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It is well known that for the Gaussian broadcast channel, timeshared coding is not as
efficient as more sophisticated ‘“‘broadcast” coding strategies. However, in this article we
will show that the relative advantage of broadcast coding over timeshared coding is small
if the signal-to-noise ratios of both receivers are small. One surprising consequence of this
is that for the wideband Gaussian broadcast channel, which we shall define, broadcast
coding offers no advantage over timeshared coding at all, and so nmeshared coding is

optimal.

I. Introduction

T.M. Cover (Ref. 1) introduced the “broadcast channel”
with one transmitter and two (or more) different receivers.
Following Ref. 4, we ask the following question about a
broadcast channel: certain common information 1s to be com-
municated simultaneously to both receivers. How much addi-
tional information can be communicated to the better recerver
at the same time?

For channels like Gaussian channels, where one receiver 1s
just a degraded version of the other, one obvious approach 1s
timeshared coding. devote a fixed fraction of the total trans-
mission time to sending the common information, coded for
the weaker channel. This information will be comprehensible
to both receivers. During the remaining time, transrmt addi-
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tional information_coded for the stronger recewver. This infor-
mation will not be comprehensible to the weaker receiver.

But in Ref. 1, Cover mtroduced a technique called broad-
cast coding, and showed that, in general, broadcast coding
achieves greater, often much greater, data rates than tume
sharing. Later El Gamal and Cover (Ref. 2) found that broad-
cast coding cannot be further improved upon.

In this article we will discuss the Gaussian broadcast chan-
nel. For this channel, we will show that the relative advantage
of broadcast coding over timeshared coding 1s small if the
signal-to-noise ratios of both receivers are small. One surprising
consequence of this 1s that for the wideband Gaussian broad-
cast channel, which we shall define, broadcast coding offers no



advantage over timeshared coding at all, and so timeshared
coding is optimal.

[I. The Gaussian Channel: A Review

A Guassian channel 15 a discrete-time memoryless channel
model whose input X and output Y are related by Y =X+ 2,
where Z 1s a mean zero Gaussian random variable independent
from X. If the mput 1s constrained by E(X2) < S, and 1f the
variance of Z 1s denoted by 02,1t is well known that the chan-
nel capacity depends only on the ratio x = S/¢2, which 1s
called the signal-to-noise ratio, and 1s given by the formula

Clx) = %log(l +x) (1)

In Eq. (1), C(x) represents the maximum possible amount of
information (measured in bits, nats, etc., depending on the
base of the logarithm) which can be reliably transmitted per
channel use; in the usual physical sense, C(x) 1s dimensionless.

Equation (1) can be used to derve the following formula
for the capacity of a continuous-time, band- and power-
limited Guassian channel model:

P
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where B is the channel bandwidth in Hertz, P 1s the average
transmitter power in Watts, and N, 1s the noise spectral den-
sity in Watts per Hertz. The transition from Eq. (1) to Eq. (2)
1s explamned in Ref. 3 (Chapter 4), for example. In Eq. (2),C
represents the maximum possible information which can be
rehably transmitted per unit of time; the physical dimensions
of C are sec~1.

If in Eq. (2) we assume natural loganthms and pass to the
limit as the bandwidth B approaches infinity, we obtain

Ed

C =
NO

3)

which is the well-known formula for the capacity of the infinite
bandwidth white Gaussian channel. The umits in Eq. (3) are
nats per second.

lil. The Gaussian Broadcast Channel

In Ref. 1, Cover introduced a discrete-time memoryless
channel model with one transmitter and two receivers, which
he called a Gaussian broadcast channel. This channel has one
input X, and two outputs Y, and Y, , related by

Y, = X+Z
Y, = X+Z,

where now Z, and Z, are mean zero Gaussian random vari-
ables, and X, Z,, and Z,, are independent. Let us denote by
0% and o2 the vanances of Z; and Z,, respectively, and assume
that 02 < 03, so that Y, 1sreceived more reliably than Y, . If
the channel input X 1s constrained as in Section I by E(X?2) < §,
then separately channels 1 and 2 have capacity C(x,) and
C(x,), respectively, where x| = §/0% and x, = S/o%.

In Ref. 4 a Gaussian broadcast channel was used to model
deep-space communications in the presence of weather uncer-
tainties; the high signal-to-noise ratio corresponds to good
weather, and the low signal-to-noise ratio, to bad weather. The
problem posed there was the following Suppose the weather
on earth 1s unknown to a distant spacecraft, and that data
must be sent to earth so that even in bad weather, certain
mimimal but cntical information will get through; but if the
weather 1s good, additional information will be recewved.

Motivated by this point of view, we state the fundamental
question about broadcast channels in the following somewhat
unusual way. Suppose we wish to send certain information,
called the common information, simultaneously to both
recewvers. If we do this, how much extra information, called
bonus information, can we send to the better receiver at the
same time?

One approach to this problem is the timesharing approach,
in which the transmitter devotes a fixed fraction 1 - p (where
0 < p <1) of the total transmission time to sending the com-
mon information. During this time the information 1s coded
for the weaker receiver. This information will also be compre-
hensible to the stronger receiwver. By Eq. (1), during this com-
mon time, information can be transmitted at a maximum rate
of C(x,). During the remaiming fraction p of the transmission
time, the transmitter sends bonus information to the stronger
channel, at the rate C(x,). This will not be comprehensible to
the weaker receiver.

It follows that for the timesharing strategy, the data rates
will be

Common Rate = (1 -p) C(x,)

4)

Bonus Rate = pC(x,)

and the parameter p can be selected arbitranly by the trans-
mitter.

Cover showed, however, that it 1s possible to do better
than timesharing. Using a technique called broadcast coding,
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he showed that for any choice of the parametera,0<a <1,
the following rates are achieveable:
Common Rate = C(x,) - Clax,)
(5)

Bonus Rate = C(ax )
(Actually Cover gave the common rate in the form

C{l( -@)x, /(1 +ax,)} ,

but 1t is an easy exercise to show that this is the same as we
have given in Eq. [5].) Later El Gamal and Cover (Ref. 2)
showed that in fact no improvement over Eq. (5) 1s possible,
so that the region of the first quadrant bounded by the curve
given parametrically by Eq. (5) is now called the capacity
region of the Gaussian Broadcast Channel (see Fig. 1).

Motivated by the discussion 1n Section I, let us pass from the
discrete-time Gaussian broadcast channel to the continuous-
time band- and power-limited Gaussian broadcast channel. The
resulting expressions are for timesharing.

P
Rate = (I - 1 +—
Common Rate = (1 -p)B log (l NzB)
(6)
Bonus Rate = pB log (1 +NliB-)

and for broadcast coding:

—

P P
B log (1+@)—Blog (1+aN2—B)

@)

]

Common Rate

W

Bonus Rate = B log (1 + aNlP;B)

where P 1s the transmitter power, B 1s the transmission band-
width, and N, , N, , are the noise spectral densities for the two
receivers In Egs. (6) and (7) the units are nats per second.

To 1nvestigate wideband Gaussian broadcast channels, we
pass as before to the limit as B = e The results follow easily
from Eqs (6) and (7) for wideband timesharing:

(1-p) 2
2

Common Rate

®)

Bonus Rate p\NL
1

62

and for wideband broadcast coding:

Common Rate = (1 —a)j-\;;
2

®)

P
Bonus Rate ole

We thus reach the surprising conclusion that for wideband
Gaussian broadcast channels, broadcast coding offers no
advantage over timesharing (Actually, this was mentioned but
not further investigated 1n Ref. 4.) We mvestigate this interest-
ing phenomenon more closely 1n the next section.

IV. A More Detailed Analysis

In this section we will see that the reason wideband broad-
cast coding offers no advantage over wideband timesharing 1s
that, for a given common rate, the bonus rates 1n Eqs. (4) and
(5) are nearly equal, when the “good” SNR x, 1s small. More
precisely, we have the following:

Theorem- If @ and p are chosen so that the common rates
in Egs. (4) and (5) are equal, then

Broadcast bonus rate (BBR)  _ Clax,)
Timesharing bonus rate (TBR) pC(x))
X, C(x2)

<
C(xl) x,

x, log (1 +x,)
) log (1+x,)

X,

Corollary 1 Since log(l +x,)<x,, we also have

BBR _ N
TBR ~ log(l + x,)
independent of x, . Thus also

BB
TB

sl

lim =1

x1—>0

~

again independent of x,, .



Corollary 2: For the continuous time channel, the corre-
sponding result is

log(1 + P/N, B)

BBR _ M2
log(1 + P/N, B)

TBR N,

P/NlB
< -_—
log(1 + PN, B)

-1 as B>

Proof of Theorem: For the two common rates to be equal,
we have, from Eqs (4) and (5), that

Clax,) = pClx,) (10)
On the other hand, the ratio of the bonus rates 1s

Clax,)
pC(x,)

amn

Combining Eqgs. (10) and (11), we see that, for a fixed com-
mon rate, the ratio of the bonus rates 1s

C(ole) . C(x2)
C(ozxz) C(xl)

The desired result now follows from the fact that the function
C(ax,)/C(ax,) 15 a decreasing function of a, and approaches
x,/xy,asa>0. W

We conclude with a brief discussion of the shape of the
broadcast capacity regions as a function of x, and x,. It 1s
useful to normalize the parametric curves described by Eq. (5)

by dividing the common rate by 1ts maximum value C(x,),
and the bonus rate by its maximum value C(x, )

Clax,)
Normalized Common Rate (NCR) = | - o)
2
(12)
Clox,)
Normalized Bonus Rate (NBR) W)

For a given value of x,, the parametric curves described by
Eq. (12) vary monotonically outward from x, = x,, m which
case they reduce to

C(ox,)
R=1-
NC C,)
Clax))
NBR = ————
C(xl) ,

which 1s just the timesharing straight line, to x, = 0%, in which
case they reduce to

NCR = 1 -«
Clax,)
NBR =
Clx,)

Thus for a given good SNR x,, broadcast coding offers the
largest relative advantage over timesharing when x, =0, and
the smallest relative advantage (none at all) when x, =x,.'Of
course, as we have seen, when x, 1s small, even the largest
relative advantage 1s quite small. In Fig. 2, we have graphed
the outer (x, = 0) and inner (x, = x,) envelopes for several
values of x| .
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Fig. 1. The capacity region of some Gaussian broadcast channels



BONUS RATE

¢

G

T T i 1 i { i T T T ! ] 1 [ i 1
| x9=0 - x9=1 —
I | 1 ] ] ] | | | ] 1 [ | 1 ] ] ]
| T I | I 1 T 1 I T | [ ! T T T
xq =10 xq =100
| ! ] | 1 ! t | | ] ] ] 1 | { I |
| ] | I [ | T ! 1 ! T 1 ] | I
- x4 = 1000 1 - Xy = -
— — -
1 | | ] 1 | | ] | | 1 ] ] | | ] |
0 C, 0 Co

COMMON RATE

Fig. 2. The extreme capacity regions (x, = 0 and x, = x,) for several values of x,
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