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Introduction The computational domain can be expressed by

Finite-difference techniques are applied to solve 0 < _ < 1
field problems on grids which are ordered sets of dis-
crete points in a coordinate system. Solution accu- 0 <_r/< 1
racy and computational expediency depend on the 0 < _ < 1
grid as well as the finite-difference technique. For in-
stance, the accurate representation of boundary con- where _, rl, and _ are computational coordinates. (A
ditions and the resolution of solutions on regions of list of symbols and abbreviations used in this paper
rapid change such as boundary layers, shocks, and appears after the references.) A transformation from
separations in flow fields require a grid with partic- the computational domain to the physical domain
ular characteristics. First, the grid should adapt to can be expressed as
the physical boundaries so that boundary conditions
can be readily applied. Second, the grid should be x = x(_, rl, _')/

concentrated in regions of rapid change to accurately y y(_, r/, _')/ (1)compute the solution there. Third, from a computa- z z(_, rl, _)
tional point of view it is desirable that the grid be
uniform, the boundaries enclose a rectangle in two where x, y, and z are physical coordinates. Simi-
dimensions or a rectangular parallelepiped in three larly, a grid in one domain can be mapped into a
dimensions (fig. 1), and the exterior boundaries cor- grid in the other domain (fig. 2). When the transfor-
respond to physical boundaries. If this is possible, mation maps boundaries in the computational do-
overall computer program logic for the application main into boundaries in the physical domain, the
of a finite-difference solution algorithm can be mini- term "boundary-fitted coordinate system" (ref. 1) is
mized and the process can be kept highly repetitive used to describe the transformation.
over the entire grid. The transformation of the governing equations

A direct (algebraic) approach to grid generation, implies that derivatives with respect to the physi-
for which an explicit functional relationship between cal coordinates must be transformed to derivatives
the computational domain and the physical domain with respect to the computational coordinates. Ref-
is known, has the advantage that changes to the grid erence 1 describes the transformation of the govern-
are direct and are rapidly obtained. This report de- ing equations of fluid flow for which the chain rule of
scribes such an approach. It also describes the use of calculus is applied. The basic result of the transfor-

mation is inclusion of the Jacobian matrixan interactive computer program for constructing a

direct functional relationship between the computa- [0_xx _zZ ] [_ -1

tional domain and the arbitrary, simply connected, _y Ox Ox

two-dimensional physical domains such that bound- J= _yy = /O_z_ _nn _aries in the two domains map into each other. The Oz Oz
technique is called the "two-boundary technique" [_xx _yy _zJ I.?)-_ ?N D7
and is described in general in references 1 to 4. The
outlining features of the technique are derivatives of in the transformed equations of motion. Thus, for the
transfinite interpolation (ref. 3) and the technique application of finite-difference techniques, the pri-
can also be, in part, derived from the general mul- mary function of grid generation is the determination
tisurface equation (ref. 4). The two-boundary tech- of grid derivatives at grid node points. Normally, the
nique is best applied in an interactive environment, process is to express the physical grid as a function
An interactive program based on the technique has of the computational grid and then to differentiate
been written, and its usage is described herein, to obtain the inverse Jacobian matrix, which is itself

inverted to produce the Jacobian matrix (ref. 1).

Background The application of the two-boundary technique
can be thought of as two distinct processes. The first

For a large class of problems, an approach to grid process is the definition of boundaries (referred to as
generation which tends to satisfy both the accuracy the bottom, top, left, and right) and the functional
and expediency requirements is to transform the gov- description of the inscribed physical domain. The
erning equations from the original defining coordi- second process is the determination of the properly
nate system (referred to as the physical-coordinate spaced grid in the physical domain which corresponds
system) to a rectangular computational-coordinate to a uniform grid in the computational domain.
system. The particular region of a coordinate sys- A convenient way to represent the boundaries
tem where a grid is defined is referred to as a domain, is to specify subsets of points and an interpolation



procedure to specify arbitrary boundary points. The the physical-grid distribution. For the two-boundary
choice of a boundary interpolation procedure can be technique applied in two dimensions there are seven
dependent upon many things. For the interactive distributions to be determined. The primary par-
grid-generation program, it is assumed that the sub- pose of the interactive program described herein is
set boundary definitions are densely specified and lin- the determination of these control functions.
ear interpolation is sufficient for arbitrary boundary
definition. Accuracy of the boundary representation The Two'Boundary Technique
is directly controlled by the number and location
of the subsets of points. The essence of the grid- The two-boundary technique for grid generation
generation technique is connecting distributions of is a methodology for establishing the mathematical
points on the bottom and top boundaries. Here sim- expression (eqs. (1)) relating the computational do-
plicity and versatility are achieved by use of Hermite main to a physical domain. The methodology sepa-
cubic polynomials as connecting functions. If only rates the boundary-grid definition from the interior-
endpoints of the cubics are specified, the connect- grid definition. The boundary grid is first defined,

and then the interior grid is defined as a functioning functions are straight lines; however, if the po-
sition and the derivatives orthogonal to the bottom of boundary position, boundary derivatives, and an
and top boundaries at the endpoints of the cubics independent variable t (0 _< t _< 1) spanning the
are specified, an effective curved connecting function two boundaries. Because of this approach, the alge-
is defined (fig. 3). A distribution of points along braic expression of equations (1) in two dimensions
the connecting function forms the initial grid. In is rewritten as
the event that side boundaries to the domain are

specified, the connecting curves between the bottom x = x(XB(r), YB(r), XT(S), YT(S), t) I
and top boundaries must be made to conform. Lin- y = y(XB(r), YB(r), XT(S), YT(S), t) ) (2)
ear blending functions are applied to the initial grid
to create a final grid which conforms to the side where 0 _< r _< 1, 0 _< s _< 1, 0 _< t < 1,
boundaries. X B (r), YB (r) are coordinates on the bottom bound-

The second process, and the one most depen- cry, and XT(s),YT(s ) are coordinates on the top
dent upon interactive graphics, is the distribution of boundary. The parametric variables r, s, and t
grid points along the bottom and top boundaries, are expressed as functions of the computational
the distribution of the magnitude of normal deriva- coordinates.
tives at the boundaries, and the distribution of grid The boundaries are described by ordered sets of
points along the connecting function. A smooth- points

cubic-spline technique (ref. 5) has been adopted to t--_[yi YiB_i=NBcontrol these distributions. The degree of smooth- ' Ji=l

hess is a function of user-specified parameters. The fvi y i ] i=NT
reason for using a smoothing process is that the ver- ],AT, TSi=I
satility and continuity characteristics of cubic splines

where N B and N T are the numbers of defining pointscan be employed and the oscillation problem that can
occur with unsmoothed cubic splines can be avoided, in each set. They are parameterized by computing
The control of the distribution of grid points is based the approximate arc lengths from the first points
on establishing a parametric variable such as approx- through all the points in the boundary sets. That
imated arc length along a curve (i.e., a boundary is,
curve or a connecting curve), normalizing the para-

metric variable with respect to its maximum value, ?i_ _i-1 __ [(X_- X_1)2
expressing each of the coordinates of the curve as

a function of the parametric variable, and express- + (Y_ - Y_-I)2J 1/2_ (_1 =0;i= 2, 3, ..., NB)
ing the parametric variable as a function of a com-
putational coordinate which is defined on the unit

interval (i.e., 0 < _ < 1). The unit square is a _i _i-1 [ X_-1)2control space (fig. 4) for the distributions along the = . (XiT --
curves. A discrete uniform distribution of the com-

putational coordinate maps into an arbitrary distri- + (Y_- Y_-1)2] 1/2 (51 ----0;i-- 2,3, ...,NT)
bution of the physical coordinates. Using interactive
graphics to digitize a few points on the unit square for The approximate arc length corresponding to each
each control function allows for arbitrary control of point is normalized with respect to the maximum
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value for each boundary by variables, (2) the derivatives of the bottom and
top coordinates with respect to the approximate-

r i = _i (0 < r < 1) arc-length variables, and (3) the magnitudes of the
pNB derivatives at the bottom and top points. The blend-

ing functions al(t), a2(t), a3(t), and a4(t) are shown
in figure 5.

8 i Ni
- 5NT (0 < s < 1) The magnitudes of the derivatives affect the or-thogonality of the cubics relative to the boundary

curves and are expressed as functions of the approxi-
and new sets of boundary points are described by mate arc lengths. Increasing the magnitudes extends

the orthogonality of the cubic away from the bound-

{ . _i=NB O2 __ {r i yiB _i=NB ary curves, and excessively large values of the mag-
01 _-- ri' X_Bji=I ' _i=1 nitudes can cause the cubics to intersect themselves

"_j=NTjj=I ._j=NT betweengrid,the boundaries, which is unacceptable for a0 3 -- {8 j, X_ 04 -- Y_ )j=l
The approximate arc lengths along the bottom

With the sets O1, 02, 03, and 04, arbitrary points and top boundaries are expressed as a function of
and derivatives along the boundaries are described the computational coordinate _. There are four
by distribution functions that determine the spacing of
XB(r), YB(r) interpolation of r into O1,02 the cubics. They are

XT(S), YT(S) interpolation of s into 03, 04

dXBr_- _ derivative interpolation of r r -- fl(_) ]dr' dr s f2(_)

into 01,02 P(r) KB f3(_) / (4)dXT(S) _ derivative interpolation of s Q(s) = K T f4(_)ds ' ds
into 03, 04

The functions fl(_), f2(_), f3(_), and f4(_) areFor the description herein all boundary interpola-
tions are linear; however, in general the interpolation called control functions, and their determination is

the second phase of the grid-generation process. Theprocedure along the boundaries is arbitrary.
constants K B and K T scale the magnitudes of theThe cubic function (refs. 1 and 2) connecting the

two boundaries is derivatives at the bottom and top boundaries. Fig-
ure 6 depicts the process for determining arbitrary

x = Xs(r) a l(t) + XT(S) c_2(t) + P(r) arB[r)a3(t) boundary points and derivatives from the initial tab-
dr ular descriptions and the connecting function.

+ Q(s)_a4(t) A distribution of the variable t between 0 and 1
(28

(3) specifies a distribution of points along the curve for
y = YB(r) al(t) + YT(S) a2(t) - g(r)_a3(t) which the first and last points are at the top and bot-

tom boundaries (fig. 3). The variable t could be made-- Q(s) a4(t) a direct function of the computational coordinate r/,
but instead it is made a function of the normalized

where approximate arc length along each cubic and then
the approximate arc length is made a function of 7.

_1 (t) = 2t3 - 3t2 . 1 This step requires that equations (3) be used twice to
a2(t) = -2t 3 + 3t2 compute a grid and is included because the applica-

(0 < t < 1) tion of side boundaries, to be discussed subsequently,
(_3(t) = t3 - 2t2 + t is dependent on an arc-length parameterization. The
a4(t) = t3 - t2 variable t is made an empirical function of normalized

approximate arc length by inversely computing the
P(r) is the magnitude of the normal derivative along approximate arc length as a function of t at uniform
the bottom boundary, and Q(s) is the magnitude of steps in equations (3). Values of t versus normalized
the normal derivative along the top boundary, approximate arc length are determined from

The cubic curve in equations (3) is specified by:
(1) the coordinates on the bottom and top bound- j - 1

aries which are functions of approximate-arc-length tj - Np - 1 (j = 1, 2, ..., Np)
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2 2 1/2]_tj = _tj_ 1 + (xj -- Xj_l) + (Yj -- Yj-1) is computed. Figure 7 depicts the process of com-
puting a grid with equations (3) and the boundary

(E 1 = 0; j = 2, 3, ..., Np) data.
J=M

and At this point, {x(1, J), y(1, J)}J=l and {x(N, J),

uj- _j (0<_ uj < 1) y(N,J)}_- 7 define the left- and right-boundary
UNp grid points. However, prespecified left- and right-

where xj and yj are computed from equations (3). boundary curves are defined by the sets
For each cubic there is a set

f XIC yklk=NL

"fU" t "I'3"=NP I. L, IL Sk= 1
k0 __ t 3' 3Jj=l

f _.zk vklH=NR
The number of points Np along the cubic connecting I_R, _ Rfk=l

function is chosen to yield a sufficiently accurate where NL and NR are the numbers of defining points
approximation of the arc length. Since u and t are in each set. The side boundaries are parameterized
monotonically increasing functions of each other, the by computation of the approximate arc lengths from
values of • can be interpolated for a distribution the first points through all the points in the boundary
of the variable t corresponding to a distribution sets. That is,
of the approximate arc length. The normalized

approximate arc length is expressed as a function of _k = _k-i + [(X_ - x_-i) 2the computational coordinate _ by u = fb0?).

Given the boundary data, there are now five +(Y_-Y_-I)_] 1/2 (91=0;k=2,3 ..... NL)
control functions that are necessary to map a uniform
computational grid into a physical grid by use of the

two-boundary technique. Thus, for _k = _k-1+ [(x_ _xnk-1)2

I- 1 (I 1, 2, N) + (yRk k-1 2 1/2.... , _y_ ) ] (@1=0;k=2,3 ..... NR)_(I) - N - 1

J- 1 The approximate arc length corresponding to each

_/(J) - M - 1 (J = 1, 2, ..., M) point is normalized with respect to the maximum
value for each boundary by

which is a uniform distribution of the computational

domain, where N is the number of grid points in the _ _k
direction and M is the number of grid points in the _/ vk - (k = 1, 2, ..., NL)
direction. Distributions of normalized approximate- vNL

arc-length parametric variables, w k _ _vk
_N R (k = 1, 2, ..., NR)

I=N

{rI}I=l and the left and right boundaries are described by
I=N

O1 = {vk, X k == L 02_= {vk yk k=lJ=M

are computed with the functions 11(_), f2(_), and 03= {wk, xk_k=NR 04= {wk, Yk_k=NRJk=l Jk=l

f5 (_/), and the distribution Grid coordinates for the left and right boundaries are
J=M obtained by interpolating u(J) = fb(_/(J)) into the

[t(I, J)] '=NJ=l sets O1, 02, 03, and 04 such that
I=1

.rvk Xk't _t%
is computed with the functions f3(_), f4(_), and zL(J) = Interpolation of u(J) into O1 _ ( , LS_=_

equations (3). Finally, again through use of equa- _vk yk_ ....
tions (3), the grid yL(J) = Interpolation of u(J) into O2 = ( , L sk=_

[W k X k _t_=_'nJ=M XR(J ) = Interpolation of u(J) into 03 = t , R_=_
I=N

{x(I, J),y(I, J)} j=_
I=l YR(J) = Interpolation of u(J) into 04 = twk Y ka_=_n

4



The final grid that conforms to the specified left into the control functions. This problem is avoided
and right boundaries is obtained by blending, where by using a smoothing cubic-spline technique and

specifying the amount of smoothing as well as the
digitized points in the unit square. The technique

x(I, j) = x(I, J) + [xL(J) - x(1,J)]{1-/6[_(I)]} ] that is used is described in detail in reference 6 and is

+ [XR(J)-- x(N, J)]{/7[_(I)]} I described in less detail in reference 5. The features of

y(I, J) = y(I, J) + {YL(J) - y(1, J)]{1 - f6[_(I)]} (5) the application of smooth cubic splines are outlined
below.

+ [YR (J) - y(N, J)]{fT[_(I)]} For grid spacing control, the independent variable
¢(0 < ¢ < 1) represents a computational coordinatewhereI= 1,2,...,N and J = 1,2,...,M. The con-
and the variable 0(0 < 0 < 1) represents a control

trol functions f6[_(I)] and f7[_(I)] specify the blend-
function. A discrete set of points

ing of the side boundaries with the grid that is ob-
tained through use of the bottom and top boundaries
(fig8). A
Grid Spacing Control specifies a cubic spline. The conditions on the points

for the functions fl(_), f2(_), fh(_), f6(_), and fT(_)
The second phase of the algebraic grid-generation are

technique is the control of the spacing of grid points. 0 < 02 _<03 _<... _< 1
For uniform distributions of _ and y, the functions

0<¢2_<¢3_<..._<1
fl(_), f2(_), f3(_), f4(_), fh(_), f6(_), and f7(_)
along with the constants K B and K T determine For the functions f3(_) and f4(_) the conditions are
distributions of the parametric variables r, s, and u
and the derivative magnitudes P(r) and Q(s). The 0 < 02 _<03 _ ... _< 1
functions used to control the spacing of grid points
can be analytical. For example, the function 0 < ¢2 -< ¢3 -< ... -< 1

A cubic spline in the (¢,0) plane with the knots

eKv -- 1 {¢i, oi}i=Nci= 1 is- eK- 1
i----Nc-1

would concentrate grid points close to the bottom or F(¢) = {/Z(¢i)}i=1

the top boundary depending on the magnitude and = {ai + bi(¢ _ ¢i) + ei(¢ _ ¢i)2
the sign of the constant K.

rh _3_i=Nc-1
For a general grid-generation procedure, greater + di(¢- wi/ _i=1

flexibility in the control of grid spacing is needed than
can be obtained from specific analytical formulas. A where

general approach is the application of cubic-spline _(¢_+_) =_+_(¢_+_) ]functions constrained to be inside the unit square.

The essence of the control domain (unit square, see (¢_+_) --'_(_i+1] (i --- 1,2 ..... NC-2;0 < ¢i < 1)
fig. 4) is that the abscissa corresponds to the per-

d2]_i i_ _ d2p_i+ 1

centage of grid points and the ordinate corresponds d-_ _q_i+lj de2 (¢i+1)
to a particular control function which, in turn, re-

, _i=N C- 1
lates to the geometric definition of the physical do- The coefficients {ai, bi, ci, ai_i__l are undeter-
main. A control function can be specified by digitiz- mined parameters whose solutions define F(¢). The
ing a few points in the unit square and then applying objective is to find the coefficients which minimize
the spline continuity conditions. The functions fl (_), the integral of the second derivative squaredf2 (_), f5 (_), f6(_), and fT(_) pass through the origin
and monotonically increase to the point (1,1). The rl
functions f3(_) and f4(_) must be single valued but [ [F"(¢)] 2de
otherwise are free to be anywhere in the unit inter- JO

val. The derivative magnitudes P(r) and Q(r) are subject to the constraint
obtained by multiplying the constants K B and K T

by f3(_) and f4(_), respectively. NC [ Fi(¢) _- 0i]
The difficulty with using cubic splines for control _ < C

is that oscillations can be inadvertently introduced i--1 [ 50i --



where C is a positive constant specifying the extent complex than a noninteractive program because the
of smoothing and 50i is the allowed deviation of the user and the program must communicate through
spline function from the ith ordinate 0i. The restated questions, responses, and graphical displays. Also,
objective is to find the smoothest cubic spline passing fault tolerances must be coded so that interactive in-
within the bounds put errors will not cause the program to abort.

The program described herein and called TBGG
0i- (_0i _ 0i _< 0i + 50i (two-boundary grid generation) is coded in FOR-

TRAN V and, in its present form, runs on the

B- {50i}_=No= Prime 750 computer and the Control Data CY-
BER 170 series computers. There are two versions

581 : 50Nc : 0 of the program--one for the Precision Visuals, Inc.,
where 50i represents the maximum derivations of the DI-3000 graphics library (ref. 7) and one for the

spline function from the specified ordinates 0i (fig. 9). Tektronix, Inc., PLOT-10 graphics library (ref. 8).
The method of Lagrange multipliers from the The DI-3000 version requires 231000 words of mem-

calculus of variations is used to find the parameters ory and the PLOT-10 version requires 170 600 words
of memory. With minor modifications, the program

- _i=Nc-1 should run on other computers similar to the ones
{ai, bi, ci, ai J'i=1 mentioned above. This section describes the program

The solution algorithm for spline smoothing can be input and interactive use.
found in reference 6. The techniques exist in subrou- There are two forms of noninteractive input to
tine form, where the sets A and B and the constant the program. In the first form, the boundary
C are input, data are presented to the program in an input file

The set A is obtained by digitizing points on the (DATANEW, see table I) and a grid based on linear
control functions and no orthogonality is displayedunit plane, the constant C is set equal to N C - 1,

•and the set B is obtained from the linear relation with options for interactive development of the grid
spacing. The second form of data input is a restart

50_= mo + ml ( o_+1- Oi-_) (i = 2,3..... Nc - 1) (6) file (RESTART) created at the end of a previous in-\¢i+_ ¢_-1 teractive session. The restart file allows the continu-

ation of the interactive development of the grid spac-
Using this relationship allows rapid choice of the de- ing. The output from the program is a free-formatted
viations which prescribe the amount of smoothing, file called GRIDOUT, which contains the grid coor-
Choosing m 0 and ml to be zero results in B -- 0, dinates, and an unformatted file called RESTART,
and the control function F(¢) is a cubic spline fit to which contains the parameters and data for the last
the set A. Cubic splines are subject to oscillations interactively developed grid.
which are easily observed by plotting the derivative
functions. Choosing mo and ml to be large results in Program Usage

large allowable deviations in the set B, and the con- Before operating program TBGG to generate a
trol function F(¢) is a straight line. The objective is grid, a file called DATANEW, which contains theto allow just enough dispersion in set B to achieve
a smooth control function which satisfies the condi- problem title, the number of points on each bound-

ary, and the x- and y-coordinates of each boundary
tions described above and produces the desired grid point, must be created. The file DATANEW is read
concentrations. This process is ideally suited for in-

by the program when "NEW" followed by a carriage
teractive computer graphics, where the set A can be return (CR) is the interactive response at the initi-
digitized with a cursor, the constants mo and ml are ation of the program. If "OLD" followed by a CR
alphanumeric input, and the results can be rapidly is the interactive response, the file RESTART (gen-
evaluated, crated in a previous session) is read. Examples and

InteractiveAlgebraicGridGeneration their associated DATANEW files are described in the
appendix.

A computer program based on the algebraic tech- The output file RESTART is an unformatted
nique described above is computationally simple be- file and contains the grid spacing information devel-
cause only boundary coordinates and control points oped during an interactive session. The objective of
on the unit square are required input. Linear in- RESTART is to recover exactly the conditions that
terpolation, the connecting function, and the spline existed in a previous interactive session. The file can-
smoothing technique are the mathematical compo- not be edited, and the specific format and order of
nents. An interactive program, however, is more the data are not described herein.



After the DATANEW file or the RESTART file Positive values of the parameter K produce relatively
has been read, a grid and a set of options are pre- small first derivative magnitudes of the control func-
sented on the terminal screen. The nature of the tion near the point (0,0), and negative values of the
first grid display depends on whether DATANEW or parameter K produce relatively small first derivative
RESTART is used for input. If DATANEW is used, magnitudes of the control function near the point
uniform distributions are assumed for fl(_), f2(_), (1,1) (fig. 12). The variables r and _ are used lo-
f5(rl), f6(_), and f7(_). The orthogonality constants cally to represent the independent and dependent
K B and KT are set to zero. If side boundaries are not variables for either of the exponential options. For
specified or if they are straight lines, the curves con- the purposes of the program the range of the param-
necting the bottom and top boundaries are straight eter K is 0.001 < K < 50.
lines and the spacing between grid points is uniform. Local option 3 uses a combination of two expo-
If RESTART is used, the grid is based on the values nentials to generate nominal control points on the
fl(_), f2(_), f3(_), f4(_), f5(_), f6(_), fT(_), KB, unit square. The equations are
and K T previously developed.

re(K_/K_ -- 1]General Options _=K1 L eK2--1 (O<_T<_K1;O<__<_K1)
The general options are displayed with the grid

(fig. 10), and they are briefly described in table II. r_-K2u-_,_-nl)]
An option is invoked by typing the option number _ = K1 + (1 + K1) L e-K2- 1 J
followed by a CR.

(0 < K1 _< 1;0.001 < K2 _<50)

Boundary and Connecting Function Control
Distributions (General Options 1, 2, 3, and 4) Increasingly positive values of K2 cause decreasing

first derivative magnitudes of the control function
General options 1, 2, 3, and 4 are used to spec- near the point (0,0) and the point (1,1) in the unit

ify the distribution of grid points along the bottom square. An inflection occurs at the point with coordi-
and top boundaries, the concentration effect rela- nates (K1, K1), where there will be a relatively large
tive to the side boundaries, and the distribution of first derivative magnitude. Conversely, increasingly
grid points along the connecting function. These op- negative values of K2 cause increasing first derivative
tions are for the development of the control functions magnitudes of the control function near points (0,0)
fl({), f2({), fs(rl), f6({), and f7({). Typing 1, 2, and (1,1); near the inflection point with coordinates
3, or 4 followed by a CR will cause a display of local (K1, K1) the first derivative will be relatively small.
options relative to each control function. A display Figure 13 demonstrates this option.
of local options is shown in figure 11. The first three After typing local option numbers 2 or 3 followed
local options define control points within the unit by a CR, the range of the parameter or parameters
square by use of programmed analytical functions is displayed and the user must respond by typing a
with the objective of accelerating the process of creat- value or values separated by a comma and followed
ing relatively simple control functions. Local option 1 by a CR.
creates a linear distribution of points, local option 2

creates an exponential distribution of points, and lo- Arbitrary Control Functions
cal option 3 creates a distribution from a combination
of two exponential functions. One user-defined pa- As previously stated, local option 4 allows the
rameter is required for local option 2 and two param- user to specify points within the unit square for con-
eters are required for local option 3. Local option 4 trol function definition. For the five control functions
enables the user to digitize points within the unit fl(_), f2(_), f5(u), f6(_), and fT(_), the first point is
square, thereby defining arbitrary control functions, always (0,0) and the last point is always (1,1). These
Local option 5 applies only to the bottom and top points are preset by the program. Only the points
boundaries. It automatically sets the top-boundary in between are specified by the user, and they must
distribution equal to the bottom-boundary distribu- be monotonically increasing. The control functions
tion, or vice versa, f3(_) and f4(_) have different restrictions and are

Local option 2 generates an exponential distribu- discussed with the orthogonality option (general op-
tion of points based on the function tion 5). Typing 4 followed by a CR displays the menu

and the unit square shown in figure 14. Also, the dig-
eKr - 1 itizing cursor is activated and appears on the screen.

= eK - 1 (0 < r < 1;0 < _ < 1) The digitizing process is the movement of the cursor



to place it at desired points inside the unit square along the boundary curve nearest the intersection of
along with input from the keyboard to signal the the cross lines. The point is also denoted in the op-
program to accept a point. In order to implement tion P display for later reference.
the process, a set of specified commands (keyboard
characters) must be used, and they are listed on the Boundary Distribution Interchange
display (fig. 14). The commands are used to inform

A fifth local option is provided for the bottom-the program on what the user wants done. A de-
and top-boundary-grid distributions. This optionscription of the commands is presented in table III
sets the control function for the bottom boundaryto acquaint the user with their purpose. The con-

trol of the placement of the cursor is accomplished equal to the control function for the top boundary,
or vice versa. This option is invoked by typing 5through the use of analog devices on the terminal
followed by a CR when it is provided on the menu.(fig. 14). Note that when first digitizing a control

function, the F function is used to indicate to the
program the point at abscissa of 1 and the S func- Control Function Smoothing and Display

tion indicates to the program to proceed to the next After the control points have been chosen, a dis-
step. play of the smooth spline fit to the control points for

the number of grid points specified at. the beginning
Visual Aid for Digitizing Boundary Control of the program or in the file RESTART is presented
Functions (P Function) on the terminal screen. Three local options relative
The P digitizing function is a visual aid for estab- to the spline fit are also presented. An example of

lishing in the unit square points which can be used to this display is shown in figure 16. This display al-
define the control functions fl(_) and f2(_) through lows the user to ensure that: (1) the control func-
use of general options 1 and 2. The P function dis- tion has the desired characteristics; (2) the control
plays the boundary curves and draws dotted connect- function, the first derivative, and the second deriva-
ing grid curves for the number of curves specified at tire are sufficiently continuous; and (3) the control
the beginning of the interactive session or specified function is monotonically increasing for fl(_), f2(_),
with general option 8. It is best to use a small num- fb(_), f6(_), and fT(_). The sp!ine fit options are:
ber of grid curves to avoid visual confusion. This (1) change the smoothing parameters mo and ml in
interactive interchange generates points in the unit equations (6), (2) generate a different control func-
square based on where the user thinks grid curves tion, or (3) accept the distribution and continue to
should intersect the boundary curves, display the resultant grid and general options. The

The option P is invoked by typing the character P parameters m0 and m 1 are initially defined in the
while digitizing control function fl(_) for the bottom program to be 0.01.
boundary and f2(_) for the top boundary (general
options 1 and 2). This instruction causes the display Grid Orthogonality (General Option $)

shown in figure 15 to appear on the terminal screen. The two-boundary technique allows control of
The user is asked which grid line is to be placed at grid orthogonality through the definition of the func-
a given arc length. The range of grid lines is also tions P(r) and Q(s) in equations (4), wheredisplayed. The number is typed and followed by a
CR. The cursor appears on the screen and the user
places it at the desired point as close as possible to P(r) = KB f3(_)
the boundary curve. If the grid curve has not been
used before, the character I is typed to indicate to Q(s) = KT f4(_)

the program that a new point is being digitized. If Unlike the previously described grid spacing control
this is a modification to a previously used grid curve, functions, f3(_) and f4(_) do not have to be mono-
the character C is typed to indicate to the program tonically increasing in the control domain between
that a change to an existing control point is being the origin (0,0) and the point (1,1).
made. Note that a CR does not follow the I or C General option 5 is invoked by typing 5 followed
commands. The display of the unit square and asso- by a CR when the general options display is on the
ciated options appears on the screen with the "loaded terminal screen. The option causes the display shown
point" (50 i : 0, described in eqs. (6)) corresponding in figure 17 to appear on the terminal screen. The
to what has been digitized. The abscissa of the point values KB and K T are input from the keyboard as
is I/(N- 1), where I corresponds to the Ith grid alphanumeric constants within the range shown in
curve and N is the total number of grid curves. The the display. The values are separated by a comma
ordinate is the normalized approximate arc length and followed by a CR. Three local options are shown
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in the display. The options are: (0) constant distri- y-coordinate with respect to the _-coordinate along
butions of f3(() and f4(_), (1) user-defined distribu- the 10th curve in the _?-direction. The interactive re-
tions of f3(_) and f4(_), or (2) keep current distri- sponse is 2,1,2,10 CR. A display similar to the one
butions. The options are input for both the bottom shown at the bottom of figure 18 appears on the ter-
boundary and the top boundary, and the two values minal screen. The derivative is plotted normalized
are separated by a comma and followed by a CR. If lo- relative to the lengths of the display axes, and the
cal options 0 or 2 are invoked, the grid is recomputed stretch factor is displayed under the plot. The re-
and the primary display showing the general options sponse 0,0,0,0 CR indicates to the program to end
and grid appears on the terminal screen. If local op- the derivative display and causes the general option
tion 1 is invoked, the display described above for ar- display to appear on the terminal screen.
bitrary distributions appears on the terminal screen.

The difference between digitizing control points for Grid Enlargement (General Option 7)
this option and those previously described is that the
ordinate of the first point is digitized and the abscissa In order to see the detailed characteristics of a
is set equal to 0. When the digitizing option F is ex- grid, it is necessary to plot the grid at a sufficiently
ecuted, the ordinate of the last point is digitized and large scale. On a small screen it is not possible to
the abscissa is set equal to 1. The digitizing option S enlarge the entire grid, but a section of the grid can
indicates to the program to spline smooth the control be arbitrarily enlarged. General option 7 provides
points and to display the smooth control function and for the enlargement of a section of the grid that is
smoothing options. The digitizing process caused by plotted on the general options display (fig. 10).
local option 1 is displayed. General option 7 is invoked by typing 7 followed

After the control functions f3(_) and f4(_) have by a CR. The user is asked the multiple of enlarge-
been determined, the grid is recomputed and the grid ment that is desired. This number is typed followed
and general options are displayed. Note again that by a CR. The digitizing cross lines appear on the ter-

minal screen with the present grid. The user placesthe orthogonality functions f3(_) and f4(_) are ar-
bitrarily specified according to where the user wants the intersection of the cross lines at the center of the
the relative effect of the orthogonality to be along the region that is to be enlarged and types the character
bottom and top boundaries. The constants K B and I. The enlarged grid (fig. 19) appears on the terminal
KT govern the magnitude of the orthogonality, screen with the instructions to continue the enlarge-

ment or to return to the general options. Note that
Plotting of Grid Derivatives (General a CR does not follow the character I.
Option6)

Changing the Number of Grid Points (General
An extremely important aspect of an interactive Option 8)

grid-generation procedure is the ability to visually as-
sess the quality of the grid. In addition to inspection A sparse grid can be used in the early stages of
of the grid itself, visual inspection of the derivatives the development of the control functions and orthog-
of the physical grid coordinates with respect to the onality parameters that determine the spacing of grid
computational coordinates is easily made available to points. Using a sparse grid saves time both in the
the interactive user of program TBGG. computing of the grid and in the drawing of the dis-

In program TBGG, general option 6 provides for plays, and the amount of information presented to
the plotting of the scaled grid derivatives along any the user is not overwhelming. Once the general char-
grid curve. General option 6 is invoked by typing acteristics have been determined with use of a sparse
6 followed by a CR when the general options dis- grid, the number of grid points can be set to any
play shown in figure 10 is presented on the terminal desired value. However, to keep the memory size of
screen. If this instruction is used, the additional dis- program TBGG within reasonable limits, the present
play shown in figure 18 also appears in the general maximum grid size is 100 × 100 (100 points in the _-
options display. The additional display asks the user direction and 100 points in the y-direction). This can
to enter the line type (_ or _ coordinate) to be dif- be changed in the program parameter statements.
ferentiated, the coordinate with respect to which the The minimum grid size is 4 × 4.
derivative is being taken (1 for x and 2 for y), the General option 8 is invoked by typing 8 followed
coordinate direction in which the derivative is to be by a CR when the general options and grid (fig. 10)
plotted (1 for _(I) and 2 for _(J)), and the index are displayed on the terminal screen. A question
number of the curve along which the derivative is will appear on the terminal screen asking how many
taken. The numbers are separated by commas and grid points are desired. The user responds by typ-
followed by a CR. An example is the derivative of the ing the number of desired points in the _-direction,
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a comma, the number of points in the _-direction, The process allows complete user control of the Her-
and a CR. The new grid is computed and displayed mite interpolation and linear blending. The result is
on the terminal screen with the general options, an ordered set of points in a physical-coordinate sys-

tern which corresponds to a uniform grid in a rectan-
Terminating the Program (General Option 9) gular computational-coordinate system. Grid deriva-
General option 9 terminates the program. It tives that are used in the solution of partial differen-

also writes the files GRIDOUT and RESTART. Note tial systems can be obtained by numerical differenti-
that GRIDOUT and RESTART are local files, and ation of the physical grid with respect to the compu-
the user must actively store them if they are to be tational coordinates and the computation of inverse
permanently saved, relations.

Conclusions

An algebraic grid-generation technique that is The interactive program not only provides a
means of quickly creating grids, but it also provides

easy to understand, easy to apply, and has a high de- the opportunity for the user to quickly evaluate and
gree of generality has been presented. Also, an inter- draw conclusions about the suitability of grids for
active computer program for applying the technique particular applications. The program is user friendly,
in two dimensions has been presented. Boundary def- with prompts for each step of the process_ and the
initions are provided as ordered sets of points, and program tolerates a variety of user errors.
the spacing of a grid within the boundaries is gov-
erned by a set of control functions which are devel-

oped interactively. The control functions are based NASA LangleyResearch Center
on an adoption of smooth-cubic-spline functions de- Hampton, VA 23665-5225
fined for a control space, which is the unit square. November 12, 1985
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Appendix The third example is a nozzle configuration in

Examples which no left or right boundaries are specified. The
boundary data are shown in table VI, and the grid,

The first example is the creation of a C-type the control functions, and the constants K B and K T
grid about an airfoil. The boundary data for the are shown in figure 22. This example is illustrative
DATANEW file are shown in table IV. The grid, the of orthogonality. If the same magnitude of orthogo-
control functions, and the constants KB and KT are nality is used in the center of the nozzle as near the
shown in figure 20. ends, the grid would overlap. The functions f3(_)

The second example is an O-type grid about and f4(_) both have a value of one at the ends and
the same airfoil presented above. In this case the approach zero at the center, which allows the grid to
bottom-boundary data are the same as those in have acceptable characteristics.
table IV except that they are defined clockwise. The
"signs" of the orthogonality constants K B and K T The fourth example has the same bottom and top
are opposite to those in the first example. The top boundaries as the third example. Side boundaries
boundary is circular and the left and right boundaries have been added to show their effect. The functions
are identical, extending from the airfoil to the outer f6(_) and f7(_) control how far into the grid the side
boundary. Table V shows the DATANEW file for boundaries modify the initial grid. Table VII shows
this example. Figure 21 shows the grid, the control the DATANEW file and figure 23 shows the grid, the
functions, and the constants K B and K T. control functions, and the constants K B and KT.
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Symbols and Abbreviations K concentrationparameter

A set description of points for smooth- K1, K2 control function parameters for bi-
ing spline functions exponential function

a, b, c, d coefficients for smoothed cubic KB, KT constants for magnitude of nor-
splines mal derivative at bottom and top

B set of deviations boundaries (KB and KT in com-
purer displays)

C constant specifying extent of
smoothing k index denoting point number

for left- and right-boundary
CR carriage return descriptions

dXB_ _ derivatives of x- and y-coordinates M total number of points along _/dr ' dr
with respect to r interpolated along boundary
bottom boundary

m0, ml parameters to compute deviations
dXT@ dYT(s) derivatives of x- and y-coordinates (M0 and M1 in computer displays)ds _ ds

with respect to s interpolated along N total number of points along
top boundary boundary

d#(€) first derivative of cubic-splinede NB, N T number of points describing bottom
representation and top boundaries

d_d_ second derivative of cubic-spline NL, N R number of points describing left and
representation right boundaries

F functional representation of Np number of points used to accurately
smoothed cubic splines compute arc length along connect-

fl (_), f2(_) control functions for distribution of ing function

grid points along bottom and top P(r), Q(s) magnitudes of normal derivatives at
boundaries bottom and top boundaries

f3(_), f4(_) control functions for relative magni- r, s normalized approximate arc
tude of normal derivative at bottom lengths along the bottom and top
and top boundaries boundaries

f5(_/) control function for distribution r, s approximate arc lengths along the
of grid points along connecting bottom and top boundaries
function

t parametric variable in Hermite's
f6(_), f7(_) control functions for relative effect

of left and right side boundaries interpolation functions
u normalized approximate arc length

I, J grid point indices in _ and _/ along connecting functiondirections

i index for boundary point description u approximate arc length along
connecting function

J Jacobian matrix,
v, w normalized approximate arc lengths

along left and right boundaries

o_ on N v, w approximate are lengths along left
o_ oz o_ on and right boundaries

ozoz
o_ o, X( I, J), grid coordinates

V(±, J)

j index for points along the connect- XB (r), YB (r) interpolated point along bottom
ing function boundary
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XL, YL coordinate description of left p(¢) cubic spline representation
boundary

_, r_,_ computational-domain coordinates
XR, YR coordinate description of right

boundary 7, _ concentration function variables

XT(S), YT(S) interpolated point along top 01, 02, sets describing bottom and top
boundary 03, 04 boundaries in parametric form

x, y, z physical-domain coordinates ¢, 0 abscissa and ordinate of points for
al (t), a2 (t), interpolation functions for Hermite smoothing splines
a3(t), a4(t) cubic connecting function

set describing approximate arc
50 allowed deviation of smoothed length along cubic functions

ordinate from digitized ordinate
Notation:

01,02, parametric set descriptions of left
03, 04 and right boundaries a=c{}a=b set of points for enclosed ordered

pair from initial a value b to final a
value c
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TABLE I. DATANEW INPUT DESCRIPTION

Description Card image
Problem title Maximum of 80 alphanumeric

characters

Number of grid points* NB,NT,NL,NR
Bottom boundary, NB=NB
Top boundary, NT=N T
Left side boundary, NL=NL
Right side boundary, NR=NR

x-coordinates, bottom XI,X2,...,XNB

boundary (free format)

y-coordinates, bottom Y1,Y2,...,YNB
boundary (free format)

x-coordinates, top XI,X2,...,XNT

boundary (free format)

y-coordinates, top Y1 ,Y2,...,YNT
boundary (free format)

x-coordinates, left X1,52,...,XNL

side boundary (free format)

y-coordinates, left Y1,Y2 ,...,YNL
side boundary (free format)

x-coordinates, right XI,X2,...,XNR

side boundary (free format)

y-coordinates, right Y] ,Y2,...,YNR
side boundary (free format)

*The maximum number of points currently allowed for each
boundary definition is 100.
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TABLE II. GENERAL OPTIONS

Number Name Description
1 MODIFY BOTTOM CURVE Redefines control function fl (_) for bottom boundary

2 MODIFY TOP CURVE Redefines control function f2(_) for top boundary

3 MODIFY SIDE CURVE Redefines control function f6(_) for concentration effect
of side boundaries

4 MODIFY CONNECTING CURVE Redefines control function f5(_) for connecting curve

5 CHANGE KB,KT DISTRIBUTION Controls orthogonality by assigning values to constants
K B and K T and defining control functions f3(_) and
f4(_)

6 PLOT GRID DERIVATIVES Displays a derivative along specified grid curve

7 BLOW UP A SECTION IEnlarges grid plot

8 CHANGE # OF GRID POINTS Assigns number of grid points in each coordinate
direction

9 WRITE OUT GRID AND TERMINATE Writes current grid coordinates on file called GRIDOUT,
creates file RESTART, and ends the session
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TABLE III. DIGITIZING FUNCTIONS

Option* Function
C Corrects a previously digitized point. Place intersection of cross lines near

point to be corrected and type character C. Move intersection of cross
lines to desired location and again type character C. New display with
correction will appear on screen.

D Deletes a point. Place intersection of cross lines near point to be deleted
and type character D. New display, minus deleted point, will appear
on screen.

E Erases all points in unit square and allows user to generate completely
new curve. Type character E.

F Completes definition of a control curve after option E has been invoked
and new points have been created in unit square. For bottom, top,
connecting, or side distribution functions, this character indicates to
program that next and last point is (1,1). For orthogonality options,
this character indicates that next and last point is (1,y), where y is
y-coordinate of intersection of cross lines. Type character F.

I Digitizes point in unit square where cross lines intersect. Type charac-
ter I.

L Forces spline function to pass exactly through a point. Place intersection
of cross lines at point to be digitized and type character L. Equa-
tions (6) are bypassed and deviation 50(I) is set to zero. Such points
are referred to as "loaded points." Type character L.

P Replaces unit square display with a display of boundary curves. This
additional display allows input of a grid point number and a digitized
position on a boundary curve to generate control points in unit square.
This option only applies to bottom and top boundaries. Type charac-
ter P.

S Indicates to program that digitizing process is complete or there are no
changes. This option indicates to program to go to next step. Type
character S.

*These commands are not followed by a CR.
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TABLE IV. DATANEW FILE FOR AIRFOIL C-TYPE GRID EXAMPLE

AIRFOIL C-TYPE GRID EXAMPLE
81 39 2 2

1.009020 1.007465 1.002809 .995081 .984328 .970617 .954032
.934676 .912667 .888143 .861253 .832163 .801054 .768116 .733553
•697578 .660412 .622286 .583433 .544094 .504510 .464927 .425587
.386735 .348608 .311442 .275467 .240904 .207967 .176857 .147768
.120878 .096353 .074345 .054988 .038404 .024692 .013940 .006211
.001555 .000000 .001555 .006211 .013940 .024692 .038404 .054988
•074345 .096353 .120878 .147768 .176857 .207967 .240904 .275467
.311442 .348608 .386735 .425587 .464927 .504510 .544094 .583433
•622286 .660412 .697578 .733553 .768116 .801054 .832163 .861253
.888143 .912667 .934676 .954032 .970617 .984328 .995081 1.002809

1.007465 1.009020

.000000 .000208 .000865 .001948 .003438 .005309 .007532

.010071 .012888 .015943 .019195 .022600 .026114 .029695 .033297
•036874 .040379 .043762 .046972 .049954 .052653 .055014 .056980
.058497 .059514 .059987 .059878 .059159 .057812 .055831 .053222
•050002 .046201 .041854 .037006 .031705 .026000 .019938 .013562
.006907 .000000 -.006907 -.013562 -.019938 -.026000 -.031705 -.037006

-.041854 -.046201 -.050002 -.053222 -.055831 -.057812 -.059159 -.059878
-.059987 -.059514 -.058497 -.056980 -.055014 -.052653 -.049954 -.046972
-.043762 -.040379 -.036874 -.033297 -.029695 -.026114 -.022600 -.019195
-.015943 -.012888 -.010071 -.007532 -.005309 -.003438 -.001948 -.000865
-.000208 .000000

1.00902 .000000 -.087156 -.173648 -.258819 -.342020 -.422618 -.500000
-.573576 -.642788 -.707107 -.766044 -.819152 -.866025 -.906308 -.939693
-.965926 -.984808 -.996195 -i.000000 -.996195 -.984808 -.965926 -.939693
-.906308 -.866025 -.819152 -.766044 -.707107 -.642788 -.573576 -.500000
-.422618 -.342020 -.258819 -.173648 -.087156 .000000 1.00902
1.000000 1.000000 .996195 .984808 .965926 .939693 .906308 .866025
.819152 .766044 .707107 .642788 .573576 .500000 .422618 .342020
.258819 .173648 .087156 .000000 -.087156 -.173648 -.258819 -.342020

-.422618 -.500000 -.573576 -.642788 -.707107 -.766044 -.819152 -.866025
-.906308 -.939693 -.965926 -.984808 -.996195 -i.000000 -i.00000
1.00902 1.00902
0.01.0
1.00902 1.00902
0.0-I.0
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TABLE V. DATANEW FILE FOR AIRFOIL ()_TYPE GRID EXAMPLE

AIRFOIL O-TYPE GRID EXAMPLE
81 91 2 2

1.009020 1.007465 1.002809 .995081 .984328 .970617 .954032 .934676
.912667 .888143 .861253 .832563 .801054 .768116 .733553 .697578
.660412 .622286 .583433 .544094 .504510 .464927 .425587 .386735
.348608 .311442 .275467 .240904 .207967 .176857 .147768 .120878
.096353 .074345 .054988 .038404 .024692 .013940 .006211 .001555
.000000 .001555 .006211 .013940 .024692 .038404 .054988 .074345
.096353 .120878 .147768 .176857 .207967 .240904 .275467 .311442
.348608 .386735 .425587 .464927 .504510 .544094 .583433 .622286
.660412 .697578 .733553 .768116 .801054 .832163 .861253 .888143
.912667 .934676 .954032 .970617 .984328 .995081 1.002809 1.007465

1.009020

.000000 -.000208 -.000865 -.001948 -.003438 -.005309 -.007532 -.010071
-.012888 -.015943 -.019195 -.022600 -.026114 -.029695 -.033297 -.036874
-.040379 -.043762 -.046972 -.049954 -.052653 -.055014 -.056980 -.058497
-.059514 -.059987 -.059878 -.059159 -.057812 -.055831 -.053222 -.050002
-.046201 -.041854 -.037006 -.031705 -.026000 -.019938 -.013562 -.006907
.000000 .006907 .013562 .019938 .026000 .031705 .037006 .041854
.046201 .050002 .053222 .055831 .057812 .059159 059878 .059987
.059514 .058497 .056980 .055014 .052653 .049954 046972 .043762
.040379 .036874 .033297 .029695 .026114 .022600 019195 .015943
.012888 .010071 .007532 .005309 .003438 .001948 000865 .000208
.000000

2.000000 1.996346 1.985402 1.967221 1.941893 1.909539 1.870318 1.824421
1.772072 1.713525 1.649067 1.579010 1.503696 1.423492 1.338789 1.250000
1.157557 1.061910 .963525 .862883 .760472 .656793 .552349 .447651
.343207 .239528 .137117 .036475 -.061910 -.157557 -.250000 -.338789

-.423492 -.503696 -.579010 -.649067 -.713525 -.772072 -.824421 -.870318
-.909539 -.941893 -.967221 -.985402 -.996346 -i.000000 -.996346 -.985402
-.967221 -.941893 -.909539 -.870318 -.824421 -.772072 -.713525 -.649067
-.579010 -.503696 -.423492 -.338789 -.250000 -.157557 -.061910 .036475
.137117 .239528 .343207 .447651 .552349 .656793 .760472 .862883
.963525 1.061910 1.157557 1.250000 1.338789 1.423492 1.503696 1.579010

1.649067 1.713525 1.772072 1.824421 1.870318 1.909539 1.941893 1.967221
1.985402 1.996346 2.000000
.000000 -.i04635 -.208760 -.311868 -.413456 -.513030 -.610105 -.704207

-.794879 -.881678 -.964181 -1.041988 -1.114717 -1.182016 -1.243556 -1.299038
-1.348191 -1.390776 -1.426585 -1.455444 -1.477212 -1.491783 -1.499086 -1.49908
-1.491783 -1.477212 1.455444 -1.426585 -1.390776 -1.348191 -1.299038 -1.24355
-1.182016 -1.114717 -1.041988 -.964181 -.881678 -.794879 -.704207 -.61010
-.513030 -.413456 -.311868 -.208760 -.104635 .000000 .104635 .208760
•311868 .413456 .513030 .610105 .704207 .794879 .881678 .964181

1.041988 1.114717 1.182016 1.243556 1.299038 1.348191 1.390776 1.426585
1.455444 1.477212 1.491783 1.499086 1.499086 1.491783 1.477212 1.455444
1.426585 1.390776 1.348191 1.299038 1.243556 1.182016 1.114717 1.041988
.964181 .881678 .794879 .704207 .610105 .513030 .413456 .311868
.208760 .i04635 .000000

1.009020 2.000000
.000000 .000000

1.009020 2.000000
.000000 .000000
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TABLE VI. DATANEW FILE FOR NOZZLE CONFIGURATION MINUS

SIDE BOUNDARIES

NOZZLE CONFIGURATION MINUS 51DE BOUNDARIES
50 50 0 0

-13.00000 -12.46939 -11.93878 -11.40816 -10.87755
-10.34694 -9.81633 -9.28571 -8.75510 -8.22449
-7.69388 -7.16327 -6.63265 -6.10204 -5.57143
-5.04082 -4.51020 -3.97959 -3.44898 -2.91837

-2.38776 -1.85714 -1.32653 -.79592 -.26531
.26531 .79592 1.32653 1.85714 2.38776

2.91837 3.44898 3.97959 4.51020 5.04082
5.57143 6.10204 6.63265 7.16327 7.69388
8.22449 8.75510 9.28571 9.81633 10.34694

10.87755 11.40816 11.93878 12.46939 13.00000
-7.00000 -6.73806 -6.47711 -6.21726 -5.95866
-5.70148 -5.44592 -5.19222 -4.94067 -4.69161
-4.44547 -4.20274 -3.96407 -3.73023 -3.50219
-3.28115 -3.06863 -2.86653 -2.67721 -2.50356

-2.34907 -2.21774 -2.11390 -2.04173 -2.00468
-2.00468 -2.04173 -2.11390 -2.21774 -2.34907
-2.50356 -2.67721 -2.86653 -3.06863 -3.28115
-3.50219 -3.73023 -3.96407 -4.20274 -4.44547
-4.69161 -4.94067 -5.19222 -5.44592 -5.70148

-5.95866 -6.21726 -6.47711 -6.73806 -7.00000
-13.00000 -12.46939 -11.93878 -11.40816 -10.87755
-10.34694 -9.81633 -9.28571 -8.75510 -8.22449
-7.69388 -7.16327 -6.63265 -6.10204 -5.57143

-5.04082 -4.51020 -3.97959 -3.44898 -2.91837
-2.38776 -1.85714 -1.32653 -.79592 -.26531

.26531 .79592 1.32653 1.85714 2.38776
2.91837 3.44898 3.97959 4.51020 5.04082
5.57143 6.10204 6.63265 7.16327 7.69388
8.22449 8.75510 9.28571 9.81633 10.34694

10.87755 11.40816 11.93878 12.46939 13.00000
7.00000 6.73806 6.47711 6.21726 5.95866
5.70148 5.44592 5.19222 4.94067 4.69161
4.44547 4.20274 3.96407 3.73023 3.50219
3.28115 3.06863 2.86653 2.67721 2.50356
2.34907 2.21774 2.11390 2.04173 2.00468
2.00468 2.04173 2.11390 2.21774 2.34907
2.50356 2.67721 2.86653 3.06863 3.28115
3.50219 3.73023 3.96407 4.20274 4.44547
4.69161 4.94067 5.19222 5.44592 5.70148
5.95866 6.21726 6.47711 6.73806 7.00000
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TABLE VII. DATANEW FILE FOR NOZZLE CONFIGURATION
WITH SIDE BOUNDARIES

NOZZLE CONFIGURATION WITH SIDE BOUNDARIES
50 50 21 21

-13.00000 -12.46939 -11.93878 -11.40816 -10.87755
-10.34694 -9.81633 -9.28571 -8.75510 -8.22449
-7.69388 -7.16327 -6.63265 -6.10204 -5.57143
-5.04082 _4.51020 -3.97959 -3.44898 -2.91837
-2.38776 -1.85714 -1.32653 -.79592 -.26531

.26531 .79592 1.32653 1.85714 2.38776
2.91837 3.44898 3.97959 4.51020 5.04082
5.57143 6.10204 6.63265 7.16327 7.69388
8.22449 8.75510 9.28571 9.81633 10.34694

10.87755 11.40816 11.93878 12.46939 13.00000
-7.00000 -6.73806 -6.47711 -6.21726 -5.95866
-5.70148 -5.44592 -5.19222 -4.94067 -4.69161
-4.44547 -4.20274 -3.96407 -3.73023 -3.50219
-3.28115 -3.06863 -2.86653 -2.67721 -2.50356
-2.34907 -2.21774 -2.11390 -2.04173 -2.00468
-2.00468 -2.04173 -2.11390 -2.21774 -2.34907
-2.50356 -2.67721 -2.86653 -3.06863 -3.28115
-3.50219 -3.73023 -3.96407 -4.20274 -4.44547
-4.69161 -4.94067 -5.19222 -5.44592 -5.70148
-5.95866 -6.21726 -6.47711 -6.73806 -7.00000

-13.00000 -12.46939 -11.93878 -11.40816 -10.87755
-10.34694 -9.81633 -9.28571 -8.75510 -8.22449
-7.69388 -7.16327 -6.63265 -6.10204 -5.57143
-5.04082 -4.51020 -3.97959 -3.44898 -2.91837
-2.38776 -1.85714 -1.32653 -.79592 -.26531

.26531 .79592 1.32653 1.85714 2.38776
2.91837 3.44898 3.97959 4.51020 5.04082
5.57143 6.10204 6.63265 7.16327 7.69388
8.22449 8.75510 9.28571 9.81633 10.34694

10.87755 11.40816 11.93878 12.46939 13.00000
7.00000 6.73806 6.47711 6.21726 5.95866
5.70148 5.44592 5.19222 4.94067 4.69161
4.44547 4.20274 3.96407 3.73023 3.50219
3.28115 3.06863 2.86653 2.67721 2.50356
2.34907 2.21774 2.11390 2.04173 2.00468
2.00468 2.04173 2.11390 2.21774 2.34907
2.50356 2.67721 2.86653 3.06863 3.28115
3.50219 3.73023 3.96407 4.20274 4.44547
4.69161 4.94067 5.19222 5.44592 5.70148
5.95866 6.21726 6.47711 6.73806 7.00000

-13.0 -12.073 -11.2366 -10.573 -10.1467
-i0.0 -10.1467 -10.573 -11.2366 -12.073 -13.0
-13.927 -14.7625 -15.427 -15.8533 -16.0
-15.8533 -15.427 -14.7625 -13.927 -13.0
-7.0 -6.29999 -5.59999 -4.89999 -4.19999
-3.49999 -2.80001 -2.10001 -1.39996 -0.7001
0.0 0.7001 1.39996 2.10001 2.80001 3.49999
4.19999 4.89999 5.59999 6.29999 7.0

13.00000 12.45946 11.95849 11.50226 11.09628
10.74625 10.45780 10.23613 10.08564 10.00955 i0.0
10.00955 10.08564 10.23613 10.45780 10.74625
11.09628 11.50226 11.95849 12.45946 13.00000
-7.00000 -6.26316 -5.52632 -4.78947 -4.05263
-3.31579 -2.57895 -1.84211 -1.10526 -.36842 0.0

.36842 1.10526 1.84211 2.57895 3.31579
4.05263 4.78947 5.52632 6.26316 7.00000
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Figure 1. Computational domains.

Physical grid Computational grid

Figure 2. Physical grid versus computational grid.
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Figure 3. Curved connecting function.
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Control variable

(0,0) (I,0.)
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Figure 4. Control domain.

23
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Figure 5. Cubic blending functions.

Tables

@1@2 @3@4 Control functions Function evaluation
plus

XB,YB r XT,YT s f2(_ interpolation

Xl,Y 1 r I Xl,Y 1 sI s _ XB(r),YB(r)

X2,Y2 r2 X2,Y2 s2 r: B
• • . . 7 XT(S),YT(S)

.... .fl(_ )

XNB'YNB rN_____BXNT'YNT

Figure 6. Computation of boundary data.
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t x,y u

tl Xl'Yl Ul _ u = f5(n)

t 2 x2,Y 2 u2 _ t = Inter-

, . . _ polation of T
• . ° x,y from eq. (3)
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Figure 7. Computation of points along connecting function.

Left-boundary definition

®1'®2__ _s(_) Right-boundary definition
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v(n) I/
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Figure 8. Left and right boundaries.
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(0,1) _ONc :y (I,I)

Smooth-spl ine function_l_

(0,0 (I,0)

Figure 9. Smooth-spline control functions.

OPTIONS

1. MODIFY BOTTOM CURVE 6. PLOT GRID DERIVATIVES

2. MODIFY TOP CURVE 7. BLOW UP A.SECTION

3. MODIFY SIDE CURVE 8. CHANGE # OF GRID POINTS
4. MODIFY CONNECTING CURVE 9. WRITE OUT GRID AND TERMINATE

5. CHANGE KB,KT DISTRIBUTION

ENTER INTEGER VALUE AND PRESS "RETURN"

I

Figure 10. General options and grid display.
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OPTIONS

ENTER INTEGERVALUEFOR TYPE OF NOMINAL CURVE

1 LINEAR

2 SINGLEEXPONENTIAL

3 BI-EXPONENTIAL

4 USERDEFINED

5 EQUATETO TOP CURVE(FOR BOTTOM CURVE)

Figure 11. Local option display for grid spacing control.

(o,I) (I,1)

K -- -6.5

= -2.5

Percent arc length
K = 0.001

K=2.5

/
K=6.5

(0,0) Computational coordinate (1,0)

Figure 12. Single exponential function for grid spacing control.
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(0,1) (1,1)

Percent arc length

K1 = O.3,K 2 = -8.0

= O.6,K 2 = 6.0

(0,0) Computational coordinate (1,0)

Figure 13. Biexponential _nction (localoption 3) _r grid spacing control.
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OPTIONS FUNCTIONS

C CORRECTA PREVIOUSLYDIGITIZED POINT

D DELETE A POINT

E ERASEALL POINTS

F COMPLETETHE DEFINITION OF A CONTROL CURVE

I DIGITIZE A POINT IN THE UNIT SQUARE

L LOAD A POINT (NO SMOOTHING)

P PRESENTBOUNDARYCURVEDISPLAY

S COMPLETEDIGITIZING PROCESS

TYPE LETTER FOR DESIREDFUNCTION

i I " 11 1
Digitizing
cross lines

,7--

.5_

• Control points

I
0 .1 .2 . .4 .5 .6 .7 .8 .9 1.0

Figure 14. Display for creating arbitrary control functions.
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THE BOUNDARYBEINGWORKED ON IS A SOLID LINE

GRID LINE =#=1IS MARKED BY A DIAMOND

LOADED POINTS ARE SHOWN BY A "+" SIGN

A MAXIMUM OF 10 POINTS CAN BE LOADED

CURRENTLY1 POINT IS LOADED

THE LOAD OPTIONS ARE:

1: SHIFT AN ORIGINALGRID LINE TO A NEW LOCATION,RANGE2 THRU 10

2: CHANGEA SHIFTED GRIDLINE POSITION

ENTER THE GRID LINE NUMBER(ENTER 0 TO STOP) AND PRESS "RETURN"

LETTER FUNCTION

C TO CHANGEA SHIFTED GRIDLINE

I TO SHIFT A GRIDLINE

S TO STOP LOADINGMODE

o

• • I\
MOVE CURSORTO ._. ,

POSITION ON BOUNDARY ",, ',

THEN TYPE LETTER ". ',

FOR DESIREDFUNCTION '. ,,

#

" 4J ]
• a

s S e

• #

• • ja
• i

,b

• • rS

_J .....

Figure 15. Display to aid in control of grid spacing along boundaries.
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OPTIONS

1 CHANGETHE SMOOTHINGOF THE CURVE

2 CHANGETHE CURVE

3 NO CHANGE

ENTER INTEGERVALUEAND PRESS "RETURN"

"1" CURVESMOOTHINGOPTION

THE VARIABLESM0 AND M1 ENABLE THE USERTO SMOOTH THE CURVE

GENERATEDBY THE PROGRAM

THE CURRENTVALUESOF M0 AND M1 ARE .010, .010

TYPE IN THE VALUESSEPARATEDBY A COMMA

, ."", ,TL_Function

', .,' /"".1--2nd derivative

',, o, /// "\

| , ! _ ° ,1st derivative
b \l\ I

'_ / \\N" i I

,,\, ,/ ,,'_ I

'11 *' \\ 1t
• / \ /

Figure 16. Displayof smooth-grid-spacingcontrol function and ]oealoptions.

SELECT MAGNITUDESOF ORTHOGONALITY OF GRID

KB (ABSOLUTE RANGE0.0 TO 30.0)

KT (ABSOLUTE RANGE0.0 TO 15.0)

PRESENTVALUESARE .000, .000

ENTER TWO REAL NUMBERSSEPARATEDBY A COMMA AND PRESS"RETURN"

SELECTKB,KT DISTRIBUTIONS;OPTIONS ARE:

0 CONSTANTDISTRIBUTION

1 USER-DEFINEDDISTRIBUTION

2 KEEP CURRENTDISTRIBUTION

CURRENTVALUESARE 0,0

ENTER TWO INTEGERVALUESSEPARATEDBY A COMMA AND PRESS"RETURN"

Figure 17. Display for grid orthogonality (general option 5).
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SELECT LINE TYPE, LINE NUMBER, DERIVATIVETYPE. AND DIRECTION

LINE TYPE 1ALONG BOUNDARY

2 ACROSSBOUNDARIES

DERIVATIVETYPE 1 FOR X

2 FOR Y

DERIVATIVEDIRECTION 1 ALONG BOUNDARY

2 ACROSSBOUNDARIES

ENTER0.0,0,0 TO QUIT THIS MODE

ENTER FOUR INTEGERVALUESSEPARATEDBY COMMASAND PRESS "RETURN"

STRETCH FACTOR I$ .E?3ee4e

Figure 18. Display for grid derivatives.
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SELECTTHE MULTIPLE TO CHANGETHE SIZE OF THE GRIDBY

(1.0 TO RESTORETHE ORIGINALGRID,0.0 TO EXIT MODE)

ENTER REALVALUEAND PRESS"RETURN"

PLACE CURSORAT THE CENTEROF THE REGIONTO BE BLOWN UP AND PRESS

THE LETTER 'T'

\
\
\

Figure 19. Display for grid enlargement (general option 7).
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/ I I

Figure 20. Control functions and C-type grid for an airfoil.
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Figure 21. Control functions and O-type grid for an airfoil.
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KB 25

KT = 25

f,

f2(_)
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Figure 22. Control functions and grid for a nozzle configuration.
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KB = 0.5

KT = 0

fl(_ f5(q)

f6 ( f2(_)

f7(_)

Figure 23. Control functions and grid for nozzle configuration with side boundaries specified.
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