....>_ T(0w) sitivities determined during the estimation process

are needed in advance of the following calculations.

According to Beale, an empirical estimate of N¢ is

np82Q¢ (5.34)
y(t_) _-_- D

Figure 5. Two-dimensional sample space with solution locus where np is the number of unknown parameters and

P(O) and tangent plane T(O) at P(0). 82 is the sum of squares of residuals. For the multiple
output case, s2 is given by equation (5.30).

the solution locus closest to the measurement Z and The denominator in equation (5.34), D, can be

is the point in parameter space which minimizes formulated as

the cost function. If T(O) is defined as a point on a w ( N

tangent plane at P(8) and W different values are eho- D = E _E[ _-_i(ow) -- _ri(0)]Tl_-I
sen for the vector 0 near 0 (i.e., Ow, w = 1, 2,..., W), w=l Li=I

then a crude measure of nonlinearity can be written _2

as × - (5.35)w
QO-- IP(Ow)-T(Ow)l2 (5.31)

w=l where i is the index of the N data points (time
variable).

A graphical representation of these quantities for a By letting T(O) be expressed as a first-order
two-dimensional sample space is shown in figure 5. Taylor expansion while using the sensitivity infor-

The nonlinearity measure QO is the sum of squares of mation from the estimation, Q0 can be computed
the distances from the points P(Ow) to the associated as

points T(Ow) on the tangent plane at P(8). Clearly,

Q0 depends on the number of points P(Ow) and w N

on their distances from P(0). Beale suggests that Q0---- E E [_i(Ow) --_(i(O)- Gi_bw]T
these distances are proportional to the square of the w=l i=l
distances of P(Ow) to P(0). If D is defined as the × - - (5.36)
sum of squares of the squared distances, then

where
w

[°y l (4.6)
D = _ IP(O_)- P(0)I 4 (5.32) Gi = LaO_l_w=l
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Cw = 0w - 0 (5.37) Thus

Let W N

0¢ : E E( _i -- Giffpw)Ta-l(e_Yi - Gi(_w)

For application to the parameter error bound prob-
and rewrite equation (5.36) to obtain lem for aircraft, the following assumptions are made:

W N 1. Selecting W = 2np is sufficient to adequately

Q¢ = E E(6Yi - Gi_w)TR-l(5_(i - GiCw) sample the local surface of J(O) near 0.
w=1i=1 2. Selecting A0 as

(5.39)

IAOi] = grOi (5.43)
This is now in the form of a standard least squares

problem. The problem is to find the value of ¢ that provides a reasonable distance from 0 to sample
minimizes Q¢; that is, minimize the distance (see the surface J(O). The goal is to detect the nonlin-

fig. 5) given as earity from the tangent plane without going too
far into the nonlinear range where the curvature

d = ]P(gw) -T(0)[ 2 (5.40) (based on sensitivity information at 0) no longer
applies.

Therefore, the value of ¢ that minimizes Q¢ is (I) These assumptions represent a proposal for a

given by W sets of least squares minimizations: unified approach to computing ArC. With this ap-
proach, results of various studies can be compared

N -a and the differences between confidence limits based

(E ) on Cramer-Rao bounds and random search can becw = cTI_-IG/ examined. The error bounds determined by random\i=1 ]

N search and ArCcan also indicate the effect of experi-

x E GTft-xS_'i (w = 1, 2..... W) (5.41) mental design, especially input form and model error,on identifiability.i=1
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VI. APPLICATION TO SIMULATED and A0 is relatively large or on a steep slope where
AND REAL DATA A0 << 1 and AJ is relatively large.

Besides estimate accuracy and CPU time to ter-
The examples considered in this chapter demon- mination, an additional observation provided is the

strate the ML/MNRES algorithm for estimating number of "equivalent evaluations." One unit of this
parameters and the search technique for estimating measure is the amount of calculation required to in-
confidence intervals of the parameters. These meth- tegrate the system equations and to evaluate time
ods are compared with commonly used techniques, histories of the output variables. Each method de-
which provide a benchmark for comparison. The scribed in this report requires a different number of
commonly used techniques are the ML/MNR algo- equivalent evaluations to make one update in the pa-
rithm for parameter estimation and the Cramer-Rao rameter estimates. This measure provides an indica-
(CR) bounds for confidence interval determination, tion of how efficiently information gained from sys-
ML/MNR is used with both analytically and numer- tem integrations is utilized. System integrations are
ically determined derivatives. The CR bounds, taken the primary computational burden for any estima-
from the information matrix, are adjusted to the 95- tion method applied to dynamical systems.
percent confidence level. The examples in this study use both simulated

Only dynamical systems or airplane estimation data (examples 1-3) and flight data (examples 4-6).
problems are used in this study rather than classical Except for the first two examples, the parameters es-
test problems such as Rosenbrock's function (ref. 13). timated are the nondimensional aircraft stability and
Using classical optimization problems, which usually control derivatives conforming to standard NASA no-
require very little computational time to evaluate tation. For examples 1 and 2, a simple linear system
the cost function, could lead to different conclusions is integrated with an Euler integration method. Ex-
about the algorithms. For aircraft estimation prob- amples 3-6 involve the airplane problem and use the
lems, the bulk of computer time is spent performing general equations of motion given by equations (2.5)
integrations of the state and sensitivity equations, to (2.15). These equations are integrated with a
To prevent any bias in the results due to variations fourth-order Runge-Kutta integration scheme. For
in programming efficiency or integration techniques, comparison purposes, the same integration step size
only estimation algorithms using the same integra- and the same computer (Control Data CYBER 175)
tion method are compared, are used in each example.

The performance of the methods used in this For the airplane examples, the ML/MNRES al-
report is evaluated with the following criteria: gorithm is applied through program MAX. MAX is

1. Accuracy of estimates a very modular FORTRAN 5 code with dynamic
2. CPU time to termination memory. The modular format allows aerodynamic

models or entire system models to be changed eas-
Termination i_ obtained when parameter and cost ily. The dynamic memory capability adjusts core
function fractional changes are computed to be memory automatically to the dimensions required.
within a specified precision. Both cost function A block diagram of the general computing scheme
change AJ/J and parameter change AO/O are re- for ML/MNRES is given in figure 6. A flowchart
quired to be satisfied simultaneously to prevent pre- for program MAX is given in figure 7 with table I
mature termination on a plateau where AJ << 1 defining the elements in figure 7.
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TABLE I. PRIMARY SUBROUTINES FOR PROGRAM MAX AND DEFINITIONS
OF FLOWCHART BLOCKS IN FIGURE 7

Name Description
Subroutines

AERO Computes aerodynamic forces and moments with selected aerodynamic model

COST Computes residuals, fit error, I_-1, and cost

DIFFEQ Computes state derivatives from selected equations of motion

EST Computes updated parameter estimates

HICOST Determines whether new estimates reduce cost and updates storage of outgoing
and incoming parameters and response time histories

INT Main subroutine for management of model inputs and outputs; computes initial
conditions and input arrays for RK4 and OUTPUT

MASTER Primary subroutine represented by flowchart; handles initializations, input/output
operations, and memory management

OUTPUT Computes selected output time histories for cost function and plot routines

RK4 Fourth-order Runge-Kutta integration scheme

SENEST1 Computes sensitivities using a finite-difference method

SENEST2 Computes sensitivities using a selected surface-fitting method
Decision blocks

FAIL Test whether new estimates reduce cost

PASSES Test for maximum number of allowed passes

PASS #1 Test for first pass

RESTARTS Test for maximum number of restarts

1_ UPDATES Test for maximum number of weighting matrix updates
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Figure 6. Computing schemefor ML/MNRES.
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Figure 7. Flowchart for program MAX.
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A. Simulated Data Studies Table II shows the true values, initial values, and

Simulated data offer three advantages for testing final estimated values of the six unknown parameters.
a new estimation algorithm. The first and most Figure 8 shows the input and response time histories.
important advantage is that the true values of the All three algorithms accurately converged to the true

parameters are known; the second is that the problem parameter values using only the first 5 seconds of
can be well posed and defined without modeling data. The MNR method was 30 times faster than
error; and the third is that the degree of complexity FPS and MNRES was twice as fast as MNR, or
can be selected. In this study, the first two of 60 times faster than FPS. The number of equivalent
three simulation examples use a single-input, double- evaluations had similar ratios, that is 715:28:12 for
output, linear, second-order system: FPS:MNR:MNRES, respectively.

Table II shows clearly that optimization problems

::Ks = AXs + BU Xs(0) = 0 (6.1) having reasonable starting values and involving time-
consuming cost function evaluations should not be

Y = X8 (6.2) solved with direct search schemes, such as FPS. This

result is supported by an independent study using
These examples are used to demonstrate the relative aircraft estimation problems in reference 32. Reason-

speeds and accuracy of the sample estimation algo- able initial values tend to provide a more quadratic-
rithms and to initially indicate the preferred meth- like cost function, for which Newton's method is most

ods. The third simulation uses a nonlinear aircraft effective. If reasonable initial values are not available,
model and simulates varying levels of measurement the FPS may be more attractive. In light of the re-
noise found in real flight data. This example demon- sults of example 1, further study concentrated only
strates the accuracy of program MAX. on the gradient methods.

1. Example 1 2. Example 2
Example 1 demonstrates and compares the FPS,

MNR, and MNRES optimization schemes in a sim- Example 2 is provided to compare the robustness
of MNRES with that of the commonly used MNR.ple ML estimation problem. The MNR method uses
The more common form of MNR with analyticallya finite-difference method to compute derivatives.
derived sensitivity equations is used to prevent any

This satisfies one requirement of this study, which is deterioration of the algorithm due to approximating
to eliminate the need to derive analytical gradients, the sensitivities. The system from example 1 is
MNR generally performs with about the same speed analyzed again except measurement noise is addedusing either numerically determined derivatives or

and a pulse input is used to excite the system. Twointegrated sensitivity equations (ref. 16). MNRES
cases are considered, each with different levels ofuses the same finite-difference method as MNR to
measurement noise. The noise is zero mean and

determinc sensitivities during initialization; however, Gaussian with standard errors of 0.0001 and 0.001MNRES uses the recursive least squares form of the
for cases 1 and 2, respectively. Figure 9 shows timealgorithm during optimization. The recursive form
histories of the input and response variables for theis normally used for conserving memory; however be- two cases. Table III shows the estimation results.

cause of the small memory requirements to store time
In case 1 both methods produce equally degradedhistories in this example, all time histories are stored

so that only one integration per pass is needed. The results; however, MNRES still converged to the same
purpose of this example is to compare the relative precision level more quickly. In case 2, with a

performance of each method on a problem involving severe noise level and the information limited to
a simple dynamic system. 3 seconds of data, MNRES was unable to converge.

Example 1 has six unknown parameters. The The results showed that it was oscillating about
a solution, unable to find a new parameter vectorsix unknown parameters in equation (6.1) are the that would produce a lower cost. The MNRES

four elements of the 2 x 2 system matrix A and two
used on this example had no special step-size control

elements of the control input matrix B. The input logic. The solution that was obtained, however, wasform was chosen as
as accurate as that obtained by MNR, which did

U= _sin t (O<t<27r) converge.
(o (t > 2r_) Meeting convergence requirements does not guar-

antee accurate results; the error in the estimates

and data points were generated every 0.25 second, ranged from 5 percent to 130 percent. MNR had
Process and measurement noise was excluded for this both the most accurate and the least accurate esti-

example, mate. The importance (sensitivity) of a parameter to
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the model significantly affects the accuracy of the es- with twice the noise level of case 2. The standard
timate, particularly under these adverse conditions, errors of the simulated measurement noise are shown

Based on these examples, it appears that MNRES is in table IV. In each case the noise is zero mean

computationally more efficient than MNR while pro- and Gaussian. The simulated data were created by
viding the same level of accuracy, a fourth-order Runge-Kutta integration with a step

size of 0.05 second. Table V shows the terms used in

3. Example 3 the nonlinear aerodynamic model to create the simu-
lation and the parameter estimates obtained throughIn example 3, the accuracy and robustness of
analysis of the simulated data. Time histories are

ML/MNRES are demonstrated by application to a
provided in figure 10 for the three cases. The con-nonlinear aircraft simulation with known measure-

ment noise levels. In addition, program MAX is val- trol inputs were the same for all three cases and are
shown in figure 11.idated. For this example and all other aircraft ex-

amples, the computationally least demanding form Program MAX was applied using two convergence
of MNRES is used to compute sensitivities. This criteria: AJ/J < 10-3 and AO/O <_ 10-3. As ex-
form uses the linear surface fit with equation (4.15) pected, the estimates of the less easily identified non-
instead of the recursive least squares form with equa- linear terms, such as Cn,_r and Cl,_v, are more quickly
tion (4.23). The simulation involves a nonlinear lat- corrupted as the noise levels increase; however, the
eral model of a general aviation aircraft, estimates are still very reasonable and the time histo-

ries are accurately predicted. Table V shows that theThree cases are considered: case 1 without any
measurement noise, case 2 with a representative noise MNRES method can be used effectively in estimating
level typical of flight data for the aircraft, and case 3 parameters for nonlinear aircraft systems.

TABLE II. PARAMETER ESTIMATES AND COMPUTATION

TIME FOR FPS, MNR, AND MNRES APPLIED TO A LINEAR

SYSTEM WITHOUT MEASUREMENT NOISE (EXAMPLE 1)

Final estimated values

Unknown parameters, True Initial using method--
0 value value FPS MNR MNRES

01 0 0.01 -0.12 x 10-5 0.89 x 10-7 0.73 x 10-_
02 -1.5 -1.6 -1.5 -1.5 -1.5

03 1.0 1.1 1.0 1.0 1.0
04 -.5 -.6 -.5 -.5 -.5

05 .2 .25 .2 .2 .2
06 .1 .15 .1 .1 .1

Cost .............. 0.14 × 10 -s 0.61 × 10-1° 0.11 x 10 -7

Equivalent evaluation ....... 715 28 12
CPU time, a sec ......... 2948 106 47

aCentral processing unit time on CYBER 175 computer.
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TABLE III. PARAMETER ESTIMATES AND COMPUTATION TIME FOR MNR AND MNRES

APPLIED TO A LINEAR SYSTEM WITH TWO NOISE LEVELS (EXAMPLE 2)

(a) Case 1

[Noise level with standard error of 0.0001]

Final estimated values

Unknown parameters, True Initial using method--
0 value value MNR MNRES

01 0 0.01 -0.0675 -0.0684
02 -1.5 --1.6 -1.471 -1.471
03 1.0 1.1 1.009 1.010
04 -.5 -.6 -.449 -.448
05 .2 .25 .202 .202

06 .1 .15 .098 .098

Cost ................... 0.105 x 10-(i 0.105 x 10-(i
Equivalent evaluation ............ 42 12
CPU time, a sec .............. 77.54 24.08

(b) Case 2

[Noise level with standard error of 0.001]

Final estimated values

Unknown parameters, True Initial using method--
0 value value MNR MNRES b

01 0 0.01 -0.705 -0.410
02 -1.5 -1.6 -1.228 -1.549
03 1.0 1.1 1.757 .799
04 --.5 -.6 .159 -.238
05 .2 .25 .210 .251
06 .1 .15 .087 .037

Cost ................... 0.104x 10-4 0.122x 10-4

Equivalentevaluation............ 70 27
CPU time,a sec .............. 134.44 56.05

aCentralprocessingunittime on CYBER 175 computer,
bMNRES did not converge.

29



TABLE IV. STANDARD ERRORS OF SIMULATED MEASUREMENT

NOISE (EXAMPLE 3)

Standard errors for--

Output variable Case 1 Case 2 Case 3
_, tad ....... 0 0.010 0.02
p, rad/sec ..... 0 .010 .02
r, rad/sec ..... 0 .010 .02
¢, rad ....... 0 .005 .01
ay, g units ..... 0 .005 .01

TABLE V. PARAMETER ESTIMATES FROM ML/MNRES APPLIED TO SIMULATED
NONLINEAR AIRCRAFT SYSTEM (EXAMPLE 3)

Unknown
parameters, Simulation Parameter estimates for--

0 values Case 1 Case 2 Case 3

C_o O.13 O.1299 O.1298 O.1295

Cy_ -.411 -.4136 -.4261 -.4401
Cyp -.146 -.1524 -.1874 -.2379
Cyr .63 .6686 .6070 .5412
Cy_a -.053 -.0618 -.0733 -.0872
Cy8_ .075 .0794 .0775 .0751
Cl,o 0 .0001 -.0003 -.0005

Cl_ -.123 -.1223 -.1228 -.1240
Clp -.397 -.3988 -.4026 -.4094
Clr .257 .2573 .2409 .2239
Cl_ -.182 -.1815 -.1778 -.1755
el5 r .007 .0067 .0059 .00497
Ct_p 2.63 2.6254 2.519 2.4359
Cn,o 0 -.00005 -.00008 -.0001
Cn_ 0 .000003 .0001 .0005
Cnp -.15 -.1488 -.1524 -.1558
Cn_ -.083 -.0828 -.0861 -.0911
Cn_r -.0431 -.0425 -.0434 -.0445
Cn_r 1.7 1.7343 1.4419 1.0118
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Figure 9. Time histories of input and response variables for example 2.
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Figure I0. Measured and predicted responses for lateral simulation (example 3).
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Figure 11. Control inputs for lateral simulation (example 3).
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B. Real Flight Data Studies be realized in problems where restarting occurs sev-
eral times. Time histories of the measured flight data

In this section three examples are considered. In and predicted response using the estimated model are
each example the model structure and initial param- shown in figure 12. Execution times for example 4eter estimates were determined with the modified

are 793 seconds for program MAX and 1036 seconds
stepwise regression (MSR) program of reference 11. for program MAXLIK.
For examples 4 and 5, the parameter estimation

problem is solved by using two ML programs. The 2. Example 5
first is program MAX, which uses the ML/MNRES
algorithm as described in example 3. The second is Example 5 uses flight data from an advanced twin

engine fighter operating at an angle of attack of 6° .
program MAXLIK, which uses an ML/MNR algo-
rithm. This MNR algorithm integrates analytically A nonlinear longitudinal model is used. Table VII
derived sensitivity equations to obtain sensitivities, presents a comparison of parameter estimates andtheir CR bounds from MAXLIK and from MAX

MAXLIK is a proven code for aircraft parameter es- (case 1). Also shown for each program is the time
timation, documented in reference 34. In the last to reach convergence expressed in seconds. Program
example, program MAX is used to compute param- MAX converged very close to the same values as pro-eter estimates and CR bounds. These bounds are

adjusted to the 95-percent confidence level and com- gram MAXLIK except processing was done in about
pared with those obtained with the search method, one-third of the time. This example reflects the effec-

For comparison purposes, both program MAX tiveness of MNRES under fortunate conditions (that
and program MAXLIK use a fourth-order Runge- is, where the cost is well approximated by a quadratic

function and a moderate number of unknowns (11 pa-
Kutta integration method with the same integration rameters) are determined). The quadratic nature of

step size (0.05 sec in example 4 and 0.04 sec in ex- the cost is indicated by a very small value of N¢. The
amples 5 and 6). A convergence criterion is set at value of ArC was 0.003 for this example. The mean
AJ/J = 0.001 for both codes. Program MAX nor- value estimates of MAX are very good and the CR
mally uses an additional criterion restricting the pa-
rameter change A0/0; however, it is removed in these bounds are good but tend to indicate a slightly largererror bound than those from MAXLIK.

examples to ensure that both programs converge for Although the Fisher information matrix is up-
the same criterion. Both programs use the same
bias and scale-factor corrections to the flight data dated during each iteration by both programs, pro-

gram MAX delays updating the weighting matrix
for each example. These corrections were determined l:t -1 until convergence is achieved. The example is
by using a compatibility program developed in refer-
ence 37. The same initial parameter values are used solved once more by program MAX and the weight-

ing matrix is updated twice. These results are shown
by both MAX and MAXLIK. in table VII as case 2 for program MAX. The mean

values are essentially the same since they are inde-
1. Example 4 pendent of the weighting matrix used, except possi-

Example 4 uses flight data from a general avia- bly through some numerical errors. The standard
tion aircraft operating at an angle of attack of 8°. errors are slightly closer to the MAXLIK results,
The estimation problem involves the nonlinear lat- and further updating brings only very small improve-
eral model. Table VI presents a comparison of pa- ments. These estimates were obtained by MAX in
rameter estimates and CR bounds from MAX and about 46 percent of the MAXLIK processing time.
from MAXLIK. Initial values and sensitivities corn-

3. Example 6
puted as O_Mee are also given. Again, there is rea-
sonable agreement between the two approaches. CR The sixth example uses flight data from an ad-
bound estimates tend to be a little higher for pro- vanced single engine fighter operating at an angle of

gram MAX. This is probably due to their sensitivity attack of 4 °. This example involves a nonlinear fat-
to the derivative information, eral model. In this example, 95-percent confidence

Repeating the calculations with program MAX, intervals are estimated using two approaches. One
by allowing the sensitivity ratios to be incorporated approach is based on the CR bound using program
into the initializing derivative calculations, slightly MAX and the other on a random search technique.

improved the overall speed of the algorithm. This oc- The 95-percent confidence intervals determined by
curred because only one restart was required during each approach are presented in table VIII. In this ex-

the optimization process. More improvement would ample ArC was found to be 0.02; however, it was set
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to zero for the interval computations. Even with this mined by the search method are significantly larger
correction, only a very small increase in interval size than the corresponding CR estimates and indicate an
would be obtained. The confidence intervals deter- asymmetric confidence interval.

TABLE VI. PARAMETER ESTIMATES, CR BOUNDS, AND
SENSITIVITIES FOR PROGRAMS MAX AND MAXLIK APPLIED TO

REAL DATA FROM NONLINEAR AIRCRAFT SYSTEM (EXAMPLE 4)

Unknown

parameters, Initial Program MAX Program MAXLIK

0 value 0 _ 0 8 O_Meg

Cy, o 0.036 0.0061 0.0006 0.0213 O.OO05 O.7533 x 10a

Cy_ -.479 -.4603 .0075 -.4608 .0067 .3756 x 105

Cy v -. 186 -. 1378 .0485 -.0604 .0439 .9373 x 103

Cy r .522 .6677 .0289 .6209 .0256 .1915 x 104

Cy_a -.08 -.0504 .0166 -.0375 .0150 .8129 x 103

Cy& .083 .0814 .0043 .0763 .0037 .9922 × 103

Cyc,_ .45 .4300 .0592 .4512 .0504 .9399 X 103

Cl,o 0 .0002 .00005 -.0001 .00005 .9618 × 103

Clz -.079 -.0872 .0015 -.08 .0013 .1493 x 106

Ci v -.47 -.5320 .0102 -.4823 .0085 .4529 x 107

Clr .187 .1700 .0043 .1543 .0045 .6838 x 104

Clea -.19 -.2035 .0036 -.1852 .0031 .7969 x 105

Cl_ .01 .00055 .00024 -.0012 .00072 .1340 x 104

Cl_ -.26 -.2707 .0116 -.2105 .0091 .6327 × 104

Cn,o 0 -.00063 .00003 -.002 .00002 .1909 x 104

Cn_ .04 .0323 .00045 .0329 .0004 .1515 x 106

Crtp --.056 -. 1043 .0026 -.0916 .0022 .1400 x 106

Cn_ -. 15 -. 1462 .002 -. 1534 .0017 .5039 x 105

Cflsa 0 --.0044 .001 -.0037 .0009 .1780 x 104

Crier -.053 -.0550 .0003 -.0532 .0003 .9048 × 107

aCY_a -.39 -.39 -.39

acnf_ a .08 .08 .08

aparameter held fixed.
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TABLE VII. PARAMETER ESTIMATES, THEIR STANDARD
ERRORS, AND TIME TO REACH CONVERGENCE FOR

PROGRAMS MAX AND MAXLIK APPLIED TO REAL DATA

FROM NONLINEAR AIRCRAFT SYSTEM (EXAMPLE 5)

Unknown MAX

parameters, MAXLIK Case Ia Case 2 b

CX, o 0.17017 0.208 × 10 -_ 0.17078 0.249 × 10-_ 0.17070 0.212 × 10 -_
CX_ .9464 .616 × 10-2 .9245 .703 × 10-2 .92511 .555 × 10-2

CX_ e .2789 .404 × 10 -2 .2754 .116 x 10 -1 .2755 .876 × 10-2

Cz,o -.83946 .896 × 10-3 -.84335 .106 × 10 -2 -.84252 .103 × 10-2

CZ_ -5.311 .230 × 10 -1 -5.197 .223 × 10 -1 -5.194 .215 × 10-1

Czq -18.7 .162 × 10 -20.3 .189 × 10 !-20.5 .177 × 10

Cz_e -.618 .264 × 10 -1 -.566 .350 x 10 -1 -.570 .324 × 10-1
Cm,o -.001251 .828 x 10-4 -.001610 .942 x 10-4 -.001555 .937 × 10-4
Cm_ -.5129 .102 x 10-2 -.5186 .115 × 10 -2 -.5183 .110 x 10-2

Cmq -16.95 .157 -19.06 .144 -18.83 .144

Cms_. -1.3409 .576 × 10-2 -1.4150 .447 × 10-2 -1.4075 .461 × 10-2
CPU time, d sec 342 105 157

aCase 1 is for one update of weighting matrix R -1
bCase 2 is for two updates of weighting matrix R -i.
CCramer-Rao bound.

dCentral processing unit time on CYBER 175 computer.

TABLE VIII. PARAMETER ESTIMATES AND CR BOUNDS FROM
PROGRAM MAX AND CONFIDENCE LIMITS FROM A

RANDOM SEARCH TECHNIQUE FOR REAL DATA

FROM NONLINEAR AIRCRAFT SYSTEM (EXAMPLE 6)

95% confidence interval
Unknown Random search

parameters, Cramer-Rao Upper Lower
O 0 bound bound bound

Cy_ -0.77 :k0.27 0.92 -0.89
Cy_ r .18 :k.27 .87 -.89

Cl_ -.228 :t:.021 .042 -.10

Clp -.88 :t:.13 .30 -.99
Clr -4.20 ±.98 2.1 -5.5

CI_ -. 152 4-.020 .036 -. 11
Cn_ .0826 -4-.0040 .011 -.013

Cnv -.078 -4-.019 .050 -.10
Cnr --1.24 =k.19 .49 -.76

Cn5r --.0860 !.0064 .020 -.021
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Figure 12. Measured and predicted responses for lateral maneuvering using real flight data (example 4).
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C. Discussion of Results of these equations provides information that is imme-

The general experience with ML/MNRES and diately incorporated into the numerical process when
the examples chosen for this study indicate that using MNRES. When usingMNR, np+l system inte-

grations (equivalent evaluations) are required before
ML/MNRES performs better than ML/MNR for each updating operation; for example 1, the ratio of
estimation problems involving dynamic systems such
as aircraft systems. In general, MNRES should equivalent evaluations was 28:12. The results indi-

cated both MNR and MNRES to be very fast relativeperform well in any problems for which the Newton-
to the search technique; thus search methods were

Raphson family of methods is appropriate (that is, eliminated from any further study. The MNRES ap-
where the cost can be reasonably approximated by proach was a little more than twice as fast as MNR.

a quadratic function). The results of this study The third example demonstrated that thealso indicate that a search technique is needed to
accurately assess the parameter error bounds in the ML/MNRES algorithm was a viable method for a

nonlinear estimation problem; for the linear problem nonlinear aircraft estimation problem with both re-
or problems with very little nonlinearity, the CR alistic and heavy noise levels. This example provides

confidence in the ML/MNRES approach. However,bounds should agree with values determined by the
search technique, since it is a simulated example, it cannot be accepted

as conclusive. Simulations always provide optimal

1. Parameter Estimation conditons for estimation algorithms because prob-
lems such as modeling error, bias errors, unknown

Two goals in this study were to develop an es- noise spectra, and general data incompatibility are
timation algorithm which, first, eliminated the re- not present.

quirement to reformulate the algorithm for each new Unlike simulated data, real flight data often

model and, second, provided a more efficient method present problems (as just mentioned) for any esti-
of dealing with computationally more burdensome mation method; these problems may slow the con-
nonlinear problems. The first goal has been sur- vergence process or even stop it. The last three
passed through the ML/MNRES algorithm coded in examples used real flight data and were specially se-
program MAX in two respects: (1) it does not re- lected to reflect differing levels of difficulty for the
quire the derivation of sensitivity equations to com- estimation algorithms. Examples 4 and 6 relative to

plete the formulation of the algorithm; and (2) the example 5 demonstrate a representative range in the
modular form of MAX allows easy application to any degree of difficulty (measured by computational ef-
system. The second goal is achieved in three ways: fort) for the algorithms, and it is no surprise that the

(1) the algorithm provides the user many computa- degree of nonlinearity also varies widely (N¢ differed
tionally efficient options for approximating the sensi- by an order of magnitude between examples 5 and

tivities (allowing for variation in accuracy and order 6, 6 being more nonlinear). ML/MNRES was again
of derivatives); (2) the algorithm allows for substan- faster than the benchmark algorithm ML/MNR. For
tial reduction in memory requirements with only a the more nonlinear examples, convergence time for
small cost in additional computation; and (3) all the ML/MNRES was 70 to 80 percent of the time re-

above options are readily incorporated because of the quired for ML/MNR; in the less difficult problem,
modular format of MAX. Tile second goal has been ML/MNRES required only 46 percent of the bench-
demonstrated in the examples and the following dis- mark time. These examples give some credence to
cussion clarifies the conditions under which this goal the sup6riority of ML/MNRES.

has been met. However, these examples also indicate a large
The first two examples use a simulated linear variability in the superiority of ML/MNRES. As the

system with and without noise. This system is read- degree of nonlinearity increases, the two methods ap-

ily identifiable except when severe noise and nonop- pear to approach the same speed'ofconvergence. The
timal inputs are included. Because the initial val- computational advantage of ML/MNRES tends to
ues were relatively close to the final solution, a good be reduced as the nonlinearity increases. A moder-
quadratic approximation of the cost function was ate number of unknowns are used in both example 5
possible and thus provided a condition conducive to and example 6 so the advantage due to the difference
convergence. The two Newton-Raphson methods, in ns + nsnp integrations per pass and ns integra-
MNR and MNRES, were substantially faster than tions per pass is probably a small factor (see sec-
the search method as expected under these condi- tion IV.B). The main factor, however, is the quality
tions. MNRES, however, capitalized more efficiently of the quadratic approximation of the cost function

than MNR on the information obtained from each in- which, of course, is directly related to the degree of
tegration of the system equations. Each integration nonlinearity of the cost. Both methods are slowed as
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Onewe1knowntoimprovethespeedoftechniques such as ML/MNR involving the Hessian ma-

•1 - _o MAX trix (or approximations to it) is to hold the informa-

_/._1-----A MAXLIK tion matrix M constant for one or more iterations¢ (ref. 14). This reduces the amount of integration re-
L0gl0_J/J .01 - _ \_ quired per pass to the same as required in MNRES

i i...l...lih_ _ because no sensitivity equations are integrated. The
•ool -. number of iterations that M can be held constant is

.0001 I I Convergence unknown and unknowable in advance. So there aretwo alternatives generally known and used. One is to- --d---6 J f
0 loo 2oo 3oo integrate the sensitivity equations during each pass,

cPutime,sec requiring maximum computational effort but giving
maximum accuracy to the optimization process. The

Figure 13. Convergence criterion versus CPU time for other alternative is to integrate the sensitivity equa-
programs MAX and MAXLIK. tions during a necessarily infrequent number of iter-

ations to hopefully increase convergence speed. In
the nonlinearity increases, or the quadratic approx- methods like the ones considered in this study where
imation becomes poorer, but the MNRES method large steps in the optimization process may occur,
depends much more on the quality of the quadratic not updating the information matrix is dangerous.
approximation, since in effect it is an approximation ML/MNRES offers an effective compromise between
of the MNR method. As the nonlinearity increases, these two unsatisfactory alternatives.
MNRES loses its advantage over MNR. The compromise is achieved by updating the in-

Figure 13 offers a graphical view of the perfor- formation matrix during each pass, but incorporat-
mance of MNR and MNRES in example 5, where the ing only the information obtained from integrating
quadratic approximation is fairly good. The graph the equations of motion once. Thus, updating is oc-
shows the value of the convergence criterion versus curring at minimal computational cost. Because of
CPU time. Program MAXLIK, using MNR, follows the limited information to update the information
a typical convergence pattern; the small oscillations matrix, a suboptimal, but computationally more ef-
before convergence are due to the updating of the ficient, path is followed to convergence. The result
weighting matrix R during each pass after the cri- is that ML/MNRES requires many more passes to
terion falls below 0.01 in value. This approach with reach convergence, but each pass requires much less
MNR has been found to be beneficial in these prob- computational effort than each pass in ML/MNR.
lems. Program MAX, on the other hand, updates The net result is much faster convergence, depend-
the information matrix during each pass but holds ing on the degree of nonlinearity of the cost and the
the weighting matrix constant until the first conver- quality of the quadratic approximation used by the
gence is achieved. At this point the final param- method.
eter estimates are obtained; however, the Cramer-
Rao bounds (determined from the information ma- 2. Confidence Interval Estimation

trix) are not converged. The information matrix M Confidence intervals obtained in example 5 were
does not converge until the weighting matrix R -1 found to be very close to the CR bounds adjusted
is updated sufficiently. This is understandable since to the 95-percent confidence level. In addition, the
the parameter estimates are asymptotically indepen- value of N¢ was very small and convergence occurred
dent of the weighting matrix, whereas the CR bounds relatively quickly. This indicates that the cost func-
depend on the information matrix, which in turn de- tion was very well approximated by a quadratic func-
pends on the value of R. Therefore, two more cycles tion. In analogy to figure 4, the construction of
are made to convergence to ensure that the weighting the confidence intervals for example 5 would place
matrix has stabilized. Note that the first step in each the dashed and solid lines virtually on top of each
method takes the same amount of time and achieves other at the error level selected. The quality of the
the same reduction in cost; this is expected since ini- quadratic approximation is confirmed by the very
tializing MNRES requires the same computations as fast convergence of MNRES relative to MNR.
the first pass in MNR. Confidence intervals obtained in example 6 were

A key feature of ML/MNRES is the method of found to be 3 to 8 times the size of the CR bound ad-

updating the information matrix. Although both justed to the 95-percent confidence level (table VIII).
ML/MNRES and ML/MNR update the information This is in agreement with references 20 and 25 on
matrix ',1ring each pass, they do it quite differently, the values generally found in analyzing actual flight
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data. Reference 25 used the search technique and ref- At present, the random search technique is the
erence 20 estimated the confidence intervals by corn- only method to determine confidence bounds accu-
puting an ensemble average. This also indicates that rately. Clearly, the CR bounds, which are tied to
this cost function is much more nonlinear than that the quadratic approximation inherent in the infor-

for the first example and is not well approximated mation matrix, will ahvays differ from the parameter
by a quadratic function at the error level considered, variance. This difference will mainly depend on the
This is confirmed by the relative speed of convergence quality of the quadratic approximation. The only
of MNRES and MNR. MNRES, with two updates of disadvantage of the search technique is its relatively
R, required 85 percent of the time MNR required, poor convergence rate combined with the large com-

It appears from the examples considered that a putational effort required in this type of problem.

primary factor in determining the confidence interval Although Beale's measure of nonlinearity, ArC, was
size for airplane stability and control derivatives is designed to correct the confidence level in the CIE
the degree of nonlinearity of the cost function. Other problem, there seems to be more utility in consider-

factors, such as bias errors, modeling error, noise ing ArC (or some similar measure) as a way to dis-
level, and noise spectra, may contribute directly to cern whether the lengthy computations of the ran-

confidence interval size or may manifest themselves dora search are needed. If very little nonlinearity
as part of the nonlinearity of the cost function, exists, the user can be reasonably confident that the
In this study, the other factors were not tested to CR bounds provide accurate error bound information.
determine their contribution.
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VII. CONCLUDING REMARKS linear flight regimes, the approac h should be effective

for many other nonlinear, dynamic systems. BasedThe primary contribution in this study is a
methodology for solving the nonlinear airplane iden- on this study, the ML/MNRES algorithm generally
tification problem. The use of a modified stepwise performs better and offers more versatility than the
regression in conjunction with several testing criteria commonly used ML/MNR algorithm.
is suggested to determine the airplane aerodynamic The suggested methodology includes a random
model structure. This very efficient scheme readily search technique to obtain parameter confidence lira-
accommodates the widely varying model structure its for the maximum likelihood estimates. Since the
in nonlinear flight regimes. A maximum likelihood nonlinear problem does not lend itself to an explicit
scheme with the optimization algorithm developed analytical solution, the search uses a random sam-

in this study (ML/MNRES) is then recommended to pling algorithm to find the confidence limits; unfor-
obtain optimal parameter estimates. This method tunately, this method is computationally demanding,
is more efficient than other commonly used tech- particularly for problems with a large number of un-

niques in airplane estimation problems and provides knowns. Unless sufficient repeated measurements are
some practical computing options. Finally, a random available, it is the only method to accurately deter-
search procedure is required to determine parameter mine confidence region boundaries in the nonlinear
confidence limits for nonlinear problems. This is used problem. Beale's measure of nonlinearity is used

in conjunction with Beale's measure of nonlinearity to provide an empirical correction to the confidence
(adapted to the airplane problem) to make an empir- level used by the search. Although this was Beale's
ical correction to the confidence level. It is also used intended use, it has little affect on the confidence lira-
to determine whether the extensive calculations of its for airplane applications. However, it was shown
the random search are needed to estimate confidence that the degree of nonlinearity is closely related to
limits, the degree to which the Cramer-Rao bounds and the

The new optimization algorithm, MNRES, has random search confidence limits agree. Therefore,
three advantages over other comonly used tech- it is recommended that this or some similar mea-
niques. The first advantage is that the algorithm sure be used to determine the necessity of the search
removes the need to derive sensitivity equations for calculations.

each new model; this eliminates the computational If further studies are made with MNRES, it
burden of integrating the sensitivity equations dur- should prove beneficial to use more efficient inversion
ing each iteration of the algorithm and also provides schemes than the standard Gaussian elimination used

much flexibility, allowing the model equations to be in this study. This may improve the algorithm for
in any convenient format, such as splines, polynomi- larger numbers of unknowns. Also, further consider-
als, or a nonanalytic form. Also the quickly varying ation should be given to defining how the confidence
model structure sometimes found in the nonlinear intervals and the nonlinearity of the cost function re-
regimes is readily handled. The second advantage is late to other factors such as bias errors, modeling

that the algorithm is effective for a variety of methods error, input form, and noise spectra. In addition,
for fitting the output vector to a surface in parame- measures of nonlinearity and the best schemes for
ter space (needed for sensitivity estimation), the user computing them need more investigation. Nonlin-
can choose a surface-fitting method best suited to the earity measures may be useful for reflecting the qual-

problem. Also storage requirements can be reduced ity of the experiment, since parameter error bounds
with little additional computation. The third advan- will vary with model error and optimality of the in-
tage of the algorithm is that it requires less com- put form. Finally, significant computational savings
putational effort than the commonly used modified would be achieved if the confidence limits for the non-

Newton-Raphson (MNR) method. For small prob- linear estimation problem could be determined with
lems (fewer than 15 parameters to be estimated), the gradient techniques rather than the computationally
reduction can be substantial. For larger nonlinear demanding search scheme used in this study.
problems, the reduction may be more modest; how-
ever, improvements may still be significant if data
quality, signal compatibility, and sensitivity calcula- NASA Langley Research Center
tions are accurate. Even though the application of in- Hampton, VA 23665-5225
terest for this study was an aircraft operating in non- October 17, 1985
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