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A small perturbation analysis, in the long wavelength regime, is used to
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I. INTRODUCTION

Since the early 1970"s there has been growing attention paid to the

numerical solution of the full tlme-dependent, viscous, compressible Navier-

Stokes equations of fluid mechanics; see inter-alia [I], [4]. A vexing and

still open issue is the formulation of "downstream" or "outflow" boundary

conditions. One common strategy for flows evolving to steady state has been

to assume that the particular geometry considered allows the imposition of the

inflnlty-downstream steady state conditions at the relevant boundary of the

computational domain. For example, for flow in a pipe, the downstream

condition might be taken from the fully-developed, steady-state parabolic

profile. For a seml-lnflnite flat plate at zero angle of attack, it is

usually assumed that "sufficiently far" downstream, the free stream conditions

predicted by boundary layer theory are sufficient for stating the

corresponding boundary conditions.

Numerical experiments (see e.g., [5-6]) with tlme-conslstent codes have

shown that taking p = p_ for the downstream boundary conditions leads to

very slow convergence to steady state. This phenomenon is aggravated with

increased Reynolds numbers, because the spatial resolution of the boundary

layer then leads, via the von Neumann stability analysis, to very small time

steps. It can be seen from the results of Rudy and Strlkwerda [5] that the

retardation of the convergence to steady state is caused mainly by the slow

decay of relatively long wavelength disturbances. They tried to account for

this by proposing a boundary condition on the pressure of the form

8p 8u
8t 0c _ + u(p - p_) = 0 (I.i)
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II_
where p is the density,c = (yp/p)IZ is the speed of sound, and e is a

free parameter which is "tuned" so as to optimize the convergence rate to

steady state. Note, that in any case at steady state, the downstreamboundary

pressure has the free-streamvalue. Their treatmentgreatly acceleratedthe

convergencerate; its derivation,however,is basically"hyperbolic."

In this paper we proposeto derive downstreamboundaryconditionsusing a

different methodology. The basic idea is to perturb the Navler-Stokes

equationsaround some approximation(usuallya fairly crude one) to the steady

state solutionin the downstreamregion. The llnearlzedpartial differential

equations for the perturbed quantitiesare then attacked using a modal form

for their solution. The resultingordinary differentialequationspresent an

eigenvalue problem which is solved assuming very long wavelengths. This

elgenvalue problem yields the decay rate for long waves and their phase

velocity. With these two quantities,as functionsof the Mach number and the

Reynolds number, one can use the modal form of the perturbed solution to

obtain the desiredboundarycondition.

In section 2 we give the derivation of the eigenvalueproblem and the

boundary conditionfor the particularcase of the flow past a two-dlmenslonal

flat plate.

Numerical results are presented in section 3 for the case of subsonic

Mach number,M = 0.4. The corresponding Reynolds numbers per foot

is 3 x 105. The numerical experiments are carried out for semi-inflnite

plates with the outflow boundary taken at various locationsdownstreamof the

leadingedge.
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2. THEORETICALDEVELOPHENT

The geometry under consideration is shown in the sketch below.

--Computational domain

_N_fF_low boundary flow boundaryif out
I I--

I l"edge" of
y _ ! /I boundary layer

I I / ',T
I I
_ _ _ _ _ _ _ _ _ _ _ _ _ _- _t _ "_ _

The two-dlmensional compressible Navler-Stokes equations governing the flow

may be written in conservation form as

8--_ _+_: 0 (2.1)

where

pu + T
-- XX

U = , F- = + Tyx

_xx_U v -(E + + Tyx

(2.2)

pu 7yl

puv + _xy

G = pv2 + Tyy _T

(E + Tyy)V + rxy u - k
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and

_u _u _v

Txx = p - 2p _x - X('_x+ "_-y)

T = p - 2p _v Du D._)yy _y- k(_x+

=Txy ryx - B + _x )•

The various parameters and dependent variables p, u, v, p, %, E, k, T, and

p are, respectively, the density, the x and y components of velocity, the

shear and second coefficients of viscosity, the total energy per unit volume,

the coefficient of heat conduction, the temperature, and pressure. An

equation of state p = p(e,p) relates the pressure to the density and the

specific internal energy e,

1 v2
e = (EIo) - _ (u2 + ). (2.3)

For example, for ideal gases the equation of state is

1
p = (y-l)p[e + _ (u2 + v2)] (2.4)

where y is the ratio of specific heats at constant pressure and volume,

respectively.

The numerical algorithm used in the next section is based on solving a

set of difference equations which approximate the full Navier-Stokes equations

(2.1) - (2.4). However, in considering the perturbation model we make several

rather crude simplifications.
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We assume, first of all, that near the outflow boundary the steady state

is given by a constant pressure P0, constant density PO' a vanishing

vertical velocity v0 = 0, and that the velocity in the x-direction is given

by

I U (6 € y < _)
u0 = (2.5)

_y (0 _ y _ 6)

where 6 is the nominal edge of the boundary layer and _ = T/p is the

velocity gradient at the wall (y = 0). The shearing stress, T, is, of course,

a function of x but will not be treated as such in the development.

A second simplification is to assume (for the mean steady flow) that the

total enthalpy, H0, is constant, i.e.:

yy P0 1 2 2
1 p_0 + _ (u0 + v0) = H0 = const. (2.6)

Equation (2.6) is equivalent to the assumption that we are perturbing around a

steady flow of Prandtl number unity.

The perturbed field quantities are defined as departures from the assumed

steady state described above:

u" = u --U0

P" = P - P0

(2.7)

P" = P - PO

V _ = V.
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Thus, p" is the pressure perturbation, etc. Next, we llnearlze the Navler-

Stokes equations in the boundary layer region (0 < y < 6) by substituting

(2.7) into (2.1) and retaining only first-order quantities in the primed

variables. The resulting set of equations may be written as follows:

BO" 30" rBu" Bv']
_t'-+ aY 3-_-+ 00[_-x--x+ By j = 0, (continuity) (2.8)

32
= u" (x-momentum) (2.9)Bu-- + aY Bu" 1 3p" v0 2 '

Bt _ + _v" + PO Bx By

2

By" + _Y Bv" I__ Bp" = _0 B v" (y-momentum) (2.10)
B--t-- _--x + PO By By2 '

and instead of the linearized energy equation we have the linearized constant

enthalpy relationship:

. _ y PO

y-1 p y-I PO p" - 00 uO u'. (2.11)

In the above equation 90 is the kinematic viscosity at steady state

conditions. We have also used the thin layer approximation in (2.9) and

(2.10). We emphasize again that the perturbation equations (2.8) - (2.11) are

valid only for 0 < y < 6. Outside this viscous region we shall derive

another set of equations which then will have to be matched to the above

equations. First, however, we set the modal analysis. Because (2.11)

provides an algebraic relationship between p" and p" and u', it is

necessary to consider only a three-vector, (p', u', v') for which we set the

modal ansatz:
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= ei(_t+bx) F2(Y)l. (2.12)

v / F3(Y)/

Next, we normalize and nondimensionalize the various quantities as follows:

= _y/U , G1 = Fl/P= , G2 = F2/U , G3 = F3/U ,

= _/a, B = U b/a, € = av0/U 2 = I/R6,

where R6 is the Reynolds number based on the boundary layer thickness.

In terms of the dimensionless variables and parameters, after

substituting (2.12), equations (2.8) - (2.10) become, for 0 < _ _ I:

i(m + Bn)G 1 + iBG 2 + G3 = 0 (2.13)

i(m + B iB ,,
n)G2 + --2 G1 + G3 = sG2 (2.14)

1 y-I nG_ - y-i G2 = cG_. (2.15)i(_ + BB)G 3 + _ G_ - Y Y

In equation (2.13) - (2.15) the primes designate differentiation with respect

to the coordinate n; e.g., G_ = dG3/dn , G'_ = d2 G3/dn2.

Next, we consider the inviscid region, n > 1 where u0 = U and the

flow is described well by the Euler equations (€ = 0). Repeating the above

procedure the acoustic perturbation equations corresponding to (2.13) - (2.15)

are derived:
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i(m + B)G 1 + iBG 2 + G3 = 0 (2.16)

i(_ + )G2 +--2 G1 = 0 (2.17)
xMg

1 GI - y-Ii(m + B)G 3 + _--_2 -- G_ = 0. (2.18)
_M_

The solvability conditions for the existence of solutions of the form erq

for the above homogeneous set of differential equations is found, after some

manipulation, to be

2 B2 2 B
r = -yM_ (m + _)(m + B). (2.19)

The set of equations (2.13) - (2.15) constitutes a fifth-order system and

requires five boundary conditions. Two of them are supplied by the no-slip

condition at the plate:

G2(0) = 0 (2.20)

G3(0) = 0. (2.21)

The other three are supplied by requiring the correct "impedance-matchlng" at

= I between the system (2.13) - (2.15) and the set (2.16) - (2.18), namely:

GI(1) = rGl(1) (2.22)

G_(1) = rG2(1) (2.23)

G_(1) = rG3(1) , (2.24)
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where r = r(M ; m,8) is given by (2.19).

The system (2.13) - (2.15) with the boundary conditions (2.20) - (2.24)

constitutes the eigenvalue problem from which, in principle, we could extract

the dispersion relation _ = _(8) for given Mach and Reynolds numbers

(M_ and _-i).

As mentioned in the introductory section, we are interested in very long

waves, i.e., the small 8. We, therefore, propose expanding the eigenfunc-

tions Gi (i = 1,2,3) in the form

Gi = Gi0) + 8G_ I) . 82 G_2) + -.. (i = 1,2,3) (2.25)

where

G_0) = [Gi(_;m,8,_)]B=0. (2.26)

We also expand the dimensionless "frequency" m (which for small 8 will

turn out to be the decay rate) in a similar manner:

= m0 + Bml + "'" (2.27)

where

= [_]8=0. (2.28)_0

Using the expansions (2.25) and (2.27) in (2.13) - (2.15), we get the

following zeroth and flrst-order problems in B:
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+ : o (2.29)

i_ 0 ¢ O) +___T O -_ G " - cG " = 0 (2.31)Y

and

yM2 G (2.33)

im0 G I) +--_G --- O " - cG " = - i(m I + n)G3(0) (2.34)
Y

Similar sets of equations can be derived for higher powers in 8. They

all have the same left-handside in the relevantvariables,with right-hand

sides serving as source terms made up of all previous (presumablyknown)

approximations. It is seen that m0' the zeroth-orderapproximationto the

decay rate is determinedfrom the "8 = 0 problem,"equations(2.29)- (2.31),

without reference to ml = (dm/dS)8=0'the phase velocity of the perturba-

tions. We, therefore, first concentrate our attention on this "8=0

problem." By some simplemanipulationsone can extract from the system (2.29)

- (2.31) a single fourth-orderdifferentialequation for G(0) For the sake2

of nearer notation set G_j) = gj, (j = 0,I,...). With this change of

notation, the fourth-orderdifferentialequation for go = G_0) is found to
be
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mO y-1 a E Jgo + 1 + i _ o_ 0 g_ -o n g_ -o 1 y-1 mO go = O.
(2.35)

The boundary conditions for (2.35) are, to zeroth order in 8:

g0(0) = g_(0) = 0 (2.36)

g_(1) = la _ _ _0 g0(1) (2.37)y-i

g0*'(1) = io I/2 _ I/2_0 g_(1) (2.38)_-I

In equations (2.35) - (2.38), o = (y-l)M_. For high Reynolds number flow,

say R6 > 30, € is a small number, and we can ask ourselves how does the

eigenvalue _0 behave as a function of a as g diminishes and approaches

zero.

There are three possibilities:

lim _ - I _
€+O mO

constant

Another way to pose this is to say that m0 ~ a as _ . 0 and we ask whether

a is smaller, greater than, or equal to zero. If a < 0, then we have in

(2.35) a singular perturbation problem and one can show that, considering the

boundary conditions (2.36) - (2.38), the only way to match the inner and outer

expansions is to have the trivial solution. If a > 0, we have a regular
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perturbation problem, and again the only possible solution is the trivialone

of go(n) + 0 as _ + O. We thus remainwith the third possibilityof

_0 ~ £ for small £. Let this proportionalityconstant be _/_0 = _0"

Then (2.35)is rewrittenas:

yo 2\ IV 2y 2_g,, _+ nl ooo
¥-I _0!

It is assumed, and will be verified, that for reasonable Mach numbers, say

below hypersonic speeds, _0 = 0(I).

We can now state the "8 = 0 problem" more concisely: given o, _, and

y (i.e., the Mach number, Reynolds number, and the gas constant) solve the

differential equation (2.39), subject to boundary conditions (2.36) - (2.38),

for the eigenvalues _0 and the eigenfunctlon g0(n) = G_ 0). This

elgenvalue problem was solved numerically for a range of values 0 < € < .05,

0 < o < 20 (for laminar flow this corresponds roughly to Reynolds

number, 50 < R < _ and Math number, 0 < M _ 7 for y = 1.4). For this

range of the parameters it is found that _0 is purely imaginary negative--

this means that _0 is purely imaginary positive. Thus, _0 represents the

decay rate of very long waves--to be corrected for finite but long waves by

the term 8_I. Figure I shows a plot of Ii/_01 versus a; for

0 < s < .0053 (103 < R < _), _0 is completely insensitive to changes in the

Reynolds number and indeed may be taken to depend on the Mach number only.

As _ + 0, ll/101 takes on the value _2/4 which can be derived

analytically.

It is seen from Figure I that, for this range of parameters, I_01 is

indeed of order unity, .4 _ llOl _ 5. For R as low as 40 (not shown on
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the graph) the I1/%01 curve devlates from the one shown by less than 5%.

Thus, we conclude that for moderate and hlgh Reynolds numbers the very long

wave (B _ 0) decay rate is basically a universal function of a = (y-1)M_.

The correction, B_I, to the decay is found by considering the flrst-order

problem, (2.32) - (2.34), with its attendant boundary conditions. Again, one

can extract from thls system a single fourth-order differential equation for

gl = G_ I). After some manipulations the gl-problem may be stated as follows:

2Y C2_g ''- oqgi -a 1 Y .-"_/gl = R (2.40)

where

R = yM2(_o I RI + R2) , (2.41)

RI _ 1..____!___g_V _ 21cg_ - 2 _0 go (2.42)

2

R2 _ l_____!___(qg_p)_ l(y+l) _ng_ 21_ _0 (Y+I)

yM2 m_ y - _ g_ - Y ng 0. (2.43)

The boundary conditions, to flrst-order in B, are found to be

gl(0) = g_(0) = 0 (2.44)

gi(1) - l_I/2(y-_l) i/2m0 gl(1) = iI__--_)I/2(_1 + _--_)g0(1) (2.45)

gl''(1) - io I/2(7Y__) I/2_0 g'_(1) = i(Yy_--_l) 1/2(_I + _)g_(1), (2.46)
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where in (2.40) - (2.46) for given c and _ we already know, albeit

numerically, go and _0" In deriving the boundary conditions (2.45), (2.46)

one has to expand the expression (2.19) for r in powers of 8. One then

finds that the expansion is valid only for B/_ 0 small compared to unity.

(Exactly how small cannot be answered at this point without finding the radius

of convergence for our expansion.) In physical terms, for laminar flow where

~ J_, this constraint means that our analysis is restricted to modes whose

wavelength is longer than the computational domain on the plate.

A solvability condition for the gl-problem is found by multiplying (2.40)

by the left null vector of the left-hand side operator of (2.40).

Symbolically, we may write

<f,R2>

_I = <f,Rl> (2.47)

where f is the left null vector to the system, including the boundary

conditions. Numerical evaluation of (2.47), for the same range of the

Reynolds and Mach numbers mentioned before, leads to the result that _I is

almost a universal constant in the present problem, namely

_I = - .295 ± .002. (2.48)

Now that we have the decay rate _0 and the phase velocity _I for long

waves, we can derive outflow boundary conditions.

Consider, e.g., the pressure perturbation:
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. i(_t+ bx)
p ~ e G(q) (2.49)

where G is a linear combination of G1 and G2. Since the numerical

solution of the finite difference approximation to the Navier-Stokes equations

is often done in terms of dimensionless temporal and spatial variables, we

define dimensionless time and x coordinates by

U t X

= ---f-; _ = Z (2.5o)

where the reference length L is the distance from the leading edge to the

outflow. Using _ = =m, b = =8/U , and (2.50), we can cast (2.49) in the form

R Cf

i T (we+ s_)
p" ~ e GCn) (2.51)

where Cf is the skin-friction coefficient,

i -- T

Cf 2 " (2.52)
p_ U

Using the long-wave dispersion relation

= _0 + Bin1

and p" = p - p_, we find that
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2

_p_ Cf R _p

_O _ (p - P_) + _i _ " (2.53)

The quantity [I/_0[ is, of course, given to us by Figure I. The skin

friction coefficient could in principle be obtained from the actual

computation at any time level. However, within our approximation one may give

an estimate for Cf taken, for example, from boundary layer theory. Thus,

for laminar flow and subsonic Mach numbers we may use the Blasius value of

Cf _ 2/3_ . More on this in the section describing the numerical work

which tested the efficacy of the boundary condition (2.53).

We close this section by noting that the same methodology used here to

derive outflow boundary conditions for the flat-plate problem can be used to

extract boundary condition on the downstream side of other configurations such

as the conditions in the wake of an airfoil, flow in a pipe, and so on. Also,

other quantities have perturbations which satisfy (2.53), and one might try to

apply the outflow condition to them as well. Another potential application is

for unsteady flows where the dispersion relation for (2.13) - (2.15) would be

carried out around some central wavenumber 8c rather than around 8 = 0.

3. NUMERICALRESULTS

In this section we present some numerical results for the boundary

condition described above. These results are preliminary; more complete

results will be presented elsewhere. Using the non-dlmenslonallzatlon

described above and the Blaslus expression for Cf, the boundary condition

(2.53) can be writtenas
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___p
_P_0= A(p - p ) + B _ (3.1)

where

1

A = - 9--_ ; B = _i"

We implemented (3.1) in a Navier-Stokes program using a version of the

MacCormack scheme that is second-order accurate in time and fourth-order

accurate in space [7]. The numerical scheme was time consistent and did not

use any acceleration technique such as a local time step.

For our numerical experiment we used an M = 0.4 boundary layer. The

unit Reynolds number (per foot) was 3.0 x 105 . The inflow was taken at 1.0

feet from the leading edge. We performed calculations using two different

locations of the outflow boundary; x = 2.067 feet and 3.0 feet from the

leading edge respectively. In both cases we used a grid of 31 points in the y

direction (exponentially stretched). In the x direction we used 17 and 31

grid points respectively for a mesh size of .067 feet. The inflow and initial

data were obtained from a computer program which solved the boundary layer

equations. Convergence to steady state was assumed when the maximum over the

grid of I_I was less than
10-6"

The boundary condition (3.1) was compared with the condition (i.I).

Equation (3.1) has the property that the steady state pressure is not forced

to be equal to p. Thus, there may be some discrepancies in the steady state

solution. The numerical experiments were designed to assess the behavior of

(3.1) with regards to:
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a) Convergence rate

b) Robustness with respect to changes in the coefficients

c) Quality of the steady state.

We summarize our results below.

Convergence to steady state was significantly accelerated by the use of

(3.1). The boundary condition (1.1) requires specification of a parameter _.

The convergence rate is sensitive to the choice of _. In [5] an optimal

for a class of problems is presented. Because of the length of the computer

runs, we were unable to determine the optimal _ for the present problem.

For the case of the outflow boundary at x = 3.0 feet from the leading edge a

steady state was obtained using (3.1) in 30880 time steps. Using (I.I) and

= 1.45 the steady state required 97020 time steps. Using e = .6 which

would be obtained from the formula in [6] based only on the free stream

velocities and sound speed significantly degraded the convergence rate. For

the case of the boundary at x = 2.067 feet from the leading edge, the use of

(3.1) required 20960 time steps for convergence. The same run with _ = 2.71

required 52080 time steps.

Robustness of the boundary condition (3.1) was tested by modifying the

coefficient A in (3.1). A complete study has not yet been made, but

decreasing A by a factor of 2 (outflow boundary at 2.067 feet) increased the

number of time steps required for convergence by 560 and made only small

changes in the final steady state.

The quality of the steady state was assessed both by comparing solutions

generated by the two boundary conditions and by comparing the solutions

generated by the two positions of the outflow boundary. We first consider the



-19-

case of the outflow boundary at 3.0 feet. In this case the outflow pressure

obtained from using (3.2) differed from p_ by less than .04%. In Table I we

indicate the value of U and V (horizontal and vertical velocities non-

dlmenslonallzed by U) for the steady states obtained from (3.1) and (I.I).

The data are presented at different x locations indexed by the grid point.

(The outflow wasat grid point 31.) In all cases the velocities are shown for

the first grid point away from the wall as this was where the maximum relative

difference occurred. The relative differences decreased significantly for

grid points away from the wall where the velocities increased in magnitude.

Using (I.I), we observed a slight oscillation in V near the outflow.

This may be due to the fact that the outflow pressure is fixed at the free

stream pressure while the flow appears to undergo a very small acceleration.

For the boundary condition (3.1), V decreases rapidly close to the outflow.

Thus, V near the outflow appears to be incorrect with both boundary

conditions. Away from the outflow it is clear that V is the quantity that

is most sensitive to the boundary condition although the differences are small

and may also be affected by truncation error. The horizontal velocities are

very close. At grid point 27 the two values of U differ by about 1.7%.

In Table II we list the values of U obtained from using (I.I) and (3.1)

with the outflow boundary at 2.067 feet from the leading edge (grid point

17). These are compared with the values obtained when the outflow boundary

was at 3.0 feet from the leading edge. We assume these values are accurate

for the problem of the plate extending to infinity. Ideally, one would want

the solution to be independent of the position of the outflow boundary. The

values in these tables are the first grid point away from the wall where the

relative differences are greatest.
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It is apparent from Table II that the values for U are very insensitive

to the position of the outflow boundary and to the choice of (I.I) or (3.1).

The values obtained from (3.1) are slightly less accurate, but the differences

are very small. At grid point 15 the relative error is only about 1.5%.

These errors decrease for grid points away from the wall.

The results in Table III show that there are significant boundary errors

in V for both boundary conditions; however, these values are very small

compared to the free stream values. At grid point 13 the relative error in V

is about 8.5% for (3.1) and about 10.9% for (i.I). It would require a more

complicated problem to assess the meaning of these differences.

The boundary condition (3.1) has also been used to compute the steady

flow field over a curved surface. A particular example is the flow over a

curved hump with the curvature chosen so as to accelerate the flow from

M = .7 to M = 0.76 The height of the hump was .04 feet and the

curvature extended over a range of 1.2 ft. The surface then became flat and

the computational domain extended a further 1.2 ft downstream. The unit

Reynolds number was 3.0 x 105 while the boundary layer thickness at inflow was

.0095 ft. The Reynolds number based on the boundary layer height at inflow

was 896.00. Using (I.I), and several different values of =, convergence to

the tolerance described above could not be obtained. Using (3.1) convergence

in 52,760 iterations was obtained.

Finally, we point out that the methodology described above can be applied

to schemes that are inconsistent in time. As one example, we can consider

systems of the form
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where the flux functions F and G are the same as in (2.1) and E(_) is a

preconditioning matrix (see [9] for appropriate examples). The matrix E(U)

can be included in the llnearlzation with only slight changes in the algebra.

(Note that _--_- is zero so that the only modification is that _U"_t is
aT"

replaced by E(U 0) B--_--).

A simpler example is the use of a uniform grid in the viscous region and

a different (larger) uniform grid in the inviscld region with the local time

step appropriate for stability used in each region. It is easy to see that on

the differential equation level this can be modelled by a matrix E which is

i

I in the viscous region and of the form _ I where B is some large number

depending on boundary layer thickness. This only affects the invlscid

matching conditions ((2.22) - (2.24)). We have found that the parameters X0

' (€-I)and _I are insensitive to B, if B = 0

4. CONCLUSION

We have introduced a methodology which enables us to derive an outflow

boundary condition for a range of steady flows. Preliminary results indicate

that the resulting boundary condition may be effective in accelerating the

computation of steady subsonic flows with little loss of accuracy and no free

parameters to be determined. The method is also applicable to incompressible

and supersonic flows. Extensions to unsteady flows are also possible.
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Table I. Non-dimensionalized U and V obtained from (1.1) and (3.1)

(y = .00088 ft.)

x UIU (I.I) UIu (3.1) VIv (1.1) (Vlu)_ (3.1)
grid point

II .1234 .1234 .331 x 10-4 .331 x 10-4

15 .1144 .1144 .263 x 10-4 .261 x 10-4

19 .1071 .1072 .218 x 10-4 .213 x 10-4

23 .1009 .1014 .194 x 10-4 .174 x 10-4

27 .09526 .09680 .201 x 10-4 .131 x 10-4

31 .08978 .09429 .231 x 10-4 .0821 x 10-4

Table II. Non-dlmenslonalized O obtained from (I.I) and (3.1) wlth

outflow boundary at x = 2.07 ft. compared with values obtained

with outflow boundary 3 ft. from leadlng edge (y = .00088 ft).

x U/U (I.i) U/U (3.I) U/U outflow at 3 ft.
grid point from leading edge

5 .1420 .1421 .1421

7 .1348 .1350 .1349

9 .1286 .1289 .1287

II .1232 .1238 .1234

13 .1184 .1195 .1186

15 .1139 .1161 .1144

17 .1106 .1143 .1106
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Table III. Non-dimensionalized V obtained from (1.1) and (3.1) with
outflow boundary at x = 2.07 ft. compared with values obtained
with outflow boundary 3 ft. from leading edge (y = °00088 ft).

x V/V (I.I) V/V (3.1) V/V outflow at 3 ft.
grid point from leading edge

5 .542 x 10-4 .538 x 10-4 .538 x 10-4

7 .448 x 10-4 .441 x 10-4 .443 x 10-4

9 .388 x 10-4 .374 x 10-4 .380 x 10-4

II .347 x 10-4 .320 x lO-4 .331 x lO-4

13 .325 x 10-4 .268 x 10-4 .293 x 10-4

15 .312 x 10-4 .202 x 10-4 .263 x 10-4

17 .302 x 10-4 .165 x 10-4 .238 x 10-4

2.6

2.0

(0 < _ < .0053)

< RL < oo ('y:1.4)

1.0

v

1 1 1 1 1 1 1 1
0 2 4 6 8 I0 12 14 16

o:('y-1)M2oo
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