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A comprehensive search has been made in order to identify celestial radio sources that
can be used as references for navigation of the Galileo spacecraft by means of A VLBI
observations. The astronomical literature has been searched for potential navigation
sources, and several VLBI experiments have been performed to determine the suitability
of those sources for navigation. This article reports on the results of such work performed
since mid-1983. We present a summary of the source properties required, the procedures
used to identify candidate sources, and the results of the observations of these sources.
The lists of sources presented are not meant to be taken directly and used for AVLBI
navigation, but they do provide a means of identifying the radio sources that could be
used at various positions along the Galileo trajectory. Since the reference sources nearest
the critical points of Jupiter encounter and probe release are rather weak, it would be
extremely beneficial to use a pair of 70-m antennas for the AVLBI measurements.

I. Introduction

The Galileo spacecraft is scheduled to be launched in
May 1986 on a mission to explore Jupiter and its satellites. On
the way to Jupiter, it will fly past the asteroid Amphitrite.
In July 1988, an atmospheric probe will be released from the
main spacecraft bus. This passive probe will follow a path that
diverges slightly from that of the orbiter. Both the probe and
the orbiter are scheduled to arrive at Jupiter in December
1988. While the orbiter will make a tour of the Jovian system
that is scheduled to last for approximately two years after the
planetary encounter, the probe will enter the atmosphere and
survive for about an hour.

Current plans call for AVLBI (VLBI = Very Long Baseline
Interferometry) navigation to be used to help determine the

spacecraft trajectory precisely The AVLBI observables are
sensitive to position in the plane of the sky rather than to
radial distance or velocity. As such, they can be complemen-
tary to the more traditional Doppler and ranging data. The
increased accuracy afforded by including the AVLBI data will
help conserve fuel during the tour of the Jovian system and
will be especially useful in reconstructing the trajectory of the
atmospheric probe. The more accurate trajectory reconstruc-
tion will allow a more detailed specification of the properties
of Jupiter's atmosphere.

The basic principle of AVLBI navigation is to use two widely
separated Deep Space Network (DSN) stations to find the
angular separation between a spacecraft and a natural radio
source, usually a quasar. The two stations are used as an mter-

152



ferometer and can acquire observables (phase and phase-delay
rate) that depend on the geometry of the baseline connecting
the stations, the quasar and spacecraft positions, the station
clocks, and the Earth's atmosphere. Observed phase is used to
reconstruct signal path delay, which in turn is' a measure of
source angular position. Observations from two baselines are
needed to determine both components of angular position.
By making sequential VLBI observations of the spacecraft and
a quasar, the effects of a number of imperfectly known quanti-
ties can be reduced by differencing the observables. Since the
quasar position has been determined previously in an mertial
frame of radio sources, the JPL VLBI catalogue (Ref. 1), the
angular position of the spacecraft is tied to an mertial frame.
An important point to recognize is that the accuracy of the
AVLBI results depends nonlinearly on the angular separation
between the spacecraft and the natural radio source. Larger
separations imply less complete cancellation of some errors
and a less precise determination of the spacecraft position.

II. Searching for Suitable AVLBI
Reference Sources

A. Identification of Candidate Sources

Jupiter's sidereal period of revolution is nearly 12 yr.
Therefore, both Jupiter and the Galileo spacecraft will traverse
a large portion of the ecliptic plane during the approximately
4-yr lifetime of the mission. Since the most accurate AVLBI
navigation requires radio sources as close as possible to the
spacecraft, a net of reference sources located along the ecliptic
plane is needed.

A set of criteria for suitable reference source candidates is
based on the properties of the AVLBI navigation system. The
system in use is called the Block I system. It involves the
recording and real-time transmission of VLBI data in a
250-kHz observing channel. This bandwidth, the maximum
achievable coherent integration time (about 10 mm), and
the properties of the DSN 70-m antennas (to be upgraded
from 64 m) can be combined to estimate the minimum cor-
related flux density for a usable VLBI navigation source;
detailed error analysis has been performed in JPL Engineering
Memorandum 335-26.l If corrections for propagation errors
caused by charged particles in the ionosphere are to be made,
observations at both S and X bands (2.3 and 8.4 GHz, respec-
tively) are needed. This requires the reference source's corre-
lated flux density to be at least 0.25 Jy (1 Jy = 10~26 W •
in-2 • Hz-1) in each band for a pair of 70-m antennas. For the

1 Thomas, J.B., "An Error Analysis for Galileo Angular Position Measure-
ments with the Block I ADOR System," JPL Engineering Memoran-
dum 335-26, 1981 (JPL internal document).

combination of a 70-m and a 34-m antenna, the required
correlated flux density would be close to 0 5 Jy.

Counts of sources as a function of total flux density at dif-
ferent frequencies have been made by astrophysicists studying
the distribution and evolution of radio sources in the universe
(e.g., Ref. 2). In the strip of sky within 10° of the ecliptic
plane, there should be a source with a total flux density of at
least 0.25 Jy at 5 GHz about every 0.7° in ecliptic longitude.
(Most radio astronomy surveys and source counts have been
made at 1.4 or 5 GHz, not at the 2.3- and 8.4-GHz frequencies
used by the DSN.) However, most natural radio sources are
heavily resolved by interferometers with intercontinental
separations. The fringe spacing (resolution element) of an
interferometer with a 10,000-km baseline is about 0.7 milli-
arcseconds (3 6 nanoradians) at X band. Only sources having
more than 0.25 Jy in structure that is unresolved by such an
interferometer are suitable as Block I AVLBI navigation refer-
ences Since very few extragalactic radio sources have more
than half their total flux density in such compact structure,
and most have considerably less, the density of reference
sources is much lower than indicated by the total flux densi-
ties alone.

Typical extragalactic radio sources have "steep" spectra in
which the flux density decreases with increasing frequency.
However, some sources have relatively "flat" or "inverted"
spectra, with the total flux density remaining fairly constant
or even increasing with increasing frequency in the 1- to
10-GHz spectral range. It has long been known that such
sources have a far higher probability of being very compact
than do the steep spectrum sources, so these sources are the
best candidates for AVLBI navigation. However, the most
compact sources are also the most variable at X band (S band
fluxes remain relatively constant).

The selection of candidate AVLBI reference sources pro-
ceeded based on the knowledge of system and source charac-
teristics outlined above. Surveys of the northern and southern
skies complete to flux densities of 0.5-0.6 Jy at 2.7 or 5 GHz
were made in the 1960s and early 1970s (e.g., Refs. 3 and 4).
Objects that appeared in these surveys were potential candi-
dates for use as Block I AVLBI navigation sources. The astro-
nomical literature was searched in order to find any available
information on the radio structure and spectrum of the sources
within 20 deg of the Galileo trajectory. Many were found to
have most of their flux in components resolved on scales of
arcseconds to arcminutes. Of the remaining sources, some had
little structural information available, while some were known
to have more than 0.25 Jy in components less than about an
arcsecond in size. These sources were chosen as potential
AVLBI navigation sources deserving further investigation.
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Preference was given to sources with flat radio spectra, as they
are most likely to contain very compact components.

B. VLSI Observations of Candidate Radio Sources

Some of the candidate sources were already part of the JPL
VLBI catalogue, and others had been observed prior to mid-
1983. Thus, accurate positions and typical correlated flux den-
sities were known. The other candidate sources were observed
in several short baseline Mark II VLBI experiments, using the
40-m antenna at Caltech's Owens Valley Radio Observatory
(OVRO) and the 26-m DSS 13 in the Goldstone complex as
the two observing stations. Data were eventually obtained on
all the good candidate sources along the Galileo trajectory.
Typically, the available data on a given source include two or
three observations of about 10-min duration at different hour
angles on a single day. Since OVRO's S/X receiver is uncooled,
its system temperatures were about 6 times the system temper-
ature of 25 K for DSS 13. The Mark II system has a usable
bandwidth of 1.8 MHz, so the OVRO-DSS 13 baseline was
about a factor of two less sensitive than a baseline with two
70-m DSN antennas and the Block I VLBI system.

Data from the observations were processed on the Caltech/
JPL Block 0 VLBI correlator. The main information extracted
from post-correlation software was correlated flux densities
at S and X bands and improved positions for the detected
sources. The OVRO-DSS 13 baseline is approximately 250 km
in length, yielding a fringe spacing of about 30 milharcseconds
at X band. Thus, presence of a correlated flux density greater
than 0.25 Jy at both S and X bands on this baseline is a
necessary but not a sufficient condition for a source to be
deemed suitable for AVLBI navigation. Instead, those radio
sources with at least 0.25 Jy in correlated flux on the 250-km
baseline need to be observed on an intercontinental baseline
to see if they have enough correlated flux on a 10,000-km
baseline. As expected, the limiting factor for most sources is
their weakness at X band. The total flux density at that
frequency is less than at S band for the typical steep radio
spectra, and the smaller fringe spacings at X band usually
resolve a larger fraction of the total flux than at S band.

III. Observational Results
Results from the search for suitable AVLBI sources are

presented in Tables 1 through 3. The sources in these tables
are arranged in order of increasing right ascension, with the
zero point shifted to be near the beginning of the Galileo
trajectory. Table 1 lists sources currently in the JPL VLBI
catalogue that might be usable reference sources for Galileo
navigation. Included in the table are the source names, their
positions, the typical correlated flux densities at S and X bands

on intercontinental baselines, and the minimum angular dis-
tance between each source and the spacecraft trajectory. It
should be noted that some of these sources may not be suitable
AVLBI references. Most have variable flux densities that may
fall below the flux density threshold at which consistent
detection can be expected, and some have structure that can
cause them to have insufficient correlated flux densities when
observed with some projected baselines.

Table 2 lists sources observed on the OVRO-DSS 13 base-
line. In addition to the columns used in Table 1, the epoch of
the short baseline observations is given here. The correlated
flux densities listed are those found on the baseline within
California and are larger than the correlated flux densities that
would be found on intercontinental baselines. Table 2 is
divided into two parts. First, we list those sources that were
detected at both bands; then we list the sources that were
undetected in one or both observing bands. The latter radio
sources definitely will not have sufficient flux on interconti-
nental baselines to be used for navigation. Sources in the top
half of the table cannot be ruled out on the basis of the short
baseline observations alone, but further information is required
to determine whether they can be used as navigation references.
Separations from the Galileo trajectory are listed only for
sources that were detected in at least one of the two observing
bands. Typical position errors in this table are on the order of
5 arcseconds, compared to the milliarcsecond positional
accuracy for most of the sources listed in Table 1.

Table 3 lists the sources that were selected from previous
short baseline observations or from the astronomical literature
and were observed in a long baseline experiment between
DSS 13 and DSS 63 (the 64-m antenna in Spain) in November
1983. Several of these sources are part of the JPL VLBI cata-
logue and are also listed in Table 1. The correlated flux densi-
ties listed in Table 3 are those that were found on the nearly
east-west intercontinental baseline. Values on the baseline
between California and Australia could be higher or lower,
depending on the structures of the individual sources. Posi-
tions listed in Table 3 have a typical accuracy of several tenths
of an arcsecond

A shortage of suitable AVLBI sources still exists near some
critical parts of the Galileo trajectory. Figure 1 displays the
Galileo trajectory from 1986 through 1991. The hatched
regions are those within 10° of a radio source that has a high
probability of being a usable navigation reference. Figure 2 is
a blow-up of the section of the trajectory including probe
release and Jupiter encounter, with 10°-radius circles plotted
for the reference sources that can be used with a reasonable
expectation of success. The radio source GC 0406+12 (not
plotted) is the candidate reference source for AVLBI nearest
the positions of probe release and Jupiter encounter, but it
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often has a correlated flux density below 0.2 Jy at X band.
We have concentrated our greatest efforts on finding refer-
ence sources in this region, but the results are not encouraging.
Another region of potential importance is near the position of
Jupiter in late 1989 and early 1990. This area is in a part of
the ecliptic which intersects the galactic plane. Since regions
within 10 deg of the galactic plane generally have not been
surveyed for radio sources, few potential navigation sources
have been identified in this area. It is a region that would be
very important if the Galileo launch were delayed by about
18 months, as it would then be the location of probe release
and initial Jupiter encounter.

It must be re-emphasized that navigation sources should not
be selected from these tables without consultation with the
VLBI Systems Group. The natural radio sources have variable
flux densities; new information about the sources is being
acquired by a variety of means; and positions of the sources
are frequently updated and refined.

IV. Continuing Investigations
Two approaches are being taken currently in an effort to

find more AVLBI navigation sources for Galileo. These
approaches utilize radio source surveys which have been and
are being made by astronomers not connected with JPL. A
few of the sources identified in these surveys have some
potential as navigation reference sources, so we are attempting
to investigate them further. Neither of the ongoing investiga-
tions is very likely to yield any sources that would be better
than those already known. However, the effort is continuing
because of the high value of even a single usable navigation
source if it is located in the right place.

The first of the continuing investigations utilizes a sensitive
sky survey being performed by the radio astronomy group of
the Massachusetts Institute of Technology (MIT) using the
91-m telescope of the National Radio Astronomy Observa-
tory (NRAO), located in Green Bank, West Virginia. This
survey will be complete to a limiting total flux density of
about 0.1 Jy at 5 GHz. The MIT-Green Bank survey includes
many sources that were not previously known because they
are weaker than the 0.5-0.6 Jy completeness limits of pre-
vious surveys. Conceivably, one or more of these sources could
have enough compact flux to be suitable navigation reference
sources. The survey also includes some sources that have
increased their flux densities in the last 10-20 yr, and now
have somewhat more than 0.5 Jy at 5 GHz.

The portion of the sky survey between -0.°5 and +19.°5
declination has been completed by the MIT group (Ref. 5).
This includes the region south of the ecliptic near the posi-

tion where Galileo encounters Jupiter. The survey has been
used by JPL to select many of the sources that were investi-
gated on the OVRO-DSS 13 baseline in August 1985. It is
encouraging that the two sources nearest the critical encounter
and probe release position, 0341+158 and 0342+147, were
both detected at S and X bands in each of three scans. Obser-
vations of these sources have been made recently (in September
1985) on intercontinental baselines; the data from that experi-
ment have not yet been analyzed. Intercontinental-baseline
observations of several of the other sources listed in Table 2
are tentatively planned for the future.

The second ongoing investigation involves a recent low-
frequency survey for scintillating sources in some regions of
the galactic plane. This survey was made by a non-JPL group
using the Ooty radio telescope in India (Ref. 6). Sources that
were found to scintillate by the Ooty group are those that
contain components less than an arcsecond in size. It is possi-
ble that one or several of these sources could be used for VLBI
navigation in the region where the ecliptic intersects the galac-
tic plane. The Indian group has already observed some of the
sources with sub-arcsecond resolution at NRAO's Very Large
Array (VLA) in New Mexico. We have collaborated with them
on a proposal to observe the remaining sources with the VLA.
The proposed observations would provide enough knowledge
about the radio sources to judge whether any have enough
potential as AVLBI navigation sources to be investigated on
intercontinental baselines.

V. Summary and Speculations for the Future

An extensive search for potential AVLBI navigation sources
for the Galileo spacecraft has been performed. This search has
involved both investigation of the astronomical literature and
new interferometric observations of a number of natural radio
sources. The investigation of many radio sources in the ecliptic
has also provided information that could be used in the navi-
gation of other planetary exploration spacecraft in the future.
Unfortunately, the distribution of strong, ultra-compact
radio sources is such that there is apparently a lack of strong
navigation sources near some critical parts of the Galileo tra-
jectory. It is unlikely that any more suitable sources will be
found in these critical regions. Since it is desirable to have
reference sources near the spacecraft trajectory in order to
provide the best navigation accuracy, it may be advantageous
to use some sources whose correlated flux densities are too
low to be detected consistently with the combination of a
34-m and a 70-m antenna. Therefore, it will be necessary to
use two 70-m antennas if AVLBI observations utilizing these
weak sources are attempted.

Improved navigation of future missions by the use of refer-
ence sources within a few degrees of the spacecraft would
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require increased sensitivity of the AVLBI observations. Such sion of data. However, it could be useful for non-real-time
an improvement in sensitivity could be achieved either with work in such tasks as reconstructing trajectories of spacecraft
larger receiving antennas or by using a wider bandwidth VLBI and probes after the fact. A real-time system with an inter-
system. The Mark III system currently used in astronomy has a mediate bandwidth of 5 MHz would provide nearly 5 times the
maximum bandwidth of 56 MHz, more than 200 times that sensitivity of the Block I system. This would allow AVLBI
currently employed in the Block I system. This bandwidth is to be done with two 70-m antennas for sources having corre-
too high for a real-time VLBI system with satellite transmis- lated flux densities above 0.05 Jy.
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Table 1. Potential Galileo AVLBI sources In the JPL VLBI catalogue

IAU name

2155-152

2216-038

2223-052

2243-123

2320-035

2345-167

0019+058

0048-097

0106+013

0119+041

0202+149

0234+285

0235+164

0239+108

0333+321

0336-019

0406+121

0420-014

0528+134

0552+398

0735+178

0738+313

0742+103

0745+241

0748+126

0827+243

0851+202

1004+141

Other
name

OX-192

P 2216-03

3C446

OY-172.6

P 2320-035

P 2345-16

P 0019+058

P 0048-09

P 0106+01

GC 01 19+04

P 0202+14

CTD20

GC 0235+16

OD166

NRAO 140

CTA26

GC 0406+1 2

P 0420-01

P 0528+134

DA 193

P 0735+17

OI363

DW 0742+10

B2 0745+24

P 0748+1 26

B2 0827+24

OJ287

GC 1004+14

Position

Right ascension,
00h 00m 00.S0000

21 55 23.2414

22 16 16.3814

22 23 11 0774

224339.7925

23 20 57.5248

23 45 27.6822

00 1958.0233

00 48 09.9825

01 06 04 5175

01 19 21.3925

02 02 07.3961

02 34 55.5896

02 35 52.6301

02 39 47.0897

03 33 22.4049

03 36 58.9525

04 06 35.4765

042043.5393

05 28 06.7590

055201.4076

0735 14.1262

07 38 00.1785

07 42 48.4643

07 45 35.7253

074805.0601

08 27 54.3987

0851 57.2503

10 04 59.7838

(1950.0)

Declination,
00° 00' 00 "000

-15 15 30070

-03 50 40.606

-05 12.17.778

-122240.273

-03 33 33.613

-16 47 52.585

0551 26473

-09 45 24.237

01 1901.161

04 06 44.012

1459 50.961

2835 11.426

16 24 04.033

104816.295

32 08 36.674

-01 56 16.878

120949.322

-01 27 28.691

132942295

394821.949

17 49 09.254

31 19 02.054

10 18 32.648

24 07 55.494

12 3845.468

24 21 07.646

20 17 58 402

14 11 10.893

Correlated

Sband

0.55

0.74

0.78

1.24

0.52

1.8

0.43

0.83

2.51

0.74

1.00

1.48

1.65

O.J5

0.60

1.4

0.4

1.5

0.86

0.6

0.50

1.40

0.5

0.81

0.75

0.8

1.32

0.27

flux, Jy

Xband

0.49

1.78

1.15

0.79

0.29

0.42

0.41

073

0.76

0.55

1.33

1.97

1.82

0.40

040

1.0

0.2

1.5

0.74

1.0

069

0.81

0.4

0.40

030

0.26

2.00

0.30

Dmuv
deg

168

11.2

9.1

54

1.8

125

4 7

127

4.3

2.5

3.6

137

2.1

3.7

133

199

7.6

21.6

94

16.5

4.1

95

112

2 7

86

4.4

19

1.6
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Table 1 (contd)

IAU name

1038+064

1040+121

1055+018

Position (195 0.0)
Other
name Right ascension,

00h 00m 00.S0000

OL 064.5 103840.8845

3C 245 10 40 06 0002

P 1055+01 105555.3130

Table 2. Short

Declination,
00° 00' O0."000

06

12

01

2558514

19 14.953

5003.518

Correlated flux, Jy

S band X band

0.58 0.42

0.24 0.38

1 00 0.88

Dmin>
deg

3.0

2.8

5.8

baseline source observations

Position (1950.0)

IAU name
uuiei
name Right ascension,

00h 00m 00.S0
Declination,
00° 00' 00"

Correlated

Sband

flux. Jv
umm>

Xband deg
Epoch

A. Sources Detected at Both Frequencies:

0259+121

0341+158

0342+147

0411+054

0425+048

0536+145

0544+273

0554+242

0556+238

0600+177

0610+260

0629+104

0629+160

0657+172

1011+250

B. Sources Not

0320+053

0332+078

P 0259+1 2 025946.4

034133.7

034218.0

4C+05 14 041158.3

P 0425+04 04 25 08 7

053651.5

05 44 26.0

05 54 03 0

05 56 28.0

06 00 16 0

3C154 061043.8

06 29 29.4

06 29 50.3

06 57 07.7

1011061

Detected at One or Both Frequencies:

4C+05 14 032041.4

GC 0332+07 033212.4

120711

155019

14 44 26

05 27 14

04 50 30

14 32 14

27 20 43

24 13 15

23 53 25

174300

26 05 30

102413

16 02 25

17 1337

25 04 06

05 23 37

07 50 16

0.59

046

0.30

0.6

0.66

0.38

0.51

1.43

0.45

0.59

0.56

1.6

1.2

0.95

0.53

1.12

0.49

0.29 3.9

0.27 2.8

0.32 3.9

0.25 14.4

0.65 15.6

0.55 8 5

0.47 4.3

097 1.4

0.61 0.9

0.56 5.5

0.3 7.1

0.3 126

06 70

1.4 5.8

1.05 122

<0.24

<0.25

1985.6

1985.6

1985.6

1985.6

19856

19856

19842

1984.2

1984.2

1984.2

1984.2

19856

1984.2

19842

1984.2

19856

19842

158



Table 2 (contd)

Position (1950.0)

IAU name .
name Right ascension, Declination,

00h 00m 00.S0 00° 00' 00"

0333+128 4C+12.15

0348+049 .. 034812.8 045656

0408+070 P 0408+07

0411+141 P 0411+14

0417+177 P 0417+17

0441+106 P 0441+10 044126.8 103717

0459+135 P 0459+13 045943.8 133356

0510+311

0514+109 ... 05 14 00.2 10 54 42

0520+244

0523+327

0531+194 P 0531+19 053147.3 192525

0538+286

0539+290

0548+165 .. 0548249 163549

0552+125 . 055245.3 123203

0557+191 .. 055703.0 190900

0559+193

0600+219 .. 060051.1 215941

0606+163

0607+174

0611+131 ... 061116.0 130900

0618+145 3C158

0618+197

0622+179

0623+264 P 06 23+26

0624+176

0626+168

Correlated

S band

<0.25

0.63

<021

<0.21

<0.21

0.65

0.41

<0.25

0.43

<0.21

<0.25

05

<0.25

<0.25

1.10

0.7

0.32

<0.25

0.61

<0.25

<0.25

0.34

<0.25

<0.25

<0.25

<025

<025

<025

flux, Jy
r\umm-

Xband deg

<0.24

<0 25

<0 24

<0.24

<0 24

<0 28

<0 24

<0.26

<026

<0.24

<0.26

<0 26

<0.26

<0.26

<0.25

<0.25 . .

<0.27

<0.26

<026

<0.26

<026

<0.25

<0.26

<0.26

<0.26

<0.26

<0 26

<0 26

Epoch

1985.6

19842

1985.6

1985.6

1985.6

1984.2

19856

1984.2

1984.2

1985.6

19842

1984.2

1984.2

19842

19842

1984.2

1984.2

1984.2

19842

1984.2

1984.2

1984.2

19842

1984.2

19842

1984.2

1984.2

1984.2
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Table 2 (contd)

Position ( 1 95 0.0) Correlated

IAU name

0631+142

0640+089

0645+147

0648+153

0710+118

0711+146

0721+161

0725+147

0727+153

0801+303

0928+008

1042+071

wuici

name Right ascension,
00h 00m 00.S0

0631 550

06 40 42.4

P 0710+11

3C181

0928181

P 1042+071 1042197

Tables. Long

Decimation, .,
00° 00' 00" Sband

141600 0.32

085700 0.34

<0.25

<0.25

<0.25

<0.25

<0.25

<0.25

<0.25

<0.25

004812 035

07 11 39 0.34

baseline observations, 1983.9

Position (1950.0)
<-v*.i_ — _

IAU name

2223-114

2233-148

2325-150

2351-006

2354-117

2355-106

0003-066

0047-051

0048-097

0234+285

0237+040

name Right ascension,
00k 00h 00.S00

P 2223-1 14 222304.52

P 2233-140 223353.99

P 2325-150 232511.62

235135.39

P 2354-11 235457.22

P 2355-106 23 55 36.96

NRAO 5 00 03 40.30

004749.03

P 0048-09 00 48 09.98

CTD 20 02 34 55 59

GC 0237+04 02 37 14.43

Declination,
00° 00' O0."0

-11 2856.7

-144856 1

-15 04 26.8

-00 36 25.2

-11 42 21.0

-10 36 50.4

-06 40 17 0

-05 08 39.4

-09 45 24.2

2835 11.4

04 03 30.1

flux, Jy

min>
X band deg

<024

<023

<0.26

<0.26

<0 26

<0 26

<026

<0.26

<0.26 . .

<0 26

<026

<0.31

Correlated flux, Jy

S band X band

0.40 0.43

0.15 <0.16

0.45 0.26

0.34 <0.11

1.00 0.23

0.54 0.49

0.54 0.37

0.15 0.26

08 0.7

140 1.97

0.27 0.52

Epoch

19842

1984.2

1984.2

19842

19842

1984.2

1984.2

1984.2

19842

1984.2

1984.2

1984.2

Dmin-
deg

9.1

88

8.9

1.5

9.1

83

5.4

8.5

12.7

137

99
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Tables (contd)

IAU name

0423+051

0430+052

0446+112

0454+066

0456+060

0459+060

0502+049

0507+179

0509+152

0620+389

0650+371

0711+356

0722+145

0729+259

0733+300

0738+313

0738+272

0742+318

0742+103

0743+259

0748+333

0754+100

0759+183

0802+212

0820+225

0834+250

0839+180

0952+179

Other
name

P 0423+051

3C120

P 0446+ 11

P 0454+06

P 0456+06

GC 0459+06

P 0502+049

P 0507+1 7

P 0509+152

OH 335

GC 0650+37

OI318

P 0722+145

GC 0729+25

GC 0733+30

OI363

B2 0738+27

B2 0742+31

DW 0742+10

GC 0743+25

GC 0748+33

P 0754+100

GC 0759+18

GC 0802+21

P 0820+22

GC 0834+25

GC 0839+1 8

AO 0952+17

Position (1950.0)

Right ascension,
00k 00h 00.S00

0 4 2 3 5 7 2 6

043031.64

044621.24

04 54 26.42

045608.17

04 59 34.80

050243.83

050707.51

05094947

062051.56

06503531

0711 05.62

07 22 26.99

07 29 32.87

07 33 04.67

07 3800.18

07 38 20.94

074230.78

07 42 48.46

07 43 23.09

074841 09

07 54 22.61

0 7 5 9 5 5 3 2

08024263

08 20 28 54

08 34 42 33

0839 14.11

095211.83

Declination,
00° 00' O0."0

05 11 36.3

05 1458.3

11 16 17.0

06 40 28 2

0 6 0 3 3 2 5

06 04 50.9

045539.1

175658.2

15 1351.4

385826.8

37 09 26.7

35 39 52.2

1431 12.1

25 55 06.9

300104.2

31 1902.1

271348.7

315016.3

101832.6

25 56 25 0

3321 03.7

100439.5

181815.4

21 15 286

2 2 3 2 4 5 2

25 04 54.5

184627.5

175744.9

Correlated flux, Jy

Sband

0.52

0.1

0.31

0.14

0.14

0.42

030

0.26

0.80

047

0.56

0 7 2

045

0.21

034

1.4

015

0 2

2.4

0.48

032

087

0.30

05

030

0.31

0.23

0.15

Xband

0.25

0.4

0.5

0.42

0.11

031

050

075

0.22

024

0 3

01

0.35

026

0.32

0 7

<0.1

0.3

03

0.36

<009

06

0.21

<0.10

0.28

<0.18

<0.13

0.36

Dmm-
deg

15.2

15 5

106

154

161

162

174

4 7

7 3

15.6

14 1

130

78

39

80

95

5.5

101

112

45

119

109

26

0 7

24

5.5

06

40

161



Tables (contd)

IAU name

0953+254

1004+141

1013+208

1022+194

1042+071

Other
name

OK 290

GC 1004+14

GC 1013+20

GC 1022+19

P 1042+071

Position

Right ascension,
00k 00h 00 S00

095259.77

100459.78

10 1359.44

102201.49

104219.48

(19500)

Declination,
00° 00' 00 "0

25 29 34.0

14 11 10.9

205247.4

1927352

0711 26.2

Correlated

Sband

0.37

0.27

0.33

031

0.20

flux, Jy

Xband

0.2

028

0.35

0.26

0.22

Dmin.
deg

113

16

8.6

7.9

2.0

162
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Fig. 1. Plot of the Galileo trajectory from 1986 through 1991. Hatched regions are within 10°
of a potential AVLBI reference source that is likely to be usable in the Block I navigation
system.
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Fig. 2. Plot of the Galileo trajectory in 1988 and 1989, with several important points marked.
The sources likely to be usable for AVLBI navigation are shown with 10°-radius circles
centered on each radio source position. Note the lack of sources in the region where probe
release and Jupiter encounter will occur.

163




