{NASA-CP-2394) SEACE STATION SOFTWARE N86-23314

RECOMMENDATIIONS (NASA) 142 p HC AQ07/MF A01 THRU
CSCL 09B N86-23318

Unclas
G3/61 04157

NASA Conference Publication 2394

Space

Station

Software
Recommendations

Edited by

Susan Voigt

NASA Langley Research Center
Hampton, Virginia

Report of an open forum with
industry and academia held at
NASA Marshall Space Flight Center
Huntsville, Alabama

April 24-25, 1985

NASA

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1985

PREFACE

This forum was held to solicit industry and academic opinion on the plans that
NASA is formulating to manage the development, acquisition, operation, and mainte-
nance of software in support of the Space Station Program.

A NASA workshop, held in August 1984, identified major software issues that
should be addressed early in the Space Station definition phase. These are docu-
mented in NASA CP-2361 (1985), and formed the basis for discussions at this
forum,

Four major topics were selected for emphasis during the discussions and experts
in these areas were invited to speak and to serve on the panels which met in closed
sessions to identify important issues and in open sessions to air their views and to
solicit audience comments.

As a result of the two days of discussion, several recommendations were formu-
lated and are presented herein. These recommendations are addressed to the Space
Station Program Office and are intended to help in the policy~making and management
of Space Station Program software.

This publication presents the recommendations made by the forum participants and
does not represent any official NASA position. These recommendations are being con-
sidered by the Space Station Program at the time of publication of this report.

PRECEDING PAGE BLANK NOT FILMED

iii

PREFACE .

FORUM ORGANIZING COMMITTEE

PANEL MEMBERS .

ATTENDEES

EXECUTIVE SUMMARY . .

CONTENTS

o ddd

. vii

Lviid

INTRODUCTION . . . e e e e e . .. 2
SPACE STATION - THE ROLE OF SOFTWARE ¢ & & ¢ v o o ¢ o o o & 3
Dana Hall
SOFTWARE MANAGEMENT PANEL
SOFTWARE MANAGEMENT PANEL SUMMARY . .+ + v ¢« v & o o ¢ v o v o o o & 35
RECOMMENDATTIONS . e 36
A VIEW OF SOFTWARE MANAGEMENT ISSUES « v v & ¢« 4 o & « + o « « « 39
John H. Manley
ISSUES AND RECOMMENDED ACTIONS . + =« v v v ¢ v o v o o o o + o o o » 63
TABLE 1. SPACE STATION LEVEL A/B SOFIWARE MANAGEMENT PLAN
RECOMMENDED TABLE OF CONTENTS « .« « + . . 76
TABLE 2. RECOMMENDED REORGANIZATION/OUTLINE OF THE LEVEL A/B
SOFIWARE MANAGEMENT PLAN BY ROBERT BRASIAU, TRW 78
SOFTWARE DEVELOPMENT ENVIRONMENT PANEL
SOFTWARE DEVELOPMENT ENVIRONMENT PANEL SUMMARY 81
RECOMMENDATTIONS . . e 82
A VIEW OF SOFTWARE DEVELOPMENT ENVIRONMENT ISSUES 84
Barry Boehm
KEY ISSUES ADDRESSED 92
LANGUAGE PANEL
LANGUAGE PANEL SUMMARY . . . & v ¢ v 4 o o o e v s o o s o o o « 95
RECOMMENDATIONS . & & v & ¢ o o o o o s o o s o o o s o s o o o o o« « . 95

PRECEDING PAGE BLANK NOT FILMED

LANGUAGE 1ISSUES FOR SPACE STATION

RATTONALE FOR RECOMMENDATIONS

SOFTWARE STANDARDS PANEL

°

SOFTWARE STANDARDS PANEL SUMMARY .

RECOMMENDATTIONS

SPACE STATION SOFTWARE STANDARDS ISSUES
George D. Tice, Jr.

DISCUSSION OF RECOMMENDATIONS

CONCLUSIONS

REFERENCES .

°

o

°

vi

97

103

117

1.7

118

124

127

131

FORUM ORGANIZING COMMITTEE
General chairman: Susan Voigt, NASA LaRC
Local arrangements: John Wolfsberger, NASA MSFC

Program co-chairs: Frank McGarry, NASA GSFC
James L. Raney, NASA JSC

NASA Headquarters sponsor: Dana Hall
NASA Level B sponsor: Dane Dixon
Program Committee members:

Jody Steinbacher, JPL
Robert Jackson, MITRE
John McLleod, JPL

Other participating members of Space Station Software Working Group:

Rhoda Hornstein, NASA Headquarters Code T
Robert W. Nelson, NASA GSFC

Audrey Dorofee, NASA KSC

Ed Ng, JPL

David Callender, JPL

James Soeder, NASA LeRC

Tom Purer, NASA KSC

Ai Fang, NASA Headquarters Code E

Bill Wilson, NASA Headquarters Code D

vii

PANEL MEMBERS

Software Management Panel:

Robert Loesh, System Technology Institute, co-chair

John Manley, Computing Technology Transition, Inc., co-chair
Robert Braslau, TRW

Dana Hall, NASA Headquarters

Harlan Mills, IBM

John (Jack) Munson, System Development Corporation

Donald Reifer, Reifer Consultants, Inc.

Jody Steinbacher, Jet Propulsion Laboratory

Software Development Environment Panel:

Barry Boehm, TRW, co-chair

Tom Velez, Computer Technology Associates, co—chair

M. Dane Dixon, NASA Johnson Space Center

J. R. (Bob) Elston, Boeing Aerospace Company

Robert Loveless, Science Applications International Corp.
Frank McGarry, NASA Goddard Space Flight Center

William M. Murray, General Dynamics

James L. Raney, NASA Johnson Space Center

Richard Taylor, University of California at Irvine

Languages Panel:

Victor R, Basili, University of Maryland, co-chair

Charles McKay, University of Houston at Clear Lake, co-chair
J. Barton DeWolf, Charles Stark Draper Laboratory

Audrey Dorofee, NASA Kennedy Space Center

Larry Druffel, Rational

M. Preston Mullen, Jr., Naval Research Laboratory

Robert Nelson, NASA Goddard Space Flight Center

Edward W. Ng, Jet Propulsion Laboratory

Software Standards Panel:

George Tice, Tektronix, co—chair

Sam Redwine, Institute for Defense Analysis, co-chair
Jerry L. Raveling, Sperry

R. D. Stein, Rocketdyne Div., Rockwell Interational
David Weiss, Naval Research Laboratory

Bill Wison, NASA Headquarters

John Wolfsberger, NASA Marshall Space Flight Center
Paul B. Wood, Southwest Research Institute

viii

NAaBa MSFC
ﬁhﬁlhv BILLY
ATCHELE» DAVIT
RLEVINGy HAROLD R.
BRADFORDy W. C.
BROWNs H.E.
BRURRUSEy GLENIA
BUTLERY C.8,
COZELOSy CHARLES
CRAFTy RAY H.
HALEYs SAM
HARTINGy GEORGE
HAUFFy .
HELLMANY
HILLTARD, JAMES W.
HINK KENNETH
JERNIGANy TIM
KYNARDy MIKE
LAMBING: STEVEN
LIDE: W.C.
LYNCHy THOMAS J.
MITOHELL s WALTER
MOORE» CARLETON
MORRISy CHARLES
MULLINSGy LARRY
SCOTTy YVETTE 8.
STEVENSy ROR
THOMAS, JOE H.
WANGy CARDLINE
WATKINGy JIMMY R.
WHITEy RON
WILLIAMSy ELLEN
WOLFSRBERGER s JUHN

CATHY

e

NASA GSF
MCGARRYv Fo Es
MERWARTHs FHIIL
NELSONy RORBERT
SMITHy GENE

NASA }ﬂﬁﬁlﬂulﬁhT[lxa

IiLN‘EIMth
BISHOF »

FaNGy Al
HALLy DANA
HORNSTEINS
LOFTONS
WILGONS

Mﬁhb

Je

RHOLA
LOUTE R.
BRILL

ATTENDEES

ix

NASA

Jae

BUhhlv
DIXONy
GORMAN»
HOUSE »
HOWES »

JOHNGON »

FUTNEY »
RATNESy
RAEMEY »

NAagsa KsC

PUREFR s

LARC

NASA
UDlBTy

NQSA LLh[

hﬁNTF.m
SOEDERY

BCHE

TAYLOR

BOETING

H] HQP?
ELSTONy
FURVES .

TNb

GILLs

CENTURY COMPUTING

ROY »
SHAWy

CINCOM SYSTEMS

THURNHlLIv
TILLOTSONy

JAMES

AERDSFACE

LﬂMlUTIh

[hlLﬁHﬁNy

AN
CH

MAM
AVE

ANGTE
BARBARSG
GARY

e

TOM

W.ke.
SuUsSAN

CakRL
JOMES

‘.J L3 ” +

Co.

hﬁILF
'...' * l'x +
BYRON

SERVT

INC.
En
KaTHERINE

LOUTLS K.
CHRISTOFHER

COMFUTER CORFORATION OF AMERICA

GRAF-WERSTERy ERIKA

COMFUTER S8CIENCES CORF.

AGRESTIy WILLIAM W.
CHURCH> VIC

LLANGIDONy WOOIY
VALLONEy A+ DR,

COMFUTER TECHNOLOGY ASSOCIATES

COOLEYs CAROLYN
HEYLIGERy GEORGE
VELEZy TOM

COMFUTER THOUGHT CORF.

SFRAYy ROR

COMFUTING TECHNOLOGY
TRANSITIONSy INC.

MANLEY» JOHN

COSMIC

GIRSONy JOHN A,

C.5. DRAFER L.AES

IIENULFV \Jo Bq
FELLEMANy FHILLIF G.
WHALENy M.

CsIs INC.

SFETIGHT» HOWARD L.
WARTHMANs JAMES L.

DNIGITAL EQUIFMENT CORF.

SORERA» RICK

ENSOs INC.

MARINE s RALFH We.

EXFERTWARE » INC.

MARCINIAKy JOHN

GENERAL DIGITAL INIOUSTRIESy INC,

BOUNDS» RANDY

GENERAL DYNAMICS

MURRAYy WILLIAM M.

GENERAL ELECTRIGC

HSTEHy JIM
ZUCKERy SANIRA

GRUMMAN

EVERETTy RALFH
MOONEYy CHARLES S.

GTE COMMUNICATION SYSTEMS CORF.

LAMONTAGNE » G. A,
STAGERy TOM

HARRIS CORF.

BEOWMANy WILLIAM LEE
JENNINGSy WILLIAM &,
LEMARDy TOM

HR TEXTRON

DE FEQOs» FIO V.

HUGHES AIRCRAFT CO.

COURTy TERRY I,

ITrM
DASHIELLy CHERYL
DYERy MICHAEL
GRIMs CLIFTON III
JAKUEBROWSKT » JAN
LULy OSCAR Y.
MEYERy ROBERT W.
MILLSy HARLAN IR,
FARKERy CONNIE
SFOTZy WILLIAM H.

ICASE

NOONAN» RORERT DR.

IMFARy INC.

KINy Je
FARKERy RaRo,

INSTITUTE FOR NEFENSE ANALYSIS

REDWINE s SAM

INTERGRAFH CORF.

FOKy

(lAthFF

TNCo
KIRCHOFFy MaRJORTE
MOOREHEAD» UELORES &.
MURRAY » SANDRA K.
WALKER» DAVID L.

INTFthThl[Hv

15008y INC.

TE ICIHU]Ny

i,

AN

thlENhlhp
GIFFINy GEOF
MAUNTI» DON
MCKENZIE» MERLE
MCLEODy JOHN
NGy EDWARID
STEINBACHER»

DhUlﬂ

JO1Y

KMG/MAIN HURDMAN

MURPHY s I,

FAauUL

LOCKHEED
ALLI':.Y ? I:l L3 \J +
ELY y EDWARD
KELLEY» F.R.
RATLIFF» ALAN W.
WILKINGONs JOHN

MARTIN MARIETTA AEROSFACE
L.LARAUGH» RORERT
FERRONE» GIOVANNT
SEYMOURy HENRY

CORF .

MCOONNELL DOUGLAS CORF.

LORKKENs WILLIAM R.
MCCAREs JOE
MONTOYAs GONZALD

MIDTS

co.

CONSTANTINE s FRANDOLFH

xi

MITRE
CHRISTOFH: RBARBARA A.
OE LONGy, CLYDE S. JR.
JACKSON» Re M.
KAUTZMAN FRANK DR.
LORENTZy JEFFREY L.
LOXTONs JOHN M.

CORF.

NATIONAL

HﬁNthbUNv AL

BURE

NﬁUﬁL FO%TFhAhUﬁT

sruum

SCHNETDWIND: NORMAN

NAVAL RESEARCH LAR.
FﬁULKy TUﬁRT R
MULLENy M.
WEISSy DAVID DR,

NUCLEAR STRUCTURESy INC.

GENSERy JOHN ROBERT

ORLy INC.

BURNSy RICHARLD W.

FPERKIN-ELMER

CORF .,

FITZGERALDy A, Js

RATIONAL COMPUTING
NRUFFELy LARRY [R.
GORDONy DERRA

SYSTEMS

REIFER CONSULTANTS: INC.

REIFERy DON

RESEARCH TRIANGLE INSTITUTE

DUNHAM » JANLT Re

ROFKNFII JNTFhNﬁTIUNﬁL

RhUNNv REX Ro
Hally RONALD O,
LEONARDy E.l..
SINCLATRy CRAIG C.
STEINy K. I,
VRIELINGy R. T

FRESTONy JR.

RURSONy DICK

FAGUEs MIKE

HORNERy JACK H.
JONES» CARL
LOVELESSy ROBERT L.
AUINNy MARK T,

She

MILLARy FRANK
MUNSONy JOHN CJACK) H.
FAYTONy TERT

“)[NF}IP CO.
SERASTIAN, WILLIAM G.
BIVILLOy FETE

SOFTECH
AUTY » DAVE
FISHBEINy SEYMOUR
SINGER» RICHARD

QUALITY ENGINEERING

RlNy DAVLD

ﬂHJTHNI&>T hL‘ﬂ ﬁh(ll INQI ITUTP

WOoony FPaAUl. B,

M(Fthbv JIM
METRINK: MICHAEL J.
RAVELINGy JERRY
WINCHy DARREL

STANFORD TELECOMMUNICATIONS CORF.

Zﬂkhllw%hlv ENWIN

SUTRON CORF.

tABFhv hANDY

;(‘;H—M TEC IIN[JL (']CJY 'I'NST'[TUTI'"
LOESHy BOR
SANSONy MICHAEL

TERTRONIXy INC.

Sk DUN"Iv nAVIL
TICEs GEORGE . s JR.

EATYy KC
CLYMERs SUZANNA).

ThN
BOEHMy BARRY IR,
BRASLAUYy ROBERT
GUILLEBEAU, M.
HARRISy STEVEN
HOLLOWICHy MIKE
ITRBY » JOHN
MUALISTER: ED
NORMANy GEORGE
FHILLIFS s DAVE
STUCKLE» TON

» DAVID C,

Ry SUZAN

WOODy LOREN

VERDIX CORF.

UNIVERSITY OF AlLARAMA AEM

SAHﬁv Ho R,

LUNTVER .)[TY UI" (ﬁl IFL)I\NT(\

TAYLORy RICHARID

UNTVERSITY OF HOUSTON

M(hﬁYy LHﬁhLE$

UNLUIRQ[TY UV MARYLAND

BASILIy V. DR,
ZELKOWITZy MARVIN

UNIUPhG]TY ﬂf NLN MLXLLO STATE

KNOEREL » ROBERT A,

UNIVERSITY OF VIRGINIA

KNIGHT» JOHN I,

DAKWOOnD COLLEGE

LJIL L » L‘HHF'I\

FORETGN FARTICIFANTS

CANADIA/NRCT

ROXALLy HARRY
JAFAN/NASTIA

TWASAKTy N,

KATOy T

SUZUKTy TWAD
NETHERLANDS /ESA/ESTED

ALLENy R.C»
RENAT» RENARIS
ROBINSONy Foude
STEVENSy RICHARD

b- U o

EXECUTIVE SUMMARY

The Open Forum on Space Station Software Issues, held at Marshall Space Flight
Center on April 24-25, 1985, was sponsored by the Space Station Program Office and
organized by the Space Station Software Working Group. Participation was limited to
those willing to submit position statements and each invitation included a copy of
"Space Station Software Issues'" (NASA CP-2361, 1985). About 225 participants from
industry, govermment, universities, and a few foreign space agencies attended.

Four panels, consisting of invited experts and a few NASA representatives, focused
on the following topics: (1) software management, (2) software development environ-
ment, (3) languages, and (4) software standards.

The forum began with an overview of the Space Station program and some major
software issues to be addressed. Then four invited experts spoke on the panel
topics, critiquing the strategies outlined in the proceedings of the previous NASA
workshop (NASA CP-2361). These talks provided the starting point for the panel
discussions which followed.

Each panel deliberated in private and also held two open sessions with audience
participation. Major recommendations to the NASA Space Station Program developed by
these panels are summarized below.

1. The software management plan should establish policies for software acqui-
sition (treating internal development as if it were external acquisition)
and should clearly address responsibilities and decision points. Software
should be treated as part of the overall system engineering and integration
effort.

2. NASA should furnish a uniform, modular software support environment (with
a layered architecture) and require its use for all Space Station software
acquired (or developed). This environment should be incrementally devel-
oped, have a virtual operating system, and support portable software
packages.

3. The language Ada should be selected now as the primary source language for
Space Station software, and NASA should begin to address issues related to
the effective use of Ada, such as education, a transition strategy, run—time
support, and accommodating the use of existing software. Languages for spe-
cial applications such as requirements analysis and user interface should be
selected soon after the requirements become more clear.

4, The Space Station Program should endorse and support software standards
through policy and implementing organizations. Selected standards should be
tailored for Space Station, based upon existing NASA, DoD, IEEE, and ANSI
standards.

Some common themes were expressed by the panels and many audience participants:
Do not reinvent the wheel (learn from past experience), obtain "real” requirements
for software support, identify and manage interfaces early, focus on maintenance as a
primary requirement, include software as an integral part of the system level strat-
egy, and define terminology ("buzz words").

INTRODUCTION

This report summarizes the results of the Open Forum on Space Station Software
Issues, held at the NASA Marshall Space Flight Center on April 24-25, 1985. This
forum was sponsored by the Space Station Program and organized by the Space Station
Software Working Group (SWWG). An earlier workshop on Space Station Software Issues
had been held for NASA software specialists in August 1984 (documented in ref. 1).
This forum was organized as a follow-up to that workshop to solicit comments from
industry and academic representatives on the NASA perspective on software policies
and strategies for the Space Station Program.

The objectives of the forum were to define and review major Space Station
software issues that should be of concern to NASA, and propose policies, proce- ce-
dures, and actions that should be taken by NASA to effectively address these issues.

The Software Working Group has grown from an ad hoc group in 1983 to an inter-
center NASA committee of over 30 members, with a common concern that software issues
be addressed early in the Space Station Program definition and development. The
workshop held for the SWWG members in August 1984 identified over 20 software issues
and made recommendations for each. - Since that time, several developments have
occurred:

1. Identification of Software Managers in the Space Station Program at levels A
and B, namely Dana Hall and M, Dane Dixon.

2. Drafting of the top-most software management plan.

3. Establishment of Space Station Information Systems Panel responsible for all
software systems.,

4. Drafting of Space Station Software Lexicon.

5. Plans made for software development environment and Space Station language
evaluation.

The forum was organized to present the NASA perspective on the role of software
in Space Station (given by Dana Hall) as well as four expert views on the NASA pro-
posed approach to software management, software development environment, languages,
and software standards. Following the expert presentations, four panels met to
deliberate on these topics and to hold open sessions inviting comments from the
audience. FEach panel met once in closed session and twice with members of the forum
audience. They then presented their tentative recommendations at the final forum
session, After the meeting, the panel members refined their statement of issues and
recommendations and these are presented in this document.

Note that the recommendations presented herein have not been endorsed by the
NASA Space Station Program; however, they are receiving careful consideration by NASA
officials at the time of publication of this report.

—

iy . N86-23315

'SPACE STATION - THE ROLE OF SOFTWARE

Dana Hall*
NASA Office of Space Station
Washington, DC

ABSTRACT

Software will play a critical role throughout the Space Station Program. This
presentation is intended to set the stage and prompt participant interaction at the
Software TIssues Forum. - The presentation is structured into three major topics:

® an overview of the concept and status of the Space Station Program;

@ several charts designed to lay out the scope and role of software;

e and information addressing the four specific areas selected for focus at the
forum, specifically: software management, the software development environ-

ment, languages, and standards. The presentation attempted to highlight
NASA's current thinking and to raise some of the relevant critical issues.

*Dr. Dana Hall is the Level A Space Station software manager and is responsible for
oversight of the planning, 1mplementat10n, and, integration of all Space Station
Program software. Prior to joining the, Program ;n gtober 1984, Dr. Hall served as
a data system and software advisor w1th1n NASA's Office of the Chief Engineer. His
prior experience is with MITRE and TRW where he has worked with projects ranging
from airline operations models to missile trajectory simulations. Dr. Hall has also
been involved with NASA data system advanced development and in the ground system
design of several NASA spaceflight programs.

) NEXT LOGICAL STEP

Given the advent of an operational space transportation system, the Space
Shuttle, the development of a space station is the next logical step im mankind's
exploration of the surrounding universe,

ORIGINAL PAGE IS
OF POOR QUALITY

STATE OF UNION

The Space Station Program traces its official beginning to the January 1984
State of the Union message by President Reagan in which he directed that NASA proceed
to develop a "permanently manned space station and do it within a decade.” This
official start builds upon many years of prior analyses and consideratiouns that
together laid the basic guidelines that now comprise the Space Station Program.

“‘We can follow our dreams to distant stars,
living and working in space for peaceful,
economic and scientific gain. Tonight, | am
directing NASA to develop a permanently
manned space station and to do it within a
decade.

A space station will permit quantum leaps
in our research in science, communications
and in melals and life-saving medicines
which can be manufactured ... in space.”

January 25, 1984

“Our Second American Revolution will push
on to new possibilities not only on Earth buf
in the next frontier of space. Despite budget
restraints, we will seek record funding for
research and development.

We have seen the success of the space
shuttle. Now we are going to develop a
permanently manned space station and new
opportunities for free enferprise because in
the next decade, Americans and our friends
around the world will be living and working
together in space.’’

February 6, 1985

MILESTONES
At the time of this forum, the program had just completed the competition for
the definition and preliminary design of the Space Station elements. This competi-
tion resulted in the award of eight major contracts distributed across four primary
work packages. As shown on this schedule, it is planned that actual development

(i.e., Phase C/D) will begin in 1987. 1Initial operational capability is forecast for
the 1993-94 time frame.

1984 1986 1988 1930 1992 1994
WW

W PRESIDENTIAL DIRECTIVE TO NASA
W NASA PROGRAM CONCEPT (RFP)

A DEFINITION & PRELIMINARY DESIGN COMPETITION

[] DEFINITION & DESIGN

DEVELOPMENT/_ BLOCK 1 S

FLIGHT HARDWARE DELIVERIES / V..o

LAUNCHES \/ \/ \U.,.

ASSEMBLY & CHECKOUT | \V4
OPERATIONAL PHASE, BLOCK 1 [:3

ORIGINAL PAGE |g
OF POOR QUALITY

SPACE STATION DESIGN
The actual design of the Space Station is not known at present since the program

is still in the requirements and definition part of its life cycle. However, NASA
had adopted a reference configuration, as shown in this artist's concept.

REFERENCE CONFIGURATION

As shown, the reference configuration is an elongated truss-like structure
approximately 400 feet long and 200 feet wide. It will be maintained in a 250 n.mi.
circular orbit inclined at 28.5 degrees to the equator. The station will be oriented
in a gravity gradient attitude with Earth sensing payloads and the various modules
located on the end closest to the Earth. The present concept is that the station
will be powered by solar arrays. Also shown are two orbital maneuvering vehicles.
These OMVs will be unmanned, remotely controlled spacecraft designed to ferry pay-
loads and equipment in nearby ranges. One such destination might be a co-orbiting
unmanned platform, as shown on the sketch.

e Bolae Bavnys

Commuarcial
Rayloads

 Payioads

Truse and Servicing
Structure

Habitaz, Logistics
and Laboratory
Modules

SPACE STATION COMPLEX

The Space Station Complex consists of three major elements. Two of those
elements are the Space Station Main Base, discussed in the previous figure, and, in
that same 28.5 degree orbit, an unmanned platform. The third major element of the
Space Station Complex is an unmanned Polar Platform. The Polar Platform will be the
location for most Earth sensing instruments since that platform will survey all of
the Earth's surface on a frequent basis. The figure also shows one of the orbital

maneuvering vehicles traveling between the Space Station Main Base and the
Co-Orbiting Platform.

POLAR PLATFORM

CO-ORBITING
PLATFORM

N
J

@
MANEUVERING
// VEHICLE

&
STATION BASE

SPACE STATION

The Space Station will serve as a means for furthering our scientific research
in space and will have a number of additional important. functions. One will be as a
satellite or instrument repair facility, a capability that has been demonstrated
using the Shuttle Program. Space Station will also serve as a base to assemble large
structures. It will be a facility to support the commercialization of space and a
transportation staging base for missions to the Moon and beyond. Overall, the Space
Station will be a visible symbol of U. S. strength.

. &Q%QNTEHC LABQRATORY IN
SPACE

e SATELLI TE/!NSTRUMENT .
REPAIR FACILITY o

*» BASE TO AESEMBLE LA
QYRU(“TURES ' .

SUPPORT FDF{ ca
amzm'rmws ~

® TH&N&F’G RTAT
BASE f

* BRIDGE m
NATIONAL E
SPACE

mmwm <

VISIBL E $YMB

10

SPACE STATION PLANNING GUIDELINES

A number of management and engineering guidelines have been established for the
Space Station Program. The management guidelines include provisions for an initial
operational capability station within a decade. The program has very extensive user
involvement both from our traditional communities of the scientific and application
areas as well as from technology and from the commercial sector. On the technical
side, the station must be evolutionary in nature and technology transparent. We are
looking at a Space Station Program with a lifetime of something like 25 to 30 years
and thus must be able to change our technology without impacting the users. The
station elements will be serviced by the Shuttle. The Space Station Main Base will
be continuously habitable.

MANAGEMENT RELATED ENGINEERING RELATED

Three year detailed definition e Continuously habitable
(5-10% of program cost)

Shuttle dependent

NASA-wide participation

Manned and unmanned elements

Development funding in FY 1987

Evolutionary

I0C: ““within a decade”’

Maintainable/restorable

Cost of initial capability: $8.0B
e Operationally semi-autonomous

Extensive user involvement
— Science and applications

— Technology

— Commercial

Customer friendly

¢ Technology transparent

International participation

INTERNATIONAL COOPERATION

President Reagan as part of the Space Station initiation invited intermational
participation. We are pleased to welcome the European Space Agency, Canada, and
Japan to our team., The Memoranda of Understanding between ourselves and those
participants are soon to be signed.

°* PRESIDENT REAGAN INVITED INTERNATIONAL
PARTICIPATION

e ESA, CANADA AND JAPAN HAVE RESPONDED:

— SOON TO SIGH MOU’S ON PHASE B
COOPERATION

e SPACE STATION IS TO BE A TRULY COOPERATIVE
ENDEAVOR:

— DEVELOPMENT
— UTILIZATION
— OPERATIONS

° U.S. AND FOREIGN INDUSTRIES MAY COOPERATE TOO

iz

PROGRAM SUCCESS

Software will play a very critical role throughout the Space Station Program.
This figure illustrates just a few of those major categories. They range from test
and checkout to user interface support, payload processing, command and control, and
of course management of the program itself.

TEST AND CHECKOUT

USER INTERFACE \ / SIMULATION AND MODELING
OPERATIONS PLANNING — —_ (SOFTWARE)] —————— COMMAND AND CONTROL
/ \ USER PAYLOAD
PROGRAM MANAGEMENT DATA PROCESSING

REAL TIME FLIGHT

13

NASA SOFTWARE TRENDS

This figure tries to show in an unquantified manner the significant iuncrease in
software that we believe we will be working with in the Space Station Program com—
pared to the amount that we developed for Apollo and Shuttle. It also shows that the
Space Station effort will be built with substantially less dollars than were avail-
able on those past major programs. So the primary messages from this and the
previous figure are that NASA must maximize the efficiency with which it uses its
software resources. We must learn as much as we can from past lessons, be careful
not to repeat mistakes, and use methodologies that worked well before.

/
/
/
//
e L B /
~ // SOFTWARE QUANTITY
- & /
o o Ve
b7 o /7
= 7/
= 7
s +F = }
> o
b o)
- @«
= a.
«f
3 S PROGRAM COST
- - A
\\
g
\\\
\\\
L— 1 T ?
APOLLO SHUTTLE SPACE
STATION

14

FUNDAMENTAL REQUIREMENTS

This figure lists a few of the major requirements that are software drivers. We
recognize that we will be working with a highly distributed architecture and that
networking will be prevalent throughout that architecture in the form of local area
networks as well as wide area networks. As we said earlier, the station technology
on—-board and on the ground must be oriented for growth and evolution. OQur users will
be working from terminals via a space station information system that we plan will
enable those users to operate just as if their instruments were in the laboratory
next door. The Space Station will at least initially have a crew of somewhere be-
tween six to eight and therefore automation will be important. Many of the functions
on-board the station must perform in an autonomous manner and since we are looking at
a long term program, we must try to automate as much of the ground system as we can
to minimize operating costs. Of course, the overall driving requirement is that the
entire system be user friendly both for NASA operators running the station and for
our customers.

® DISTRIBUTED ARCHITECTURE, NETWORKING

® GROWTH, EVOLUTION, TECHNOLOGY TRANSPARENCY
® TERMINAL-ORIENTED USER INTERFACES

® AUTONOMY/AUTOMATION

® USER FRIENDLY

15

TECHNOLOGY

There are a large number of commercial and Department of Defense technology
products that can potentially be used to serve all of the areas on this figure.
These include integrated hardware and software tools, on-board computer hardware,
software development aids, computer automation, and aids for the user interface.

Notice that the arrows go two ways.

The two-direction arrows show that in some cases

some of what NASA does with these products may influence the commercial and DOD

sectors.

However, that is not the wmain message.

The bottom line is that we plan to

maximize the use of commercial and DOD products.

INTEGRATED
HARDWARE/
SOFTWARE
MANAGEMENT
TOOLS

REQUIREMENTS SPECIFICATION
PLANNING DOCUMENTATION
INTEGRATION AND TESTING
VALIDATION/ACCEPTANCE

CONFIGURATION MANAGEMENT

HOL
STAR/ADA

SMART PERIPHERAL
CONTROLLERS

INTEGRATED
SOFTWARE
DEVELOPMENT
CAPABILITY

COMMONALITY OF SUPPORT
S/W TOOLS

INTERPRETERS/GENERATORS

FLIGHT COMPUTER INTERFACE
BUFFER

16

PROJECT

MANAGEMENT

PROCESSORS
MASS STORAGE
FLIGHT COMPUTERS

ONBOARD
COMPUTER
HARDWARE

BiU
COMMUNICATIONS
UNIVERSAL WORKSTATION

COMMERCIAL/DOD
TECHNOLOGY
PRODUCTS

USER
INTERFACES

NETWORKS

OPERATING SYSTEMS

VHOL STANDARDS FOR PAYLOAOS
PAYLOAD USERS
CREW
GROUND/AIR

NETWORKS
ARTIFICIAL INTELLIGENCE
DATA BASE MANAGEMENT

FORMULA LANGUAGES COMPUTER
ARTIFICIAL INTELLIGENCE

AUTOMATED DOCUMENTATION

AUTOMATION

FAULT TOLERANT SYSTEMS
KNOWLEDGE BASED SYSTEMS
DISTRIBUTED DATA BASE SYSTEM
SOFTWARE

DEVELOPMENT
AUTOMATION

MATH MODEL DEVELOPMENT
AUTOMATED CODE GENERATION
AUTOMATIC TEST AND VALIDATION
AUTOMATED DOCUMENTATION

SOFTWARE MANAGEMENT

NASA has taken a number of software management steps that we think are positive
and in the right direction. First of all, the top level (combined Levels A and B)
software management plan has been drafted. That document will continue throughout
the program's life to be the repository for the program's policies and procedures.
We have also created positions and appointed people as designated software managers
at Levels A and B. The Program is in the process of converting what has been an
ad hoc software working group into a permanent software advisory panel. We are
beginning to assemble software standards, the first of which will be a lexicon so
that all participants will be using the same defintion of terms. And finally, we are
in the latter stages of conceptualizing a software development environment. Now let
me pause for a moment here and clarify that we also refer to the SDE as a software
support environment, the idea being that the term "support™ conveys a wider process
than does development. We presently use both terms synonymously.

WHAT'S BEEN DONE SO FAR?

® DRAFT TOP LEVEL SOFTWARE MANAGEMENT PLAN

® SOFTWARE MANAGERS AT LEVELS A AND B

® PERMANENT SOFTWARE ADVISORY PANEL

® LEXICON AS FIRST STANDARD

® CONCEPTS FOR SOFTWARE DEVELOPMENT ENVIRONMENT

17

SOFTWARE MANAGEMENT PLANS

The Space Station Program envisions a hierarchy of software management plans,
i.e., one plan per major scftware element. The plan at the top of this figure, the
Level A/B software management plan, is the one that is presently in draft form and
that will soon be undergoing formal review throughout the Space Station Program. Two
other major elements that have been identified so far will also be required to have
individual software management plans. One is the software development environment
(or the software support environment) and the other is the Technical and Management
Information System (TMIS). Since the other elements of the Space Station Program
have not yet been identified (we are still in the requirement stage) they are shown
on this chart simply as systems A, B, C, and so on.

LEVEL A/B SMP

SDE ™IS
SMmP SMP

| [
SYSTEM A SYSTEM B SYSTEM C
SMP SMP

| |
SUBSYSTEM B1 SUBSYSTEM B2
SMP | SMP

18

SPACE STATION LIFE CYCLE

Pictured here is the standard Space Station System and Software Life Cycles that
will be used within the Program. The top half of the figure shows what the systems
phases are, and the bottom half gives the corresponding software phases. Shown as
well are the major reviews and events that will take place across that life cycle.

We will require that all space station software efforts utilize the life cycle
regardless of whether the software is being developed or acquired. (Ed. note: This
life cycle has been slightly modified in the approved Software Management Plan, which
will be available from the Space Station Program Office in late 1985.)

SYSTEM SYSTEM
SYSTEM PRELIMINARY CRITICAL

PRELIMINARY SYSTEM DESIGN DESIGN DESIGN
REQUIREMENTS REQUIREMENTS REVIEW REVIEW REVIEW SYSTEM
REVIEW (PRR) REVIEW (SRR) (SDR) (PDR) (CDR) DELIVERY
SYSTEM
\ / \/ ACCEPTANCE
SYSTEM
A LIFECYCLE
INSTALL,
- [DESIGN] INTEGRATION,
3 l & ACCEPTANCE
TESTING
& | FaBaTEST || L
7] 7 L~
L SYSTEM SYSTEM | I S SV L _E_J_ i e aal e e HE
= ||t concePT | RequiremenTs lc—— |
g Sy X g
B l \ I SYSTEM SUSTAINING
E SOFTWARE ,t 1/ > INTEGRATION ENGINEERING
8 INITIATION DESIGN IMPLEMENT
SOFTWARE CODE
ﬁ REQUIREMENTS

SOFTWARE LIFECYCLE

ANAND 4L A A

SOFTWARE g/w S/W S/W S/W S/W RETIRE
(S/W) SRR PDR CDR CUSTOMER SYSTEM ACCEPTING
PRR INSPECTION TEST REVIEW
(cn REVIEW (AR
(STR))

19

EXAMPLES ISSUES

Although a number of steps have been taken, many additional software management
issues remain. This figure lists a few of them. One such issue concerns application
criteria, i.e., to what depth and to what extent should our policies and procedures
apply? We certainly don't want to impose all these rules on the technical person
working in an office with a personal computer. By what criteria do we decide how
much of the policies and procedures apply to each element and each situation?
Another issue, and a very important one, is how do we enforce these policies and
procedures as well as the supporting standards that serve to implement the policies
and procedures? What enforcement mechanism should be used? A third issue is
training and skills preparation. Is it adequate simply to send our people to
management courses, or is additional preparation needed? Should we consider staff
rotation into different jobs? A fourth issue is the question of whether NASA has
adequate manpower to do the system and software engineering and integration job, and
if the answer is no, then what should NASA do?

- Policy application criteria?

How to enforce policies and procedures?

Training and skills preparation?

Adequate NASA manpower?

20

APPLICATIONS ENVIRONMENT

This figure illustrates a couple of important features about the software devel-
opment environment. One is that the software development environment will consist of
a standard set of tools, software packages, policies, and procedures which from one
perspective will free the user and the application software from the operating system
and data storage. Another important message from this figure is that the user and
the application software will be provided a number of services by the software devel-
opment environment via the tools, interpreters, code generators, operating system,
etc., that comprise that software development environment.

(Software Development Environment)

APPLICATIONS

VENDOR
DEVELOPED
APPLICATIONS

USER
"DEVELOPED"
APPLICATIONS

ENVIRONMENT

OPERATING SYSTEM

DATA SYSTEM AND STORAGE

21

COMMONALITY

This figure illustrates that an integrated software support system will consist
of many different elements: aids for hardware integration, simulation models, diag-
nostics, control tools, software development aids, compilers, version control tools,
packages to analyze requirements, operating systems, management systems, and so on.
It is also important to realize that the integrated software support system will
enable the user to select the particular support elements required and thus form a
specific subset software support environment.

HARDWARE SOFTWARE REQUIREMENTS
- SIMULATION
LAB CHECKOUT NN AL BUILD, VERSION INTERACTIVE
FACILITIES ; CONTROL TOOLS
OPERATING INTEGRATED DATA BASE
SOFTWARE, DATA
er —SUPPORT SOFTWARE— ez
- MGMT
s SYSTEM
MANAGEMERNT CREW DATA OPS PLAN
SYSTEM TRAINING REDUCTION FLIGHT PLANNING,
CONFIG. CONTROL, “COCKPIT", "POST-FLIGHT", CREW ACTIVITIES
SCHEDULING, AND TRAINER TELEMETRY. SIMS AND PAYLOADS
STATUS CONTROLS PLOTS & PRINT

22

ENVIRONMENT COMPONENTS

The software support environment will consist of five major constituents. They
are software tools, operating systems, various hardware tools (such as simulation
interface buffers and performance monitors), a host data processing system, and then
last, and certainly not least, overall management policies, procedures, and stan-
dards. The management of the software development and acquisition process is criti-
cally important. Thus this last category, the "management plan"” box, is highlighted.

SOFTWARE TOOLS

SUPPORT
LANG, BUILD SYS, SIMULATION POSTPROCESSING. . . SOFTWARE

(WITH WHICH TO DESIGN & BUILD SOFTWARE)

OPERATING SYSTEMS

DMS 170, TIME/TASK MGMT., USER I/F, ETC. .. ogYEg"ll'\FTl\lil%G

(WITH WHICH TO INTERFACE APPLICATIONS & H/W) .

ARDWARE TOOLS
H 9 SUPPORT

SIM I/F BUFFER, PERFORMANCE MONITOR. . . HARDWARE
(WITH WHICH TO SIMULATE/TEST SOFTWARE)

HOST DP SYSTEM

SDE LEVEL
MAINFRAME, DASD, TERMINALS, NETWORK, OUTPUT. .. FACILITY
(WITH WHICH TO DEVELOP/VERIFY THE SDE ITSELF)
"MANAGEMENT PLAN"
{
DEVEL/INTG. FLOW, CONFIG. MGMT., STNDS, ETC. .. &ADNQSET;E%TL
(TO ENABLE DEVELOPMENT AND INTG OF S/W)

23

RELATIONSHIP

This figure tries to conceptualize how the software development environment will
provide support throughout the system life cycle. First, the SDE will support each
subsystem as it 1s being developed. That same software development environment will
then provide support as those subsystems are integrated to form the system and then
later oun as that system moves into the long term maintenance and enhancement phase.

A key driver behind the SDE concept is to minimize maintenance costs.

NOTE: SDE "CONTROLS HOW
SOFTWARE IS BUILT, NOT
WHAT SOFTWARE IS BUILT.

SOFTWARE
DEVELOPMENT

ENVIRONMENT
(SDE)

SPACE STATION
SYSTEM REQUIREMENTS

SUBSYSTEM SUBSYSTEM
REQUIREMENTS REQUIR TS
i
SUBSYSTEM 'A’

| N |
/' SUBSYSTEM
‘ REQUIREMENTS

SUBSYSTEM 'C’

SYSTEM 'B’

SOFTWARE SOFTWARE SOFTWARE
HARDWARE HARDWARE HARDWARE
SUBSYSTEM SUBSYSTEM | | SUBSYSTEM |--I-

ACCEPTANCE ACCEPTANCE ACCEPTANCE
! 1 | Y Y '

I SYSTEM INTEGRATION
I FLIGHT I

APPLICATIONS
SOFTWARE
INTEGRATION

MAINTENANCE
INCREMENTAL
DEVELOPMENT

24

SCHEDULE

This figure illustrates the planned schedule for the software development envi-
ronment. A separate contract for the software development environment will be issued
in the latter part of FY 1986 so that we have a basic capability SDE in place by mid-
year FY 1988. ©Note how that correlates with the Space Station Phase C/D mainstream
development. Phase C/D is scheduled to start at mid-year FY 1987 so it is important
that the SDE be in place, tested and checked out shortly thereafter, i.e., prior to
the critical design review for the Space Station. We are on a very tight schedule.

FY85 FY86 FYs7 FY8s FY89 FYS0 FY91

ARCHITECTURE
STUDIES J

DMS TESTBED

SPACE STATION | ©3?

PHASE B L BASIC CAPABILITIES

CSD o Al k

SDE CONTRACT | ' %

SPACE STATION S| foR ey
PHASE C/D l

25

PROS AND CONS

The software development environment has a number of advantages as well as a few
disadvantages. Some of the disadvantages are that it will require a large investment
up front. Certainly the establishment of a standard set of tools, practices, poli-
cies, and techniques will affect a number of previously established "sand boxes,” by
which I mean the ways people have traditionally been doing business both within NASA
as well as within industry. In addition, the SDE must be designed for changes; it
won't be a fixed set of tools. On the advantages side, however, we are firmly con-
vinced that the SDE will substantially reduce the cost of ownership for our software,
the ownership (maintenance) cost that we're worrying about being something like 70 to
80 percent of the total life cycle outlay. The SDE will also lend stability to our
software process by helping to assure that all participants are using the same set of
tools, standards and techniques and it will thus improve the integration and checkout

process, We believe the advantages, particularly in the long run, far outweigh the
disadvantages.

Cons

¢ MAY REQUIRE SUBSTANTIAL FRONT-MONEY
INVESTMENT

o AFFECTS A LOT OF PREVIOUSLY ESTABLISHED "SAND
BOXES"”

o SDE HAS TO BE DESIGNED FOR CHANGE

Pros

e PROVIDES FOR REDUCED COST OF OWNERSHIP FOR
SOFTWARE

o LENDS STABILITY TO THE SOFTWARE PROCESS
¢ IMPROVES THE INTEGRATION & CHECKOUT
PROCESSES

Fact of Life:
THE CONTINUING RAPID EVOLUTION OF THE COMPUTING INDUSTRY

26

ISSUES

There are a number of issues associated with the software development environ-
ment. The first concerns the practicality of an SDE and whether NASA really should
try to define and develop such a software support capability. Secondly, should we
try to apply that software development environment to all software, both in-house and
that which we contract for? What will be the impact of a NASA defined SDE on our
contractor colleagues? Should NASA furnish the SDE, lock, stock and barrel, or only
specify what it should be and allow each organization that wants a copy to procure
their own software/hardware? Should the SDE be a single centralized facility or
should we allow multiple copies of the SDE? Another very important question is how
do we maintain configuration control? The SDE certainly won't be a static capabil-
ity. What will be the government's liability? When software is late or has prob-
lems, will the developer be inclined to point to the SDE as a source of the problem?
And then finally, a remaining issue is whether we really should be talking about two
different kinds of SDE's, one that would support software development and the other
that will support software acquisition and thus be largely a management SDE.

- Should a uniform NASA SDE be defined and developed?

- Apply to all software development (in-house and contractors)?
- Relationship to established industry SDEs?

NASA GFE or only specs?

- One central facility or multiple copies?

- How to configuration control?

Government liability?

Two SDEs: development and management?

27

STANDARDS

The basic question concerning standards is what standards are needed. I have
listed on this figure a few of the types of standards that we think we should have,
This list ranges from types of documentation and formats for those documents down to
terminology instruction, set architectures, standardized languages, standards for
quality assurance, testing procedures, and a standardized life cycle. ©Now, in a
couple of cases, we have already moved forward to begin the standardization process.
We have established a standard life cycle, as shown on a previous figure. We are
specifying a critical set of documents that should be required of most software proj-
ects. (It will always be possible to apply for a waiver, but we do have a standard
set of documents that will normally be required.) We are also in the process of
finalizing a software terminology standard. But what other categories should we be
worrying about and what candidates exist to fill those needs?

® WHAT STANDARDS ARE NEEDED?
- Documentation types and formats?
- Terminology?
- 16 bit and 32 bit instruction set architectures?
- Languages?
= Operating systems? Tools? DBMS?
Quality assurance?
- Configuration management?
- Testing procedures?
Life cycle (phases, events, products)?

® WHAT OTHERS?

® WHAT CANDIDATES FILL THE NEED?

28

ARGUMENTS FOR AND AGAINST

There are a number of arguments leaning in favor of standards and of course some
arguments against standards. Arguments that indicate that we should have standards
point out that we will have greater compatibility in our equipment and data. Tt will
be less costly to transfer information if we have standardized software/hardware and
standardized documents. Systems and subsystems should be implemented more quickly.
Standards should facilitate wider use of informatiom, particularly across the large
number of organizations that will comprise the Space Station Program. Standards in
some areas at least will mean that we will need fewer skilled personnel. In other
words, we won't have to train and maintain so many specialists in so many different
areas. Arguments against standardization include the possibility of discouraging
individual preference, moving us away from the leading edge of technology, and
lowering the competitiveness of hardware and software.

The Argument for:

COMPATIBILITY FOR EQUIPMENT AND DATA

® LESS COSTLY TO TRANSFER INFORMATION
e NO NEED TO PURCHASE S/W, H/W BRIDGES
LESS PROGRAMMER TIME REQUIRED
® FASTER IMPLEMENTATION
® WIDER USAGE OF INFORMATION

LESS SKILLED PERSONNEL REQUIRED

The Argument Against:

e DISCOURAGES INDIVIDUAL PREFERENCE
¢ MOVES AWAY FROM "LEADING EDGE” OF TECHNOLOGY
e LOWERS COMPETITIVENESS OF HARDWARE AND SOFTWARE

29

LANGUAGES

It has been the intent of the Space Station Program for some time now to stan-
dardize on a very few computer languages: one or two languages in the implementation
category and a similar small set of languages in each of the other categories. But
there are some basic questions that we must ask ourselves. One is should the Space
Station Program try to standardize on languages at all? And if you agree that we
should, then by what criteria? How is it that we should select one language versus
another? And in each category of application, should we focus on one single language
or a small set? Some considerations to fold in to our thinking about those questions
include the fact that we want to minimize life cycle cost. This is a program that
will stretch out over 25 or 30 years. The languages that we pick must be easy to
use, and must be robust and have a wide range of functional capabilities. Of course,
we would like a language that's reasonably mature and therefore has a good tool sup-
port and experience base. The languages must be compatible with the types of com-
puters that we will use, the environments within which that hardware will be exer-
cised, and the existing software. The latter is a very important point for Space
Station because we must interface with a number of software applications that are
already existing and are written in a number of different languages. Another
consideration is programmer availability.

® QUESTIONS
- Should Space Station Program standardize languages at all?
- |f so, by what criteria?
- One language or several?

® CONSIDERATIONS
- Minimize life cycle costs
- Ease of use
Richness and functional capabilities
- Maturity and support base
Compatibility to machines, environments, other languages
Programmer availability

30

CATEGORIES

Listed on this figure are the probable major categories for language standard-
ization and a few of the possible candidates that might be suitable for each cate-
gory. Now, that list of candiates is by no means complete but at least some of the
major ones are listed. The categories are requirements and specifications, design,
development (which is of course the language standardization area that people most
often think of), the user interface, and artificial intelligence and expert systems.

LANGUAGES

CATEGORIES CANDIDATES?

Requirements and specification | PSL/PSA, SREM, SADT, CADSAT

Design PDL, SDDL
t HAL/S, Fortran, PL/L,
Developmen Jovial, Ada, C, Modula-2, Pascal
User interface GOAL, ATLAS, SCOL,STOL., Ada
Al/expert systems LISP, PROLOG

31

ISSUES

There are a number of issues associated with selecting computer languages. The
first one that comes to everyone's mind is Ada. 1Is Ada sufficiently mature? Does it
have the proper set of tools available? If we decide not to follow the Ada route, at
least for a period of time, then what languages or language should we be choosing
temporarily? Another issue is how do we maintain language configuration control?

How do we prevent or should we even try to prevent people from creating special ver~
sions of the selected standard language or languages? Other important issues revolve
around the special application areas of expert systems, artificial intelligence, and
the user iunterface. Do we need to select special languages for those categories or
can the same standard language that we choose for implementation also suffice?

- Ada: Maturity
Tool set
If not Ada, what?

- How to maintain language configuration control?

= Languages for special purposes:
e.g., Expert systems
User interface

32

CONCLUSIONS

I have tried in this briefing to prompt your thinking. T have pointed out that
software will be a very critical element of Space Station, prevalent throughout all
aspects in space as well as on the ground. There are many open issues that the Pro-
gram is now identifying and attempting to resolve. They range across the four major
categories that will be the focus for this forum: software management planning, the
software development environment, standards, and languages. We are requesting
industry and university assistance and welcome your contributions.

® SOFTWARE CRITICAL ELEMENT OF SPACE STATION

® MANY OPEN ISSUES
- Management planning
- Software development environment
- Standards

Languages

® ”)IE%I; REQUESTING INDUSTRY AND UNIVERSITY OPINION AND

33

SOFTWARE MANAGEMENT PANEL SUMMARY

Prior to the forum, the Software Management Panel reviewed the Space Station Software
Issues report (ref. 1) and the draft Level A/B Software Management Plan (Table 1).
During the forum, the panel experts and the audience made 30 specific recommendations
for assuring the successful management of Space Station software. The following six
recommendations are essential to the Program's success and are the basis for accom-—
plishing the 30 specific recommendatious.

1. The charters of the Level A and B Software Managers must be strengthened to
assure that those positions have the decision and control authority to proparly
conduct their jobs. Specific actions are:

a. Support the Level A and B Software Managers with increased software-
experienced staff. (The panel notes with alarm the lack of any support staff

at the present time for the Level A positiomn.)

b. The Level A and B Software Managers must each have significant discretionary
budget to provide the appropriate guidance and support of the software man-
agement and acquisition functions below them.

c. The hierarchy of software decision making and approval authority must be
clearly established. The panel recommends that technical decisions with
system engineering and integration impact be the responsibility of the Level
B Software Manager with the concurrent involvement of the Level A Software
Manager. However, the panel recognizes that there will be certain major
decisions (such as the choice of a standard language and the overall concept
for the software support environmeut) that will have major, long reaching
impact, both within the Program and to organizations that interface to the
Program. The panel recommends that such decisions be the responsibility of
the Level A Software Manager with the concurrent involvement of the Level B
Software Manager.

d. The Software Management Plan needs to be modified as follows:

- Develop and adopt charter statements for both the Level A
and B Software Managers.

— Specify items a, b, and c above in the charter statements.

— TIdentify and provide a schedule for important decisions
that need to be made.

— Specify how the decisions will be made and by whom.

— Specify who has control of the management functionms,
e.g., budget approval and product approvals.

2. The Software Management Plan policies and procedures are in-house development
oriented, whereas in fact the task is the management of the acquisition of soft-
ware (including in-house development). Large-scale software acquisition is new
to some parts of NASA and is different from, and more difficult than, hardware
acquisition. The plan must be reformulated to reflect this acquisition orien-
tation. Various sections in the plan need to be revised to strengthen the
policies and the ability of the Level A and B Software Managers to be effective
in playing a role in software acquisition. The plan should call for in-house
(NASA) software development to be managed in the same way as non-NASA

LK NOY FILME BAGE_J METENTIONALLY BLANK 3

36

(contractor) acquisition/development, with appropriate tailoring to accommodate
differences such as legal contracting procedures for external acquisitions.

The focus of the Software Management Plan needs to be revised to emphasize the
maintenance/sustaining engineering considerations in more detail and earlier in
the system life cycle process. The major cost of most long-life-cycle computer—
based systems is in the post-delivery-to—operations phase (60-80% of total soft-—
ware life cycle costs). The role of the software managers in the early system
definition and design phase should be expaunded to provide for software alloca-
tion and software trade-offs. TIf the wrong decisions are made in this phase, it
will be nearly impossible to reduce the maintenance/sustaining engineering costs
later.

It is not clear what the boundaries of Space Station are. The specific manage-
ment spheres of control are unclear and the procedures for accomplishing manage-
ment interaction with non-Space Station services are not defined. Additionally,
much of the inherited software appears to be outside the control of Space Station
policies and standards. For example, interoperability design, interface design,
and integrated schedule coordination need to be more clearly delineated. Policies
and procedures for managing these issues must be specified as they impact Space
Station software.

The Software Management Plan and stated NASA approach call for NASA to perform
the top level software engineering and integration (SE&I) function. The panel
observes that the scope of that task (multicenter, multicontractor and multi-
subcontrator) is far beyond NASA's past experience. The panel suggests that the
full scope of the SE&I job be re—assessed with special attention to integration.
The plan must address more specifically the management of the many geographically
dispersed organizations involved in the integration task. More detail 1is needed
on policies (who, how, when) and on the specific responsibilities of developers
and integration organizations.

It is the consensus of the panel that the Software Management Plan should be re-
structured. A new table of countents is recommended that provides for:

- A more complete list of policies.

~ Charters for the Level A and B Software Managers that are sufficient and
delimitcing with respect to control and authority of the management process.

—~ Special attention and focus on several significant procedures.

RECOMMENDATIONS

The Level A/B Software Management Plan structure does not focus sufficient
emphasis on several areas and needs revision. (See Table 1, recommended Software
Management Plan Table of Contents, p. 76.)

The interdisciplinary activities and ianteractions are not well defined. Their
definition and control mechanisms should be specifically detailed in the Level
A/B Software Management Plan.

The Level A/B Software Management Plan should emphasize the considerations of
using existing (inherited) software as an alternative to totally new development.

10.

11.

12.

13.

14.

15.

16.

17.

18,

The Level A/B Software Management Plan should specify the policies and procedures
for control and feedback between the level A/B/C management functions for cost,
schedule and technical content.

The Level A/B Software Management Plan should specify the policies and procedures
for managing the risk issues.

The Level A/B Software Management Plan should specify the policies and procedures
for managing the various technical performance items.

The Level A/B Software Management Plan should address the policies and procedures
to accommodate modern, appropriate software development methodologies.

The Level A/B Software Management Plan should focus more emphasis on the early
planning for the maintainability/sustainability aspects of acquired software.

The policies on independent verification and validation (IV & V) in the Level A/B
Software Management do not put enough emphasis on its SELECTIVE use. The criteria
for utilization of IV&V should be defined.

The policies and procedures for managing the acquisition and configuration
management of FIRMWARE should be specified.

The Level A/B Software Management Plan policies and procedures for acquisition of
software should emphasize QUALITY and should be formulated and reviewed to
accommodate new paradigms as they may be accepted industry practice over the life
of the project (30+ years).

The policies and procedures in the Level A/B Software Management Plan should
specify how and when software and hardware trade-offs are made in the system life
cycle, as well as how and when hardware/software interfaces are defined.

The Level A/B Software Management Plan policies and procedures for tailoring
should set tailoring guidance based upon different identified categories of
software and should provide different life cycles if appropriate.

The Level A/B Software Management Plan should define the policies and procedures
for the various reviews addressing the who, why, what, and when. They should
also provide for an evaluation of the review process and a mechanism for improv-
ing the review process.

The Level A/B Software Management Plan should specify the policies and procedures
for contract incentives that are easily understood and administered and are
directly tied to the cost, schedule aund technical content, and quality of the
product.

The Level A/B Software Management Plan needs to stress the policies and pro-
cedures for ACQUISITION of software rather than DEVELOPMENT of software.

The Level A/B Software Management Plan should rely heavily on existing government
and industry standards such as the new DOD-STD 2167 (ref. 2) and IFEE standards.

The life cycle definition should expand its scope to include the system front-end

definition and design, operations, and sustaining engineering, and to specify the
products and reviews relevant to each phase.

37

19.

20.

23,

24,

25.

26,

27.
28.

29,

30.

38

The Level A/B Software Management Plan should specify the policies and procedures
for defining and managing the support system interfaces and interoperability,
such as TDRSS, Shuttle, Mission Control, etc.

The Level A/B Software Management Plan should first focus on the acquisition/
development methods and languages and then choose the tools to support the
methods for the Software Management Environment.

The Level A/B Software Management Plan should specify the procedures for its
timely review, approval, and maintenance.

The Level A/B Software Management Plan should specify policies and procedures
based on legal and government policies for managing the software on an inter-
national basis with respect to proprietary information and software and the
export of key US technology.

The Level A/B Software Management Plan should address the policies and procedures
for managing the security, sensitivity, privacy, and contamination/
destruction issues of software acquisition and ownership.

The Level A/B Software Management Plan should specifiy the policies and pro-
cedures for the decision process and authority for decisioun making.

The Level A/B Software Management Plan should specify the policies and procedures
for insuring non-loss of software and continuous operations due to inadvertent
and/or catastropic loss of operational or support software.

The Level A/B Software Management Plan policies and procedures should focus on
the managemeut, control, quality, etc. of the PRODUCTS as opposed to the devel-
opment process; i.e., acquisition management as opposed to development
management.

The Level A/B Software Management Plan should specify the policies and procedures
for "designing-to-cost™ as a potential acquisition strategy.

The Level A/B Software Management Plan should specify the primary goals and
objectives of the plans, policies, and procedures.

The Level A/B Software Management Plan should specify the policies and procedures
for obtaining and utilizing software acquisition experience from past and future
projects,

The Level A/B Software Management Plan should specify the policies and procedures
for establishing standardization.

A VIEW OF SOFTWARE MANAGEMENT ISSUES

John H. Manley
Computing Technology Transition, Inc.,
and Nastec Corp.

N86-23316

39

40

FOREWORD
The following briefing charts have been supplemented with

post-forum comments to both emphasize and clarify some of the key
points.

o ot s 3 Gy WSS) e G . GG G U WA G . S S SV G S T W e i At S S e A S0t M S S S G S S S (i . G T S S WO G T S TAS S GO) SR U O M S o S T - -

PRESENTATION TOPICS

MANAGEMENT BRIEFING AND PANEL OBJECTIVES
LARGE SOFTWARE SYSTEM MANAGEMENT ISSUES
NASA-DEFINED MANAGEMENT ISSUES AND SOLUTIONS
INITIAL REACTION TO NASA PROPOSALS
ADDITIONAL SOFTWARE MANAGEMENT ISSUES

SUMMARY VIEWS OF NASA SOFTWARE MANAGEMENT ISSUES

o O o O O o O

INITIAL RECOMMENDATIONS

The presentation topics shown here are intended to provide a
sequence of discussion which sets the stage for the subsequent
open and closed panel sessions on software management issues.
The purpose of these sessions is to provide an objective
industry-oriented critique of NASA-defined management issues
contained in both reference 1 and the "Preliminary Space
Station Level A/B Software Management Plan."

MANAGEMENT BRIEFING OBJECTIVES

SUMMARY ASSESSMENT OF "SPACE STATION SOFTWARE ISSUES" REPORT
CRITIQUE OF ISSUES AND PROPOSED SOLUTIONS
ADDITIONAL SIGNIFICANT ISSUES THAT NASA SHOULD CONSIDER

RELEVANCE OF ISSUES TO CURRENT R&D IN INDUSTRY AND ACADEMIA

o O O O O©

OPENING BRIEFING AND NASA REPORT FORM BASIS FOR DISCUSSION IN
FIRST CLOSED PANEL SESSION

The objectives shown here are intended to provide a basis for

initial management panel discussions. During that discussion,

the other panel members will add to or revise the issues

contained in this briefing in order to present a comprehensive
set of issues to the open session attendees for their response.

MANAGEMENT PANEL OBJECTIVES

O SUMMARIZE AND SUPPLEMENT NASA-DEFINED MANAGEMENT ISSUES
O PROVIDE INDUSTRY REACTION TO PLANNED POLICIES AND APPROACH
-~ REASONABLE?
- LIKELY TO WORK?
= ACHIEVE GOAL OF MINIMIZING SOFTWARE
OWNERSHIP COST?
0 CRITIQUE PLAN OF SOFTWARE DEVELOPMENT AND MANAGEMENT STRATEGY
~ STRENGTHS?
- WEAKNESSES?
- DISAGREEMENTS?
O RELEVANCE OF ISSUES TO CURRENT R&D EFFORTS
~ INDUSTRY?
- ACADEMIA?

- GOVERNMENT? -

41

42

The industry reaction to NASA plans is extremely important

in helping to identify the relevance of their proposed
activities to similar steps being taken elsewhere, e.g.,
industry organizations such as the MCC in Austin, Texas, and
the newly proposed Software Productivity Consortium, as

well as the Department of Defense software initiatives of Ada,
STARS and the Software Engineering Institute. Since NASA has
international partners, the U.K.'s Alvey program, the EEC's
ESPRIT program, and the Japanese fifth generation computer
project also have relevance to Space Station software technology.
This is particularly important with regard to the management of
new technology transition, or insertion, into Space Station
during its formative years.

LARGE SOFTWARE SYSTEM MANAGEMENT ISSUES

SPECIAL CHALLENGES

- MUST SOLVE COMPLEX PROBLEMS

- REQUIRES COOPERATIVE LABOR

~ SOLUTIONS OFTEN COUNTERINTUITIVE

- RIGID DEVELOPMENT AND SUPPORT PROCESSES
— EXPENSIVE PRODUCTION AND SUPPORT

~ HIGH RISK

HENCE

LARGE SYSTEMS ARE

VERY DIFFICULT TO MANAGE

[——

Space Station is an extremely complex and large undertaking. It
will contain subsystems containing large to super-large software
components that must be integrated in a logical manner. Since
the total architectual design is beyond any single human's
comprehension, these typical large system problems will be
encountered by NASA management. The job will be very difficult
and should be recognized at the outset,

LARGE SOFTWARE SYSTEM MANAGEMENT ISSUES

(CONTINUED)

TYPICAL MANAGEMENT PROBLEMS ON VERY LARGE PROJECTS

- CONTINUING REQUIREMENTS CHANGES

- UNEXPECTED GROWTH IN CODE SIZE

- DOCUMENTATION OVERLOADS

- HIGH TRAVEL COSTS (BOTH DOLLARS AND TIME)
-~ INTEGRATION AND TEST OVERLOADS

- UNEXPECTEDLY HIGH ERROR RATES

- POOR HUMAN FACTORS

- SCHEDULES OUTSIDE OF PROJECT CONTROL

- DELIVERY MUCH LATER THAN REQUIRED

- UNSUPPORTED, UNTRAINED SUSTAINING ENGINEERING
PERSONNEL

- LOW MORALE AND HIGH TURNOVER

NASA management can expect to encounter most if not all of the
problems shown on this list. By anticipating such problems, NASA
will be better equipped to satisfactorily identify their early
symptoms, deal with them in an orderly way (perhaps through the
exercise of contingency plans), and prevent any software crisis
from disrupting the program.

43

b4

LARGE SOFTWARE SYSTEM MANAGEMENT ISSUES

(CONTINUED)

IMPORTANT CONSIDERATIONS

O PRODUCT MANAGER(S)

- RESPONSIBILITY

- AUTHORITY

- EXPLICIT DELIVERABLES
0 TOP MANAGEMENT COMMITMENT TO PROCESS

- IMPLEMENT

- USE

— ENFORCE
0 PRODUCT MANAGEMENT PROCESS INTEGRATION

~ HARDWARE

- SOFTWARE

- SYSTEMS
O FLEXIBILITY IN STANDARDS APPLICATION

- LARGE VERSUS SMALL PROJECTS

- NEW VERSUS ENHANCED PROJECTS

- MULTI-SITE, MULTI-CONTRACTOR DEVELOPMENT

—~ DIFFERENT PRODUCT TYPES

-=— SOFTWARE ONLY
~~ HARDWARE/SOFTWARE

The most important of the "important considerations” shown here
is the product orientation. By product I mean platforms,
modules, maneuvering vehicles, and so forth that are dependent
upon highly reliable, fault tolerant, adaptable software systems.
Furthermore, since Space Station is composed of a collection of
fully integrated hardware/software/human systems, NASA cannot

artificially separate software from such systems except where it
makes sense,

NASA DEFINED MANAGEMENT ISSUES

O SOFTWARE MANAGEMENT PLANNING
- SOFTWARE MANAGEMENT PLAN
- IMPLEMENTATION BY NASA AND CONTRACTORS
- UPPER MANAGEMENT EDUCATION
- TRAINING AT ALL LEVELS
O INDEPENDENT VERIFICATION AND VALIDATION
- WHERE SHOULD IV&V BE USED?
- HOW SHOULD IT BE MECHANIZED?

- RELATIONSHIP TO SOFTWARE DEVELOPMENT
ENVIRONMENT

O QUALITY ASSURANCE AND CONFIGURATION MANAGEMENT
- ROLE OF QUALITY ASSURANCE ORGANIZATIONS
— TRAINING AND PREPARATION
- LEVEL OF REQUIRED CONFIGURATION CONTROL
- DEGREE OF NASA INVOLVEMENT

O AVOIDING MAJOR SOFTWARE PROBLEMS
- RISK AVOIDANCE

= RISK CONTAINMENT

The issues defined here are what I considered the major topics

contained in the NASA planning documents. Many other issues were
defined as well.

45

46

0

NASA PROPOSED SOLUTIONS
THREE-~-LEVEL MANAGEMENT STRUCTURE WITH ELABORATE PLANNING
SYSTEM ‘
NASA SOFTWARE LIFE CYCLE FRAMEWORK

HEAVY EMPHASIS ON INDEPENDENT VERIFICATION AND VALIDATION OF
SOFTWARE (IV&V)

STRINGENT CONFIGURATION CONTROL SYSTEM

O NASA-SPONSORED MANAGEMENT TOOLS AND PRACTICES DATABASE

These are the key proposals contained in the draft management
plan.

The next five figures have been extracted from the NASA draft
management plan and illustrate the detailed thinking that has
gone into the planning process.

This figure and the one on the following page show a three-level
management structure, from policy making to software acguisition
management. A question arises with respect to how clear lines of
authority and responsibility will be implemented within the wvery
complex office structures proposed for the program. What is line
and what 1is staff? Who has authority in addition to responsibility?

LEVEL A: PROGRAM DIRECTION
PROGRAM POLICY REQUIREMENTS
SCHEDULE-BUDGET GUIDELINES

e EXTERNAL: POLICY AND AGREEMENTS WITH DOD,
OSTP, CONGRESS, INTERNATIONAL

NASA-AA INTERFACE AGREEMENTS
o COMMERCIAL USER INTERFACE AGREEMENTS

LEVEL B: PROGRAM MANAGEMENT
s SE&| ACTIVITIES
© OPERATIONS
¢ CUSTOMER INTERFACE INTEGRATION

o ADVANCED DEVELOPMENT/TECHNOLOGY
PROGRAM

o BUSINESS MANAGEMENT
o BUDGET-SCHEDULE CONTROL
e REQUIREMENTS CONTROL

—
LEVEL C: PROJECT MANAGEMENT]
o MANAGES ELEMENT SE&I _W
o ANALYZES/INCORPORATES USER REQUIREMENTS INTO ELEMENTS
o DEFINES, DEVELOPS, INTEGRATES SYSTEMS ELEMENTS
o IMPLEMENTS ADVANCED DEVELOPMENT/TECHNOLOGY PROJECTS
o PREPARE PROJECT BUDGET, SCHEDULE, AND DOCUMENTATION
MSEC - WORK PACKAGE ONE
1 JSC - WORK PACKAGE TWO
T GSFC - WORK PACKAGE THREE
T LeRC - WORK PACKAGE FOUR

Space Station Program organization structure
and hierarchy

47

OFFICE OF THE
PROGRAM MANAGER

F—————
| PROCUREMENT 'N;'EEF;('}’;;'S:?L
! & LEGAL AFFAIRS OFFICE
I,
:- 1 TECHNICAL &
MANAGEMENT
| SR & QA INFORMATION
L SYSTEM
““““““ INTEGRATION
PROGRAM
SCIENTIST
OPERATIONS & CUSTOMER PROGRAM
SE&I OFFICE DATA MANAGEMENT INTEGRATION OFFICE MANAGEMENT
OFFICE OFFICE
LEVEL B

48

SOFTWARE MGR.

Level B Space Station Program

Office structure

]

The life cycle is very important to NASA for many reasons.
However, I question the starting point for software in the
Design Phase. I recommend that software activities be in-
cluded as early as the Preliminary Requirements Review phase.

SYSTEM DEVELOPMENT
PHASES & MILESTONES

SYSTEM SYSTEM
SYSTEM PRELIMINARY CRITICAL

PRELIMINARY SYSTEM DESIGN DESIGN DESIGN
REQUIREMENTS REQUIREMENTS REVIEW REVIEW REVIEW - SYSTEM
REVIEW (PRR) REVIEW (SRR) (SDR) {PDR) (CDR) DELIVERY
SYSTEM
\./ \ / ;; (7 ACCEPTANCE
INSTALL,
s L DESIGN 1 INTEGRATION,
Z f & ACCEPTANCE
& | FaBaTEST || TESTING o
5 AN 7 <
—~ || SYSTEM SYSTEM o e e H_>_H__N_(__lL
" CONCEPT || REQUIREMENTS I \
S S, i) Ia
[+ N] \ 4
s _ [\ I SYSTEM SUSTAINING
E SOFTWARE ,t’ s — | INTEGRATION ENGINEERING
8 INITIATION DESIGN IMPLEMENT
SOFTWARE CODE

3

REQUIREMENTS

SOFTWARE LIFECYCLE !

JANSVANVANIVANVANEIVAN

SOFTWARE gw S/W SwW S/W S

S/W
(S/W) SRR PDR CDR CUSTOMER SYSTEM AcCEPTING
PRR

INSPECTION TEST
(cn REVIEW

(STR)

JAN

AN

RETIRE

REVIEW

(AR}

Space Station Program Software Life Cycle Phase

49

NASA has done a good job in identifying necessary documents,
where they should be used, and how they should be controlled.

SOFTWARE LIFE-CYCLE PHASE

z

2 m:.__

G S g9

@ z z SF 3g

2 o 2 Em o5 B

i [7, 1]
56 = & £ gz 2o of
a4s 2 < a =22 z2 P4 S
Jw FES s = L= B G2 quw
DOCUMENTATION TYPE <o 5o 5 < ag OW >% k2
g w0g = a Yy I s
2a & T & = s M ng
PLANNING B R R R
REQUIREMENTS P B R
DESIGN P B R R
TESTING P B R R R
OPERATIONS B R R R

P = PRELIMINARY
B = BASELINE
R = SCHEDULED REVISION

Life Cycle Phase Scheduling of Documentation
Reguirements

PLANNING
S/W MANAGEMENT PLAN
S/W DEVELOPMENT PLAN
CONFIG MGMT PLAN
SE & I PLAN
INTERFACE CTL PLAN
SRM & QA PLAN
V & V PLAN
I V & V PLAN
FACILITY PLAN
ADP ACQUISITION PLAN
S/W STANDARDS
REQUIREMENTS
S/W CONCEPT DOC
S/W REQUIREMENTS SPEC
ICD'S
DESIGN
S/W DESIGN DOC
PROCUREMENT DOC
SUSTAINING ENG. PLAN
CODE
TESTING
S/W TEST PLAN
S/W TEST REQUIREMENTS
TRACEABILITY DOC
OPERATIONS
USER'S GUIDE
OPERATIONS MANUALS
VERSION DESCRIPTION DOC
PROGRAMMER'S HANDBOOK
S/W TEST PROCS
ACCEPTANCE TEST PROCS.
REPORTS
SOFTWARE REVIEW REPORTS
S/W TEST REPORTS
SRM & QA REPORTS
CR'S
LESSONS LEARNED
ACCEPT. TEST REPORTS

B: BASELINE
R: REVISED

Software Life Cycle Documentation Matrix

T wooWwow oo

o

R
R
R
R
R
R
B
B
B B R
B R
B
B
B R
B R
B R R R
B R
B
B R
B R
B R
X X X X
X
X X X X
X X X X
X X X X

R

oououo O

Ll

TwwHwwH W W wWW W wXW WW HWHXVWAID

R XK

REPORT MILESTONE
DELIVERABLE

51

52

INITIAL REACTION TO NASA PROPOSAL

SOFTWARE MANAGEMENT PLANNING

0 NASA MANAGEMENT APPROACH EMPHASIZES PANELS, COMMITTEES AND
AN ELABORATE SYSTEM OF PLANS

0 TOO MUCH FAITH IN PLANS (PEQPLE NOT PAPER GET THINGS DONE)

0 WHAT NEEDS TO BE ADDED:
~ ASSIGN RESPONSIBILITY FOR DELIVERABLES
- MAKE PEOPLE ACCOUNTABLE FOR THEIR DELIVERABLES

- INSTALL A SOFTWARE SCORING SYSTEM TO KEEP TRACK
OF THEIR PROGRESS

- ASSIGN RESPONSIBILITIES FOR TAKING POSITIVE
CORRECTIVE ACTIONS

~ MANAGE THE RESPONSIBLE PEOPLE

My initial reaction to NASA's planning approach is that they have
spent considerable time defining their problems. Furthermore,
they have proposed to solve these problems through an elaborate
system of plans to be implemented by a complex of offices, panels
and committees. My visceral reaction to this approach is that
there might be an overemphasis on "paper"” and not enough on
"people,.” By this I mean the list of items above under "what
needs to be added.”

Of most importance is identifying specific people to carry out
Space Station software acquisition/development and support
responsibilities and giving them the resources and necessary
authority to carry out their jobs effectively.

In addition, these people must be managed to include the
installation and use of an accounting system so that problems
(and successes) can be quickly identified and corrective actions
expeditiously initiated whenever and wherever needed.

The fundamental point is that, although the planning effort so
far looks good on the surface due to the great attention to
detail in organization and documentation, the ultimate key to
success will lie in NASA's effective use of people.

INITIAL REACTION TO NASA PROPOSAL

(CONTINUED)

LIFE CYCLE FRAMEWORK

0O PROPOSED NASA SOFTWARE LIFE CYCLE FRAMEWORK IS ESSENTIAL

FORCES CONSCIOUS DECISION MAKING
INTEGRATES/INTERRLATES FUNCTIONS (SOFTWARE
DEVELOPMENT, HARDWARE ENGINEERING, BUDGETING,
SUPPORT, etc.)
IMPROVES PREDICTABILITY
HELPS QUANTIFY RISKS

-- SCHEDULES

—- DEPENDENCIES OR EXPOSURES

-—- TECHNOLOGY NEEDS

BETTER CONTROL OF EXTERNAL COMMITMENTS

The NASA software life cycle framework as proposed in the draft

management plan
outlined here.

is excellent and essential due to the points

53

54

INITIAL REACTION TO NASA PROPOSAL

(CONTINUED)

INDEPENDENT VERIFICATION AND VALIDATION

O NASA EMPHASIS ON IV&V GOOD BUT STARTS TOO LATE IN THE LIFE
CYCLE

- CAN NOT TEST IN QUALITY

- MUST VERIFY DESIGN IDEAS EARLIER IN PROCESS

-~ SOFTWARE MANAGER MUST BE INVOLVED IN SYSTEM
REQUIREMENTS ANALYSIS AND EARLY DESIGN DECISIONS

O QUESTIONS TO ANSWER DURING PRODUCT CONCEPTUAL PLANNING

WHAT IS IT? WHO WILL USE IT? WHEN? WHY?
~ PRODUCT STRATEGY

O QUESTIONS TO ANSWER DURING PRODUCT REQUIREMENTS DEFINITION

WHAT MUST IT DO? HOW WILL IT BE DESIGNED?

- HOW WILL IT BE DEVELOPED? SERVICED?

- COST AND SCHEDULE ESTIMATES

-~ FINANCIAL AND WORK PLAN

~ INITIAL HARDWARE/SOFTWARE ALLOCATION
With regard to NASA's heavy emphasis on independent verification
and validation of software, I agree with the approach due to the
special requirements for ultra-reliable spaceborne system

software.

On the other hand, IV&V should be started much earlier than
proposed to address the issues raised on this chart.

INITIAL REACTION TO NASA PROPOSAL

(CONTINUED)

CONFIGURATION CONTROL

O NASA EMPHASIS ON CONFIGURATION CONTROL CORRECT
O AREAS FOR IMPLEMENTATION (NASA AND ALL CONTRACTORS)
- SOFTWARE CHANGE CONTROL
- DOCUMENT CONTROL
- RELEASE CONTROL
- LIBRARY CONTROL
NASA cannot put too much emphasis on configuration control.
However, they must ensure that such activities not be restricted

to controlling code alone, but also to documents, releases as
entities, and even the libraries themselves.

55

INITIAL REACTION TO NASA PROPOSAL

(CONTINUED)

TOOLS AND P TICES DATABASE

0 NASA-SPONSORED SOFTWARE MANAGEMENT TOOLS AND PRACTICES
DATABASE AND INFORMATION RETRIEVAL SYSTEM
- WHO WILL USE THIS OTHER THAN RESEARCHERS?

- HOW WILL THIS HELP MANAGERS?

0 NICE IDEA BUT VERY LOW LEVERAGE ITEM IN GETTING THE JOB DONE
O CHANNEL ENERGIES T0O SUPPORT THESE FUNCTIONS INSTEAD

-~ PHASE REVIEW DOCUMENTATION SUPPORT SYSTEM

— DISTRIBUTED FAULT ANALYSIS AND REPAIR

- DISTRIBUTED INTEGRATION SUPPORT

- DISTRIBUTED FIELD MAINTENANCE SUPPORT

~ DEVELOPMENT TOOL DISTRIBUTION
O AND ,.. DEVELOPING THESE COMMUNICATION BUILDING BLOCKS

- TERMINAL ACCESS

-~ INFORMATION TRANSFER

- FILE TRANSFER

- DISTRIBUTED EXECUTION
The software management tools and practices database is primarily
a research oriented effort that should be left to the research
community to carry out (especially if requested by NASA). The
talents required to perform this proposed effort are too valuable
to use in building a product that has a high probability of not
being used by its intended customers, i.e., real world program,
project and software engineering managers.
I suggest that NASA channel the energies of its talented database
technicians into the functions outlined on the chart, to include
developing some of the very formidable communication technology
components indicated. These real products are vitally needed to

support the extremely important configuration control systems
cited previously.

56

ADDITIONAL MANAGEMENT ISSUES

O SOFTWARE ACQUISITION POLICIES AND PRACTICES
- RIGHTS IN DATA
- SECURITY
- INCENTIVES
- SUBCONTRACTOR CONTROL
- ACCEPTANCE PROCESS
- WARRANTIES
O STANDARDIZATION
- LIFE CYCLE PROCESS
— CONTRACTING
- COST AND SCHEDULE REPORTING
- PROGRAM REVIEWS AND AUDITS
O GOVERNMENT FURNISHED MATERIALS
- SOFTWARE DEVELOPMENT
- SUSTAINING ENGINEERING
O PRODUCT CONTROL
- ARCHITECTURAL CONTROL
= VERSION CONTROL
= INTERFACE CONTROL
This is simply a partial but very important list of more issues
that NASA Space Station software management must be concerned

with. Each one was elaborated in the original briefing and in
the panel discussions that followed.

57

58

SUMMARY VIEW OF SOFTWARE MANAGEMENT ISSUES

NASA'S PRIMARY CHALLENGE

| SOFTWARE ACQUISITION MANAGEMENT |

O MAJOR ACTIVITIES
- SPECIFYING CONTRACTUAL REQUIREMENTS
— PREPARING REQUESTS FOR PROPOSALS
- SOURCE SELECTION/NEGOTIATION
- REVIEWS AND AUDITS

- ACCEPTANCE TESTING AND INSTALLATION

0 DISCIPLINES REQUIRED
-~ PROGRAM MANAGEMENT
-~ SYSTEM AND SOFTWARE ENGINEERING
— CONTRACT MANAGEMENT
- TEST AND EVALUATION
- COST MANAGEMENT
- LOGISTICS

What is NASA's primary Space Station software management
challenge? 1It's not building software in house as in the past,
it's not developing new software technologies or, in short,
solving a traditional NASA engineering problem. These are all
important, but not the real problem.

The primary challenge is to develop effective means for NASA to
manage the development of software by contractors on a massive
and geographically dispersed basis. This will also include the
management of hundreds of subcontractors.

Therefore, the activities that NASA management must be primarily
concerned with are the activities shown here. This requires a
multiplicity of disciplines, most of which are not software
engineering per se,

O O o o o o o o o o

SUMMARY VIEW OF SOFTWARE MANAGEMENT ISSUES

(CONTINUED)

NASA SOFTWARE ACQUISITION CHALLENGES

ESTABLISHING TECHNICAL AND HUMAN PERFORMANCE REQUIREMENTS
ESTABLISHING CRITERIA FOR SOFTWARE DESIGN VERIFICATION
ESTABLISHING CRITERIA FOR SOFTWARE ACCEPTANCE

CONTROLLING SOFTWARE ACQUISITION COSTS AND SCHEDULES
MINIMIZING DECISION CYCLE TIMES

PROMOTING AND ENFORCING SOFTWARE ENGINEERING PRACTICES
CONTRACTUALLY SUPPLYING TOOLS TO CONTRACTORS

DEALING WITH POOR CONTRACTOR PERFORMANCE

ESTABLISHING CONTRACTOR INCENTIVES

DEVELOPING A CRITICAL MASS OF SOFTWARE EXPERIENCED ACQUISITION
PERSONNEL

In my opinion, these are NASA's primary software management
challenges. Since software acquisition (not in-house
development) is the central issue, NASA must undergo a rapid
cultural change from a scientific and engineering oriented
organization to become an astute buyer of software.

59

60

SUMMARY VIEW OF SOFTWARE MANAGEMENT ISSUES

(CONTINUED)

SPECIAL PROBLEM AREA

! l
| COST ACCOUNTING AND CONTROL |
l I

O TYPICALLY DIFFICULT FOR SOFTWARE CONTRACTORS TO COMPLY
- EMPHASIS ON MANUFACTURING COSTS

- COST CENTER ORIENTATION RATHER THAN PRODUCT OR
PROJECT

- NO SEPARATION OF HARDWARE AND SOFTWARE COSTS IN
ENGINEERING ORGANIZATIONS

- LITTLE SOFTWARE HISTORICAL COST INFORMATION
O BENEFITS FROM A WELL-DESIGNED (AND IMPOSED) COST SYSTEM
= PROMOTION OF RESPONSIBILITY ACCOUNTING
- PROJECT AND LIFE CYCLE PHASE COST IDENTIFICATION

- COST AND SCHEDULE MORE PREDICTABLE (WHEN COUPLED
WITH A PROJECT CONTROL SYSTEM)

- BASIS FOR METHOD AND TOOL IMPROVEMENT DECISIONS

The essence of this special area is that most software
contractors will be subcontracted to primes that build hardware
systems. As a result, NASA will be managing software acquistions
in the form of component parts of larger systems. This presents
a major cost control challenge.

From NASA's perspective, it will be very difficult to gain
insight into what is happening within contractor organizations
unless special efforts are taken to develop and impose software
cost accounting and control systems on the suppliers. This is a
problem the Department of Defense has been grappling with for
over a decade. NASA should take advantage of their lessons
learned and current solutions through their STARS program
interface to achieve the benefits shown above.

SUMMARY VIEW OF SOFTWARE MANAGEMENT ISSUES

BOTTOM LINE

ESSENTIAL REQUIREMENTS

O TOP LEVEL PRODUCT PLAN (AND ASSOCIATED DOCUMENTATION AND
FUNCTIONAL PLANS

- DEFINE ACTIVITIES, SCHEDULES, RESPONSIBILITIES,
DELIVERABLES

- ADDRESS BUSINESS AND TECHNICAL ISSUES
O PRODUCT LIFE CYCLE PROCESS FRAMEWORK
- DISCRETE PHASES AND STEPS

- EACH STEP COMPLETED BEFORE PROCEEDING (TO
INCLUDE INTERATIONS FOR CORRECTIVE ACTIONS)

- SOFTWARE INCLUDED IN EARLY SYSTEM PLANNING
O MANAGEMENT PHASE REVIEW PROCESS

- FORMAL CHECKPOINTS

— CONSCIOUS DECISIONS

- ESCALATION OF MANAGEMENT ISSUES

- ACTIVE APPROVAL TO PROCEED
NASA must have a top level product plan which is deliverable
oriented to identify the tangible items they are trying to
acquire. The life cycle framework is required to form a basis
for that approach and also a structured management review process
to control contractor activities. All of this is used to ensure
that timely decisions can be made to contain risks and keep Space

Station plans on track.

This leads to my personal recommendations on the next page.

62

INITIAL RECOMMENDATIONS

ASA FTWARE MANAGEMENT D;

ESTABLISH PRODUCT MANAGEMENT DISCIPLINE AS A

STANDARD BUSINESS PRACTICE

SYSTEMATICALLY BREAK DOWN WORK AND DEFINE
EXPLICIT WORK PACKAGES WITH CRITERIA FOR

THEIR SUCCESSFUL COMPLETION

DESIGNATE SPECIFIC FUNCTIONAL AND WORK PACKAGE
RESPONSIB TIE

PUT NECESSARY RESQURCES INTO PLACE TO CARRY OUT

RESPONSIBILITIES

PROVIDE MANAGERS WITH AUTHORITY TO CARRY OUT

THEIR RESPONSIBILITIES

ENSURE THAT PHASE REVIEWS ARE USED

PARTICIPATE IN PHASE REVIEWS AND TAKE PERSONAL

RESPONSIBILITY FOR THEIR RE T

TAKE TIMELY CORRECTIVE ACTIONS TO MEET
OBJECTIVES

ISSUES AND RECOMMENDED ACTTONS

1. ISSUE: Level A/B Software Management Plan

The draft Level A/B Software Management Plan (SMP) does not address several items
either at all or with the proper emphasis,

RECOMMENDED ACTION:

The structure of the Software Management Plan should be modified to provide an easily
identifiable place for all the issues to be addressed and given the proper emphasis.
Table 1 contains the recommended Table of Contents for the Level A/B Software Manage-—
ment Plan, produced by panel consensus., Table 2 contains the recommended Table of
Contents submitted by Robert Braslau of TRW without the benefit of the other panel
members' review and comment. The panel recommends that the Level A/B Software Man-
agement Plan be modified and rewritten following the Table of Contents provided in
Table 1.

IMPACTS REVISED SMP SECTIONS: All

2. ISSUE: Interdisciplinary Interfaces

The Space Station is a large, complex system composed of many subsystems. It is im~
portant that the relationships of software to the subsystems, overall system, and
other disciplines, such as ground users, be well defined, and that control mechanisms
and responsibilities be developed.

RECOMMENDED ACTION:

A program this large and complex must have well-defined interfaces and control mech-
anizations which should be explicitly identified in the Software Management Plan.

IMPACTS REVISED SMP SECTION: 3.2

3. ISSUE: Software Inheritance

There is a major opportunity to significantly reduce cost and increase reliability of
Space Station software if existing NASA software can be reused or modified. FEven use
of existing, proven software design documentation is more cost effective when the
actual software itself is impractical to transport directly. Obviously, many con-
siderations will impact the practicality of such reuse.

New computers and a new language, among other considerations, will certainly com—
plicate the issue. However, with no policy, it is clear that even an attempt at
salvage will likely not occur.

In reviewing potential applications, it is probable that the highest likelihood for
reusability will occur at the ends of the spectrum - major systems like mission con—
trol and orbit determination - or at the subroutine level, usually in standard sup-
port functions or specific algorithms.

63

Additionally, if a common language is used for Space Station development, opportuni-
ties should be examined even among new applications to see if potential redundancy
can be eliminated by better organization and planning of acquisitions. As a final,
obvious point, commercial software packages could be the most cost effective way of

all IF they apply and are validated, and if the support and proprietary considera-
tions can be worked out.

RECOMMENDED ACTION:

The Software Management Plan should address the reuse, inheritance, and co-existence
with existing software. A policy should encourage the maximum reuse of existing
software through cost trade-offs of requirements and design involving current cap-
abilities, programs, and facilities; the use of commercial vendor supported products
when appropriate; and the definition of interfaces to preserve current interfaces to
permit continued joint use of established space data systems and communications as an
option. Waivers to documentation requirements would be permitted where supplements
to existing documents would suffice for slightly modified or commercial products.
Software standards should be written to encourage the future reuse of software
modules. Existing routines and tools should be selected and collected into a Space
Station program-wide library with easy access and related support.

IMPACTS REVISED SMP SECTION: 2.10

4, ISSUE: Cost/Schedule/Technical Controls

The ability to control a software effort of the size and magnitude of the Space
Station requires management to establish a measurement system to allow it to relate
technical progress to cost and schedule performance throughout the developmental life
cycle. The measurement system, once established, would provide managers with the
ability to status where they are and determine what resources it would take to real-
ize their plans. The measurement system would provide managers with timely visi-
bility into actual performance using a combination of proven, earned-value, and
variance reporting techniques. Technical performance measures would be established,
tracked, and reported as a means to assess trends and reduce risk.

RECOMMENDED ACTION:

The Software Management Plan should specify policies and procedures for controlling
cost, schedule, and technical performance of the software effort.

IMPACTS REVISED SMP SECTIONS: 2.11, 5.1, 5.2, 7.0

5. ISSUE: Risk Management

The Software Management Plan does not address the management of RISK. There are no
policies, procedures, or provisions for the identification, reporting, controlling,
resolving, or avoidance of risk items.

64

RECOMMENDED ACTION:

The Software Management Plan should be modified to include policies and procedures
for proper planning, early detection, and resolution (risk avoidance), as well as for
the identification, reporting, controlling, and resolution of risk items. There
should be a top level policy on the establishment and utilization of reserves
(dollars, staff, schedule, facilities, and other required resources).

IMPACTS REVISED SMP SECTIONS: 2.6, 10.0

6. ISSUE: Technical Performance Measurement (TPM)

The Software Management Plan does not specify any policies or procedures for
acquiring/developing software that is designed and constructed in a cost-effective
manner or that meets the required technical performance of the Space Station system.

RECOMMENDED ACTION:

The Software Management Plan should specify the policies and procedures for estab-
lishing technical performance items (e.g., software execution time, precision, memory
usage, CPU utilization, storage utilization, response time, etc.), their measurement,
reporting of actuals versus requirements, and resolution of nonconformance. The
policies and procedures should address acquisition practices for establishing con-
tract incentives that will highly motivate contractors to meet specified technical
performance requirements.

IMPACTS REVISED SMP SECTIONS: 2.12, 5.2

7. I8SUE: Software Engineering

The procurement policies need to be expanded and detailed regarding contractor ad-
herence to established software engineering (software design, coding and verifica-
tion, principles and procedures). Specific software engineering principles and
practices should be specified.

RECOMMENDED ACTION:

The Software Management Plan should emphasize quality standards consistent with the
software category which are derived from criticality of use and potential consequ-
ences of errors. Software policies should be flexible enough to accommodate new
paradigms as they become accepted industry practice. The policies should encourage
the use of mathematically based logical deduction for the requirements and design
verification of critical software kernels. Use of prototyping and evolutionary
development methods as well as design language based software descriptions should be
permitted. The state of software engineering should be reassessed periodically
throughout the Space Station's existance to encourage the use of the most advanced

practices and discourage obsolete practices, where operationally viable and cost
effective.

IMPACTS REVISED SMP SECTIONS: 2.20, 4.3

65

8. ISSUE: Software Maintainability

It is well established that the cost of maintaining (evolving) software during con-
tinuing operations far exceeds the original development cost. Further, the planning
required to both adequately prepare for the maintenance phase and ensure that the
developed product is built with maintainablity characteristics in mind must be ac-
complished before the actual development is initiated.

Because of the projected long life of the Space Station Support Systems, including
software, the issue of software sustaining engineering (maintenance) must be con-—
sidered during the planning and acquisition phases. To accomplish this, two aspects
of software maintainability must be included in the Software Management Plan proper

policy regarding the consideration of software maintainability characteristics during
acquisition.

a. The acquiring agency for the software should be required to prepare a Software
Support Plan prior to implementing acquisition activities., This plan will
include the projected plans and requirements for post-development support of
the software to be acquired. It will discuss the projected support strategy,
the need for special tools and facilities during the sustaining engineering
phase and the restrictions or requirements to which the developing organization
must adhere to assure the most cost effective and efficient post-development
maintenance and evolution of the product. 1Inclusion of these characteristics
in a Software Development Standard or guidebook which could be extracted and
tailored to the needs of a specific implementation might be the most effective
method to achieve uniformity and completeness.

b. During acquisition, the acquiring agency must consider aond include as re—
quirements in their specification those elements of "built-in" software
maintainability deemed critical to the product.

RECOMMENDED ACTION:

The Software Management Plan should have a section on software maintainability
issues. This section should require that a Software Support Plan be developed and
approved prior to initiation of acquisition activities. This plan should define the
planning and projected requirements for post—development support of the proposed
software and should provide guidance to the acquiring organization on the maintain-
ability characteristics to be included during product development.

IMPACTS REVISED SMP SECTIONS: 2.7, 6.2

9, ISSUE: 1Independent Verification and Validation

An independent verification and validation (IV&V) organization to objectively assess
the technical integrity of developer products continuously throughout the software
development process should be selectively used to minimize the cost and maximize the
effectiveness of the activity. By focusing on criticality, Space Station management
can direct the attention of the IV&V organization to the areas where they get the
largest return on their investment,

66

RECOMMENDED ACTION:

The policies on IV&V in the Software Management Plan should be tailored to selective
use arising from criticality criteria.

IMPACTS REVISED SMP SECTIONS: 2.9, 7.0, 8.0

10. ISSUE: Firmware

The applicability of the Software Management plan to all forms of "firmware” needs to
be specified, both for software engineering issues and for software management
procedures.

RECOMMENDED ACTION:

The Software Management Plan should establish development, production, and mainte-
nance policies addressing firmware. These policies should acknowledge and handle
both permanent and modifiable PROMS. Newly developed or modified firmware should be
treated as software until qualification or acceptance, and treated as hardware there-
after. The software support environment should include the tools to support firm—
ware, Configuration management should include the haundling of firmware, and documen-—
tation should be maintained to describe its design based on the degree of criticality
of the embedded component.

IMPACTS REVISED SMP SECTIONS: 2.14, 4.4

11. ISSUE: Software Quality

The Software Management Plan should address modern approaches, focusing on quality as
part of the procurement process, and should define the contract development and NASA
procedures for focusing on early statistical assessment of software “goodness™. The
benefits of early attention to good software engineering are very significant in a
long-life-cycle system (30 years).

RECOMMENDED ACTION:

Emphasize software quality in new paradigms made possible by new technologies.

Define procurement policies for software development under statistical quality con-
trol using mathematics-based software engineering. FExpand IV&V technology to provide
statistical quality measurements of software, including certified estimates of mean
time to failure (MITF) and expected corrections required (ECR) for the life of de-
livered software products. Use IV&V in incremental development to provide early
estimates of software quality and to permit corrective action in software development

where required. Continuously assess new opportunities in software technology to pro-
cure higher quality software.

IMPACTS REVISED SMP SECTIONS: 2.5, 7.0

12. ISSUE: Mainstream Integration

The current NASA concern for highlighting and emphasizing software issues during
Space Station development is correct and is key to successful Space Station

67

implementation. However, care must be exercised to ensure that this increased
concern for software does not destroy, conflict with, or interfere with the
management of the system context in which the software must operate.

RECOMMENDED ACTION:

1. Ensure that system specifications are complete in the systems context, including
both hardware and software implications.

2. Maintain consolidated configuration control of the baselined system specification
and ensure that software changes are reviewed by the control board responsible
for system specification integrity.

3. Maintain consolidated interface control for the total evolving system, including
software.

4, During product (system) integration, ensure that the software developers are
contractually required to support their product.

5. Provide for a single authority during system testing who has management control
over all elements being integrated, including software, to ensure responsive
action to anomaly detection, isolation, and correction.

IMPACTS REVISED SMP SECTIONS: 1.0, 3.1

13. ISSUE: Tailoring

The Space Station will produce many different types of software, each with a dif-
ferent life cycle, during the course of the project. To minimize cost and maximize
development control, provisions are needed that allow software managers to tailor the
policies of the Software Management Plan to specifics at hand. For example, documen—
tation required for on-board systems may be different than that required for factory
test equipment, especially if it is never delivered to NASA.

RECOMMENDED ACTION:
Define different categories of software and their life cycle and develop tailoring

criteria that allow the Software Management Plan to be applied in a manner that mini-
mizes cost and risk of development.

IMPACTS REVISED SMP SECTIONS: 2.1, 2.3, 2.21, 4.4

14. ISSUE: Review Process

The Software Management Plan should be more specific regarding the procedures for
formal reviews. On a large program like Space Station, the quality of the reviews
translates into the quality of the product and the risk metric.

RECOMMENDED ACTION:

Specific policies should be included in the Software Management Plan covering the
formal software design and readiness review process. Each software review policy
should address prerequisite preparation activities, the data package contents, the

68

ojectives of the review, the atteadees' responsibilities, and the relationships and
timing relative to the associated system level reviews. The policies should also
provide guidance and ensure that feedback on the review process itself is gathered
and evaluated to determine how to improve its effectiveness.

A candidate set of formal software reviews includes:

Operational Concept Review
Software Requirements Review
Preliminary Design Review
Detailed Design Review

Test Readiness Review
Acceptance Test Review
Launch Readiness Review
Operations Readiness Review

IMPACTS REVISED SMP SECTIONS: 2.8, 4.2, 5.3

15. ISSUE: 1Incentives

The Software Management Plan should contain a policy encouraging incentive-—type con~
tracts based upon software quality metrics.

RECOMMENDED ACTION:

Software Management Plan should encourage the use of contractual incentives as a
means of ensuring the quality and timeliness of software development and maintenance.
The criteria for incentive determination should be objective, easy to understand,
quantitative, and based on desired objectives, such as operational technical perform-
ance, quality, productivity, cost of ownership and timeliness. Incentive awards
should be scheduled at predetermined intervals throughout the contract period of
performance.

IMPACTS REVISED SMP SECTIONS: 8.0

16. ISSUE: Acquisition versus Development Management

Although it 1is expected that the majority of software to be utilized in the Space
Station Program will be acquired from other organizations, some software such as sim-
ulations and testing tools will be developed in-house. Major aspects of these two
processes are sufficiently different to warrant specific and clearly separated poli-
cies and guidance. Software acquisition management, for example, must be particularly
concerned with procurement. Important aspects include the clear and complete speci-
fication of the product attributes and the acceptance tests that will prove that the
product meets those attributes. Software developmeunt management, on the other hand,
must more specifically address design and coding techniques, unit and integration
testing, and development reviews.

69

RECOMMENDED ACTION:

NASA should clearly delineate policies and guidelines specific to software acqui-
sition management and those applicable to software development management. No
confusion should result for the manager attempting to determine the policies and
guidelines that apply to each particular situation.

IMPACTS REVISED SMP SECTIONS: 1.0

17. ISSUE: Software Standards

Both industry and government have spent many years and work hours in developing soft-
ware standards. None is perfect, but they are adequate. They are all based on a
standard model. There seems little reason to "reinvent"” a new standard.

RECOMMENDED ACTION:

Adopt software standards from either government (ref. 2) or industry (IEEE or other)
and concentrate efforts more on products — their quality and acquisitiom.

IMPACTS REVISED SMP SECTIONS: Appendix

18. ISSUE: Life Cycle Process

The Space Statiomn project needs to consider software throughout the system devel-
opment process so that its effects on technical performance and life cycle cost can
be thoroughly evaluated. Systems engineering activities should be augmented so that
the software ramifications of early systems design and requirements engineering de-
cisions can be ascertained and traded off. Operations and sustaining engineering
aspects of software should be included in the process framework so that their impli-
cations can be assessed early and true life cycle analysis and cost trade—offs can be
conducted. The hardware, software, and firmware life cycle processes should be in-
terrelated across multiple life cycle horizons so that requirements are allocated
properly and systems are reliable, maintainable, and available as needed.

RECOMMENDED ACTION:

The life cycle definition should be extended in scope to encompass systems engineer-—

ing, subsystem development and operations, and sustaining engineering. The relation-
ships between the hardware, software, and firmware life cycles need to be defined as

do the products associated with the life cycle events.

IMPACTS REVISED SMP SECTIONS: 2.21, 4.2

19. ISSUE: Relationships to Non—-Space Station Projects

The relationships and interfaces with interacting but separate projects from Space
Station should be clearly identified and addressed in the Software Management Plan.
Each relationship should be controlled by a Memorandum of Agreement covering

70

responsibilities and operations, and the technical interface should be maintained in
an Interface Control Document.

IMPACTS REVISED SMP SECTIONS: 3.2, 3.3

20. ISSUE: Management Tools/Environment

Management needs computer—based tools to assess project status, analyze risk, prepare
schedules and budget, and evaluate cost/schedule/technical performance. These tools
should mechanize methods established to provide managers with visibility and control
and should allow managers to do their job quicker and better. A distributed manage-
ment tool environment is needed that integrates financial, configuration management,
library, and project management data in such a way that useful information flows out
to the project manager. Existing tools and techunology can be employed in such an en-
vironment to reduce development cost and speed up the implementation of an integrated
NASA~wide management system for the Space Station Program.

RECOMMENDED ACTION:

The Software Management Plan should require that a software management environment be
created to automate its policies and procedures across NASA centers.

IMPACTS REVISED SMP SECTIONS: 2.22, 4.3, 5.4

21. ISSUE: Change Control of Plan

It should be recognized that changes in the conduct of the Space Station Program will
be necessary to incorporate lessons learned, exploit unexpected technology break-
thoughs, deal with unforeseen difficulties, and recognize new management realities.

RECOMMENDED ACTION:

Provide explicit procedures in the Software Management Plan change as well as change
control. Provide for continuous assessment and review of the Software Management
Plan and define multilevel authorities for policy changes, permitting limited freedom
for low—level changes that remain consistent with higher level policies.

IMPACTS REVISED SMP SECTIONS: 1.2

22, ISSUE: International Participation

The European Space Agency, the National Space Development Agency of Japan, and Canada
have accepted President Reagan's invitation to participate in the development and
subsequent operation of the Space Station. It is anticipated that the respective
partners will utilize a significant portion of common software (such as for overall
integration and checkout) and will jointly use the resulting in-space as well as
ground facilities to conduct operations of common or individual interest. It is
therefore very important that substantial commonality and standardization exist in
the guidelines by which the software is acquired and maintained. This should include
documentation types and formats, testing procedures, participation in major reviews,
and exchange of pertinent status information.

71

RECOMMENDED ACTION:

~The Space Station Program should strive to define areas requiring common and/or
standard software management policies, plans, procedures, and standards. Management
and technical interfaces should be indentified and defined as soon as possible. The
Program should coordinate with its foreign partners to formulate, review, and then
update on an ongoing basis the affected products and the management guidance. An
important consideration in this activity will be undesirable technology transfer and
protection of proprietary software techniques, tools, and products. The Space Sta-
tion Program should work closely with its legal experts to define criteria and rules
applicable to international considerations.

IMPACTS REVISED SMP SECTION: 3.4

23. ISSUE: Security

The Software Management Plan does not have sufficient emphasis on the policies and
procedures for proper haudling of data and specification of system design as neces-
sary to meet the requirements of system and data security, privacy, sensitivity, and
safekeeping.

RECOMMENDED ACTION:

The Software Management Plan should be modified to include the policies and proce-
dures that address the data haundling and system design requirements to ensure that
the project needs, reasonable and prudent safeguards, civil laws, and government
regulations are properly addressed in the acquisitions/development and operation of
the computer-based systems, particularly in the software.

IMPACTS REVISED SMP SECTIONS: 2.19, 9.0

24, ISSUE: Timely Decision Making

The Space Station approach and procedures for making critical decisions should be
specified, Where the risk is appropriate, specify the decision authority as low in
the management structure as possible.

RECOMMENDED ACTION:

Define the policy making decision process and the levels and authorities for defining
policy., Provide for low-level flexibility in policy definition and change that is
consistent with upper-level policy. Schedule and publish critical decision points
with wide and long—range effects, and provide time and opportunity for interested
parties to offer opinion in the decision process. Set up a program outside normal
management structure to receive suggestions and criticisms of policy with appropriate
rewards as well as investigative and reporting facilities.

IMPACTS REVISED SMP SECTIONS: 1.0, 2.11, 5.4

72

25, ISSUE: Continuous Operations Contingency

The Software Management Plan does not call out the proper policies and procedures for
ensuring that there is very low probability of the loss of correct data and/or soft-
ware during acquisition/development and operationms.

RECOMMENDED ACTION

The Software Management Plan should be changed to specifically address the policies
and procedures to ensure that both NASA in-house staff and contractors acquire/
develop and use software following practices that will have a very low probability of
loss of software or data and will have the ability to modify or automatically regen-
erate executable software and operational data.

IMPACTS REVISED SMP SECTIONS: 2.7, 9.0, 10.0

26. ISSUE: Product Orientatiom

The orientation of the Space Station Program is towards the acquisition of products
rather than their development.

RECOMMENDED ACTION:

The Software Management Plan should focus on the acquisition of software rather than
software development, and with more of a product orientatiom; i.e., it should address
the control, quality, and management of PRODUCTS rather than of the process by which
they are to be produced. The Software Management Plan should provide policies and
guidance for the acquisition process.

IMPACTS REVISED SMP SECTION: 1.0

27, ISSUE: Design-To-Cost

A Design-to-Cost concept for the entire Space Station Program should be promulgated
and clarified in the Software Management Plan. Software policies should permit the
identification of critical requirements significantly affecting system, subsystem, or
software development/operational costs. A methodology and associated analysis con-
cepts and tools should be adopted for prioritizing requirements, encouraging cost
benefit analysis, and providing the operational flexibility to adjust to the result-
ing constraints necessary to live within predefined cost budgets.

RECOMMENDED ACTION:

Design—-to-cost should be defined and promulgated as omne potential contracting vehicle
when under severe budget constraints with requirements that contain the potentiality
for trade-off (e.g., you are willing to settle for as much as you can get for a set
price). It will be extremely important to review the selection of design-to-cost
procurements prior to execution to assure the items being procured are really amena-
ble to this form of contracting as opposed to normal practices with extremely rigid
contract management.

IMPACTS REVISED SMP SECTIONS: 2.13, 5.1

73

28, ISSUE: Goal Setting and Clearly Stated Objectives

The Space Station Program is to be commended for placing high priority on the early
identification and formulation of overall software managment policies and guidance.
However, a critical component of that thinking must be the clear and couprehensive
statement of Space Station Program goals and objectives relative to software. . These
goals and objectives should be in consonance with the overall program goals and ob~
jectives and should be specific enough that criteria can be established to ascertain
attainment.

RECOMMENDED ACTION:

The existing draft of the top-most Software Management Plan should be revised to
clearly state the plan's purpose and to specify the overall goals and objectives to
be accoumplished by Space Station software. These goals and objectives should cover
both strategic and tactical considerations.

IMPACTS REVISED SMP SECTION: 1.0

29. ISSUE: Lessons Learned

The value of learning from past software efforts is increasingly being recognized as
a valuable way to avoid repeating mistakes and encountering pitfalls. Information
such as software costing estimates versus actuals as a function of costing technique
and life cycle phase, staffing levels and types versus acquisition performance, and
true capabilities of testing tools and techniques is very helpful, particularly to
long-term programs with much software maintenance and enhancement. Such data is not
collected without cost, however. Resources must be dedicated to the tasks of col-
lecting, filtering, organizing, and analyzing the lessons learned information.

RECOMMENDED ACTION:

The Space Station Program has a very long expected lifetime. Its software will be
continuocusly enhanced and changed as new requirements are brought forward. Personnel
will change. Minimization of long~term costs virtually mandates that the program in-
tentionally monitor itself and learn from past experiences. The Space Station
Program should establish mechanisms for capturing lessons learned and improving pro-
cedures to make maximum use of such lessons. It is suggested that one relatively
easy way to gather such data is as part of each major review.

IMPACTS REVISED SMP SECTION: 2.16

30. ISSUE: Standardization Process

The Space Station Program will involve the development of many diverse subsystems by
different NASA centers and contractors. It is important that policies be established
to standardize how software is procured. Such issues as multiple licensing agree-
ments, maintenance clauses, delivery standards, documentation, and product standards
need to be addressed.

74

RECOMMENDED ACTION:

The Software Management Plan should provide policies, procedures, and guidance to
ensure an appropriate level of standardization across the Space Station Program.

Similar procurement procedures and management controls must be used throughout the
program,

IMPACTS REVISED SMP SECTIONS: 2.15, 4.0, 5.0, 6.0, 7.0, 8.0

75

TABLE 1

SPACE STATION LEVEL A/B SOFTWARE MANAGEMENT PLAN

RECOMMENDED TABLE OF CONTENTS

1.0 Purpose and Scope

2.0

3.0

4.0

76

—

o
2
3

1.4

Space Station Software Goals and Objectives
Purpose and Role of this Plan
Software Manager Charters
1.3.1 Level A
1.3.2 Level B
Change Control of Plan

Policies

°

°
— = O 00 ~NONU W N

N
—
W~ O

DN NNDNDNDDNDNDDNDNDDNDDND
o

.

2.14
2.15
2.16
2.17
2.18
2.19
2.20
20 21
2.22
2.23

Software Categorization

Software Planning

Software Documentation
Configuration Management

Quality Management

Risk Management

Maintenace Management

Software Reviews & Audits
Software IV&V

Software Inheritance
Cost/Schedule/Technical Controls
Technical Performance Measurement
Design-to-Cost

Firmware

Standardization

Lessons Learned (Corporate Memory)
Contractor Incentives

Software Support Environment (SSE)
Security, Privacy and Sensitivity
Methodologies

Life Cycle

Management Environment
Organization and Interfaces

Organization and Responsibilities

Program Structure and Software Responsibilities
Inter-Disciplinary Interface Management
External Program Interface Management
International Interface Management

Review Boards and Advisory Panels

Cycle Process Management
Work Breakdown Structures

Phases, Activities, Products and Events
Methodologies

4.4 Tailoring
4.5 Deviations & Waivers

5.0 Management Controls

5.1 Cost and Schedule Controls

5.2 Technical Performance Measurement

5.3 Management Reviews & Reporting

5.4 Technical Management Information Systems
5.5 Administrative Controls

6.0 Configuration Management

6.1 Evolution
6.2 Maintainability

7.0 Quality Management
8.0 Procurement Approaches
9.0 Security
10.0 Risk Management
10.1 New Technologies
10.2 Disaster Recovery
10.3 Reserves
APPENDIX A. Space Station Software Segments
B. Software Support Environment/TMIS

C. Standards

NOTE: Jody Steinbacher recommends that the Policy section be organized so that

related policies are together, for example: 2.21, 2.20, 2.3, 2.1, 2.14, 2.10,

2.9, 2.14, and possibly 2.15; and 2.2, 2.4, 2.5, 2.6, 2.7, 2.22, 2.8, and
2.23; and 2.11, 2.12, 2.13 and 2.17; etc.

77

78

TABLE 2

RECOMMENDED REORGANIZATION/OUTLINE OF THE LEVEL A/B
SOFTWARE MANANGEMENT PLAN BY ROBERT BRASLAU, TRW

1.0 PURPOSE AND SCOPE

@

o e o
G UL B W e
&

ot ok ok ot fmd e
@

3

Level A Charter

Management Plan Maintenance

Scope of the Space Station Software

Overall Software Development and Operational Objectives
Related Software Standards

Applicable Documents

2.0 ORGANIZATION AND RESPONSIBILITIES

Program Structure and Software Responsibilities
Review Boards and Advisory Panels

Interface Control Working Groups

System Engineering and Integration

3.0 SOFTWARE POLICIES

s e e e

3

® ® 3

<

fu—sy

@

W WwWwwwwwwww
@
e D 00 S ON U B WO N

W W
e
£ Do

®

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

* TRW has 1-2 page policies that could be used as models for Space Station.

Level C and Contractor Software Management Plans
Operational Concepts Definition
Operational Concepts Readiness Review
Requirements and Interface Specifications¥*
Software Requirements Review*

Preliminary Design Specification¥*
Preliminary Design Review*

Detailed Design Specification®*

Detailed Design Review*

Structural Software Design*

Unit Development Folders®

Design Walk-throughs¥*

Implementation Program Standards¥*

Unit Test Planning and Testing*

Software System Integration and Test®
Acceptance Test Plan and Procedures®

Data Generation and System Build
Adaptation and Mission/Payload Data Management
Test Readiness Review

cceptance Test Review and Delivery

Launch Readiness Review

Operation and Maintenance Products
Operations Readiness Review

Controlled Documentation and Products*
Configuration Management®

Quality and Integrity Management®

Uniform Development Environment#®
Management Information System

Metrics and Experience Collection¥*

4.0

5.0

6.0

7.0

3.30

3.31
3.32

3.33
3.34
3.35
3.36
3.37
3.38
3.39

LIFE

Risk Management

Independent Verification and Validatiom

Software Reuse, Inheritance and Coexistance
Performance Measurement and Status System
Technical Performance Production and Measurement
Design-to—-Cost Methodology

Firmware

Standardization

Contractor Incentives

Privacy and Security Protection

CYCLE PROCESS MANAGEMENT

Phases, Baselines, Milestomes

Design and Readiness Reviews

Overall Development Schedule and Milestones
Software and System Integration and Test
Operations Maintenance

Technology Insertion and Space Statiom Evolution

MANAGEMENT CONTROLS

o e e o
== 0o ~NOTun WD =

(S G, IV, G, N, I, RV, R, 0, R, R R,
°

Management Status Review and Reporting

Cost and Schedule Performance Controls

Technical Performance and Operations Resource Monitoring
Software Support Environment Usage

Technical and Management Information System Usage
Acceptance of Deliveries and Software Ownership

Data Generation and Verification Management
Subcontractor Monitoring

International Interface Change Impact Management
Operations Conflict Resolution

Interface Management

Technical Review Boards and Advisory Panels Operation

CONFIGURATION MANAGEMENT

Baseline Definition and Control
Change Management

Software Library

Evolution and Maintainability

QUALITY AND INTEGRITY MANAGEMENT

Software Criticality Classification
Performance Factors and Metrics
Resource Utilization Monitoring
Problem Reporting and Close-out
Corrective Action System

Deviations and Waivers

Software Reliability/Availability and Safety

79

8.0 PROCUREMENT APPROACHES

1 Internal Development
2 External Development
.3 Lease/Purchase

4 Maintenance Support

9.0 DATA PROTECTION
Proprietary Data

9.1
9.2 International Technology Sharing
9.3 Operational Protection

10.0 RISK MANAGEMENT
10.1 Risk Evaluation Methodology and Techniques
10.2 Management Reserves
10,3 Technology Insertion
10.4 Contingency Recovery

11.0 DESIGN-TO-COST

11.1 Methodology and Tools
11.2 Decision Process

80

SOFTWARE DEVELOPMENT ENVIRONMENT PANEL SUMMARY

The Software Development Environment (SDE) Panel addressed key programmatic, scope,
and structural issues raised by its members and the general audience regarding the
proposed software development environment for the Space Station program. The general
team approach taken by this group led to a consensus on 18 recommendations to NASA
management regarding the acquisition and definition of the SDE. This approach was
keyed by the initial issues presentation given by Barry Boehm to the general audience
on the first day. Additional issues (for a total of 23) were developed by the panel-
ists in their first closed session from which key areas were selected and discussed
in open session. These discussions led to the following key recommendations summa-
rized in the following table and described in the following text.

Key Recommendations

Programmatic Develop uniform, NASA-furnished SDE; mandate compatibility with
delivered software, do not mandate for development

Develop SDE operations concept; use JSSEE as a starting point; use
input from Phase B contractors and operational users

Develop incrementally using identified guidelines
SDE Scope Focus on products; non-prescriptive of detailed methodology
Design to support software reuse

SDE Structure Furnish as portable software package, except where requirements
dictate hardware

Virtualize the operating system; start with UNIX, prepare to evolve

Establish a single subsetable SDE host; allow for multiple target
support subsystems; maximize commonality; accommodate user-unique
services

Use a modular, layered architecture

Instrument for self—diagnosis‘

Programmatics: The panel and audience strongly endorsed the concept of a uniform,
NASA-furnished, mandated SDE to address the critical life-cycle cost and integration
issues of Space Station software. Risks, such as schedule, technological obsolesc—
ence, and contractor incompatibilities, are mitigated by the following: an operations
concept which provides for contractor options to use their own SDEs, as long as the
delivered software is supportable by the NASA SDE; an incremental acquisition strat-—
egy; and the use of layered architectures to assure technological transparency.

A major recommendation which will mitigate schedule and product risk is to develop an
SDE Operations Concept as soon as possible which addresses user requirements and
lifecycle scenarios based on inputs from users, Phase B contractors, and similar DoD
efforts (e.g., the JSSEE Operational Concept Document).

81

Scope: A key concern in this area is the degree of mandated software engineering
methodology implied by the SDE. The panel strongly endorsed the concept that the SDE
focus on products (such as specifications, design/code representatioms, etc.) rather
than the methods, thereby allowing for contractor—unique approaches and new methods
technology.

Another major aspect of the SDE scope strongly endorsed is the concept of a support
library of reusable components, which could lead to a major savings in overall Space
Station life cycle costs.

Structure: The key concern addressed is the architecture--modularized and layered--
to allow for technological evolution at distinct levels. An approach was developed

and presented for the critical interfaces to protect against predictable sources of
change.

The major sources of SDE change and their corresponding information-hiding interfaces
are:

Source of Change Info-hiding Interface
o Text-processing Capabilities o Text Files
0 Requirements, Design, Code o Standardized Content
Representations at Each Stage
o Financial Management o Standard WBS
Capabilities
o DBMS Capabilities o Abstract DBMS Interface
o Workstation Capabilities o Abstract Workstation Interface
o CPU o UNIX

Another major aspect of the SDE structure endorsed is that it consists of a subset-
able set of tools engineered with uniform interfaces providing the SDE capability to
customize to specific user requirements either by application (e.g., flight or ground
software development, analysis, management, simulation), by type of user (e.g.,

expert/novice, specialist/generalist), or by type of equipment (e.g., mainframe, mini,
or workstation).

RECOMMENDATIONS

l. THE Software Development Environment (SDE) should be a uniform, NASA-furnished,
"mandated” environment supporting the use of existing NASA facilities.

2. The SDE should be furnished as a portable software package (except where
requirements dictate hardware).

3. The SDE should have a virtualized operating system. Start with UNIX and prepare
to evolve,

82

4, Iﬂ order to max;mlze the»commonallty, the SDE should reside on a single host sub-
system (where subsetsof that host are possible and can support SDE subsets). The
SDE should allow for multiple target support subsystems.

5. The SDE should be iuncrementally developed.

6. Consideration should be given to having an "SDE Flyoff" with multiple vendors,
although the panel thought this may not be necessary.

7. The SDE application should be product oriented, not necessarily process oriented.

8, There must be a specific development and application plan along with a marketing
program for selling to NASA Centers and vendors.

9, The SDE should be instrumented for self diagnosis.

10. The SDE must support software reuse.

11. An operations concept must be generated as soon as possible. Use the JSSEE
(Joint Services Software Engineering Environment) operational concept as strong
input. Also obtain inputs from the Phase B contractors and potential users.
12. Prototype the user interface early.

13. Collect and incorporate lessons learned from past NASA projects.

14, Any new software written for the SDE should be written in the chosen NASA space
station programming language.

15. NASA should establish research activities to fill in the SDE gaps, i.e., develop
new software environment technology where it is needed.

16. The SDE should have a modular, layered architecture.
17. NASA should define the criteria for SDE acquisition.

18. The SDE is to support reuse of existing NASA facilities.

83

i

£ 4
S

sl

e

84

N86-23317

A VIEW OF SOFTWARE DEVELOPMENT ENVIRONMENT ISSUES

Barry Boehm
TRW

OUTLINE

e Nature of the challenge
e Orange-Book issues (ret. 1)
~ Pros, cons, assessment
e Additional SDE issues
— DOD coordination
— Scope of SDE
—~ Reuse support

e Summary

NATURE OF THE CHALLENGE

The SSDS is a mission support system for:
e Thousands of operators and decision makers
e At on-line terminals

e At many geographical locations

Performing complex, interacting functions

With imprecisely defined requirements
e In a dynamic, less-than-predictable environment

e Requiring essentially error-free performance

It is essential for coordinating the mission

It requires significant investments in time, dollars, talent

85

86

SDE Design Considerations

DIFFERENT

METHODOLOGIES HOST COMPUTERS CosT

VARIED HIGHER

FAVORITE LIFE CYCLE DATA PROTECTION

DIFFERENT VARIETY OF
SPECIAL TARGET USERS AND
TOOLS COMPUTERS LOCATIONS

USER ACCESS

™IS
ORDER LANGUAGES INTERFACE
LOCAL PROCESSOR SOFTWARE SUPPORT ENVIRONMENT :AEIQ;I-;:\'I“(E)PERAHON
ENVIRONMENTS DESIGN s
UNIFORM, READABLE AUTOMATlON oF
MANTTAINASLE CODE PORTABLE COMPATIBLE Low LIFE el
DATA BASE T
CODE S\ CYCLE cOSTS e
FLEXIBLE LOW RESIDUAL STANDARD HIGH PROGRAMMING
DESIGN CODE ERROR RATE USER PRODUCTIVITY
TECHNIQUES INTERFACE
DESIRED
CHARACTERISTICS

ISSUES 1,2,3: UNIFORM, NASA-FURNISHED, MANDATED SDE

PRO:
e Better software coordination
— Fewer errors, interface problems
e Less duplication of effort
e Conceptual integrity
— Reinforcement of management approach
— SDE/user interface
e Controllability
— Response to problems
— Technology insertion
e Better life-cycle support

— Ability to recompete maintenance

ISSUES 1,2,8: UNIFORM, NASA-FURNISHED, MANDATED SDE

CON:
e Contractor incompatibilities
~ Competitive bias
e Technology insertion
- Disincentives to experiment
e Implied SDE warranty
e SDE size, development risk
e Breadth of user community

— Centers, contractors, researchers

{

Levels of expertise

Special functions: simulation, test, etc.

|

Large up-front training cost

ISSUES 1,2,8: UNIFORM, NASA-FURNISHED, MANDATED SDE

PRO CON
eBetter s/w coordination eContractor incompatibilities
eLess duplicatlon eTechnology Insertion
eConceptual Integrity eImplled SDE warranty
eControllabliity oSDE size, development risk
eLife-cycle support eBreadth of user community
ASSESSMENT

e Go for it — in ways which minimize cons
— Pre-delivery contractor option to use own SDE
— SDE modularized for technology insertion
~ Establish levels of warranty

— Incremental development to reduce risk

ISSUE 4: PRECEDE SDE DEVELOPMENT WITH DEVELOPMENT OF

FUNCTIONAL CAPABILITIES, PROTOTYPE, DETAILED SPECS

PRO CON

eFamiliar acquisition approach eVery high schedule risk

eProvides criteria for eNot clear more prototypes
choosing developer will add much information
ASSESSMENT

e Better to go for early initial capability
e Use DOD JSSEE Spec as basis for defining requirements

e Run competitive flyoff for production - engineered initial SDE capability

ISSUE b BUILD LAYERED SDE

PRO CON
eAccommodate change, ePerformance penalties
growth, technology
insertion eMay pick wrong layers
ASSESSMENT

e Build layered SDE
— Use info-hiding to modularize around major sources of change
e Methodologies (requirements, design, management)
e Mainframes, workstations
e Networks, peripherals

e Language, operating system?

88

MODULARIZING AROUND SOURCES OF CHANGE

IN SOFTWARE METHODOLOGY

e Make minimal assumptions on nature of elements (requirements, design,

code, test, management)

— Resolvable into separately identifiable items

e Develop traceability tool to track relations between items

Design

Requirements

1. —— 1. e .
2, AR —| 2. ~—— [
o se—= e b

w N
\
'}

ISSUE 8: AFFILIATE WITH DOD ENVIRONMENT

PRO CON

eTechnical synergy eNot clear which one

el.ess contractor confusion eSchedule mismatches

eControl; coordination

ASSESSMENT

e Propose coordinated, potentially joint SDE
e Volunteer to develop a pre-1990 initial SDE capability based on JSSEE

spec
89

90

ISSUE 7: FURNISH FULL-UP SDE:

SOFTWARE, CPU, WORKSTATION, LAN

PRO CON
eFewer coordination eExpensive to furnish
problems

eTechnology insertion problems

eContractor SDE incompatibilities

ASSESSMENT

e Build SDE on standard, portable operating systems
e Support recommended hardware subset(s)

e Allow use of equivalent capabilities

ISSUE 8: SUPPORT LIBRARY OF REUSABLE COMPONENTS

PRO CON
eMajor source of future eAdded investment
s/w cost savings
eHidden incompatibilities

eComponent warranties

eVersion control

eComponent pollution

ASSESSMENT

e Go for it — in ways which minimize cons
— Levels of warranty
— Strong documentation, CM

— Selective incorporation

SUMMARY

e Building an SDE is in the same ballpark as building SSDS
— Very complex, but essential

e Worth going for uniform, NASA-furnished, mandated SDE
~ In ways which minimize risks

e Value of further SDE prototyping unclear
— Several de facto prototypes exist
—~ Very high schedule risk

e Worth coordinating with DOD
— JSSEE spec a useful starting point

e Furnish SDE as standard s/w on portable operating system

— Support but not mandate CPU, LAN, workstation

91

KEY ISSUES ADDRESSED
PROGRAMMATICS

Uniform, NASA-Furnished, Mandated SDE

The issue raised addresses the realization of SDE capabilities. Should NASA provide
and require the use of a standardized SDE for Space Station software acquisition?
Examination of this issue reveals considerations which require focused attention.

Uniformity will yield fewer interface and coordination problems and will provide
conceptual integrity. These benefits, however, are at the expense of multi-
contractor incompatibilities and their combined strengths for technological
development.

A mandated, government—furnished SDE provides direct control by NASA for problem
solutions, evolutionary as opposed to revolutionary growth (mature expansion), and
more opportunity for SDE-related cost containments. However, any GFE item bears an
implied warranty. This needs to be addressed by defining levels of warranty for
components of the SDE. Another issue is how a government-furnished SDE would be
sized to efficiently service the wide breadth of the anticipated user community.
Here, the SDE needs to be organized to be easily subsetable to specialized user
communities, host computers (maxis versus work stations), or user expertise levels.

SDE Operations Concept

The scope of SDE application is indeed broad. Each of the major workpackage con-
tractors is likely to have unique, embedded software development methodologies and
supporting facilities, In turn, their subsystem development organization and/or
subcontractors will have established computer system development tools, experience,
and expectations. Further, the ultimate users of the Space Station will include a
significant portion of small groups or individuals interested ounly in their experi-
ment or production package and not in any required supporting software. Effectively
scoping the range of SDE requirements requires the near-term definition of how all
users——big and small, sophisticated or naive, experienced or novice—-may use the
system. An Operations Concept, addressing how all users expect to use the systemn
during its entire lifecycle, has been found extremely useful in establishing a basis
for subsequent hardware/software requirements specification.

The conclusion reached gave an affirmative answer to the issue: NASA should provide
and mandate the use of a uniform SDE. The government furnished SDE should be ef-
fected in a manner which mitigates benefits and risks, specifically by establishing a
widely accepted SDE Operations Concept.

Incrementally Developed

If the SDE is constructed as a set of functional modules enclosed by a communicatiomns
structure, the modules can be acquired, inserted, and replaced on an incremental
schedule. The general driving requirement for module acquisition and insertion is
at the communications interface. 1Initial priorities should be established by NASA so
that incremental implementation will support program requirements as they become
needed. Some, indeed, are needed now.

The SDE must be subsetable, modularized, and concentrically layered to assist all
mission, management, and communication requirements. This form of structural

92

detail seems most likely to be able to achieve the desired flexibility and
versatility over the range of specific SDE instances.

A strategy for incremental development is recommended which minimizes the dependence
of the SDE development schedule on requirements to be derived by Space Station Phase

B contractors:

Increment 1: O0S, DBMS, utilities, basic CM, office automation, and management
functions

Increment 2: Basic requirements and design specification, planuning and analysis
support

Increment 3: Basic code, unit test, integration and test support

Increment 4: Basic real-time 0S, DBMS, and utilities for flight and ground
target computers

Increment 5, 6,...: User-prioritized additiouns and extensions to
the above

This strategy allows NASA to get an early start on the portions of the SDE needed for
initial Space Station program development support.

SDE SCOPE

Focus on Products

No clearly superior methodology for software design refinement has emerged, yet many
have proven useful for unique or particular application arenas. For all methodolo~-
gies, certain intermediate products or design representations are recognized. Focus-—
ing upon these products, as distinct from the methodology or process employed in
establishing these products, permits considerable methodological flexibility and
allows for future technology insertion. Where a generally agreed upon management
model can be established, the SDE may support the process directly. We conclude that
the SDE shall be nonprescriptive of a specific requirement or design methodology.

Supporting Software Reuse

Complete rebuilding of large software systems is no longer economically feasible.
Full advantage must be taken of viable existing elements. Suitable reusable compon-
ents may be commercially available off the shelf (COTS), may reside at one or more
NASA centers, or may be adaptable from past contractor efforts. Making use of such
elements requires careful initial attention to the framework or architecture of the
SDE, including the definition of appropriate interfaces and the levels in the hier~
archy. Clearly, multiple source languages and/or object code bodies should he
accommodated in many instances. Certainly, the desired SDE subsetability considera-
tions relate to the kind of structure promoting reuse described here.

We conclude that the SDE interface and architectural definitions should foster
software reuse.

93

SDE STRUCTURE

Furnished as Portable Software Package

The SDE should consist of device-independent (loosely coupled hardware dependencies)
functions such that changes in hardware do not have an effect on software function-
ality. Hardware availability should not drive the software requirements, but some
well defined, vendor dependent elements may facilitate widespread use of currently
available components. In some areas, such as target machine support, requirements
may dictate a hardware component of the SDE.

Virtualized Operating System

The operating system which supports the SDE should be device and veundor independent
insofar as possible. As a present starting point, UNIX appears to be the only can-
didate that meets this requirement and should be selected. Prevailing personal
computer operating systems meet the spirit but not the large machine scope of this
requirement. For the future, the SDE can implement other hardware—independent
operating systems (e.g., CAIS or MAPSE for Ada) as they become available.

Single, Subsetable SDE Host

The central issue of the SDE structure is architecture. Associated subissues (incre-
mental development, choice of modular or layered, ease of user accommodation) are
facets of the SDE architecture issue perceived functionally as requirements.

Selection of the subsetable functions and interfaces is the most critical. A primary
capability is to allow for support of multiple host targets. These subsetable func-
tions must also support, by interface management, fully generalized and specific
functions within the layered architecture. A major objective is to maximize common-
ality of widely used functions. There is a potential, as the SDE evolves over time,
to yield unmanageable interface/function diversification. The result is that inter-
faces could multiply and become deeply nested, thus driving incremental mainframe
costs of ownership for certain levels of capability.

The definitions of subsetable SDE elements, interface specification, communications/
tasking network definition, and management provide the baseline from which to pro-
ceed. Plugability as to function, via the suitable interfaces, will result in
achieving, integrating, and managing associated issues of portability, user inter-
faces, and mission requirements.

Instrumented for Self-Diagnosis

A rational basis for extension or improvement of the SDE can only come from an un-—
derstanding of its strengths and deficiencies. Knowing how the SDE elements are
employed by the spectrum of users throughout the life cycle of each particular soft-
ware deliverable is a vital part of this understanding. We conclude that the SDE
should automatically collect data that characterizes its use throughout the entire
development process.

94

LANGUAGE PANEL SUMMARY

This panel was charged with making recommendations on the various language issues
involved in the development of Space Station. This charge included the full set of
development and user languages covering the entire life cycle of development and all
types of user applications.

The selection and standardization of languages and interfaces for the Space Station
program are critical needs to insure the success of this predominately engineering
activity. While the Language Panel recognizes that the project life cycle will re-
quire a family of languages for the various classes of users and developers, it is
crucial to begin making decisions which will focus planning efforts by limitiang the
range of possible selections. Requirements for the Space Station information system
long-term maintenance and evolution will make it imperative that a high-order devel-
opment language be utilized. It is recommended that the primary high-order language
for source code development be Ada. (Ada is a registered trademark of the Department
of Defense, Ada Joint Program Office.) Issues related to the utilization of Ada
should be addressed as soon as possible. These include developing a traunsition
strategy, providing education, accommodating the utilization of software already in
existence, and developing fall-back options for high risk areas. One high-risk area
is satisfying the requirements for run-time support for target systems, especially
when the targets are distributed. Requirements for design specification languages or
interfaces that complement Ada should be determined.

During its discussions, the panel operated under the basic assumption that Space Sta-
tion is an engineering activity. Therefore, where appropriate, selection and stan-
dardization of languages and interfaces should begin constraining the degrees of
freedom. The selection of languages and interfaces impacts the coastruction of a
Software Development Envirounment (SDE), which is a substantially more critical com—
ponent of Space Station software.

Although there were panels to discuss management, standards, environments, and lan-
guages, no panel was specifically charged with methodology issues. This is of real
concern, and the language panel tried to address this issue whenever it was appropri-
ate. The panel also felt that methodology should be discussed in any future meetings
on software.

The panel was able by consensus to arrive at a total of 11 recommendations. These
recommendations were discussed in the open forum, and there was felt to be reasonable
agreement of the attendees at the open meeting.

These recommendations fall into 5 categories., Recommendation 1 deals with an impor-
tant aspect of the whole software development process. Recommendations 2, 3, 4, and
5 deal with the choice of the software development language. Recommendations 6, 7

and 8 deal with languages at early phases of the life cycle. Recommendations 9 and

10 deal with user languages. The last recommendation says that NASA must track lan-
guage technology in the future.

RECOMMENDATIONS

1. NASA should avoid premature commitment to hardware implementation decisions.
System and software architecture should be defined first.

95

2, NASA should declare Ada now as the preferred high-order language for source code
development and address the following issues as quickly as possible:

. transition strategy

. procurement issues

. interfaces to existing NASA software

. development of guidelines for applying Ada to various
application areas

. development of appropriate run-time support eunvironments for
NASA applications

. education

. & liaison to DoD

» a seat on the Ada board

. benchmarks for performance

. Drototyping

» development of appropriate tools to partition and allocate
Ada entities across distributed applications

« introduction and utilization of reusable components

. investigation of fallback position options for high risk
areas

3. The commitment to Ada requires an education program in software engineering
methodologies with Ada, which should begin as soon as possible. The education
includes the study of relevant examples. It should cover multiple levels of
management, application programmers, etc.

4, NASA must define its requirements for the run~time support library and kermnel for
the target systems, including distributed targets.

5. NASA needs to define the requirements for the interface to the run-time system.

6. The first version of the SDE should not be constrained to have a single require-
ments language, AI expert systems language, or prototyping language.

7. NASA should determine the requirements for and select or develop requirements and
design specification languages or interfaces that complement the SDE and Ada.

8. The design language should be syntactically and semantically consistent with the
development language and should have on-line support for interface checks, etc.

9. ¥For all levels of user interfaces, there should be a set of standards to provide
commonality across all phases of the Space Station life cycle.

10. NASA should identify all categories of users and user interfaces, and quickly
proceed with rapid prototyping to determine the real requirements.

11. Since Space Station software will evolve over 30 years, NASA should track lan~-
guage technology and act appropriately.

96

LANGUAGE ISSUES FOR SPACE STATION

Professor Victor Basili began by reviewing the essential considerations and initial
recommendations of 1984 workshop (ref. 1) given in the next three figures. He com—
mented that language was to be considered as a notation and tool for supporting

. application domains
. phases of the life cycle
. methods

in such a way that it satisfies criteria of ease of use, readability, efficiency,
modifiability, portability, low cost, etc.

Therefore we need to (1) categorize applications, e.g. flight software, support
systems, and operations, (2) categorize phases of the life cycle, e.g. requirements,
design, code, and test, and (3) delineate methodologies and recommend languages or
criteria for selecting a family or set of languages for use in Space Station.

One of the concerns in choosing languages is that because they are an integral part
of the software development environment, the decisions on languages cannot be made
independent of the decisions about that environment. In turn, the environment will
and should be influenced and constrained by the methodological and technolegical
issues decided upon for Space Station. These methodological issues will certainly be
influenced by the management and staundardization issues.

Environment

Languages

Methodologies and Technology Issues

Management and Standardization

97

98

ESSENTIAL CONSIDERATIONS

REQUIREMENTS
HAVE DEFINED CANDIDATE LANGUAGES FOR OPERATION
NEED STUDY FOR DEVELOPMENT

USE OF LANGUAGES
COBOL. FORTRAN., HAL/S PRIMARY
C, PASCAL. PL/1 SOME GAINS

SOFTWARE HERITAGE AND REUSABILITY
LONG LIFE OF SPACE STATION-SPACE TRANSPORTATION
SYSTEM -

EVOLUTION OF LANGUAGES
STRATEGY FOR CHANGING LANGUAGES OVER TIME

GENERAL AND SPECIAL PURPOSE LANGUAGES
HOW MANY LANGUAGES ARE NECESSARY?
HOW DO WE HANDLE A MULTIPLICITY OF LANGUAGES?

STANDARDIZATION
SHOULD THE LANGUAGE DEFINITION BE STANDARDIZED?

CO

10,

11,

ESSENTIAL CONSIDERATIONS

ASSEMBLY LANGUAGE
HOW MUCH., IF ANY. ASSEMBLY LANGUAGE SHOULD BE
ALLOWED?

TOOLS
WHAT IS THE EFFECT OF LANGUAGE SELECTION ON
AN INTEGRATED SET OF TOOLS?

MULTI-LINGUAL ENVIRONMENTS
HOW ARE LANGUAGES CHOSEN TO BE COMPATIBLE WITH
EACH OTHER AND THE SOFTWARE (HARDWARE) NETWORK
ARCHITECTURES TO BE USED?

DISTRIBUTED PROCESSING
HOW WILL THE LANGUAGE SUPPORT DISTRIBUTED PROCESSING?

TRANSPORTABILITY
HOW WILL THE LANGUAGE ADDRESS TRANSPORTABILITY CONCERNS?

LESSONS LEARNED

HOW DO WE MAKE USE OF THE DATA ON LESSONS LEARNED
ABOUT SOFTWARE MANAGEMENT?

99

100

INITIAL RECOMMENDATIONS FOR PANEL CONSIDERATION

REVISIT “HieH ORDER LANGUAGE"” WHITE PaPER (AUDREY DOROFEE)
use ANST STANDARDS

COLLECT DATA ABOUT DEVELOPMENT TO DETERMINE
EVOLUTIONARY APPLICATIONS

ESTABLISH GENERIC REQUIREMENTS OF TOOLS
STANDARDIZE ON LANGUAGE - STUDY ADA
USE OF ASSEMBLY LANGUAGE SHOULD BE MINIMIZED

EVALUATE ADVANTAGES AND DISADVANTAGES OF A CANDIDATE
SET OF LANGUAGES

EVALUATE DISTRIBUTED PROCESSING MACHINES WITH RESPECT
TO LANGUAGES AND TOOLS

EVALUATE LANGUAGES FOR REQUIREMENTS AND SPECIFICATION,
DESIGN, AND SPECIAL APPLICATIONS

Basili proposed that the panel proceed by (1) generating a set of goals based upon
the requirements for Space Station, (2) refining (and defining) those goals for the
various languages into a set of technology questions that should be answered, and (3)
selecting languages or giving selection criteria based upon the answers to these
questions.

Sample goal areas include theoretical, technical, methodological, political, manage-

ment, and application oriented issues., Sample questions in these areas (adapted from
questions posed by Susan Gerhart on Prolog) are:

Theory:

. Is the language well defined?

. What are the functional capabilities of the language and its limitatiouns?
Technology:

. How stable is the technology behind the language design, the compiler
design?

. Are there production quality compilers or interpreters?
. Are there performance issues that need to be addressed?
. Are there adequate development environments?

. How does the technology behind the language compare with the technology
bahind other languages in its class?

. What kinds of tools exist?

. Is there control of the definition of the language?

Methodology:
. What methodologies does the language support?

» Can the language be combined or interfaced with other languages and
systems?

o Will the programs in the language make use of existing software
in other languages?

. How are the usual desirable properties of programs, such as correctness,
robustness, efficiency, modifiability, etc., addressed in the language?

. Can the language be integrated with other phase languages across the
entire life cycle?

101

. How are other technologies supported by the language, e.g. transport-
ability, distributed processing, prototyping, etc.

Applications:
. What application areas does the language address?
. What application libraries exist?
. What application areas have used the language?
Management:
. How does one manage (plan, control, direct) projects in the language?

. Can modern software engineering practices be brought to bear on projects
in the language?

. What is involved in the traianing of personnel in the language?
Evaluation:

. Are there marketing and technical projections for the language?

. How does one become proficient in the language?

., What evaluatious or case studies have been done, and what are the
concerns and benefits they point out?

Social, Political, Historical:
. Is the language politically sound?
. What coantroversies has it gone through?

. What is the extent of its use?

102

RATIONALE FOR RECOMMENDATIONS

1. Recommendation:

NASA should avoid premature commitment to hardware implementation decisions. System
and software architecture should be defined first,

Rationale:

A recurriag problem with large systems, particularly those with a loang development
cycle, is that the hardware is selected (or mandated) before the system architecture
is designed. As a result, the software architecture is overcounstrained, memory and
performance become serious constraints as the requirements evolve, and the hardware
is obsolete before the system is operational.

By delaying selection of the hardware until the system and software architecture is
understood, NASA can make intelligent engineering trade-offs between hardware and
software. System and software architecture should allow

. early prototyping using available hardware or emulation,

. use of the wost advaunced hardware available when it is time
to commit, and

. replacement of this hardware later with minimum impact.
This recommendation complements the SDE panel recommendation that the SDE support
multiple targets. It does not conflict with the aggressive adoption of standards;
rather, it serves to focus on adoption of standards at the appropriate level (e.g.,
bus standards and protocols). It is also consistent with the choice of Ada as the
implementation language, provided that portability guidelines are developed and
stressed.

2. Recommendation:

NASA should declare Ada now as the preferred high-order language for source code
development and address the following issues as quickly as possible:

. transition strategy
. procurement issues
. interfaces to existing NASA software

. development of guidelines for applying Ada to various
application areas

. development of appropriate run—time support environments for
NASA applications

. education

» a liaison to DoD

103

. a seat on the Ada board
. benchmarks for performance
. prototyping

. development of appropriate tools to partition and allocate
Ada entities across distributed applications

. introduction and utilization of reusable components

. investigation of fallback position options for high risk
areas

Rationale:

Many aspects of Space Station software would be simpler if it were all written in a
single programming language: compilers, support tools, training, software reusabil-
ity, maintenance. Such uniformity is of course not completely realizable, for no
single language would be appropriate in every case, and NASA already has software in
several languages. Nevertheless, selecting one high~order language as the preferred
language for new software and supporting this choice with the SDE aund training would
focus the Space Station software effort and foster the aforementioned benefits of
commonality. Calling this selection a prefereunce instead of a requirement would
leave room for NASA to allow the use of other languages when it is more appropriate,
while firmly establishing the direction of NASA's economic and organizational
support.

If a single high-order language is to be preferred, it should be evaluated according
to several criteria outlined elsewhere. One of these criteria is support for modern
software engineering methods. It would certainly be a mistake for NASA to prefer a
language that did not support these methods, for such a language would inevitably
tend to impede their use. A high-order language supporting abstraction, information
hiding, communicating sequential processes, and similar concepts would be a welcome
improvement over older languages that do not adequately support these methods.

After reviewing the alternatives, the panel concluded that Ada is the language show-
ing the greatest potential in this regard. Ada's strong data typing, packages,
generics, and overloading support abstraction and information hiding. The exception
handling capability supports the reporting and handling of errors and unlikely situ-
ations in a manner consistent with abstraction. Tasking supports communicating
sequential processes at a higher level (analogous to procedure call) than other syn-—
chronization mechanisms, such as semaphores., Arithmetic is well defined and supports
efficient fixed-point operatious. Representation clauses support interrupt handling,
hardware input—output interfaces, and similar implementation-dependent matters.
Separate compilation supports efficient software development and distribution.
Although Ada is a large and complex language, its features are useful.

Unlike most languages supporting modern software engineering methods, Ada is not a
product of the academic community, with informal support and uncontrolled changes;
nor is it a proprietary language with limited availability. Ada is a government and
ANSI standard, and as such it is stable and supported. This support is rapidly grow-
ing. More and more compilers and programming environments for various host and
target machines are coming onto the market. Applications are also being written in
Ada. (The company of one panel member has already generated more than one million

104

lines of Ada code.) Resources supporting Ada application developments are already in
the range of one half billion dollars per year. The research community has taken a
great interest in Ada and distributed systems, program design, program validation,
and other areas applicable to Space Station. By selecting Ada, NASA can capitalize
on this substantial investment and begin to influence the course of future Ada work.

If NASA is to choose Ada, it should do so now, so that activities dependent on this
choice can begin. NASA and contractors need time for education, planning, and the
specification of Ada-related requirements. Ada vendors need time to become aware of
the new market provided by Space Station and to adapt compilers and run-time support
packages to Space Station requirements. NASA must also address the series of issues
enumerated in this recommendation, which are discussed below.

The first thing NASA must do is to formulate a strategy for the transition to Ada.
Naturally, these plans will involve the management, standards, and SDE issues con-
sidered by the other panels. In particular, the SDE must include a full set of
software development tools compatible with Ada.

Procurement issues must be addressed, including

. development of Ada compilers and run-time packages for new
environments

. contractual obligation to use Ada and the SDE —- who will bear
the risks?

. contractual obligation to use Ada properly -— how can the use of
appropriate software engineering methods be guaranteed?

. waivers —— when is another language preferable for new software?

. procurement of off-the-shelf software —— should it too be
written in Ada, in case NASA should have to take over its
maintenance? How would this affect its cost and availability?

NASA must decide how to apply its large base of existing software to Space Station:

— NASA could continue to use stand-alone software, as long as
maintenance costs were not excessive.

— Other software could be used directly within an Ada environment,
if suitable implementations of the "interface"” pragma existed in
that environment. NASA would probably have to fund the development
of Ada interfaces to HAL/S and any other NASA-specific languages.
Perhaps it would be better to rewrite such software in Ada:
this would often be straightforward, the resulting Ada code
would be much more portable, and it might even be economical
if the software had to be changed anyway.

— Software that is not directly reusable may contain the only existing
documentation for algorithms applicable to Space Station.
Important algorithms that would be difficult to re-derive
should not be lost; Ada or an Ada-based PDL would be an ideal
medium for preserving and documenting them, as well as using them.

105

A caveat is in order, however: Most older software was developed without benefit of
concepts that enhance reusability and ease of change, such as abstraction, informa-
ticn hiding, and even good documentation. Consequently, the strategies noted above
may prove difficult. O01d software should be evaluated and adapted using the same
criteria applied to new software; to do otherwise would defeat much of the purpose of
using Ada and would prolong reusability, portability, and maintainability problems
into the 2lst century.

Training in the proper use of Ada is of such importance that the panel wmade a separ—
ate recommendation in this area (see recommendation 3).

Any major Ada user should have close ties with the Ada community at large. Con-
sequently, NASA should establish a liaison with DoD and the Ada Joint Program Office.
Furthermore, any ageucy comnitting such an important and visible project to Ada de-
serves a voice in Ada's future development. Therefore, NASA should seek a seat on
the Ada board. '

Currently, Ada compilers are validated by the DoD with respect to correctness only;
they do not have to pass any performance benchmarks. Since performance will be a
major issue in many Space Station applications, NASA should initiate or jointly
sponsor a benchmarking activity for evaluation of Ada compilers and support librar-
ies, It should test the performance of Ada programs in distributed systems and high-
speed real-time systems as well as in more routine contexts. Such benchmarks will
also help to identify high-~risk areas needing atteantion.

Ada's support for abstraction and information hiding makes it especially good for
rapid prototyping. Once a design has heen produced in the form of a collection of
Ada package specifications (with associated semantics), the component packages can be
implemented in parallel, each without regard for how the others are implemented.

Such a prototype can then be transformed into a finished product by independently
changing the implementations of each of its components. With the interface pragma or
a special interface package, the SDE might also support the rapid implementation of
an Ada package using a separate program, perhaps in a very high level language (e.g.,
Prolog). NASA should use early prototyping to investigate application areas such as
fault-tolerant and distributed systems. This would help determine how well Ada sup-—

ports these applications and would consequently reduce the present uncertainty in
this regard.

The use of Ada in distributed systems, including the need for tools to allocate Ada
entities across such systems, is addressed further in recommendations 4 and 5.

Space Station applications should share the same software wherever possible. Re-
usable software can reduce the cost of software requirements specification, decom-
position, and design (because it is often easier to recognize what is needed than to
define it), coding and testing (because neither is needed in order to use an
existing, tested implementation), and maintenance (because changes to one reusable
module are cheaper than changes to several nearly identical ones). Ada is an
excellent tool for supporting reusability, since reusability is directly related to
abstraction and information hiding. However, it is no trivial matter to design
abstractions that are amenable to reuse., To support reusable software, NASA should

. develop or adopt a taxonomy of software abstractions,

. ldentify specific reusable abstractions,

106

. develop a library of Ada package specifications for these
abstractions, catalogued according to the aforementioned taxonomy
(so that projects can find packages useful to them)

. develop a prototype package body for each library package
(so that projects can test code that uses these packages),

. publicize the 1library and encourage —— perhaps even reward —-
the use of its packages,

. develop efficient package bodies for each library package
(so that projects can test their products for performance and
release them), and

. devise a plan for adding to this software library.

The SDE should support the use of reusable components from this library and the
search of the library catalog for components of interest. 1In addition, it should
allow the library to contain more than one implementation version of a single Ada
package, so that users can select from implementations optimized in different ways
(e.g., execution speed versus memory required).

The choice of Ada is not without risk, although much of it is in areas that will be
risky whether Ada is used or not. In particular, in some quarters there is uncer—
tainty about (1) the applicability of Ada to distributed, fault-tolerant, and hard
real-time systems, (2) the efficiency of Ada run-time support environments and of
code generated by Ada couwpilers, especially for tasking in real-time and distributed
systems, and (3) the development of good Ada implementations for the particular
machine architectures that might be used for Space Stationm.

Prototyping, benchmarking, and work on run-time support environments should resolve
the first two issues. Postponement of hardware selection and the eventual use of
off-the—-shelf machine architectures should minimize the last problem, by reducing the
chance that an unexpectedly difficult architecture will be selected with insufficient
time to produce a good implementation for it. Nevertheless, at least until these
problems have been put to rest, fallback policies should be established in each of
these problem areas.

3. Recommendation:

The commitment to Ada requires an education program in software engineering method-
ologies with Ada, which should begin as soon as possible. The education includes the
study of relevant examples. It should cover multiple levels of management, appli-
cation programmers, etc.

Rationale:

The rationale behind this recommendation may be perceived from three perspectives:
systems engineering, methodology, and language.

From a systems engineering perspective, Space Station software is just one important
part of a complex system. Software management, development, acquisition, and evolu-
tion are all subordinate to a total systems engineering activity requiring management
and technology trade-offs. These trade~offs are constrained by practices,

107

obligations, and requirements at the project, systems, subsystems, and institutional
levels. To make intelligent decisions at all levels of management and engineeriung,

NASA personnel need to understand, to different degrees and from different perspec-

tives, the programming and engineering capabilities and limitations of Ada, and the

management implications of using Ada.

For example, if it went uncorrected, the myth that Ada is inherently inefficient
could distort evaluations of trade-offs between hardware and software, or between Ada
and some other programming language. As a more positive example, an understanding of
how Ada and the technique of information hiding can support abstract interfaces to
hardware would make the strategy of postponing hardware selection appear much more
practical.

From the methodological perspective, Ada is more than a mere programming language.
It embodies and supports modern software engineering concepts, such as rich data
structures, data abstraction, information hiding, modular packaging, exception
handling, and communicating sequential processes. It has features that enforce dis-
ciplined engineering, such as strong typing. It (or a derivative) can be used as a
high-level program and system design language. It is to be used in conjunction with
an Ada Programming Support Environment comprising powerful tools for software devel-
opment. Together, these form a system supporting modern software engineering
methods. To ensure that developers and contractors take full advantage of these
methods and Ada's support for them, NASA personnel must themselves understand them.

Although the aforementioned software engineering concepts are well known in the aca-
demic and research communities, they have not penetrated the software community at
large to any great degree. Consequently, many software professionals will come to
the Space Station project without experience in applying these concepts, and some-
times without even a basic understanding of them. Therefore, NASA will need a
training program that provides

— good definitions of these concepts,

- examples of their use, and

- practice in applying them to program design and
implementation with Ada.

The shortage of professionals trained in these methods extends to the education and
training community itself, so NASA should establish a quality assurance program to
guide and audit this training.

For example, the important concepts of abstraction, information hiding, and com—
municating sequential processes can be briefly defined and related to Ada as follows:

— Abstraction supports the orderly decomposition of a software
system into components that can be understood solely by reference
to their interface specifications, which include black-box
descriptions of the associated behavior; implementation
details are suppressed. In addition to facilitating the
program design process, this enhances software reusability,
since each abstraction is a potentially reusable design. Each
of Ada's compilation units (package, task, subprogram, and
generic) supports a kind of abstraction.

- Information hiding emphasizes the importance of concealing the
details of the implementation of an abstraction. Because these

108

details are hidden, users of the abstraction cannot make
unwarranted assumptions about the implementatiom; this makes it
easier to change the implementation without affecting the software
that uses it. Information hiding involves designing the
abstractions used to build a system so that each aspect of the
system that is judged likely to change is hidden behind a single
abstraction; by anticipating changes, it makes those changes
easier. Ada's packages, visibility rules, and private types
support information hiding.

- Communicating sequential processes (CSP's) allow the decowmposition
of a system into tasks that logically run in parallel,
occasionally communicating with one another. Complex real-time
systems can be built using CSP's, and distributed systems can
be implemented by assigning CSP's to different processors;
however, many more mundane problems also have natural solutions
involving CSP's. Ada's tasks support communicating sequential
processes,

Viewed simply as a rich language, Ada can either be applied properly to solve complex
problems, or it can be misused to complicate solutions. A programmer experienced
with conventional languages wmay be tempted to use Ada as a conventional language with
new syntax. This mode of application would be most unfortunate, for it would defeat
the fundamental purpose of Ada's existence, which is to foster the use of methods
mentioned above. To fully exploit Ada's many features, programmers (both NASA per—
sonnel and contractors) need training on its proper usage.

The study of relevant examples will be an important part of all this training.
Obviously, examples of Ada programs will be relevant in this case. However, bad Ada
programs should not be used as examples —— other than examples of what not to do.
Unfortunately, there is a real danger here: some books on Ada utterly fail to address
the software engineering principles that Ada was developed to support, and instead
teach little more than mechanical translation of bad programs in other languages into
bad programs in Ada.

On the other hand, some of the best and most relevant examples may not even use Ada.
Examples of good software engineering methods are rare, and fully worked out examples
of systems of reasonable size are rarer still. Some of these may use other lan—
guages, but they will nevertheless be worthy of study by those involved in software
design, for it is the method of decomposing software into modules and defining the
interfaces of those modules -— the software architecture of the system — that is the
most important aspect of an example. A good architecture will be valid regardless of
the implementation language, and it will be easy to map into Ada.

NASA should search the literature for examples of good software design applicable to
the use of Ada before trying to develop them in house or under contract. Even if an
example is not fully implemented, it may still contain useful material.

At this time the pool of trained Ada professionals, particularly lead designers, is
very small. The typical training time for a lead designer may be as much as a year.
NASA must rapidly select or develop training methods that will ensure a sufficient
supply of trained professionals for the Space Station program. Training may prove to
be the largest startup cost of the transition to Ada. The duration and success of
this training will have a strong effect on the long software life cycle projected for
Space Stationm.

109

4, Recommendation:

NASA must define its requirements for the run-time support library and kernel for the
target systems, including distributed targets.

Rationale:

To derive the maximum benefits from the choice of Ada as the preferred high order
language for source code developmeut, NASA should move quickly to determine and
catalog its requirements for the run—-time support environment of target processors to
be embedded within the applications needed for the Space Station program (e.g.,
highly data-driven applications versus critical, real-time applications). Although
such requirements are not unique to NASA, the panel feels that

. the development schedule for the Space Station program plus

. the lack of an appropriate catalog of requirements for the
run—-time support environment of processors embedded in large,
complex, distributed applications

should cause NASA to quickly take a leading role in defining such requirements.

The run~time support environment (RTSE) provides resource management and other ser-
vices to the object code modules of the application programs. This support is typi-
cally provided by a run-time kernel, which separates both the application modules and
the ruan-time library modules from the bare target processor. The kernel contains a
minimal set of functions that are used frequently and must be executed sequentially.

The run-time library may be divided into a basic library set and an extended library
set, The basic library countains modules that provide services to the object code
modules produced by a host Ada Programming Support Environmeant (APSE) for a broad
class of applications. The full set of basic library modules need not be present on
all target processors. For example, if the applicatiom program objects assigned to a
given target processor do not require Ada's tasking or heap managemeunt, then the
basic library modules responsible for those facilities may be omitted from the run-—
time environment.

The extended library contains modules that may be used to support APSE-produced ob-
ject code in specific applications having requirements beyond those addressed in the
Ada Language Refereuce Manual (ref. 3). For example, many applications would benefit
from a run-time "monitor” that gathers and reports performance statistics and facili-
tates remote diagnostics and reconfiguration. Other wmodules might support multi-
level security and access control, or transactions with nested atomic actions. All
such modules could be tramsparent at the Ada source code level and thus facilitate
the cost effective utilization of reusable components across a broader spectrum of
applications.

Clearly, regardless of the efficiency and reliability of the object code produced by
a host APSE, the performance and reliability of the executing program are dependent

on the run—-time kernel and library.

Another important reason why NASA should begin quickly to define its requirements is
the complexity spectrum of implementing RTSE's shown below:

110

. Single "stand-alone"” embedded processor to support

- subsets of Ada
- full Ada

. Multiprocessor applications, which support the partitioning
and allocation of objects within the Ada programs for execution in
target environments implemented with

- shared memory

- shared bus

- "n level” redundancy

— combinations of the preceding

. Distributed network applications, which support the
partitioning and allocation of objects within the Ada programs
among geographically separate processing resources for execution.
Such implementations may include

- Local area networks composed of single processor
nodes and multiprocessor clusters

— Remote area networks of local area networks, single
processor nodes and multiprocessor clusters.

Ada was designed to serve as a "common language for programming large scale and real
time systems" (Foreword, ref. 3). The objects of an Ada program can be distributed
"whenever an implementation can detect that the same effect can be guaranteed” as for
execution by a single processor (Section 9, ref. 3). However, the current implemen-
tations of Ada compilers and environments respond only to the requirements for a
Minimal tool set (MAPSE). Those requirements address a single, stand-alone target
processor, and therefore only the simplest RTSE on the complexity scale. Specifi-
cally, the MAPSE does not require the tools needed for

. allowing the software engineer to scan the Ada source code
and identify which program objects should be allocated
to which target resources and then

. building the load modules of application code and,
possibly, run—time library modules to be exported to the various
target processors.

(It should also be noted that such tools have not been created in the HAL/S environ-
ment or in other environments that were not designed to support large, complex dis-
tributed applications.) The construction of such tools as a necessary part of the
Space Station program's Software Development Enviromment is dependent upon an under-
standing of NASA's requirements for a catalog of features and options for the run-
time kernel and run—-time library.

5. Recommendation:

NASA needs to define the requirements for the interface to the run—time system.

111

Rationale:

Whereas recommendation 4 addressed the need for NASA to begin defining its spectrum
of requirements for the fuunctionality, performance, and reliability of the run—time
support environments needed for the Space Station program, this recommendation
focuses specifically on the requirements for the interface of the object code of the
application programs to the run~time kernel and run—time library.

A major goal of the Space Station program is to support technology transparency. The
economics of thirty or more years of Space Station evolution, operation, and mainten-—
ance will require that diverse instruction set architectures (ISA's) coexist in the
target environment. Some of these ISA's will participate in subsystem activities
that provide an integrated, end-to~end information system from earth stations,
through entities in various earth orbits, to a permanent preseance on the moon. Some
of them will participate in subsystems that must operate continuously during diag-
nostics, repair, expansion, recoafiguratioun, software and hardware updates, and other
system activities. Thus, the ability to map the object code modules of applications
programs to an interface model of a virtual Ada machine is highly desirable.

Hiding machine dependencies as much as possible (consistent with NASA's requirements
for RTSE functionality, performance, and reliability) and encapsulating code that
must be machine dependent will enhaunce the transportability, reusability, and inter-
operability of Ada source code modules and thus help control the costs of software
ownership and incremental development.

Organized, intermational working groups are now addressing these interface issues,
NASA should take a leading role in advancing this work.

6. Recommendation:

The first version of the SDE should not be constrained to have a single requirements
language, AL expert systems language, or prototyping language.

Rationale:

There are a number of requirements methodologies, languages, and tools that might be
of use for Space Station software development. The panel considered whether NASA
should select a preferred or standard set of requirements languages, to facilitate

communication among space station participants and contractors. However, the panel
decided not to recommend this because

Space Station needs in this regard are not yet well defined;

~ requirements methodologies, languages, and tools have not yet

reached the degree of maturity required for selecting standards;
and

it is not clear that any of the currently available items is
adequate for Space Station needs,

Similar cousiderations make it premature to select other specialized languages, such
as expert system languages aund prototyping languages.

112

However, because all these types of development aids have potential for improving the
productivity of the software and system life cycle, their use should be explored.

For this purpose, the SDE should initially offer a selection of languages of each
type. Many of the criteria for language selection given elsewhere should be applied
to the evaluation of these languages. [See also recommeundation 7.]

7. Recommendation:

NASA should determine the requirements for, and select or develop requirements and
design specification languages or interfaces that complement the SDE and Ada.

Rationale:

The specification of both system and software requirements and designs for a system
as complex as the Space Station is a major undertaking that is crucial to system
success or failure. Previous programs at NASA and elsewhere have identified require—
ments specification in particular as an extremely difficult activity in the system
1life cycle. It often has been characterized as a chaotic decision—making process
exacerbated by a lack of adequate methods, languages, notations, and tools. Research
and development efforts over a decade or more have resulted in a number of approaches
and tools, some of which have merit for the Space Station effort.

The panel considered whether NASA should simply rely on existing languages and tools
to meet Space Station needs. The panel did recommend that several of these aids
should be part of the initial SDE [see recommendation 6].

However, the magnitude of the Space Station undetrtaking and the benefits of good re-
quirements and design specification aids argue strongly for a focused, early effort
to define and then acquire a set of tools tailored to meet the specific needs of the
Space Statiou program. The panel expects that many of these tools will be commer-
cially available, but some may have to be developed. NASA's goal should be a set of
standardizable requirements languages and interfaces that can be used tc facilitate
communication among all Space Station participants.

If Ada is to be the primary software implementation language, then any requirements
and design methods eventually adopted should be consistent with the use of Ada.
(Recommendation 8 addresses program design languages in more detail.) Similarly, SDE

support for these methods is crucial if they are to be used efficiently and in a
disciplined manner.

8. Recommendation:

The design language should be syntactically and semantically consistent with the
development language and should have on-line support for interface checks, etc,

Rationale:

The use of a program design language (PDL) is a recognized component of good software
engineering practice. A common excuse for avoiding the practice is that, as the

software evolves, the PDL is an added cost and often becomes inconsistent with the
code.,

113

These difficulties can be overcome if the PDL is coasistent with the development lan—
guage because the PDL is embedded in the implementation. As such a software struc—
ture evolves, the PDL is maintained naturally., Further, designs using such a PDL can
be checked for semantic consistency.

Given Ada's facilities for structuring software, the use of an Ada-compatible PDL
would allow semantic consistency to be maintained throughout the software implemen-
tation. The SDE should therefore support the use of an Ada-based PDL. The IEEE is
currently completing a standard for the use of Ada as a PDL; NASA should investigate
whether this standard is appropriate.

In cases where Ada is not used as an implementation language, an explicit decision
should be made whether to use Ada as a PDL or to use a PDL consistent with the imple-
mentation language. 1In fact, this decision should be considered in the trade-off
analysis leading to selection of a language other than Ada for a particular
application.

9. Recommendation:

For all levels of user interfaces, there should be a set of standards to provide
commonality across all phases of the Space Station life cycle.

Rationale:

The need for a set of standards for user interfaces is driven by the following
considerations:

the long life cycle of the Space Station and its support systems
and environments,

- the constantly changing and growing set of users,

-~ the use of common or government furnished support systems and
environments,

~ the need to minimize program costs, including software, training,

and customer costs,

~ the high degree of commonality in the functions performed by
various types and groups of users, and

~ the high degree of coordination and integration of activities
and products required throughout the program.

A set of standards for user interfaces (i.e., methods and languages) will

- permit users to migrate among sites and across support systems and
environments without the need for extensive retraining,

- provide a greater degree of portability and reusability of user
generated procedures and programs,

114

- decrease communications, coordination, and data exchange problems
among user groups,

- provide a central core to which unique user interface requirements
can be added, aund

- minimize the amount and cost of user interface software, documents,
tools, aud training.

10. Recommendation:

NASA should identify all categories of users and user interfaces, and quickly proceed
with rapid prototyping to determine the real requirements.

Rationale:

User interfaces are an essential part of any support system, enviroument, or tool.
The definition and design of user interfaces come early in the life cycle of support
systems, environments, and tools. 1If there is to be a set of standards for Space
Station user interfaces (as in recommendation 9), all user categories must be identi-
fied, and their interface requirements must be defined and analyzed to derive that
set of standards.

To be of maximum benefit to the program, these standards wmust be ready in time to be
applied to the work that has already begun on common and goverament furnished support
systems and environments. These systems and environments will not only have their
own user interfaces, they will also support the development of software, tools, aund
systems having still more user interfaces, It is therefore imperative that users and
user interface requirements be identified as soon as possible.

Rapid prototyping would probably be the most viable method leading to the definition
of interface requirements and the derivation of standards.

11. Recommendation:

Since Space Station software will evolve over 30 years, NASA should track language
technology and act appropriately.

Rationale:

Thirty years 1is an unprecedented lifetime for software. No project of such duration
should ignore the advance of relevant technology. Developments in software tech-
nology over the past thirty years —- especially those of the past decade —— presage
even greater changes during the next thirty.

Some phases of the software life cycle do not have good language support at this
time. The requirements definition phase is a case in point; should better language
support emerge for requirements definition, NASA and the Space Station project would
surely benefit from it. Similar reasoning applies to aspects of software outside the
traditional life cycle, such as prototyping.

On the other hand, obstraction and information hiding will in any event continue to
be fundamental principles for structuring software. This generality is important,

115

because it supports the decomposition of a software engineering problem into sub-
problems that can be implemented independently, each in the most appropriate lan-
guage. For instance, it should eventually be a straightforward matter to implement
an Ada package specification as a program in a fifth-generation artificial iuntellig-
ence language. This sort of flexibility should also be a goal of this SDE.

Languages evolve to support software technology and consequently serve as indicators

of the state of that technology. WNASA needs to track all software techmnology; track-
ing language technology is an important subset of such activity.

116

SOFTWARE STANDARDS PANEL SUMMARY

The unique and challenging nature of the Space Station Program requires that software
standards be effectively used to control costs, facilitate enhancements and ensure
safety. The Software Standards Panel identified and developed recommendations in
four areas to help the Space Station Program achieve these objectives. The areas in
which recommendations are offered are policy, organization, process and candidate
software standards for the Space Statioun Program. The consensus process employed by
the panel involved:

A. Initial survey of general software standards issues.

B. Analysis of the specific software standards issues stated in reference 1.
C. Restatement of issues and discussion in open panel session.

D. Consideration of alternate recommendations.

E. Development, presentation and discussion of specific recommendations in open
panel session.

A list of the recommendations arrived at in the above manner is given in the follow-
ing section. The panel did not attempt to recommend the selection of specific soft-—
ware standards, but did recommend that NASA move at once to act on the selection of
standards in specific areas. A minority of the standards panel, as well as large
number of audience participants, took the position that current software standards
have grown into areas that are not consistent with the traditional concept of stan-
dards. 1In other words, the current definition (usage and implementation) has been
bent far beyond a useful definition of "standards". A critical re-examination of
standards, at this time, would be in order.

RECOMMENDATIONS

The Software Standards Panel recommends that the Space Station Program Office take
the following actions:

1. Establish a Program policy supporting software standards.

2. Establish an organizational structure to support software standards at each level
within the Space Station Program.

3. Capitalize on existing software standards to meet Program requirements.

4. Establish software standards early in specific candidate areas.

117

iy
By

118

The
present
To serve
the area

N86-2331g

NASA Space Station Software
Standards Issues

George D. Tice, Jr.
Tektronix, Inc.
P.O. Box 4600 (M/S 92-525)
Beaverton, Oregon 27075
(503) 629-1310

ABSTRACT

selection and application of software standards

the NASA Space Station Program with the opportunity
as a pacesetter for the United States software in

of software standards. This presentation summerizes

and discusses the strengths and weaknesses of each of the
NASA defined software standards ilssues:

Need for Common Software Terminology
Project Directives

Software Technology

Software Portability

Languages

Documentation

Several additional significant standards issues are offered

for NASA

consideration:

Value of Standards
Potential Leverage from Other Standard Efforts

The presentation concludes with a challenge for the NASA
Space Station Program to serve as a pacesetter for the U.S.

Software

Industry through:

Management commitment to software standards

Overall program participaticn in software standards
Employment of the best available technology to
support software standards

Tektronix, Inc.

Design Automation Group

|

Microcomputer Development Products

MDP CASE

ANSI

|
IEEE

IEEE Standards Board

IEEE
Computer Society

Technical Activity Board

Standards Activity Board

Technical Committee
on
Software Engineering

Software Engineering
Standards Subcommittee

119

Format

S o s e O S s OO T T) SR i T U SR R N R, SR e i L (e

® Summary of NASA—defined issue(s)

® Strengths/weaknesses/disagreements
with issue(s) and proposed solution(s)

B Relevance of issue(s) to current R&D
efforts and their potential application

lssue: Need for Common

Software Terminologx

m Does the existing space station lexicon
cover software?

B |s the coverage adequate?

B Should there be special software
lexicon?

® Who should be responsible for a
software lexicon?

lssue: Project Directives

What is the minimum set of software
project practices/standards?

120

Issue: Software Technology

® What criteria should be used to select
SSIS software technology?

— software engineering and practices
— standards for portability
— programming language

— whether to impose an instruction
set architecture

— data driven vs. data embedded
software

® What criteria should be used for
technology changeover?

® How can we make technology change
transparent?

® How do we keep current in technology?

Issue: Software Portability

Applicability and methodology of portability
and transferability for the space station.

Issue: Languages
Languages for software development?

121

Issue: Documentation

_
® What is the critical, minimal set of

documentation and what level of
detail should be specified?

® Do the critical set of documents and

level of detail vary with software
category?

® What acceptance criteria are needed?

Additional Significant Standards
|lssues for

NASA Consideration

Issue: Value of Standards

B Education

B Simplification
® Conservation
B Certification
B Contribution

122

Issue: Potential Leverage from
Other Standard Efforts

® Department of Defense (DoD)
B Furopean Space Agency (ESA)
® |[EEE Software Engineering Standards

NASA
Space Station Program

Challenge
and
Opportunity

Serve as a Pacesetter for the
U.S. Software Industry

B Management commitment to
software standards

® Overall program participation in software
standards

B Employment of the best available
technology to support software standards

123

DISCUSSION OF RECOMMENDATIONS

l. NASA Space Station management should establish policy supporting software
standards which:

A. States top level (levels A & B) endorsement and commitment.
B. Defines implementation and eunforcement authority and mechanism.
C. Provides methodology for software standards training and encourages its use.

D. Provides an overview (audit) program to measure effectivity and encourage
adherence to software standards.

E. Encourage technology infusion/insertiom.

To be effective, standards must have top management's unconditional support and that
support must be visible at all levels of activity. Unless the purpose of each
standard is understood and the methodology for selecting, implementing and enforcing
standards is known to be rational, they will be viewed with suspicion. It is
necessary to continuously maintain the currency of software standards to ensure their
utility, and thereby their continued use.

2. The NASA Space Station Program should establish a structure to develop and support
software standards having the following characteristics:

A. Level A management authorizes the structure to support software standards.

B. A Space Station Software Standards Organization at level B with responsibility
for promulgating, maintaining and enforcin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>