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Technical Representative monitoring this contract.
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ABSTRACT

This report contains the theoretical development and the practical
application of new control synthesis procedures for digital flight control
systems. The new theoretical developments are the solution to the optimal
multi-rate sensor output feedback problem and the solution to the problem
of optimal disturbance suppression in the presence of windshear. Control
synthesis is accomplished using a linear quadratic cost function, the com-
mand generator tracker for trajectory following and the proportional-integral-
filter control structure for practical implementation. Extensions are made
to the optimal output feedback algorithm for computing feedback gains so
that the multi-rate and optimal disturbance control designs are computed and
compared for the Advanced Transport Operating System (ATOPS). The perfor-
mance of the designs is demonstrated using closed-loop poles, frequency
domain multi-input sigma and eigenvalue plots and detailed nonlinear 6-DOF

aircraft simulations in the terminal area in the presence of windshear.
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LIST OF SYMBOLS

In general, matrices are represented by capital letters and vectors
are underscored; exceptions to these rules are only made when they are
contradicted by standard aerodynamic notation.

VARIABLE

A

DESCRIPTION

Discrete time feedforward matrix
Fundamental matrix (continuous-time system)

Acceleration

Component of the vehicle acceleration
normal to the local level plane

Control effect matrix (continuous-time
system) .

Feedforward matrix for measurement noise
sources

Bias estimate

Control law feedback gains
Feedforward matrix for disturbance noise

Control observation matrix

Windshear to aircraft state distribution matrix

Disturbance effect matrix (continuous-time
system)

2.71828 ...
Vector-valued nonlinear function
Plant transfer function

Magnitude of gravitational acceleration vector

Command observation matrix

Euler angle transformation from
Frame 1 axes to Frame 2 axes

Distance from the aircraft's cg to the Earth's
surface, positive down



VARTABLE DESCRIPTION

I ' Identity matrix

i Index integer

J Cost functional matrix

j V-1

K Gain value

k Index integer

L skew symmetric matrix

g Number of commands

M Cross weighting matrix in Linear Quadratic

Regulator cost function

m Mass of the vehicle
Number of controls
Meters
N Number of time steps
n Number of states
P Riccati matrix in the optimal limited state

feedback regulator problem

P Rotational rate about the body x-axis

Q State weighting matrix

q Rotational rate about the body y-axis

R Control weighting matrix

r Rotational rate about the body z-axis
Number of fast rate samples in the slowest
rate

S Covariance matrix in the optimal limited

state feedback regulator problem
Feedforward matrix with disturbances present

s Laplace transform variable
Windshear gradient

xii



VARIABLE

VARIABLE

(GREEK)

o

B

DESCRIPTION
Thrust

Time-to-go to an end of segment

Time
Windshear x-axis velocity

Body x-axis velocity component
Control Vector

Velocity magnitude
Measurement noise covariance matrix

Body y-axis velocity component
Control difference

Process noise covariance matrix
Windshear z-axis velocity

Body z-axis velocity component
White noise Gaussian vector

Covariance matrix of state initial conditions

Position along the x-axis
State vector

Position along the y-axis
Observation vector

Position along the z-axis

DESCRIPTION
Wind-body pitch Euler Angle (angle of attack)

Negative of wind-body yaw Euler angle (sides-
slip angle) :

Digcrete time control effect matrix

Inertial-velocity axis pitch Euler angle
(flight-path angle)

Periodically time-varying multi-rate matrix

Delta function

xiii



VARIBLE

(GREEK) DESCRIPTION
GE Elevator deflection
6EC Elevator command
Ge Elevator state
GT Throttle deflection
6TC Throttle command
z Damping ratio
n Gaussian noise
3] Inertial-body pitch Euler angle
A Eigenvalue
Y Measurement Gaussian noise
g Integrator state
p Air density
X Summation
o Real part of an eigenvalue in radians/sec

Singular value

0] Discrete-time system matrix

0 Inertial-body axis roll Euler angle
Q Quad matrix inverse partition

w Frequency in radians/sec

Imaginary part of an eigenvalue

SUBSCRIPTS DESCRIPTION
a Accommodate disturbance
B Body axis
b Bias
c Command value

xiv



SUBSCRIPTS DESCRIPTIONS

CL Closed-loop

E Earth-relative axis
e Error quantity

f Full state feedback

Fast rate sample

GS Ground speed

g Gust

H Horizontal

i Element index for vectors and matrices
j Element index for vectors and matrices
k Sampling instant index

L Lagrange

m Model variable

o Nominal value

s Stochastic

Slow rate sample

t Transient

u Velocity component along body x-axis

v Velocity component along body y-axis

w Velocity component along body z-axis
Windshear

X Horizontal perpendicular to y and z

y Horizontal perpendicular to x and z

z Vertical perpendicular to x and y

SUPERSCRIPTS DESCRIPTION

E Earth (inertial) axis

T Transpose of matrix

-1 Inverse of matrix

Xv



PUNCTUATION DESCRIPTION

) Derivative of quantity with respect to time
) Combined variable
3( )/3() Partial derivative of one variable with

respect to another

E{ } Expected value

AC) Perturbation variable
( )* Star trajectory

) Estimated quantity

Discrete cost function weighting matrix

o Infinity
f Integral
) Difference between variable and star trajectory
C) ‘Kronecker product
ACRONYM CORRESPONDING PHRASE
ATOPS Advanced Transport Operating Systems
CAS Calibrated Airspeed
CGT Command Generator Tracker
DTIALS Digital Integrated Automatic Landing System
DOF Degrees of Freedom
dB Decibels
EPR Engine Pressure Ratio
GPS Global Positioning System
INS Inertial Navigation System
kt Knot
LOR Linear Quadratic Regulator
lim Limit
1b Pound

Xvi



ACRONYM CORRESPONDING PHRASE

1n Natural log

MAX Maximum

MEAS Measurement

MLS Microwave Landing System

MIN Minimum

MXEPR Maximum Engine Pressure Ratio
NASA National Aeronautics and Space Administration
PIF Proportional Integral Filter
RNAV Area Navigation

rad Radians

SIGN Signum Function

sec Seconds

Tas True Airspeed

tr Trace 'Function
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1. INTRODUCTION

The proportionai—integral—filter (PIF) control system is an established
control structure which can be used to design and implement digital flight control
systems for aircraft. The- theoretical developments for the PIF design using an
infinite time quadratic cost function, one sample rate and full state feedback is
presented in Refs. 1-3., Successful flight tests of a PIF-like structure in
position form is presented in Ref. 4.

The PIF control system in a state space representation integrates well with
the command generator tracker (CGT). The CGT, discussed in Refs. 5, 6 and 7 is
a method for computing the trajectory plant states and controls follow when the
output of a plant is tracking the output of a model. The command model can be
used to generate coordinated turn paths for heading changes, smooth vertical
height transfer paths for height changes or a complete three ‘dimensional tra-
jectory for curved path tracking.

At present, all flight tested PIF control laws have been designed using
full state feedback and the Linear Quadratic Regulator (LQR) approach. Problems
have occurred due to the inability to accurately represent the actual aircraft
dynamics and flight control system in the design aircraft model. For example,
aircraft actuator dynamics, disturbance dynamics (gusts, wind shear), comple-
mentary filter states, and analog prefilter states have not been included in
PIF design models used to determine the full state feedback control law gains.
The LQR approach would require feedback of all these states as well as the
orginal aircraft states in an attempt to favorably, but impractically, alter
filter and actuator dynamics as well as the aircraft's response to disturbances.
The LQR approach guarentees + 60 DEG of phase margin and -6dB to + « dB gain

margin, but may require feedback loops that are not practical to implement.



The difficulties with full state feedback have been partially alleviated by
extensive simulation of the PIF control system using a realistic truth model and
iterative adjustment of quadratic weights in a more simple synthesis model.

A fundamentally better approach is to use limited state or output feed-
back in the PIF synthesis procedure. The realistic truth model can be used as
the design synthesis model. Only practical measurements and feedback paths are
used to design the PIF control gains.

Until recently, the main obstacle to the use of the limited state feed-
back approach has been the unavailability of a fast, reliable algorithm to
compute the output feedback gains. This obstacle was recently removed by
an algorithm whose derivation is preseﬁted in Ref. 8. This algorithm provides
a fast, efficient and reliable method to obtain optimal output feedback .gains
for large order systems.

Some progress in the use of output feedback, PIF and the CGT has been made
in Ref. 3. Chapter 2 in the report begins with a more complete derivation of
PIF with output feedback. The discussion in Chapter 2 provides the basic
developments that the rest of this report will further investigate and genera-
lize.

The first generalization, discussed in Section 2A, is the use of the
hierarchical or nested approach to design the feedback gains using optimal
optimal output feedback. In the nested approach, one control loop can be
designed with specific feedback paths, the désigned control loop is ciosed,
then the next control loop can be designed with a different configuration of
feedback paths. Only a few small changes are required to convert the output
feedback PIF design procedure to use the nested approach. The nested approach

is a form of decentralized control, Ref. 9.



The theory of digital control design using PIF/CGT currently includes only
the case where control effectors and sensor are all operating or sampled at the
same rate. Due to practical considerations, sensor measurements, such as INS
(Inertial Navigation System) signals, and external position measurements such
as MLS (Microwave landing System), GPS (Global Positioning System) and ILS
(Instrument Landing System) may be available only at sample rates slower than
the rates of onboard sensors used to stabilize inner loops. The space shuttle
is an example of a vehicle which had to contend with sensor measurements avail-
able at different rates. An important problem is to extend the PIF/CGT output
feedback approaéh to the multi-rate sensor measurement case. The muiti-rate
sensor approach is particularly useful in designing inner-loop/outer-loop sensor

vcéntrol systéms. The optimal multi-rate limited state feedback approach is
derived in Chapter 3 and represents an important new contribution to multi-rate
control synthesis.

A contribution to the theory of control system design using the CGT was
made in Ref. 5 in the research area of model following, .and in the research
area of disturbance suppression. Thus far, no flight tested PIF/CGT con-
trol systems have exploited the disturbance suppression aspects of the CGT
theory. | |

An aircraft disturbance that has receivéd considerable attention recently
is windshear. In some types of windshear in the aircraft landing approach,
the aircraft encounters a head wind, then a strong vertical downdraft, then
a tail wind. Windshear is a type of disturbance that a flight control system
must safely accommodate.

A number of questions arise, however, that must be resolved in order to
design a PIF/CGT control system with windshear disturbance assommodation. CGT

theory assumes that the plant dynamics do not affect the disturbance dynamics.



Windshear disturbance models are different, in that certain aircraft states
(height) affect the windshear dynamics. The first problem to be resolved then
is to rederive CGT theory with the aircraft states coupled to the disturbance
states. This derivation of a more advanced version of CGT theory is presented
in Section 4B. A new type of matrix algebraic equation occurs during the develop-
ment of the advanced CGT and is recognized as a generalized matrix Riccati €qua-
tion. A new, globally stable algorithm which finds a solution to the general-
ized matrix Riccati equation is presented in Appendix A.

Another CGT problem concerns the fact that the theory solves the distur-
bance problem for berfect accommodation. Perfect or ideal disturbance accommoda-
tion is accommplished by feeding forward the disturbance states in the control
system. The disturbance states are not usually all exactly measured and the
disturbance states not measured are sometimes difficult to estimate:; A third
question regarding the use of"CGT theory concerﬁs the use of imperfect, but
adequate and practical, disturbance suppression. Given a PIF/CGT control
system, which does not perfectly accommodate windshear, what is the effect of
windshear on the aircraft states and how does changing the control gains alter
the aircraft closed-loop windshear response? This question is resolved in Section
4C.

The steady state effect of stochastic disturbances on the closed-loop
system is solved in Section 4C using a new concept called the stochastic star
trajectory. The stochastic star trajectory shows that the steady state re-
ponse of a plant driven by deterministic and stochastic disturbances decomposes
into a deterministic plant response and a random or stochastic plant response.
In Section 4D, a new type of optimal output feedback cost function is created
using the stochastic star trajectory. The,quadratic cost is used to minimize

the zero mean stochastic component and an algebraic matrix cost is added to



the quadratic cost in order to minimize the deterministic component of the
steady state plant response.

The last section in the report applies the new theories of multi-rate
output feedback and disturbance accommodation to the design of an ATOPS air-
craft path tracking autopilot. Nonlinear six degree of freedom simulations
are made with the aircraft flying through wind shears. The energy probe sen-
sor, Refs. 10 and 11, is included in the measurement vector and the effect

on the design is presented.



2. OPTIMAL LIMITED STATE FEEDBACK PROPORTIONAL~INTEGRAL-
FILTER/COMMAND GENERATOR TRACKER

A derivation of the discrete-time output feedback proportional-integral-
filter (PIF) control system combined with the command generator tracker (CGT)
is presented in this chapter. A full state feedback derivation of the PIFCGT
control system is presented in Ref. 2. The first derivation uses the usual
integrated optimal output feedback approach. The nested approach, which takes
advantage of the structure flexibility offered by output feedback is presented
in the second section. In the nested appreach, each control loop is designed
individually in a sequential order. Each designed control loop is closed before

the feedback gains for the next controller is computed.

A. Integrated Approach

The perturbation state vector, Ax, of the aircraft dynamics driven by control
inputs, Au, and white Gaussian noise Aw is augmented to contain the perturbation
control driven by the control rate, Av. Integral states Af are augmented to the

state vector to operate on the aircraft output, Ay,

AX A 0 B. Aw
A(l = |H O D + |0]| Av + 0 (1)
! 0 0 O 1

The control, Av, is used to optimize the quadratic cost function

J = fo [Ax AE AulT Q |ax| + AV RAvdE (2)
Ag
Au

The control rate, Av, is assumed to be constant over the sample interval,

At. The continuous-time optimization problem is converted to the equivalent



discrete optimization problem using the sampled data regulator, Ref. 12.

After converting the system dynamics and cost function, further simplifying
assumptions and objectives are introduced into the optimization problem. Both
the control position, Au, and control rate, Av, are required to be constant over
the sample period. The discrete integrator AEk is to be implemented digitally
using Fuler integration. The measurement noise present in the integration of
Ay by the integrator is neglected. The objective of the control, Av, is changed
from driving aircraft states to zero, to driving Ay, used in the integrator, to

track the output,Aym, of the command- model:

= Qm AX (3)

mk + Fm Aum

8% kel k+1

Aymk = Hm AXmk + Dm Aumk+l (4)

In thevderivation to follow, Aum is assumed to change once at to and remain
constant thereafter. In implementation, the command model control input is not
constant and the command model dynamics are nonlinear. When Aum is changing,
Ay and Aym become mismatched and their error is governed by the closed-loop
dynamics and the integrator. When Aum is comstant, Ay eventually tracks Aym
along the star trajectory,Ax* and Au* (assuming no plant parameter variations).
The star trajectory is discussed in Refs. 1 to 3. The star trajectory is a
linear system version of the nominal trajectory which is used when discuss-—
ing tracking for nonlinear systems.

The star trajectory for discrete-time systems with a constant command model

input is determined from

&>
M

L - 2

A A 2%k

(5)

>
[=4

A A Au



The feedforward matrices Aij satisfy

@1 TitAy -4l A G D AT, )

H D A21 A22 Hm Dm

which is a solvable matrix algebraic equation. The star trajectory is a con-
venient notational abstract and is not generated in implementation.
The tracking objective of the control law is introduced into the design

by defining the variables

A%, = bx, - AxE 5 AG = Au - Au:: (7a,b)
AV = AV - Ay (Axm,k+1 -Axm,k)/At (8)
et =T ~ T ~T T
= - * . =
Agk AEk AEk 50 Ax [%xk Auy AEk] (9a,b)

and the discrete cost function,

T

_TA_ -] A .
J 2 Ax, QAxk + 2Axk MAv.

T A~ o .
- + S RAvkt (10)

k k

At this stage, the star trajectory for the integrator is undefined, but is
chosen as part of the optimization process.

The star trajectory, by definition, must satisfy the plant dynamics
with noise sources set to zero. Subtracting the star trajectory dynamics from

the plant dynamics and using Eqs. 7 to 9 yields

Axk+1 ¢ 0 T Axk 0 Wi
A£k+l = AtH I AtD Agk + 0 Avk + 0 (11)
Aﬁk+1 0 0 I Auk ‘IAL 0

- - g

(0] r Wy



The plant is assumed to be tracking the model for constant Aum previous to t0=0.

*
The cost function starts at -1 since Au , and A& 1 are to be determined. The

* *
quantities, Au _ and Ax _ are defined in Eq. 10 using Au instead of Au .
1 1 m,o0 m,-1

The standard use of the linear quadratic cost function is to regulate nonzero
initial condition states to zero. The cost function in Eq. 10 is constructed
so that the non-zero initial conditioms in Aihl are caused by the change in the
command input at to=0. The control law optimally transfers the system between
star trajectories for a step change in um. In practice, the control law performs
well if u changes intermittently or "slowly" varies.

To clarify the construction of the cost function, a brief scenario of a
step change in Aum is presented. At k=-2, the plant is tracking the star
trajectory and the error quantities Ax 2 and AG'Z are zero. At k=-1, the star

trajectory for Axil and Auf1 is switched to the trajectorf being generated by
the new Aumvwhich will.occur at k=0, The command model is chosen so that the
command model states at time k=0 are immediately affected by the command model
control at k=0 as shown in Eqs. 3 and 4. The new star trajectory causes large
errors to appear in Ax 1 which is being weighted in the cost function. The

control increment, Av L a variable to be optimally chosen, feeds back the large

errors to generate Aﬁo. The control Au , generated from Au _ and AV ,> immediately

moves in a directibn to reduce the tracking error when Aum is changed at k=0.
What this means in implementation, as shown in Eq..3 and Eq.-AO, is that um’k_is
fed forward and directly affects uk; Similarly, starting thé>cost function at
k=-1 and computing the star trajectory at k=-1, using Aum at k=0, aids in
choosing AEfl as discussed in the next parégraph. If the cgst fﬁnction were

to start at k=0, (the standard optimal control starting point for the non-zero

initial condition problems), then AGO would be optimally chosen to affect Aul.



The proper optimal value for Auo and Ago would be unclear; AuO and Ago would
become unknown initial conditions in the plant state vector.
The next assumption used is that not all aircraft states are available

for feedback. The states that are available for feedback are represented as

G Vi
BYygas c o o|fax Avy
Au _ |0 1 of]au . 0 (12)
AE o o 1JdLatld 0
k k

The states observed from the aircraft model are corrupted by white Gaussian
measurement noise AGk with covariance, V. The control internal states Au
and A& are noise free.

The globally optimum solution for the problem construced thus far is a
singular Kalman filter combined with the full state feedback gain from the
linear quadratic regulator, Ref. 13. The globally optimum solution is not
necessarily robust, Ref. 14, or straightforward to implement. Greater flexi-
bility in the control design process is obtained if the quadratic cost is
minimized using a prespecified control structure. The class of control laws

considered in this chapter are restricted to be of the form

bv = - K &, KI[M5m, ] = -k (13)

Au

-~

Ag

10



For the plant dynamics shown in Eq. 11, the feedback gain constraint

shown in Eq. 13 and the following conditions:

Efsg § =0 E {0 sy = W 5 (l4a,b)
Efav, § = 0 E$8S, A§§2 = V8, , (15a,b)
E?Ai;l A%ﬂ} - X (16)
E;Aﬁk‘A§§£ - Ef85, Aiflg - B{av, Aiflz =0 (17)
the cost function in Eq.lO'is'modified as follows (Ref. 15) &
IE®) =+ @, +3) (18)
- 2 t s
3, = kz_l AEEk G‘Aitk + 2 A?fk WY, + O R A (19)
J_ = Mn E%T E 3kz_1 By Q bRy + 2 ML, MY+ AV R AGskz (20)
J(R)= % tr % P(W + xo); + 2 trzﬁT (TT pT + B) § v% - (21)

The notation "Er" denotes the trace of a matrix. Jt is the trénéient cost with
noise sources set to zero while JS is the average stochastic cost. The trade-
off between Jt and Js‘is accomplished by varying Xo with respect to W. The
effect of Xo is like adding pseudo process noise to the plant to improve con-
trol system robustness. The benefits of using Eq. 18 as thé cost function are
discussed further in Ref. 15.

The matrix, P, in Eq. 21, satisfies the Riccati-like equation

3. PF. +C R RKC+Q-MKG-crglmt (22)

P=0o P o
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QCL is the stable closed-loop plant matrix,

@CL='&>—1'“EE _ (23)

The necessary conditions for J(K) to have a minimum, are derived in Ref. 8
The necessary conditions are:

o There must exist a gain K so that ECL is stable.

o The gain K must satisfy

(Fer+f)R(csc+v)=(Tes+il) s (24)
where
~ T === =T =T
S = QCL SQCL + (W + xo) + TKVK T (25)

A gain which satisfies the necessary conditions is not necessarily unique.

The next objective is to determine AE*. The choice of AE* has a strong
effect on Auo, the first control effort that occurs when it ié learned the
Aum has changed. From a purely tracking viewpoint, the noise sources cause
the states and controls to vary with zero mean about a trajectory which trans—
fers the states and controls between star trajectories. The cost minimized to
determine the state andvcontrol trajectory which intercepts the star trajectory
is given by Eq. 19 where the noise sources are zero. Substituting the control

system into the cost, Jt, yields,

Q
(o] /
=T Ao a== =T=TAT =T=Taaz== ,=
J, = k;_l My Q-HRC-TE M +C K RRC] sy (26)
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Only the initial value of the state vector is unknown in the transient cost,

°z° " N AN S
Te = km-1 ¢ o1 (CDCL> Q(q’c.) Axp 1

The infinite sum converges to a matrix, P, if QCL

is the same as the matrix P shown in Eq. 22, hence;

-~T ™ —

Jt = Ax_l P Ax_1 = Ax_l PXx qu ng Ax_l
PT P P
xu uu ug
T T
P P P
L "€ uE CEE

For tracking without noise, A;_lis given by

- - r . %
be_y o= [l ] - [BC ]
*
Au 1~ Au_1
A *
il I e

but

-1 _ 11 12 m-1
-1 Y Au
hence
Ax-1 = A12( Un-1 tumo;w

is stable.

(27)

The matrix P

(28)

29

(30)

(31)
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- * *
Treating the increment in the integrator as an unknown, § = AE_Z - Ag_l, the

value for & that minimizes J‘'is given by
3J/3E = 0 (32)
The solution is

< T T ~
P22 £+ (ng A12 + Pu& A22) (Aum_1 - Aumo) =0 (33)

%
From Eq. 33, the value for AEk must be given by

*
Agk = [o A] Axmk . (34)
Aumk+1
where
| T T
A= Per [ng Aot P Azz] (35)

Evaluating Eq. 34 at k=-1 and k=0 and substituting into Eq. 33 demonstrates
that the solution is correct. Using the feedback gain in Eq. 13, the per-

turbation control system is
Au, = AU, .+ At &Y, 4 : (36)
Avk-l = (I - At Kﬁ) AVk—Z - Ky (Ayk__1 - Ayk_z) - Kg (Agk_1 - AEk_z) (37)

The previous value, AGk—Z’ is subtracted from Agk—l to obtain the incremental
expression in Eq. 37. The perturbation variables and trim variables are elim-

inated from the incremental expression using a large number of substitutions

14



and cancellations (discussed in Ref. 2). The use of output feedback in Eq. 37
does not significantly alter the derivation in Ref. 2, which is for full state

feedback. The implementable equations for the PIFCGT control law become,

v = U + At Vi1 + A21 (Xm,k - Xm,k—l) (38)
k-1 = YMmas,k-1 ~ ¢ 211 *m,k-1 (39)
Viep = T AR vy o = Kooy g = e ) = ARy p = ¥ o)
K
um
4 \
+ (KE A+ Ky CA,+K Azz)(um’k - “m,k—l). | (40)

Tﬁe gain, Kum’ which feeds forward the command generator forcing function
increment, is a linear combination of feedback and feedforward gains. The
effect of Kum is to improve the transient response of the outer-loop control
system by changing closed-loop system zeroes without affecting closed-loop
poles.

B. Nested Design Approach

The output feedback control synthesis approach discussed in the previous
section is an integrated control design. Each measurement is fed back to every
controlier. The feedback gains from measurements to controile;s are all computed
simultaneously. 1If a control actuator fails or a control actuator saturates,
and becomes inoperative for a length of time, the control feedback network
undergoes a structural change. The feedback gains designéd simultaneously do
not guarantee that the reduced controller situation will remain stable.

Situations also'occur where it is not desirable to feedback every measure-
ment to every controller. In a jet transport, for example, feeding back pitch

rate, normal acceleration and the height integrator outpuf to the elevator, hut

15



not to the throttle, can be a reasonable design constraint.

The nested design approach allows the designer to specify the measure-
ment vector for each controller. In addition, each control loop is designed
in a sequential hierarchical manner with critical control loops designed first.
The design of the nested approach begins by choosing a confroller and the cor-
responding desired measurement vector. The optimal output feedback optimiza-
tion problem is solved to obtain the feedback gain.” The control loop ié closed
to create a new plant model. The next controller in the hierarchy is used for
design with a new measurement vector and the process is repeated. The con-
trollers can fail or saturate in a particular order from the outer most con-
troller loop to the inner loop and the closed-loop system remains stable.

Since the development of the nested approach, two alternative techniques
have been developed that are considered to be more usefpl for designing decen-
tralized measurement feedback loops and accommodating control surface failure.
An integrated approach to the decentralized measurement feedback loop pro-
blem is presented in Ref. 16. An integrated appraoch to the combined decen-
tralized control and control surface failure problem is solved in Ref. 17,

The nested approach applied to the PIFCGT design begins as in Section
2A up to Eq. 21. Computational considerations require that the design should
proceed from control loop to control loop with no change to matrix dimensions.
The design matrices 5, f, E, a, ﬁ, ﬁ, ﬁ, V are used to form a second group
of design matrices where one controller is used for design and there are
other controllers that have not been designed yet. Controllers not designed
yet aﬁd integrators not used for feedback yet, cause '5 to have uncontrollable

states with eigenvalues at 1.

The following operations are performed on the second group of design

A

matrices (@1, Fl’ le Ql’ Ml’ Wl’ Vi) to create a stabilizable optimization:

problem:
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T. - null columns in T for controls not being used

C, - null rows in C for measurements not being used. These measurements

include controls and integrators not desired.

61 - not changed from a

ﬁl - not changed from M
ﬁl - not changed from R-but must have full rank
[

1 - Diagonal elements of 5 for control states not previously designed;
integrator states not being used, are ar;ifically stabilized by
placing a small negative number in the diagonal position.
W, - Positi?e scalars are added to diagonal elements of W for the same
control and integrator states stabilized in 51
V, - Positive scalars are added to diagonal elements of V for measure-
ments whose rows are nulled in 61
The changes cause 51 to be stabilizable; control states and integrator
states which are neutrally stable and not used in the design are made unobservable,
uncontrollable and stable. The states that are uncontrollable and unobservable

do not cause P. and S to reduce in rank. The changes to V., and ﬁ (if required)

1
cause f?Pfl +Rand C S ET + V1 to be invertible so that Eq. 24 has a solution,
None of the changes adverély affect the design of the control gains for the
nested loop being synthesized. An alternative,but computationally unattrac-
tive approach,would be to reduce the dimensions of the design matrices to
eliminate unobservable and uncontrollable states.

After a design for one control loop is completed the systeﬁ matrices are

altered as follows:

(1)

&l
[
ol
|
i
~
ol

LD
]

D
+
al

RK, C. -MK. C, —cr ' (42)

17



=3l
Lol ]

(43)

=R

The alterations reflect the fact the K1 is now a known matrix and must be

absorbed into the design. Using the new system matrices, @2, P2’ 62,

can be computed for the second controller in the hierarchy. The operations

... etec,

continue until all control loops are designed. When the nested design is
completed by solving m different optimal output feedback problems, the total

control system is
Vk=[Kl C,+X G+ ... K cm] x = KCx (4§)

The PIFCGT design requires that the P matrix defined in Eq. 28 be used to
* - -
find A . The P matrix in Eq. 28 is equal to the Pm cost matrix obtained in

the last nested design performed to obtain Km.
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3. OPTIMAL MULTI-RATE LIMITED STATE FEEDBACK

A multi-rate control system has sensor measurements, computer calculations
and control commands performed at a variety of different sampling intervals.
The advantage of using a multi-rate control system is to better utilize the
computational capability of the on-board computer. Critical control loops with
fast dynamics can operate at fast sampling rates, while less critical control
loops with slow dynamics can be processed at slow rates with little degradation
in overall performance. Multi-rate control designs have been incorporated in a
number of digital flight control systems for aircraft.

Computational capacity is continually improving, making the need for multi-
rate controls less attractive. A problem that will persist, however, is that
all sensor measurements will propoably not be available at the fastest com-
putational rate of the control computer.

An aircraft, for example, using a full complement of on-board and external
sensors, (such as the microwave landing systems (MLS)), often does not have
these sensors all sampled at the same rate. Body mounted sensors are available,
or may have the equipment potential to be available, at a fast sample rate,
while INS and aircraft geographical position measurements are available at
slower rates.

A procedure that allows each sensor to be feed back at the sensor's
sample rate is developed in this chapter using an optimal, multi—rate output
feedback synthesis approach. The increased cémputational capacity available
when gontrol commands are computed at different rates is also a feature of
multi-rate sensor feedback.  The control computations for slow rate sensors
need only be performed at the sample rate of the sensor. The control calcula-
tions for control commands to the actuators are assumed to be performed at the
fastest control rate. Each sample rate of the different sensors is assumed to
be an integer multiple of the fastest control rate. The assumption placed on
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the sensors sample rate guarantees that the design model and cost function for
the control design problem are periodic in time.

Optimal multi-rate limited state feedback does not appear to have been

previously investigated in the literature. The optimal full state feedback
multi-rate control problem has been investigated in Ref. 18 ﬁsing a state-
space approach. The optimal control solution in Ref. 18 is a periodic sequence
of full state feedback gains. The derivation in this report will take advantage
of the structure flexibility offered by optimal limited state feedback and
require that the multi-rate gain which minimizes the quadratic cost function

be constant. A constant feedback gain reduces implementation complexity

over a periodic sequence of feedback gains, particularly as the number of
cycles in the period increases.

A. Aircraft System Model and Cost Function

The measurement vector is assumed to be separable into two groups, Ve and

e The Ve measurements are sampled at the fast rate r The Vg vector is the

£°
collection of sensors sampled at rates slower than the fast rate. The number

of slower rates is assumed to be n. The n slow rates are grouped into the:

r . The fast rate divided by the slowest

ordered sequence r r oo
q . sl’ "s2’ sn

rate, rf/rsn’ is an'intégér“f{'.Tﬁe'SequenCe'Of‘faét and slow5méasureménts
repeats itself every r samples in a periodic fashion. A slow rate sensor output
is held constant at the last sampled value during the fast sample times when the
slow rate sensor is not being measured.

The linear time-invariant model of the dynamics of the plant is represented

at the fastest rate as follows:

X4 = ® X, +T u, + vy (45)
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The control is Uy and ik is the state vector of the plant model. The white,

zero mean Gaussian process noise disturbing the plant is vy with covariance W.

The control system is assumed to have the fixed structure,

W = - [Kf Ks] Ve k (46)

ys,k

f

rate constant feedback gain. The measurement vectors are represented as

K. and KS are, respectively, the fast rate constant feedback gain and the slow

e,k = Cf‘xk + Vf,k k=1, 2, 3 ... 47)

Yei,k = CSi X, + Vsi,k k=1, r_/r i +1, 2 rf/rSi +1, ... (48)

Yei,k = ysi,k—l k#1, = /r_i‘+.1 , 2 rf/rSi +1, ... (49)

The vector Yei is composed of the slow sensor measurements that are
available at the slow rate roit At the fast rate, Eq. 48 represents time
samples when the Yei slow rate sensors are measured. The Y, Measurement is
held constant for all other fast sample times as shown in Eq. 49. The white
Gaussian measurement noise sources are vf,k and Vsi,k with covaranges Vf and
Vsi'

Equations 47 to 49 can be combined with the system model dynamics in
Eq. 45 using the periodically time~varying matrix Ak' The periodically time-

varying matrix Ak is given by
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sl,k
Gsz,k
Ak = .. (50)
0 Gsn,EJ
where
i=1,2, ..., n
dsi,k = I; k=1, rf/rsi +1, 2 rf/rSi +1, ... (1)

0; k #1, rf/rSi +1, 2 rf/rsi +1, ...

Using the periodic matrix, Ak’ the slow measurements can be combined into

the measurement vector Yo and represented at the fast rate as follows:

Vo, ktl = Berr Cg Far Ve T T By Yo i (52)

The combined plant and slow rate measurement periodic model has the follow-

ing state space representation:

- |
I ol [x ) 0 X r
k1) . L o + (53)
1 G T Vs, LO Ca UL I A 0
r —
I 0 W
LO Aea| Vs, k41

The diagonal elements of Ak switch between zero and ong depending on
whether the slow measurement should be represented by Eq. 48 or Eq. 49 at
the kth sampling interval. The Ak matrix repeats itself every r samples. One
cycle of Ak matrices are written as Al’ A2, cee Ar' The slow measurement

observation matrix CS is composed of the matrices CSl to CSn packed rowwise,
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1]
C
_ s2

C, = ) (54)
C
|_°D

Multiplying Eq. 53 by the matrix I 0|, the inverse of the

Ak+1 Cs I

left partition matrix in Eq. 53, changes the plant representation to a standard

time-varying difference equation format:

e+l k Xy k
g~ P e T S NN I
X ) 0 % T
= + u +
Vs, ktl Bw1 Cs® T B [ |Ys ke Awr CoT
Ek Wk
e —t—— ——" I
I 0 vy £55)
At Cs Ber1]| | Vs, k41

The feedback control system is represented as follows using the periodic

model states:

K c K v,
- — —— —— r——
W =- [Kf Ks] Ce 0} = - [Kf Ks] Ve ok (36)
0 I s,k 0
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The cyclic nature of the matrices shown in Eq. 55, means that there are
recurring moments in time where the matrix cycle begins and ends. Substituting
Eq. 56 into Eq. 55, the periodic closed-loop plant representation for a cycle

which begins at index k and ends at index kt+r-1 is

X = (@1 - Fl KC) Xy + E1 L Fl Kvk (57)
Kpp T @y~ Ty KO x ) + By vy - Ty By (58)
Mar = O T T KO X PR e T T (59)
where
[ s 0 ] [ 0o ]
@1 = 1] @2 = ’
ACo  I-A, A0 I-B,
A L =
[ T B B
o 0 ¢ 0
0= ;3 0= (60)
r-l AcCd I-A r AC O I-A
T s r 17s 1

The other matrices in Egs. 57 to 59 are similiarly defined.

The multi-rate optimal output feedback cost function can be constructed
in a variety of ways. The following simple approach is used in this develop-
ment. The sampled-data regulator cost function at the fast rate in standard

form is given by

N
- 1 2o lls  #| |z
J=Hm oy E {120 [xi “i] e Ml } (61)
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The weighting matrices 6, ﬂ, and R can be obtained from a continuous quadratic
cost and plant model using the fast sample rate and a suitable software package
such as ORACLS, Ref. 19. The additional state, A caused by the slow measure-

ments, is arbitrarily introduced in the cost with no weight

N
1 T 1] .
J = é}m N Eg iZO [xi qi] Q M X 2 (62)

Q o© M \
Q= ; M= (63)
0 0 0

The Yo states are a part of x and can be weighted using Q. The design objective
is to determine the control system gain shown in Eq. 56 which minimizes the
cost shown in Eq. 62.

It can be shown that if a periodic system is stable, then the covariance
of the states of the periodic system reach a periodic steady-state. Assuming
the periodic system shown in Eq. 55 can be stabilized using Eq. 56, the peri-
odic steady-state covariances are the solution to the following sequence of

equations:

T

- _ _ T T T

sz—(cb1 FlKC) 5, (<1>1 I'lKC) +E1WE1+I‘1KVK 1‘1 (64)
_ _ _ T T T T

s3—(<I>2 I, K¢ s, (<1>2 r, XK C) +E, WE, + T, KVK T, (65)
_ _ _ T T T T

sl—(<1>r I‘rKC) sr (c1>r I‘rKC) +ErWEr+I‘rKVK I‘r (66)
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The periodicity is shown in Eq. 66 where the covariance matrix equation
cycle begins to repeat itself. In periodic steady-state, the cost function
can be rewritten as

N

- 14 s -1
J _ﬁEE& 2rNS z chcle 2r chcle

i=0

(67)

The integer, NS, is the number of periodic cycles in N. is the sum of

chcle

the weighted states and controls for one cycle.

Q
T T_T T

=~tr§(Q-MKc-c KM +C KTRKC)[sl+sz+...+sr]$

chcle
+or trgKTRKvg (68)

B. Necessary Conditions For An Optimal Controller

Adjoining the equality constraints shown in Eqs. 64 to 66 to Eq. 68 yields,

2r chcle *

: T T T T, ;T
: tlz'(--S2 + (@1 -T KC) S1 (o, - Fl KC)” +E, WE; + Fl K VK Tl) P1 + ..

1 1 1 1

T T T T, .T
+tr(-s + (@ -T KC S (6 -T KC +E WE +T KVK I)P (69)

The Lagrange multipliers are P, to Pr' The conditions necessary for J to have

1
a minimum are aJ/BS1 =0 ... BJ/BSr =0, BJ/BP1 =0 ... 8J/8Pr = 0, 3J/9K = 0.

The BJ/BSi sequence determines the equations for Pi:
= (& - T _ a )
P =(¢-T KO P (q>1 I, KC) +Q (70)
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— - T - A
191—(<1>2 I‘2KC) P2(<I>2 I‘2KC)+Q (71)

— (x T _ ~
Pr—l = (cI)_r Pr K 0 Pr (<I>r Pr KC) +Q (72)

The necessary condition 9J/9K determines the equation for the feedback gain

K:

T . T T T
RK (CS, C +...+CSrC)+(I‘1P I‘1+... I‘rPr I‘r+rR)KV+

1 1

T=I"{P oS, L4 ... +

T T T
Iy P, Ty KCS C + ...+ T, P T CS C ) )

T T, [, T T
TP ¢ S_C +M [slc +...src] (73)
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4. NUMERICAL APPROACHES

The numerical solution for Si and Pi given a feedback gain matrix, K,
are obtained by expressing one of the covariance matrices and one of the
cost matrices at the slow rate. Starting with Eq. 64, S2 can be substituted
into Eq. 65 and so on until Eq. 66 is reached. When Eq. 66 is reached the

only unknown is the matrix Sl’

S A~ *
5, = @1 8, @1 + W (74)
where
®j = (@r -T_K C) (@r_l - rr_l KC) ... (¢j - rj K C) (75)
¢r+1 =1 (76)
W =E WEL+T. KVEK TV (77)
h| 3 h| N h|
* I A - AT
W jzl ‘I’j+1 Wj ‘I’j+1 (78)

The covariance equation shown in Eq. 74 is easily solved. Once S1 is
known, the other covariance matrices can be reconstructed from Eqs. 64 to 66.
The matrix 81 is the representation of the plant at the slowest rate. The
periodig system is stable for a given K matrix if 81 has eigenvalues within
the unit circle.

The solution for the cost matrices, Pi’ are similarly determined:

_ =T ~
P = @r P_ @r + Q% (79)
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rv S T . T _ T
¢j = (@1 Pl K C) (@2 P2 KC) ... (®j Fj K C) (80)
~T _ ’
@0 =1 (81)
)
* ~T A~

The remaining numerical problem is the solution for K in Eq. 73. Equation

73 is a Lyapunov-like equation with more than 2 entries, i.e.,

AIXB1+A2XB2+...Ar+2XBr+2=C‘ (83)

4

The method currently being used for finding X is to use Kronecker products,

T T T
[B1®A1+B2®A2+...+Br+2®Ar+2]_)_c_—5 | (84)

and solve for x by inverting the Kronecker product matrix sum. The Kronecker
product matrix sum yields a symmetric, positive definite matrix if K is the
optimal feedback gain. The vector x consists of the columns of the matrix X,
stacked. Likewise, the vector c is a stacked version of the matrix C.

A. Numerical Algorithm for Solving Necessary Conditions

The proposed algorithm is a straightforward extension of tlie convergent
algorithm discussed in Ref. 8.

1. Choose a starting gain K0 which stabilizes & Choose a positive

1
scalar o < 1, so that J(Ki) is decreasing in the iterative procedure.

2. Solve for S1 in Eq. 74, then iteratively compute 82 through Sr starting

from‘Sl.

3. Solve Pr in Eq. 79, then iteratively compute Pr—l to P1 starting from

P_.
r
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4. Solve for K in Eq. 73.
5. Find the next gain in the sequence

Ki+1 = Ki + o (K —Ki) (85)

6. If_J(Ki+1) - J(Ki) and || BJ/BKi || are 1¢ss than some convergence
criterion stop, otherwise set i = i+l and repeat the sequence starting
from 2.

If the algorithm has convergence difficulties or the Kronecker product
matrix is not positive definite, reduce & and start over from the most recent
stabilizing gain as discussed in Ref. 8.. At present, conditions which guarantee
algorithmic conﬁergence for o>0 are unknown.

B. Application To The PIFCGT Design Approach

The multi-rate optimization problem is performed at the fast sample rate.
Incorporating the command generator tracker into the design problem along with
integrators and control difference weighting requires careful consideration.

The derivation which follows results in the PIFCGT control system that can be
implemented to control nonlinear dynamics and use multi-rate feedback. Assump-
tions have been made to determine a solution. The/integrator is computed at the
fast rate but can use fast or slow measurements in the integration process. The
control position is always updated at the fast rate. The command generator
tracker and star trajectory are assumed to be computed at the fast rate. The
measurement system does not affect the tracking objectives. A multi-rate com-
mand generator tracker is possible, but is beyond the scope of this effort.

_Starting from the plant dynamics at the fast rate, the dynamic equation
for the error variables X, and ﬁk is determined exactly as in Eqs. 7a, 7b and the

k

Gk dynamics are adjoined to the model:
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W
LSy
—
W
o

= + v (86)
k+1 k

[«
o
-
(=44
>
t
]

The slow rate measurements tracking command error is defined as follows:

Yok = Yok-1 ¥ A (€5 Xy = Y1) ®7)

The variable S;Sk is defined by the above equation. The plant state, Yoo and
% ~ *
star trajectory, Vg o cannot be separated for the Yer variable because Vs

is undefined. The state and star trajectory can be separated for Csi ;{k’

The integrator for slow and fast measurements is
E =g +AH § +A * | 8
1 - G TAEHg Yo T AT Gy -y (89)

*
Subtracting £ from both sides yields

= gk + At HS ek + At Hf X, + At Df u (90)

Ek+1
where

yfk = Hf xk + Df uk (91)

Grouping everything together, the multi-rate PIFCGT design model is

5 [0 oo o T [
z AtH, I Aed, AtH I3 0

= . s + ad
~ - vk +
u 0 0 I 0 u AtI
Lys_ K1 _A1<+1 Cs °® 0 Ak+1 Cs r I_Ak+1_ _yg k LOJ
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r I 0 0 ] —ij
0 AtHf 0 Ve (92)
0 0 0 v
e
LAk+1 Cq 0 Ay

The cost function is constructed similiar to Eq. 62. The measurement equation

is

FyfT cC. 00 d? X 1 vf£1
£ _|lo 1 0 0fjt L |o (93)
i 0 0 I offu 0
s [0 0 o0 1lly_J 0|
S k S k

Optimizing the cost function produces the constant gain feedback control system

(94)

<
[

Yy = [Kf KE Ku KS]

[laa ks

=23

y
LSy

The next step in the derivation is to increment the measurements. The deriva-
tion for incrementing the measurements, which involves simple algebraic mani-
pulations and careful attention to time indexes, becomes lengthy if more than
one slow rate is assumed. The derivation continues with only two rates, r

f

and rS where

rS/rf =r (95)
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The generalization to more than one slow rate is straightforward. The slow

measurement increment for §si using the definition in Eq. 87 is

* *
= (CS X - CS xk—r) - (CS X, - CS Xk—r);k=l’ r+l, 2r+l (96)

~ ~

Ysik 7 Ysik-1

Yeik = Ysik-1- 0 . k#l, r+l, 2r+l  (97)

The error increment

Yk T Vg k-1
e - e = (98)

ySk - yS, k=1

can be expanded to

[Yex - Y, k=1 Ce A1 G ™ Xmpu-1
“k T k-1 " - -
B Ugie ™ Yoker?| 2% Cs 211 ®ax ™ *n,ker)
Ef Ay Wi ~ Umed (99)
B €s A2 g 1™ Yo kertl
*
The derivation for finding £ parallels the derivation in Section 2A up:. to
Eq. 33, which becomes
E o=l |pt % 4P G,+P 5 | (100)
-1 €€l x¢ -1 Eu -1 gy "s,-1
The star trajectory can be separated from i—l and u , but not from §s 1
~ ,-
x 10T * * -
E—l 5_1 = PEE [ng (x_1 x_l) + Pgu (u__1 - u_l) + ng ys,—l] (101)
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~ % .
Byg = (D) 5., + A, Co(x ;- x ) (102)

Since only two rates are comnsidered, A—l is either 0 or I. If the matrices

A and B are defined to be

-1 T
A = —ng (ng A12 + PEu A22) (103)
_ o1
B = ng (ng C, Alz) (104)
then
% )
g—1 - 5—2 tA (umo - um,él)*:A—l B (umo - um,41) (105)

If A—l =1 then, Eq. 102 is substituted into Eq. 101 to yield the B matrix in

Eq. 104. If A—l =0 .then, the term §s _, should be used in Eq. 101, but
9

2
§S _9 is zero since the control system is assumed to be tracking the star
b

trajectory for k<-l.

Using a time index, the integrator star trajectory is defined using

Eq. 105 as
* * _
b TG T A A B (up T U (106)

* .
If u is changing then Ek is periodic if the B matrix is nonzero. If u

*
is constant then Ek is constant.

Incrementing the integrator and using the integrator star trajectory

yields

~

e T kel T h T G A O T T A B (g T Yy (107)

4
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where

b T Epop SACH Y F A Gy T Vg k1) (108)
Defining the variables

§Esk =‘Hs §sk (109)

ymsk = Hs ymk , (110)
then, from Eq. 87,

§Esk = (- Zk) §Esk—1 + Zk (ygsk - ymsk) (111)
where Zk is a matrix that satisfies the equation

HS Ak = Ak HS (112)

If A, is a zero matrix then A is a zero matrix. If A is a § x &

k k k s s
identity matrix then Zk is an mxm identity matrix.

Grouping all the results together the multi-rate output feedback PIFCGT

implementation equations are
(from Eq. 86)

u, = u + At v

k-1 k-1 A1 (113)

*m,k xm,k—l)

(from Eq. 99)

Ve k-1 ~ Ve, k-2 = C¢ A1 Cp -1 T Fp,k-2)
e -e = (114)

Beet Ogkm1 Vs kmr-10 7 D181 Cn ke 170 ker-1)
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(from Eq. 111)

Vesyk-2 = L - Zg-z-) Veg k-3t by (};Es,k—Z " Vg, k-2’ (115)
(from Eqs. 94 and 99)
Yp = T HAEK) vy ot [Kf Ks] [Ek—l - Ek-z] *
bt Ky Gpg pea ¥ Oggien ™ Ymg,e-2)?) *
(-Kg A - KE.Ak—l B - Kp Cg Ay = Ry Ayp) (g Uy g ¥
K A1 Cg Arp (e = Uy | (116)

Although the feedback gain is constant and the CGT feedforward gains are
constant, the implemented feedforward gain is periodic because of the in-

tegrator star trajectory.
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5. DISTURBANCE ACCOMMODATION FOR WINDSHEAR DYNAMICS

One of the primary purposes of a flight control system is to .stabilize
the aircraft about a desired trajectory in an enviroment where external dis-
turbances are affecting the aircraft dynamics and sensor measurements. Some
of the disturbances are difficult to model and are best characterized by zero-
mean Gaussian white noise. Other types of disturbances are best described by
differential equations driven by Gaussian noise. Examples of the latter type
of disturbance include the well known Dryden model for gusts, steady-state
atmospheric wind and windshear. The objective of the control system is to
stabilize the plant while having the capability to cope with the disturbances.

Disturbance accommodation has a history of investigation with progress
made by a number of researchers. The procedure for computing the control
system in this paper is to minimize a linear quadratic coét function. Efforts
in this area include Refs. 2Q té 23. The objective in the references in to

construct two signals in the control variable, u, i. e.,
Au = Auf + Aua (117)

where, Auf, is designed to stabilize the plant while the other signal, Aua,

is chosen to accommodate the disturbance. One method for determining Aua
exactly using feedforward control is discussed in Refs. 5 and 24. The

effect of the disturbance is eliminated on selected system_outputs.‘ Feed-

ing forward the disturbance in Auausually'requires some form of dynamic com-
pensator (observer, servo compensator), since the disturbance is rarely mea-
sured. The feedback system for Au_ usually does not contribute towards steady-

f

state disturbance suppression.
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An alternative to Eq. 117 is in@estigated in Refs. 25, 26, and 27 where

only the Auf signal is used to stabilize the plant and eliminate the effects
"of the disturbances on selected system outputs. The disturbances are suppressed
using feedback gain eigenstructure assignment.

An alternative to the approaches just discussed (which can be considered
more practical) consists of constructing a feedback controller which strives
to minimize, rather than completely eliminate, the effect of disturbances on
selected system outputs. Investigations into the more practical approach have
been made in Ref‘ 27 using pole assignment to achieve stability and Ref. 28.

The disturbance accommodation procedures in Refs. 21 to 28 all assume that
the disturbance dynamics are not affected by the plant dynamics. Models for air-
craft windshear have a plant representation where the aircraft plant states affect
the windshear dynamics as discussed in Ref. 29 and preéented in the next section.
Changes in aircraft height cause the windshear state to change in value.

In the rest of this chapter a new tack is pursued for computing disturbance
suppression control systems using the optimal control approach. The designer
can specify any control structure that can be modeled using output or limited
state feedback. The chosen control structure may or may not be able to exactly
suppress the deterministic disturbance. The plant model and disturbance model
are expressed in discrete time. The plant model and distufbance model can be
completely coupled and each model can be driven by Gaussian white noise. The
objective is to design the control system gains optimally so as to minimize
the stochastic effects of the disturbances on the plant states and minimize
the deterministic effect of the disturbance on selected plaﬁt outputs. The
resulting cost function used to determine controller gains has two distinct

parts.
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The dual cost is accomplished using a result presented in Ref. 30 and devel-
oped further in this chapter. The steady-state plant state and control response
can be decomposed into a deterministic component dependent only on the distur-
bance which satisfies a differential equation and a zero mean stochastic re-
sponse due to the‘buassién white noise sources. The necessary conditions for
the dual cost function to have a (local) minimum are derived in this chapter.

A numerical algorithm is also developed to solve the optimal disturbance mini-
mization problem necessary conditions. The special case where the disturbance
is not affected by plant states is preseﬁted., A design example using PIFCGT
is discussed in C;apter 5.

A. The Windshear Model

A basic wind model relationship -in the aircraft's local level plane at
a position above the earth's surface for windshear was deﬁeloped by C. Belcastro
and A. Ostroff at the NASA Langley Research Center, Ref. 29. The NASA Langley
windshear model is presented in this section. The wind shear plus steady wind

affecting the longitudinal dynamics of the aircraft is modeled as

U U U
w we z
= <+ VA (118)
W W W €
w we z
e e
Defining the following variables
u |
w, = v ' (119)
W
w
L
-
e
Ve = (120)
ch
L
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s = z (121)

w =w _+s5 z (122)

%
v, is the wind velocity vector in the earth-fixed reference frame, Ve is

the constant wind velocity, s, is ‘the wind shear gradient vector and z, is the
vertical héight of the position in the atmosphere above the earth's surface.

The wind velocity in aircraft body axis is given by

w =H,w =H,w +H,s z (123)

where

cH ~sb
i = (124)
s cb6

and 6 is the aircraft Euler pitch angle. Taking the derivative of Eq. 123,

yields,
. - ~ S . . & > 2
w 6 LgW., + Hewce + 6 Lgs, 2, t Hob 2z + Hgs 2 (125)
where
~s6 -cb
L, = (126)
c6 -sb

Equation 125 can be simplified by factoring ;] Le and substituting Eq. 123,

v = 9 Ie W + He s, 2, + He Ve + He §, 24 _(127)

40



where

I = | (128)

The perturbation representation of Eq. 127 is

Awb = 60 I6 Awb + I6 Vo AB + Leo szo zeo AB + z,, Heo Asz
+H, s Az + L, w AD +H Ay +z L, & A8
8o “zo e 0o "ceo 6o ce e 0o “zo
+ 200 H60 Asz + Heo 5.6 Aze - (129)

The o subscript indicates the variable is representing the nominal value at
the desired flight condition. The vectors Ve and s, are assumed to be con-

stant, i.e.

W _=5& =Ay_ =A5 =0.0 (130)

The windshear gradient perturbation vector is assumed to be O, Asz =0

Substituting Eq. 130 into Eq. 129 and simplifying, results in the following,

Awb =0 Ie Awb + Ie Vi AD + Z.q Leo S0 AB + Heo S0 Aze (131)
Eq. 131 can be rewritten as

Awb = Aw Awb + Hx Ax + Hi Ax (132)
where

Aw = 0 IO (133)

(2x2)
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z s
e0 Qo zo
H = (134)

€ "bo fo “zo
H, = (135)
x 0 0 O 0 o
(4x5)
AT = [Au Av  Ag A8 Aze] (136)

Grouping the wind velocity model in Eq. 132 with the standard representation of

the plant dynamics produces,

I 0 Ax A D Ax B
= vl + Au (137)
-H. I Avr H A Aw 0
X b X w b

The matrix D is obtained from the Au and Aw column vectors in the A matrix,
D = [—-A A0 0]; A=[A A A Ay A ] (138)
W u q 0 Tze

Multiplying Eq. 131’by'[I O] produces the final plant representation

H. I
X

Ax A D Ax B

= v + Au ' (139)
Avz H +H.A A +H.D dw., H.B
b X X W X W b X

The wind vector, Awb, is affected by the plant states but not by the control
states since it is easily shown that HiB is a zero matrix. Representing the
aircraft plus wind dynamics in discrete time, however, causes the discrete

control effect matrix I' to have entries in all locations.
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B. Deterministic Disturbance Accommodation Using The Command Generator Tracker

The objective of this section is to determine the plant star trajectory
when the plant output, y, is tracking a model output, ym.and the plant dynamics
are affected by deterministic disturbances. The combined plant model and dis-

turbance model are represented as follows

Ax © o )[ox T
= + Bu, (140)
As H ] As r
k+1 v k v
Ay, = B_Ax 4 H_ 'Ask (141)

The aircraft perturbation state vector is Axk, the perturbation control vector
is Auk, the disturbance vector is Ask and the selected perturbation outputs
in which the effect of the disturbance is to be suppressed is Ayk. The out~-

put of a command generator, Aym, is generated by the command model

Axm,k+1 - <I>m Aka + I|m Aum (142)

Aymk = Hm Axmk + Dm Aum (143)

The command generator state.is Axmk and Aum is the command generator con-
trol that is assumed to be constant. The dimensions of Aymz Ay and Au are
assumed to be equal. The aircraft output tracks the model output while sup-
pressing the disturbance along the star trajectory. Using the same structure
as in Chapter 2, i. e. a linear relationship, the star trajeétory is con-

structed as

*
Ax s S Ax S
_ P Sz me| | %13 b, (148)
* A s
v So1 Sy u _ 53
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Equation 144 is the solution to the tracking problem,if the Sij matrices
exist. The unknown feedforward Sij matrices can be shown to satisfy solvable

. * *
algebraic relationships by expressing A§k+1 - Agk first using the plant

dynamics, Eq. 140, then using Eq. 144 and equating the two expressions for

% *
A§k+1 - Azk. Without going through the details, the algebraic relationships

for the Sij matrices are as follows:

(@—1—313 HW) (I‘-sl3l‘w) 811 s12 sll(cbm—:t) sllrm
- (145)
i i 0 S, Sy H D_
e TS5 513 % D Sis B, Si3 Ty 513 '
= + (146)
i o| | 5,4 -H_ 0 0 S,s

A numerical solution for'S13 and 523 in Eq. 146 is obtained by inverting

the quad partition matrix

-1
> T Q.. @
T T (147)
Q
H 0 21 a2
and multiplying Eq. 146 by the inverse:
513 1 91 (513 1 01 (813 [Hw Fw] 513
= Q)w +
523 1 911523 Y91 0] {523 S23
010y + Sy Hg
_ , (148)

91Dy + G0
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Equation 148 is a generalized Riccati equation. A convergent algorithm for
solving Eq. 148 has been developed and is.&¢SCriﬁed'in'AppendiX'A. There may

be more than one solution or there may be no solution to Eq. 148. After 813

3 are determined, they can be substituted into Eq. 145 and the result

can be numerically solved using the technique discussed in Ref. 6. The con-

an§ 82

trol tracking problem solution in Eq. 145 is not independent of the distur-
bance rejection solution because of the coupling matrices Hw and Fw.

Any control system of the form

A = *
uk = Auk

. _
+ K Cx (Axk - Axk) | (149)
can be ideally used to stabilize ¢ and eliminate the steady-state disturbance

in Ayk. In the control system, K is the feedback gain and Cx is the observa-

tion matrix for the system states. Equation 149 can ‘be rearranged as

L .E? ) ‘ |
Auk =K CxAxk + (823-K stl3) 8 * (321~K stll) Axmk + (Szsz CXSIZ) Aum (150)

which is the form shown in Eq. 117. If -K stl3 is of full rank, the distur-

523
bance state, Ask, must be measured or observed in order to implement Eq. 150.
It is evident from Eq. 150, that if K is to stabilize the plant and eliminate
the disturbance in the Ayk response without using a u, control term, then K
must satisfy the equation

S,,-KC S =0 _ (151)
< .

23 13
A feedback gain which satisfies Eq. 151 does not always exist. Necessary and
sufficient conditions for the existence of a gain K which satisfies Eq. 151 are
given in Ref. 26 for the case where H and Fw are zero matrices.

The next section addresses the questisn: What is the steady-state plant

response to the disturbance and white noise sources if the control system shown

in Eq.lSOiSix@lemented? The formulation includes the case of an estimator
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observing Agk,since the estimator dynamics can be adjoined to the ailrcraft
dynamics to extend the state dimension of Ax.

C. The Stochastic Star Trajectory:

The command generator tracker and the star trajectory have always béen
applied to deterministic models. In this section, noise processes are intro-
duced into the models and the concept of the star trajectory is used to in-
vestigate the tracking response of the stochastic system in steady-state; The
objective to determine a design technique for accommodating windshear dynamics
that are driven by randoﬁ noise.

The aircraft model and disturbance dynamics shown in the previous séctioq
are generalized further and represented as follows:

Discrete Perturbation Aircraft Model:

A§k+1 = ®A§k + PAgk + Dw Agk + W (152)
Disturbance:
B = % Bt At Ty Ayt g (153)
Measurement:
B = Oy By + Oy By * 3 (154
Control System:
Agk = - K Agk = - K Cx Agk -K Cw Agk - K Azk (155)
The zero-mean, white Gaussian noise sources in the above models have covari-
ancesi:.
E<w wT =W (156)
—%k %k
EVg, oof =W (157)
-k =k s
Edg, wil=w (158)
—+*k —k SX
Egzkv'r§=v | (159)
“k .
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All other cross covariances between the disturbance and measurement noise sources
are assumed to be zero. The Cw matrix in Eq. 155 allows for the fact that some

sensors, such as an airspeed sensor, measure a combination of the aircraft and

disturbance states. The disturbance and plant process noises: are allowed to be

cross correlated as shown in Eq. 158.

Given the controllsystem structure shown in Eq. 155, the steady-state

response for Axk is assumed to satisfy the equation
: e, ]
iy = 54y oy + [, 4, o] [

A1

+ [BI.BZ ] ka j+ [Cl c, ...]ng _1 (160)

A1 A%y 4y

L _ L

The assumption used ip Eq. 160, where an infinite sequence of unknown feed-

forward matrices is used to describe the star trajectory, has beeh used before

in Ref. 5..- In the final answer for Ax;, the infinite sequences will be re-~

placed.by a difference equatioﬁ once the Ai’ Bi’ and Ci matrices are known.
The solutions for S

31° A's, B's, and C's are determined by computing

* *
Axk+l - Axk as discussed in the previous section. Using the plant dynamics,

* *
the expression for Axk+1 - Axk becomes

%k * * ’
Axk+1 - Axk = (¢-T' K Cx -I) Axk + (Dw -TK Cw) Ask -T'K Avk + Awk (161)

) * *
Using 153, 155, and 160 Ax_k ~ Ax_k results in
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+8 +-A, A-A, A-aA ] po |
14 % ['1 17% 2% "
A1
by vo
Lo
| Rl . . ]’"
+ [—Bl ~B,=B, B,-B, ] by, 7+ ['Gl' Cy=C, C,=Cy +..]|Aoy ] (162)
A | Ao
MVerg | A9pp
- Lo

; *
Substituting the expression for Azk from Eq. 160 into Eqs. 161 and 162 and equating

the two expressions yields solvable equatioﬁs for the S31, Ai’ Bi’ and Ci matrices.

Defining the matrices

<I>c = (¢-T KQX) - 531 (HW - I'w K Cx) (163)
X, = TK =8y T K (164)
expressing Eq. 160 in the z-domain and substituting the solutions for the Ai’ Bi’
and Ci matrices into Eq. 160 yields:
* [ -1, -2 -3 2 ]
Ax —S31 As [cpc +c1>c z+q>cz + ... | AW
-1 -2 -3, .2 ]
+[<I>c X, * <I>c X, 2+ <I>c Xo 27 % oo Av
-1 =2 -3 2 ]
+ [<I>c Sgp * .<I>c Sqy 2 ¥ 9.7 S35, 2" + ... ]A0 (165)

831 satisfies the generalized Riccati equation
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(¢ -TK Cx) S31 + (¢ w Ew K Cw) - S31 (Hw - FW K Cx) S, * (Dw -T'K Cw) =0 (166)

S31 31

Equation 166 can be expressed in the form of Eq. 200 of Appendix A if (¢ - T K Cx)
is invertible. |

The infinite z-domain sequences in Eq.165 have the closed-form relationship

J1_ -1 -2 2 ] :
[I-zq>c] —[I+.<1>cz+<1>cz+... (167)

Substituting Eq. 167 into Eq.l653ndconvertin§ back to the time domain yields

* -

Ax, = S5y Asy + Axy (168)
. ~Xe

Axk+l = ®c Axk + Awk - S31 Ack + (831 Fw K -=TK) Ayk (169)

Equations 168 and 169 are an important contribution of the report. 1In steady state,
the closed-loop aircraft response to deterministic and stochastic disturbances

can be decomposed into two components. One component, S Ask, shows how each

31
state in. the aircraft is affected by the disturbance states that satisfy a dif-
ference equation. The other component, Agk, shows how the white Gaussian noise
sources are corrupting the system response. Equation 168 leads to a natural frame-
work for finding the feedback gain K as discussed in the next section.

* %
If the solution for Axk is substituted into the control system, Auk can

be rewritten as

(170)

1]

* ~
Auk (=K Cx S31 - K Cw) Ask + Auk,

Aﬁk - K Cx Aik -K Avk ' . : | (171)

In steady-state, the control response decomposes into a component dependent on

~

Ask and a zero-mean component, Auk, driven by measurement noise and the zero-

mean plant response, Aﬁk.
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D. Optimal Disturbance Suppression:

The objective of this section is to construct a cost function representing
desirable objectives for the plant and control system shown in Egs. 152 to 155,
then minimize the cost function by finding the feedback gain K. The derivation
is cumbersome if Fw and Hw are non-zero matrices. The matrices T, and Hw are

assumed to be zero for the derivation in this section. After the optimal gain

is derived with Fw and Hw zero, the optimal gain solution with Pw and Hw non-zero
is presented for completeness.

If Pw and HW are non-zero, the feedback gain, K, can affect values in the

S31 matrix and the response of A% The feedback gain cannot affect the response

o
of Ask. Hence, a useful cost function with Fw and Hw zero for disturbance min-

imization is
J =E [;iT AET] Q M||[A%X| + % trace{(H. S,, + H )T Q,(H S,, + H )¢ (172)
e : 1 x 31 s 2V x 31 s

k

If Axk were weighted in a quadratic cost function, the Ask'component in AXk
would add to the cost. If Ask is neutrally stable or unstable, then quadratically

weighting Ax, in a cost function could yield an undefined cost in steady-state.

k

Weighting Aik

loop plant matrix is stable, since both signals are zero-mean and do not depend

and Aﬁk as shown in Eq.172 yields a finite cost if the closed-

on Ask. The second part of the cost function in Eq.172 attempts to minimize

the disturbance response in the system output as defined in Eq. 166. No restric-
tion is placed on the first dimension of Hx and Hs in Eq. 172. The cost function
represents a tradeoff between optimal stochastic performance and deterministic
distufbance suppression.

Substituting Eq. 171 into the cost function produces
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J=trace3(Q +CTKTRKC—MKC—CTKTMT)X§
e 1 X X X X
+ trace JKX RK vl + 3 trace {(H. S,, + H )L Q.(H S,, + H ) (173)
' x 31 s 2 %731 s
where
Edv. vil=vy; Eyx il -x (174a b).
~* —*k ’ %k =k l i

X is the covariance of the system error response and is computed using Eq. 169.
The cost function, Je, can be minimized subject to the equality constraints for

X and Ssl using Lagrange multipliers. The complete cost function is given by

J = Je + JL (175)
where

_ _ T oo T.T T T T\ LT
JL = trace g( X + @c X @c»+ W+ TKVK I + S31 WS 831 - 831 st st S31)P ; (176)

' T
+ trace 3 (Qc 831 + S31 (-@w) +_DW -I'K Cw) Y
@c =0 -TK Cx (177)

The P and Y matrices are the Lagrange multipliers.
Necessary conditiops for J to have a minimum are 3J/3X = 0, 3J/8831 = 0,
3J/3P = 0, 3J/3Y = 0, and 3J/3K = 0. The five necessary conditions for optimality

can be expressed as five matrix equations.

Covariance Equation for gk

X=9 X0 + [1 -s31] WL 1 lsrrve? T (178)
st ws‘ -Sgl

Star Trajectory Equation

¢, Sg) + 8y (-0) =TKC_ =-D_ ' (1?,9)
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Cost Equation

T T T
P = @c P @c + [I —Cx K ] Q1 M I (180)
M R -K C.
X

Complementary Star Trajectory Equation

T T T .
+ -— = . - ’ -
¢, Y+ Y ( Qw) 2.0p [st $4; w;]. H_Q, [Hs +H 531] (181)
Gain Equation
T v T T T T 4 .ol T T T
R+T"PI)K (CX,X Cx +V) =T " POo+M) X Cx + % T7Y (Cw>+ S31 Cx) (182)

A numerical algorithm for finding a gain, K, which satisfies the necessary con-
ditions is presented next by extending the convergent ouput feedback algorithm
derived in.Ref. 8:

Choose an initial Ko so that @c is stable.

Choose a scalar o so that J(Ki) is decreasing during the following itera-

tions:

1. Solve Eq.179 for S31 using Ki'

2. Solve Eq.178 for X using Ki and 831 from 1.

3. Solve Eq.180 for P using Ki'
4. Solve Eq.181 for Y using Ki’ S31 from 1 and P from 3.

5. Solve Eq.182 for K using S,, from L, X from 2, P from 3 and

31
Y from 4.
6. Update the feedback gain.
Ki+l = Ki + o (K - Ki) (183)
- See .
7. If | 3Ky, ) - I(K)| > € and/or [123(k )73k, || > €, where € is

some convergence criterion, then set 1 = i+l and repeat steps 1
through 6.
Equations 178 to 181 are Lyapunov equations that can be solved using the

Bartels—~Stewart algorithm, Ref. 19.
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If Hw and/or I' are non-zero, it is no longer clear that the cost func-
w
tion shown in Eq. 172 represents design objectives. Alternative cost func-
tions with Hw and Fw non-zero is an area of future research. If Ask remains

uncontrollable or controlling As, from Auk is not desired, as is the case for

k
wind shear disturbances, then the cost function shown in Eq. 172 remains attrac-
tive. The following equations show how the problem is modified if Hw and/or

FW are non-zero:

First the following matrices are defined:

' = T -3s. r
s 1 831 w (184)
c X -
' =T k¢ -H (186)
c W X W .
¢ -0 _T
d= w T wkS (187)
®cd =.¢c + 531 Tc (188)
%ac = "% * Te 8q) (189)
then the five necessary conditions can be shown to reduce to the following
matrix equations
Covariance Equation for X
T T T
= & — :
X cd X ¢cd + [I S31] W st I + Fs KV KFS (190)
T
wsx ws fSBI
Star Trajectory Generalized Riccati Equation
®c S31 + S31 (—Qd)‘= 'K CW - Dw - S3ﬂ;Séi (191)
Cost Equation
T I .
P = <I>C..dP<I>cd+[I CXK] Q M I (192)
M: R -KC.
X
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Complementary Star Trajectory Equation

T Y+Y @T

T
ch dc 2.0 P [wsx - S31 Ws] - Hx Q2 [és * Hz S3é] (193)

20P0 . XT -2.0PT KVKL T (193)
(o] Cc S A\

d

Gain Equation

T T T, T T
(R+T_PT)K(C_XC +V)= (T P (®-5; H)+M)XC
L T T I T '
+% T Y (C +55 C) (194)

The algorithm shown for Eqs. 178 to 182 can be used to solve Eqs. 190 to 194. The
primary differences are that K must be chosen so that ch is stable and S31 is

the solution to a generalized Riccati equation rather than a Lyapunov equation.

K stabilizes the stochastic term, Ak, when Hw and Pw are ﬁon—zero, but the total

closed-loop system for Ax and As can be unstable or neutrally stable because of

the way Je is chosen.’
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6. DESIGN AND SIMULATION OF CONTROL SYSTEMS

This chapter presents digital flight control system design parameters
and nonlinear 6-DOF simulations for four digital control designs. The objective
of the control system is to cause a small commercial jet (Boeing 737) to capture
and track a 3 deg glideslope near the terminal area. Enroute to touchdown, the
SRI wind package, Ref. 31, is used to model a windshear disturbing the.aircraft
dynamics.

A. Design Models

The four control designs are:

SR-PIFCGT A.single rate PIFCGT design using a linear aircraft model driven
by white noise sources. |

MR-PIFCGT A multi-rate PIFCGT design using a linear aircraft model driven
by white noise sources.

WS-PIFCGT A single réte PIFCGT design using a linear aircraft model com-
bined with the windshear model. The feedback gains are computed
using the algorithm in section 4D with Pw and HW nonzero.

EP-PIFCGT A single rate PIFCGT design using a linear aircraft model combined
with the windshear model and the energy probe measurement. The
feedback gains are computéd using the algorithm in Section 4D with
Fw and Hw nonzero.

The states in the alrcraft design model and the output vector used for

feedback are presented next:

Integrators
Aghk+l = Aghk + At [(Ahk"Ahm,k) + 5'(Ahk - Ahm,k)]

+ At (ACAS

- ACAS )
m

B8cas, k1 = Bocas,k K K
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Prefilters

AS = -10.0 (AA - ba)
z Z zZ

A§ = - 10.0 (A - Aq)

Complementary Filter

AR o 1]||ah 0.8 [Ah— Aﬁ]+ 0| ta
= +
Ah 0 0]|aAh 0.32 1
SR-PIFCGT At = 0.1 sec
States
T

Ax [Au Av Aq AG Ah A8 A§ Ah AR AEPR A8 A&, AE,o Du Aue]

Controls

T
Au [Ave Avt]

Outputs

AV = [Aaz AG ACAS AB Ah Aﬁ NG AEL o Du Aue]
MR-PIFCGT Atf = 0.05 sec; Ats = 0.1 sec
States
AT = [Au by bq A6 Mn A3 A§ bh M AEPR DS, DE AE, o Bu Aue]

Controls

AuT [Av Av ]
e t

Fast Outputs

T ~ ~
Y = [Aaz M E b bug Aue]

Slow outputs

T . p ~ ~
ryg = [ACAS A8 Ah Ah]



WS—-PIFCGT At = 0.1 sec
States .
T _ A ~ N~ o~
Ax™ = [Au Aw Aq AS Ah Aaz Aq Ah Ah AEPR AGe Aih AECAS Aut Auq]

Disturbances
AsT = [AUWb Awwb]
Controls
AuT = [Av Av ]
e t
Outputs
ay' = [Aﬁz A ACAS A8 Ah Aﬁ BE, AEpys Bu Aue]
EP-PIFCGT At = 0.1 sec
AT - [AEPl MEP, Mu by Aq A6 Mh AR A3 AR AR AEPR A6, AE, AE,g Aug Aue]
Disturbances
AsT = [Auwb Awwb]
lControls
AuT = [?Ve Avt]
Outputs
nT = [AEP 02 0§ AcAS A0 AR o 0, BE s u, Aue]

The aircraft model is trimmed at 69 m/s (135 kt) descending straight . flight

using a glideslope of 3 deg. Flapé are set to 30 deg. The weight is 85000 1bs.
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The five states for the longitudinal aircraft dynamics in body axis are
the body x-axis velocity, Au, the body z-axis velocity, Aw, pitch rate, Aq,
pitch Euler angle, A® and vertical height Az. The prefilter states, Aﬁz and Aq,
model a continuous-time prefilter used to suppress aliasing errors in the body
mounted z-axis accelerometer measurement for a, and the rate gyro measurement
for q. The noisy height measurement, h, which can come from a barometric altimeter
or the Microwave Landing System (MLS), is complementary filtered with thé gravity
corrected output of the accelerometer to yield smooth estimates for h and é. The
two states, AEPR and Aée, model the actuators dynamics for throttle and elevator
respectively, and are discussed in Ref. 32. The type 1 property for the control

system is obtained using the integrator states Eh and § The integrator

CAS"
state, AEh, integrates the height command error plus 5 tiﬁes the height rate
error. The integrator state, AgCAS’ integrates the CAS command error where
CAS is a calibrated airspeed measurement. The states Aut and Aue are the per-
turbatidn aircraft control states placed in the state vector because of control
rate weighting.

The:multi—rate control design breaks the measurements into a fast-sample-
rate group and a slow-sample-rate group. The fast rate is chosen to be 20
samples/sec while the slow rate is 10 samples/sec. The integrator states and
control position states must be sampled at the fast rate. The two inner-loop
measurements, Aaz and Aa, are also sampled at the fast rate. The slow measure-
- ments are airspeed, pitch angle and the output of the complehentary filters. The
complementary filter model in & is not modeled at the slow rate, however. Model-
ing a slow rate complementary filter in ¢ would cause ¢ to become a periodic
matrix. The complementary filter is propagated and updated at 20 iterations/sec
in the nonlinear simulation. The WS-PIFCGT design uses the wind shear disturbance
dynamics in the design model. The nominal values used for u, and w, are -0.1 m/

sec/m and 0.02 m/sec/m, respectively.
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The EP-PIFCGT design includes the energy probe measurement in the WS-PIFCGT

measurement vector. Two states, AEP. and AEPZ, are added to the state vector to

1
model the sensor dynamics described in Refs. 10 and 1l.
The longitudinal command model propagated in the simulation uses a double

integration of vertical acceleration to generate the vertical path trajectory.

The CAS trajectory is constant,

h 1 At] |n At2/2 Hm

|n o 1| |n At o |cas 195
m| K m (195)

The commands used for hm in the nonlinear simulation are

Ifh >-8.3and h > 200 Then h = -1.5 Else (196)
m m m .

Ifh <15 andh <O Thenh = 1.5 Else h = 0.0 (197)
m m m m ,

The command model descends at a constant rate of descent (8.3 ft/sec) until
150 ft is reached. The descent is changed to straight'and level flight after hm
reaches 150 ft. The change to straightﬂand level flight eventually puts the
command model height state af 122ft. . The aircraft and command mode€l are initial-
ized ‘to 700ft straight and level flight at the beginning of the simulation. The
command model used to design the command generator tracker feedforward gains only
uses Hm’ ﬁm and CASﬁ as discussed in Ref. 3.

The design of the control system is achieved by choosing the diagonal ele-
ments in the matrices Q,'R, X, W and V iteratively until the control system has
desired closed-loop properties. Adjustments are made to the elements until one

set of numbers, shown in Table 1, can be used in all four design conditionms.
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B. Control Design Properties

Six evaluation procedqres are used to determine the feedback and tracking
properties of the control designs. The six evaluations are the feedback gain ele-
ments, singular value plots, Ref. 33, eigenvalue plots, Ref. 33, Bode plots for
each control loop, closed-loop eigenvalues and nonlinear simulations.

The feedback gain and feedforward gain matrices are shown in Table 2. Com-
paring the single rate and multi-rate designs, the gain elements almost all in-
creased in value an average of 25% in the elevator loop. The elevator loop band-
width increased in the multi-rate design as shown by the -9.37 control gain. The
multi-rate design had less of an effect on the throttle loop which has a much
lower bandwidth. The two wind shear design gain elements change significantly
from the case when no wind shear is modeled in three of the measurement loops:
gz, ﬁ, and ECAS' One of the closed-loop poles is‘significantly altered (de-
stabilized) by the wind shear dynamics and the increased gain values on these
three measurements appear to improve system robustness to wind shear distur-
bances. The throttle loop bandwidth increases in the presence of the wind shear
dynamics as evidence by the -3.63 and -4.9 6T control gains.

The closed-loop eigenvalues for the designs are.obtained from the discrete
system linear matrices. Each eigenvalue inside the unit circle in the z-domain

is mapped to the left-half plane using

} 50

A, =@+ Jb=me (198)
_ 1 _ m . 9

A =g lnd, =t (199)

The three single rate designs are evaluated with and without the wind shear
dynamics. The SR-PIFCGT closed-loop eigenvalues shown in Table 3.have adequate
damping and stability without the wind shear system. The wind shear dynamics

introduce two poles into the system; one is neutrally stable while the other is
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slightly unstable. Windshear as a phenomenon only occurs for a specific period
of time. The control system's objective is to maintain control over the aircraft
dynamics and track the command model. The primary change in the closed-loop
eigenvalues is that the pole most associated with the phugoid motion (wn = 0.35,
& = 0.49) changes damping to £ = 0.19; i.e., the phugoid motion destablizes.
Increasing the nominal values for the wind shear gradients further destabilizes
the phugoid mode.

The new capability provided by the theoretical derivation in Section.’5D allows
the design plant model to contain the unstable coupled windshear dynamics. The
WS-PIFCGT closed-loop eigenvalues are présented in Table 4. The closed-loop
model without wind shear has good damping ratios on complex modes (£ > .0.5) with
the windshear model, the phugoid mode destabilizes but has better damping than
the mode in Table 3 (§ = 0.33 verses § = 0.19). The-energy probe further uids
in suabilizing the phugoid mode as shown in Table 5 (§ = 0.40).

The closed~loop mapped eigenvalues for the multi-rate design are shown in
Table 6. Despite a significant change in feedback gains between single and multi-
rate designs, the closed-loop eigenvalues for the single rate and multi-rate
designs are similiar. The multi-rate and single rate designs use the same qua-
dratic weights. The.extra three poles in Table 6 are caused by the hold cir-
cuits in the system model.

Ihe frequency domain methods for evaluating the single rate control designs
result in the plots shown in Figs. 1 to 6 and Table 7. Frequency domain an-
alysis of the multi-rate design is not within the scope of this effort. The.
minimum singular value of the return difference matrix, as discussed in Ref. 33,
is a conservative indication of closed-loop plant robustness to unstructured
perturbations in the plant dynamics. A small singular value ueans there is a

small plant perturbation (physically unrealizable perturbations are allowed)
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that can destabilize the plant. The three singular value plots all indicate
potentially poor designs. Reference 33 investigated singular values and demon-
strated that eigenvalue analysis of the return difference matrix, although a

not guranteed indication of robustness, provides a clear picture of the poss-
ible robustness boundary. The eigenvalues of the return difference matrix are
bounded below by the minimum singular value and above by the maximum singular
value., The true multivariable plant robustness should be bounded between the
minimum singular value and the minimum eigenvalue of the return difference matrix.

The eigenvalue plots in Figs. 1 to 3 indicate a much more robust design then
the singular value plots and compare favorably to thé information provided by
the Bode plots. The smallest‘eigenvalue is near w = 3.5 rad/sec in all three
design. Specific values are shown in Table 7. The frequency for the smallest
eigenvalue is near the frequency for the short period modes shown in Tables 3 to 5.
Another effect evident from the eigenvalue and singular value.plots in Fig. 3 is
that the energy probe. sensor increases plant robustness in the low frequency
region, w<1l, where plant alterations due to windshear are likely to occur..

The Bode plots in Figs. 4 to 6 provide useful information concerning the
bandwidth and robustness pf each loop, individually. The bandwidth (the frequency
at which the gain remains below ;6 db) for throttle is between 0.5 rads/sec and
0.25 rads/sec. Thé designs using the windshear dynamics have lower throttle
bandwidth. The bandwidth for the elevator is between 2 and 3 rads/sec. All phase
margins are better than 65 degs and gain margins are better than -10 db.

C. Nonlinear Simlations

Nonlinear six degree-of-freedom simulations of the control systems for a
glideslope capture and track are shown in Figs. 7 to 9 . Windshear, gust dis-

turbances and measurement noise are inactive in the simulation. The captures are
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smooth with little ovefsheot both at the beginning and end of the simulation where
the aircraft returns to straight and level flight. The best performance is pro-~
vided by the multi-rate design which has smoother surface motion and better CAS
control.

The next four simulations in Figs. 10 to 13 show the four control designs
capturing and tracking the glideslope in the presence of windshear. The longi-
tudinal, horizontal and vertical shears are shown in Fig. 16 and correspond to
the windshear in the SRI package known as the Philadelphia/Allegheny windshear.
The_aircraft encounters an increasing headwind. The headwind decreases grad-
ually then dramatically into a tailwind. The tailwind changes back to zero. Coin-
cident with the change from a headwind to a tailwind, the aifcraft encounters a
downward vertical wind of 20kt. The large drop in airspeed causes the control
systems to briefly saturate throttle (at 60 deg) and pitch the aircraft up to
8 deg.

The best windshear response is provided by the WS-PIFCGT design. The air-
speed‘deviations are smaller and the aircraft pitches up the least (6 deg). The
WS-PIFCGT design also maintains the largest separation between the aircraft and
the ground in the critical time period between 75 and 85 secs into the simula-
tion. The MR-PIFCGT design has the largest deviations in airspéed and height
during the windshear. The EP-PIFCGT design using the energy probe sensor for
feedback encountered small elevator and throttle oscillations when throttle
surpassed 30 degrees.

A 1 kt gust is added to the nonlinear simulations in Figs. 14 and 15. The
effect of the gusts is primarily evident in the throttle response. The tracking

is relatively unaffected by the gust respohse.
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7. SUMMARY AND RECOMMENDATIONS

A summary of the results in this report are:

Optimal output feedback is successfully used to design a single rate
control system using the proportional integral filter structure.

The optimal output feedback approach and optimal output feedback
algorithm are extended to usé the hierarchical control design approach
with minimal change to the output feedback design model matrices. Un-
wanted states and observations‘encountered as each loop is designed are
made uncontrollable and unobservable and stabilized if the mode is not
stable.

An optimal multi-rate output feedback synthesis problem is formulated and
necessary conditions for an optimal solution are derived. An algorithm
to solve for the constant gain solution is presented. The algorithm is
programmed and designs are made comparing the multi-rate and single rate
designs. The PIF structure is extended to use multi-rate output feed-
back. The PIF feedforward gain is shown to be periodic in time.

The command generator tracker is extended to accommodate disturbances
which are affected by the plant dynamics. The extension-causes one of
the Lyapunov equations encountered in the usual command generator tracker
to become a generalized Riccati equation. A globally convergent algorithm
for solving the generalized Riccati equation is developed.

A new and novel approach is déveloped to accommodate windshear in the
presence of noise. The command generator tracker is extended to the
stochastic environment. The steady-state plant response is decomposed

into the stochastic and deterministic components. A novel cost function



is constructed which suppresses‘the effect of disturbances, stabilizes the
stochastic plant response and does not require a measurement of the dis-
turbance state. The disturbance and plant dynamics can be coupled. An
algorithm which computes the (local) optimal gain is developed, has been
programmed and is used to determine a PIFCGT control system.

Design and simulations showed that the multi-rate design (which uses
faster measurements on some sensors) performs best for the quadratic
weights chosen when no disturbances are present. The design using the
new disturbance accommodation synthesis approach performs best when the
aircraft is simulated flying through a windshear. The windshear design
using the energy probe also performs well except for small oscillations

that occur during the severe part of the windshear simulations.

Recommendations

The command generator tracker can be extended to the multi-rate case.
The multi~-rate command generator tracker would allow the computation of
the multi-rate frequency response by extending the approach develbped

in Ref. 30.

The multirate problem can be exfended to include the case‘of many
models with one controller as discussed in Ref. 17.

The solution in Section 5B has applicafion 'bgfond disturbance suppress=
ion. The solution in Section 5B solves a feedback decoupling problem.
Consider ;he lateral dynamics of the aircraft where it is desirable to
decouple the roll and sideslip respohse. Partioning the plant states
into two groups and identifing oné group aS'Ak and the other group as
As, the feedforward solution yields a control system for decoupling the
HAx response from the As states. HAx can be sideslip and As can be the

roll state. Any rolling motion would not affect sideslip.
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APPENDIX A

A Convergent Algorithm for a Generalized Riccati Equation:

A generalized Riccati equation has the following form:

X‘= AXB+AXCX+D (200)
where X is an unknown matrix. If A were ihvertible then Eq. 200 could be
rewritten as

0=FX+XB+XCX+6G (201)
which resembles the continuous-time Riccati. equation obtained in the optimal
regulator problem.

| Define the function f(X) as

F(X) =AXB+AXCX+D | (202)
and define the direction, d, at X as

d=AdB+AdC+AXCd+ (f£(X)-X) ' (203)
Define the matrix, E, as

E=(I-Axc! (204)
the direction, d, satisfies the Lyapunov equation

d=EAd (B+C)+ E (£(X)-X) (205)
The globally convergent algorithm for computing X is

1. Choose a starting value for X, usually Xo = 0.

2. Compute d, in Eq. 205 using Xk.

k

3. Choose O according to

| £&) - X ]

o = min 1.0,-% (206)
| aq cq |
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Update X, using

k
Xk+1 =X.k +O"k dk (207)
If lLf(Xk)'— Xk) H is small, stop, otherwise increment k and go back
to 1.
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TABLE 1.

DESIGN PARAMETERS FOR THE CONTROL DESIGNS

(UNITS ARE FT. AND DEG)

X+ W W Matrix Diagonal Q Matrix Diagonal Additional Q
States Elements Elements Weights
u 100.00 0.0016 w 3.5
% 25.0 0.16
q 0.01 0.0081
6] 0.01 0.0081
h 100.0 0.04
a 0.25 0.0
z
q 40.0 0.0
h 64.0 0.0
h 10.24 0.0
EPR 1.0 0.0
) 1.0 0.0
e
Eh 0.0 0.0009
gCAS 0.0 9.004
u, 16.0 0.09
u 4.0 0.01
e
EP1 1.0 0.0
EP2 1.0 0.0

R Matrix Diagonal

V Matrix Diagonal

Elements Elements
vy 0.09 a 0
z
Ve 0.04 q 0
CAS 9.0
6 9.0
h 0
h
E;h
é,-’_CAS 0
ut 0
u 0
e
EP 0
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TABLE 2.

FEEDBACK GAINS FOR THE CONTROL SYSTEMS

CONTROL STATE FEEDBACK GAINS CONTROL DESIGN
E a a CAS 0 h h
P Z
Vi - -6.33  -0.566  -2.18  -0.47  -0.57 -2.69 SINGLE RATE
v, - 1.65 4.23 1.91 6.69 0.76 1.72 DESIGN
o - -9.38  -0.37 -2.10 0.171 -0.923  -3.10 SINGLE RATE
ve - 5.14 4.80 1.91 6.88 1.06 4.09 WINDSHEAR DESIGN
Vip -1.35 -9.86  -0.90 -2.05 1.14  -1.06 -4.97 SINGLE RATE
Ve 1.14 4.69 4.08 2.67 7.56 1.08 4.92 WINDSHEAR DESIGN WITH
ENERGY PROBE
e - -6.92  -0.41 -2.24  -0.367 -0.628  -2.86 MULTI-RATE
v - 2.56 5.5 2.39 8.22 0.99 2.27 DESIGN
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TABLE 2.

FEEDBACK GAINS FOR THE CONTROL SYSTEMS

(CONTINUED)

CONTROL DESIGN

.0.083

1.67

CONTROL INTEGRATOR GAINS CONTROL CONTROLiGAINS CONTROL DESIGN
E1 g2 GT 6e
VT -0.075 -0.11 SINGLE RATE Vo -2.59 -1.0 SINGLE RATE
Ve 0.064 0.003 DESIGN Ve 1.31 1.76 DESIGN
vT -0.086 -0.184 SINGLE RATE vT -3.63 -0.75 SINGLE RATE
Ve 0.099 0.060 WINDSHEAR DESIGN Ve 2.37 -8.53 WINDSHEAR DESIGN
VT -0.196 —0.26 SINGLE RATE VT -4.9 0.174 SINGLE RATE
Ve UNAVAILABLE WINDSHEAR DESIGN WITH Ve 3.75 -7.1 WINDSHEAR DESIGN WITH
ENERGY PROBE ENERGY PROBE
VT -0.077 -0.11 MULTI-RATE Vo -2.64 -0.631 MULTI-RATE
v 0.0078 DESIGN v -9.37

DESIGN




TABLE 2.

FEEDBACK GAINS FOR THE

CONTROL SYSTEMS (CONCLUDED)

CONTROL FEEDFORWARD GAIN CONTROL DESIGN
h '
m m
vy 5.4 1.4 SINGLE RATE
v, -3.4 -0.039 DESIGN
Vo 7.73 0.785 SINGLE RATE
v, -6.59 0.157 WINDSHEAR DESIGN
Vo 7.89 0.373 SINGLE RATE
v, -6.59 0.157 WINDSHEAR DESIGN WITH
ENERGY PROBE
MULTI-RATE DESIGN
vy -0.064 -0.016 KB
v, 0.032 -0.0033
v 2.95 2.19 K C A
vr -4.21 ~1.34 s's 12
e
v 1.65 -1.26 —K,A -K_C_A .—K A
vz 0.75 1.26 & 12 Tun22
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TABLE 3.

CLOSED LOOP MAPPED EIGENVALUES FOR THE

SINGLE. RATE DESIGN (SR-PIFCGT)

DESIGN CONDITION
WITHOUT WINDSHEAR

DESIGN CONDITION
WITH WINDSHEAR

REAL ?n T REAL wn e
(rad/sec) (rad/sec)
21.3 0.84 21.3 0.84
-10.0 -10.0
- 4.7 - 4.7
2.60 0.58 2.60 0.58
0.84 0.98 0.82 0.99
0.52 0.68 0.63 0.69
0.35 0.49 0.369 0.19
0.079 0.64 0.063 0.90
-0.08 -0.13
0.0
0.04

IDENTIFIABLE MODE

SHORT PERIOD

PHUGOID
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TABLE 4.

CLOSED-LOOP MAPPED EIGENVALUES FOR THE
SINGLE RATE DESIGN WITH WINDSHEAR (WS-PIFCGT)

DESIGN CONDITION
WITHOUT WINDSHEAR

DESIGN CONDITION
WITH "WINDSHEAR

IDENTIFIABLE MODE

REAL w z REAL w, g
(rad/sec) (rad/sec)
22.77 0.71 22,77 0.71
-10.0 ~10.0
- 4.3 - 4.3
3.1 0.57 3.1 0.58
1.00  0.76 0.97 0.73
0.59 . 0.6é 0.59 0.80
0.26 0.67 0.42 0.33
0.081 0.51 0.075 0.67
-0.088 -0.088
0.0
0.035

SHORT PERIOD

PHUGOID
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TABLE 5.

CLOSED-LOOP MAPPED EIGENVALUES FOR THE SINGLE RATE

WINDSHEAR DESIGN WITH THE ENERGY PROBE (EP-PIFCGT)

DESIGN CONDITION
WITHOUT WINDSHEAR

DESIGN CONDITION
WITHOUT WINDSHEAR

IDENTIFIABLE MODE

REAL wn z REAL w C
(rad/sec) (rad/sec)
22,13 0.71 22.13 0.71
-10.0 -10.0
- 4.5 - 4.5
3.74  0.56 3.74 0.57
1.65  0.89 1.64 0.91
0.90  0.55 0.88  0.55
0.57 0.77
0.21 = 0.74 0.37 0.40
0.08 0.4 0.072  0.57
-0.13 -0.08
0.0
0.039

SHORT PERIOD

PHUGOID
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TABLE 6. CLOSED-LOOP MAPPED EIGENVALUES FOR THE MULTI-RATE
CONTROL DESIGN

DESIGN CONDITION IDENTIFIABLE MODE
WITHOUT WINDSHEAR
REAL w C
(rad/sec)
370 0.99
366 0.99
325 0.99
20.6 0.96
-10.0
- 5.2
2.6 0.57 SHORT PERIOD
0.82 0.95
0.52 0.69
0.34 0.50 PHUGOID
0.080 0.66
-0.075




TABLE 7. FREQUENCY DOMAIN PROPERTIES OF THE CONTROL DESIGNS
(w is in rad/sec)
THROTTLE ELEVATOR
CONTROL MINIMUM MINIMUM GAIN PHASE GAIN PHASE
DESIGN SINGULAR VALUE | EIGENVALUE MARGIN MARGIN MARGIN MARGIN
db w db w db w deg w db w deg w
SR-PIFCGT -15.07 0.4 -2.8 3.3 -18.0 1.4 84  0.15 -13.0 4.6 80  0.45
WS-PIFCGT -12.8 0.9 -3.7 3.3 -20.0 1.7 70 0.1 ~40.0 4.3 80  0.63
EP-PIFCGT ~14.1 0.1 -3.5 3.9 -20.8 1.7 84  0.15 ~10.0 4.7 69  0.57
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FIGURE 3.

82

EIGENVALUES (dB)

SINGULAR VALUES (dB)

a) Eigenvalues (dB), [ )-High value, (O)-Low value

| T T 111
U/ l

I T Tl

I

O—
‘”\ah____ﬂﬂ#ﬂf”ﬂf
-10 — —
-20 Lt RN
10! 100 10!
FREQUENCY (RAD/SEC)
b) Singular values (dB) s O—High value, [ ]-Low value
o0 - T | T T 1711
10— —
0 /
-10 —’_—_/.\
1l
-20 ||H| R
10! 100 102

FREQUENCY (RAD/SEC)

SINGULAR VALUE AND EIGENVALUE PLOTS FOR THE SINGLE RATE WINDSHEAR -

DESIGN WITH THE ENERGY PROBE (EP~PIFCGT)



a) Throttle-Loop Opeﬁ,()—Gain, []-Phase -

0

o0 T T T T T T 1717
10gr= — -90
2 O \,D
- 0= — -180
3
-10— = -270
O
-20 IR R L 1 1111/-360
10t 100 10!
FREQUENCY (RAD/SEC)
b) Elevator-Loop Open,()-Gain,[ |-Phase
S0 T T T T1TT1T] T T T 17711
|
10 ' — -390
5 0
2 (-
5-10
-20 Illlll!
101 1Qo 101

FREQUENCY (RAD/SEC)

FICURE 4. BODE PLOTS FOR THE SINGLE RATE DESIGN (SR-PIFCGT)

83

PHASE (deg)

PHASE (deg)



84

a) Throttle Loop Open, )-Gain,[ ]-Phase

o0 ] T ] ] T T 171711 0
10— -270
-20 | ||z|’ | | {1 11t1l-360
10! 100 10!
FREQUENCY (RAD/SEC)

b) Elevator Loop Open(:D—Gain,[]-Phase

20 l T T T TTT] | T T 11711 0

10 D\ — -30
g O( ). — -180
=
3 -10 -270

-20 [ 11|s| ; [ L L 11 -360

101 ' 100 101

FREQUENCY (RAD/SEC)

FIGURE 5. BODE PLOTS FOR THE SINGLE RATE WINDSHEAR DESIGN (WS-PIFCGT)

PHASE (deg)

PHASE (deg)



a) Throttle Loop Open,O—Gain, [:]—Phase

o0 I IlIlTﬂl T T T T 11T 0
a O
S gp= | — -180
Z
< .
°-10— —270
O
-20 | L1 Llll| S L1 L 11111-360
10! 100 10!
FREQUENCY (RAD/SEC)
b) Elevator Loop Open,O—Gain,D-—Phase
20 I IFFHHI [ T T 11T 0
10 = — -390
S 0 | —-180
5 O
S -10g -270
-20 1 LLLLIJI' -360
10-! 100 10!
FREQUENCY (RAD/SEC)
FIGURE 6, BODE PLOTS FOR THE SINGLE RATE WINDSHEAR DESIGN WITH THE

ENERGY PROBE. (EP-PIFCGT)

PHASE (deg)

PHASE (deg)

85



128 ' ' #/10.00
ho— . HCMD - H
\\

= — \E-\\
E - - - = ——-—==~=: ————— e
= 0 :85\ — © TTTT O ©o-—
s B> N
w \\\
x = Bt M —
;125_111llIlIIIlJIlllIllIllll'lllllllllllJ

0 10 20 30 40 §0 60 70 80 30 100
TIME (SEQ)
oL | 8
2. [ -
s~ e -8-—
o -
O
S
Sﬁ—llll|ll|llll||l|ll||Jll|||lllllllllll
0 10 20 30 40 50 60 10 80 €0 100
TIME (SEC)
o[ ' : : HpoT
= _ HooTEND
@ e
E 0—<:————-g ———————— fle—_—————— ] ———————— _D_._7‘=_==-a_._;
— [ N ———— O-——————— Or—————— -0~
= -
I po
-10||l|>|IlllllII||Illllllllllllllllllllllll
0 10 20 30 40 50 60 70 80 30 100
TIME ( SEC)

FIGURE 7. SR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH NO WINDSHEAR AND NO GUSTS

86



lsr PITCHC DES!
ALPHAI DEG)
e e ————— - - :
gy ——— T T T T e e e e e e e e s e — et RT B F S, ——
rr N i 5 S — S S S ———— B-= =
o
a
-15JllllllllllllllllIlIllllllIllIllllllll
0 10 20 30 , 40 S0 €0 70 80 30 100
TIME (SEC)
3.0
L Bﬁ:oru/m
o j—
«
N |
o
=1.8p— ————
g b~e o O-————— O-—————— O T ‘g“
e P2 R
o S~ T—-—18 = &
a ‘
l'l'jOlllllllllllllIllllllllllillJ;ll_llill|IlI
0 10 20 30 %0 S0 60 70 80 . 90 100
TIME (SEC)
o 100
| FLRes
- ——————— H-—————— H-—————— H-——————— H-—-——————— -—
9 —~ ) T -O‘—
2 ~———— e ——————— O~ ————— O-——————— -©
= O}
=
=] L
o
[dL) =
5 . .
-’-1o||1Jlu lllll[l[llllllllLllJlllIILIILI
0 - 10 20 30 490 50 60 70 80 o] 100
TIME (SEQ)

FIGURE 7.

SR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH NO WINDSHEAR AND NO GUSTS
(CONCLUDED)

87



125 w/10.00
fae. e - v, WD - M
N \\\"ﬂ\\’
E - T -O-—:==~§_ ________
[ (1] @~\\\§\ e — O o-=
§ [~ \\ﬂ‘\\
E [ - \‘\_B‘\—_ —g——
-128 llJJll'lllJJJJIIIIJIJIIJJJJJIJj lJlJIJll
0 10 20 30 L 1] S0 60 70 80 0 - 100
TIME (SEC)
L . g oo
a8 F
g?ﬂ'ss.(:::,._g--_—____.a_ ——————— -a——————--*::_——_—: ==
g B
80’_1!llvlLlllJlllllIllllJ_llllJlllllllllllllj
0 10 20 30 %0 S0 60 70 80 90 100
TIME (SEC) ‘
10 HooT
p— NOGTCID
D — —
E 0——-:————-—5 ———————— ] s e e ] e e e e — -ﬂ———,‘-——::@:—
e O —————— O ——— o--
§ -
-10’- |IIIIIIJ|IIIJIIIIIIIIII’JIIIJIJJ]I]IJJII
0 10 20 30 %0 50 60 70 80 30 100
TIME { SEC)

FIGURE 8. MR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH NO WINDSHEAR AND NO GUSTS

88



18

DEGREES
[ =]

-18

1]
.

EPR THROTLE/20

LONG CONTROLS (DEG)
o

i P LTCH DEG)
- P DEGD
e _———-a ———————————————————————— ——— 43 - —
— Q\\~—-O ________ :8 ________ :8_ _______ == 0
_ lllJLLllllllllJ_llJJJllJllllLlllllJ_JJllJ
0 10 20 30 %0 50 80 70 80 ] 100
- TIME {SEC)
—
or. 8 Pesnes
-
R — P S -
:\\-—--———-B ________ —a ———————— —a ———————— -a’ -
OP_IJIIJJllllLIII‘Il_lllJllJlllL[lll.lllj]ll
[} 10 - 20 30 10 50 60 70 80 0 100
TIME (SEC)
Bm
ue/s
——————— -————————fe——————— ) ———_——— ) —————— ] —
___________ -
T —————— O—-—————— O——————— -©-
ll]llllllllll]lllLlIII_JJIIIIIJJJJLJlLLlI
1] 10 20 30 %0 50 60 0 80 30 100
TIME (SEC)

MR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH NO WINDSHEAR AND NO GUSTS
(CONCLUDED)

FIGURE 8.

89



1287 H/10.00
o — HCHD - H
—~——
— — \3‘\
b~ - == e e I e —
- {00 Ov~=y T O ———— e O
— O :8‘~\\ © - —
T ~——
2 — -
T -
= TR - ——— 3 [
—l25[llllll||lllllllllllllllllllllllllllJ
1] 10 20 30 40 50 60 70 80 g 100
TIME (SEC)
so[
8 CASCHD
a -
E?OE—__.\_::_:: ===___==___a___—====@========:§::___:::-_8::
- -
< d
U —
60IIIIll'||lllllIllllllllllllllllllLJlllllI
0 10 20 30 40 S0 60 70 ) 80 30 100
TIME (SEC)
10 oot
- HOOTCNO
a I | __
T Opg———— gq4-——————— A-——————— H-——————— H-oe——F = —cfu=—
e F Do ———— Om——————— O-——————— -0~
(=1 =
a
x | :
.—10lllIlll'lllIIIl|lll||llllllll'lllJlI|Ill
0 10 20 30 40 S0 60 70 . 80 30 100
TIME (SED)

FIGURE 9.

90

WS-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH NO WINDSHEAR AND NO GUSTS



s ) ‘ ’ PITCH DES)
L ALPHA( DEG
o L ' ~
eedIURGUREE RN - [ —, PP —, R L T— PO . [
§ [~szooogemmsmss groozmmmgimozooos % &
v I
o
n
=15 lllll;l'llllllllllllllll[llllll'llllllI
"] 10 20 30 40 S0 6 70 80 0 100
TIME (SEC)
3.0_ Bg:mnuao
o =N
Y
S L
w
21.6— -©
= ~— S SV - ———— —_-
& S —~——————-0 —-© -© /E],/\\_____E]__
=B e —f——————— H-—————— H-——————
o« —
N | | | | | | I | |
0 L1 1 1 11 L 1.1 ] 11 1 1 1 | | 1 1 .1 | I | ] 1 1 | I . |
' 0 10 20 30 S0 60 70 80 30 100
TIME (SEC)
o 10 DELE
l‘-l:-l - FLAP/S
e e ———— - ————— H—————— e -
9 — ’ ———————O——
S [ T~———y——————— O-—————— D e -0--
&
= O
z
S -
O
o
z v :
S .
_J-IOIIIIIIJIIIIllllllllllJIJllllllIJlIII
[} ‘ 10 ) 20 30 40 80 60 70 80 30 100
' TIME (SEC)

FIGURE 9. WS-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH NO WINDSHEAR AND NO GUSTS
(CONCLUDED) ‘

91



18] H/10.00
- — e HCMD - H -
— [~ \\ﬂ~§\
= - - - T - —O————=~<_ —_——
= O :8‘\\\ O O——— O-—————
5 | ———
% r- . . \\\\\‘N\
= X ﬂ‘\\\ ___,,—El _____
-1250 1 | lil 1 1 1 1t | 11 I 11 I 1 1 1 l [ Ll I | I L1 |
0 10 20 30 40 50 60 70 80 . 30 100
TIME (SEC)
_ g e
| . ==
— //
e r R
E70—A<—=——-ﬂ<=:::::=% ________ e ——— e —— ..E}_.__::_._,é_a ______
L -—— O~ ~ ~/
2 L ————— \
G . N
- . \\ ‘
60ll|l|lJllllllllllllJ_llllLl\]l/llllllllllll
0 10 20 30 40 50 - 60 ~d 80 80 100
TIME (SEC)
1o ‘
= 8 m;cm
7] [~ -
= oo ———— - —————— B———— He—————— T N 3 N —
— — \\___’O ———————— —O"___\—~__O___._—-”-\‘—o’\~/
8 L
bt | » :
—10lLllllJllJIIllIllIIlIll‘IJlllllllJl|lll
0 10 20 30 %0 §0 60 70 80 20 100
: TIME (SEQ)

FIGURE 10. SR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS

92



DEGREES

"EPR THROTLE/20

1s[— PITCHDED)

= ALPHA( DES)

- - /“ZBQ§

- e pl—————— e — ::_, - -
0_:<::___,:8 ——————— —O’—_——'” =8 ' ~= \\:§‘<===—-
-1 _1_1 1 Ll | I S | |4 1 I P11 I | | | | I - | l 1t 1 I 1 | I L1t ]
0 10 20 30 40 S0 60 70 80 L[] 100

-TIME (SEC)

3.0 3|
= 7\ 85::on.:/zn
: A
B A —=—=A_

1 Sb -’_—/_’___ ::7 @:: —~———
-—\§\______O ________ _,O _‘,’ \\\
A \\-,*.‘—\—B ________ /a\/—._-

oLl 1 1 I | lLl | - l | I 1 1 I { 11 IJ || l 11 ! I Lt 1 I | |

0 10 20 30 40 S0 60 70 80 0 100

TIME (SEC)

—
10L_ g&u:vs
——————— - ————— - ———————f-———C=me—gs———————H-—————
: _/_’—"O'—‘_— \\ //-O~\\

— ‘\______’o ———————— -O“"‘_—- . ~— =

LONG CONTROLS (DEG}

-10IlllllllllIIIII;LI'J!IIIIIIIIIIIIJ_IIIII

4] 10 20 30 40 60 70 80 30 100

50
TIME (SED)

FICURE 10. SR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS
(CONCLUDED)

93



128 ’
. oy
— \\ﬂ\
b= - == 'O-———.:._=_:8 _____
T | T—— O O —— - O
5 L T~
gL -
| _—Bs\\\ T ———
-125] ) ) | L 1 ) I L 1 ] L1} l 11 l I l L1 1 L 1 1 —1 1 1 | l ] 1 1
0 10 20 30 40 _ 50 60 70 80 20 100
TIME (SEC)
sof '
a B o
& I -7
-——— -
E70==_._.__:§ _____ ::zﬁ ________________ - 7.4% ______
; - S~ ——— — ’—\\ e~
(= - N r
6oLt | | l 111 1 1 l 1 11 |Ll I l | l [ N 1 1 1 | | .| | S l
0 10 20 30 40 50 60 \/70 80 90 100
TIME (SEC)
10— HDOT
- HOOTCNO
oI -
= b~ H-——————- H-——————— :8-'———74-——:8‘::::’
- L Sl L e ——— o-——— T TN
5 L ~——o-— ———0- -
% =
-tol_J_1 1 I 11 1 I | 11 I 11 I | . | 1 1 LLI 11 I 1 LI | lil 11 1
0 10 20 30 40 50 60 ° 70 80 30 100
TIME (SEC)

FIGURE 11. MR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS

94



15 PLTCH( DEG)
| ALPHA( DES)

. TR
$ '_—_t__,___a _____________ :’cﬁ::—-"—'” \B\SC;7‘<:::§
& -~ —_————)mm ——m=
[+ Or ~————
(]
w
a
-15lllllllllllIlLlIll'llllJllllllllILIIl]
4] 10 20 30 40 50 60 70 80 90 100
.TIME (SEC)
3.0 P
- /7 \ 8rmmon.:/eo
& //’_b\¥\-—
3 227 ==y
4 ~ o=
21.5— ——f==7 A 3
< _\‘~___ ’O__,_.—-—'—' - \\\ ——
g I~ i i — ==
\\_‘ _’,E._/--—
g _ ~—rfe e e ———
u"OlllilllJlll'lLl‘lIIlllllJll'lIJ_IL-ILlllIJ
0 10 20 30 40 )] 60 70 80 30 100
TIME (SEQ)
3 10
g o 5
- —————— H-—-————— H-———————fg————— 2w ————— -————
—-—
[77] - ———— \ O~
g8 [T = ——Om————— o-——="" N LT
[+ ) :
z [
(&)
® =
5 |
"-IOIIILILI IIIIIIJIIIIIIIIILLI 111 ILIIILIJ
0 10 20 30 40 50 60 70 80 90 100
TIME (SEC)

FIGURE 11. MR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS
(CONCLUDED)

95



125 H/10.00
e HCHD - H
- \\\\
£ |z=—— 8=
= r Al e o,
— 0b— :8‘\\ - O D——— ————— OD——————
§ B \\\ﬂ‘\
|78 | -
x ~—_
= Te— - e
125l 1 | 1 L1 1 | I ] 1.1 l | | I L1 1 I 11 1 ) I Y Y WO O | | | -
0 10 20 30 40 50 60 70 80 30 100
TIME (SEQ)
8o . ths
R 8 CAsCHD
= //———Q\
& 2
=170 ___‘::::@____==__=8________ ———————— Fge————— é_g ______
— B ~ — e e — - \\ /\\\ /
m ~
o | N
60lIlJlllllllIIIIlllIIIlllII\LVSPIIIIIIIIIIIJ
0 10 20 30 40 S0 60 70 80 30 100
. TIME (SEC}
10_ HDOT
HDOTCHD
@ -
= 0-—<:—-————E ———————— T - —El——;r‘:——:‘@::-;:—-
— }— \-_—/,O ________ _O,——_\__——O_-——_____\__‘O—
o
= _
o
-10 llllIl'IllIllllllllllllllllllllIll'lll
0 10 20 30 Y0 S0 60 70 80 o] 100
TIME ( SEC)

FIGURE 12. WS~PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS

96



DEGREES

EPR THROTLE/20

o

LONG CONTROLS (DEG)

15

PITCHI CERS
ALPHAL OEQ)

3.0

1-5

10

| - l | S | | IJ | I . I | .| l 1 1 1 l 1 1 1 l . | il LIJ
0 10 20 30 %0 S0 60 70 80 0 100
TIME { SEC)
.-_—- -~ 8 g«:oru/zo
B // E\\
—_— -
:—\ Q_,——/—“:Za:*y : %\:\‘——
= ~——_————m—————— /./’- \\“
ANy A
N~ ——
rJ_LLIlII[llIIIIIILlllllIJILI lll]ilJ[lllJ
0 10 20 30 40 S0 60 70 80 0 100
TIME (SEC)
- FLRe /s
——————— €--——-——4%f--—-——-———-f-——=—=F=—-gg--——————-HfH-—————
E ./—"'——o‘———‘ \“——-—’~-§0\
—\\\_/—0 ————— _’___o—’—— \\‘——

-10

v by v Ly b b g b Ly g T
0 10 20 30 40 50 60 70 80 90 100
TIME (SEC)

FIGURE 12. WS-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS
(CONCLUDED)

97



s g At
—_— [~ \\\ﬂ\\
p = | ) — St .
= =zfq——————_ B o S S
s | .l
¥ B \‘~—_g ________ e ——
-'125_111 11 IlJJlIIIIl I Ilillll lllllJ_J
] 10 20 30 40 80 90 100
TINE (SEC]
so[ cas
- 8 CASCNO
nor -
70 e e e e e e e e e e e -z
E = Pe=mm==== T :8’7 -<\\ -8 /—874———-
‘D ——— —
S / NG //
— ~
SOIIIIIIIIILIIIiIILl[ Lll\’plllllllllll
0 10 20 30 40 80 90 100
’ TIHE (SEC)
mr ¥BoTeno
a - ——
= Op—————= H-—-—————— H-—-————— H-————— —==8I— ————fe ===
— ~ ———
— l— N —_— — —O— \____O______/
o
= L
-10 |llllll'lLlJ4ll|lllllllllllllllIlLllJlJ
1] 10 20 30 40 S0 60 70 80 LIy 100
TIME (SEC)
FIGURE 13. EP-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS

98



DEGREES

EPR THROTLE/20

LONG CONTROLS (DEG)

1s[— PLTCHI DEG)
© ALPHALDEG)
- —-———’—j—’ﬂt‘;:\\\
~—————f]-——————— B ———=—T -~ — - ——
0_?_:\__’_:8 ________ _o—-——__’" - h%-——==-n
-15 P 1 I | | I 11 l_l L1 l 11 1 l l 1 1 l L1 1 J 1 1 1 | - l 1t 1
1] 10 20 30 40 50 60 70 80 30 100
TIME (SEC)
3.0f 8 err
B THROTLE/20
4
— -~
- PaniatSte: L
1.5}— ”ﬁ-’—ﬂ; \Qﬁ ______
S~ —O*"-_,—’ - e ——
U - —_—
NN R
| N—_——— P m————
ol_l_1 L' I 11 | 1.1 l 111 I 1 1 1 l 1 1 1 l 1 1 1 l | .| | ) I I l | |
0 10 20 30 40 80 60 70 80 0 100
TIME (SEC) .
10[— DELE
_______ e _ jﬁ\ jgns
—\_ //:Sﬂfh’“""\// ATt N
P U — o~ v ~om—————
O.—w
-
-wr_l 11 J I | I_LIJ 1 1 li 1 1 1 J P 1 LI [ I | I | -l L1 I _LJ
0 10 20 30 40 50 60 70 80 0 100
TIME (SEC)

FIGURE 13. EP-PIFCGT

GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND NO GUSTS

(CONCLUDED)

99



125: 8 mn_o:
r TTTTTe- B -
= OL :8~‘\\\\ © T O-————-
& | B s SR
E - \“Ns_ﬂ_\ ______
-1zs_||||J||||11 llIIIIIIlJIIIIIIIJj—I—IIIIIJJJ
) 10 20 30 40 50 60 70 80 30 100
TIME (SEC)
8o cRs
B 8 S
- ”\-f\
oI 7
gm:—;_,......:-@-':”;.c-_—::.‘g-{ ______ f-m—————— fJ—————— 7.:8 ______
[<2] B NA—'\_,"’"O’ AN .....__\../.I
a N\
(] - \ d/ .
so11|J1|||41|J|1|||||J111|L\1| lLllI]lllll
) 10 20 30 40 50 60 A) /iu 80 90 100
TIME (SEC) N\
o[ vooTenD
=
73] — /"‘\
2 < ———— G- —————— A= ————— ;3-———%———:§*:::=—
— ~ —_—— — —— ”..—— ~ /
T I e e ~—
= | | | | | || | 1
- 11 1 11 111 L1 1 L1 111 [
wu — 10 1 20 S 30 : Y0 50 60 70 80 a0 100
TIME (SEQ)

FIGURE 14. SR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND A lkt GUST

100



DEGREES

EPR THROTLE/20

LONG CONTROLS (DEG)

15[ PITCH DEG)
- ALPHAL DEG)
- /’/‘\O\
i s
-15— | llJ 1 1 I 1 IJJ | IJ'| 1 1 1 I 1 1 1 I | 11 | L1 1 1 11 l L1 1 I
0 10 20 30 40 S0 80 70 80 0 100
TIME (SEC)
3.0
L_ //\EK Bmonuu
B ’4,/*0\l-::“
1.5 — /va’ - TR A
AR R - A
N AN\, Ngr AT N AN TN
oLt 1) l | I .| I 111 I L3 1 l 1 1 1 I | | J | | | | I 1 1 IJ 1 1 IJ

10

-10

0 10 20 30 40 S0 €0 70 80 30 100
TIME (SEC}
B DELE
FLAP/S
- e —————— e ————— He————— N ————— e ————
N e~ \ ~~Os
~— - s N

TN oo by s by e by Ly AN AT A
0 10 20 30 40 50 60 70 eo 0 100
TIME (SED)

FIGURE 14. SR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND A lkt GUSTS
(CONCLUDED) '

101



128 H/10.00
———— HCMD -
£ _———_:\\3~~
- —— ——— e
- == ————— A
- Op— 8§\\\ -e _______ —O ———————— -e ——————
5 L ~——
i L T
b ““E\\\ — T e
-1250 | | 1| ] 1t | | I - | I L1 1 l [ | [ .| J Pt l—l Pt 1 I L]
0 10 20 30 40 50 60 70 80 30 100
TIME (SED)
8ol (]
= 8 cASCND
- /"'""\
& e (e 4’0
il ot pan R MR bl > ORI . U Fl-————— D 3 e
a |
Q _ \
BO-III lJlllllllIJlll |\ lﬁJJJJJll'lll
0 10 20 30 L{v] 60 \/70 0 100
TIHE (SEC]
10 ) HDOT
- i HDOTCHD
@ -
E 0—<:'—————B ———————— H-——————— Hr————— ::%———76———56:::—75
- - \‘____Q——-—~——\__0..-———~_____O_.__.—-"— ~N_/
=] =
v =4 | . )
-10 | l 11 1 IJ 1 1 I .11 | 1 11 IJ | l‘l 111 I | I | I 1l 1 IJ ] 1 | I
1] 10 20 30 40 50 60 70 80 0 100
TIME (SEC)

102

FIGURE 15. MR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND A lkt GUST



1s| PITCH(DEG)
- — ALPHAC DEGH
-
—_ o =

H Feg—r—~—fgr—mono—mA-roxoe T AT DN - IS

& 0/ N U T T T T - —

o

Ty} -

[=)

-15 lllllJIJlIIII'IIJJIJ4!Ill4IIIII lJJllLJ}
0 10 20 30 40 50 60 70 80 90 100
TIME (SEQ)

3.0 n err
| -~ \_ﬂ 8 r;non.:/zo

8 —~ /.—"‘\O\\.——

< = v S

= r* “Neg

— -~ '~

"61'5':_\ =T ~7 \:8,,“-\'\/

— -~/

o« L“\/\r"\gr/\,/\ﬂj‘\'ﬂtl""'

& =
0lllJllJlllJlllllllIlLllIlllIlllJIIlllljl
0 10 20 30 40 S0 680 70 80 30 100

TIME (SEC)

o 1o DELE

o | FLAP/E

- |m——————— l-——————— H-—————— fH-———— A"’ﬂ( ——————— H-—————

n ” f‘-‘»ﬂ

2 = e =T N O

f=} B O Py d T O L Tt ~ ~N

E of—

=z

(=] -

(=}

» =

5 L

'J-IOIIIlllIJllJllllllJlllllllllllllllllll
0 10 20 30 10 S0 60 70 80 e 100

TIME { SEQ)

FIGURE 15. MR-PIFCGT GLIDESLOPE CAPTURE AND TRACK WITH WINDSHEAR AND A 1kt GUST
(CONCLUDED)

103



30

N
o

HORIZONTAL WIND
o

(+ TO RUNWAY - kt)

0 70 80
TIME (SEC)
ISE
so |
54 o
= -
S &
O -
]
3F-=)
&
§,i,'15t41 T A L1 L,l 1 l [ | 111 41 L,l 1 l L1 l
0 10 20 30 40 50 60 70 80
TIME (SEC)

FIGURE 16. HORIZONTAL VERTICAL WINDSHEARS AFFECTING THE AIRCRAFT DYNAMICS

104






1. Report No.

NASA CR-3968

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
Extensions to PIFCGT:

Multirate Output Feedback

and Optimal Disturbance Suppression

5. Report Date
March 1986
6. Performing Organization Code

7. Author(s)
John R. Broussard

8. Performing Organization Report No.

IR 684105
10. Work Unit No.

9. Performing Organization Name and Address

Information & Control Systems, Incorporated

28 Research Drive
Hampton, VA 23666

11. Contract or Grant No.
NAS1-17493
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration

Washington, DC 20546

Contractor ‘Report

14. Sponsoring Agency Code
505-45-33-04

15. Supplementary Notes

Langley Technical Monitor:

Richard M. Hueschen

16. Abstract

This report contains the theoretical development and the practical application
of new control synthesis procedures for digital flight control systems.
theoretical developments are the solution to the problem of optimal disturbance
suppression in the presence of windshear.
a linear quadratic cost function, the command generator tracker for trajectory fol-
lowing and the proportional-integral-filter control structure for practical implemen-
Extensions are made to the optimal output feedback algorithm for computing
feedback gains so that the multi-rate and optimal disturbance control designs are
computed and compared for the Advanced Transport Operating System (ATOPS). The
performance of the designs is demonstrated using closed-loop poles, frequency domain
multi-input sigma and eigenvalue plots and detailed nonlinear 6-DOF aircraft simu-

. lations in the terminal area in the presence of windshear.

tation.

The new

Control synthesis is accomplished using

17. Key Words {Suagested by Author{s))

Optimal Control - Theory

Optimal Control - Application
Digital Flight Control System
Multirate Control, Output Feedback
Disturbance Accommodation

18. Distribution Statement

Unclassified - Unlimited

Subject Category 08

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages 22. Price
122 AO6

For sale by the National Technical Information Service, Springfield. Virginia 22161

NASA-Langley, 1986



End of Document




