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ABSTRACT 

This report contains the theoretical development and the practical 

application of new control synthesis procedures for digital flight control 

systems. The new theoretical developments are the solution to the optimal 

multi-rate sensor output feedback problem and the solution to the problem 

of optimal disturbance suppression in the presence of windshear. Control 

synthesis is accomplished using a linear quadratic cost function, the com­

mand generator tracker for trajectory following and the proportional-integral­

filter control structure for pract.ical implementation. Extensions are made 

to the optimal output feedback algorithm for computing feedback gains so 

that the multi-rate and optimal disturbance control designs are computed and 

compared for the Advanced Transport Operating System (ATOPS). The perfor­

mance of the designs is demonstrated using closed-loop poles, frequency 

domain multi-input sigma and eigenvalue plots and detailed nonlinear 6-DOF 

aircraft simulations in the terminal area in the presence of windshear. 
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In general, matrices are represented by capital letters and vectors 
are underscored; exceptions'to these rules are only made when they are 
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1. INTRODUCTION 

The proportional-integral-filter (PIF) control system is an established 

control structure which can be used to design and implement digital flight control 

systems for aircraft. The theoretical developments for the ~IF design using an 

infinite time quadratic cost function, one sample rate and full state feedback is 

presented in Refs. 1-3. Successful flight tests of a PIF-like structure in 

position form is presented in Ref. 4. 

The PIF control system in a state space representation integrates well with 

the command generator tracker (CGT). The CGT, discussed in Refs. 5, 6 and 7 is 

a method for computing the trajectory plant states and controls follow when the 

output of a plant is tracking the output of a model. The command model can be 

used to generate coordinated turn paths for heading changes, smooth vertical 

height transfer paths for height changes or a complete three 'dimensional tra­

jectory for curved path tracking. 

At present, all flight tested PIF control laws have been designed using 

full state feedback and the Linear Quadratic Regulator (LQR) approach. Problems 

have occurred due to the inability to accurately represent the actual aircraft 

dynamics and flight control system in the design aircraft model. For example, 

aircraft actuator dynamics, disturbance dynamics (gusts, wind shear), comple­

mentary filter states, and analog prefilter states have not been included in 

PIF design models used to determine the full state feedback control law gains. 

The LQR approach would require feedback of all these states as well as the 

orginal aircraft states in an attempt to favorably, but impractically, alter 

filter and actuator dynamics as well as the aircraft's response to disturbances. 

The LQR approach guarentees + 60 DEG of phase margin and -6dB to + 00 dB gain 

margin, but may require feedback loops that are not practical to implement. 



The difficulties with full state feedback have been partially alleviated by 

extensive simulation of the PIF control system using a realistic truth model and 

iterative adjustment of quadratic weights in a more simple synthesis model. 

A fundamentally better approach is to use limited state or output feed­

back in the PIF synthesis procedure. The realistic truth model can be used as 

the design synthesis model. Only practical measurements and feedback paths are 

used to design the PIF control gains. 

Until recently, the main obstacle to the use of the limited state feed­

back approach has been the unavailability of a fast, reliable algorithm to 

compute the output feedback gains. This obstacle was recently removed by 

an algorithm whose derivation is presented in Ref. 8. This algorithm provides 

a fast, efficient and reliable method to obtain optimal output feedback .gains 

for large order systems. 

Some progress in the use of output feedback, PIF and the CGT has been made 

in Ref. 3. Chapter 2 in the report begins with a more complete derivation of 

PIF with output feedback. The discussion in Chapter 2 provides the basic 

developments that the rest of this report will further investigate and genera­

lize. 

The first generalization, discussed in Section 2A, is the use of the 

hierarchical or nested approach to design the feedback gains using optimal 

optimal output feedback. In the nested approach, one control loop can be 

designed with specific feedback paths, the designed control loop is closed, 

then the next control loop can be designed with a different configuration of 

feedback paths. Only a few small changes are required to convert the output 

feedback PIF design procedure to use the nested approach. The nested approach 

is a form of decentralized control, Ref. 9. 
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The theory of digital control design using PIF/CGT currently includes only 

the case where control effectors and sensor are all operating or sampled at the 

same rate. Due to practical considerations, sensor measurements, such as INS 

(Inertial Navigation System) signals, and external position measurements such 

as MLS (Microwave Landing System), GPS (Global Positioning System) and ILS 

(Instrument Landing System) may be available only at sample rates slower than 

the rates of onboard sensors used to stabilize inner loops. The space shuttle 

is an example of a vehicle which had to contend with sensor measurements avail­

able at different rates. An important problem is to extend the PIF/CGT output 

feedback approach to the multi-rate sensor measurement case. The multi-rate 

sensor approach is particularly useful in designing inner-loop/outer-loop sensor 

control systems. The optimal multi-rate limited state feedback approach is 

derived in Chapter 3 and represents an important new contribution to multi-rate 

control synthesis. 

A contribution to the theory of control system design using the CGT was 

made in Ref. 5 in the research area of model following,and in the research 

area of disturbance suppression. Thus far, no flight tested PIF/CGT con­

trol systems have exploited the disturbance suppression aspects of the CGT 

theory. 

An aircraft disturbance that has received considerable attention recently 

is wintlshear. In some types of windshear in the aircraft landing approach, 

the aircraft encounters a head wind, then a strong vertical downdraft, then 

a tail wind. Windshear is a type of disturbance that a flight control system 

must safely accommodate. 

A number of questions arise, however, that must be resolved in order to 

design a PIF/CGT control system with windshear disturbance assommodation. CGT 

theory assumes that the plant dynamics do not affect the disturbance dynamics. 
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Windshear disturbance models are different, in that certain aircraft states 

(height) affect the windshear dynamics. The first problem to be resolved then 

is to rederive CGT theory with the aircraft states coupled to the disturbance 

states. This derivation of a more advanced version of CGT theory is presented 

in Section 4B. A new type of matrix algebraic equation occurs during the develop­

ment of the advanced CGT and is recognized as a generalized matrix Riccati equa­

tion. A new, globally stable algorithm which finds a solution to the general­

ized matrix Riccati equation is presented in Appendix A. 

Another CGT problem concerns the fact that the theory solves the distur­

bance problem for perfect accommodation. Perfect or ideal disturbance accommoda­

tion is accommplished by feeding forward the disturbance states in the control 

system. The disturbance states are not usually all exactly measured and the 

disturbance states not measured are sometimes difficult to estimate; A third 

question regarding the use ofCGT theory concerns the use of imperfect, but 

adequate and practical, disturbance suppression. Given a PIF/CGT control 

system, which does not perfectly accommodate windshear, what is the effect of 

windshear on the aircraft states and how does changing the control gains alter 

the aircraft closed-loop windshear response? This question is resolved in Section 

4C. 

The steady state effect of stochastic disturbances on the closed-loop 

system is solved in Section 4C using a new concept called the stochastic star 

trajectory. The stochastic star trajectory shows that the steady state re­

ponse of a plant driven by deterministic and stochastic disturbances decomposes 

into a deterministic plant response and a random or stochastic plant response. 

In Section 4D, a new type of optimal output feedback cost function is created 

using the stochastic star trajectory. The,quadratic cost is used to minimize 

the zero mean stochastic component and an algebraic matrix cost is added to 
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the quadratic cost in order to minimize the deterministic component of the 

steady state plant response. 

The last section in the report applies the new theories of multi-rate 

output feedback and disturbance accommodation to the design of an ATOPS air­

craft path tracking autopilot. Nonlinear six degree of freedom simulations 

are made with the aircraft flying through wind shears. The energy probe sen­

sor, Refs. 10 and 11, is included in the measurement vector and the effect 

on the design is presented. 
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2. OPTIMAL LIMITED STATE FEEDBACK PROPORTIONAL-INTEGRAL­
FILTER/COMMAND GENERATOR TRACKER 

A derivation of the discrete-time output feedback proportional-integral-

filter (PIF) control system combined with the command generator tracker (CGT) 

is presented in this chapter. A full state feedback derivatirin of the PIFCGT 

control system is presented in Ref. 2. The first derivation uses the usual 

integrated optimal output feedback approach. The nested approach, which takes 

advantage of the structure flexibility offered by output feedback is presented 

in the second section. In the nested approach, each control loop is designed 

individually in a sequential order. Each designed control loop is closed before 

the feedback gains for the next controller is computed. 

A. Integrated Approach 

The perturbation state vector, ~x, of the aircraft dynamics driven by control 

inputs, ~u, and white Gaussian noise ~w is augmented to contain the perturbation 

control driven by the control rate, ~v. Integral states ~~ are augmented to the 

state vector to operate on the aircraft output, ~y, 

[~x] [A 0 B_j' r~xl ro] [~w] 
~! ~ : ~ ~ l~~J + l~ Av + ~ 

(1) 

The control, ~v, is used to optimize the quadratic cost function 

00 

J = fo 
[Ax A. AujT Q [~~] + 

T 
~v Mvdt (2) 

The control rate, ~v, is assumed to be constant over the sample interval, 

~t. The continuous-time optimization problem is converted to the equivalent 
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discrete optimization problem using the sampled data regulator, Ref. 12. 

After converting the system dynamics and cost function, further simplifying 

assumptions and objectives are introduced into the optimization problem. Both 

the control position, ~u, and control rate, ~v, are required to be constant over 

the sample period. The discrete integrator ~~k is to be implemented digitally 

using Euler integration. The measurement noise present in the integration of 

~y by the integrator is neglected. The objective of the control, ~v, is changed 

from driving aircraft states to zero, to driving ~y, used in the integrator, ~o 

track the output, fly , of the command model: 
m 

~xmk+1 = IPm ~xmk + fm ~umk+1 

~ymk = Hm ~xmk + Dm ~umk+1 

In the derivation to follow, ~u is assumed to change once at t and remain m 0 

(3) 

(4) 

constant thereafter. In implementation, the command model control input is not 

constant and the command model dynamics are nonlinear. When ~u is changing, m 

~y and ~y become mismatched and their error is governed by the closed-loop 
m . 

dynamics and the integrator. When ~u is constant, ~y eventually tracks ~y m .. m 

* along the star trajectory,~x * and ~u (assuming no plant parameter variations). 

The star trajectory is discussed in Refs. 1 to 3. The star trajectory is a 

linear system version of the nominal trajectory which is used when discuss-

ing tracking for nonlinear systems. 

The star trajectory for discrete-time systems with a constant command model 

input is determined from 

[
AX:] = [AU A12] [~xmkl 
~uk A21 A22 ~um J (5) 
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The feedforward matrices A .. satisfy 
1.J 

[

il>-I) r] [All 

H D A21 

- A12] 

A22 
= [AU ::-1) ::1 rm] (6 ) 

which is a solvable matrix algebraic equation. The star trajectory is a con-

venient notational abstract and is not generated in implementation. 

The tracking objective of the control law is introduced into the-design 

by defining the variables 

~Xk = ~~ - ~x~ ~ii = ~u - ~u* k k (7a, b) 

~vk = ~vk - A21 (~xm,k+l -~xm,k)/~t (8) 

~t. = ~F, - ~F,* - T [ - T -T ~~~] ·k k ·k ~~ = LlXk ~uk (9a,b) 

and the discrete cost function, 

00 

J = k~-l 1 ~x~ Q~xk + 2~x~ }hVk + ~v~ R~vk ~ (10) 

At this stage, the star trajectory for the integrator is undefined, but is 

chosen as part of the optimization process. 

The star trajectory, by definition, must satisfy the plant dynamics 

with noise sources set to zero. Subtracting the star trajectory dynamics from 

the plant dynamics and using Eqs. 7 to 9 yields 

~Xk+l1 r il> 0 r 1 r LlXk 0 Wk 

6(k+1J l6:H 
I 

MDJ l6~k + 0 ~- + 0 (11) vk 

~uk+l 10 0 I LlUk '1;~t 

-.-- -.--
¢ r -

":k 
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The plant is assumed to be tracking the model for constant ~u previous to t =0. m 0 

* The cost function starts at -1 since ~u , and ~~ are to be determined. The 
-1 

* * quantities, ~u 
-1 

and ~x are defined in Eq. 10 using ~u instead of ~u 1. 
-1 m,o m,-

The standard use of the linear quadratic cost function is to regulate nonzero 

initial condition states to zero. The cost function in Eq. 10 is constructed 

so that the non-zero initial conditions in ~x are caused by the change in the 
'-1 

command input at t- =0. The control law optimally transfers the system between 
,0 

star trajector:i.es for a step change in urn. In practice, the control law performs 

well if urn changes intermittently or "slowly" varies. 

To clarify the construction of the cost function, a brief scenario of a 

step change in ~u is presented. At k=-2, the plant is tracking the star , m 

trajectory and the 

* trajectory for ~x 

error quantities ~x and ~u are zero. At k=-l, the star 
-2 -2 

* 
-1 

and ~u is switched to the trajectory being generated by 
-1 

the new ~um which wilLoccur at k=O. The command model is chosen so that the 

command model states at time k=O are immediately affected by the command model 

control at k=O as shown in Eqs. 3 and 4. The new star trajectory causes large 

errors to appear in ~x which is being weighted in the cost function. The 
-1 

control increment, ~v , 
-1 

a variable to be optimally chosen, feeds back the large 

~ii . 
o 

errors to generate The control ~ii , generated from ~u and ~v l' immediately, 
o -1-

moves in a direction to reduce the tracking error when ~u is changed at k=O. 
m 

What this means in implementation, as shown in Eq .... .3 and Eq. 40, is that um,k .is 

fed forward and directly affects uk. Similarly, starting the cost function at 

k=-l and computing the star trajectory at k=-l, using ~u at k=O, aids in 
m 

* choosing ~~-l as discussed in the next paragraph. If the cost function were 

to start at k=O, (the standard optimal control starting point for the non-zero 

initial condition problems), then ~vo would be optimally chosen to affect ~ul. 
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The proper optimal value for ~u and ~S would be unclear; ~u and ~S would 
o 0 0 0 

become unknown initial conditions in the plant state vector. 

The next assumption used is that not all aircraft states are available 

for feedback. The states that are available for feedback are represented as 

-
G v k 

-
/:'YMEAS C a a /:,x /:,v 

·k 

/:,u 
= 

a I a /:,u 
+ a 

M. 0 a I /).f. a 
k k 

The states observed from the aircraft model are corrupted by white Gaussian 

measurement noise /:,vk with covariance, V. The control internal states /:,u 

and ~e are noise free. 

Tfie globally optimum solution for the problem construced thus far is a 

singular Kalman filter combined with the full state feedback gain from the 

linear quadratic regulator, Ref. 13. The globally optimum solution is not 

(12) 

necessarily robust, Ref. 14, or straightforward to implement. Greater flexi-

bility in the control design process is obtained if the quadratic cost is 

minimized using a prespecified control structure. The class of control laws 

considered in this chapter are restricted to be of the form 

/:,v
k - [Ky Ku K~]I/:'YMEAS = K Yk (13) 

/:'u 

-
/:,~ 

k 
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For the plant dynamics shown in Eq. 11, the feedback gain constraint 

shown in Eq. 13 and the following conditions: 

E ~Llwk t 0 

E ~Llvk t 0 

~ - -T ~ E Llx Llx 
;...1 -1 

S - -T ~ ElLlwk LlVjS = 

E ~ 6wk 6W~~ lVOkj 

~ - -Tt E Llvk LlVj = VOkj 

x 
o 

ESLlw LliT ~ 
l k -1 S E~LlVk LlxT ~ 0 

-1 

the cost function in Eq. 10 ,is modified as follows (Ref. 15):: 

(14a,b) 

(15a,b) 

(16) 

(17) 

J(K) = 21 (J + J ) (18) 
• t s 

ex> 

J t = kl_1 Llx!k Q Llxtk + 2 Llx!k M 6Vtk + 6V~k R 6Vtk 
(19) 

J = lim 1 
E I J 1 ~xT k Q tcr k + 2 ~,? k ~ ~v k + ~vT k R ~v k I 

S N-+«> N+l =- s s s s s s 
(20) 

J(K)~ t tr I P(W + Xo)! + ~ trlfT 
(i,T PI' + ~) K V I (21) 

The notation "tr" denotes the trace of a matrix. J
t 

is the transient cost with 

noise sources set to zero while J is the average stochastic cost. The trade­
s 

off between J t and J is accomplished by varying X with respect to W. The 
s 0 

effect of X is like adding pseudo process noise to the plant to imp~ove con­
o 

trol system robustness. The benefits of using Eq. 18 as the cost function are 

discussed further in Ref. 15. 

The matrix, P, in Eq. 21, satisfies the Riccati-like equation 

P = ~~L P ~CL + CT KT R K C + Q - M K C - CT KT MT (22) 

11 



~CL is the stable closed-loop plant matrix, 

~CL = ~ - r i( e (23) 

The necessary conditions for J(i() to have a minimum, are derived in Ref. 8 

The necessary conditions are: 

o There must exist a gain K so that ~CL is stable. 

o The gain K must satisfy 

(rT p r + Ii) i( ( e· s eT + V ) = (rT p ~ + £fT) seT (24) 

where 

s - -T ~CL S~CL + (w + Xo) + r i( V i(T rT (25) 

A gain which satisfies the necessary conditions is not necessarily unique. 

* * The next objective is to determine ~~. The choice of ~~ has a strong 

effect on ~u , the first control effort that occurs when it is learned the 
o 

~u has changed. From a purely tracking viewpoint, the noise sources cause 
m 

the states and controls to vary with zero mean about a trajectory which trans-

fers the states and controls between star trajectories. The cost minimized to 

determine the state and control trajectory which intercepts the star trajectory 

is given by Eq. 19 where the noise sources are zero. Substituting the control 

system into the cost, J t , yields, 

Q 
...... 

00 r ~ 

J t = k~-l ~-T [Q _ M i( e - eT i(T MT + eT i(T Ii i( e] ~ xtk tk (26) 
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Only the initial value of the state vector is unknown in the transient cost, 

00 

_ I -T (-T) k+1 -(- Jk+ 1 -
J t - k=-l fuc t ,_l ¢CL Q ¢C fu!:t,_l (27) 

The infinite sum converges to a matrix, P, if ¢CL is stable. The matrix P 

is the same as the matrix P·shown in Eq. 22, hence; 

-T - - -T P PxE; 1 boX_I J = ~x 1 P ~x 1 = ~x 1 P t - - - xx xu 

pT P PuE; xu uu 

pT 
xs 

pT 
uE; PsE; 

For tracking without noise, .6x_liS. given by 

~x = -1 ffuc_ 1 
* ~x_1 

~u_1 - * ~u_1 

* ~E;_1 - ~S_l 

but 

[:j = [

All 

A21 

A12] 

A22 
[&m-l] 

ts.u 1 m-

hence 

~X_1 = /A12 ( urn_1 - u ) 
mo 

A22 ( urn_1 - u ) rna 

* '* ~s_2 - ~S_l 

(28) 

(29) 

(30) 

(31) 
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-
Treating the increment in the integrator as an unknown, ~ 

value for ~ that minimizes J'is given by 

-
aJ/d~ o 

The solution is 

- T T 
P22 ~ + (Px~ A12 + Pu~ A22 ) (~um_1 - ~umo) 

* From Eq. 33, the value for ~~k must be given by 

where 

* ~~k [0 A] r~ k ] 
l6U:k+1 

-1 [ T T ] A = -P~~ Px~ A12 + Pu~ A22 

o 

* * ~~-2 - ~~-1' the 

Evaluating Eq. 34 at k=-1 and k=O and substituting into Eq. 33 demonstrates 

that the solution is correct. Using the feedback gain in Eq. 13, the per-

turbationcontrol system is 

~Uk = ~uk_1 + ~t ~vk_1 

~Vk_1 = (I - ~t Kti) ~vk_2 - Ky (~Yk-1 - ~Yk-2) - K~ (~~k-1 ~~k-2) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

The previous value, ~vk_2' is subtracted from ~vk_1 to obtain the incremental 

expression in Eq. 37. The perturbation variables and trim variables are elim-

ina ted from the incremental expression using a large number of substitutions 
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and cancellations (discussed in Ref. 2). The use of output feedback in Eq. 37 

does not significantly alter the derivation in Ref. 2, which is for full state 

feedback. The implementable equations for the PIFCGT control law become, 

~k = .uk_ l + ~t vk_l + A2l (xm,k - xm,k-l) 

ek_l = YMEAS k-l - CAll xm k-l , , 

vk_l = (I - ~t Ku) vk_2 - Ky(ek_l - ek_2) - ~t K~(Yk_2 - Ym,k-2) 

K 
urn .... 

f ~ 

+ (K~ A + Ky C A12 + Ku A22 ) (um,k - um,k-l) 

(38) 

(39) 

(40) 

The gain, K , which feeds forward the command generator forcing function 
um 

increment, is a linear combination of feedback and feedforward gains. The 

effect of K is to improve the transient response of the outer-loop control 
um 

system by changing closed-loop system zeroes without affecting closed-loop 

poles. 

B. Nested Design Approach 

The output feedback control synthesis approach discussed in the previous 

section is an integrated control design. Each measurement is fed back to ev~ry 

controller. The feedback gains from measurements to controllers are all computed 

simultaneously. If a control actuator fails or a control actuator saturates, 

and becomes inoperative for a length of time, the control feedback network 

undergoes a structural change. The feedback gains designed simultaneously do 

not guarantee that the reduced controller situation will remain stable. 

Situations also occur where it is not desirable to feedback every measure-

ment to every controller. In a jet transport, for example, feeding back pitch 

rate, normal acceleration and the height integrator output to the elevator, but 
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not to the throttle, can be a reasonable design constraint. 

The nested design approach allows the designer to specify the measure-

ment vector for each controller. In addition, each control loop is designed 

in a sequential hierarchical manner with critical control loops designed first. 

The design of the nested approach begins by choosing a controller and the cor-

responding desired measurement vector. The optimal output feedback optimiza-

tion problem is solved to obtain the feedback gain. The control loop is closed 

to create a new plant model. The next controller in the hierarchy is used for 

design with a new measurement vector and the process is repeated. The con-

trollers can fail or saturate in a particular order from the outer most con-

troller loop to the inner loop anq the closed-loop system remains stable. 

Since the development of the nested approach, two alternative techniques 

have been developed that are considered to be more useful for designing decen-

tralized measurement feedback loops and accommodating control surface failure. 

An integrated approach to the decentralized measurement feedback loop pro-

blem is presented in Ref. 16. An integrated appraoch to the combined decen-

tralized control and control surface failure problem is solved in Ref. 17. 

The nested approach applied to the PIFCGT design begins as in Section 

2A up to Eq. 21. Computational considerations require that the design should 

proceed from control loop to control loop with no change to matrix dimensions. 
. _ A A A A _ 

The design matrices ~, r, C, Q, M, R, W, V are used to form a second group 

of design matrices where one controller is used for design and there are 

other controllers that have not been designed yet. Controllers not designed 

yet and integrators not used for feedback yet,cause .~ to have uncontrollable 

states with eigenvalues at 1. 

The following operations are performed on the second group of design 

matrices (~1' r l' (;1" Ql' M1, WI' Vi) to create a stabilizable optimization· 

problem: 
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fl - null columns in r for controls not being used 

C
1 

- null rows in C for measurements not being used. These measurements 

include controls and integrators not desired. 

A A 
Q

1 
- not changed from Q 

A A 
Ml - not changed from M 

A A 
Rl - not changed from 'R~but must have full rank 

~l - Diagonal elements of ~ for control states not previously designed; 

integrator states not being used, are artifically stabilized by 

placing a small negative number in the diagonal position. 

WI - Positive scalars are added to diagonal elements of W for the same 

-
control and integrator states stabilized in ~l 

VI - Positive scalars are added to diagonal elements of V for measure­

ments whose rows are nulled in C1 

The changes cause ~l to be stabilizable; control states and integrator 

states which are neutrally stable and not used in the design are made unobservable, 

uncontrollable and stable. The states that are uncontrollable and unobservable 

- " do not cause ~ and S to reduce in rank. The changes to VI and R (if required) 

-T - A --T 
cause r1Pr l + Rand esc + VI to be invertible so that Eq. 24 has a solution. 

None of the changes adversly affect the design of the control gains for the 

nested loop being synthesized. An alternative,but computationally unattrac-

tive approach,would be to reduce the dimensions of the design matrices to 

eliminate unobservable and uncontrollable states. 

After a design for one control loop is completed the system matrices are 

altered as follows: 

~ = ~ - fl Kl C1 
(41) 

A A -T T A - A - -T T AT 
Q = Q + C1 Kl R Kl C1 - M Kl C1 - C1 Kl M (42) 
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A A _ T -T 
W = W + r l KI V KI r l 

The alterations reflect the fact the Kl is now a known matrix and must be 

(43) 

absorbed into the design. Using the new system matrices, ~ , r , C , .•• etc • 
. 2 2 2 

can be computed for the second controller in the hierarchy. The operations 

continue until all control loops are designed. When the nested design is 

completed by solving m different optimal output feedback problems, the total 

control system is 

v
k [Kl C1 + K2 C2 + ... Km em] Xk = K C xk 

The PIFCGT design requires that the P matrix defined in Eq. 28 be used to 

* find 11~ • The P matrix in Eq. 28 is equal to the P cost matrix obtained in m 

the last nested design performed to obtain K • 
m 

18 
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3. OPTIMAL MULTI-RATE LIMITED STATE FEEDBACK 

A multi-rate control system has sensor measurements, computer calculations 

and control commands performed at a variety of different sampling intervals. 

The advantage of using a multi-rate control system is to better utilize the 

computational capability of the on-board computer. Critical control loops with 

fast dynamics can operate at fast sampling rates, while less critical control 

loops with slow dynamics can be processed at slow rates with little degradation 

in overall performance. Multi-rate control designs have been incorporated in a 

number of digital flight control systems for aircraft. 

Computational capacity is continually improving, making the need for multi-

rate controls less attractive. A problem that will persist, however, is that 

all sensor measurements will propoably not be available at the fastest com-

putational rate of the control computer. 

An aircraft, for example, using a full complement of on-board and external 

sensors, (such as the microwave landing systems (MLS», often does not have 

these sensors all sampled at the same rate. Body mounted sensors are available, 

or may have the equipment potential to be available, at a fast sample rate, 

while INS and aircraft geographical position measurements are available at 

slower rates. 

A procedure that allows each sensor to be feed back at the sensor's 

sample rate is developed in this chapter using an optimal, multi-rate output 

J 

feedback synthesis approach. The increased computational capacity available 

when control commands are computed at different rates is also a feature of 

multi-rate sensor feedback. The control computations for slow rate sensors 

need only be performed at the sample rate of the sensor. The control calcula-

tions for control commands to the actuators are assumed to be performed at the 

fastest control rate. Each sample rate of the different sensors is assumed to 

be an integer multiple of the fastest control rate. The assumption placed on 
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the sensors sample rate guarantees that the design model and cost function for 

the control design problem are periodic in time. 

Optimal multi-rate limited state feedback does not appear to have been 

previously investigated in th~ literature. The optimal full state feedback 

multi-rate control problem has been investigated in Ref. 18 using a state-

space approach. The optimal control solution in Ref. 18 is a periodic sequence 

of full state feedback gains. The derivation in this report will take advantage 

of the structure flexibility offered by optimal limited state feedback and 

require that the multi-rate gain which minimizes the quadratic cost function 

be constant. A constant feedback gain reduces implementation complexity 

over a periodic sequence of feedback gains, particularly as the number of 

cycles in the period increases. 

A. Aircraft System Model and Cost Function 

The measurement vector is assumed to be separable into two groups, Yf and 

y . 
s 

The Y
f 

measurements are sampled at the fast rate r
f

• The y vector is the 
s 

collection of sensors sampled at rates slower tnan tne fast rate. The number 

of slower rates is assumed to be n. The n slow rates are grouped into the. 

ordered sequence r s1 ' r s2 ' r . The fast rate divided by the slowest sn 

rate, rf/r , is an integer" r ~ TIle sequence of fas"t and slow' measurements sn 

repeats itself every r samples in a periodic fashion. A slow rate sensor output 

is held constant at the last sampled value during the fast sample times when the 

slow rate sensor is not being measured. 

The linear time-invariant model of the dynamics of the plant is represented 

at the fastest rate as follows: 

xk+l = <P xk + r uk + wk 
(45) 
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The control is uk and x
k 

is the state vector of the plant model. The white, 

zero mean Gaussian process noise disturbing the plant is wk with covariance W. 

The control system is assumed to have the fixed structure, 

uk = - [Kf Ks] [Yf,k] 

Ys,k 

(46) 

K
f 

and Ks are, respectively, the fast rate constant feedback gain and the slow 

rate constant feedback gain. The measurement vectors are represented as 

Yf,k Cx. + v f k f K , 
k 1, 2, 3 .•• 

i = 1,2, ..• , n 

Y . k = C . ~ + v . k S1, S1 k S1, 
k = 1, rf/r . + 1 , 2 rf/r . + 1 , ••• 

S1 S1 

Ysi,k Ysi ,k-1 k f 1, rf/r.+ 1 ,2 rf/r . + 1 , ••• 
. S1 S1 

The vector Y
si 

is composed of the slow sensor measurements that are 

available at the slow rate r .• At the fast rate, Eq. 48 represents time 
S1 

samples when the Y . slow rate sensors are measured. The Y . measurement is 
. S1S1 

held constant for all other fast sample times as shown in Eq. 49. The white 

Gaussian measurement noise sources are v
f 

k and v i k with covarances Vf and , s , . 

Vsi • 

Equations 47 to 49 can be combined with the system model dynamics in 

(47) 

(48) 

(49) 

Eq. 45 using the periodically time-varying matrix~. The periodically time­

varying matrix ~ is given by 
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0 sl,k 0 

0 s2,k 

l1k = (50) 

0 <5 sn,k 

where 

i = 1, 2, ••• , n 

o . k I; k 1, rflr . + 1 2 rflr . + 1, (51) 
S1., S1. S1. 

0; k ~ 1, rf/r . + 1 
S1. 

2 r/r . + 1, 
S1. 

Using the periodic matrix, ~k' the slow measurements can be combined into 

the measurement vector y and represented at the fast rate as follows: 
s 

Ys,k+l = ~+1 (cs ~+1 + vs ,k+l) + (I - ~k+l) Ys,k 

The combined plant and slow rate measurement periodic model has the follow-

ing state space representation: 

f1 oJ fxk+l ] r~ 
~~1 Cs I LrS.k+l ~ lo (1-:+1 J [~.J + [:J uk + 

[: ~J [::'k+J 

The diagonal elements of ~ switch between zero and one depending on 

whether the slow measurement should be represented by Eq. 48 or Eq. 49 at 

(52) 

(53) 

the kth sampling interval. The l1k matrix repeats itself every r samples. One 

cycle of ~ matrices are written as l1
1

, l1
2

, ••• l1r • The slow measurement 

observation matrix C is composed of the matrices C 1 to C packed rowwise, 
ssw 
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C
sl 

C 
C = I s2 1 s 

C sn 

Multiplying Eq. 53 by the matrix rIO] , the 

tk+1 Cs I 

(54) 

inverse of the 

left partition matrix in Eq. 53, changes the plant representation to a standard 

time-varying difference equation format:: 

xk+1 ~k xk 
r

k 
~ ~ ..-.-- ~ 

I~k+ 1 J [IP 0 ] [Xk ] [ -r 1 
l:s,k+l = 6k+l Cs·I-~+l YS,k+ ~1 csr.J 

uk + 

Ek Wk --- ~ 
[~+: cs ~:] [::,kJ 

(55) .... 

The feedback control system is represented as follows using the periodic 

model states: 

K C K v
k -- -- --

~ =- [Kf 
Ks J [:f :J [::,J -h KsJ [:f'kJ (56) 
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The cyclic nature of the matrices shown in Eq. 55, means that there are 

recurring moments in time where the matrix cycle begins and ends. Substituting 

Eq. 56 into Eq. 55, the periodic closed-loop plant representation for a cycle 

which begins at index k and ends at index k+r-l is 

xk+1 (¢l - r 1 KC) xk + El wk - r1 KVk 
(57) 

~+2 = (¢2 - r2 KC) ~+l + E2 wk+1 - r2 KVk+1 
(58) 

xk+ = (¢ - r KC) xk+ 1 +-E wk+ 1 - r -Kvk+ 1 r r r r- r - r- r r-
(59) 

where 

r 1 r ¢ 0 ¢ 0 

¢l I '" C • 1-i\21; 
¢2 I i\3Cs¢ 1-i\ 

2 s - 3 

¢ 0 ¢ 0 

••• (!l = I '" C <:; 1-i\r I; ¢ = r-l r I i\lCs¢ 1-i\ 
r s' 1 

(60) 

The other matrices in Eqs. 57 to 59 are similiarly defined. 

The multi-rate optimal output feedback cost function can be constructed 

in a variety of ways. The following simple approach is used in this develop-

mente The sampled-data regulator cost function at the fast rate in standard 

form is given by 

J ~ M~ 2~ E {JJ x~ u~J[:T :J [:~]} 
• L 

(61) 
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The weighting matrices Q, M, and R can be obtained from a continuous quadratic 

cost and plant model using the fast sample rate and a suitable software package 

such as ORACLS, Ref. 19. The additional state, y caused by the slow measure­
s 

ments, is arbitrarily introduced in the cost with no weight 

J = lim 
N-tOO 

1 I N 
2N E . I 

1=0 [x~ ll~] [:T :][::l! 
Q = [~ :J: M = [:] 

(62) 

(63) 

The y states are a part of x and can be weighted using Q. The design objective 
s 

is to determine the control system gain shown in Eq. 56 which minimizes the 

cost shown in Eq. 62. 

It can be shown that if a periodic system is stable, then the covariance 

of the states of the periodic system reach a periodic steady-state. Assuming 

the periodic system shown in Eq. 55 can be stabilized using Eq. 56, the peri-

odic steady-state covariances are the solution to the following sequence of 

equations: 

T T T T 
82 = (¢1 - f1 K C) S1 (~1 - f1 K C) + E1 W E1 + f1 K V K f1 

S3 

S1 

T T T T 
(~2 - f2 K C) S2 (~2 - f2 K C) + E2 W E2 + f2 K V K f2 

(~ - f K C) S 
r r r 

(~ - f K C)T + E W ET + f 
r r r r r 

K V KT fT 
r 

(64) 

(65) 

(66) 
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The periodicity is shown in Eq. 66 where the covariance matrix equation 

cycle begins to repeat itself. In periodic steady-state, the cost function 

can be rewritten as 

J = lim 
Ns-7<Xl 

1 Ns 
2rN I 

s i=O 

J cycle 
1 

2r J cycle (67) 

The integer, N , is the number of periodic cycles in N. J 1 is the sum of s cyc e 

the weighted states and controls for one cycle. 

'" Q 
..... 

r ~ 

T T T T T [ ]l J cycle =. tr (Q - M K G - C K M + C K R K C) 51 + 52 + ... + 5r 5 

+r tr l KT R K V ( (68) 

B. Necessary Conditions For An Optimal Controller 

Adjoining the equality constraints shown in Eqs. 64 to 66 to Eq. 68 yields, 

J 
1 

2r J + cycle 

T T T T T 
tn (-52 + (@1 - r 1 K C) 51 (@1 - r 1 K C) + El W El + r 1 K V K r 1) PI + ... 

+ tr (-51 + (@ - r K C) 5 (@ - r K C)T + E W ET + r K V KT rT) pT (69) 
r r r r r r r r ·r r 

The Lagrange multipliers are PI to Pre The conditions necessary for J to have 

a minimum are aJ/85 1 = ° ... 8J/85 = 0, 8J/8P l = ° ... 8J/8P = 0, 8J/8K = 0. . r r 

The 8J/85. sequence determines the equations for P.: 
~ ~ 

. T '" 
Pr = (¢1 - r l K C) PI (@1 - r l K C) + Q (70) 
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PI 
T A 

(~2 - r2 K C) P2 (~2 - r2 K C) + Q 

P 1 = ($ - r K C)T P ($ - r K C) + Q 
r- r r r r r 

The necessary condition aJ/aK determines the equation for the feedback gain 

K: 

T . T T T 
R K (C SI C + .•. + C Sr C ) + <rl PI r l + ... rr Pr rr + r R) K V + 

T T T T T T 
r l PI r l K C S1 C + ... + Tr Pr rr C Sr C = r l PI ~ SI C + ... + 

rT P 
r r 

T T [ T ¢ S C + M SI C + ... S r r r CTJ 

(71) 

(72) 

(73) 
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4. NUMERICAL APPROACHES 

The numerical solution for S. and P. given a feedback gain matrix, K, 
1 1 

are obtained by expressing one of the covariance matrices and one of the 

cost matrices at the slow rate. Starting with Eq. 64, S2 can be substituted 

into Eq. 65 and so on until Eq. 66 is reached. When Eq. 66 is reached the 

only unknown is the matrix S1' 

where 

'" '" * S1 = ~1 S1 ~1 + W 

'" ~. (~ - r K C) (~ 1 - r 1 K C) ... (~. - r. K C) 
J r r r- r- J J 

'" ~ r+1 I 

- T T T 
W. =E. WE. +r. KVK r. 

J J J J J 

r '" _ ¢T 
W* = I ~·+1 Wj j+1 . 1 J J= 

The covariance equation shown in Eq. 74 is easily solved. Once S1 is 

(74) 

(75) 

(76) 

(77) 

(78) 

known, the other covariance matrices can be reconstructed from Eqs. 64 to 66. 

The matrix @1 is the representation of the plant at the slowest rate. The 

periodic system is stable for a given K matrix if @1 has eigenvalues within 

the unit circle. 
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The solution for the cost matrices, P., are similarly determined: 
1 

P = ~T P 
r r r 

~ + Q* 
r 

(79) 



-T 
<P. 

J 

T T T 
(<PI - fl K C) (<P2 - f2 K C) .•• (<Pj - fj K C) 

'¢T = I a 

r 

* _ I -T A 

Q - . 1 <P. 1 Q <P. 1 J= J- J-

The remaining numerical problem is the solution for K in Eq. 73. Equation 

73 is a Lyapunov-like equation with more than 2 entries, i.e., 

(80) 

(81) 

(82) 

Al X Bl + A2 X B2 + .•• Ar+2 X Br+2 C (83) 

The method currently being used for finding X is to use Kronecker products, 

[ 
T T T ] Bl ® Al + B2 ® A2 + ••• + Br+2 ® Ar+2 E = .£ (84) 

and solve for E by inverting the Kronecker product matrix sum. The Kronecker 

product matrix sum yields a symmetric, positive definite matrix if K is the 

optimal feedback gain. The vector x consists of the columns of the matrix X, 

stacked. Likewise, the vector c is a stacked version of the matrix C. 

A. Numerical Algorithm for Solving Necessary Conditions 

The proposed algorithm is a straightforward extension of the convergent 

algorithm discussed in Ref. 8. 

1. Choose a starting gain Ko which stabilizes ~1. Choose a positive 

scalar a < 1, so that J(K.) is decreasing in the iterative procedure. 
1 

2. Solve for SI in Eq. 74, then it~ratively compute S2 through Sr starting 

from SI. 

3. Solve P in Eq. 79, then iteratively compute P 1 to PI starting from 
r r-

P . 
r 
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4. Solve for K in Eq. 73. 

5. Find the next gain in the sequence 

Ki +1 = Ki + a (K -Ki ) (85) 

6. If J(Ki +1) - J(Ki ) and I I dJ/dKi I I are less than some convergence 

criterion stop, otherwise set i = i+1 and repeat the sequence starting 

from 2. 

If the algorithm has convergence difficulties or the Kronecker product 

matrix is not positive definite, reduce a and start over from the most recent 

stabilizing gain as discussed in Ref. 8.. At present, conditions which guarantee 

algorithmic convergence for a>O are unknown. 

B. Application To The PIFCGT Design Approach 

The multi-rate optimization problem is performed at the fast sample rate. 

Incorporating the command generator tracker into the design problem along with 

integrators and control difference weighting requires careful consideration. 

The derivation which follows results in the PIFCGT control system that can be 

implemented to control nonlinear dynamics and use multi-rate feedback. Assump­

tions have been made to determine a solution. The integrator is computed at the 

fast rate but can use fast or slow measurements in the integration process. The 

control position is always updated at the fast rate. The command generator 

tracker and star trajectory are assumed to be computed at the fast rate. The 

measurement system does not affect the tracking objectives. A multi-rate com­

mand generator tracker is possible, but is beyond the scope of this effort • 

. Starting from the plant dynamics at the fast rate, the dynamic equation 

for the error variables xk and uk is determined exactly as in Eqs. 7a, 7b and the 

vk dynamics are adjoined to the model: 
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~J k+I = ~ J [:t + [8:J vk 

The slow rate measurements tracking command error is defined as follows: 

Ysk = Ysk-1 + ~ (Cs xk - Ysk- 1) 

The variable Ysk is defined by the above equation. The plant state, y , and 
s 

* - * star trajectory, y , cannot be separated for the y k variable'because y s s s 

is undefined. The state and star trajectory can be separated for C . ~ , 
s~ k 

C. x
k s~ 

C . xk s~ 
* C . xk s~ 

The integrator for slow and fast measurements is 

~k+1 * ~k + ~t Hs Ysk + ~t (Yfk - Yfk) 

* Subtracting ~ from both sides yields 

- -~k+1 = ~k + ~t Hs Ysk + ~t Hf xk + ~t Df uk 

where 

Yfk = Hf ~ + Df uk 

Grouping everything together, the multi-rate PIFCGT design model is 

; I <I> 0 r 0 x 0 

~tHf I ~tDf ~tH ~ 0 
= s + ~tIl V

k 
+ 

u I 0 0 I 0 u 

Ys I k+1 1~+1 Cs 
<I> 0 ~+1 Cs 

r I-~k+1 Ys k 0 

(86) 

(87) 

(89) 

(90) 

(91) 
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I 0 0 w
k 

0 lltH
f 

0 Vfkl (92) 

0 0 0 vsk 

Llk+1 Cs 
0 Llk+1 

The cost function is constructed similiar to Eq. 62. The measurement equation 

is 

-
Yf C

f 
0 0 o II x I I vfk 

- -l; 0 I 0 0 

:.J 
0 (93) = + 

- 0 0 I 0 0 u 

_0 0 0 I 0 
s~ 

k k 

Optimizing the cost function produces the constant gain feedback control system 

~ ~ [Kf K, Ku Ks]1 :f (94) 

l; 

u 

-Y 
s "k 

The next step in the derivation is to increment the measurements. The deriva-

tion for incrementing the measurements, which involves simple algebraic mani-

pulations and careful attention to time indexes, becomes lengthy if more than 

one slow rate is assumed. The derivation continues with only two rates, r
f 

and r where 
s 

r/r f 
r 
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The generalization to more than one slow rate is straightforward. The slow 

measurement increment for y . using the definition in Eq. 87 is 
S1 

* * Ysik - Ysi,k"':l = (Cs xk - Cs ~-r) - (Cs xk - Cs xk_r ); k=l, r+l, 21:'+1 (96) 

YSik - YSi k...:l = 0; , ki=1, r+l, 2r+l (97) 

The error increment 

[- - ] Y fk - Y f,k",," 1 - -e
k 

- e
k

_
l 

= 
- -Y - Y sk s,k-:-l 

(98) 

can.be expanded to 

e
k 

- e
k

_
l ~fk - Yf,kCI .J- [Cf AU (xmk - xm,k-l J 

!:,k (y k - Y k- ) !:,k C All (x k - x k-) s s,.r s m m, r 

~f A12 (um,k+l - umk) ] 

!:, C A (u - u 
k s 12 m,k+l m,k-r+l 

(99) 

* The derivation for finding £; parallels the derivation in Section 2A up. to 

Eq. 33, -:which becomes 

-1 [T - - - ] £;_1 = -P£;£; Px£; X_I + P£;u u_ l + P£;y Ys,-l (100) 

The star trajectory can be separated from X_I and u_ l but not from Ys,-l: 

* -1 [ T * * - ] £;_1 - ~-l = - P£;£; Px£; (x_ l - X_I) + P£;u (u_ l - u_ l ) + p£;y Ys,-l (101) 
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.6.Ys,-l (1-.6._ 1) .6.Ys ,_2 + .6._1 
* Cs (x_1 - x_I) 

Since only two rates are considered, .6._1 is either 0 or I. If the matrices 

A and B are defined to be 

-1 T 
A = -P

ss 
(Pxs A12 + Psu A22 ) 

-1 
B = -P

ss 
(P

Sy 
C

s 
A12) 

then 

* s = -1 
* . s 2 + A (u - u . 1) +: .6. 1 B (u. - u . 1 ) - mo m,...,. - mo m,-

(102) 

(103) 

(104) 

(105) 

If .6._
1 

= I then,. Eq. 102 is substituted into Eq. 101 to yield the B matrix in 

Eq. 104. If .6._1 =0 .then, the term Ys ,-2 should be used in Eq. 101, but 

Y 2 is zero sfnce the control system is assumed to be tracking the star 
s,-

trajectory for k<-l. 

Using a time index, the integrator star trajectory is defined using 

Eq. 105 as 

* * sk - sk-1 = (A + .6.k B) (um,k+1 - umk) 

* If um is changing then sk is periodic if the B matrix is nonzero. 

* is constant then sk is constant. 

If u 
m 

Incrementing the integrator and using the integrator star trajectory 

yields 

Sk - ~k-1 = Sk - Sk-1 - A (um,k+1 - um k) - .6.k B (umtk+1 - u~ k) 

34 

(106) 

(107) 



where 

~k - ~k-l = ~t Hs Ys,k-l + ~t (Yf,k-l - Ymf,k-l) 

Defining the variables 

Y~sk = Hs Ysk 

Ymsk = Hs Ymk 

then, from Eq. 87, 

-
Y~sk (I - ~) Y~sk-l + ~ (Y~sk - Ymsk) 

where ~k is a matrix that satisfies the equation 

Hs \ = ~k Hs 

If ~k is a zero matrix then ~k is a zero matrix. If ~k is a ~s x £s 

identity matrix then i\ is an m x m identity matrix. 

(108) 

(109) 

(110) 

(111) 

(112) 

Grouping all the results together the multi-rate output feedback PIFCGT 

implementation equations are 

(from Eq. 86) 

Uk = uk_l + ~t vk_ l + A2l (xm,k - xm,k-l) (113) 

(from Eq. 99) 

e
k

_
l 

- e
k

_
2 

[

Yf k-l - Yf k-2 - Cf All (xm k-l - xm k-2) J 
" " 

~ (y -.' Y ) - ~ C A (x -x ) 
k-l s,k-l '. s,k-r-l k-l s 11 m,k-l m;k-r-l 

(114) 
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(from Eq. 111) 

y. = (I - A ) Y + l::. (y - Y ) 1:'s k-Z K-2 1:'s k-3 k-Z 1:'s k-Z ms k-Z ~ " So , '-;, , , 
(115) 

(from Eqs. 94 and 99) 

~-1 (I + ~t K) ~k-2 + [Kf KsJ [~k-1 - ~-2J + 

~t KC; (YC;s,k-2 + (YC;f,k-Z - Ymf,k-Z» + 

(-KC; A - KC; L\-1 B - Kf Cf A12 - Ku AZZ ) (umk - um,k-1) + 

-K A 1 C A1Z (u k ~ uk) 
s K- s m m~-r 

(116) 

Although the feedback gain is constant and the CGT feedforward gains are 

constant, the implemented feedforward gain is periodic because of the in-

tegrator star trajectory. 
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5. DISTURBANCE ACCOMMODATION FOR WINDSHEAR DYNAMICS 

One of the primary purposes of a flight control system is to stabilize 

the aircraft about a desired trajectory in an enviroment where external dis-

turbances are affecting the aircraft dynamics and sensor measurements. Some 

of the disturbances are difficult to model and are best characterized by zero-

mean Gaussian white noise. Other types of disturbances are best described by 

differential equations driven by Gaussian noise. Examples of the latter type 

of disturbance include the well known Dryden model for gusts, steady-state 

atmospheric wind and windshear. The objective of the control system is to 

stabilize the plant while having the capability to cope with the disturbances. 

Disturbance accommodation has a history of investigation with progress 

made by a number of researchers. The procedure for computing the control 

system in this paper is to minimize a linear quadratic cost function. Efforts 

in this area include Refs. 20 to 23. The objective in the references in to 

construct two signals in the control variable, u, i. e., 

t:.u = t:.uf + t:.u
a 

where, t:.uf , is designed to stabilize the plant while the other signal, t:.u
a

, 

is chosen to accommodate the disturbance. One method for determining t:.u 
a 

exactly using feedforward control is discussed in Refs. 5 and 24." The 

effect of the disturbance is eliminated on selected system outputs. Feed-

(117) 

ing forward the disturbance in t:.u usually requires some form of dynamic com­
a 

pensator (observer, servo compensator), since the disturbance is rarely mea-

sured. The feedback system for t:.u
f 

usually does not contribute towards steady­

state disturbance suppression. 
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An alternative to Eq. 117 is investigated in Refs. 25, 26, and 27 where 

only the ~uf signal is used to stabilize the plant and eliminate the effects 

of the disturbances on selected system outputs. The disturbances are suppressed 

using feedback gain eigenstructure assignment. 

An alternative to the approaches just discussed (which can be considered 

more practical) consists of constructing a feedback controller which strives 

to minimize, rather than completely eliminate, the effect of disturbances on 

selected system outputs. Investigations into the more practical approach have 

been made in Ref. 27 using pole assignment to achieve stability and Ref. 28. 

The disturbance accommodation procedures in Refs. 21 to 28 all assume that 

the disturbance dynamics are not affected by the plant dynamics. Models for air­

craft windshear have a plant representation where the aircraft plant states affect 

the windshear dynamics as discussed in Ref. 29 and presented in the next section. 

Changes in aircraft height cause the windshear state to change in value. 

In the rest of this chapter a new tack is pursued for computing disturbance 

suppression control systems using the optimal control approach. The designer 

can specify any control structure that can be modeled using output or limited 

state f~edback. The chosen control structure mayor may not be able to exactly 

suppress the deterministic disturbance. The plant model and disturbance model 

are expressed in discrete time. The plant model and disturbance model can be 

completely coupled and each model can be driven by Gaussian white noise. The 

objective is to design the control system gains optimally so as to minimize 

the stochastic effects of the disturbances on the plant states and minimize 

the deterministic effect of the disturbance on selected plant outputs. The 

resulting cost function used to determine controller gains has two distinct 

parts. 
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The dual cost is accomplished using a result presented in Ref. 30 and devel-

oped further in this chapter. The steady-state plant state and control response 

can be decomposed into a deterministic component dependent only on the distur-

bance which satisfies a differential equation and a zero mean stochastic re-

sponse due to the~uassian white noise sources. The necessary conditions for 

the dual cost function to have a (local) minimum are derived in this chapter. 

A numerical algorithm is also developed to solve the optimal disturbance mini-

mization problem necessary conditions. The special case where the disturbance 

is not affected by plant states is presented. A design example using PIFCGT 

is discussed in Chapter 5~ 

A. The Winds hear Model 

A basic wind model relationship in the aircraft's local level plane at 

a position above the earth's surface for windshear was developed by C. Belcastro 

and A. Ostroff at the NASA Langley Research Center, Ref. 29. The NASA Langley 

windshear model is presented in this section. The wind shear plus steady wind 

affecting the longitudinal dynamics of the aircraft is modeled as 

[::J. = ~::l. + ~:] z. 

Defining the following variables 

w -e 

w 
-ce 

= ~:] 

= ~:J 
e 

(118) 

(119) 

(120) 
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Sz" [:~ (121) 

The relationship can be restated as 

w =w +s Z 
e ce z e 

(122) 

i 
w is the wind velocity vector in the earth-fixed reference frame, w is 

e ce 

the constant wind velocity, s is the wind shear gradient vector and z is the 
"Z e 

vertical height of the position in the atmosphere above the earth's surface. 

The wind velocity in aircraft body axis is given by 

wb He w = He w + He S Z e cez e 
(123) 

where 

He 
fce -se] 

~e ce 
(124) 

and e is the aircraft Euler pitch angle. Taking the derivative of Eq. 123, 

yields, 

wb = e Lew + H w + e Le· S Z + Hes Z + Hes Z ce e ce Z e Z e Z e 
(125) 

where 

Le [

-se -ce] 

ce -se 
(126) 

Equation 125 can be simplified by factoring e Le and substituting Eq. 123, 

Wb = e Ie wb + He Sz ze + He wce + 'He Sz ze (i27) 
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where 

I = fO -11 
e ~ ~ 

The perturbation representation of Eq. 127 is 

. . 
LlWb = e 

o Ie LlWb + Ie wb /:,e + Le s Z Lle + z He o 0 zo eo eo 0 
LlS 

z 

+ Heo szo 

+ z He eo 0 

, 

M. + Le w Lle + He e 0 ceo 0 

/:'s + He z 0 
s zo LlZ 

e 

s Lle 
"2:0 

LlW + z Le ce e 0 

The 0 subscript indicates the variable is representing the nominal value at 

(128) 

(129) 

the desired flight condition. The vectors wand s are assumed to be con-ce z 

stant, Le. 

W = s = LlW LlS = 0.0 'ce z ce z 

The windshear gradient perturbation vector is assumed to be 0, LlS = 0 
z 

Substituting Eq. 130 into Eq. 129 and simplifying, results in the following, 

LlWb e Ie LlWb + Ie wb Lle + z Le s Lle + He s LlZ o eo 0 ·zo 0 20 e 

Eq. 131 can be rewritten as 

LlWb = A /:,wb + H . LlX + H. LlX 
W x x 

where 

. 
A = e I 

W 0 

(2x2) 

(130) 

(131) 

(132) 

(133) 
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~ 
0 0 z L s 

~ eo eo zo 
H = 

x 0 0 0 
(4x5) 

(134) 

~ 
0 0 Ie wbo 

H s J eo zo 
H. = x 0 0 0 o . 
(4x5) 

(135) 

I1xT = [em I1w I1q l1e I1zJ (136) 

Grouping the wind velocity model in Eq. 132 with the standard representation of 

the plant dynamics produces, 

~:i ~ [:J -~x ::J l:J + [:j 8u 

(137) 

The matrix D is obtained from the l1u and I1w column vectors in the A matrix, 
w 

D = 
w [-AU -A 

w 
o 

Multiplying Eq. 137; ;bY[I 

H. 
x 

oJ 

~J 

A = [Au A A w q Ae AzeJ 

produces the final plant representation 

rxl 
ll1W~ 

= 

fH :H.A ~x x 
Aw ::xD] ~J + [H:J 8U 

(138) 

(139) 

The wind vector, I1wb , is affected by the plant states but not by the control 

states since it is easily shown that H.B is a zero matrix. Representing the x 

aircraft plus wind dynamics in discrete time, however, causes the discrete 

control effect matrix r to have entries in all locations. 
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B. Deterministic Disturbance Accommodation Using The Command Generator Tracker 

The objective of this section is to determine the plant star trajectory 

when the plant output, y, is tracking a model output, y and the plant dynamics 
m 

are affected by deterministic disturbances. The combined plant model and dis-

turbance model are represented as follows 

[~k+1 = [:w ::J [:1 + [:J fi"k 

!::.y = H 
·k x !::.~ t Hs !::.Sk 

(140) 

(141) 

The aircraft perturbation state vector is !::.~k' the perturbation control vector 

is !::.uk ' the disturbance vector is !::.sk and the selected perturbation outputs 

in which the effect of the disturbance is to be suppressed·is !::.yk. The out­

put of a command generator, !::.y , is generated by the command model 
m 

!::.x k+1 = ¢ !::.x k + r !::.u m, m m m m (142) 

!::.y k H !::.x k + D !::.u m m m m m (143) 

The command generator state is !::.x k and 6u is the command generator con-m m 

trol that is assumed to be constant. The dimensions of !::.Y
m 

!::.y and !::.U are 

assumed to be equal. The aircraft output tracks the model output while sup-

pressing the disturbance along the star trajectory. Using the same structure 

as in Chapter 2, i. e. a linear relationship, the star tr~jectory is con-

structed as 

t:] = [::: 
5

12J 
522 

[
!::.xmkl + [5I;3] !::.sk 

!::.um J _ 523 

(144) 

k 
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Equation 144 is the solution to the tracking problem if the 8ij matrices 

exist. The unknown feed forward S., matrices can be shown to satisfy solvable 
1J 

, * * algebraic relationships by expressing ~~+1 - ~~k first using the plant 

dynamics, Eq. 140, then using Eq. 144 and equating the two expressions for 

* * ~~+1 - ~~. Without going through the details, the algebraic relationships 

for the 8" matrices are as follows: 
1J 

[$-r-8:3 H ) 
w (r-81i w)ll8U 

o J ~21 
8

12
] = 

822 

lll::m-
r

) 8

1

::

m

] 
(145) 

r ~ r81~ = 1s13 $w ~ DW] + [813 Hw 813 rw] [813] 
~ ~ bJ L Hs 0 0 823 

(146) 

A numerical solution for'8
13 

and 8
23 

in Eq. 146 is obtained by inverting 

the quad partition matrix 

~ J-
I 

= [nu 
n

21 

:12J 
22 

and multiplying Eq. 146 by the inverse: 
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rl~ = r.ll ~ 1813J $w + lOll OJ rl~[Hw f
w]r13l 

~23J ~21 oj ~23 ~21 0 \:23J ~23J 

rnuD~ + nl2Hs] 
~21Dw + °22Hs 

(147) 

(148) 



Equation 148 is a generalized Riccati equation. A convergent algorithm for 

solving Eq. 148 has been developed and is d'~scrtDed' in Append±X A.. There1l'lay 

be more than one solution or there may be no solution to Eq. 148. After S13 

and S23 are determined, they can be substituted into Eq. 145 and the result 

can be numerically solved using the technique discussed in Ref. 6. The con-

trol tracking problem solution in Eq. 145 is not independent of the distur-

bance rejection solution because of the coupling matrices Hand r . 
w w 

Any control system of the form 

* * ~uk = ~uk + K Cx (~xk - ~xk) (149) 

can be ideally used to stabilize ~ and eliminate the steady-state disturbance 

in ~Yk' In the control system, K is the feedback gain and C is the observa­x 

tion matrix for the system states. Equation 149 can ·be rearranged as 
u u -f -a 

~uk = K Cx~~k + O{23-K"CxS~3) ~sk + (S21-K CxS U ) ~xmk + (S22-K CxS12) AUm (150) 

which is the form shown in Eq. 117. If S23-K Cx~13 is of full rank, the distur­

bance state, ~s, , must be measured or observed in order to implement Eq. 150. 
~ 

It is evident from Eq. 150, that if K is to stabilize the plant and eliminate 

the disturbance in the ~y, response without using a u control term, then K 
'~ -a' 

must satisfy the equation 

S23 - K Cx S13 = ° (151) 

A feedback gain which satisfies Eq. 151 does not always exist. Necessary and 

sufficient conditions for the existence of a gain K which satisfies Eq. 151 are 

given in Ref. 26 for the case where Hand r are zero matrices. w w 

The next section addresses the question: What is the st~ady-state plant 

response to the disturbance and white noise sources if the control system shown 

in Eq. 1501's implemented? The formulation includes the case of an estimator 
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observing ~~,since the estimator dynamics can be adjoined to the aircraft 

dynamics to extend the state dimension of ~. 

C. The Stochastic Star Trajectory: 

The command generator tracker and the star trajectory have always been 

applied to deterministic models. In this section, noise processes are intro-

duced into the models and the concept of the star trajectory is used to in-

vestigate the tracking response of the stochastic system in steady-state. The 

objective to determine a design technique for accommodating windshear dynamics 

that are driven by random noise. 

The aircraft model and disturbance dynamics shown in the previous section 

are generalized further and represented as follows: 

Discrete Perturbation Aircraft Model: 

~+l = (M~ + r~~ + Dw ~~ + ~ (152) 

Disturbance: 

~~+l = ¢w ~~ + Hw ~ + rw ~~ + ~ (153) 

Measurement: 

l1~ = Cx ~ + Cw l1~ + ~ (154) 

Control System: 

l1u = - K ~z q ~ - K Cx ~ - K Cw l1~ - K ~~ (155) 

The zero-mean, white Gaussian noise sources in the above models have covari-

ances:.:. 

E!~~I=w (156) 

E !" "T I~ W ~~ s 
(157) 

E!~ ~ I = Wsx 
(158) 

E!~~I~v (159) 
, 
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All other cross covariances between the disturbance and measurement noise sources 

are assumed to be zero. The C matrix in Eq. 155 allows for the fact that some w 

sensors, such as an airspeed sensor, measure a combination of the aircraft and 

disturbance states. The disturbance and plant process noises are allowed to be 

cross correlated as shown in Eq. 158. 

Given the control system structure shown in Eq. 155, the steady-state 

response for ~k is assumed to satisfy the equation 

~ - 831 6sk + [AI AZ ••• J Ibwk 

Llwk+l 

+ [B 1 B 2 ••• ] I Llvk 

Llvk+l 

. + [C l C2 ···J1Llcrk 

Llcrk+l 

The assumption used in Eq. 160, where an infinite sequence of unknown feed-

(160) 

forward matrices is used to describe the star trajectory, has been used before 

* In the final answer for Llxk , the infinite sequences will be re-in Ref. 5 

placed by a difference equation once the Ai' Bi , and Ci matrices are known. 

The solutions for S3l' A's, B's, and C's.are determined by computing 

* * Llxk+l - LlXk as discussed in the previous section. Using the plant dynamics, 

* * the expression for Llxk+l - Llxk becomes 

* * Llxk+1 - Llxk = (cI>-r K C 
x 

* Using 153, 155, and 160 Llx_k 

* I) Llx, + (D -r K C ) Llsk -r K Llv, + Llwk 
K w w K 

* Llx_k results in 

(161) 
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6xk+1 - 6x: = S31 [(¢W - rw K Cw) - ~~Sk + S31 (Hw - rw K Cx) ~x: - S14 rw K ~vk 

+ 514 Ok + [-AI A1-A2 A2-A3 ... ] I~Wk 
~wk+l 

~wk+2 

+ [-Bl B-l~B2 B2-B3 ••. Jr~k + [-°1 CCCz C2-C3 •.. J ~ak (162) 

~vk+l ~ak+l 

~vk+2 ~ak+Z 

* Substituting the expression for ~~ from Eq. 160 into Eqs. 161 ana 162 and equating 

the two expressions yields solvable equations for the S31' A., B., and C. matrices. 
1. 1. 1. 

Defining the matrices 

¢ = (¢ - r K C ) - S (H - r K C ) 
cx 31 w w x 

(163) 

x = rK - S r K c 31 w 
(164) 

expressing Eq. 160 in the z-domain and substituting the solutions for the Ai' B
i

, 

and C
i 

matrices into Eq. 160 yields: 

* r -1 -2 ..;3 2 ] 
!::,.x = 831 ~s -L¢c + ¢c z + ¢c z +... ~w 

+[¢-1 X + 
c c 

[ 
-1 

+ ¢c S31 + 

¢-2 X z + 
c c 

-3 2 ] ¢ X z +... ~v 
C C 

-2 -3 2 ] 
¢ c S31 z + ¢ c S31 z +. •• ~ a 

S31 satisfies the generalized Riccati equation 
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(<P - rK C ) 8
31 

+ 8
31 

(<P - r K C ) - 8
31 

(H - r K C ) 8
31 

+ (D -r K C ) =0 x w w w' w w x w w 

Equation 166 can be expressed in the form of Eq. 200 of Appendix A if (<P - r K C ) 
x 

is invertible. 

The infinite z-domain sequences in Eq.165 have the closed-form relationship 

[ J-1 [ -1 -2 2 ] I - z <P~ = I + <Pc z + <Pc z + ••• (167) 

8ubstituting Eq. 167 into Eq. 165 and converting back to the time domain yields 

* ~ ~xk = 831 ~sk + ~xk (168) 
-X c --~xk+ 1 = <Pc LlXk + ~wk - 831 ~.ak + (831 rw K - r K) ~v-k (169) 

(166) 

Equations 168 and 169 are an important contribution of the report. In steady state, 

the closed-loop aircraft response to deterministic and stochastic disturbances 

can be decomposed into two components. One component, 831 ~k' shows how each 

state in the aircraft is affected by the disturbance states that satisfy a dif-

ference equation. The other component, ~k' shows how the white Gaussian noise 

sources are corrupting the system response. Equation 168 leads to a natural frame-

work for finding the feedback gain K as discussed in the next section. 

* * If the solution for ~k is substituted into the control system, ~uk can 

be rewritten as 

* ~ ~uk = (-K Cx 831 - K Cw) ~k + fuk 
(170) 

~u = - K C IY. - K ~v k x k k 
(171) 

In steady-state, the control response decomposes into a component dependent on 

~Sk and a zero-mean component, 6Uk , driven by measurement noise and the zero­

mean plant response, 6Xk • 
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D. Optimal Disturbance Suppression: 

The objective of this section is to construct a cost function representing 

desirable objectives for the plant and control system shown in Eqs. 152 to 155, 

then minimize the cost function by finding the feedback gain K. The derivation 

is cumbersome if rand H are non-zero matrices. The matrices rand Hare w w w w 

assumed to be zero for the derivation in this section. After the optimal gain 

is derived with rand H zero, the optimal gain solution with rand H non-zero w w w w 

is presented for completeness. 

If rand H are non-zero, the feedback gain, K, can affect values in the w w 

S3l matrix and the response of ~xk. The feedback gain cannot affect the response 

of ~sk. Hence, a useful cost function with rand H zero for disturbance min-
w w 

imization is 

J 
e E /~il fi.-.TJ [Q1 

MT 

:][::] +! trace/(HxS31 + Hs>T Q2(HxS31 + Hs>! 

k 

(172) 

If ~xk were weighted in a quadratic cost function, the fiSk component in ~~ 

would add to the cost. If ~sk is neutrally stable or unstable, then quadratically 

weighting ~xk in a cost function could yield an undefined cost in steady-state. 

Weighting ~xk and ~uk as shown in Eq.172 yields a finite cost if the closed­

loop plant matrix is stable, since both signals are zero-mean and do not depend 

on ~sk. The second part of the cost function in Eq.172 attempts to minimize 

the disturbance response in the system output as defined in Eq. 166. No restric-

tion is placed on the first dimension of Hand H in Eq. 172. The cost function 
x s 

represents a tradeoff between optimal stochastic performance and deterministic 

disturbance suppression. 

Substituting Eq. 171 into the cost function produces 
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I TT . 
J = trace (Q1 + C K R K C - M K C -e x x x 

+ trace I KT R K v} + • trace {(Hx531 + Hs)T Q2(Hx531 + Hs) I 

C! KT MT) X I 

(173) 

where 

EI~ ~l=v; 
( 1

- -T I E ~ ~ = X 

\ 
(174a, b) 

X is the covariance of the system error response and is computed using Eq. 169. 

The cost function, J , can be minimized subject to the equality constraints for 
e 

X and S31 using Lagrange multipliers. The complete cost function is given by 

J = Je + JL 

where 

J L - trace' (-X + $c X $~ +1/ + rKVKTrT + 531 

+ trace ., ($c 8
31 

+ 5
31 

(-$,,) +. Dw 

<I> =cp-rKC 
c x 

W 5T ~. 5 W _WT 5T )pT ! 
s 31 3~ sx sx 31 

-r K C,,) yTI 

The P and Y matrices are the Lagrange multipliers. 

(175) 

(176) 

(177) 

Necessary conditio~s for J to have a minimum are aJ/ax = 0, aJ/as 31 = 0, 

aJ/ap = 0, aJ/ay = 0, and aJ/aK = 0. The five necessary conditions for optimality 

can be expressed as five matrix equations. 

Covariance Equation for ~ 

X = <I> c X <I> ~ + [I -S 31 ] ~ w!x] ~: J 
W W S31 sx s 

+ r K V KT rT (178) 

Star Trajectory Equation 

<I>c S31 + S31 (-<I>w) = rK Cw - Dw (179) 
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Cost Equation 

P cpT P cp 
c c 

+ [I -C~ KTJ ~Q: MJ'~ I J 
M R -K C· x 

Complementary Star Trajectory Equation 

$~ y + Y <-.!l - 2.0 P [Wsx - S31 wsJ - H; Q2 [Hs + Hx S31J 

Gain Equation 

(R + rT p r) K (C 'X CT + V) crT P cp + MT) X CT + ~ rTy (CT + ST31 CT) 
x x x w x 

(180) 

(181) 

(182) 

A numerical algorithm for finding a gain, K, which satisfies the necessary con-

ditions is presented next by extending the convergent ouput feedback algorithm 

derived in Ref. 8: 

Choose an initial K so that cp is stable. 
a c 

Choose a scalar a so that J(Ki ) is decreasing during the following itera-

tions: 

1. 

2. 

3. 

4. 

5. 

6. 

Solve Eq.179 for S31 using Ki . 

Solve Eq.178 for X using Ki and S31 from 1. 

Solve Eq.180 for P using K
i

• 

Solve Eq.181 for Y using Ki , S31 from 1 and P from 3. 

Solve Eq.182 for K using S31 from 1, X from 2, P from 3 and 

y from 4. 

Update the feedback gain. 

Ki +1 = K. + 
l. 

a (K - K
i

) 

7. If I J(K i +1) J(K.) I >Eand/or II dJ(K. )/dKi ll > E, where E is 
l. l. 

some convergence criterion, then set i i+1 and repeat steps 1 

through 6. 

Equations 178 to 181 are Lyapunov equations that can be solved using the 

Bartel~Stewart algorithm, Ref. 19. 
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If Hand/or r are non-zero, it is no longer clear that the cost func-
w w 

tion shown in Eq. 172 represents design objectives. Alternative cost func-

tions with Hand r non-zero is an area of future research. If ~sk remains 
w w 

uncontrollable or controlling ~sk from ~~ is not desired, as is the case for 

wind shear disturbances, then the cost function shown in Eq. 172 remains attrac-

tive. The following equations show how the problem is modified if Hand/or w 

r are non-zero: 
w 

First the following matrices are defined': 

r 
s 

¢ 
c 

r 
c 

¢ 
d 

¢ 
cd 

¢dc 

= r 

¢ 

r S31 w 

r K C 
x 

r K C - H 
w x w 

¢ 
w 

r K C 
w w 

¢c + S31 rc 

-¢d + rc S31 

then the five necessary conditions can be shown to reduce to the following 

matrix equations 

Covariance Equation for X 

X = ¢cd X ¢~d + [I -S31J ~ w!x] ~ :] + 

W W S31 sx s 

Star Trajectory Generalized Riccati Equation 

¢c S31 + S31 (-¢d) 

Cost Equation 

r K C 
w 

p = ¢~, p ¢ + [I - C T K TJ 
cd cd x 

Dw - S31rcS31" 

b~ :J ~K:J 

r K V K rr 
s s 

(1:84) 

(185) 

(186) 

(187) 

(188) 

(189) 

(190) 

(191) 

(192) 
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Complementary Star Trajectory Equation 

<P~d Y + y <p!C = 2.0 P [WSX - 531 WS] - H~ Q2 rS + Hz S3lJ 

T 
- 2.0 P <P d X r - 2.0 P r 

c c s 
K V KT °rT 

w 

Gain Equation 

(R + rT P r ) K (C X CT + V) 
s s x x (rT P (<p - S31 H ) + MT) X CT 

s w x 

(193) 

(193) 

+ ~ rT y (CT + 5T
31 

CT) (194) 
s w x 

The algorithm shown for Eqs. 178 to 182 can be used to solve Eqs. 190 to 194. The 

primary differences are that K must be chosen so that <Pcd is stable and 531 is 

the solution to a generalized Riccati equation rather than a Lyapunov equation. 

K stabilizes the stochastic term, ~x, when Hand r are non-zero, but the total 
w w 

closed-loop system for ~x and ~s can be unstable or neutrally stable because of 

the way J is chosen.' 
e 
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6. DESIGN AND SIMULATION OF CONTROL SYSTEMS 

This chapter presents digital flight control system design parameters 

and nonlinear 6-DOF simulations for four digital control designs. The objective 

of the control system is to cause a small commercial jet (Boeing 737) to capture 

and track a 3 deg glideslope near the terminal area. Enroute to touchdown, the 

SRI wind package, Ref. 31,· is used to model a windshear disturbing the .. aircraft 

dynamics. 

A. Design Models 

The four control designs are: 

SR-PIFCGT A.. single rate PIFCGT design using a linear aircraft model driven 

by white noise sources. 

MR-PIFCGT A multi-rate PIFCGT design using a linear aircraft model driven 

by white noise sources. 

J WS-PIFCGT A single rate PIFCGT design using a linear aircraft model com-

bined with the windshear model. The feedback gains are computed 

using the algorithm in section 4D with rand H nonzero. w w 

EP-PIFCGT A single rate PIFCGT design using a linear aircraft model combined 

with the windshear model and the energy probe measurement. The 

feedback gains are computed using the algorithm in Section 4D with 

rand H nonzero. w w 

The states in the aircraft design model and the output vector used for 

feedback are presented next: 

Integrators 

lIShk+1 = lIt:hk + lit [(lIhk - lIhm,k) + 5 (lI~k - lIhm,k)] 

lIt:CAS,~+1 = lIt:CAS,k + lit (lICASk - lICASm k) , 
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Prefilters 

~~ - 10.0 (~a - ~a ) z z z 
• A 

~q = - 10.0 (~q - ~q) 

Complementary Filter 

~: _ 10 lllfi~] + 100sl [fih - fih] + ro] 
~ oj ~h ~o32J II 

~ah 

SR-PIFCGT ~t 0.1 sec 

States 

T 
[ ~u 

. 
~x = ~w ~q ~e ~h ~az ~q ~h ~h ~EPR Me ~~h ~~CAS ~Ut ~ue ] 

Controls 

~uT [~Ve ~Vt] 

Outputs . 
T [~az ~q ~CAS ~e ~h 

A 

~ueJ ~y ~ ~~ ~~CAS ~Ut 

MR-PIFCGT ~tf 0.05 sec; ~t 0.1 sec 
s 

States 

~xT = [~u ~q 
A A 

~ueJ ~w ~q ~e ~h ~ ~h ~ MPR M ~~ ~SCAS ~Ut z e 

Controls 

~u T = [~V e ~v t ] 

Fast Outputs 

T [~z ~q ~~ ~SCAS llUt ~ueJ mf 

Slow outputs 

mT 
[ ~CAS 

.,.. 
~~J lie ~h s 
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WS-PIFCGT !:J.t 0.1 sec 

States 

!:J..x
T 

[!:J..U!:J..W!:J.q !:J..8 !:J..h !:J..a z 
!:J..q !:J..h !:J..h 6EPR !:J..0e !:J..Sh !:J..SCAS !:J..U

t !:J..Ue] 

Disturbances 

!:J..s
T 

= [!:J..UWb !:J..WWb] 

Controls 

!:J..U
T 

[!:J..Ve!:J..V tJ 

Outputs 

T [", '" A"'] !:J..Y = !:J..az !:J..q !:J..CAS!:J..8 !:J..h !:J..h !:J..Sh!:J..SCA'S !:J..ut !:J..ue 

EP-PIFCGT !:J..t = 0.1 sec 

States 

!:J..xT [!:J..EP1 !:J..EP2 !:J..u !:J..w !:J..q!:J..8!:J..h M 
z 

!:J..q !:J..h !:J..h !:J..EPR !:J..0e !:J..Sh !:J..SCAS !:J..u t !:J..Ue ] 

Disturbances 

!:J..'sT = [LillWb !:J..WWb] 

Controls 

!:J..U T [!:J..Ve!:J..V t ] 

Outputs 

!JyT = [6EP !:J.fiz t:J..q !:J..CAS !:J..8 !:J..h !:J..h !:J..S
h 

!:J..SCAS !:J..u t !:J..Ue ] 

The aircraft model is trimmed at 69 m/s (135 kt) descending straight,flight 

using'a glides lope of 3 deg. Flaps are set to 30 deg. The weight is 85000 lbs. 
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The five states for the longitudinal aircraft dynamics in body axis are 

the body x-axis velocity, ~u, the body z-axis velocity, ~w, pitch rate, ~, 

pitch Euler angle, ~8 and vertical height ~. The prefilter states, ~ and 6q, 
z 

model a continuous-time prefilter used to suppress aliasing errors in the body 

mounted z-axis accelerometer measurement for a and the rate gyro measurement 
z 

for q. The noisy height measurement, h, which can come from a barometric altimeter 

or the Microwave Landing System (MLS), is complementary filtered with the gravity . 
corrected output of the accelerometer to yield smooth estimates for hand h. The 

two states, ~PR and ~o , model the actuators dynamics for throttle and elevator 
e 

respectively, and are discussed in Ref. 32. The type 1 property for the control 

system is obtained using the integrator states ~h and ~CAS' The integrator 

state, ~~h' integrates the height command error plus 5 times the height rate 

error. The integrator state, ~~CAS' integrates the CAS command error where 

CAS is a calibrated airspeed measurement. The states ~u and ~u are the per-
t e 

turbation aircraft control states placed in the state vector because of control 

rate weighting. 

The multi-rate control design breaks the measurements into a fast-sample-

rate group and a slow-sample-rate group. The fast rate is chosen to be 20 

samples/sec while the slow rate is 10 samples/sec. The integrator states and 

control position states must be sampled at the fast rate. The two inner-loop 

measurements, ~a and ~q, are also sampled at the fast rate. The slow measure­
z 

ments are airspeed, pitch angle and the output of the complementary filters. The 

complementary filter model in ~ is not modeled at the slow rate, however. Model-

ing a slow rate complementary filter in ~ would cause ~ to become a p~riodic 

matrix. The complementary filter is propagated and updated at 20 iterations/sec 

in the nonlinear simulation. The WS-PIFCGT design uses the wind shear disturbance 

dynamics in the design model. The nominal values used for u and ware -0.1 m/ z z 

sec/m and 0.02 m/sec/m, respectively. 
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The EP-PIFCGT design includes the energy probe measurement in the WS-PIFCGT 

measurement vector. Two states, ~P1 and ~P2' are added to the state vector to 

model the sensor dynamics described in Refs. 10 and 11. 

The longitudinal command model propagated in the simulation uses a double 

integration of vertical acceleration to generate the vertical path trajectory. 

The CAS trajectory is constant, 

~J k+J ~ :J ~J k 
~t2/2 :] ~:]k = + 

Llt (195) 

" The commands used for h in the nonlinear simulation are m 
. 

Ifh > -8.3 and h > 200 Then h = -1.5 Else (196) 
m m m 

, 
Ifh < 150 and h < 0 Then h 1.5 Else h 0.0 m m m m 

(197) 

The command model descends at a constant rate of descent (8.3 ft/sec) until 

150 ft is reached. The descent is changed to straight and level flight after h m 

reaches 150 ft. The change to straight and level flight eventually puts the 

command model height state at 122ft .. The aircraft and command model are initial-

ized'to 700ft straight and level flight.atthe beginning of the simulation. The 

command model used to design the command generator tracker feedforward gains only 

• uses h ,h and CAS as discussed in Ref. 3. m m m 

The design of the control system is achieved by choosing the diagonal e1e-

ments in the matrices Q~'R, X, Wand V iteratively until the control system has 

desired closed-loop properties. Adjustments are made to the elements until one 

set of numbers, shown in Table 1, can be used in all four des'ign conditions. 
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B. Control Design Properties 

Six evaluation procedures are used to determine the feedback and tracking 

properties of the control designs. The six evaluations are the feedback gain ele-

ments, singular value plots, Ref. 33, eigenvalue plots, Ref. 33,_ Bode plots for 

each control loop, closed-loop eigenvalues and nonlinear simulations. 

The feedback gain and feedforward gain matrices are shown in Table 2. Com-

paring the single rate and multi-rate designs, the gain elements almost all in-

creased in value an average of 25% in the elevator loop. The elevator loop band-

width increased in the multi-rate design as shown by the -9.37 control gain. The 

multi-rate design had less of an effect on the throttle loop which has a much 

lower bandwidth. The two wind shear design gain elements change significantly 

from the case when no wind shear,is modeled in three of the measurement loops: 

;z' h, and ~CAS. One of the closed-loop poles is significantly altered (de­

stabilized) by the wind shear dynamics and the increased gain values on these 

three measurements appear to improve system robustness to w~nd shear distur-

bances. The throttle loop bandwidth increases in the presence of the wind shear 

dynamics as evidence by the -3.63 and -4.9 0T control gains. 

The closed-loop eigenvalues for the designs are obtained from the discrete 

system linear matrices. Each eigenvalue inside the unit circle in the z-domain 

is mapped to the left-half plane using 

·s 
A = a + jb = meJ 

(198) z 

A 1 Am. S = - In = - + J s ~t z ~t ~t 
(199) 

The three single rate designs are evaluated with and without the wind shear 

dynamics. The SR-PIFCGT closed-loop eigenvalues shown in Table 3.have adequate 

damping and stability without the wind shear system. The wind shear dynamics 

introduce two poles into the system; one is neutrally stable while the other is 
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slightly unstable. Windshear as a phenomenon only occurs for a specific period 

of time. The control system's objective is to maintain control over the aircraft 

dynamics and track the command model. The primary change in the closed-loop 

eigenvalues is that the pole most associated with the phugoid motion (w 0.35, 
n 

~ 0.49) changes damping to ~ 0.19, i.e., the phugoid motion destablizes. 

Increasing the nominal values for the wind shear gradients further destabilizes 

the phugoid mode. 

The new capability provided by the theoretical derivation in Section '5D allows 

the design plant model to contain the unstable coupled windshear dynamics. The 

WS-PIFCGT closed-loop eigenvalues are presented in Table 4.- The closed-loop 

model without wind shear has good damping ratios on complex modes (~>0.5) with 

the windshear model, the phugoid mode destabilizes but has better damping than 

the mode in Table 3 (~ = 0.33 verses ~ = 0.19). The-energy probe further aids 

in stabilizing the phugoid mode as shoWn in Table 5 (~ = 0.40). 

The closed-loop mapped eigenvalues for the multi-rate design are shown in 

Table 6. Despite a significant change in feedback gains between single and multi-

rate designs, the closed-loop eigenvalues for the single rate and multi-rate 

designs are similiar. The multi-rate and single rate designs use the same qua-

dratic weights. The.extra three poles in.Table 6 are caused by the hold cir-

cuits in the system model. 

The frequency domain methods for evaluating the single rate control designs 

result in the plots shown in Figs. 1 to 6 and Table 7. Frequency domain an-

alysis of the multi-rate design is not within the scope of this effort. The 

minimum singular value of the return difference matrix, as discussed in Ref. 33, 

is a conservative indication of closed-loop plant robustness to unstructured 

perturbations in the plant dynamics. A small singular value means there is a 

small plant perturbation (physically unrealizable perturbations are allowed) 

61 



that can destabilize the plant. The three singular value plots all indicate 

potentially poor designs. ,Reference 33 investigated singular values and demon­

strated that eigenvalue analysis of the return difference matrix, although a 

not guranteed indication of robustness, provides a clear picture of the poss-

ible robustness boundary. The eigenvalues of the return difference matrix are 

bounded below by the minimum singular value and above by the maximum singular 

value. The true mu1tivariab1e plant robustness should be bounded between the 

minimum singular value and the minimum eigenvalue of the return difference matrix. 

The eigenvalue plots in Figs. 1 to 3 indicate a much more robust design then 

the singular value plots and compare favorably to the information provided by 

the Bode plots. The smallest eigenvalue is near w = 3.5 rad/sec in all three 

design. Specific values are shown in Table 7. The frequency !or the smallest 

eigenvalue is near the frequency for the short period modes shown in Tables 3 t~5. 

Another effect evident from the eigenvalue and singular value',plots in Fig. 3 is 

that the energy probe sensor increases plant robustness in the low frequency 

region, w < 1, where plant alterations due to windshear are likely to occur.~, 

The Bode plots in Figs. 4 to 6 provide useful information concerning the 

bandwidth and robustness of each loop, individually. The bandwidth (the frequency 

at which the gain remains below -6 db) for throttle is between 0.5 rads/sec and 

0.25 rads/sec. The designs using the windshear dynamics have lower throttle 

bandwidth. The bandwidth for the elevator is between 2 and 3 rads/sec. All phase 

margins are better than 65 degs and gain margins are better than -10 db. 

C. Nonlinear Simlations 

Nonlinear six degree-of-freedom simulations of the control systems for a 

glides lope capture and track are shown in Figs. 7 to 9. Windshear, 'gust dis­

turbances and measurement noise are inactive in the simulation. The captures are 
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smooth with little over~00t both at the beginning and end of the simulation where 

the aircraft returns to straight and level flight. The best performance is pro­

vided by the multi-rate design which has smoother surface motion and better CAS 

control. 

The next four simulations in Figs. 10 to 13 show the four control designs 

capturing and tracking the glideslope in the presence of windshear. The long i­

tudinal,horizontal and vertical shears are shown in Fig. 16 and correspond to 

the windshearin the SRI package known as the Philadelphia/Allegheny windshear. 

The.aircraft encounters an increasing headwind. The headwind decreases grad-

ually then dramatically into a tailwind. The tailwind changes back to zero. Coin­

cident with the change from a headwind to a tailwind, the aircraft encounters a 

downward vertical wind of 20kt. The large drop in airspeed causes the control 

systems to briefly saturate throttle (at 60 deg) and pitch the aircraft up to 

8 deg. 

The best windshear response is provided by the WS-PIFCGT design. The air­

speed deviations are smaller and the aircraft pitches up the least (6 deg). The 

WS-PIFCGT design also maintains the largest separation between the aircraft and 

the ground in the critical time period between 75 and 85 secs into the simula­

tion. The MR-PIFCGTdesign has the largest deviations in airspeed and height 

during the windshear. The EP-PIFCGT design using the energy probe sensor for 

feedback encountered small elevator and throttle osci1lations when throttle 

surpassed 30 degrees. 

A 1 kt gust is added to the nonlinear simulations in Figs. 14 and 15. The 

effect of the gusts is primarily evident in the throttle response. The tracking 

is relatively unaffected by the gust response. 

63 



64 

7. SUMMARY AND RECOMMENDATIONS 

A summary of the results in this report are: 

• Optimal output feedback is successfully used to design a single rate 

control system using the proportional integral filter structure. 

• The optimal output feedback approach and optimal output feedback 

algorithm are extended to use the hierarchical control design approach 

with minimal change to the output feedback design model matrices. Un­

wanted states and observations encountered as each loop is designed are 

made uncontrollable and unobservable and stabilized if the mode is not 

stable. 

• An optimal multi-rate output feedback synthesis problem. is formulated and 

necessary conditions for an optimal solution are derived. An algorithm 

to solve for the constant gain solution is presented. The algorithm is 

programmed and designs are made comparing the multi-rate and single rate 

designs. The PIF structure is extended to use multi-rate output feed­

back. The PIF feedforward gain is shown to be periodic in time. 

• The command generator tracker is extended to accommodate disturbances 

which are affected by the plant dynamics. The extension causes one of 

the Lyapunov equations encountered in the usual command generator tracker 

to become a generalized Riccati equation. A globally convergent algorithm 

for solving the generalized Riccati equation is developed. 

• A new and novel approach is developed to accommodate windshear in the 

presence of noise. The command generator tracker is extended to the 

stochastic environment. The steady-state plant response is decomposed 

into the stochastic and deterministic components. A novel cost function 



is constructed which suppresses the effect of disturbances, stabilizes the 

stochastic plant response and does not require a measurement of the dis­

turbance state. The disturbance and plant dynamics can be coupled. An 

algorithm which computes the (local) optimal gain is developed, has been 

programmed and is used to determine a PIFCGT control system. 

• Design and simulations showed that the multi-rate design (which uses 

faster measurements on some sensors) performs best for the quadratic 

weights chosen when no disturbances are present. The design using the 

new disturbance accommodation synthesis approach performs best when the 

aircraft is simulated flying through a windshear. The windshear design 

using the energy probe also performs well except for small oscillations 

that occur during the severe part of the windshear simulations. 

Recommendations 

• The command generator tracker can be extended to the multi-rate case. 

• The multi-rate command generator tracker would allow the computation of 

the multi-rate frequency response by extending the approach developed 

in Ref. 30 • 

• ' The multirate problem can be extended to include the case of many 

models with one controller as discussed in Ref. l7~ 

• The solution in Section SB has applicationb~ond disturbance suppress~ 

ion. The solution in Section 5B solves a feedback decoupling problem. 

Consider the lateral dynamics of the aircraft where it is desirable to 

decouple the roll and sideslip response. Partioning the plant states 

into two groups and identifing one group asfj,x and ·the .other group as 

fj,s, the feedforward solution yields a control system for decoupling the 

HAx response from the fj,s states. Hllx can be sideslip and fj,s' can be the 

roll state. Any rolling motion would not affect sideslip. 
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APPENDix A 

A Convergent Algorithm for a Generalized Riccati Equation: 

A generalized Riccati equation has the following form: 

x = A X B + A X C X + D (200) 

where X is an unknown matrix. If A were invertible then Eq. 200 could be 

rewritten as 

o = F X + X B + X C X + G (201) 

which resembles the continuous-time Riccati. equation obtained in the optimal 

regulator problem. 

Define the function f(X) as 

f(X) = A X B + A X C X + D 

and define the direction, d, at X as 

d = A d B + A d C + A X C d + (f(X)-X) 

Define the matrix, E, as 

-1 
E = (I - A X C) 

the direction, d, satisfies the Lyapunov equation 

d = E A d (B + C) + E (f(X)-X) 

The globally convergent algorithm for computing X is 
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1. Choose a starting value for X, usually X = O. 
o 

2. Compute d
k 

in Eq. 205 using X
k

' 

3. Choose a k according to 

a = 
k 

min! 1. 0, t II f (~) - ~ II ! 
II A dk C dk II 

(202) 

(203) 

(204) 

(205) 

(206) 



4. Update X
k 

using 

Xk +1 = Xk + Ci. k dk 

5. If I\:f (~) "- X
k

.) 1\ is small, stop, otherwise increment k and go back 

to 1. 
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TABLE 1. DESIGN PARAMETERS FOR THE CONTROL DESIGNS 
(UNITS ARE FT. AND DEG) 

W Matrix Diagonal Q Matrix Diagonal 
Elements Elements 

100.00 0.0016 
25.0 0.16 
0.01 0.0081 
0.01 0.0081 

100.0 0.04 

0.25 0.0 

40.0 0.0 

64.0 0.0 

10.24 0.0 
1.0 0:0 
1.0 0.0 

0.0 0.0009 

0.0 0.004 

16.0 0.09 

4.0 0.01 

1.0 0.0 
1.0 0.0 

R Matrix Diagonal V Matrix Diagonal I Elements Elements 

0.09 A 

0 v t a 
z 

ve 0.04 A 

0 q 

CAS 9.0 

e 9.0 
'" h 0 

" 
h 0 

f;h 0 

f;CAS 0 

ut 0 

u 0 e 

EP 0 

Additional Q 
Weights . 

3.5 w 

I 
I 

I 
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TABLE 2. FEEDBACK GAINS FOR THE CONTROL SYSTEMS 

CONTROL STATE FEEDBACK GAINS CONTROL DESIGN . 
A 

A A A 

E a q CAS e h h 
P z 

vT - -6.33 -0.566 -2.18 -0.47 -0.57 -2.69 SINGLE RATE 
ve - 1.65 4.23 1.91 6.69 0.76 1.72 DESIGN 

vT - -9.38 -0.37 -2.10 0.171 -0.923 -3.10 SINGLE RATE 
ve - 5.14 4.80 1.91 6.88 1.06 4.09 WINDSHEAR DESIGN 

vT -1.35 -9.86 -0.90 -2.05 1.14 -1.06 -4.97 SINGLE RATE 
v 1.14 4.69 4.08 2.67 7.56 1.08 4.92 WINDSHEAR DESIGN WITH e ENERGY PROBE 

vT - -6.92 -0.41 -2.24 -0.367 -0.628 -2.86 MULTI-RATE 
v - 2.56 5.5 2.39 8.22 0.99 2.27 DESIGN 

e 
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w 

CONTROL 

vT v e 

vT 
v e 

vT 
ve 

vT v e 

TABLE 2. FEEDBACK GAINS FOR THE CONTROL SYSTEMS (CONTINUED) 

INTEGRATOR GAINS CONTROL DESIGN CONTROL CONTROL GAINS 

t;1 t;2 °T 0 e 

-0.075 -0.11 SINGLE RATE 
0.064 0.003 DESIGN 

vT -2.59 -1.0 
v 1.31 1. 76 e 

-0.086 -0.184 SINGLE RATE 
0.099 0.060 WINDSHEAR DESIGN 

vT -3.63 -0.75 
ve 2.37 -8.53 

-0.196 -0.26 SINGLE RATE 
UNAVAILABLE WINDSHEAR DESIGN WITH 

ENERGY PROBE 

vT -4.9 0.174 
ve 3.75 -7.1 

-0.077 -0.11 MULTI-RATE 
0.083 0.0078 DESIGN 

vT -2.64 -0.631 
ve 1.67 -9.37 

CONTROL DESIGN 

SINGLE RATE 
DESIGN 

SINGLE RATE 
WINDSHEAR DESIGN 

SINGLE RATE 
WINDSHEAR DESIGN WITH 

ENERGY PROBE 

MULTI-RATE 
DESIGN 



TABLE 2. FEEDBACK GAINS FOR THE CONTROL SYSTEMS (CONCLUDED) 

CONTROL FEEDFORWARD GAIN CONTROL DESIGN 

h V 
m m 

.- 5.4 1.4 SINGLE RATE vT v -3.4 -0.039 DESIGN e 

vT 7.73 0.785 SINGLE RATE 
v -6.59 0.157 WINDSHEAR DESIGN e 

vT 7.89 0.373 SINGLE RATE 
v -6.59 0.157 WINDSHEAR DESIGN WITH e 

ENERGY PROBE 

MULTI-RATE DESIGN 
vT -0.064 -0.016 -Kt,;B 
ve 0.032 -0.0033 

vT 2.95 2.19 -Ks CsAI2 
v -4.21 -1.34 e 

vT 1.65 -1.26 -Kt,;A -KfCfAI2-KuA22 
v 0.75 1.26 e 
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TABLE 3. CLOSED LOOP MAPPED EIGENVALUES FOR THE 
SINGLE. RATE DESIGN (SR-PIFCGT) 

DESIGN CONDITION DESIGN CONDITION IDENTIFIABLE MODE 
WITHOUT WINDSHEAR WITH WINDSHEAR 

REAL w l; REAL w l; 
~_n n 

(rad/sec) (rad/sec) 

21.3 0.84 21.3 0.84 

-10.0 -10.0 

- 4.7 - 4.7 

2.60 0.58 2.60 0.58 SHORT PERIOD 

0.84 0.98 0.82 0.99 

0.52 0.68 0.63 0.69 

0.35 0.49 0.369 0.19 PHUGOID 

0.079 0.64 Q.063 0.90 

-0.08 -0.13 

0.0 

0.04 
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TABLE 4. CLOSED-LOOP MAPPED EIGENVALUES FOR THE 
SINGLE RATE DESIGN WITH WINDSHEAR (WS-PIFCGT) 

DESIGN CONDITION DESIGN CONDITION IDENTIFIABLE MODE 
WITHOUT WINDSHEAR WITH: 'WIND SHEAR 

REAL w 1'; REAL w 1'; 
n n 

(rad/sec) (rad/sec) 

22.77 0.71 22.77 0.71 

-10.0 -10.0 

- 4.3 - 4.3 

3.1 0.57 3.1 0.58 SHORT PERIOD 

1.00 0.76 0.97 0.73 

0.59 0.68 0.59 0.80 

0.26 0.67 0.42 0.33 PHUGOID 

0.081 0.51 0.075 0.67 

-0.088 -0.088 

0.0 

0.035 



TABLE 5. CLOSED-LOOP MAPPED EIGENVALUES FOR THE SINGLE RATE 
WINDS HEAR DESIGN WITH THE ENERGY PROBE (EP-PIFCGT) 

DESIGN CONDITION DESIGN CONDITION IDENTIFIABLE MODE 
WITHOUT WINDSHEAR HITHOUT WINDS HEAR 

REAL w 1;; REAL w 1;; 
n n 

(rad/sec) (rad/sec) 

22.13 0.71 22.13 0.71 

-10.0 -10.0 

- 4.5 - 4.5 

3.74 0.56 3.74 0.57 SHORT PERIOD 

1.65 0.89 1.64 0.91 

0.90 0.55 0.88 0.55 

0.57 0.77 

0.21 0.74 
0.37 0.40 PHUGOID 

0.08 0.41 
0.072 0.57 

-0.13 -0.08 

0.0 

0.039 
--_ .. - - --- --- -
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TABLE 6. CLOSED-LOOP MAPPED EIGENVALUES FOR THE MULTI-RATE 
CONTROL DESIGN 

DESIGN CONDITION IDENTIFIABLE MODE 
WITHOUT WINDSHEAR 

REAL w l; 
n 

(rad/sec) 

370 0.99 

366 0.99 

325 0.99 

20.6 0.96 

-10.0 

- 5.2 

2.6 0.57 SHORT PERIOD 

0.82 0.95 

0.52 0.69 

0.34 0.50 PHUGOID 

0.080 0.66 
-0.075 



-...J 
\0 

CONTROL 
DESIGN 

SR-PIFCGT 

WS-PIFCGT 

EP-PIFCGT 

TABLE 7. FREQUENCY DOMAIN PROPERTIES OF THE CONTROL DESIGNS 

(w is in rad/sec) 

THROTTLE 

MINIMUM MINIMUM GAIN PHASE 
SINGULAR VALUE EIGENVALUE MARGIN MARGIN 

db w db w db w deg w 

-15.07 0.4 -2.8 3.3 -18.0 1.4 84 0.15 

-12.8 0.9 -3.7 3.3 -20.0 1.7 70 0.1 

-14.1 0.1 -3.5 3.9 -20.8 1.7 84 0.15 

ELEVATOR 

GAIN PHASE 
MARGIN MARGIN 

db w deg w 

-13.0 4.6 80 0.45 

-40.0 4.3 80 0.63 

-10.0 4.7 69 0.57 
, 
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