~
Mo g oy p e A
N OO /7, G

NASA-CR-178065
19860013848

RESEARCH TRIANGLE INSTITUTE
NASA Contractor Report 178085

RTI/3052/00-01F

Display System Software For The
Integration Of An ADAGE 3000
Programmable Display Generator
Into The Solid Modeling Package
C. A. D. Software

R. J. Montoya and Harold H. Lane, Jr.

Research Triangle Institute
Research Triangle Park, N. C. 27709

Contract NAS1-17890 }' EBRARV E}E}?Y

March 19886 APR 16 1980

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

POST OFFICE BOX 12194 RESEARCH TRIANGLE PARK, NORTH CAROLINA 27709

FOREWORD

This report was prepared by the Center for Systems Engineering of
the Electronics and Systems Unit, Research Triangle Institute, Research
Triangle Park, North Carolina, under contract NAS1-17890. The work was
administered by the Systems and Analysis Branch (SAB) of the Space
Systems Division of the Langley Research Center of the National
Aeronautics and Space Administration.

A software system that integrates an ADAGE 3000 Programmable
Display Generator into a C.A.D. software package known as the Solid
Modeling Program is described. The software system was designed,
implemented, and tested at the Research Triangle Institute and later
installed and demonstrated at the Systems and Analysis Branch's display
system laboratory.

The Solid Modeling Program (SMP) is an interactive program that
provides the capability to model complex solid objects through the
composition of primitive geometric entities. In addition, SMP provides
extensive facilities for model editing and display. SMP was developed
at Langley Research Center by Computer Sciences Corporation.

The ADAGE 3000 Programmable Display Generator (PDG) is a
sophisticated, color, raster scan, programmable display generator with
local intelligence provided by a 32-bit bit-slice, bipolar
microprocessor (BPS). The modularity of the system architecture and the
width and speed of the system bus allow for additional co-processors in
the system. These co-processors combine to provide efficient operations
on and rendering of graphics entities.

NS~ 23)Q+

The resulting software system takes advantage of the graphics
capabilities of the ADAGE 3000 PDG in the operation of SMP by
distributing its processing modules between the host and the PDG.
Initially, the target host computer was a PRIME 850, which was later
substituted with a VAX-11/785. Two versions of the software system were
developed, a phase I version and a phase II version. In the phase I
version the ADAGE 3000 is used as a frame buffer. In the phase II
version SMP was partitioned, and some of its functions were implemented
in the ADAGE 3000 by means of ADAGE's SOLID 3000 software package.

In the performance of the tasks described in this report, the
Research Triangle Institute has worked closely with personnel of the
NASA Langley Research Center. Ms. Dariene DeRyder and Ms. Cheryl
Allen of SAB have provided valuable technical guidance and coordination
throughout the project. Mr. Kenneth H. Jones and Mr. Donald P.
Randall of Computer Sciences Corporation have provided helpful insight
into SMP.

The work described in this report was performed by personnel of the
Control and Display Systems Section of the Research Triangle Institute.
Personnel that conducted the work for the tasks described in this report
were Mr. R. Jorge Montoya, Mr. Harold H. Lane, Jr., and Mr. Timothy
L. Turner. Mr. Montoya served as the Project Leader, and Dr. James
G. Haidt, Director of the Center for Systems Engineering, served as
Project Manager. Messrs. Montoya and Lane authored the report.

ii

TABLE OF CONTENTS

PAGE

1.0 INTRODUCTION....cevvceocoane ssessescns cesesesssses cssecsecccnaa .e 1
1.1 Research Background....... cecescscsseans cecesseseaas cenee 1

1.2 Research Scope and Goals..... cesscsccnnas tessesscessnenee 2

1.3 Organization of the Report...cceeeeeceecerccnccroccccnnes 6

2.0 SYSTEMS AND ANALYSIS BRANCH DISPLAY SYSTEM....eceeeeennn cecesane 9
2.1 Hardware Configuration...... tecescscenens cecescssessancns 9
2.1.1 The HOoSt COmMPULEr.eecseeessesoosocceaceasssoscones 9

2.1.2 The Programmable Display Generator........... cesss 11

2.2 Software Configuration...eeeeeeeeeeecececcecceccncacannan 19
2.2.1 Host-based SOftWAre....eceeeceeeeeeceaceccocennnns 21

2.2.2 PDG-based SOftWar€...ceceececeseossscecsccsccncaces 25

3.0 SMP/ADAGE 3000 PDG INTEGRATION......... ceesceans cecetscnas cevene 26
3.1 OvervieWw...oeeeeeeas 4)
3.1.1 VAX/ADAGE 3000 InteractionS....ceeececes ceceseans . 27

3.2 Design cessenaes ceseessessessnranaan ceesesssesssenas 27

3.3 Implementation..c.eeeeene.. Ceeeesecsscsscsaseassnanes ceess 29
3.3.1 Phase I Integration....eeeeee.. Cecesessessscssenen 30

3.3.2 Phase II Integration...... cesenee ceseence cececcnan 35

400 USER'S GUIDE € 000000000000 000000 00S 00000 000000000 CNCIERSECEOCESIEIOIOES 40

4.1 Changes to SMP Common to Both Phase I and Phase II....... 40
4.2 Phase I.ieecencneees cesescssane Cecesessscascecesesscnceas 42
4.3 Phase Il.ceeeeaneane cesescaseas cesesessas ceceseas cesensas 43
5.0 ADDITIONAL TECHNICAL ISSUES..eeuceeeeceococecananancoosascnnonsne 54
5.1 Local TransformationS...eecececess cesecsssans cecsscsaans . 54
5.2 Model Animation...ceeeeeeeeeeeeeceeecacecocaccasncannnnns 56
5.3 Temporary Geometry Format FileS........ Cecccessessacncnns 59
5.4 SUMMArY..eeevecssecoas ceseescassvenee tesscesrecnens cecrene 60
6.0 SUMMARY OF ACCOMPLISHMENTS....ceeeeecccccnce ceesesescscacstacnas 61

7.0 SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS...uueeeevveneeennenss 64
APPENDIX A - PARTIAL STATIC CALLING STRUCTURE FOR SMP/ADAGE 3000..... 66
APPENDIX B - LIST OF SMP'S MODIFIED SUBROUTINES...... ceeececvsasesane 71

APPENDIX C - LISTINGS OF SOFTWARE MODULES DEVELOPED FOR
SMP/ADAGE INTEGRATION....euueeecrosnscvosscssssccacssons 73

APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I

TABLE OF CONTENTS
(Continued)

SUBROUTINES LISTED BY SOURCE CODE MODULE.+eeeeeeeoveces.

VAX/VMS COMPILATION COMMAND FILE....eeeerneeeeennnnasans

INCLUDE FILES: VMS LOGICALS REQUIRED FOR SMP SYSTEM.....

SMP LINK COMMAND FILE: OBJECT MODULES AND LIBRARIES.....

SUBROUTINE
REFERENCES

STRMDL.cievienennncnnannas teeerenscans ceccees

oooooooooo 0000000000000 000000006000000000000OCES

jv

130
138
139
140
142
147

2-1
2-2

4-1
4-2
4-3

LIST OF ILLUSTRATIONS

Conceptual Block Diagram of SAB's Original

Display System..ececeeeenecnnn. ceesssecsasecsesseccscnns
Conceptual Block Diagram of SAB's Target

Display System...ceeevenne. cececvaces ceeeccsae cesasecnns
SABIS VAX/11-785 Configuration............-............

SAB's ADAGE RDS-3000 PDG ArchitectUre..ceeecccccsecscees

SAB's ADAGE RDS-3000 Display Memory Configuration.......

New User Prompts in MENU Command...... ceseesescesassnaas

New User Prompts in Alpha Editor..ceceeeeeeeeeeneeecncans

New User Prompts in Hidden Surface Display.eeeeeeeeeen.

10
12
15
45
47
50

2-1

LIST OF TABLES

SAB's ADAGE RDS-3000 Configuration

vi

ACD
AGG4
AMD
ASCII
BPS
BYU
CAD
CMp
CSE
Clg
CRT
CRS
CSC
DEC
DMA
DR
EADI
FORTRAN
FBC
FSS
GIA
HIRES
Hz
IDL
IF
ICROSS
IKASM

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

Analysis and Computation Division
Advanced Graphics Generator
Advanced Micro Devices

American Standard Code for Information Interchange
Bipolar Processor Set

Brigham Young University
Computer Aided Design

Color Map

Center for Systems Engineering
Computer Image Generation

Cathode Ray Tube

Cursor

Computer Sciences Corporation
Digital Equipment Corporation
Direct Memory Access

Dynamic RAM

Electronic Attitude Director Indicator
Formula Translator

Frame Buffer Controller

FORTRAN Support Subroutines

Gary Intermediate Assembler

High resolution

Hertz

IKONAS Display Language

Interface

Intermetrics Cross Assembler
IKONAS Assembler

ISC
1/0
KW

K
LaRC
LUvVO
LORES
MA1024/D
Mbits
MEGA
MCM
MPC
NASA
NTSC
oTV
PDG
PIXEL
PIO
RAM
RTI
SAB
SMP
SR
TCS
TV

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS
(Continued)

(Graphics Device)

Input/Output

Kilowords

Thousand

Langley Research Center

Look Up and Video Output

Low Resolution

Multiplier Accumulator with Perspective Divide
Megabits

Million

Microcode Memory

Multi Peripheral Controller

National Aeronautics and Space Administration
National Television Standards Commission
Orbital Transfer Vehicle

Programmable Display Generator

Picture Element

Programmed Input/Output

Random Access Memory

Research Triangle Institute

Systems and Analysis Branch

Solid Modeling Program

Static RAM

Terminal Control System

Television

viii

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

(Concluded.)

™ Trademark
VLSI - Very Large Scale Integration
XBC Cross Bar Channel

XBS Cross Bar Switch

ix

1.0 INTRODUCTION

The practice of engineering has come to depend more and more on
computer aided design (CAD) software packages. These packages provide
the designer with the ability to synthesize concepts efficiently and,
depending on the sophistication of the package, analyze and view the
results fairly quickly.

Perhaps one of the most CAD-dependent engineering endeavors is that
branch of aerospace engineering that deals with the design and analysis
of large space vehicles and structures such as the space station. To
address the needs of this application, a research and development effort
was started in October, 1984, to enhance and improve the interactive
capabilities and response time of an existing CAD program (SMP) used by
researchers of the Systems and Analysis Branch of the NASA/Langley
Research Center.

The purpose of this report is to document the work performed under
this contract. '

1.1 Research Background

The Systems and Analysis Branch of the NASA/Langley Research Center
supports its research on proposed space station configurations with a
variety of software tools available on a variety of display systems.

One such tool is provided by the Solid Modeling Program (SMP), a
sophisticated CAD software system. SMP is an interactive program
capable of modeling complex solid objects through the composition of

primitive geometric entities (Ref. 1). The outputs of SMP (wire-framed
or shaded solid models transformed and resolved for visibility) are sent
to a display terminal for subsequent display. SMP also provides
extensive facilities for model editing.

SMP operates in a variety of display systems including the one
consisting of a PRIME 850 host computer and a variety of graphic output
devices such as the Tektronix 401X, the AED 512 (or 767), and the ISC
8001. 1In this general configuration, the host computer provides the
interactive and operational environment for SMP, and the graphics
display devices serve as display buffers and interfaces to the display
medium (CRT). A conceptual block diagram of this display system is
illustrated in Figure 1-1.

About two years ago, SAB purchased an ADAGE 3000 raster scan
programmable display generator to enhance the graphics generating
capabilities of the branch. The ADAGE 3000 PDG, with its local
intelligence and architectural capacity for modular expansion including
special purpose co-processors, has the capability of performing some of
the graphics functions then being performed by SMP in the host computer.
This capability formed the genesis for the research and development
effort described in this report.

1.2 Research Scope And Goals

The overall objective of the work described in this report has been
to exploit the graphics capabilities of the ADAGE 3000 PDG in the
operation of SMP by distributing SMP's processing modules between the
host computer and the PDG. The goal was the development of a graphics
software system which would allow the use of SMP in an optimally
partitioned display system. The resulting graphics system software

PRIME 850
MINICOMPUTER

SMP

User Interface/
Graphics Output Devices

Tektronix 401X

AED 512 or 767

1SC 8001

Figure 1-1. Conceptual Block Diagram of SAB's Original Display System.

would provide a capability for rapidly creating solid 3-D models of
proposed space station configurations and studying the effect of space
. station's orientation and orbit position on its intended operations.

The scope of work in this contract included the following:

1) Provide consultation as needed to LaRC personnel in the
area of PRIME 850/ADAGE 3000 interface development.

2) Integrate ADAGE 3000 PDG into existing LaRC solid
modeling software.

3) Restructure LaRC solid modeling software to exploit the
power of the ADAGE 3000 PDG to generate high-speed
renderings of complex, 3-D models and to manipulate
these models.

4) Assist in the implementation of the software modifications
on the NASA/LaRC PRIME 850 minicomputer.

5) Document the software modifications.

The specific tasks to be performed under this contract included the
following:

1) Initial integration of ADAGE 3000 PDG into LaRC Solid
Modeling Software System to include:

a) Assistance to LaRC personnel in the development
of the host (PRIME)/PDG interface.

b) Integration of the ADAGE 3000 PDG capabilities
into the existing software system such that the
PDG is capable of displaying images generated by
the host. This task included the porting of SMP

to RTI's VAX-11/750, the writing of FORTRAN
subroutines to send images to the ADAGE 3000 PDG,
and the installation of the resulting software
system in the NASA PRIME 850.

2) Restructure of LaRC Solid Modeling Software to use
features of the ADAGE 3000 PDG to include:

a) Incorporation of the high-speed graphics features
of the ADAGE 3000 PDG including distributed
processing between the PRIME 850 host and the
ADAGE 3000 PDG. This task included the evaluation
of alternate partitioning schemes for host-PDG
interaction, evaluations of available languages
for the PDG, design of the PDG software architecture
and host-PDG interface, and specification of PDG
routines required for this task. The PDG routines
shall include the following features: coordinate
transformations, high-speed vector and character
generation, high-speed grey scale/color fill,
and high speed window/zoom.

b) Implementation of the PDG-based rendering software.

3) Document the implementation and use of the PDG-rendering
software including:

a) Discussion of the partitioning schemes and PDG languages
considered and evaluated.

b) Description of the data flow between SMP and the ADAGE
3000 PDG.

¢) Overall]ogic flow of the resulting graphics software
system.

d) Detailed instructions on program usage and operation.

e) Listings of source code.

As can be seen in the tasks above, originally, the display system
was specified as that consisting of a PRIME 850 host computer and the
ADAGE 3000 PDG. Later on, the host changed to a DEC VAX-11/785
computer. The work described in this report was developed for the
VAX-ADAGE display system. A conceptual block diagram of the target
display system is illustrated in Figure 1-2. The graphics software
system was developed at RTI's Digital Graphics Laboratory and later
installed in SAB's display system.

1.3 Organization Of The Report

The organization of this report is as follows. The hardware and
software components of the target display system are described in
Section 2.0. Next, Section 3.0 describes the design and implementation
of the SMP/ADAGE 3000 integration. Section 4.0 presents a users' guide
to interactions with the integrated SMP/ADAGE 3000 software system.
Section 5.0 presents a discussion of technical issues which need to be
addressed prior to the implementation of further enhancements to the
SMP/ADAGE PDG graphics software system. Section 6.0 presents a summary
of accomplishments, and Section 7.0 presents a summary of conclusions
and recommendations. The report concludes with nine appendices.
Appendix A includes the static calling structure for the SMP/ADAGE
software system. Appendix B provides a list of the RTI-modified SMP
subroutines. Appendix C includes listings of the software modules
developed for the integration of SMP with the ADAGE 3000. Appendix D
includes a 1ist of source code modules with the subroutines contained in
each. Appendix E presents a VAX/VMS compilation command file indicating
the compiler options required by each module. Appendix F presents a
list of include files and VMS logical symbols required during the
compilation, linking, and execution processes. Appendix G includes

User Interface Host PDG
ADAGE
VAX 785 | 3000
COMPUTER | o D - COLOR
TERMINAL [T o . M MONITOR
A gl — *
SMP1 I SMP2
A l
INT
DEV l
*SMP1 + SMP2 >SMP, where SMP,I contains user interactions and modeling software, and SMP2 contains'modeling

or display software. The implication is that the performance of the partitioned SMP sy

stem (i.e., SMP1 and
SMP,) will be better than the orginal SMP. '

Figure 1-2. Conceptual Block Diagram of SAB's Target Display System.

the SMP 1ink file which shows which object modules and libraries should
be linked to create the executable file for SMP. Appendix H describes
subroutine STRMDL. Appendix I includes references.

2.0 SYSTEMS AND ANALYSIS BRANCH DISPLAY SYSTEM

The display system at SAB consists of a DEC VAX-11/785, an ADAGE
3000 PDG, SMP, and the software system developed by RTI. This section .
presents a detailed description of this dispiay system with particular
emphasis on the configuration and operation of the ADAGE 3000 PDG.

2.1 Hardware Configuration

The hardware complement of SAB's display system consists of a DEC
VAX-11/785 host computer and an ADAGE RDS-3000 color, raster scan
programmable display generator. The function of the host computer is to
provide the operational and interactive environment for SMP. The
function of the PDG is to provide the efficient rendering of the objects
defined through SMP in the host.

2.1.1 The Host Computer.- The VAX-11/785 consists of an 11/785 CPU,
a floating point accelerator (FP785), and 6 megabytes of ECC MOS memory.
The Unibus adapter supports two RA-81 456-megabyte disks, a 9-track 1600
BPI tape drive, 8 terminals, a line printer, and a DECNET interface to
other DEC computers. The parallel DMA interface to the ADAGE 3000 PDG
resides in the Unibus adapter. The configuration of the VAX-11/785 is
illustrated in Figure 2-1.

OL

6 MEG SBI D780 | UNIBUS | BA11K
FP785 11/785 ECC MOS tzre= ADAPTER [~ I/0
MEMORY BOX
RA81 RAB1 TU80 8 1K 11/8
456 MEG 456 MEG TAPE LINE TERMINAL DEC ADAGE
DISK DISK DRIVE PRINTER LINES NET DMA

Figure 2-1.

SAB's VAX-11/785 Configuration.

¢

2.1.2 The Programmable Display Generator.- The ADAGE 3000 is a high
performance, modular, raster scan, color display generator with a 32-bit

bipolar microprocessor built around AMD's 2903 bit slice microprocessor
and the AMD AM2911 microprocessor sequencer (Refs. 2 and 3).

Individual modules plug into a 32-bit wide data bus having a 100 nsec.
cycle time. The PDG has a large address space supported by a 24-bit
address bus also having a 100-nsec cycle time. This bus-oriented
architecture and large address space allow the installation and control
of additional processing and storage modules, such as image memory to
support increased pixel depth (more colors) at a given resolution within
the limitations of the system.

Figure 2-2 illustrates a PDG architecture which is representative
of the SAB's ADAGE 3000 PDG. The figure shows the co-processing modules
(BPS, MA1024, and AGG4) and their associated memories (microcode MCM4
and data (SR8)) in its lower portion. The figure also shows the digital
video stream (FBC, XBS, and LUVO's) in its upper portion. The display
or image memories shown in the middle portion of the figure provide the
interface between the processing modules and the video stream. Each
processing module, including the host computer, can write to the image
memories without intervention of the local processor. Interactions
between the host computer and the PDG occur through the interface (IF)
module which shares a board with the frame buffer controller.

Also shown in the lower portion of the figure is the
multiperipheral controller (MPC). This Motorola 68000-based module
supports a variety of interactive graphics devices (joystick, push
buttons, mouse, etc.). This module, with an appropriate memory
complement and software, also provides the potential for an onboard host
in the ADAGE 3000 PDG, i.e., a potential for using the ADAGE 3000 PDG as
a workstation.

- 11 -

Luvo

JL

CROSSBAR SWITCH

FRAME BUFFER
CONTROLLER

'/’ Blue
_/) IMAGE
reen MEMORIES
\'—// Red

SYSTEM BUS l.

III<L 1L

VIDEO BUS
MULTIPLIER WITH ,
STATIC RAM w
STATIC RAM v

'<€<

MICROCODE MEMORY
MICROCODE MEMORY
BIPOLAR PROCESSOR SET

-§-<

<€

MPC

HOST & OTHER
PERIPHERALS

Figure 2-2. SAB's ADAGE RDS-3000 PDG Architecture.

- 12 -

2.1.2.1 The interface module: The interface module (IF) is a two
card set (one IK11B in the host and one FBC/IF in the PDG) that provides
the coordination necessary for fast, efficient parallel DMA or PIO data
communications. This is a two way link that allows the host to transfer
instructions and data to the PDG as well as to read back status and data
from the PDG.

2.1.2.2 The PDG processor: The ADAGE 3000 main processor, the BPS,
is implemented using AMD's AM2903 bipolar, bit slice processor and the
AM2911 bit slice microprogram sequencer. The processor operates on
32-bit words and is controlled by a microprogram consisting of a
sequence of 64-bit wide microcode words. The BPS operates in
conjunction with at least 4K of microcode memory (MCM4) into which the
microcode is downloaded from the host and with at least 8K of static RAM
(SR8) memory into which graphics application programs and data are
downloaded by the host. Both the MCM4 and the SR8 are dual ported. The
processor communicates with the MCM4 through dedicated data and address
busses. Each microinstruction executes in 200 nsec. The combination of
the wide horizontal microcode word (64 bits) used by the processor and
the parallel data path implementation allow the execution of fairly
complex instructions in one microcode cycle.

2.1.2.3 The multiplier/accumulator: The multiplier/accumulator with
perspective divide option, the MA1024/D, is a microprogrammable hardware
multiplier and accumulate module based on a TRW VLSI chip. The MA1024/D
has an on board 1024x16 memory for storage of coefficients which allows
for the efficient calculation of isometrics and perspective, 3D, point
transformations. The multiplier is ported to both the ADAGE bus and to
at Teast one static RAM memory. The operation of the module is
controlled by its own microprogram. Typical operation multiplies an
array of coefficients taken from the coefficient memory with another
array obtained from the working (SR8) memory. Results or accumulation
of results can be read through the ADAGE bus or placed in the SR8. The

- 13 -

perspective option provides for the computation of "W" and its
reciprocal, allowing perspective division to be performed. Three
dimensional point transformations with and without perspective are
performed in less than 4 and 6 microseconds, respectively. Even faster
transformation rates can be achieved with additional multiplier modules.

- 2.1.2.4 The advanced graphics generator: The advanced graphics
generator , the AGG4, is a 16-bit processor for the ADAGE 3000
implemented using the AMD AM2901 bit slice processor and the AM2910
microprogram sequencer. The AGG4 can process and write a string of 32
pixels (in high resolution mode) and a string of 16 pixels (in Tow
resolution mode) in one bus cycle. The main use of this module is for
fast rendering of flat shaded polygons. Another important use of this
module is for the fast generation of character strings.

- 2.1.2.5 The frame buffer: The frame buffer or display image memory,
the GM256, is a dual-ported, 200 nsec cycle time dynamic RAM into which
the images are usually written on a pixel by pixel basis. One port of
the memory communicates with the ADAGE data bus and the other with the
digital video stream. However, addressing takes place in both instances
through the ADAGE bus. The storage capacity for each GM256 is 8 Mbits
(four 512x512 8-bit images or four 1024x1024 2-bit images). The
viewable capacity of each GM256 is 2 Mbits (one 512x512 8-bit image or
one 1024x1024 2-bit image). Frame buffer memories are grouped to
provide the pixel depth needed in the particular application. Color
variability in the image is a function of the pixel depth as well as the
contents of the color lookup table (LUVO). The LUVO is discussed in
more detail in a later section. The configuration of the display memory
in SAB's PDG is illustrated in Figure 2-3. The figure shows that each
GM256 provides essentially four quadrants for selective storage of image
data and one quadrant for selective viewing. This expanded storage
capacity (over the GM-64 memories) allows image buffering in depth or z,
in x, and in y. The choice of buffering scheme depends on how many bits

- 14 -

One Quadrant

One Quadrant

> 1024x1024x6

8 . .
WRITE 8 L/ B}UC VIEW
P
Four Red
Quadrants 0 2 g
512 > 512x512x8
(4) 512x512x8
= 3
512
512
(A) Medium Resolution: 512x512xN, N = 1—»24
WRITE VIEW
6 7
Four Red
Quadrants 0 2
1024
(4) 1024x1024x6
3

1024

1024

1024

(B) High Resolution: 1024x1024xM, M = 1 —>6

Figure 2-3. SAB's ADAGE RDS-3000 Display Memory Configuration.

- 15 -

per pixel (how many colors) are needed for each application program.
The memory can be organized in bit planes and can be configured in a
variety of formats. Which bit planes get written into during a write
cycle is controlled by write mask registers whose values can be changed
dynamically under program control. Which bit planes contribute to an
image during the image refresh cycle is a function of the dynamic
settings of the crossbar switch (XBS). 1In addition, the GM256 memory
has a shade register which allows the AGG4 or the BPS to perform
efficient mask mode writes.

An image in the PDG consists of a set of three image boards (red,
green, and blue) with an optional (alpha) board which can be used for
overlays and other functions. The red, green, and blue components of
each image are at the same x and y addresses but differ in z (bit
depth). The write mask register is used to write to the z location (by
depth) of each board. In low resolution mode (512x512) each board
contributes eight bits in z whereas in high resolution mode (1024x1024)
each board contributes two bits in z. Since the PDG is expandable, a
system can have many image memories. Each image has a distinct address
with the first set of four cards (including an alpha card) corresponding
to image 0, the next set to 1, and so on. The ADAGE 3000's system
capacity is four sets of four full color, 512x512 resolution images.
The same cards can also be addressed as one full color (plus alpha),
1024x1024 resolution image.

2.1.2.6 The digital video stream: The digital video stream consists
of the frame buffer controller (FBC), the crossbar switch (XBS), and the
Tookup table and video output module (LUVO).

The FBC is a programmable module that controls the reading of image
data from the frame buffer memories and the sending of this data to the
LUVO either directly or through the XBS. The FBC also generates all

- 16 -

video system timing. The FBC contains eight 32-bit wide registers which
can be written into either by the user's program in the PDG or by the
host computer. These registers control the scan standard at which the
PDG operates, the x/y window and viewport, cursor position, and image
erasure. The FBC accesses all cards of an image simultaneously through
their video output ports and outputs the resulting serial video stream
to the crossbar switch on a pixel by pixel basis.

The crossbar switch (XBS/F) is a programmable module which allows
the arbitrary mapping of image memory bits to color map input bits. The
mapping is controlled by registers which can be set dynamically by the
application program. The register settings allow connecting an output
bit to any one of the input bits. There are thirty-five input bits and
thirty-two output bits. On the input side, the extra three bits
correspond to paging and cursor on/off bits added to the video stream by
the frame buffer controller. These bits are control bits for the LUVO.
The other thirty-two bits correspond to pixel depth information
including the eight bits of the overlay channel. The XBS is used for
multiple buffering of displays and for routing pixels of individual
displays to each of several possible LUVO's in the system.

An additional feature of the XBS is the hardware fill option. This
-i1s a special digital circuit in the XBS which latches on when a single
pixel in a specific bit plane is detected and remains on until another
single pixel in the same bit plane is detected. Thus, this feature
allows the flat shading of large areas of the screen at video rates at
the cost of writing only a few pixels, i.e., the writing of the boundary
of the area to be shaded.

The implementation of this option is as follows. The first eight
input bits (bits 0-7) of the XBS are also connected to the last eight
input bits (bits 24-31) of the XBS. When a user wishes to apply

- 17 -

hardware fill to an object in the display, he/she must do two things:
draw the boundary of the object into one or more of the first eight bits
of the display memory (RED card) and connect the particular output bit
of the XBS to which that bit is going to contribute to the corresponding
input bit (24-31) of the XBS in which the outline of the object was
drawn. Thus for example, if one wishes to fill the runway of an EADI
display, one can draw the outline of the runway onto bit plane 1 of the
image memory and program the XBS to connect its output bit five
(arbitrary for this example but color map dependent in a given
application) to its input bit twenty-four. The result is that when the
left edge of the runway is encountered the hardware fill turns itself on
and remains on until the right edge of the runway passes through the
circuit. Appropriate loading of the color lookup table is necessary to
insure that when the particular bit is on, the desired color is
obtained. This option is used for large area fill at video rates. (It
should be noted that systems with this option do not have a pixel path
between the alpha card in the image memory and the corresponding input
bits into the XBS).

The color lookup table and video output module (LUVO/24) is a
combination memory and digital-to-analog conversion module. The lookup
table portion of the module is a high -speed 24-bit memory with 1024
locations in which a pallete of colors is stored. The memory is dual
ported with one port connected to the video bus and the other to the
system bus. The colors are defined by the user as combinations of red,
green, and blue values. Each component can be defined to an 8-bit
resolution. The colors can be downloaded from the host and placed at a
specific address in the color map. The value of each pixel is used to
index into the lookup table. The particular values of red, green, and
blue stored at this location are then used as the inputs of the
corresponding D/A converters. The lookup table can be operated in two
modes, full color and pseudo color. In full color mode, the value of
the pixel arriving from the red, green, and blue cards are treated as
three independent addresses into the red, green, and blue color maps.

- 18 -

In pséudo color mode, the value of the specified pseudo color channel
pixel is replicated to the inputs of the other two non-specified
channels. Therefore in pseudo color, all three color locations are at
the same address whereas in full color mode, all three color locations
can be at different addresses.

The video output module is a three-channel digital to analog
converter which receives red, green, and blue data from the lookup table
and converts them to RS-170 or RS-343A analog video signals. The
eight-bit DAC's can operate at 40 MHz to support the required pixel data
rate of 1024x1024 displays.

The elements of the SAB's ADAGE 3000 PDG are summarized in Table
2-1.

2.2 Software Configuration

The software environment of SAB's display system is distributed
between the host and the PDG. Host based software subsystems include
SMP, SOLID 3000, the FORTRAN-based interface routines developed by RTI,
and the FORTRAN runtime environment provided by the VMS operating
system. PDG-based software subsystems are the SOLID-3000 supporting
microcode and the graphics display lists developed by RTI. The
VAX-11/785 operates under the VMS Version 4.2 operating system. The
ADAGE 3000 PDG operates under SOLID 3000/16M Version 1.0. Also
available in SAB's display system is an IDL2 compiler for the ADAGE.
However, IDL2 is not used in this application.

- 19 -

Table 2-1.

SAB's ADAGE 3000 Configuration

MODULE qQTY DESCRIPTION

CB-24 1 Twenty-four slot card cage with
power supply

IF/FBC 1 DMA interface and Frame Buffer
Controlier

BPS-256 1 Bipolar microprocessor and
sequencer

MCM4 2 Microcode Memory
(4 KW, 64 bits per word)

MA1024/D 1 MuTtiplier/Accumulator with
Perspective divide option

SR8 2 Static Ram memory
(8 KW, 32 bits per word)

GM256 3 Graphic Memories
(512x512x8 or 1024x1024x2 each)

XBS-34/F 1 Cross-Bar Switch with Hardware
Fill Option

LUVO-24/HS 1 Look-up Table and Video Ouput
module

MPC/32 1 Muitifunction Peripheral
Controller

Js3 1 Joystick

- 20 -

2.2.1 Host-based Software.- The function of the host-based software
is to enable the user to build new models and assemblies, support
editing of existing models and assemblies, and support interactions with
the PDG. The software suite in the host consists of SMP, SOLID 3000,
the RTI-developed interfaces between SMP and the PDG software, and the
FORTRAN runtime system.

2.2.1.1 Solid Modeling Program: The Solid Modeling Program
developed by Computer Sciences Corporation for NASA's Systems and
Analysis Branch is a comprehensive software system that allows a user to
create and modify complex three-dimensional models built up from
three-dimensional "primitivé" parts. SMP has both keyboard-based and
graphic-based model editors as well as a variety of rendering methods to
allow users to observe the results of their modeling. The completed
model can be stored in several formats, of which most are compatible
with other graphics-related software.

A solid model generated by SMP (Ref. 1) is the result of an
aggregate of geometric modeling primitives available to the user. These
modeling primitiveé fall into five categories: basic, swept, Boolean,
external, and assemblies. For a description of each category see pages
6 through 34 of reference 1. The basic modeling primitives currently
available in SMP are: "boxes," "cones," "spheres," "paraboloids,"
"tori," and "trusses." Each of these are complietely defined through
dimension and construction parameters. The user can generate additional
shapes by varying the construction attributes of certain of the
primitives.

According to reference 1, “"the SMP software is structured as a
hierarchy with each level being associated with a set of program
commands. The system is menu and command driven with online help
facility available at each level." The highest level of user interaction

- 21 -

is the command level which allows the user to input an existing model
(READ), output a solid model (WRITE), modify the solid model by
performing basic editing operation on its primitives (EDIT), display the
solid model (DISPLAY), and perform 1imited mass property analysis and
dimensioning on the solid model (MISCELLANEOUS). A command Tevel may
contain one or more command sublevels. A description of the available
sublevels and their relationships is presented in Table 4 of the cited
reference.

In addition to the geometry editor available as a command level,
SMP provides the user with a graphics editor as a sublevel of the
DISPLAY command which "allows manipulation of the model parts through
direct interaction between the two dimensional (2-D) projection of the
model on the screen and a graphics input device." (Ref. 1).

2.2.1.2 SOLID 3000: SOLID 3000 (Ref. 4) is a package of
FORTRAN-callable microcode routines developed by ADAGE, Inc. for the
ADAGE 3000 PDG. The microcode routines generate line and shaded (flat
and smooth) surface display of polygonal and mesh-structured solid
modeling data. The package also provides FORTRAN and microcode routines
to support communications between the host and the ADAGE 3000 PDG.
SOLID 3000 microcode routines are generated by the ICROSS microcode
compiler.

The SOLID 3000 system depends heavily on FORTRAN applications
programs to set display attributes (such as color, light, and viewport),
and to send model data (such as a mesh of x, y, and z coordinates or a
string of text) to the SOLID 3000 microcode through the FORTRAN
interface routines. According to reference 4 since "SOLID 3000 performs
z-buffered display processing, data and attributes can be sent from the
host in any order and images can be created with any amount or mixture
of data, number of viewports, light sources, etc.”

- 22 -

There are two versions of SOLID 3000, SOLID 16M AND SOLID 64K which
support full and false color images, respectively. SOLID 16M requires
24 bits of image memory (red, green, and blue boards) which provide over
16 million colors whereas SOLID 64K requires 16 bits of image memory (9
bits of hue and 7 bits of intensity) which provide over 64 K colors. A
16-bit z-buffer is used by both configurations. In addition, SOLID 16M
has an 8-bit coverage buffer for image enhancements such as
anti-aliasing, translucency, and texture mapping.

SOLID 16M supports wireframe as well as flat and smooth (Gouraud
and Phong) shaded image rendering with/without anti-aliasing as well as
with other image enhancing features such as realistic translucency and
texture mapping. In addition, the latest version of SOLID 3000 can
support transformations, picking, instancing, cutting, and animation
playback.

SOLID 3000 uses a left handed coordinate system (+x to the right,
+y up, and +z into the screen) with the origin at the center of the
screen. SOLID 16M supports full color and pseudo color display
capabilities. Another, very useful, feature of SOLID 3000 is its use of
different BPS sender ID's for image writes and z-buffer writes. This
allows the application programmer to protect selected bit planes in the
image.

A detailed description of these features as well as the FORTRAN
interface routines available in SOLID is found in reference 4.

- 23 -

2.2.1.3 RTI Interface routines: Because SMP was developed to
operate in a display system that contained a variety of graphics
rendering devices (display terminals), its design emphasized the use of
device independent routines for the functions of SMP and a standard
interface to the display terminals. This allowed almost all the code in
SMP to use an identical subroutine interface to the graphics rendering
device (terminals), no matter which device was selected by the user. In
some instances, this standard interface used the Terminal Control System
(TCS) subset of the Tektronix PLOT10 software package.

As will be seen in the next section, RTI integrated SMP with the
ADAGE 3000 in two phases. In the Phase I version (the ADAGE used as a
frame buffer) RTI made use of this device independent scheme,
essentially adding another device to the SMP software system. However,
a Plotl0-like set of subroutines was not available for the RDS-3000.
Therefore, to implement the interface to the device independent
functions (such as erase, draw line, draw cursor, etc.), RTI wrote a set
of FORTRAN subroutines which implemented the ADAGE interface routines
needed by SMP. These subroutines are: ADDRWS, ADLINE, ADMOVA, ADMOVS,
ADVUPR, ADWIND, CLIP2D, ENDPT_CODE, and LOGIC_INTERSECT.

In the Phase II version (the ADAGE used as a PDG) RTI interfaced
SMP to the SOLID-3000 subroutine package in the host computer. The
SOLID subroutines then communicate with the ADAGE PDG. The
RTI-developed interface routines are: GET_SLDCOLR, SLDSMOOTH, SODRWA,
SODRWS, SOMOVA, SOMOVS, SEND_2 SOLID, and SLDZWIND.

In addition, certain general purpose interface subroutines were
needed to control the frame buffer controller, load the cursor
registers, and load the color map. These subroutines are: FBC, CURSLD,
and CMAPLD.

- 24 -

Listings of the RTI-developed subroutines are included in Appendix

2.2.2 PDG-based Software.- The two items that together constitute
the software in the ADAGE RDS-3000 PDG are the ADAGE-supplied microcode
and the instructions which the application program (SMP/SOLID system)
sends to the ADAGE.

2.2.2.1 ADAGE-supplied microcode: The ADAGE-supplied microcode
support routines reside in two MCM4 microcode memory modules which
together have a capacity of 8KW of 64-bit horizontal microcode words.
These routines are invoked when instructions and data, sent by the
host-resident portion of SMP, call for a particular type of rendering to
be done. Control is then passed to the microcode routine and the object
is rendered into the image memory. The microcode used in the ADAGE is
unmodified.

2.2.2.2 Instructions and data sent to the ADAGE at runtime: These
instructions and data are created by applications program calls to the
SOLID 3000 FORTRAN library at runtime. When the call occurs during the
running of the applications program a display list is created,
initialized, built; and sent to the ADAGE SR8 memory module. These
instructions and data then cause the image to be rendered in the manner
described in the preceding section.

- 25 -

3.0 SMP/ADAGE 3000 PDG INTEGRATION

As stated in the introduction, the overall objective of the work
described in this report has been to incorporate the sophisticated
graphics generation capabilities of the ADAGE 3000 PDG into the
operation of SMP. To accomplish this objective it was recognized early
in the design process that the functional modules of SMP would have to
be distributed between the host computer and the ADAGE PDG. The
resulting graphics software system would make full use of the resources
of the host and the PDG to improve user/SMP interactions in the model
rendering area. This would provide the capability for rapidly creating
solid 3-D models and viewing them in different orientations. This would
also allow the users to evaluate more options in the configuration of a
model. Thus, for example, the software system could be used to evaluate
proposed space station configurations and studying the effect of space
station's orientation and orbit position on its intended operations.

3.1 Overview

This section provides a general description of the SMP/ADAGE 3000
PDG integration. The method of integration evolved from issues relating
to how the host and the PDG can interact as well as from the
comprehensiveness of the software interfaces required to implement the
access of the ADAGE 3000 rendering functions by the SMP modules.

- 26 -

3.1.1 VAX/ADAGE 3000 Interactions. - From a hardware standpoint,
interactions between the host computer and the PDG occur through a
two-card set, one located in the host and the other in the PDG. In the
host side of the interface, the module is an IK11/B ADAGE interface card
which is Tocated in the VAX-11/785 Unibus(TM). In the PDG side of the
interface, the module is an IF interface card which shares the same
board with the frame buffer controller (FBC) module and which is located
in the ADAGE system bus. The IK11/B and the IF perform the necessary
hardware protocol to support DMA reads and writes from and to the ADAGE
3000. The IK11/B can select any address within the ADAGE address space.
Read and write requests are arbitrated by the main ADAGE bus arbitration
logic on a manufacturer-set priority basis. This technique avoids bus
contention problems during host/PDG interactions.

3.2 Design

The basic design goal was to make the rendering capabilities of the
ADAGE PDG fully available to SMP while maintaining, to the largest
possible extent, SMP's basic software architecture and user interface.
Therefore, design issues revolved primarily around what language and
what level of software interface to use to implement the SMP/ADAGE PDG
communications and interactions.

SMP is a comprehensive and sophisticated software system structured
hierarchically with many levels of commands, menus, and submenus (Ref.
1 and Appendix A). On the other hand, because the ADAGE 3000 PDG is a
very powerful and flexible graphics system, application programs
developed for its use tend to be complex (Refs. 4 and 5). Because of
these considerations, the integration of SMP with the ADAGE PDG was done
in two phases. In phase I, the ADAGE 3000 would be used solely as a
frame buffer. In phase II, the ADAGE 3000 would be used as a graphics
computer. This approach would allow RTI to acquire extensive

- 27 -

operational experience with SMP (during phase I) and to use this
experience as well as its experience with the ADAGE graphics languages
to keep the complexity of the implementation of the interface in phase
II to a minimum.

The phase I configuration would only use the frame buffer and video
stream portion of the ADAGE 3000 PDG, without using the local processing
capabilities of the PDG. 1In this configuration, SMP would perform its
traditional role of supporting the definition and display of models. 1In
particular, the display function would be done by SMP's graphics
rendering algorithms in the same way as they are done for the other
graphics devices that SMP supports. In order to display the
SMP-generated images, this approach would require that only the lowest
level routines in SMP's device independent code (primarily those in
source file DIDDGS.FOR) be modified to include pixel writes to the ADAGE
frame buffer. This configuration also would require that SMP configure
the elements of the ADAGE 3000 PDG's digital video stream, i.e., the
frame buffer controller, the cross bar switch, channel cross bar, and
the color look up tables. Additional subroutines would be needed to
accomplish these controlling functions. '

The phase II configuration would use the full capabilities of the
ADAGE 3000 PDG. In this configuration, SMP would also perform its
traditional role with respect to model generation but its display
functions would be distributed between itself and the PDG. User
interactions would be preserved in SMP and any additional interaction
resulting from the distributed display functions would also be
maintained within SMP. Software interfaces would be needed to match the
data and command conventions in SMP with those in the application
programs written in the PDG graphics language to render the images
defined through SMP. Examples of data that would be passed between SMP
and the PDG application programs running in the BPS high-speed processor
are endpoints and shades of lines and vertices, shades and normals of

- 28 -

polygons, hidden surface removal coverage data, transformation
coefficients, etc. It should be noted that this configuration would
also require the implementation of subroutines to control the
configuration of the PDG's video stream modules.

3.3 Implementation

The original version of SMP used in SAB's display system (PRIME 850
interconnected to a variety of display devices) was written in ANSII-77
FORTRAN with PRIME extensions to FORTRAN and PRIMOS operating system
calls. RTI modified this version of SMP and installed it in its display
system (VAX-11/750 operating under the VMS operating system and
interconnected with an ADAGE 3000 PDG). Since the original SAB's
ADAGE-based target display system was to be hosted in the PRIME, the
project plan initially called for the development work to be done in
RTI's display system and for porting the resulting display system
software to SAB's PRIME/ADAGE display system. This plan would allow RTI
to develop the software system while SAB personnel, with some
consultation with RTI, developed the PRIME/ADAGE interface microcode.

In the Spring of 1985 it was learned that SAB's VAX-11/785 would be
available earlier than expected. Consequently, the target display
system became a VAX/ADAGE one. This development made the initial
adaptation of SMP to RTI's VAX a very significant endeavor and also made
the porting of the resulting software system to SAB a more
straightforward process. The concerns shifted from dealing with
significant differences between operating systems (VMS versus PRIMOS) to
dealing with differences between different versions of the same
operating system (VMS Vers. 3.4 at RTI versus VMS Vers. 4.2 at SAB).
It should be noted that, in parallel with the RTI effort, SAB modified
and enhanced the original version of SMP to operate in the VAX
environment. However, since this version did not become available to
RTI until late into the contract, it was decided to proceed with the
version of SMP originally adapted to the VAX by RTI.

- 29 -

3.3.1 Phase I Integration. - Phase I integration consisted of
implementing a "Tektronix's Plotl10-like" interface to the ADAGE. This
needed to be done since ADAGE does not provide an interface of this
nature for its RDS 3000. Initially, this appeared to be a
straightforward task. However, this involved implementing many

non-trivial functions such as two dimensional object clipping,
windowing, viewporting, etc. These are features supported by all of the
display devices with which SMP interacts. The phase I implementation
does not support the drawing of text on the graphics screen (in contrast
to other SMP/display device implementations). This feature was not
implemented because drawing characters on on a pixel by pixel basis from
the host into the ADAGE's frame buffer would be an extremely time
consuming operation. Text prompts and menus appear on the user's
computer terminal.

To implement the Phasé I configuration several of SMP's "device
independent" support routines were modified. These include: GDINIT,
CMPRES, DDVTOS, DICOLR, DICTAB, DICURS, DIDRWS, DIDRWW, DIDSHS, DIDSHW,
DIDUMP, DIERAS, DIMOVS, DIMOVW, DIPAUS, DISCTE, DIVUPR, DIWIND, LOGO,
TITLE, and WPXLA.

When the ADAGE frame buffer is selected as the display device, the
phase I software is invoked as follows:

1) GDINIT initializes the VAX/ADAGE communications channel, the
frame buffer controller to 512 X 512 60 Hz repeat field, the
crossbar switch to straight through with overlay defeat, the
channel crossbar switch to pseudocolor off the red memory
card, the write and erase masks to select all image bits, the
color map to the standard SMP color map, the cursor register
to display a tracking cross (when enabled), and erases the

- 30 -

screen.

2) CMPRES sets the computation resolution for the ADAGE to 512 X
512.

3) DDVTOS converts virtual coordinates [0, 1] into ADAGE screen
coordinates.

4) DICOLR sets the current foreground color.
5) DICTAB sends the selected color table to the ADAGE color map.
6) DICURS prompts for and obtains an X, Y specification from the

user. See section 4.1 for a more complete description of the
user interface to the cursor routine.

In the subroutines which implement line drawing, modifications took
place to the following routines:

7) DIDRWS draws into the ADAGE frame buffer memory using the
virtual coordinate system [0, 1].

8) DIDRWW draws into the ADAGE frame buffer memory using world
(model) coordinates.

9) DIDSHS draws dashed lines into the ADAGE frame buffer memory
using the virtual coordinate system [0, 1].

10) DIDSHW draws dashed lines into the ADAGE frame buffer memory
using world (model) coordinates.

- 31 -

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

DIMOVS performs a move by setting the "current location" using
the virtual coordinate system [0, 1].

DIMOV performs a move by setting the "current location" using
world (model) coordinates.

DIDUMP sends the contents of the display command buffer to the
ADAGE display.

DIERAS clears the ADAGE memory. It is used to erase whatever
display has been previously written into memory.

DIPAUS prompts the user for a {CR> in order to be able to
continue program execution.

DISCTE sets the value of the “current color" and also sends
this value to the specified ADAGE color map location.

DIVUPR defines a rectangular screen-coordinate viewport from
user-specified virtual coordinates [0, 1].

DIWIND defines a rectangular window in the world (model)
coordinate system.

LOGO writes the logo "SMP/LARC" in the lower right corner of
the frame buffer.

TITLE writes a title page when SMP is initially run containing
"SMP" in large characters and credits for software authorship.

WPXLA is a utility routine for writing a rectangular array of
pixels to the display.

- 32 -

In addition, the phase I configuration required the implementation
of the following group of FORTRAN-based, ADAGE support routines:
ADDRWA, ADDRWS, ADLINE, ADMOVA, ADMOVS, ADVUPR, ADWIND, CLIP2D,
ENDPT_CODE, LOGIC_INTERSECT, CMPALD, CURSLD, FBC and XBS.

Brief descriptions of these routines follow:

1)

2)

3)

4)

5)

6)

7)

8)

ADDRWA draws solid or dashed lines in floating point world
coordinates. Windowing, viewporting and clipping are
performed.

ADDRWS draws solid or dashed lines in integer screen
coordinates. Clipping is performed.

ADLINE performs line drawing by writing pixels to the ADAGE
frame buffer using a Bresenham-]ike'algorithm.

ADMOVA performs a logical “move" in floating point worid
coordinates. Windowing and viewporting are performed.

ADMOVS performs a logical "move" in integer screen
coordinates.

ADVUPR defines a rectangular screen-coordinate viewport from
user-specified screen coordinates.

ADWIND defines a rectangular window in world coordinates.

CLIP2D performs the Sutherland-Cohen 2D Tine clipping
algorithm.

- 33 -

9) ENDPT_CODE assigns clipping codes to end points. It is used
by the Sutherland-Cohen 2D line clipping algorithm.

10) LOGIC_INTERSECT logically intersects the clipping codes of two
points. It is used by the Sutherland-Cohen 2D line clipping
algorithm.

11) CMPALD loads a color map obtained from a disk file into the
ADAGE color look up table.

12) CURSLD loads a cursor definition (a tracking cross) from a
disk file into the ADAGE cursor registers.

13) FBC loads user-specified data into the ADAGE frame buffer
controller registers.

14) XBS loads user-specified data into the ADAGE crossbar switch
registers.

The phase I impiementation of the SMP/ADAGE integration kept the
changes to the code in a few tightly-controlled routines. Therefore,
the impact on the user's interactions with SMP is minimal as will be
seen in the USER'S GUIDE section of this report. The chief difference
to the user is that the text of the menus appears on the terminal that
the user is logged onto, while the graphics appear on the ADAGE monitor.

Implementation of the phase I configuration of the SMP/ADAGE
integration served its intended purpose well. It provided enhanced
raster graphics display capabilities to SMP and improved display
generation speed. It also served to familiarize RTI with the general
internal structure of SMP.

- 34 -

3.3.2 Phase II Integration. - The phase II integration places the
rendering of text, lines, flat-shaded surfaces, and smooth-shaded
surfaces in the ADAGE. The high-speed 32-bit microprogrammed BPS-32
processor's tightly-coupled relationship to the ADAGE'S image memory
allows it to render images at a much greater speed than host-drawn
pixels. This speedup is the order of 10 to 100 times the rate that the
VAX 11/785 can draw the pixels over the DMA interface. The speedup

factor is a function of what particular objects are being viewed, what
view of the objects is being rendered, whether the viewed objects are
requested to be rendered as lines, flat-shaded surfaces, or
smooth-shaded surfaces, and whether anti-aliasing has been requested.
This speedup in rendering time should greatly enhance the user-SMP
interaction rate.

In order for the ADAGE PDG to perform the functions identified
above at a significant speedup, it must be programmed very efficiently
using one of the graphics language available for the PDG. In addition
to the programming task itself, this approach requires a matching of the
the data structures describing the model in SMP with those assumed by
the graphics language in the PDG. Therefore, it is also required to
Tocate the data structures which are accessed by SMP and properly format
them for SOLID 3000 so that the model description can be sent to the
ADAGE for rendering. Consequently, the implementation of the phase II
configuration was significantly more complex than that of the phase I
configuration. In phase I the interface to SMP was clearly defined in
isolated sections of code. On the other hand, in phase II the interface
to SMP required detailed knowledge of the internal data structures of
SMP so that the proper information could be located, formatted and sent
to the ADAGE for rendering.

Several candidate graphics languages are available for the task of
rendering objects in the ADAGE PDG. These inciuded the Ikonas Display
Language (IDL), GIA, ICROSS, FSS, and SOLID 3000. Each of these

- 35 -

languages and their associated requirements for interfacing the ADAGE
with SMP has its advantages and disadvantages.

IDL is an assembler-like language which produces opcodes and data
which are interpreted by a microcoded dispatcher running in the ADAGE
PDG. While this system can draw lines and polygons at a high rate of
speed, it leaves the formatting, sending, hand-shaking and timing of the
SMP/ADAGE interaction entirely to the applications programmer.
Furthermore, the Tanguage itself is not very flexible, requiring the
user to resort to writing awkward code to accomplish many simple tasks.
Also, IDL does not have intrinsically built in support for such
necessary graphics tasks as clipping or smooth shading polygons.

GIA and ICROSS are similar C-like languages which generate
microcode for the ADAGE BPS-32 processor using cross compilers running
in the host computer. While these languages can generate images at
acceptable rates on the ADAGE, they both lack a library of basic
functions to perform basic graphics functions. Basically, users are
given access to the entire ADAGE 3000 PDG internal address, register,
and data space and from there on they are on their own. Formatting and
“managing data in the host are also left up to the user as in the case of
IDL. It should be noted that RTI has recently completed the development
of a comprehensive 1library of ICROSS/GIA-based graphics routines. This
package, called RAP, for Real-time Animation Package, provides the user
with a high level interface to the rendering functions of the ADAGE 3000
PDG. Unfortunately, RAP was not available in time for this project.

FSS and SOLID 3000 are both FORTRAN-based libraries of graphhics
routines callable by the user's application program. FSS uses IDL-Tike
code and microcode in the ADAGE PDG; SOLID 3000 uses only microcode in
the ADAGE PDG. This microcode was written specifically for rendering
high quality images in the ADAGE.

- 36 -

Although FSS can perform anti-aliasing, monitor gamma correction,
and z-buffer wire frame, flat and smooth shaded images, it has some
drawbacks which prevented its selection as the graphics language for
this application. A major drawback of FSS with respect to this
application is that its smooth shading method assumes that the ADAGE PDG
video stream is configured in pseudocolor mode. This means that only
512 different distinct colors can be used in smooth shading all of the
objects appearing on the screen at any one time. Another drawback of
FSS is that the FORTRAN library interface is quite intricate. This may
in turn reduce the host processing speed because of the large number of
subroutine and function calls needed to specify what data and opcodes
should be sent to the ADAGE. Also, with such a detailed interface the
potential exists for errors to remain hidden in the developed code.

SOLID 3000 is an ADAGE supported graphics rendering package
intended to provide high quality image rendering. The package is
designed to be called by an application program using a FORTRAN library
call interface. The package supports full color (16 million shades)
line drawing, flat shading of polygons, and smooth shading (Gouraud and
Phong) of polygons with user access to the lighting model parameters.
Additional features of the package include anti-aliasing, displaying of
PDG-resident display lists, z-buffered rendering, and monitor gamma
correction. A potentially important feature of SOLID 3000 is its
ability to overlap the PDG's rendering processing with the host's
processing. This could be used in the future to further enhance the
speed of the SMP/ADAGE software system.

SOLID 3000 offers an additional important feature for this
application. The user's application interface to SOLID 3000 is less
complex than to FSS. Two or three function calls can render a
complicated object after a similar number of initialization calls.

- 37 -

Based on the review of the graphics languages identified above and
the requirements of the application, RTI recommended SOLID 3000 as the
language of choice for the integration of the ADAGE PDG rendering
capabilities into SMP. Without question, SOLID 3000 provides the best
collection of features required to render images in the ADAGE. The
results obtained in both image quality and speed of rendering these
images substantiates the choice of SOLID 3000 as the method to use for
this application. Side by side speed comparisons of rendering the same
parts using both the ADAGE/SOLID 3000 and an AED display terminal showed
a clear speed advantage using the ADAGE.

Thus, in the Phase II version of SMP (the ADAGE used as a PDG) RTI
interfaced SMP to the SOLID-3000 subroutine package in the host
computer. The SOLID subroutines then provide the communication with the
ADAGE PDG. The RTI-developed interface routines are: GET_SLD_COLR,
SLDSMOOTH, SODRWA, SODRWS, SOMOVA, SOMOVS, SEND_ 2 _SOLID, and SLDZWIND.

Brief descriptions of these routines follow:

1) GET_SLD COLR converts SMP color numbers 0-7 into the
equivalent colors in the SOLID 3000 full color representation.

2) SLDSMOOTH smooth shades one part. This is done by calculating
normals at all vertices in the part and then sending the
vertices' coordinates and normals to the ADAGE along with a
request to perform smooth shading of the part.

3) SODRWA draws solid lines in floating point world coordinates.
Windowing, viewporting and clipping are performed.

- 38 -

4) SODRWS draws solid lines in integer screen coordinates.
Clipping is performed.

5) SOMOVA performs a logical "move" in floating point world
coordinates. Windowing and viewporting are performed.

6) SOMOVS performs a logical "move" in integer screen
coordinates.

7) SEND_2 _SOLID sends one face of a polygon to the ADAGE 3000.
The normal to this face is calculated and also sent to the
ADAGE. Windowing and viewporting are performed.

8) SLDZWIND stores Z-window specifications in a FORTRAN COMMON
area in world coordinates.

The RTI-modified SMP subroutines are identified in Appendix B.
With the exception of subroutine STRMDL, the modifications to these
routines are relatively minor and essentially consist of calls to SOLID
3000 subroutines. The meaning and use of the SOLID 3000 routines are
documented in the SOLID 3000 Reference manual (Ref. 4). The
RTI-modified and RTI-added code has been carefully documented in SMP's
FORTRAN source with bracketed comments, "CSLD:" and "CSLDEND" for SMP
Phase II; “CADG:" and "CADGEND" for SMP Phase I code changes.
Modifications to subroutine STRMDL are described in Appendix H.

-39 -

4 USER'S GUIDE

This chapter describes the differences in the user's interactions
with SMP between the original version of SMP and the two versions which
render models on the ADAGE 3000. The differences are minimal in scope.
Therefore, an experienced user of SMP should have no difficulty in
learning to use the new features in the new versions. The changes that
affect the user most are the prompts and responses in the area of
rendering flat and smooth shaded objects in the phase II (ADAGE/SOLID)
version of SMP.

4.1 Changes To SMP Common To Both Phase I And Phase II

This section details changes that affect the user's interactions
with SMP and which are common to both Phase I (ADAGE 3000 PDG used as a
frame buffer) and Phase II (ADAGE 3000 PDG used as a graphics computer).

A key difference between the original version of SMP and both ADAGE
versions of SMP is that when a character string is to be "printed" on
the display it appears on the user's terminal instead. This was done
because implementing the drawing of characters on the graphics display
pixel by pixel could slow user interaction rates with SMP to an
unacceptable rate.

- 40 -

Another difference is found in the graphics editor, in that, for
the zoom function, and mass property routines, the user must specify
locations on the screen. The method of specification is dependent upon
the particular graphics display used, although some type of user control
of a cursor is the most often used method. The ADAGE/SMP cursor
location function assumes no particular user interaction device.
However, the user interaction function has been simulated using the
terminal keyboard. The user is prompted for an X, Y pair of screen
coordinates and the cursor is then moved to that location on the screen.
The user can continue to specify X, Y pairs until the cursor is Tocated
in the desired location. The user then indicates that this is the
location to be accepted by SMP by typing the character cntl-Z. This
action causes SMP to save the last X, Y pair as the selected screen
location and also to exit the loop which prompts the user for further X,
Y pairs.

This method of screen location specification is to be replaced with
a more natural method of user interaction, such as a data tablet, a
joystick, or a mouse, when it is procured, installed, and interfaced by
SAB personnel. The purpose of including the present method of
interaction using the keyboard was to be able to exercise SMP's graphics
editor, zoom, and mass property code. An example of this method of
screen location specification follows:

ENTER CURSOR X, Y LOCATION (~Z TO CONFIRM):

SCREEN IS 0-511 IN X AND Y. Y IS UPRIGHT

100,200 {---[user's response]
[the cursor is moved to (100, 200) on the graphics display]

ENTER CURSOR X, Y LOCATION (~Z TO CONFIRM):

SCREEN IS 0-511 IN X AND Y. Y IS UPRIGHT
150,200 {---[user's response]

- 41 -

[the cursor is moved to (150, 200) on the graphics display]

ENTER CURSOR X, Y LOCATION (“Z TO CONFIRM):
SCREEN IS 0-511 IN X AND Y. Y IS UPRIGHT
entl-Z {---[user's response]

The Tocation (150, 200) is then stored as the user's location
specification.

4,2 Phase I

The differences in user interaction between the original SMP and
the Phase I version of SMP are minimal. This is due to the fact that
the Phase I version of SMP performs all of the calculations for
rendering and shading for raster devices in the host computer as it did
in the original version. The interface between the ADAGE and SMP is
restricted to being in the so-called "device independent" routines.
These routines are organized in such a way as to make clear what code
needed to be modified to support a particular display construct, such as
erase, draw line, etc. After these basic constructs had been provided,
the ADAGE then presented the same standardized interface to SMP.

The following sections deal with the exact differences that users
will see when using the new versions of SMP.
If in response to the prompt:
ENTER DEVICE CODE

1 = TEKTRONIX 401X
2 = AED 512

- 42 -

]

AED 767

ISC 8001R

ADAGE 3000

ADAGE 3000/SOLID

[)T 5 2 B~ R VA
n

the user selects

5 - ADAGE 3000

a new message appears stating:

ADAGE RDS-3000 FRAME BUFFER INTERFACE
DEVELOPED BY

RESEARCH TRIANGLE INSTITUTE
RESEARCH TRIANGLE PARK, NC

4.3 Phase 11

The Phase II version of SMP/ADAGE has more changes than the Phase I
version. They are concentrated mainly in the area relating to flat and
smooth shading of models.

If in response to the prompt:

ENTER DEVICE CODE
1 = TEKTRONIX 401X
2 = AED 512
3 = AED 767

- 43 -

ISC 8001R
ADAGE 3000
ADAGE 3000/SOLID

[o TN S) B =)
[{] "

the user responds with:
6 - ADAGE 3000/SOLID

device 6 is selected and a new message (emphasizing that the ADAGE is a
Programmable Display Generator) appears stating:

ADAGE RDS-3000 PDG INTERFACE
DEVELOPED BY

RESEARCH TRIANGLE INSTITUTE
RESEARCH TRIANGLE PARK, NC

Two new prompts are issued in both the display command's "menu"
command and in the alpha editor's “print part definition and display
part" command. The detailed new user interactions are shown in Figures
4-1 and 4-2.

The prompts to the user in regard to a display monitor's gamma in
Figures 4-1 and 4-2 represent a new capability. A display monitor's
gamma is a specification of the relationship between the brightness of
an area on the screen and the voltage needed at the input of the monitor
to obtain that brightness. The monitor's gamma is used in calculating
the brightness of the pixels used to draw an anti-aliased line and thus
affects the appearance of anti-aliased lines and edges of polygons in
the image on the display monitor. Typically, high resolution, RGB color
monitors have a gamma near 1.8. To obtain the correct gamma value for a
particular monitor, the user should try different values near 1.8 while

- 44 -

$ R SMP
ENTER DEVICE CODE
TEKTRONIX 401X
AED 512
AED 767
ISC 8001R
ADAGE 3000
ADAGE 3000/SOLID

S WM =

(-mmmmmm A part is either read or created here

ENTER COMMAND
R - READ A PARTS OR GEOMETRY FILE
- EDIT A PARTS FILE
- DISPLAY A GEOMETRY FILE
- EVALUATE MASS PROPERTIES
WRITE A PARTS OR GEOMETRY FILE
- HELP (DOCUMENTATION)
- QUIT
- EXIT

O II=0vOmMm
]

ENTER DISPLAY COMMAND)
R - RESET VIEWING OPTIONS
- VIEWING OPTION MENU
- DRAW MODEL
- DISPLAY FOUR VIEWS OF MODEL
- ZOOM
HIDDEN SURFACE
- GRAPHICS EDITOR
- HELP (DOCUMENTATION)
- EXIT DISPLAY
- EXIT PROGRAM

XOTITOOWVNN—-HTOX
1

Figure 4-1. New User Prompts in MENU Command

-+45 -

2.0

DESIGNATE THE "PARTS" TO DISPLAY
"*" INDICATES ALL PARTS

"," IS DELIMITER BETWEEN PARTS
"-" INDICATES A RANGE OF PARTS

ENTER "Y" TO CHANGE THE
VIEWING TRANSFORMATION

ENTER "Y" TO CHANGE THE
VIEWING OPTIONS

ENTER BACK FACE CULL OPTION
-1 - NO CULL

0 - HIDE BACK FACES

1 - DASH BACK FACES

ENTER "Y" FOR PART LABELS
OR "N" FOR NO PART LABELS

ENTER "Y" FOR ELEMENT SHRINKING
OR "N" FOR NO ELEMENT SHRINKING

ENTER "Y" FOR ANTI-ALIASING
ENTER MONITOR GAMMA (1.8 TYPICAL):

Figure 4-1. Concluded.

- 46 -

New prompts in
SMP Phase II

$ R SMP
ENTER DEVICE CODE
TEKTRONIX 401X
AED 512
AED 767
ISC 8001R
ADAGE 3000
ADAGE 3000/SOLID

SOV WN =
|1 I O | S [N | I 1

ENTER COMMAND
- READ A PARTS OR GEOMETRY FILE
- EDIT A PARTS FILE
- DISPLAY A GEOMETRY FILE
- EVALUATE MASS -PROPERTIES
WRITE A PARTS OR GEOMETRY FILE
- HELP (DOCUMENTATION)
- QUIT
- EXIT

MO IL=E 0O m=o
[}

ENTER EDITOR COMMAND)>
A - ADD PART
- MODIFY PART
- DELETE PART
- PRINT PARTS
- COPY AN EXISTING PART
RESTORE A DELETED PART
- HELP (DOCUMENTATION)
- EXIT EDITOR
- EXIT PROGRAM

HOILXVO VO
!

ENTER PART NAME - BOX(B), SPHERE(S), CONE(C),
PARABOLOID(P), TORUS(T), TRANSLATIONAL-SWEEP(N),
ROTATIONAL-SWEEP(R), ASSEMBLY(A)

BOOLEAN(E), HELP(H), OR QUIT(Q)

ENTER PART DESCRIPTION - 80 CHARACTERS MAXIMUM
ENTER LENGTH(X AXIS), HEIGHT(Y AXIS),AND WIDTH(Z AXIS)(ALL > 0)

111 ~
ENTER INTEGER COLOR CODE (1..7)

Figure 4-2. New User Prompts in Alpha Editor

2.0

PRINT PART DEFINITION

PRINT PART DEFINITION AND DISPLAY PART
CHANGE PART DESCRIPTION

CHANGE PART SPECIFICATION

CHANGE PART TRANSFORMATION

DETERMINE ORDER INDEPENDENT ROTATION ANGLES
CHANGE PART COLOR

TO RETURN TO EDITOR (PART OK)

ENTER:

QN WM

DESIGNATE THE "PARTS" TO DISPLAY
"** INDICATES ALL PARTS

“," IS DELIMITER BETWEEN PARTS
"~" INDICATES A RANGE OF PARTS

ENTER "Y" TO CHANGE THE
VIEWING TRANSFORMATION

ENTER "Y" TO CHANGE THE
VIEWING OPTIONS

ENTER BACK FACE CULL OPTION
-1 - NO CULL

0 - HIDE BACK FACES

1 - DASH BACK FACES

ENTER "Y" FOR PART LABELS
OR “N" FOR NO PART LABELS

ENTER "Y" FOR ELEMENT SHRINKING
OR "N" FOR NO ELEMENT SHRINKING

ENTER "Y" FOR ANTI-ALIASING
New prompts in
ENTER MONITOR GAMMA (1.8 TYPICAL): SMP Phase II

Figure 4-2. Concluded.

- 48 -

observing nearly horizontal or vertical lines. When these 1ines lose
their "rope-like," "knotted" appearance, the gamma value is correctly
set.

In the area of hidden surface display, the new user prompts and
appropriate form of responses is given in Figure 4-3. Note that when
either the HIDDEN LINE or BOTH option is selected a new message appears
stating that hidden surface removal will be performed instead. This is
because ADAGE's SOLID 3000 package does not support hidden line removal,
a display technique which was often the only type of display that could
show depth information on vector or storage-tube displays. Raster
displays can effectively display hidden surfaces so the hidden line
removal function is not as important for these displays.

Also note that, as in the original SMP, there are two SHADING
OPTIONS, flat and smooth (Gouraud) shading. However, within the smooth
option, there are new prompts asociated with the 1ighting model,
antialiasing, and monitor gamma correction. The lighting model used by
the SOLID 3000 system consists of a fixed light source whose
characteristics are defined by the sum of ambient (AMB), diffused (DIF),
and reflected (REF) components. Each of these components can be
specified in the range from zero (0) to 32767 which corresponds in the
lighting model to a fractional value between zero (0) and one (1). The
zero value represents black whereas one represents the full intensity of
each part's color. In addition to brightness, the reflected component
of the light has an exponent specification which determines the visual
characteristics (appearance) of highlights on the parts. Although there
is no range specified for this parameter, it is observed that small
values (<5) produce images with large, diffused highlights whereas large
values (D15) produce images with small, concentrated highlights. While
this description provides a basic understanding of the lighting model

- 49 -

$ R SMP

ENTER DEVICE CODE

1 = TEKTRONIX 401X

AED 512
AED 767
ISC 8001R
ADAGE 3000
ADAGE 3000/SOLID

S PHWMN
now ouwounonon

{ommmmm- A part is either read or created here

ENTER COMMAND
R - READ A PARTS OR GEOMETRY FILE
- EDIT A PARTS FILE
- DISPLAY A GEOMETRY FILE
- EVALUATE MASS PROPERTIES
WRITE A PARTS OR GEOMETRY FILE
- HELP (DOCUMENTATION)
- QUIT
- EXIT

XOXII=EZ0o0Om
[}

ENTER DISPLAY COMMAND)

- RESET VIEWING OPTIONS
- VIEWING OPTION MENU

- DRAW MODEL

- DISPLAY FOUR VIEWS OF MODEL
- ZOOM

HIDDEN SURFACE

- GRAPHICS EDITOR

- HELP (DOCUMENTATION)
- EXIT DISPLAY

- EXIT PROGRAM

XOILOOWVMN-HOXO
[}

ENTER S - ELIMINATE HIDDEN SURFACE
L - ELIMINATE HIDDEN LINES
B - BOTH (SEPARATE VIEWS)
R - RETURN
L (mmmmmmm - [S or B give the same series of prompts]

Figure 4-3. New User Prompts in Hidden Surface Display

- 50 -

DEVICE 6: S - ELIMINATE HIDDEN SURFACE USED <-- [This message is

ENTER "Y" TO OVERRIDE DEFAULT given when L or
IMAGE DISPLAY OPTIONS , B is answered]
N
ENTER SHADING OPTION
0 - FLAT ELEMENT SHADING
1 - SMOOTH ELEMENT SHADING
1
ENTER Y TO CHANGE SHADING PARAMETERS
Y.

ENTER AMBIENT, DIFFUSE, REFLECTED VALUES OF LIGHT:
(THE SUM OF AMBIENT, DIFFUSE, & REFLECTED SHOULD BE < 32767)
(AMB=6000, DIF=22000, & REF=4000 IS GOOD)
6000,22000,4000
ENTER EXPONENT FOR REFLECTED LIGHT (20 IS GOOD):

20
ANTI-ALIASING? (DEFAULT-NONE)(Y OR N): New prompts in
Y SMP Phase II
ENTER MONITOR GAMMA (1.8 IS TYPICAL):
2.0
PHONG SHADING? (DEFAULT-GOURAUD) (Y OR N):
Y
ENTER BACK FACE CULL OPTION
N - NO BACK FACE CULL
Y - PERFORM BACK FACE CULL
R - RETURN
ENTER "Y" FOR ANTI-ALIASING
Y New prompts in
ENTER MONITOR GAMMA (1.8 TYPICAL): SMP Phase II
2.0

Figure 4-3. Concluded.

- 51 -

used by SOLID 3000, it is noted that perception of the effect of a
lighting model is very subjective. Thus, to obtain the desired effect,
the user might need to iterate on the lighting model parameters. The
SOLID 3000 reference manual (Ref. 4) provides additional information
about the lighting model.

In addition, under phase II, the smooth shading option supports
Phong shading as well as the original Gouraud shading. These shading
methods basically differ in that in Gouraud shading the intensities are
linearly interpolated between values at the edges of the polygons being
rendered whereas in Phong shading the surface normals are interpolated
across the visible span of the polygon being rendered (Ref. 6). As a
result, Phong shading produces more realistic images than Gouraud
shading because highlights of the objects are more faithfully
reproduced. However, the rendering time is longer for Phong shading
than for Gouraud shading in this application.

Another area where a change is seen by the user can occur in the
area where the user is given the option to store an image on disk. A
response of "1" answered to the prompt:

ENTER DISPLAY/DISK IMAGE OPTION
gives the message:

DEVICE 6: IMAGE NOT IN STORABLE FORMAT
The SMP Manual states that storing the image in file SMGG.IMG "...is
most applicable to generating a shaded image for post processing while
working from a non-raster display device." The ADAGE RDS 3000 is a

raster device so this option is not as important as it is to a
non-raster display.

- 52 -

Another minor difference between the original version of SMP and
the Phase II ADAGE version is as follows.

If in response to. the prompt:
ENTER BACK FACE CULL OPTION
the user selects
DASH BACK FACES

the back faces will be drawn as solid lines since ADAGE's rendering
package currently does not directly support dashed lines. The dashed
line feature could be simulated but with an overhead that could
substantially slow the draw time of models using this feature.

It should be noted that there are two features on the PRIME/PRIMOS
version of SMP which are not implemented in the versions of SMP which
RTI ported to the VAX/VMS environment at SAB. These are the interrupt
capability and the HELP facility. However, the lack of these features
does not affect the ability to render images in either of the two
versions of SMP developed by RTI.

- 53 -

5.0 ADDITIONAL TECHNICAL ISSUES

This chapter addresses additional technical issues which have the
potential for further improving the performance of the SMP/ADAGE PDG
display software system in specific areas. These include performing
local transformations in the PDG, adding the capability for model
animation, and improving the access time to read the temporary geometry
files during image generation.

5.1 Local Transformations

In a typical application, an SMP user develops a model, renders it
in wireframe form, and transforms it several times until he/she is
satisfied with the result. It is only then that the model is shaded
using one of the available shading schemes in SMP. The process of
rendering a transformed, wireframe model consists of retrieving the
model definition from disk where it exists in a geometry file format and
performing transformations on the data twice, once for setting clipping
box boundaries and scaling and once for model viewing. The first set of
transformations determines .the greatest extent of the transformed model
in X, Y, and Z for setting clipping box boundaries and scaling
parameters. The second set of transformations actually transform the
model's points for scaling and viewing. These transformations cannot
take place simultaneously - they must be done in sequence in order to
have the clipping and scaling information available during the second
set of transformations.

- 54 -

In the software system developed by RTI, transformations are
performed by SMP in FORTRAN in the VAX-11/785. It has been suggested
that performing transformations in the ADAGE PDG would provide
additional gains in image rendering speed over what has already been
.achieved.

There are two ways in which transformations can be achieved in the
PDG: splitting the two sets of transformations between the host and the
PDG and performing both sets of transformations in the ADAGE PDG. The
former can be done using existing facilities in SOLID 3000 and no
additional hardware. The latter requires modifications to the SOLID
3000 microcode system residing in the ADAGE's MCM4 memories and
additional space in MCM4 memory to store the user written microcode
routines. (If this is a problem, additional MCM4 memories can be
purchased). In addition, this method would require enough storage space
in the PDG to accomodate the entire model. This storage space can be
provided by an SP-256 memory. The control and configuration of the
SP-256 and the model size that it can accomodate are discussed in the
next section.

Although both approaches can be implemented with varying degrees of
technical effort, RTI feels that other associated areas need to be
addressed prior to the implementation of local transformations in the
PDG. This is due to the fact that the portion of the rendering time
associated with disk I/0 is the dominant factor of the rendering time.
In fact, the potential speed improvement attainable with local
transformations could be insignificant compared to the time spent doing
I/0 to retrieve parts in geometry file format. For example, it has been
observed during the development effort that the time spent doing disk
accesses slows the rendering of "wire frame" line drawings. This is in
contrast to the rendering of shaded images in which the time spent
rendering is usually longer than the time spent in reading the model
from the disk.

- 55 -

Because performing local transformations in the PDG shows uncertain
gains and the need for additional hardware and microcode development,
RTI recommends that this area is not addressed until the disk I/0 area
is dealt with.

5.2 Model Animation

Model animation in real time would provide the SMP user with a new
capability to facilitate his/her ability to analyze the three
dimensional nature of the resulting models. The resources required to
perform model animation include additional hardware in the PDG and in
the host computer, additional software in the host, and an expanded user
interface in SMP.

Model animation would involve putting an entire model into the
ADAGE, leaving it there and repeatedly sending transformation
information to the ADAGE. This means that the model would not have to
be read from its direct access disk file, or sent to the ADAGE each time
a different view of the model was drawn. In fact, a continuous smooth
rotation of relatively complex models should be attainable using the
techniques of double buffering, mask mode erasing of image memory, and
drawing of aliased wire-frame image. An additional issue here is
choosing how the user would specify the model's rotation. This could
make use of a joystick, "toothpick"-style joystick, data tablet, or
other "valuator" interaction device.

In order to store an entire model's data in the ADAGE additional
memory would be required. It is in this area that ADAGE's SP-256 memory
could be useful. The intended use of the SP-256 memory board is to
allow users the ability to store large display lists in the ADAGE 3000
display system. An SP-256 is essentially a DR-256 image memory board

- 56 -

which is accessed in word mode rather than pixel mode. One SP-256
memory can hold approximately 16,000 wire frame polygons or 11,000 flat
or smooth shaded polygons. For comparison purposes, it is noted that
the space station, shuttle, 0TV, and solar engine data provided to RTI
by SAB, which contains 6400 polygons, can be accomodated easily by one
SP-256, leaving space for 4600 additional polygons. Larger models can
be ‘accomodated with additional SP-256's.

The SOLID 3000 rendering package can make use of the SP-256 to
store large display lists. However, there are certain restrictions in
its use because of the way the SOLID 3000's internal stack pointer is
implemented. The stack pointer is a 24-bit address, but the high 8 bits
remain unchanged during the execution of the program. Thus, the low
order 16 bits can only address a 64K portion of the 256K. Also, it is
desirable to implement SOLID's stack at the highest address in memory
and build "downward" as values are pushed onto the stack, while display
lists start at a Tow memory address and build "upward" so that the most
efficient use of the memory can be made.

However, the standard distribution of SOLID 3000 has its stack
pointer pointed at the highest address in the SR-8 memory (which is a
required component of a system which is to run SOLID 3000). Thus, when
an SP-256 is used in place of the SR-8 memory, (by setting its address
to be the same as an SR-8) only one quarter of the memory (64K) can
normally be used. This situation can be remedied by compiling the
starting location of the stack as being the highest address of the
SP-256 and letting display lists build upward from the lowest address in
the SP-256. Using this recompilation would allow access to the entire
SP-256 memory address space.

- 57 -

" Using an SP-256 in the manner just described has a drawback; the
SP-256 has a memory cycle time of 200 nsec which is half the speed of
the SR-8 memory. So both the stack and display lists would be in this
slower memory. While this may be acceptable, a partial solution to this
problem would be to use both an SP-256 and an SR-8 in the system at the
same time. The stack could be implemented in the SR-8, and the display
lists would use the SP-256. The stack would then make use of the higher
speed memory. The SP-256 would need to have its location in address
space changed so that it did not overlap the SR-8's address space in
this configuration. Display lists would not be sent to the lowest
address in SR-8 memory (which is the default software configuration) but
specifically sent to the lowest address in the SP-256 using the SOLID
3000 function DSLOAD instead of the function DSSEND which is the usual
method used to send display lists to the ADAGE. Also, a DSTART is
required to be used after DSLOADing the display list to the ADAGE 3000.

Additional software development in the host would be required to
implement model animation in real time. This software would have to
support requests by the user to perform model animation, specifications
as to how the model is to be animated, requests to terminate the
animation, and requests to re-scale the model based on the last viewing
transformation used during model animation.

This last capability is needed to insure that the model is scaled
correctly to completely fill the screen. During model animation,
corners of the model may occassionally be clipped at the edges of the
display. This could result because, in contrast to single image
rendering, the model would not be rescaled each time it is transformed
and rendered.

- 58 -

There is a possibility to eliminate the need for the last two
requirements identified above by implementing support for interactive
zooming. This approach would require an additional control in the
interactive device, prescaling the model data stored in the ADAGE to
allow both expansion and shrinking of the image, and altering the
scaling factors of the transformations.

5.3 Temporary Geometry Format Files

Improving the time required to read temporary geometry format files
from disk has been identified as a precursor to the implementation of
local transformations in the ADAGE PDG. This is a function which uses a
relatively large amount of time while doing image‘rendering. Whenever a
user defines a part in the SMP editor or reads an existing parts file,
SMP writes to disk a temporary, geometry-format file corresponding to
the parts. This file is read from disk whenever the user displays a
model or a part. Note that because of the way model animation is
proposed, disk read time would not be a factor in the model animation
update rate.

There are several approaches that can be investigated to improve
the performance of interacting with the geometry data file. One
approach is to create large arrays internal to the SMP program and
storing in them the data normally stored in disk in the temporary
geometry file. Since these arrays would make SMP larger than the
physical memory in the VAX, the virtual memory feature of the operating
system would be used to read the geometry file information into physical
memory as it is needed.

- hO -

Another approach is to use data structures for the geometry file
which are different from the one currently used, e.g., hashed storage.

Yet another possibility is the placing of the geometry file data in
an ADAGE SP-256 memory. This would require the implementation of
specialized data structures.

5.4 Summary

In summary, the various technical issues dealt with in this section
are attainable with various degrees of technical effort and hardware
investment.

Model animation depends primarily on having enough memory to hold
the entire model in the ADAGE display list memory area. The
advisability of using local transformations in the ADAGE PDG depends on
the relative merits of splitting the location of the existing SMP
transformations compared to the gains that might be obtained in
rendering speed. The various methods of speeding up the extensive disk
I/0 for temporary geometry files depend on the availability of enough
physical memory in the VAX-11/785. Thus, the capabilities of SMP can be
expanded to provide new features and even faster rendering speeds.

- 60 -

6.0 SUMMARY OF ACCOMPLISHMENTS

The Research Triangle Institute, working closely with SAB
personnel, have accomplished the following work:

1)

2)

Converted the PRIME/PRIMOS version of SMP to a VAX/VMS
version.

Validated the converted VAX/VMS version of SMP using assembly
files furnished by SAB.

During the enhancement of the VAX/VMS version of SMP to support the
ADAGE RDS-3000 display the following work was performed:

3)

4)

5)

6)

Added code to SMP to load the ADAGE color look-up table.

Added code to SMP to initialize the ADAGE frame buffer
controller to 512 X 512 60 Hz, noninterlaced.

Added code to SMP to initialize the ADAGE crossbar switch to
straight through configuration.

Added code to SMP to initialize the ADAGE crossbar switch to
defeat overlay option.

- 61 -

7)

8)

9)

10)

11)

12)

13)

1)

15)

16)

17)

18)

Added code to SMP to initialize the ADAGE channel crossbar
switch to full color.

Added code to SMP to initialize the ADAGE cursor reg1sters
with a default cursor, a tracking cross.

Modified RTI's copy of MOVIE BYU to accomodate the size of the
parts created by the assembly file furnished by SAB in order
to test SMP's MOVIE-format write capability.

Added code to SMP to initialize the ADAGE image memory read
and write masks.

Added code to SMP to perform windowing and viewporting.

Added code to SMP to perform clipping to the screen viewing
region.

Added code to SMP to perform drawing of dashed lines (with the
ADAGE used as a frame buffer)

Modified code in SMP to remove the drawing of boxes around the
4 views display (as well as in other formats of displays).

Installed the Phase I version of SMP/ADAGE 3000 PDG in SAB's
VAX11/785.

Added code to SMP to load the color map in the ADAGE with the
values required by the SOLID 3000 system.

Added code to SMP to perform SOLID 3000 line drawing.

Added code to SMP to perform SOLID 3000 flat shading.

- 62 -

19)

20)

21)

22)

23)

24)

25)

26)

27)

Designed and implemented a linear time algorithm to create
normals at each corner of each polygon as required by SOLID
3000 for smooth shading.

Added code to SMP to perform SOLID 3000 Gouraud smooth
shading.

Added code to SMP to perform SOLID 3000 Phong smooth shading.

Added code to SMP to perform SOLID 3000 hidden surface removal
using the ADAGE internal Z-buffering.

Provided assistance to SAB personnel in their work of hosting
the ADAGE 3000 in the VAX-11/785.

Added code to SMP to perform anti-aliasing.
Added code to SMP to perform monitor gamma correction.

Installed the Phase II version of SMP/ADAGE 3000 PDG (SOLID
3000) in SAB's VAX11/785.

Documented the above work.

- 63 -

7.0 SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

The research conducted under this project has led to the following

conclusions:

1)

2)

3)

4)

5)

ADAGE's SOLID 3000 rendering package was determined to be the
best tool to interface SAB's SMP program to its ADAGE RDS-3000
display.

SOLID 3000's function SPOLY was determined to be the method of
choice to enter SMP's data structures into SOLID 3000.

The ADAGE RDS 3000 is viable graphic display to use to support
enhanced speed of rendering by the solid modeling program SMP.
Reasonable improvements in rendering speed were obtained with

the phase I configuration and very significant improvements in
rendering speed were obtained with the phase II configuration

of the display system software.

SMP is a more valuable research tool to the personnel of SAB
now that the ADAGE RDS 3000 can be used as a display.

SMP/SOLID 3000 can provide enhanced types of rendering such as

anti-aliasing, monitor gamma correction, and higher quality
smooth shading of both the Gouraud and Phong type.

- 64 -

The following recommendations emerge from the work performed under
this contract:

6) Exploit the capabilities provided by having a large model's
display list stored in the ADAGE in an SP-256 memory card.
This could provide animation of the models.

7) Investigate the possible speed gain which might be obtained by
storing the data normally stored in the temporary geometry
disk file in large arrays internal to the SMP program. The
operating system's optimized disk paging I/0 would then be
used to read the geometry file information into memory as it
is needed using the page faulting mechanism.

8) Explore the possibility of using other data structures (e.g.
hashed storage, etc.) for storing the geometry file data.

9) Explore the possibility of holding all geometry file data in
the ADAGE SP-256. Specialized data structures would be

necessary to do this.

10) Acquire an interactive device capable of specifying X and Y
(and possibly Z) information for interaction with SMP.

- 65 -

APPENDIX A
PARTIAL STATIC CALLING STRUCTURE FOR SMP/ADAGE 3000

FORMAT: | ---1--- ... Routine-Name (Filename)

The number of "| - - - " patterns indicates the depth
of the calling structure.

SMP (SMPMISC)
SINITT (SMPMISC)

- - - GDINIT (DIDDGS)

- - - TITLE (DIDDGS)

- - - GINITT (SMPMISC)
OPENGEO (PRIMTV)
DISCTE (DIDDGS)
DIERAS (DIDDGS)
SMPDOC (SMPMISC)
DIERAS (DIDDGS)
SMPDOC (SMPMISC)
DISPLAY (DISPLAY)
- - - SAVOPT (DISPLAY)
DIERAS (DIDDGS)
DISCTE (DIDDGS)
RSTOPT (DISPLAY)
RSETTV (DISPLAY)
SAVOPT (DISPLAY)
DMENU (DISPLAY)

- DIDUMP (DIDDGS).

- SPP (DISPLAY)
- RST (PRIMTV)
- DIDUMP (DIDDGS).

SETRNG (DISPLAY)
WINDOW (DISPLAY)
SAVOPT (DISPLAY).

DIERAS (DIDDGS).

DRAW (DISPLAY)

| - - - DICOLR (DIDDGS)

- 66 -

DIMOVW
DIDRWW
DIDRWW
DIDRWW

(DIDDGS)
(DIDDGS)
(DIDDGS)
(DIDDGS)
DIDRWW (DIDDGS)
DIDUMP (DIDDGS)
STRCOLR (DISPLAY)
DICOLR (DIDDGS)
LLNXT (PF2GF)
GEOFIL (PRIMTV)
DICOLR (DIDDGS)
UAPPLY (V)
HIDDEN (DISPLAY)
SHRINK (DISPLAY)
DFACE (DISPLAY)

- - - GET_SLD_COLR (SLDSUBS)
SPOLY —(SOLID)
DIMOVW (DIDDGS)
DIDRWW (DIDDGS)
DIDSHW (DIDDGS)
(DISPLAY)
GET_SLD_COLR (SLDSUBS)
SPOLY ~(SOLID)
DIMOVW (DIDDGS)
DIDRWW (DIDDGS)
- - - DIDSHW (DIDDGS)
UAPPLY (U)

UAPPLY (U)

UAPPLY (U)

DIMOVW (DIDDGS)

DIDUMP (DIDDGS)

DITEXT (DIDDGS)

AXIS (DISPLAY)
DIHOME (DIDDGS)

DIDUMP (DIDDGS)

DISCTE (DIDDGS)
(DIDDGS)

DISCTE = (DIDDGS)

WPXLA (DIDDGS)

| - - - DDVTOS (DIDDGS)
DIDUMP (DIDDGS)

DIOVRR (DIDDGS)
(DIDDGS)

(DISPLAY)

DIERAS (DIDDGS)

SETRNG (DISPLAY)

DIVUPR (DIDDGS)

- - - DDVTOS = (DIDDGS)
DDVTOS (DIDDGS)
TWINDO-TEK

- - - RESCAL
- - - ALOG
- - - FLOAT
- - - PSCAL

o
M
1>
o

t 1 ama

N

- 67 -

URSCAL

AMAX1
AMIN1
WINCOT
WINCOT
FLOAT
WINCOT
- SIGN

TWINDO-TEK
- - - ISCTWIN
UCoPY

(V)
UIDENT (U)
WINDOW (DISPLAY)
DRAW (DISPLAY)
BOXNODE (LINKDUMMY)
DIVUPR (DIDDGS)
UIDENT (V)
UPRMC (V)
WINDOW (DISPLAY)
DRAW (DISPLAY)
BOXNODE (LINKDUMMY)
DIVUPR (DIDDGS)
UIDENT (U)
UPRMC (U)
WINDOW (DISPLAY)
DRAW (DISPLAY)
BOXNODE (LINKDUMMY)
DIVUPR (DIDDGS)

UIDENT (U)
RST (PRIMTM)
ucopy (u)

WINDOW (DISPLAY)

DRAW (DISPLAY)
BOXNODE (LINKDUMMY)
DIVUPR (DIDDGS)

DIWIND (DIDDGS)

ucopy (U)

LOGO (DIDDGS)

DIPAUS (DIDDGS)

Z0OM (DISPLAY)

SAVOPT (DISPLAY)

HSDRVR (DISPLAY)

CMPRES (DIDDGS)

INITPRI (PRIORTY)
STRCOLR (DISPLAY)

LLNXT (PF2GF)

GEOFIL (PRIMTV)

STRMDL (PRIORTY)

- - - UAPPLY (U)
GET_SLD_COLR (SLDSUBS)
SCOLOR (SOLID)
PLANEQ (PRIORTY)
SPOLY (SOLID)
PLANEQ (PRIORTY)

- 68 -

R T T N T D T N T T T T T N T S U T A R I RO S RO A N AN AR AN RO AN Y AN NN N NN R NN RO N N U NN NN N N B R R |

SMPDOC

HIDSURF

DIHOME

(PRIORTY) _
PRIORTY (PRIORTY) -
SPECIAL (PRIORTY)

DRAWHS (SCANLINE)

DDSTOV
DDSTOV
DIVUPR
DIWIND
DICTAB
DICTAB
SHADER

INTENS

OPEN
VTOS
INITAET
INITSET
SCNFIL

DSPLASL

SETAET
DSPLASL

LOGO
DIPAUSE
RSTOPT
DIOVRR
DICTAB
DICOLR

(DIDDGS)

DIDUMP (DIDDGS)
GRAPHIC (GRAPHICS)
(SMPMISC)
DIERAS (DIDDGS)
SMPDOC (SMPMISC)
OPENGEO (PRIMTV)

- 69 -

(DIDDGS)

(DIDDGS)

(DIDDGS)

(DIDDGS)

(DIDDGS)

(DIDDGS)

(SCANLINE)

CENTER (SCANLINE)

PLANEQ (PRIORTY)

(SCANLINE)

CHKNOD (SCANLINE)

NORAV (SCANLINE)

NORAV (SCANLINE)

L - - - PLANEQ (PRIORTY)
'SMGG.IMG')

(SCANLINE)

(SCANLINE)

(SCANLINE)

(SCANLINE)

SCNINT (SCANLINE)
- - - EMAXY (SCANLINE)
- - - EMAXY (SCANLINE)

SETSET (SCANLINE)

SMOOTH (SCANLINE)

(SCANLINE)

DIDUMP (DIDDGS)

SL2D (SCANLINE)

DDSTOV (DIDDGS)

WPXLA (DIDDGS)

WPXLA (DIDDGS)

(SCANLINE)

(SCANLINE)

DIDUMP (DIDDGS)

SL2D (SCANLINE)

DDSTOV (DIDDGS)

WPXLA (DIDDGS)

WPXLA (DIDDGS)

(DIDDGS)

(DIDDGS)

(DISPLAY)

(DIDDGS)

(DIDDGS)

(DIDDGS)

»—
m
1 O
—

[I O R S D R R D R RO RO R DR R N R R A N SR R B B

READGM
MASPROP
OPENGEO
EXIT
SAVEGM
OPENGEOQ
EXIT

EXIT (FORTRAN EXIT)
(ALPHA)

DISCTE (DIDDGS)
DIERAS - (DIDDGS)
EDADD (ALPHA)
EDCHNG (ALPHA)

| - - - EDDRAW (ALPHA)
EDDEL (ALPHA)
DIERAS (DIDDGS)
EDPRNT (ALPHA)
DIPAUS (DIDDGS)
SMPDOC (SMPMISC)
DIERAS (DIDDGS)
SMPDOC (SMPMISC)
SMPDOC (SMPMISC)
SMPDOC (SMPMISC)
SMPDOC (SMPMISC)
SMPDOC (SMPMISC)
SMPDOC (SMPMISC)
SMPDOC (SMPMISC)
SMPDOC (SMPMISC)
EDCOPY (ALPHA)
OPENGEO (PRIMTV)
EXIT (FORTRAN EXIT)
EDREST (ALPHA)
(SMPMISC)
(MASPROP)
(PRIMTV)

(FORTRAN EXIT)
(SMPMISC)
(PRIMTV)

(FORTRAN EXIT)

- 70 -

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

APPENDIX B
LIST OF SMP'S MODIFIED SUBROUTINES

AEDIT

ANGCALC (A,B,C, ISTAT)

AXIS

BREAKIT (IPNTR)

CHNGALL (ID,IOPER,NCOMPNU,PCOMPNU)
CLEANN

CMPRES (IDISK, ICHANG, IMIN, IMAX)
COLMOV (IASSEM1)

DDVTOS (XV,YV, IXS,IYS)

DOWTOS (XW, YW, IXS,IYS)
DEGREES(X, Y, XC, YC, THETA)
DFACE(N, X, IDASH)

DICHRSZ (NUM)

DICOLR (NUM)

DICTAB (IOPT)

DICURS (ICH,XW,YW)

DIDRWS (XV,YV)

DIDRWW (XW, YW)

DIDSHS (XV,YV, IDASH)

DIDSHW (XW, YW, IDASH)

DIDUMP
DIERAS
DIMOVS
DIMOVW
DIPAUS
DISCTE
DISPLAY
DISTCK(XPT, YPT, XNEW, YNEW, IVW, INRNG)
DITEXT (LENS,CHARS)

DIVUPR (XMINV,XMAXV, YMINV, YMAXV)
DIWIND (XMINW,XMAXW, YMINW, YMAXW)
DMENU

DRAW

DRAWHS

EDADD

EDCHNG (ID,IOPT)

(xv,YV)
(XW, YW)

(NCTE, IR, IG, IB)

- 71 -

SUBROUTINE EDCOPY (ID,IOPT)
SUBROUTINE EDDEL (ID,IOPT)
SUBROUTINE EDDRAW (IPART)
SUBROUTINE EDPRNT(FIRST,LAST)
SUBROUTINE EDREST (ID,IOPT)
SUBROUTINE EXTRN (NPART,TP,INR)
SUBROUTINE GDINIT (IGD,IBAUD)
SUBROUTINE GEOFIL (OPTION,NPART)
SUBROUTINE GRAPHIC

SUBROUTINE HEADR(NAME, NUMHD, STATHD, TRANSHD)
SUBROUTINE HSDRVR

SUBROUTINE LOGO

SUBROUTINE MASPROP

SUBROUTINE OPENGEO(IOPT)
SUBROUTINE OPENW(DESC, ICODE)
SUBROUTINE PCFFIO (IVW,ILINES)
SUBROUTINE PRINIT(IIBAUD)
SUBROUTINE RDGEO(IREAD)

SUBROUTINE RDMOV (IREAD)
SUBROUTINE RDRNEW(IREAD)
SUBROUTINE READER(IREAD)
SUBROUTINE RSETTV

SUBROUTINE RST(VECTOR,ARRAY,NPART)
SUBROUTINE SAVGEO

SUBROUTINE SAVMODL

SUBROUTINE SINITT

SUBROUTINE SMPDOC (INDEX, ICODE)
SUBROUTINE STRMDL (NMAX,NN,X,N,IF,T,IPC,INERR)
SUBROUTINE TITLE -
SUBROUTINE USETAU (NAME, VAL
SUBROUTINE VIEW4(IFLAG)
SUBROUTINE WINDOW

SUBROUTINE WPXLA (XV,YV,MAXR,NR,NC, IPIXEL)
SUBROUTINE ZOOM

- 72 -

APPENDIX C
LISTINGS OF SOFTWARE MODULES DEVELOPED FOR SMP/ADAGE INTEGRATION

C FILENAME: ADSUBS.FOR

C***

SUBROUTINE ADDRWA(XW, YW, IDASH)

DRAW A LINE USING FLOATING WORLD COORDS. THE OTHER POINT TO
DRAW FROM IS (XCUR, YCUR) IN COMMON /ADAGE/.

IMPLICIT NONE

(g} OO0

COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
COMMON /ADWIND/ XMINW, XMAXW, YMINW, YMAXW,
. XWSIZE, YWSIZE, XWCNTR, YWCNTR
REAL XMINW, XMAXW, VYMINW, YMAXW,
. XWSIZE, YWSIZE, XWCNTR, YWCNTR

INTEGER*2 IX, IY
INTEGER*4 IDASH
REAL XW, YW

C PERFORM WINDOWING & VIEWPORTING:
IX = (((XW-XWCNTR) / XWSIZE) + 0.5) * IXVSIZ + IXMINS
IY = (((YW-YWCNTR) / YWSIZE) + 0.5) * IYVSIZ + IYMINS
C
CALL cLIP2D(IX, IY, 0, 511, 0, 511, IDASH)
RETURN
END

- 73 -

C***

o OO0

OO OO

SUBROUTINE ADDRWS(IXS, IYS, IDASH)

DRAW A LINE USING INTEGER SEREEN COORDS. THE OTHER POINT TO
DRAW FROM IS (XCUR, YCUR) IN COMMON /ADAGE/.

IMPLICIT NONE

COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,
IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR

INTEGER*2 IXS, IYS, IX, IY
INTEGER*4 IDASH

PERFORM WINDOWING & VIEWPORTING:
IX = (IXS * IXVSIZ / 512.0) + IXVCNTR
IY = (IYS * IYVSIZ / 512.0) + IYVCNTR

CALL CLIP2D(IXS, I1Ys, 0, 511, 0, 511, IDASH)
RETURN
END

- 74 -

C***

OOO0O

o

(] OO0

a0

SUBROUTINE ADLINE(X1, Y1, IDASH)

ROUTINE TO DRAW A LINE ON THE ADAGE 3000 IN SCREEN COORDINATES
THIS ROUTINE USES SINGLE PIXEL WRITES & A BRESSENHAM-LIKE ALGORITHM

IMPLICIT NONE

COMMON /ADAGE/ CURCOLR, ICURX, ICURY
INTEGER*4 CURCOLR
INTEGER*2 ICURX, ICURY

INTEGER*2 X1, Y1
INTEGER*2 DELX,DELY,XCHNG, YCHNG,I,XA,YA,XB,YB,ISTOP
REAL*4 REM, SLOPE

IDASH = 0 ---> DO NOT DRAW DASHED LINES
1 ---)> DRAW DASHED LINES (4 PIX ON; 4 OFF)
INTEGER*4 IDASH

INTEGER*2 IABS, TEST, MOD
LOGICAL*4 DRAW
REAL FLOAT

DRAW = ,TRUE.
XA=ICURX
YA=ICURY
XB=X1

YB=Y1

DELX = XB - XA
DELY = YB - YA
REM = 0.5

XCHNG = 1
IF (DELX .LT. 0) XCHNG
YCHNG = 1
IF (DELY .LT. 0) YCHNG

-1
-1

IF (IABS(DELX) .GT. IABS(DELY)) THEN
IF (DELX .EQ. 0) THEN
SLOPE = 100000.0
ELSE
SLOPE = (FLOAT(IABS(DELY))) / (FLOAT(IABS(DELX)))
END IF
ISTOP = IABS(DELX)

IF DASHED LINE SET WHETHER TO DRAW LINE OR BLANK:
IF (IDASH .EQ. 1) THEN

TEST = MOD(XA, 8)

IF (TEST .GE. 0 .AND. TEST .LE. 3) THEN

DRAW = .TRUE.
ELSE
DRAW = .FALSE.

- 75 -

END IF
END IF
IF(DRAW) CALL IKPWR(O, XA, 511-YA, 1, CURCOLR)

DO 20 I = 1, ISTOP
REM = REM + SLOPE
- IF (REM .GE. 1.0) THEN
YA = YA + YCHNG
REM = REM - 1.0
ENDIF
XA = XA + XCHNG

C IF DASHED LINE SET WHETHER TO DRAW LINE OR BLANK:
IF (IDASH .EQ. 1) THEN
TEST = MOD(XA, 8)
IF (TEST .GE. 0 .AND. TEST .LE. 3) THEN
DRAW = .TRUE. :
ELSE
DRAW = .FALSE.
END IF
END IF
IF (DRAW) CALL IKPWR(O, XA, 511-YA, 1, CURCOLR)
20 CONTINUE
ELSE
IF (DELY .EQ. 0) THEN
SLOPE = 100000.0
ELSE
SLOPE = (FLOAT(IABS(DELX))) / (FLOAT(IABS(DELY)))
END IF

ISTOP = IABS(DELY)

C IF DASHED LINE SET WHETHER TO DRAW LINE OF BLANK:
IF (IDASH .EQ. 1) THEN
TEST = MOD(YA, 8)
IF (TEST .GE. 0 .AND. TEST .LE. 3) THEN.
DRAW = .TRUE.
ELSE
DRAW = ,FALSE.
END IF
END IF
IF (DRAW) CALL IKPWR(0, XA, 511-YA, 1, CURCOLR)

DO 50 I = 1, ISTOP
REM = REM + SLOPE
IF (REM .GT. 1.0) THEN
XA = XA + XCHNG
REM = REM - 1.0
ENDIF
YA = YA + YCHNG

C
C

IF DASHED LINE SET WHETHER TO DRAW LINE OF BLANK:
IF (IDASH .EQ. 1) THEN

TEST = MOD(YA, 8) :

IF (TEST .GE. 0 .AND. TEST .LE. 3) THEN

- 76 -

DRAW = ,TRUE.
ELSE
DRAW = .FALSE.
END IF
END IF

IF (DRAW) CALL IKPWR(0, XA, 511-YA, 1, CURCOLR)
50 CONTINUE
ENDIF

SET DRAW TO POINT AS THE CURRENT POINT:

ICURX = X1
ICURY = Y1
RETURN

END

- 77 -

C***

SUBROUTINE ADMOVA(XW, YW)

C
C MOVE USING FLOATING WORLD COORDS.
C
IMPLICIT NONE
C
COMMON /ADAGE/ CURCOLR, ICURX, ICURY
INTEGER*4 CURCOLR
INTEGER*2 ICURX, ICURY
C .
COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,
IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IVYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
COMMON /ADWIND/ XMINW, XMAXW, YMINW, YMAXW,
XWSIZE, YWSIZE, XWCNTR, YWCNTR
REAL XMINW, XMAXW, YMINW, YMAXW,
XWSIZE, YWSIZE, XWCNTR, YWCNTR
C
INTEGER*2 IX, IY
REAL XW, YW
C
C PERFORM WINDOWING & VIEWPORTING:
IX = (((XW-XWCNTR) / XWSIZE) + 0.5) * IXVSIZ + IXMINS
IY = (((YW-YWCNTR) / YWSIZE) + 0.5) * IYVSIZ + IYMINS
C
C SET THE PASSED IN POINT AS THE CURRENT POINT:
ICURX = IX
ICURY = IY
RETURN
END

c***

SUBROUTINE ADMOVS(IXS, IYS)

c
C MOVE USING INTEGER SEREEN COORDS.
C
IMPLICIT NONE
c
COMMON /ADAGE/ CURCOLR, ICURX, ICURY
INTEGER*4 CURCOLR
INTEGER*2 ICURX, ICURY

COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,

. IXvSIZ, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR

o

INTEGER*2 IXS, IYS, IX, IY

PERFORM WINDOWING & VIEWPORTING:
IX = (IXS * IXVSIZ / 512.0) + IXVCNTR
IY = (IYS * IYVSIZ / 512.0) + IYVCNTR

OOOOO

ICURX
ICURY
RETURN
END

IXS
IYS

- 79 -

C***

SUBROUTINE ADVUPR(IXMIN, IXMAX, IYMIN, IYMAX)

C
C SAVE VIEWPORT SPECS IN COMMON IN SCREEN COORDINATES:
C
c
IMPLICIT NONE
C
COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
C :
INTEGER IXMIN, IXMAX, IYMIN, IYMAX
C
IXMINS = IXMIN
IXMAXS = IXMAX
IYMINS = IYMIN
IYMAXS = IYMAX
IXVSIZ = IXMAX - IXMIN
IYVSIZ = IYMAX - IYMIN

IXVCNTR = (IXMAX + IXMIN) / 2
IYVCNTR = (IYMAX + IYMIN) / 2
RETURN

END

- 80 ~

C*********************_*******jk**

SUBROUTINE ADWIND(XMIN, XMAX, YMIN, YMAX)

C
C SAVE WINDOW SPECS IN COMMON IN WORLD COORDINATES:
C

COMMON /ADWIND/ XMINW, XMAXW, YMINW, YMAXW,

. XWSIZE, YWSIZE, XWCNTR, VYWCNTR
REAL XMINW, XMAXW, YMINW, YMAXW,
. XWSIZE, YWSIZE, XWCNTR, YWCNTR

C

REAL XMIN, XMAX, YMIN, YMAX
C

XMINW = XMIN

XMAXW = XMAX

YMINW = YMIN

YMAXW = YMAX

XWSIZE = XMAXW - XMINW

YWSIZE = YMAXW - YMINW

XWCNTR = (XMINW + XMAXW) / 2.0

YWCNTR = (YMINW + YMAXW) / 2.0

RETURN

END

- 81 -

o OO0

e o o o ¢ o+ o o+ & e e o e oo

SUBROUTINE CLIP2D(P2X, P2Y, XMIN, XMAX, YMIN, YMAX, IDASH)

SUTHERLAND-COHEN 2D LINE CLIPPER (AFTER ROGERS 1985)

IMPLICIT NONE
COMMON /ADAGE/ CURCOLR, ICURX, ICURY

INTEGER*4
INTEGER*2

COMMON /CLIP_ALIGN/ CLIPPING_BOX(4)

CURCOLR

INTEGER*2 CLIPPING_BOX

INTEGER*4
IDASH

INTEGER*2
DELTA_X,
DELTA_Y,
I,

INTERSECT_X,
INTERSECT_Y,
NO /0/,
P1CODES(4),
P2CODES (4),
P1X,

P1Y,

P2x,

P2y,

PARTIAL /-1/,!

SUM1,
SUM2,
TEMP,
TEMPX,
TEMPY,
VISIBLE,
XMIN,
XMAX,
YMIN,
YMAX,
YES /1/

LOGICAL*4
HORIZONTAL,
VERTICAL

REAL*4
SLOPE

ICURX, ICURY

! DASHED LINE FLAG (1=DASHED, 0=SOLID)

! P2X - PI1X
! P2Y - P1Y

! DO LOOP INDEX 1-4
INTERSECT ! RESULT OF ANDING P1 & P2 CLIP CODES

! X-VALUE OF INTERSECTION WITH BOT OR TOP CLIPPING BOX

Y-VALUE OF INTERSECTION WITH L
LINE NOT VISIBLE

! P1'S CLIPPING CODES

! P2'S CLIPPING CODES

! X & Y COORDINATES OF BEGINNING OF LINE

: X & Y COORDINATES OF END OF LINE

! SUM OF P2'S CLIP CODES

! ALLOWS SWAPPING OF CLIPPING CODES

! ALLOWS SWAPPING OF P1 & P2

! ALLOWS SWAPPING OF P1 & P2

! LINE VISIBILITY (YES, NO, OR, PARTIAL)
! LEFT EDGE OF CLIPPING WINDOW

! RIGHT EDGE OF CLIPPING WINDOW

! BOTTOM EDGE OF CLIPPING WINDOW

! TOP EDGE OF CLIPPING WINDOW

! LINE COMPLETELY VISIBLE

! .TRUE. IF HORIZONTAL LINE
! .TRUE. IF VERTICAL LINE

! DELTA_X / DELTA_Y

!

!

|

|

|

I

|

!

| PARTIALLY VISIBLE LINE
! SUM OF P1'S CLIP CODES
|

{

|

|

|

|

|

|

1

|

- 82 -

OR R

CLIPPING BOX

] c***

INIT:

OO0

GET P1 FROM COMMON /ADAGE/
P1X = ICURX
P1Y = ICURY

OO0

DETECT VERTICAL LINE CASE:
VERTICAL = .FALSE.
DELTA_X = P2X - PI1X
IF (DELTA X .EQ. 0) THEN
VERTICAL = .TRUE.
ELSE
SLOPE = (P2Y - P1Y) / FLOAT(DELTA_X)
END IF

C DETECT HORIZONTAL LINE CASE:
HORIZONTAL = .FALSE.
DELTA_Y = P2Y - P1Y
IF (DELTA_Y .EQ. 0) HORIZONTAL = .TRUE.

C LOAD ARRAY WITH CLIPPING WIMDOW SPECIFICATIONS:
CLIPPING BOX(1) = XMIN
CLIPPING_BOX(2) = XMAX
CLIPPING_BOX(3) = YMIN
CLIPPING BOX(4) = YMAX

- 83 -

AEEEEEAEAKEARKKEKAA ALK AKRKRK A AR KRKRK KA ARRRRR Rk Kk hkhkkhkkkhhkkhkhkhkhkhkkhkhkkkhhik

MAIN:

OOOO0O0

FOR EACH CLIP BOX EDGE, CALC INTERSECTIONS WITH LINE:
CALL ENDPT_CODE(P1X, P1Y, CLIPPING_BOX, P1CODES, SUM1)
CALL ENDPT_CODE(P2X, P2Y, CLIPPING_BOX, P2CODES, SUM2)

DO WHILE ONE OR MORE LINE ENDPOINTS OUTSIDE WINDOW:
DO WHILE (SUM1 .NE. 0 .OR. SUM2 .NE. 0)

TRIVIALLY REJECT LINES WITH BOTH POINTS ON

THE SAME SIDE OF A CLIPPING BOX SIDE:

CALL LOGIC_INTERSECT(P1CODES, P2CODES, INTERSECT)
IF (INTERSECT .NE. 0) RETURN

OO0

INSURE P1 IS OUTSIDE THE CLIPPING BOX:
IF (SUM1 .EQ. 0) THEN

o0 [N

SWAP END POINTS & CLIP CODES:
TEMPX = P1X

TEMPY = P1Y

P1X = P2X

P1Y = P2y

TEMPX

TEMPY

D0O331I=1,4
TEMP = P1CODES(I)
P1CODES(I) = P2CODES(I)
P2CODES(I) = TEMP
33 CONTINUE
END IF

TEST P1 AGAINST THE 4 CLIPPING BOX EDGES:
IF (P1CODES(1) .NE. O .AND. .NOT. VERTICAL)THEN

o0 a0

P1 TO LEFT OF WINDOW & LINE NOT VERTICAL
P1Y = SLOPE * (CLIPPING_BOX(1) - P1X) + P1Y
P1X = CLIPPING_BOX(1)
ELSE IF (P1CODES(2) .NE. O .AND. .NOT. VERTICAL)THEN

c P1 TO RIGHT OF WINDOW & LINE NOT VERTICAL
P1Y = SLOPE * (CLIPPING_BOX(2) - P1X) + P1Y
P1X = CLIPPING_BOX(2)
ELSEIF(P1CODES(3) .NE. O .AND. .NOT. HORIZONTAL)THEN

P1 BELOW WINDOW & LINE NOT HORIZONTAL
IF (VERTICAL) THEN
P1Y = CLIPPING_BOX(3)

oo

ELSE
P1X = (1/SLOPE)*(CLIPPING_BOX(3)-P1Y)+P1X
P1Y = CLIPPING_BOX(3)

-84 -

(g N e

END IF :
ELSEIF(P1CODES(4) .NE. O .AND. .NOT. HORIZONTAL)THEN

P1 ABOVE WINDOW & LINE NOT HORIZONTAL
IF (VERTICAL) THEN
P1Y = CLIPPING_BOX(4)

ELSE
P1X = (1/SLOPE)*(CLIPPING_BOX(4)- P1Y)+P1X
P1Y = CLIPPING_BOX(4)
END IF
END IF

CALL ENDPT_CODE(P1X, P1Y, CLIPPING BOX, P1CODES, SUM1)
CALL ENDPT_CODE(P2X, P2Y, CLIPPING_BOX, P2CODES, SUM2)
END DO

DRAW LINE:

CALL ADMOVS(P1X, P1Y

CALL ADLINE(P2X, P2Y, IDASH)
RETURN

END

- 85 -

(] OO0

OOOOO0O

[N]

100

SUBROUTINE ENDPT_CODE (PX, PY, CLIPPING_BOX, PCODES, SUM)

ASSIGNS END POINT CODES FOR A SINGLE POINT:

IMPLICIT NONE

INTEGER*2
CLIPPING_BOX(4),

LEFT, RIGHT, BOTTOM & TOP OF CLIPPING WINDOW

|
I, ! DO LOOP INDEX 1-4
PCODES (4), ! 1-4 ARE LEFT, RIGHT, BOTTOM & TOP ENDPOINT
! CLIP CODES (0 OR 1): ,
| PCODES(1) = 1 IF POINT IS LEFT OF WINDOW
! “(2) =1 IF POINT IS RIGHT OF WINDOW
! " (3) =1 IF POINT IS BELOW WINDOW
! " (4) =1 IF POINT IS ABOVE WINDOW
I PCODES(N) = O OTHERWISE
PX, ! X COMPONENT OF POINT P
PY, I Y COMPONENT OF POINT P
SUM ! SUM OF CLIPPING CODES
hkkkkkhkkhkkkdhkkkkhkhkkkkhkkkhkkhkkhkkkhkkhkkhkkhkhkkkkkkhkkkhkkhkkkhkkhkkkkkkhkkhkkkkkkkkkk
MAIN:

CALCULATE THE FOUR ENDPOINT CODES FOR THE POINT P:

IF (PX .LT. CLIPPING BOX(1)) THEN
PCODES(1) = 1

ELSE
PCODES(1) = 0

END IF

IF (PX .GT. CLIPPING_BOX(2)) THEN
PCODES(2) = 1

ELSE
PCODES(2) = 0

END IF

IF (PY .LT. CLIPPING_BOX(3)) THEN
PCODES(3) = 1

ELSE |
PCODES(3) = 0

END IF

IF (PY .GT. CLIPPING BOX(4)) THEN
PCODES(4) = 1

ELSE
PCODES(4) = 0

END IF

FORM SUM OF CODES:
SUM =0

DO 100 1T =1, 4

SUM = SUM + PCODES(I)
RETURN

- 86 -

END

- 87 -

SUBROUTINE LOGIC_INTERSECT(P1CODES, P2CODES, INTERSECT)

C
¢ LOGICALLY ANDS THE CLIPPING CODES OF P1 & P2
C
IMPLICIT NONE
C
INTEGER*2
. I, ! DO LOOP INDEX 1-4
. INTERSECT, ! SUM OF BITS FOR LOGICAL INTERSECTION
. ! 0=NO COMMON AREAS
. ! 0#BOTH ENDS OF LINE IN THE
. ! SAME AREA
. P1CODES(4), ! P1'S END POINT CODES
P2CODES (4) ! P2'S END POINT CODES
C
C**,*
C
C MAIN:
C

INTERSECT = 0
Do100I =1, 4
100 INTERSECT = INTERSECT + (P1CODES(I) + P2CODES(I)) / 2
RETURN
END

- 88 -

C***

FILENAME: [CSE.TLT.SMP]CMAPLD.FOR _
PROGRAMMER: HAROLD LANE, JR.; STEVE HUFFMAN

VERSION: 1.1 REMOVED PROMPT FOR FILE NAME. ALWAYS
LOADS SMP.CMP.

EXTERNAL CALLS (FILENAME):
IKBWR(DMAXXX), IKBWT(DMAXXX), JOIN32(ALUXXX)

FUNCTION: LOADS IKONAS COLOR MAP FROM DISK FILE.
THE COLOR MAP DATA IS PRECEDED BY A RECORD CONTAINING
THE NUMMBER OF COLORS TO BE LOADED.
THE FORMAT OF THE FILE IS 3I10 FOR BLUE, GREEN, & RED.
IN THAT ORDER.

OOOOOOOOOOOOOOOOOO0OO0

c**

SUBROUTINE CMAPLD
C**
C
C

COMMON /SYSIO/ TTYIN, TTYOUT, HELPIN, PIXFIL
INTEGER*2 TTYIN, TTYOUT, HELPIN, PIXFIL
C

INTEGER IMAP (3), STRTAD
C LUvo(4)

INTEGER * 4 CLRMAP (1024), CMPADR

BYTE FNAME (40), DFLTFN(20)
DATA FNAME (40) / 0/
c DATA LUVO / 0, 4096, 8192, 12288 /
DATA DFLTFN/'S', 'M', 'P', '$', 'S', 'C', 'R',
* IAI, 'T', ICI' 'H', |:|.
* 'S', IMI. 'P', |.|' 'C', IMI' 'P', 0/

- 89 -

C**

c MAIN PROG:

C**

C

C******

TTYOUT = 1

c PROMPT FOR AND READ FILE NAME OF COLOR MAP TO LOAD:
C100 WRITE (TTYOUT, 105)

C105 FORMAT (' ENTER COLOR MAP FILENAME:', /

C * ' (RETURN FOR DEFAULT: GREY.CMP)')
C READ(TTYIN, 1000, END=9999, ERR=100) NAMLEN, (FNAME (I),I=1,NAMLEN)
C1000 FORMAT (Q, 40A1)
C FNAME (NAMLEN + 1) = 0
NAMLEN = 0
C

Crx*x** DEFAULT COLOR MAP:
IF (.NOT.(NAMLEN .EQ. 0)) GO TO 1080
DO 1050 I=1,19
FNAME (I) = DFLTFN(I)
1050 CONTINUE
NAMLEN = 19
1080 CONTINUE
FNAME(NAMLEN + 1) = 0
g******
C WRITE (TTYOUT, *) 'ENTER LUVO NUMBER (0-3):'
C READ (TTYIN, 1100) NLUVO
C
C****x* OPEN, READ, & LOAD COLOR MAP FILE:
OPEN (UNIT=PIXFIL, NAME=FNAME, TYPE='OLD', IOSTAT=IOST,
$ FORM = 'FORMATTED', READONLY, ERR=30000)

C
C READ STARTING LOCATION WITHIN COLOR MAP:
READ(PIXFIL, 25)STRTAD
25 FORMAT(110)
C
C READ BLUE, GREEN, RED COLOR DEFNS UNTIL EOF:
I=1

200 CONTINUE

READ (PIXFIL, 1100, END=20000) (IMAP (J), J =1, 3)
1100 FORMAT (3110)

CLRMAP (I) =0

C
C MERGE R, G, B VALUES TO REQD IKONAS FORMAT:
DO 20002 J =1, 3
CLRMAP(I) = ISHFT(CLRMAP(I),8)+IMAP(J)
CLRMAP(I)=ISHFT(CLRMAP(I),2)
20002 CONTINUE
I=1+1
GO TO 2000

20000 CONTINUE

CLOSE (UNIT = PIXFIL)
N=TI-1
C

- 90 -

c******

CALL JOIN32 (CMPADR, 131, STRTAD)
C CALL JOIN32 (CMPADR, 131, LUVO(NLUVO + 1))
CALL IKBWR (16, CMPADR, N, CLRMAP)

CALL IKBWT
RETURN
c
C FILE OPEN FAILURE:

30000 CONTINUE
WRITE(TTYOUT,*) '(CMAPLD) UNABLE TO OPEN REQUESTED FILE.',
* ' FORTRAN I/0 STATUS = ', I0ST

RETURN

C
C END OF FILE ON FILE NAME READ; RETURN:

9999 CONTINUE

RETURN ’

END

- 91 -

C***

FILENAME: [SMP]CURSLD.FOR
PROGRAMMER: HAROLD LANE, JR.

EXTERNAL CALLS (FILENAME):
IKBWT (DMAXXX), IKBWR(DMAXXX), JOIN32(ALUXXX)

FUNCTION: THIS ROUTINE READS AN ASCII FORMATTED FILE OF A
CURSOR DEFINITION OF 32 COLS & 32 ROWS & LOADS
IT INTO THE CURSOR DEFINITION REGITERS. THE
ROUTINE INTERPRETS ASTERISKS *S AS BINARY ONES
AND ANY OTHER CHARACTER AS BINARY ZEROS. THE
ROUTINE PROVIDES THE BIT MANIPULATION, PACKING,
ADDRESSING, & WRITING TO AN RDS-3000 FRAME
BUFFER CONTROLLER #0 TO EFFECT A LOADING OF A
PREDEFINED CURSOR.

OCOOOOOOOOOOOOO0O0O0O

C**

SUBROUTINE CURSLD

c**

c
C
COMMON /SYSIO/ TTYIN, TTYOUT, HELPIN, PIXFIL
INTEGER*2 TTYIN, TTYOUT, HELPIN, PIXFIL
C

BYTE FNAME (40), DFLTFN(26)
BYTE CRSCHR(32,32), CRSBIT(32,32)
INTEGER*2 ROW, COL, WDMODE, CURSOR(2,256), CURS(256)
INTEGER*2 CRSADR(2)
'DATA DFLTFN/'S', 'M', 'P', '$', 'S', ‘C', 'R',
* lAI' ITI' ICI' IHI' l:l' ITl, IRI' IA" lcl' IKI'
*x ICI' IRI' lol' |Sl' |.I' ICI' IRI' ISI' 0/

- 92 -

C**

C. MAIN PROG:

C**

WORD WRITE BUS FUNCTION CODE:
WDMODE = 0

CURSOR ADDRESS IN FRAME BUFFER CONTROLLER:
CALL JOIN32(CRSADR, 192, 256)

(] ao OO0

C******

C PROMPT FOR AND READ FILE NAME OF CURSOR DEFN TO LOAD:
C55CC WRITE (TTYOUT, 60)
c60CC FORMAT (' ENTER CURSOR FILE NAME:' /
cccce* * (RETURN FOR DEFAULT: RTI.CRS)')
cccce READ(TTYIN, 1000, END=9999, ERR=55)NAMLEN, (FNAME(I),I=1,NAMLEN)
C1000 FORMAT (Q, 40Al1) ’
cccce FNAME (NAMLEN + 1) = 0
C
Cx**x%x DEFAULT CURSOR:
cccce IF (.NOT.(NAMLEN .EQ. 0)) GO TO 1080
DO 1050 I=1,25
FNAME(I) = DFLTFN(I)
1050 CONTINUE
NAMLEN = 25
C1080C CONTINUE
FNAME(NAMLEN + 1) = 0
g******
C
C****x* OPEN, READ, & LOAD CURSOR FILE:
OPEN(UNIT=19, NAME=FNAME, TYPE='OLD', IOSTAT=IOST,
$ FORM = 'FORMATTED', ERR=2000, READONLY)
DO 100 cCOL =1, 32
READ(19, 105) (CRSCHR(COL, ROW), ROW=1, 32)
105 FORMAT (32(32A1))
100 CONTINUE
CLOSE(UNIT=19)

D TYPE *, '(CURSLD) ASCII CURSOR FILE READ IN.'
c
C CONVERT CHARACTERS TO 1 OR 0:

DO 200 COL =1, 32
DO 150 ROW = 1, 32
CRSBIT(COL, ROW) = 0
IF(CRSCHR(COL,ROW) .EQ.'*') CRSBIT(COL,ROW)=1
150 CONTINUE '
200 CONTINUE

C

C PACK THE 32 X 32 BITS 4 PER NIBBLE IN 256 WORDS AS
C REQUIRED BY THE HARDWARE. N. B. THE BITS HAVE TO
C BE PACKED IN 'BACKWARDS':

N=1

DO 300 COL =1, 32

- 93 -

DO 250 ROW =1, 29, 4
C

CURS(N)=8 * CRSBIT(COL, ROW+3) +
* 4 * CRSBIT(COL, ROW+2) +
* 2 * CRSBIT(COL, ROW+1) +
* 1 * CRSBIT(COL, ROW)
CALL JOIN32(CURSOR(1,N), 0, CURS(N))
N=N+1
250 CONTINUE

300 CONTINUE

C
C SEND CURSOR TO IKONAS:
D WRITE(1,305) WDMODE, CRSADR, (CURSOR(1,I), I=1,256)
D305 FORMAT (' (CURSLD) CURSOR WDMODE, CRSADR, DATA:',

D * [/ 16, 2014 // 32(1X, 803 /) /)

CALL IKBWR(WDMODE, CRSADR, 256, CURSOR)

CALL IKBWT
RETURN
C
C FILE OPEN FAILURE:

2000 CONTINUE :
TYPE *, '(CURSLD) UNABLE TO OPEN REQUESTED FILE.®,
* ' FORTRAN I/O STATUS = ', IOST

RETURN
C
C EOF ON READ TO TERMINAL:

9999 CONTINUE

RETURN

END

- 94 -

c***

FILENAME: [CSE.HHL.NTEC]FBC.FOR
PROGRAMMER: HAROLD LANE, JR.
VERSION: 1.0

EXTERNAL CALLS (FILENAME):
IKADDR, IKBWR(DMAXXX), JOIN32(ALUXXX), IKBWT(DMAXXX)

FUNCTION: FBC IS A GENERAL PURPOSE ROUTINE TO MANAGE
THE FRAME BUFFER CONTROLLER. IT ALLOWS ONE TO SET
THE FBC TO CERTAIN DEFAULT CONDITIONS. IT ALLOWS
INDIVIDUAL FIELDS IN THE REGISTERS TO BE SET TO
NEW VALUES WITHOUT DISTURBING VALUES OF OTHER
FIELDS IN THE SAME REGISTER. ONE CAN ALSO READ
BACK THE VALUE OF INDIVIDUAL FIELDS IN REGISTERS.
THIS ROUTINE IS DERIVED FROM A FRAME BUFFER
WRITE ROUTINE DEVELOPED BY HENRY RICH OF IKONAS.
THIS VERSION IS SUBSTANTIALLY MODIFIED IN THAT IT HAS NO
I/0 TO THE TERMINAL, THAT IT IS A SUBROUTINE (NOT
A MAIN PROGRAM), AND THAT IT CAN HAVE FIELDS FROM
REGISTERS READ BACK FROM IT. ERROR CHECKING HAS
BEEN IMPROVED AND THE TYPE OF THE PARTICULAR
ERROR IS PASSED BACK TO THE CALLING ROUTINE.

OO0 O0O0

C**

SUBROUTINE FBC(IMODE, IFBNO, IWRITE, IINVBL, JINVAL, IERR)

C**

FBC CALLING PARAMETER USAGE:

IMODE: 0: SET A FIELD IN A REG

1: SET FBC TO 512 X 512 30 HZ

2: SET FBC TO 512 X 512 60 HZ

3: SET FBC TO 1024 X 1024 30 HZ

4: FAKE READING BACK A FIELD VALUE FROM FBC
IFBNO: 0: FBC #0

1: FBC #1 (SUPPORT FOR MULTIPLE FBC'S)
IWRITE: O0: INHIBIT WRITING REGISTER VALUES TO DISPLAY

1: WRITE REGISTER VALUES TO DISPLAY
TINVBL: # OF LOGICAL VARIABLE (FIELD) TO BE SET (1-23)
JINVAL: VALUE TO SET LOGICAL VARIABLE TO; OR VALUE

RETURNED WHEN IN READ BACK MODE(IMODE=4)

IERR: NO ERROR

0

1: BAD IFBNO (0-1 ALLOWED)

2: BAD IMODE # (0-4 ALLOWED)

3: BAD IWRITE # (0-1 ALLOWED)

4: VALUE TO SET REG TO OUT OF RANGE

5: ATTEMPT TO READ AN UNINITIALIZED VARIABLE
6: ATTEMPT TO SEND AN UNINITIALIZED VARIABLE

USAGE OF ARRAYS:

IVALUE - THE LOGICAL SETTINGS FOR THE FBHC

IREGS - THE PHYSICAL FBHC REGISTERS, WHICH CONSIST OF
LOGICAL VARIABLES OR-ED TOGETHER

OOOOOOOOOOOOOOOOOOOOOOOOOOO0

- 95 -

OO0 OO0

IMAX - THE MAX. VALUE FOR A VARIABLE

IMIN - THE MIN. VALUE FOR A VARIABLE

IVBL - FOR EACH LOGICAL VARIABLE, THE NUMBER OF THE
PHYSICAL VARIABLE IN WHICH IT IS TO BE PUT

ISHIFT - FOR EACH LOGICAL VARIABLE, THE SHIFT FACTOR BY
WHICH IT IS TO BE MULTIPLIED BEFORE BEING PUT INTO ITS
PHYSICAL VARIABLE

IDEFAL - DEFAULT SETTING FOR LOGICAL VARIABLES, DEPENDING ON
USER'S CONFIGURATION

IREG32 - 32-BIT FBHC REGISTERS
MEANINGS OF LOGICAL VARIABLES (REGISTER FIELDS):

1,2 X-, Y- VIEWPORTS, RESPECTIVELY
3,4 X-, Y- SIZES, RESP

5,6 X-, Y- WINDOWS, RESP

7,8 X-, Y- ZOOMS, RESP

9 HORIZONTAL TIME

10 # OF LINES/FRAME

11 CURSOR ON

12 1024 MODE

13 AUTO CLEAR

14 EXTERNAL SYNC

15 COLOR MAP PAGE

16 RS-343

17 REPEAT FIELD

18 PIXEL CLOCK

19,20 X-, Y- CURSOR LOCATIONS, RESP
21 EXTERNAL PIXEL CLOCK

22 PRG SYN

23 DRV BPCK

- 96 -

C**

C TYPE DECLARATIONS & INITIALIZATIONS:

c**

C
C UNITS.COMMON
COMMON /UNITS/ IOUT,IN,IU,IUEX

C

INTEGER*4 IREG32(8), IKADDR, IKCURA

DIMENSION IVALUE(23,2),IDEFAL(23,3),IREGS(16),IMAX(23),IMIN(23)

DIMENSION IVBL(23),ISCALE(23)

INTEGER*2 UNINIT

OF LOGICAL & PHYSICAL VARIABLES:
DATA NVALUE/23/, NREGS/16/

a0 a0

INITIALIZATION FOR FBC DEFAULT SETTINGS & MIN, MAX, & SHIFTS:
DATA IDEFAL/0,32,511,511,4095,4067,0,0,300,560,0,0,0,0,0,0,0,45,
*0,32,0,0,1,
* 0,72,511,1023,0,4061,0,0,144,1167,0,0,0,0,0,1,1,19,0,32,0,0,1,
* 0,64,1023,1023,0,4033,0,0,144,1166,0,1,0,0,0,1,0,20,0,64,0,0,1/
DATA IMAX/1023,1023,1023,1023,4095,4095,255,255,
* 4095 4095,1,1,1,1 3,1, 1 63, 1023 1023 1,1,1/

DATA IMIN/0,0,0,0,0,0,0,0, 100,1,0,0,0,0,0,0,0 0,0,0,0,0,0/
DATA IVBL/1,2,3,4,5,6,7,8,9,10,11,11,11,11,11,11,11,
* 12,13,14,12,12,12/
DATA 1SCALE/1,1,1,1,1,1,1,1,1,1,4,8,32,64,128,512,1024,
* 1,1,1,64,128,256/
DATA IVALUE/46*-1/

DATA IFBALO/0/

- 97 -

C********

e e e e vk e e sk e e e e e sk v ok ke Kk ke ke ok vk vk vk vk ok ok e ok ok ok ok ok ok e vk e ok ke ok ok ok ok ok ke ok ok ok ke ke ke

MAIN PROG:

% e e % e ke e e e K e K e ke ok ok e ek e ke e e ke sk sk e vk ek e ke ke ok ok sk ke e e ke ke vk ok vk ke e ok ok ek

SAVE RUN RESET STATUS OF PROCESSOR & FORCE DMA AUTO-INCREMENT:
CALL IKBGEI(ICWT)

ICWT=IOR(IAND(ICWT,1536),320)

CALL IKBSEI(ICWT)

SET DEFAULT RETURN CODE:

INVAL = JINVAL
WRITE(IOUT, 20) IMODE, IFBNO, IWRITE, IINVBL, JINVAL
FORMAT(' (FBC) IMODE, IFBNO, IWRITE, IINVBL, JINVAL:' / 5I5)

CHECK TO MAKE SURE THERE IS A VALID FRAME BUFFER NUMBER:
(IFBNO .LT. O .OR. IFBNO .GT. 1))GOTO040

IERR =1

RETURN

CONTINUE

CHECK FOR VALID MODE #:

IF (.NOT.(IMODE .LT. O .OR. IMODE .GT. 4))GOTO 50

C
C********
C
C
C
C
C
C
C
IERR = 0
I
D
D20
C
C
IF(.NOT.
40
C
c
50
C
C
IF (.NOT
55
c
C
IFBAHI=1
IFBCNO=1I
CALL JoI
C
C
IF (.NOT
C
C
IF (
54
C
C
IF (
*
C
C

IERR = 2
RETURN
CONTINUE

CHECK FOR VALID IWRITE VALUE:

. (IWRITE .LT. 0 .OR. IWRITE .GT. 1)) GO TO 55
IERR = 3

RETURN

CONTINUE

SET IFBCNO FOR ARRAY USE,ALSO SET FBC HI ADDR
92+IFBNO*8

FBNO+1

N32(IKADDR, IFBAHI, IFBALO)

SEE IF A FIELD IN A REGISTER IS BEING SET:
.(IMODE .EQ. 0)) GO TO 60

CHECK FOR VALID VBL #
.NOT. (IINVBL .GT. NVALUE .OR. IINVBL .LT. 1))GOTO 54
IERR = 3
RETURN

CONTINUE

VBL # IS VALID. BUT IS THE VALUE?
.NOT. (IINVAL .LT. IMIN(IINVBL) .OR.
IINVAL .GT. IMAX(IINVBL)))GOTO 58

THE VALUE WAS OUT OF RANGE; RETURN WITH ERROR:

IERR = 4
RETURN

- 98 -

58 CONTINUE
C
C VALUE WAS VALID; SET IT INTO ARRAY:
IVALUE(IINVBL,IFBCNO) = IINVAL
C
C GO WRITE OUT REGISTERS TO FBC IF REQUESTED TO DO SO:
GO TO 250
60 CONTINUE
c :
C SEE IF A REGISTER FIELD IS BEING READ BACK:
IF (.NOT.(IMODE .EQ. 4)) GO TO 90
c
C ALLOW REGISTER FIELD TO BE READ BACK:

TINVAL = IVALUE(IINVBL, IFBCNO)
IF (.NOT.(IINVAL .EQ. -1)) GO TO 80

C .
c ATTEMPT TO READ AN UNINITIALIZED VARIABLE:
IERR = 5
RETURN
80 CONTINUE
JINVAL = TINVAL
RETURN
90 CONTINUE
C
C IMODE IS 1, 2, OR 3. INITIALIZE DEFAULTS FOR
C THE LOGICAL VARIABLES:

DO 100 I = 1,NVALUE
IVALUE(I,IFBCNO) = IDEFAL(I, IMODE)

100 CONTINUE

C

C SET FBC ADDRESS

200 CONTINUE

C

C NOW COMPUTE THE PHYSICAL VARIABLES FROM
C THE LOGICAL VARIABLES.

C FIRST, CLEAR ALL PHYSICAL VBLS TO 0.

250 CONTINUE
DO 300 I = 1,NREGS

IREGS(I) = 0
300 CONTINUE
C
C NOW, FOR EACH LOGICAL VARIABLE, ADD IN THE VALUE TO THE CORRECT
C PHYSICAL VARIABLE
UNINIT = 0

DO 310 I = 1,NVALUE
IF (IVALUE(I, IFBCNO) .EQ. -1) UNINIT =1 :
IREGS(IVBL(I)) = IREGS(IVBL(I))+IVALUE(I,IFBCNO)*ISCALE(I)

310 CONTINUE : ,

C

C CONVERT FROM 16-BIT VALUES TO IKONAS 32-BIT VALUES

NREG32 = NREGS/2

DO 320 T = 1,NREG32
CALL JOIN32(IREG32(I),IREGS(I*2),IREGS(I*2-1))

320 CONTINUE

- 99 -

c ' :
D WRITE(IOUT,350) (I,IVALUE(I,IFBCNO),I=1,NVALUE), (I,IREGS(I),I=1,16)
D350 FORMAT (' (FBC) IVALUES:*' / 23(/ ,1X, 13, 07) //
D * ' JREGS:' / 16(/ ,1X, I3, 07))

IF (.NOT.(IWRITE .EQ. 1)) GO TO 340
C

C SEE IF ANY UNINITIALIZED DATA; IF SO DON'T SEND IT:
IF (.NOT.(UNINIT .EQ. 1)) GO TO 335
D WRITE(IOUT, 330)
D330 FORMAT('0(FBC) ATTEMPT TO WRITE UNINITIALIZED DATA'/
D * ' TO FRAME BUFFER CONTROLLER. DATA NOT SENT')
IERR = 6
RETURN
335 CONTINUE
c
o THE IKONAS FBHC WORDS ARE COMPUTED. SEND EM IF SO COMMANDED:
D WRITE(IOUT, 337) IKADDR, NREG32, IREG32
D337 FORMAT(' (FBC) AT IKBWR. IKADDR, NREG32, IREG32(1-8) ‘',
D * 012, 112 / 8(1X, 012 /)
CALL IKBWR (0, IKADDR,NREG32, IREG32)
CALL IKBWT
340 CONTINUE
RETURN
END

- 100 -

C***

SUBROUTINE GET_SLD_COLR(CURCOLR, CLRA, CLRB, CLRC)

THIS IS THE SOLIDM VERSION COLOR CONVERSION ROUTINE
(SMP COLORS 0-7 CONVERT TO SOLID 0 < CLRA,-B,-C < 255 AS
APPROPRIATE) (CLRA=RED, CLRB=GREEN, CLRC=BLUE)

OO0

IMPLICIT NONE
INTEGER*4 CURCOLR
INTEGER*2 CLRA, CLRB, CLRC

C = e m e m e m e e e m e
IF (CURCOLR .EQ. 0) THEN ! BLACK
CLRA = 0
CLRB = 0
CLRC = 0
ELSE IF(CURCOLR .EQ. 1) THEN . ! RED
CLRA = 255
CLRB = 0
CLRC = 0
ELSE IF(CURCOLR .EQ. 2) THEN ! GREEN
CLRA =0
CLRB = 255
CLRC =0
ELSE IF(CURCOLR .EQ. 3) THEN ! YELLOW
CLRA = 255
CLRB = 255
CLRC = 0
ELSE IF(CURCOLR .EQ. 4) THEN ! BLUE
CLRA =0
CLRB = 0
CLRC = 255
ELSE IF(CURCOLR .EQ. 5) THEN ! MAGENTA
CLRA = 255 .
CLRB = 0
CLRC = 255 ‘
ELSE IF(CURCOLR .EQ. 6) THEN ! CYAN
CLRA = 0
CLRB = 255
CLRC = 255
ELSE IF(CURCOLR .EQ. 7) THEN ! WHITE
CLRA = 255
CLRB = 255
CLRC = 255
ELSE ! DEFAULT IS WHITE
CLRA = 255
CLRB = 255
CLRC = 235
END IF
RETURN
END

- 101 -

c***

C

*

OO0

SUBROUTINE SLDSMOOTH(NN, N, IF)

SMOOTH SHADES ONE PART USING ADAGE'S SOLID-3000 PACKAGE.
ROUTINE SENDS ALL FACES AND NORMALS IN ONE PART TO SOLID.
THE PARTS ARE PASSED TO THIS ROUTINE IN COMMON HS.CMN

NN NPOINT (# OF VERTICES (NODES) IN THIS PART)
N NFACE (# OF FACES IN THIS PART)
IF(5,MAXFPP)= IFACE (LIST OF FACES (3 OR 4 VERTEX POLYGONS))

NPF = # OF NODES PER FACE IN THIS FACE

INCLUDE 'PARTS.PRM'

INCLUDE 'DEVICE.CMN'

INCLUDE 'HS.CMN'

C

INTEGER*2 ON, OFF, NRMLST, DUMMY
INTEGER*2 ICOMP, I2NPF, NORMS(4, 5)

REAL*4 XT(4,5), NORM

INTEGER*2 NNODES, NFACES, NODE, FACE_NO, NPF, INDEX, COUNT(MAXNPP)
INTEGER*4 IF(5,MAXFPP)

REAL*4 NORMX (MAXFAC), NORMY (MAXFAC), NORMZ(MAXFAC)

REAL*4 SUMX (MAXNPP), SUMY (MAXNPP), SUMZ(MAXNPP)

REAL*4 NORMXCOMP, NORMYCOMP, NORMZCOMP

DATA ON/1/, OFF/0/

- 102 -

C INITIALIZE FOR NORMAL CALCULATION:
NNODES = NN
NFACES = N
C
DO 10 NODE = 1, NNODES
COUNT(NODE) = 0
SUMX (NODE) 0.0
SUMY (NODE) 0.0
SUMZ (NODE) 0.0
10 CONTINUE
C
C FOR EACH FACE, CALCULATE AND ACCUMULATE ITS NORMAL:
IT = NF
DO.30 FACE_NO = 1, NFACES
NPF = IF(1,FACE_NO)

FORM THIS FACE'S NORMAL:

1ST, COPY THE FACE POINTERS INTO FACE(J,II) FOR PLANEQ
IGNORING POINT OR LINE ELEMENTS:
IF (NPF .GE. 3) THEN

IT = II+1

FACE(1,II) = NPF

OOOOO0O

DO 14 J=2,NPF+1
FACE(J,II) = IF(J,FACE_NO) + NG
14 CONTINUE

LET PLANEQ COMPUTE THE EQUATION OF THE PLANE:
CALL PLANEQ (II,A,B,C,D)

NORMALIZE EQN OF THE PLANE OF THIS FACE TO GET ITS NORMAL
AND CONVERT IT TO A 16-BIT SIGNED FRACTION FOR SOLID-3000:
NORM = SQRT(A*A + B*B + C*C) / 32767.0

A = A / NORM

B =B / NORM

C = C / NORM

THE NORMALS ARE INVERTED BECAUSE SMP HAS A
RIGHT-HANDED COORDINATE SYSTEM AND

SOLID-3000 HAS A LEFT-HANDED COORDINATE SYSTEM:
NORMXCOMP = -A

NORMYCOMP = -B

NORMZCOMP = -C

OO0 OO0 (e Ngp]
nown

FOR EACH NODE (POINT) IN THIS FACE:
ADD THIS FACE'S NORMAL COMPONENTS INTO THE NORM ACCUMULATOR:
DO 11 J = 2, NPF + 1
NODE = IF(J, FACE_NO)
COUNT(NODE) = COUNT(NODE) + 1
SUMX(NODE) = SUMX(NODE) + NORMXCOMP
SUMY (NODE) = SUMY(NODE) + NORMYCOMP

OO0

- 103 -

SUMZ(NODE) = SUMZ(NODE) + NORMZCOMP

11 CONTINUE
END IF
30 CONTINUE
C
C CALCULATE THE AVERAGE NORMAL FOR EACH NODE (POINT; VERTEX):

DO 700 NODE = 1, NNODES
NODE_CNT = COUNT (NODE)

NORMX (NODE+NG) = NINT(SUMX(NODE) / NODE_CNT)
NORMY (NODE+NG) = NINT(SUMY(NODE) / NODE_CNT)
NORMZ (NODE+NG) = NINT(SUMZ(NODE) / NODE_CNT)

700 CONTINUE

C

C GIVE ONE FACE'S NODES (POINTS) AND AVERAGE NORMALS TO SOLID-3000

c ONE FACE AT A TIME AS REQUIRED BY SOLID'S SPOLY ROUTINE:

IT = NF

DO 800 FACE_NO = 1, NFACES
NPF = IF(1, FACE_NO)
DO 750 J = 2, NPF + 1

c
C COPY FACE'S POINTS TO XT(4,5) SO SEND_2_SOLID CAN GET THEM:
JM1 = J -1
INDEX = IF(J, FACE_NO) + NG
XT(1,dM1) = XG(INDEX)
XT(2,JM1) = YG(INDEX)
XT(3,JM1) = ZG(INDEX)
C
C PUT FACE'S NORMS INTO NORMS(4,N) FOR SEND_2_SOLID:
NORMS (1, JM1) = NORMX(INDEX)
NORMS (2, JM1) = NORMY (INDEX)
NORMS (3, JM1) = NORMZ(INDEX)
750 CONTINUE
C
C GIVE FACE'S POINTS & NORMALS TO SOLID-3000:

I2NPF = NPF
CALL SEND 2 SOLID(I2NPF, XT, NORMS, IDASH)

800 CONTINUE ! CLOSE FACE LOOP

C
C UPDATE NODE AND FACE COUNTERS
NG = NG+NN
NF = II
c
RETURN
END

- 104 -

C FILENAME: SLDSUBS.FOR
c

C***

SUBROUTINE SODRWA(XW, YW, IDASH)

DRAW A LINE USING FLOATING WORLD COORDS. THE OTHER POINT TO
DRAW FROM IS (XCUR, YCUR) IN COMMON /ADAGE/.

IMPLICIT NONE

(] OO0

COMMON /ADAGE/ CURCOLR, ICURX, ICURY
INTEGER*4 CURCOLR
INTEGER*2 ICURX, ICURY

COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXvSIz, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
COMMON /ADWIND/ XMINW, XMAXW, YMINW, YMAXW,
. XWSIZE, YWSIZE, XWCNTR, YWCNTR
REAL XMINW, XMAXW, VYMINW, YMAXW,
. XWSIZE, YWSIZE, XWCNTR, YWCNTR

INTEGER*2 IX, IY
INTEGER*4 IDASH
REAL XW, YW
c
INTEGER*2 SCOLOR, SPOLY ! CALLED FUNCTIONS NAMES
INTEGER*2 INTEN, COLOR, DUMMY_COLOR, DUMMY, ICOMP-
INTEGER*2 SET_LINE_COLOR/4/
C
INTEGER*2 NO_VERTICES, VERTEX_LIST(4, 2)
DATA NO_VERTICES /2/, VERTEX_LIST /8*0/

C mmm e eemme e ———mmmmmmm e m e ————
C
C PERFORM WINDOWING & VIEWPORTING:
IX = (((XW-XWCNTR) / XWSIZE) + 0.5) * IXVSIZ + IXMINS - 255
IY = (((YW-YWCNTR) / YWSIZE) + 0.5) * IYVSIZ + IYMINS - 255
C
C CONVERT CURRENT COLOR TO SOLID'S FORMAT; SEND IT TO SOLID:

CALL GET_SLD_COLR(CURCOLR, INTEN, COLOR, DUMMY_COLOR)
ICOMP = SCOLOR(INTEN, COLOR, DUMMY_COLOR)

C

C PUT LINE ENDPOINTS INTO FORMAT REQUIRED BY SOLID:
VERTEX_LIST(I,I) = ICURX

VERTEX_LIST(Z,I) = JCURY

VERTEX_LIST(I,Z) = IX

VERTEX_LIST(2,2) = IY
C
C DRAW LINE BY PRETENDING IT IS A POLYGON:

ICOMP = SPOLY(SET_LINE_COLOR, INTEN, COLOR, DUMMY_COLOR,
. DUMMY, NO_VERTICES, VERTEX_LIST, DUMMY)
C
C SET LAST POINT DRAWN TO AS THE 'CURRENT' POINT:

- 105 -

ICURX = IX
ICURY = IY
RETURN
END

- 106 -

c***

SUBROUTINE SODRWS(IXS, IYS, IDASH)

C
C DRAW A LINE USING INTEGER SEREEN COORDS. THE OTHER POINT TO
c DRAW FROM IS (ICURX, ICURY) IN COMMON /ADAGE/.
C
IMPLICIT NONE
C
COMMON /ADAGE/ CURCOLR, ICURX, ICURY
INTEGER*4 - CURCOLR
INTEGER*2 ICURX, ICURY
C
COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
C

INTEGER*2 IXS, IYS
INTEGER*4 IDASH
INTEGER*2 SCOLOR, SPOLY ! CALLED FUNCTIONS NAMES
INTEGER*2 INTEN, COLOR, DUMMY_COLOR, DUMMY, ICOMP
INTEGER*2 SET_ LINE COLOR /4/
C
INTEGER*2 NO_VERTICES, VERTEX_LIST(4, 2)
DATA NO_VERTICES /2/, VERTEX_LIST /8*0/

C e T
C
C CONVERT CURRENT COLOR TO SOLID'S FORMAT; SEND IT 7O SOLID:
CALL GET_SLD_COLR(CURCOLR, INTEN, COLOR, DUMMY _COLOR)
ICOMP = SCOLOR(INTEN, COLOR, DUMMY COLOR
C
C OFFSET THE POINT TO AGREE WITH SOLID'S COORDINATE SYSTEM:
IXS = IXS - 255
IYS = IYS - 255
C
C PUT LINE ENDPOINTS INTO FORMAT REQUIRED BY SOLID:
VERTEX_LIST(1,1) = ICURX
VERTEX_LIST(2,1) = ICURY
VERTEX_LIST(1,2) = IXS
VERTEX_LIST(2,2) = IYS
c
C DRAW LINE BY PRETENDING IT IS A POLYGON:

ICOMP = SPOLY(SET_LINE_COLOR, INTEN, COLOR, DUMMY_COLOR,
. DUMMY, NO_VERTICES, VERTEX LIST DUMMY)

C
C SET LAST POINT DRAWN TO AS THE 'CURRENT' POINT:
ICURX = IXS
ICURY = IYS
RETURN
END

- 107 -

o OO0

C***

. SUBROUTINE SOMOVA(XW, YW)
MOVE USING FLOATING WORLD COORDS.
IMPLICIT NONE

COMMON /ADAGE/ CURCOLR, ICURX, ICURY
INTEGER*4 CURCOLR
INTEGER*2 ICURX, ICURY

COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IVYMAXS,
IXvSIZ, IYVSIZ, IXVCNTR, IYVCNTR

INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
COMMON /ADWIND/ XMINW, XMAXW, VYMINW, YMAXW,
XWSIZE, YWSIZE, XWCNTR, YWCNTR

REAL XMINW, XMAXW, YMINW, YMAXW,

. XWSIZE, YWSIZE, XWCNTR, YWCNTR

INTEGER*2 IX, IY
REAL XW, YW

PERFORM WINDOWING & VIEWPORTING:
IX = (((XW-XWCNTR) / XWSIZE) + 0.5) * IXVSIZ + IXMINS - 255
IY = (((YW-YWCNTR) / YWSIZE) + 0.5) * IYVSIZ + IYMINS - 255

SET THE PASSED IN POINT AS THE CURRENT POINT:
ICURX = IX

ICURY = IY

RETURN

END

- 108 -

C***

SUBROUTINE SOMOVS(IXS, IYS)

C
c MOVE USING INTEGER SEREEN COORDS.
C
IMPLICIT NONE
c
COMMON /ADAGE/ CURCOLR, ICURX, ICURY
INTEGER*4 CURCOLR
INTEGER*2 ICURX, ICURY
C
COMMON /ADVUPR/ IXMINS, IXMAXS, IYMINS, IYMAXS,
. IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
INTEGER IXMINS, IXMAXS, IYMINS, IYMAXS,
IXVSIZ, IYVSIZ, IXVCNTR, IYVCNTR
C
INTEGER*2 IXS, IYS, IX, IY
C
ICURX = IXS - 255
ICURY = IYS - 255
RETURN
END

- 109 -

C*******_**

SUBROUTINE SEND_2_SOLID(N, X, NORMS, IDASH

OO0

INCLUDE 'PARTS.PRM'
INCLUDE 'DEVICE.CMN'
INCLUDE 'ADAGE.CMN'

COMMON /ADVUPR/
INTEGER
COMMON /ADWIND/
REAL
COMMON /SOZWND/
REAL

REAL*4 X(4,5)

OO0

IXMINS,
IXVSIZ,
IXMINS,
IXVSIZ,
XMINW,

XWSIZE,
XMINW,

XWSIZE,

IXMAXS,
IYVSIZ,
IXMAXS,
IYVSIZ,
XMAXW,

YWSIZE,
XMAXW,

YWSIZE,

DEFINE ONE FACE OF A POLYGON. PUT A NORMAL
AT THE FIRST VERTEX IN EACH FACE.

)

IDASH IS NOT USED CURRENTLY.

SEND POLYGON AND NORMAL TO SOLID-3000.
N.B. CONTAINS DEVICE DEPENDENT CODE

IYMINS,
IXVCNTR,
IYMINS,
IXVCNTR,
YMINW,
XWCNTR,
YMINW,
XWCNTR,

IYMAXS,
IYVCNTR
IYMAXS,
IYVCNTR
YMAXW,
YWCNTR
YMAXW,
YWCNTR

ZMINSLDW, ZMAXSLDW, ZWSIZW, ZWCNTRW
ZMINSLDW, ZMAXSLDW, ZWSIZW, ZWCNTRW

INTEGER*2 VRTXLST(4, 5)

INTEGER*2 NORMS(4,

5)

VRTXLST(X|Y|Z|W, # OF VERTICES):

INTEGER*2 ICOMP, SPOLY, DUMMY/0/, N
INTEGER*2 DEFNORM/1/

OO0

IX
Iy

o OO0

VRTXLST(1,1)
VRTXLST(2,1)

TRY INVERTING
THE PIX MATCH

OO0

VRTXLST(3,1) =

IX
Iy

PERFORM WINDOWING & VIEWPORTING:
((X(1,1)-XWCNTR) / XWSIZE) * IXVSIZ + XMINS
((X(2,1)-YWCNTR) / YWSIZE) * IYVSIZ + YMINS

PUT POLYGON DEFINITION INTO FORMAT REQUIRED BY SOLID 3000:

Z IS "WINDOWED" AND "VIEWPORTED" TO MAKE THE BEST USE OF
SOLID-3000'S Z-BUFFER ALGORITHM:
1Z = ((X(3,1)-ZWCNTRW) / ZWSIZW) * 32767.0

THE Z VALUE OF POINTS TO SEE IF THAT WILL MAKE
THE HIDDEN LINE RENDERED PIX IN THE PIXEL

94

STUFFING VERSION OF SMP:

- 110 -

OO0

OO0 (g) OO0 (e Xwl

OO0

THIS TRICKY LITTLE BIT OF CODE COPIES THE FIRST
VERTEX AND ADDS IT AT THE END OF THE VERTEX LIST
TO CLOSE THE POLYGON: -HHL

NO IT DOESN'T; IT MERELY SHIFTS THE POINTS AROUND THE FACE BY

ONE INDEX. I DON'T KNOW WHY. -HHL
pDos5I1=1, N
IF (I .NE. N) THEN
IP1 =1 +1
ELSE
IP1 =1
END IF

PERFORM WINDOWING & VIEWPORTING:
IX = ((X(1,IP1)-XWCNTR) / XWSIZE) * IXVSIZ + XMINS
IV = ((X(2,IP1)-YWCNTR) / YWSIZE) * IYVSIZ + YMINS

Z IS "WINDOWED" AND "VIEWPORTED" TO MAKE THE BEST USE OF
SOLID-3000'S Z-BUFFER ALGORITHM:
IZ = ((X(3,IP1)-ZWCNTRW) / ZWSIZW) * 32767.0

VRTXLST(1,1P1)
VRTXLST(2,1P1)

IX
IY

nn

TRY INVERTING THE Z VALUE OF POINTS TO SEE IF THAT WILL MAKE
THE PIX MATCH THE HIDDEN LINE RENDERED PIX IN THE PIXEL
STUFFING VERSION OF SMP:

VRTXLST(3,IP1) = -IZ

CONTINUE

GIV
TO

E POLYGON DEFINITION TO SOLID SYSTEM (IT IS NOT SENT
THE DISPLAY UNTIL A DIDUMP CALL IS MADE):

ICOMP = SPOLY(DEFNORM, DUMMY, DUMMY, DUMMY,
DUMMY, N, VRTXLST, NORMS)

RETURN
END

- 111 -

C***

SUBROUTINE SLDZWIND(ZMINSLD, ZMAXSLD)

c
c SAVE Z-"WINDOW" SPECS IN COMMON IN WORLD COORDINATES:
c
IMPLICIT NONE
c
COMMON /SOZWND/ ZMINSLDW, ZMAXSLDW, ZWSIZW, ZWCNTRW
REAL ZMINSLDW, ZMAXSLDW, ZWSIZW, ZWCNTRW
c
REAL ZMINSLD, ZMAXSLD
C
Cmmm e e e e —————— o
c
ZMINSLDW = ZMINSLD
ZMAXSLDW = ZMAXSLD

ZWSIZW = ZMAXSLDW - ZMINSLDW

ZWCNTRW = (ZMAXSLDW + ZMINSLDW) / 2.0
RETURN
END

- 112 -

NOTE: Although this subroutine was not entirely written by RTI,
it is so heavily modified that it should be included here.

c***

SUBROUTINE STRMDL (NMAX,NN,X,N,IF,T,IPC,INERR)

C

c* ROUTINE TO STORE ALL MODEL NODES AND FACES IN ONE PART
CSLD:

C N.B. DEVECE DEPENDENT CODE

C

C NMAX = MAXNPP (MAX NODES PER PART PARAMETER IN PARTS.PRM
C ACTUALLY SHOULD NOT BE PASSED)

C NN = NPOINT (# OF VERTICES (NODES) IN THIS PART)

C X(3,4) = XKNOT (VERTEX (NODE) LIST)

C N = NFACE (# OF FACES IN THIS PART)

C IF(5,MAXFPP)= IFACE (LIST OF FACES (3 OR 4 VERTEX POLYGONS))
C T(4,4) = TRANSFORMATION ARRAY TO RE-ORIENT PART FOR VIEWING)
c IPC = THIS PARTS COLOR. (SET BY SUBR. STRCOLR)

c INERR = ARRAY OVERFLOW INDICATOR = 0,1, OR 2. (RETURNED)
C

c NPF = # OF NODES PER FACE IN THIS FACE

C

INCLUDE 'PARTS.PRM!'
INCLUDE 'PARTS.CMN'
INCLUDE 'DEVICE.CMN'
CSLDEND
INCLUDE 'HS.CMN!'
C
COMMON /TMNMX/ TXMIN, TXMAX, TYMIN, TYMAX, TZMIN, TZMAX
COMMON /HSOPT/ SORL,BFCULL,ISMOTH,DIF,EN,DORD
CHARACTER*1 SORL,BFCULL
COMMON /OBSRVR/ 0X,0Y,0Z
CSLD: DIMENSION X(NMAX,3),IF(5,1),T(4,4)
CSLD: :
DIMENSION X(NMAX,3),IF(5,MAXFPP),T(4,4)
INTEGER*2 COLORA, COLORB, COLORC, ON, NORMS(4,5), NRMLST, DUMMY
INTEGER*2 ICOMP, I2NPF, OFF, LIGHT1, SCOLOR
INTEGER*2 XLITVEC, YLITVEC, ZLITVEC, VECTOR, IBFINV
INTEGER*2 AMBLIT, DIFUSE, RFLCTD, EXPONT, WEIGHT, WHITE
REAL*4 XT(4,5), NORM
CHARACTER*1 ANS
DATA NRMLST/1/, ON/1/, OFF/0/
DATA XLITVEC/100/, YLITVEC/100/, ZLITVEC/-500/, VECTOR/0/

- 113 - '

CSLDEND
C
c CHECK FOR NODE NUMBER AND FACE NUMBER LIMITS
INERR = 0
IF ((NG+NN) .GT. MAXNOD) THEN
INERR =1
GO TO 999
END IF
IF ((NF+N) .GT. MAXFAC) THEN
INERR = 2
GO TO 999
END IF

c TRANSFORM AND STORE NODES
CSLD:
IF (IDEV .EQ. 6) THEN
DO 10 I=1,NN
NODENO = I + NG
CALL UAPPLY (X(I,1),X(I,2),X(I1,3), T
XG(NODENO) , YG (NODENO) , ZG (NODENO))
TXMAX = MAX (TXMAX , XG(NODENO))
TXMIN = MIN (TXMIN , XG(NODENO))
TYMAX = MAX (TYMAX , YG(NODENO))
TYMIN = MIN (TYMIN , YG(NODENO))
TZMAX = MAX (TZMAX , ZG(NODENO))
TZMIN = MIN (TZMIN , ZG(NODENO))
10 CONTINUE
ELSE
CSLDEND
DO 11 I=1, NN
IT = I+NG
CALL UAPPLY (X(I 1) X(I 2) X(1,3), T, XG(II),YG(II),ZG(II))
TXMAX = MAX (TXM ())
TXMIN
TYMAX
TYMIN

MIN (TXMIN , XG(II))

MAX (TYMAX , YG(II))

MIN (TYMIN , YG(II))

TZMAX = MAX (TZMAX , ZG(II))

TZMIN = MIN (TZMIN , ZG(II))
11 CONTINUE

CSLD:

END IF

CSLDEND

CSLD 10 CONTINUE

C

C DEFINE OBSERVER POSITION

CRG 0Z = TZMAX + 0.1*ABS(TZMAX-TZMIN)
0Z = TZMAX + 2.0* ABS(TZMAX-TZMIN)
CSLD:
IF (IDEV .EQ. 6) THEN
C
C GIVE COLOR OF PART TO SOLID-3000:

CALL GET_SLD_COLR(IPC, COLORA, COLORB, COLORC)
ICOMP = SCOLOR(COLORA, COLORB, COLORC)

- 114 -

C
C

CSLD:

OOOOO e Xe]

leXgl OO0 o0

OO0

14

IF REQUESTED, DO SMOOTH SHADING:
IF (ISMOTH .EQ. 1) THEN

CALL SLDSMOOTH(NN, N, IF)
RETURN

END IF

END IF
CSLDEND

STORE FACES AND COLOR
IT = NF
DO 30 I=1,N

NPF = IF(1,I)

FOR EACH FACE, GIVE FACE DATA, COLOR, & NORMALS TO SOLID:
IF. (IDEV .EQ. 6) THEN

FORM THIS FACE'S NORMAL (REQUIRED BY SOLID-3000):

1ST, COPY THE FACE POINTERS INTO FACE(J,II) FOR PLANEQ
IGNORING POINT OR LINE ELEMENTS:
IF (NPF .GE. 3) THEN

IF (N
A

II = II+1
FACE(1,II) = NPF

DO 14 J=2,NPF+1
FACE(J,II) = IF(J,I) + NG
CONTINUE

LET PLANEQ COMPUTE THE EQUATION OF THE PLANE:
CALL PLANEQ (II,A,B,C,D)

NORMALIZE EQN OF THE PLANE OF THIS FACE TO GET ITS NORMAL
AND CONVERT IT TO A 16-BIT SIGNED FRACTION FOR SOLID-3000:
NORM = SQRT(A*A + B*B + C*C) / 32767.0

INSURE THAT THERE WILL BE NO FLOATING DIVIDE BY ZERO:

ORM .EQ. 0.0) THEN

TTu unn

32767.0
32767.0
32767.0

A / NORM
B / NORM
C / NORM

SOLID-3000 ONLY REQUIRES 1 NORM FOR EACH FACE:
THE NORMALS ARE INVERTED BECAUSE SMP HAS A
RIGHT-HANDED COORDINATE SYSTEM AND

SOLID-3000 HAS A LEFT-HANDED COORDINATE SYSTEM:

INSURE NO OVERFLOW WHEN CONVERTING FROM REAL*4 TO I*2:

- 115. -

IF (A .GT. 32767.0) THEN
NORMS(1,1) = -32767
ELSE
NORMS(1,1) = -NINT(A)
END IF

IF (B .GT. 32767.0) THEN
NORMS(2,1) = -32767
ELSE
NORMS (2,1) = -NINT(B)
END IF

IF (C .GT. 32767.0) THEN
NORMS(3,1) = -32767
ELSE
NORMS(3,1) = -NINT(C)
END IF

C COPY FACE'S POINTS TO XT(4,5) SO SEND_2_SOLID CAN GET THEM:
DO 12 J = 2, NPF + 1
JM1 = J -1
INDEX = IF(J, I) + NG
XT(1,JM1) = XG(INDEX)
XT(2,JM1) = YG(INDEX)
XT(3,JM1) = ZG(INDEX)
12 CONTINUE

C GIVE FACE'S POINTS & NORMALS TO SOLID-3000:
I2NPF = NPF
CALL SEND 2 SOLID(I2NPF, XT, NORMS, IDASH)
END IF
ELSE
CSLDEND
NPF = IF(1,I)
C
C IGNORE POINT OR LINE ELEMENTS
IF (NPF .LT. 3) GO TO 30
IT = II+1
FACE(1,II) = NPF
IFC(II) = IPC
DO 20 J=2,NPF+1
FACE(J,II) = IF(J,I) + NG
20 CONTINUE

"CULL" THE BACK-FACES BY TAKING DOT PRODUCT OF PLANE
NORMAL WITH VECTOR IN DIRECTION OF OBSERVER
IF (BFCULL .EQ. 'Y') THEN

COMPUTE THE PLANE EQUATION OF THE GIVEN FACE
CALL PLANEQ (1I,A,B,C,D)
DOTPR = A*QX + B*0Y + C*0Z
IF (DOTPR .LE. 0.0) THEN
PFLAG(II) = .FALSE.
IT = II-1

OO0

oo

- 116 -

CSLD:

END IF
END IF

END IF

CSLDEND
30 CONTINUE

C
C

C
C

UPDATE NODE AND FACE COUNTERS
NG = NG+NN

NF =1

I

999 CONTINUE

RETURN
END

- 117 -

NOTE: Although this subroutine was not entirely written by RTI,
it is so heavily modified that it should be included here.

c***

SUBROUTINE HSDRVR

C
C N.B. CONTAINS DEVICE DEPENDENT CODE
C
c* DRIVER FOR THE HIDDEN SURFACE (LINE) REMOVAL ROUTINES.
C* DISPLAY AND SHADING OPTIONS ARE SPECIFIED BY THE USER
c* IN THIS ROUTINE.
c
INCLUDE 'PARTS.PRM'
CSLD:

INCLUDE 'DEVICE.CMN'
INCLUDE 'ADAGE$SOLID:SPARMS.INC/NOLIST®
CENDSLD
INCLUDE 'PARTS.CMN'
INCLUDE 'LL.CMN'

CHARACTER*80 LINE
LOGICAL LSHRINK,PLABEL
COMMON /DISOPT/ LHIDE,LSHRINK,SFAC,PLABEL,LSELECT (MAXPART),LINE
+ , IDSDW(MAXPART)
COMMON /TW/ T,W,S
DIMENSION T(4,4),W(4),S(4)
COMMON /HSOPT/ SORL,BFCULL, ISMOTH,DIF,EN,DORD
CHARACTER*1 SORL,BFCULL
COMMON /SCROPT/ IMIN, IMAX, ICTABL
CHARACTER*1 IANS
DIMENSION XT(3,4)
DIMENSION ORG(3)
CHARACTER*4 OPTION
DIMENSION NREC(4)
CSLD:
COMMON /ANTIALIAS/ AALIAS REQ
CHARACTER*1 AALIAS REQ
INTEGER*2 FULCOL/17
INTEGER*2 ON/1/, OFF/0/, ICOMP
INTEGER*2 AMBLIT, DIFUSE, RFLCTD,
. EXPONT, WEIGHT, WHITE, LIGHT1
INTEGER*2 COLORA, COLORB, COLORC, DUMMY
INTEGER*2 XLITVEC, YLITVEC, ZLITVEC, VECTOR
DATA XLITVEC/100/, YLITVEC/100/, ZLITVEC/-500/, VECTOR/0/
DATA AMBLIT/6000/, DIFUSE/22000/, RFLCTD/4000/,
SLOEND EXPONT/20/, WEIGHT/32767/, WHITE/7/, LIGHT1/1/
CSLDEN

DATA ISMOTH,EN,DIF /0,1.0,0.30/

- 118 -

c READ HIDDEN SURFACE INPUT OPTIONS
WRITE (IOUT,2002)
2002 FORMAT (' ENTER S - ELIMINATE HIDDEN SURFACE',/,

+ ! L - ELIMINATE HIDDEN LINES',/
+ ' B - BOTH (SEPARATE VIEWS)',/,
+ ' R - RETURN')

READ (IN,'(A)',END=1,ERR=1) SORL
1 IF (SORL.EQ.'R') RETURN
IF (SORL.NE.'S' .AND. SORL.NE.'L') SORL='B’
C
CSLD:
IF (IDEV .EQ. 6) THEN
IF (SORL .EQ. 'B* .OR. SORL .EQ. 'L') THEN
WRITE(IOUT, 2001)

2001 FORMAT('DEVICE 6: S - ELIMINATE HIDDEN SURFACE USED' /)
SORL = 'S
END IF
ENDIF
CSLDEND

C THE NEXT THREE OPTIONS ARE "SPECIAL PURPOSE" ONLY
C ALLOW THE USER TO BYPASS THESE AND USE DEFAULT VALUES
120 WRITE (IOUT,2018)
2018 FORMAT ('ENTER "Y" TO OVERRIDE DEFAULT',/,
+ 'IMAGE DISPLAY OPTIONS')
IANS = 'N'
READ (IN,'(A)',ERR=120,END=130) IANS
c IF RESPONSE IS "NEGATIVE" USE DEFAULTS
130 IF (IANS .NE. 'Y') THEN
DORD
IANS

o

lNl
2
0

IF HIDDEN SURFACES HAVE BEEN REQUESTED, DETERMINE WHETHER
IMAGE SHOULD BE DISPLAYED OR STORED ON DISK
DORD = 0
IF (SORL.NE.'L') THEN
150 WRITE (IOUT,2013)
2013 FORMAT ('ENTER DISPLAY/DISK IMAGE OPTION',/

OO0

1 ' 0 - IMAGE OUTPUT TO DISPLAY',/,
CADGSLD 2 ' 1 - IMAGE STORED ON FILE "SMP.IMG"')
CADGSLD READ (IN,'(I1)',END=160,ERR=150) DORD
CADGSLD:
2 ' 1 - IMAGE STORED ON FILE "SMGG.IMG"')
READ (IN,'(F1.0)',END=160,ERR=150) DORD
CADGSLDEND
160 IF (DORD.NE.O .AND. DORD.NE.1) THEN
DORD = 0
END IF

- 119 -

END IF

C
CSLD:
IF (IDEV .EQ. 6 .AND. DORD .EQ. 1) THEN
WRITE(IOUT, 2014)
2014 FORMAT(DEVICE 6: IMAGE NOT IN STORABLE FORMAT' /)
DORD = 0
END IF
C

IF (IDEV .NE. 6) THEN
CSLDEND
170 WRITE (IOUT,2015)
2015 FORMAT ('ENTER RESOLUTION CHANGE OPTION',/,
1 ' N - DEFAULT TO DEVICE LIMITS',/,
2 ' Y - REDUCE FOR FASTER DISPLAY')
ICHANG = 0
READ (IN,'(A)',ERR=170,END=180) IANS
180 IF (IANS .EQ. 'Y') THEN

ICHANG =1
190 ~ WRITE (IOUT,2016)
2016 FORMAT ('ENTER NEW RESOLUTION (SQUARE ONLY)',/,
1 ' RESOLUTION FOLLOWED BY STARTING PIXEL')
READ (IN,*,ERR=190,END=195) IMAX, IMIN
195 ITEMP = IMIN

IMIN = MIN (ABS(ITEMP),ABS(IMAX))
IMAX = IMIN + MAX(ABS(ITEMP),ABS(IMAX))
IF (IMIN .EQ. IMAX) IANS='N'

END IF

197 WRITE (IOUT,2017)
2017 FORMAT (*ENTER COLOR TABLE OPTION',/,
1 0 - USE ASSIGNED PART COLORS' "
2 ! 1 - OVER-RIDE WITH GREY SCALE')
READ (IN,'(I1)',ERR=197,END=198) ITEMP
198 IF (ITEMP .EQ. 1) THEN

ICTABL =1
ELSE
ICTABL = 2
END IF
C
C SET "COMPUTATION RESOLUTION"
199 CALL CMPRES (DORD, ICHANG,IMIN, IMAX)
CSLD:
END IF
CSLDEND
CRG

IF (SORL.NE.'L') THEN
200 WRITE(IOUT,2004)
2004 FORMAT('ENTER SHADING OPTION',/,
+ ' 0 - FLAT ELEMENT SHADING',/,
+ ' 1 - SMOOTH ELEMENT SHADING')
READ(IN,'(I1)',END = 200,ERR=200) ISMOTH
IF (ISMOTH.GT.1) ISMOTH = 1
IF (ISMOTH.LT.0) ISMOTH = 0

- 120 -

C CHANGE SHADING PARAMETERS?
250 WRITE (I0UT, 2005) 4
2005 FORMAT('ENTER Y TO CHANGE SHADING PARAMETERS')
READ(IN, ' (A)',ERR=250,END = 500) IANS
IF (IANS .EQ.'Y') THEN
CSLD:
IF (IDEV .EQ. 6) THEN

WRITE(IOUT,*)'ENTER AMBIENT, DIFFUSE, REFLECTED VALUES OF',
" LIGHT:'
WRITE(IOUT *) ' (THE SUM OF AMBIENT, DIFFUSE, & REFLECTED',
' SHOULD BE < 32767)'
WRITE(IOUT *) ' (AMB=6000, DIF=22000, & REF=4000 IS GOOD)'
READ(IN 19, END= 17 ERR=17) AMBLIT DIFUSE, RFLCTD
19 FORMAT(316)
17 CONTINUE

WRITE(IOUT,*)'ENTER EXPONENT FOR REFLECTED LIGHT!,
! (20 IS GOOD):'
READ(IN ,END=21,ERR=21) EXPONT
IF (EXPONT .EQ. 0.0) THEN
WRITE(IOUT,*) 'EXPONENT MUST NOT BE ZERO'

GO TO 17
END IF
21 CONTINUE
ICOMP = SLINUM(LIGHT1, OFF, OFF, OFF
CALL GET_SLD COLR(WHITE COLORA COLORB, COLORC)
CALL SLIGHT(LIGHT1, XLITVEC, YLITVEC ZLITVEC VECTOR,
. COLORA, COLORSB, COLORC AMBLIT DIFUSE, RFLCTD,.
. EXPONT, WEIGHT)
C
WRITE(IOUT, *) 'ANTI-ALIASING? (DEFAULT-NONE)(Y OR N):'
READ(IN,50,END=22,ERR=22) AALIAS_REQ
50 FORMAT(Al)
22 CONTINUE
C
IF (AALIAS REQ .EQ. 'Y') THEN
ICOMP = SALIAS(ON)
ICOMP = SQDRAW(OFF)
c
C MONITOR GAMMA?
WRITE(IOUT, *) 'ENTER MONITOR GAMMA (1.8 IS TYPICAL):'
READ(IN, '(F5.3)', END=557, ERR=557) GAMMA
557 CALL SLUVO(FULCOL, GAMMA)
ELSE
ICOMP = SALIAS(OFF)
ICOMP = SQDRAW(ON)
END IF
C
C DON'T ASK PHONG/GOURAUD QUESTION IF DOING FLAT SHADING:

IF (ISMOTH .EQ. 1) THEN

- 121 -

WRITE(IOUT, *) 'PHONG SHADING? (DEFAULT-GOURAUD) (Y OR N):'

IANS = 'N'
READ(IN, 50, END=23,ERR=23) IANS
23 CONTINUE
c
IF (IANS .EQ. 'Y') THEN
ICOMP = SPHONG(ON)
ELSE :
ICOMP = SPHONG(OFF)
END IF
END IF
ELSE
c
c DEVICE IS NOT 6:
CSLDEND
300 WRITE(IOUT,2006)
CHHL:
CHHL 2006 FORMAT('ENTER DIFFUSED LIGHT VALUE')
2006 FORMAT ('ENTER DIFFUSED LIGHT VALUE (0.0-1.0)')
CHHLEND
READ(IN,*,END = 300,ERR=300) DIF
IF (DIF .GT.1.0.0R.DIF.LT.0.0) THEN
WRITE(IOUT,2008)
2008 FORMAT ('WARNING- VALUE RANGE (0.0-1.0)')
GO TO 300
ENDIF
400 WRITE(IOUT,2007)
2007 FORMAT ('ENTER REGULAR LIGHT EXPONENT')
READ(IN, *,END=400, ERR=400) EN
500 CONTINUE
END IF
ENDIF
ENDIF

WRITE (IOUT,2003)
2003 FORMAT (' ENTER BACK FACE CULL OPTION',/,

+ * N - NO BACK FACE cuLL',/,
+ ' Y - PERFORM BACK FACE cuLL',/,
+ ' R - RETURN')

READ (IN,'(A)',END=2,ERR=2) BFCULL
2 IF (BFCULL .EQ. 'R') RETURN
IF (BFCULL .NE. 'Y') BFCULL = 'N'

C
CSLD:
IF (IDEV .EQ. 6) THEN
ICOMP = SSHADE(ON)
ICOMP = SQDRAW(OFF)
C
IF (BFCULL .EQ. 'Y') THEN
ICOMP = SBFCUL(ON)
CDEBUG:
cccc WRITE(IOUT, '(''(HSDRVR)SBFCUL(ON) - ON='', I1)'), ON

ELSE
ICOMP = SBFCUL(OFF)

- 122 -

CDEBUG:
cccc WRITE(IOUT, '(''(HSDRVR)SBFCUL(OFF) - OFF='', I1)'), OFF
END IF
C
IF (ISMOTH .EQ. 1) THEN
ICOMP = SSFLAT(OFF)
ELSE
ICOMP = SSFLAT(ON)
END IF
c
C SEND ALL DRAWING ATTRIBUTES TO THE ADAGE-3000:
CALL DIDUMP
END IF
CSLDEND
C
OPTION = 'READ'
c
C INITIALIZE FOR HIDDEN SURFACE REMOVAL
CALL DIERAS
CALL INITPRI

LOOP THRU FOR THE NUMBER OF PARTS
DO 100 NP=1,NUMPART

SKIP IF PART IS NOT TO BE DISPLAYED
IF (LSELECT(NP) .NE. 0) GO TO 100

(] OO0 OO0

IERR = 0
IF (PSTAT(1,NP) .EQ. 0.0) THEN
IC=1
CALL STRCOLR (NP, IERR)
ELSE
IC=0
NFCOLR = INT(PSTAT(1,NP))
END IF

LCN = LLPNTR(NP)
30 CALL LLNXT(LCN,NREC,LNN)
CALL GEOFIL(OPTION,NREC(3))

C
C
IF (IC .NE. O .AND. IERR .EQ. 0) THEN
NFCOLR = NCMPCOL(IC)
IC=1IC +1
END IF
c
C STORE MODEL FOR HIDDEN SURFACE REMOVAL:
CALL STRMDL (MAXNPP,NPOINT,XKNOT,NFACE,IFACE,T,NFCOLR,
+ INERR)
IF (IERR .NE. 0) THEN
IF (INERR .EQ. 1) THEN
WRITE (I0UT,2011) MAXNOD,NP
2011 FORMAT (' ERROR - MAXIMUM NODE NUMBER LIMIT (',I5,

- 123 -

+ ') EXEEEDED',/,'PART *‘,I5,' IGNORED')
END IF
IF (INERR .EQ. 2) THEN
WRITE (IOUT 2012) MAXFAC,NP

2012 FORMAT (' ERROR - MAXIMUM FACE NUMBER LIMIT (',I5,
+ ') EXEEEDED',/,'PART ',I5,' IGNORED')
END IF
END IF
CSLD:
C
C SEND THE PART TO THE DISPLAY:
IF (IDEV .EQ. 6) CALL DIDUMP
CSLDEND
C
IF (LNN .NE. 0) THEN
LCN = LNN
GO TO 30
END IF
100 CONTINUE
C

C PERFORM HIDDEN SURFACE REMOVAL
CSLD CALL HIDSRF
CSLD:
IF (IDEV .EQ. 6) THEN
C

c ANTI-ALIAS THE IMAGE (IF REQUESTED):
IF (AALIAS_REQ .EQ. 'Y') ICOMP = SFILT(0)
ELSE
CALL HIDSRF
END IF
CENDSLD
c
C PERFORM HOUSEKEEPING
CSLD:
C RESTORE LINE DRAWING CAPABILITY:
IF (IDEV .EQ. 6) THEN
ICOMP = SSHADE(OFF)

C
C SET ANTI-ALIASING AND QUICK-DRAW ON/OFF IF THEY WERE ASKED FOR:
IF (AALIAS REQ .EQ. 'Y') THEN
ICOMP = SALIAS(ON)
ICOMP = SQDRAW(OFF)
ELSE
ICOMP = SALIAS(OFF)
ICOMP = SQDRAW(ON)
END IF
END IF
CSLDEND

CALL DIHOME

CALL DIDUMP
CADGSLD: REWIND IU
C

RETURN

END

- 124 -

OO0

FILENAME: XBS.FTN
PROGRAMMER: HAROLD LANE, JR.

VERSION: 1.0
EXTERNAL CALLS (FILENAME):
NONE
FUNCTION: XBS ALLOWS BOTH THE CROSS BAR SWITCH AND THE

CHANNEL CROSS BAR IN THE LUVO-24 TO BE SET. A READ BACK
FUNCTION IS SIMULATED, BECAUSE THE ACTUAL REGISTERS IN
THE XBS AND CHANNEL XBS ARE NOT ABLE TO BE READ BACK TO
THE HOST. EXTENSIVE VALIDATION IS DONE ON THE ARGUMENTS
PASSED TO XBS TO INSURE THAT REASONABLE VALUES ARE SENT
TO THE HARDWARE. AN OPTION IS AVAILABLE TO SET THE
CROSSBARS TO A STRAIGHT THROUGH FULL COLOR DEFAULT.

ALSO, VALUES CAN BE SET IN THE MASTER XBS ARRAY IN COMMON
WITH OR WITHOUT THE ARRAY BEING SENT TO THE IKONAS DISPLAY.
AN ATTEMPT TO SEND ANY UNINITIALIZED DATA TO THE DISPLAY
IS TRAPPED AND REPORTED. UNINITIALIZED CROSSBAR BITS ARE
READ BACK AS THE VALUE -1. BETWEEN 1 AND 35 BITS CAN

BE SET AT THE SAME TIME. THE INTEGER*4 DATA TO BE SET
INTO THE CROSS BARS IS PASSED IN (OR BACK OUT) IN THE
ARRAY IODATA WHICH SHOULD BE DIMENSIONED WITH 35 ELEMENTS
IN THE CALLING PROGRAM TO BE ABLE TO RECEIVE THE MAXIMUM
AMOUNT OF DATA RETURNED. THE ENTIRE XBS AND THE CHANNEL
XBS ARE ALL SENT WHENEVER THE WRITE MODE IS SPECIFIED.

- 125 -

c**

SUBROUTINE XBS(N, STRTAD, IODATA, IMODE, IERR)

C**

XBS CALLING PARAMETER USAGE:

N: # OF OUTPUT BITS TO BE SET IN THE XBS OR CHANNEL XBS
STRTAD: 0-ORIGIN BIT # OF XBS TO BE SET. 34 TO SET CHANNEL XBS
IODATA: 35 ELEMENT I*4 ARRAY TO PASS DATA IN OR OUT

FOR XBS ADDRESSES 0-33, VALUES OF 0-33,63 ARE ALLOWED.

VALUE OF 63 FORCES XBS OUTPUT BIT TO 0 VALUE

FOR CHAN XBS ADDR (34), VALUES OF 0,21,36,& 42 ALLOWED

0: RED PSEUDOCOLOR

21: GREEN PSEUDOCOLOR

36: FULL COLOR

42: BLUE PSEUDOCOLOR
READ BACK N (1{N<35) XBS OUTPUT BIT SETTINGS
SET ONE OR MORE VALUES INTO XBS ARRAY. NO DATA SENT
: SET 1 OR MORE VALUES IN XBS ARRAY. ALL DATA SENT
SET XBS TO DEFAULT STRAIGHT THRU 32 BIT FULL COLOR
THE DATA IS SENT TO THE IKONAS
NO ERROR
OF WORDS TO BE WRITTEN TO XBS BAD. 1-35 ALLOWED
START ADDR OF XBS BIT(S) TO SET BAD. 0-34 ALLOWED
END ADDR OF LAST XBS BIT TO SET BAD. 34 MAX ALLOWED
VALUE OF IMODE BAD. 0-3 ALLOWED
CHANNEL XBAR VALUE TO SET BAD. 0,21,36,& 42 ALLOWED
XBS VALUE TO BE SET IS BAD. 0-33 OR 63 ALLOWED

IMODE:

IERR:

SNHLWN—=O WN=O
°s o oo ee su

AAEAKKKKKEKRKAKRAKKK KA RRKRIKRKKAAKRRRAR ARk Ak kAR khkkhhkhkhkdkkkhkkhkhkhkhkhkhkkkk

TYPE DECLARATIONS:

o e %k % e e de e Je Fe Je de Fe Fe Fo e e T T e de Fe de Fe e 3k e e o e de e K e e e ok ke e de e do kK e e e do ke de e ke dededeok ek ke ke

OO0

COMMON /SYSIO/ TTYIN, TTYOUT, HELPIN, PIXFIL

INTEGER*2 TTYIN, TTYOUT, HELPIN, PIXFIL
C

INTEGER*4 XBDATA(35)

INTEGER*2 N, STRTAD, ENDAD, TNDAD, IMODE, IERR
C

INTEGER*4 IODATA(35), DATA, DEFALT(35), XBSADR, CXBADR
INTEGER*4 ADDR
C
C INITIALLY, DATA IS SET TO THE UNINITIALIZED DATA VALUE:
DATAXBDATA /35*-1/

 DATA DEFALT/O 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 36/

C

- 126 -

c**

C MAIN PROG:

C**

C

IERR = 0
c FORM 32-BIT CROSSBAR SWITCH ADDR - 302\0 OCTAL:
CALL JOIN32(XBSADR, 194, 0)
C
C FORM 32-BIT CHANNEL CROSSBAR SWITCH ADDR - 203\2000:
CALL JOIN32(CXBADR, 131, 1024)
C
c TEST FOR VALID # OF WORDS TO WRITE:

IF (.NOT.(N .LT. 1 .OR. N .GT. 35)) GO TO 100
WRITE(TTYOUT, 50) N
50 FORMAT('0(XBS) # OF WORDS TO SEND TO XBS:', I6, ' BAD.',
* ' 1-35 ALLOWED')
IERR =1
RETURN
100 CONTINUE
C
C VALIDATE STARTING ADDRESS OF XBS BIT TO SET:
IF (.NOT.(STRTAD .LT. O .OR. STRTAD .GT. 34)) GO TO 200
WRITE(TTYOUT, 150) STRTAD

150 FORMAT('0(XBS) STARTING ADDRESS OF XBS:' 16,
* ' BAD. 0-34 ALLOWED')
IERR = 2
_RETURN
200 CONTINUE
C
C VALIDATE ENDING ADDRESS OF XBS BIT TO SET:

ENDAD = STRTAD + N - 1
IF (.NOT.(ENDAD .GT. 34)) GO TO 300
WRITE(TTYOUT, 250) ENDAD
250 FORMAT (*0(XBS) ENDING ADDRESS OF XBS:', 6,
* ' BAD. A MAX OF 34 IS ALLOWED')
IERR = 3
RETURN
300 CONTINUE
C
C VALIDATE IMODE PARM:
IF (.NOT.(IMODE .LT. 0 .OR. IMODE .GT. 3))GO TO 400
WRITE(TTYOUT, 350) IMODE
350 FORMAT ('0(XBS) IMODE:', I6, ' BAD. 0-3 ALLOWED')
IERR = 4

| RETURN

400 CONTINUE
C**
c
C IS THIS A REQUEST TO READ BACK DATA?
IF (.NOT.(IMODE .EQ. 0)) GO TO 425

C

C YES, IT IS. ALLOW DATA TO BE PASSED BACK:

- 127 -

DO 415 ADDR = STRTAD, ENDAD
IODATA(ADDR-STRTAD+1) = XBDATA(ADDR+1)
415 CONTINUE
RETURN
425 CONTINUE

C**

C

C SEE IF THIS IS REQUEST TO WRITE DATA INTO THE MASTER XBS ARRAY:
IF (.NOT.(IMODE .EQ. 1 .OR. IMODE .EQ. 2)) GO TO 625
C
C YES, COPY DATA INTO ARRAY; REPORT & RETURN IF BAD DATA:
TNDAD = ENDAD
IF (.NOT.(ENDAD .EQ. 34)) GO TO 430
C .
C VALIDATE CHANNEL XBS SETTING VALUE:
DATA = IODATA(ENDAD - STRTAD + 1)
IF (.NOT.(DATA .NE. O .AND. DATA .NE. 21
* .AND. DATA .NE. 36 .AND. DATA .NE. 42))GOTO 420
c .
C ’ INVALID CHANNEL XBS DATA VALUE; REPORT:
' WRITE(TTYOUT, 417) DATA
417 FORMAT('0(XBS) CHANNEL XBAR DATA:', I11,
* ' BAD. 0,21,36,42 ALLOWED')
IERR = 5
RETURN
420 CONTINUE
c
C SET CHANNEL CROSS BAR:
XBDATA(35) = DATA
TNDAD = 33
IF (N .EQ. 1) GO TO 600
430 CONTINUE
C
c SET XBS DATA INTO ARRAY; REPORT BAD DATA & RETURN:
DO 600 ADDR = STRTAD, TNDAD
DATA = IODATA(ADDR - STRTAD + 1)
IF ((DATA.GE.O0.AND.DATA.LE.34).0R.DATA.EQ.63)GOT0500
C
C XBS INPUT DATA BAD:
WRITE(TTYOUT, 450)ADDR, DATA
450 FORMAT('0(XBS) DATA AT ADDRESS:', I6,
* ' HAS BAD VALUE:', I11, ', 0-34,63 ALLOWED')
IERR = 6
RETURN
500 CONTINUE
C
C DATA IN RANGE; PUT INTO MASTER ARRAY:
XBDATA(ADDR + 1) = DATA
600 CONTINUE

IF (IMODE .EQ. 1) RETURN
625 CONTINUE
36k de ok sk ek e sk ek sk sk ko ok ok ke ok e ok ok ok e ok ok sk ok ok sk ok ek
C
c SEE IF DEFAULT XBS SETTINGS WANTED:

- 128 -

IF (.NOT.(IMODE .EQ. 3)) GO TO 640
DO 630 ADDR = 1, 35
XBDATA(ADDR) = DEFALT(ADDR)
630 CONTINUE
640 CONTINUE

c**

C

C SEE IF DATA IS TO BE WRITTEN TO IKONAS: _
IF (.NOT.(IMODE .EQ. 2 .OR. IMODE .EQ. 3)) GO TO 800
C
c YES, IT IS. INSURE ALL DATA TO BE SENT IS INITIALIZED:
DO 750 ADDR = 0, 34
IF (.NOT.(XBDATA(ADDR+1) .EQ. -1)) GO TO 700
c
C UNINITIALIZED DATA; REPORT & RETURN:
WRITE(TTYOUT, 650) ADDR _
650 FORMAT('0(XBS) UNINITIALIZED DATA'
* ' ASKED TO BE SENT TO XBS BIT:', I6 /)
IERR = 7
RETURN
700 CONTINUE
750 CONTINUE
c
c ALL DATA IS INITIALIZED; SEND IT:
CALL IKBWR(O, XBSADR, 34, XBDATA)
CALL IKBWT
CALL IKBWR(0, CXBADR, 1, XBDATA(35))
CALL IKBWT
RETURN

800 CONTINUE
(C e e ek e e ek ok ke e ek ok ok ok ke ke ok ok sk ke ek ok sk ok ek ok ok ke
C
C YOU ARN'T SUPPOSED TO BE ABLE TO GET HERE. IF SO, ERROR:
WRITE(TTYOUT, 850)

850 FORMAT ('0(XBS) INTERNAL PROGRAM ERROR. NO DATA SENT TO IKONAS')
RETURN

END

- 129 -

APPENDIX D
SUBROUTINES LISTED BY SOURCE CODE MODULE

Je e sk e ke e e sk de ke de e e de ke ke e ke ke de ke dede e dedek e keok

ADSUBS.FOR

SUBROUTINE ADDRWA(XW, YW, IDASH)

SUBROUTINE ADDRWS(IXS, IYS, IDASH)

SUBROUTINE ADLINE(X1, Y1, IDASH)

SUBROUTINE ADMOVA(XW, YW)

SUBROUTINE ADMOVS(IXS, IYS

SUBROUTINE ADVUPR(IXMIN, IXMAX, IYMIN, IYMAX)
SUBROUTINE ADWIND(XMIN, XMAX, YMIN, YMAX)

Je e %k e ke e Je K Je e de Fe e do ke K Je ke de K e dodede do ke ko ke

ALPHA.FOR

SUBROUTINE AEDIT

SUBRQUTINE EDADD

SUBROUTINE EDPRNT(FIRST,LAST)

SUBROUTINE HEADR (NAME, NUMHD, STATHD, TRANSHD)
SUBROUTINE TFORM

SUBROUTINE EDCHNG (ID,IOPT)

SUBROUTINE CHNGALL (ID,IOPER,NCOMPNU,PCOMPNU)
SUBROUTINE CKASCO (IDC,IDP,MCOMP,ACOMP,INDX, IERR)
SUBROUTINE CYCLIC (IDP,INC,NCOMPNU,PCOMPNU,IERR)
SUBROUTINE EDDEL (ID,IOPT)

SUBROUTINE EDREST (ID,IOPT)

SUBROUTINE EDCOPY (ID,IOPT)

SUBROUTINE EDDRAW (IPART)

SUBROUTINE ANGCALC (A,B,C,ISTAT)

SUBROUTINE CKID(ID,ICODE,INDX)

SUBROUTINE EXIMPFN (NUMP,NSS2,NSTACK)

SUBROUTINE CHEKATT (ID)

- 130 -

khkkkkhkkkhkhkhkkhkhkhkhkkhkkkhkkhhkkkkk

CLIP.FOR

SUBROUTINE CLIP2D(P2X, P2Y, XMIN, XMAX, YMIN, YMAX, IDASH)
SUBROUTINE ENDPT_CODE (PX, PY, CLIPPING_BOX, PCODES, SUM)
SUBROUTINE LOGIC_INTERSECT(P1CODES, P2CODES, INTERSECT)

ek kkkkkdkkkdkdhkkkkkkkkkkkkkkkkk

CMAPLD.FOR
SUBROUTINE CMAPLD

dhkkhkkhkhkkhkhkhkhkkhkkkhkhkkkkkkkkkkkkk

CTABLE.FOR
SUBROUTINE CTABLE (IOPT)

% % 3 Ko % %k v e e ke ok sk ok ok ok ek ke ke ke ok ok ok ok ke ke ke ek

CURSLD.FOR
SUBROUTINE CURSLD

kkkhkkkkkkhkhkkkhkkkhkhkhkhkkkkkhkkdkki

DICTAB.FOR
SUBROUTINE DICTAB (IOPT)

kkkkhkhkhkhkhkhkdhkhhkhkhkkhkkhkkhkklkikk

DIDDGS.FOR

SUBROUTINE GDINIT (IGD,IBAUD)
SUBROUTINE PRINIT(IIBAUD)
SUBROUTINE CMPRES (IDISK,ICHANG, IMIN, IMAX)
SUBROUTINE DDSTOV (IXS,IYS,XV,YV)
SUBROUTINE DDVTOS (XV,YV,IXS,IYS)
SUBROUTINE DDWTOS (XW,YW,IXS,IYS)
SUBROUTINE DICHRSZ (NUM)
SUBROUTINE DICOLR (NUM)
SUBROUTINE DICTAB (IOPT)
SUBROUTINE DICURS (ICH,XW,YW)
SUBROUTINE DIDRWS (XV,YV)
SUBROUTINE DIDRWW (XW,YW)
SUBROUTINE DIDSHS (XV,YV,IDASH)
SUBROUTINE DIDSHW (XW, YW, IDASH)
SUBROUTINE DIDUMP :
SUBROUTINE DIERAS

SUBROUTINE DIHOME

SUBROUTINE DIINQD (JDEV)
SUBROUTINE DIMOVS (XV,YV)
SUBROUTINE DIMOVW (XW,YW)
SUBROUTINE DIOVRR (ITORA)
SUBROUTINE DIPAUS

SUBROUTINE DISCTE (NCTE,IR,IG,IB)
SUBROUTINE DITEXT (LENS,CHARS)

- 131 -

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

DIVUPR (XMINV,XMAXV,YMINV, YMAXV)
DIWIND (XMINW,XMAXW, YMINW, YMAXW
LOGO

TITLE ,

PCFFIO (IVW,ILINES)

WPXLA (XV,YV,MAXR,NR,NC, IPIXEL)

)

kkkkkkhkhkhkkkhkhkhkkkkkkhhkhhhkhkdkkiix

DISPLAY.FOR

DISPLAY

DMENU

SPP (LINE,LSELECT, ICODE)
DRAW

HSDRVR

RSETTV

VIEW4 (IFLAG)

ZOOM

WINDOW

SETRNG

AXIS

HIDDEN (N,X,ORG, IFLAG)
DFACE(N, X, IDASH)
SHRINK (F,N,X)

SAVOPT

RSTOPT

STRCOLR (NP, IERR)

kkkkkkkkhkkkhkkkkkkkkkkkkkhkkkkk

FBC.FOR

SUBROUTINE FBC(IMODE, IFBNO, IWRITE, IINVBL, JINVAL, IERR)

SUBROUTINE GET_SLD_COLR(CURCOLR,

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

Je % e do K Je de Je do ke dede K dokeoke de ke dedek ke deke ok kek kkk

GETCOLORM.FOR

CLRA, CLRB, CLRC)

kkkkkkkkkkkkkkkkkkhkkhkhkkhkhkkkx

GRAPHICS.FOR15

GRAPHIC

PICVIEW(IVW,ICODE)
SUCES(ICNT,IVW, ITRY,CHOICE, ISAVPT, ISAVID, ISEND)
FNDPRT (ISAVPT,NVW)

FNDPNT (NPART, IPT, NVW)
PICKPNT(X1,Y1,IX,IY,NVW,IPART,IPT,ICODE)

SQUARE (X,Y,Z)

CROSS (X,Y,2)

DISPNT

TRANPRT

MOVPRT

MOVPNT
EXORNEW(X1,Y1,Z1,IX,IY,IVW,IPART,IPT,IPICK,STRING,

- 132 -

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

DISTCK(XPT,YPT,XNEW, YNEW, IVW, INRNG)
MODPNT

ADDPNT

DELPT

ADDFACE

DELFACE

CAPIT

WRTGEO (NPART)

ROTPRT :
DEGREES(X,Y,XC,YC, THETA)
GETPNT(X,Y,IX,IY,IPT)
LODGEO (NPART,NP)

kkkhkkkkhkkhkkhkhkhkkkkhkhkkkhkkhkhkkkkk

HSDRVR. FOR
SUBROUTINE

HSDRVR

Y K 3 e e ke Fe e Fe Tk de e Ko e sk de e de e e ke ok de vk ke ok

MASPROP.FOR

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

MASPROP
VOLUME
DIMEN
DIMPART
DIMALL
DIMNODE

Yok s e e e % ke de ke de e e K e ek ke de ke ek ek kk ok kok

PF2GF.FOR

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

PRT

INITLL

BUILDPF (NUMP, IOPER,NCOMPNU, PCOMPNU)
ASTRAN (NUMP)

PADD (NUMP,NCOMPNU, PCOMPNU)
PCADD (NUMP,MCOMP, MCNUM)

PPADD (NUMP,NAMP,NUMC,NER, LCNC)
PMOD (NUMP,NCOMPNU, PCOMPNU)
PPMOD (NUMP, NAMP)

PDEL (NUMP)

EXIMPF (NUMP)

LLNXT (LCN,NREC,LNN)

LLADD (LSN,NREC)

LLDEL (LSN,LCN, INDX)

LLREP (NUMP,NUMC, LCN)

LLINS (LSN,LCN,NRECC)

kkkkkkkhkhkkkkhkkkkkkkkkkkkkkkkk

PRIMTV.FOR

SUBROUTINE
SUBROUTINE
SUBROUTINE

BUILDGF (NUMP, IER, INR)
EXTRN (NPART, TP, INR)
CUBE(NPART,L,H,W, TP, INR) .

- 133 -

SUBROUTINE CONE (NPART,RU,RL,H,NF,DVANGL,TP, INR)
SUBROUTINE SPHERE (NPART,R,NH,NV,DVANGL,TP,INR)
SUBROUTINE PARAB (NPART,R,P,NH,NV,DVANGL,TP,INR)
SUBROUTINE TORUS (NPART,RI,RO,NV,NH,STANG, TP, INR)
SUBROUTINE TRANSWP (NPART,PNTORG1,PNTORG2,PNTORG3,
SUBROUTINE CROSSV (X,I,J)

FUNCTION LNGTHV (X,Y,Z)

SUBROUTINE ROTASWP (NPART,NS,DVANGL,NDCAP,XYCAP1,XYCAP2,TP,INR)
SUBROUTINE ASSEM (NPART,TP,IER,INR)

SUBROUTINE ASSMRNG (NPART)

SUBROUTINE BOOLEN (NPART,INR)

SUBROUTINE PRTRNG(NPART)

SUBROUTINE RST(VECTOR,ARRAY,NPART)

SUBROUTINE GEOFIL (OPTION,NPART)

SUBROUTINE OPENGEO(IOPT)

SUBROUTINE MOVORG(T,NPART)

SUBROUTINE MVORGAS (T,NPART)

khkkkhkkhkhkkhkhkhkkhkkihkhkhkhkhkkkhkkkkkkk

PRIORTY.FOR

SUBROUTINE INITPRI

SUBROUTINE STRMDL (NMAX,NN,X,N,IF,T,IPC,INERR)
SUBROUTINE HIDSRF

SUBROUTINE PRIORTY (ISTART)

SUBROUTINE FOREST(NUM,DATIN,DATOUT,INDEX, ICOMP)
SUBROUTINE SPECIAL

SUBROUTINE MINIMAX (II,JJ,IFLAG)

SUBROUTINE MNMX (N,X,XMAX,XMIN)

SUBROUTINE PLANEQ (II,A,B,C,D)

SUBROUTINE PDEEPQ (II,JJ,IALLPT,IFLAG)
SUBROUTINE OVERLAP (II,Jd,IFLAG)

SUBROUTINE CONTANP (X,Y,JJ,IFLAG)

SUBROUTINE EDGMNMX (I1,I2,Jd1,J2,IFLAG)
SUBROUTINE NTRSCT (A1,B1,C1,A2,B2,C2,EPS,X0,Y0, IFLAG)
SUBROUTINE SAMPLN (II,JJ,IFLAG)

SUBROUTINE SLICEP (II,JJ)

SUBROUTINE MIDDIV (II)

SUBROUTINE PENTRAT (II,JdJ)

SUBROUTINE RESORT (N)

SUBROUTINE PPLAN (II,JJ,IFLAG)

kkkhkhkkkkkkkkkhkhkkkkkhkkkhkkhkkhhkhkkx

SCANLINE.FOR

SUBROUTINE DRAWHS

SUBROUTINE CENTER (II,CM,DIST)

SUBROUTINE SCNFIL(IFAC,NVPF,XYI,ICOLOR,ISCAN,IBUFF)
SUBROUTINE VTOS (X,Y,IFLAG)

SUBROUTINE SCNINT (N,X,Y,ISCAN,XI,IE, HFLAG)
SUBROUTINE EMAXY(ISTART,IEDGE,Y,N,ICOUNT,ILAST,INDX)
SUBROUTINE DSPLASL (N,LINE, ISCAN)

SUBROUTINE INTENS (RINT,CLR)

SUBROUTINE NORAV (NODE,NNODE, XNORM)

- 134 - ‘

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

SMOOTH (IEDGE,NVPF,Y,RI,ISCAN,AI,BI)
SHADER (COLOR)

CHKNOD (NODE, NODLIST, ICOUNT)

SL2D (N,LINE)

INITAET

INITSET
SETSET(SCAN, IFAC,XINT, IEDGE,HFLAG, ICOLOR)
NEARHOR (SCAN, J,NSET)
SETHOR(HFLAG, XINT, ICOLOR)

NXTHOR (NHL)

SETAET(ISCAN)

DRWHOR (ISCAN)

DRWEDG (I,NAET,J,NSET, SCAN)
CINTSCT(X1,Y1,X2,Y2,NSET,CINTX,CINTY,SCAN)
SETINT(X1,Y1,X2,Y2,J,NSET,CINTX, CINTY, SCAN, DIST)
GETINT(X1,Y1,X2,Y2,XF1,YF1,XF2,YF2,X,Y)
DRWLIN(N,I)

e K Jo Je ke kK de e sk Kk e ke de e ke vk ok ok Kk ok ke ke ke ok ok K

SETOP.FOR

SETOP (NPART,IA,IB,SOP,LLEGAL)

SOLBOX (XYZA,XYZB,XYZS, INTFLG)

PCENTR (MAXN,N,XYZ,C)

FACBOX (NVPF,IFACE,MAXN,XYZ,XYZMM)

EDGBOX (X1,Y1,Z1,X2,Y2,Z2,XYZMM)

EIFP (X1,Y1,71,X2,Y2,Z2,A,B,C,D,CTR, INTFLG)
EPINT (X1,Y1,71,X2,Y2,22,A,B,C,D,X0,Y0,Z0,LFLAG)
INTEXT (MAXN,N,XYZ,P,A,B,C,EPS,LFLAG)

EQPLAN (NVPF,IFACE,MAXN,XYZ,A,B,C,D)

DUPNOD (X0,MAXN,NNODE,XYZ,EPSN,NINDX, IERR)
ORDCON (NEDGE,MAXC,NUMC, IFACE, ITAG,MAXN, XYZ)
XCHANG (MAXC, IFACE, ITAG, INDX,JNDX)

CRNRPT (LFLAG,MAXC,NUMC, IFACE, ITAG)

SUBFAC (MAXC,NUMC, IFACE, ITAG,NSF,JFACE,MAXS, ITYPE,
REDUNE (MAXC,JFACE, IFACE, ITAG, IROOT,NVPF,

COLINR (IV1,IV2,IV3,MAXP,XYZ,LCOLIN)

CNVXFC (MAXC,JFACE, IFACE, ITAG, IR0OT,

NNCNVX (MAXC, KFACE, ITAG, IROOT,NFL,NSF,

ADDCON (MAX, ICONN,INDX,NFL,IERR)

DISTSQ (MAX,XYZ,INDX,JNDX,DIST)

REVRSE (IROOT,MAXL,LLIST)

NUEDGE (IEV1,IEV2,MAXD,IFACE,IROOT,LFLAG)

CONCAV (IIN,ITV1,ITV2,ITV3,MAXC,IFACE,MAXP,XYZ,LFLAG)
CLEANN

dhkkkkkhkkkkhkhkkkhkhhkhkhkhkkkkkhkkik

SLDSMOOTH.FOR

SUBROUTINE SLDSMOOTH(NN, N, IF)

- 135 -

kkkkkkhkhkkkkhkkhkkkkkkkkkkkkkkkkk

SLDSUBS.FOR

SUBROUTINE SODRWA(XW, YW, IDASH)
SUBROUTINE SODRWS(IXS, IYS, IDASH)
SUBROUTINE SOMOVA(XW, YW)

SUBROUTINE SOMOVS(IXS, IYS

SUBROUTINE SEND_2_SOLID(N, X, NORMS, IDASH
SUBROUTINE SLDSMOOTH(NN, N, IF

SUBROUTINE SLDZWIND(ZMINSLD, ZMAXSLD)

%k e de Je %k Kk o do ke %k Kk K Kk kodededeok ok kkokkkokkk

SMPMISC.FOR

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

SINITT

GINITT

SAVEGM

SAVMODL

SAVGEO

TOMOV

COLMOV (IASSEM1)

TOPAT
FILMAT(I,ONE,TWO,TRE,FOR,T)
FLGCOMP (LSELECT)

READGM

READER(IREAD)

RDRNEW (IREAD)

RDGEO (IREAD)
GETNUM(IREAD, ISTART, ICODE)
ROMOV (IREAD)

HELP (I)

SMPDOC (INDEX, ICODE)
OPENR(DESC, ICODE)
OPENW(DESC, ICODE)
FICLOSE(ICODE)

RIDBLK (FILNAM,LEN,ISTART,IEND)
ERRLOG (NUMERR, NAMROU)
BREAKIT (IPNTR)

SUBROUTINE STRCOMP (NUM,NCOMPNU, PCOMPNU, ICODE)
SUBROUTINE PICWNDO(IVW,IX,IY)

FUNCTION AMAX(A,NPTS)

FUNCTION AMIN(A,NPTS)

kkkkkhkhhkhkkkhhhkkkhhkkkhkkkkkkk

STRMDL.FOR
SUBROUTINE STRMDL (NMAX,NN,X,N,IF,T,IPC,INERR)

hkkkdkkdkkkkdekhkkhkdkkkkkkdkikkkk

U.FOR

" SUBROUTINE UCLR (A)
SUBROUTINE UCOPY (A, B)

- 136 - y

SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE

UTRNSP (A, AT)

UMULT (A, B, C)

UIDENT (A)

UAPPLY (X,Y,Z, A, U,V,W)
UINVRT (A, B)

UPRINT (LUN, LABEL, A)

USETAU (NAME, VAL)

USCLC (SX, SY, SZ, A)

USCLB (SX, SY, SZ, A)

USCLA (SX, SY, SZ, A)

UTRNC (DX, DY, DZ, A)

UTRNB (DX, DY, DZ, A)

UTRNA (DX, DY, DZ, A)

UROTOC (IAXIS, ANGLE, A)
UROTOB (IAXIS, ANGLE, A)
UROTOA (IAXIS, ANGLE, A)
UROTIC (PX, PY, PZ, ANGLE, A)
UROT1B (PX, PY, PZ, ANGLE, A)
UROT1A (PX, PY, PZ, ANGLE, A)

UROT2C (OX,0Y,0Z, PX,PY,PZ, ANGLE, A)
UROT2B (0X,0Y,0Z, PX,PY,PZ, ANGLE, A)
UROT2A (0X,0Y,0Z, PX,PY,PZ, ANGLE, A)

UFIXC (I, VAL, A)

UFIXB (I, VAL, A)

UFIXA (I, VAL, A)

UMAPC (A1,A2, X1,X2, B1,B2, Y1,Y2,
UMAPB (A1,A2, X1,X2, B1,B2, Y1,Y2,
UMAPA (A1,A2, X1,X2, B1,B2, Y1,Y2,
USCTRC (SX,DX, SY,DY, SZ,DZ, A)
USCTRB (SX,DX, SY,DY, SZ,DZ, A)
USCTRA (SX,DX, SY,DY, SZ,DZ, A)
UPRMC (I, J, K, A)

UPRMB (I, J, K, A)

UPRMA (I, J, K, A)

% ek de de dede ok dok dedek ok ko dodkedokokok ok ek kkkkk

XBS.FOR

SUBROUTINE XBS(N, STRTAD, IODATA, IMODE,

- 137 -

IERR)

APPENDIX E
VAX/VMS COMPILATION COMMAND FILE

$ FOR ADSUBS.FOR
$ FOR ALPHA.FOR

$ FOR CLIP.FOR

$ FOR /NOI4 /NOF77 CMAPLD.FOR
$ FOR CTABLE.FOR

$ FOR /NOI4 /NOF77 CURSLD.FOR
$ FOR DICTAB.FOR

$ FOR DIDDGS.FOR

$ FOR DISPLAY.FOR

$ FOR /NOI4 DSPLSTRTI

$ FOR /NOI4 /NOF77 FBC.FOR

$ FOR GETCOLORM.FOR

$ FOR GRAPHICS.FOR

$ FOR HSDRVR.FOR

$ FOR LINKDUMMY.FOR

$ FOR MASPROP.FOR

$ FOR PF2GF.FOR

$ FOR PRIMTV.FOR

$ FOR PRIORTY.FOR

$ FOR SCANLINE.FOR

$ FOR SETOP.FOR

$ FOR SLDSMOOTH.FOR

$ FOR SLDSUBS.FOR

$ FOR SMPMISC.FOR

$ FOR STRMDL.FOR

$ FOR U.FOR

$ FOR /NOI4 /NOF77 XBS.FOR

. - 138 -

APPENDIX F
INCLUDE FILES: VMS LOGICALS REQUIRED FOR SMP SYSTEM

1) Include Files.-

INCLUDE 'ADAGE$SOLID:SPARMS.INC'
INCLUDE 'ADAGE$SOLID:DSPLSTDEF.INC'
INCLUDE 'ADAGE$SOLID:SMNAME.INC'
INCLUDE 'ADAGE.CMN'

INCLUDE 'AEDDUM.FOR'

INCLUDE 'AEDSTAT.FOR'

INCLUDE 'DEVICE.CMN'

INCLUDE 'HS.CMN'

INCLUDE 'LL.CMN'

INCLUDE 'PARTS.PRM!

INCLUDE 'UNITS.CMN'

2) VMS Logicals Required for SMP Source Compilation.-
$ DEFINE ADAGE$SOLID US2$: [ADAGE.SMP.SMP.SOLID]
3) VMS Logicals Required for SMP Link.-

$ DEFINE ADAGE$SOLID US2$: [ADAGE . SMP.SMP.SOLID]
$ DEFINE ADAGE$AIDS US2$: [ADAGE. V4]
$ DEFINE TEK$LIB US2$:[LIBS]

4) VMS Logicals Required for SMP Execution.-

$ DEFINE SMP$SCRATCH US2$: [ADAGE.SMP.SMP.SCRATCH]
$ DEFINE ADAGE$SOLID US2$: [ADAGE . SMP,SMP.SOLID]

- 139 -

APPENDIX G
SMP LINK COMMAND FILE: OBJECT MODULES AND LIBRARIES

z SET VERIFY

!

g ! COMPILE FBC, CURSLD, XBS, & CMAPLD USING FOR/NOI4/NOF77 111}
!

$! (NOTE: Its OK to have %LINK-W-MULDEF for DICTAB, STRMDL, SLD_SMOOTH,

$! : HSDRVR)

$!

$ DEFINE ADAGE$SOLID US2$: [ADAGE.SMP.SMP.SOLID]

$ DEFINE ADAGE$AIDS US2$: [ADAGE. V4]

i DEFINE TEK$LIB US2$:[LIBS]

$

SET NOVERIFY

|

$LINK/EXE=SMP -

$ | SUBROUTINES PUT IMMEDIATELY FOLLOWING THIS LINE ARE FOR DEBUG ONLY.
CTABLE, - '

HSDRVR, - ! GOES BACK INTO DISPLAY
GETCOLORM, - I THIS SHOULD GO INTO SLDSUBS.FOR
SLDSMOOTH, - ! GOES BACK INTO SLDSUBS.FOR
STRMDL , - ! GOES BACK INTO PRIORTY.FOR

$! END OF DEBUG SUBROUTINES

ADSUBS, -

ALPHA, -

CLIP, -

CMAPLD, -

CURSLD, -

DICTAB, -

DIDDGS, -

DISPLAY, -

FBC, -

GRAPHICS, -

LINKDUMMY , - S —— THIS SHOULD BE AN AED LIBRARY
MASPROP, -

PF2GF, -

PRIMTV, -

PRIORTY, -

SCANLINE, -

- 140 -

SETOP, -

SLDSUBS, -

SMPMISC, -

u,-

XBS, -

S R T LIBRARY DEFS:tueenreeeeneioceecacecsocacocsnceccncancncans
ADAGE$AIDS : DMAVMS , ALUVMS,, -

ADAGE$SOLID:SOLID/LIB,UTLLIB/LIB,-
TEK$LIB:TEKLIB/LIB

- 141 -

APPENDIX H
SUBROUTINE STRMDL

This appendix includes a description of modifications to and listing of
subroutine STRMDL. This subroutine is singled out for description because it
is the SMP subroutine that modify the most in the process of integrating SMP
with the ADAGE 3000. Other required changes to SMP often resulted in new
routines being written so that the actual change to SMP source code usually was
only an added call to the new routine.

Subroutine STRMDL required a significant amount of modification because it
is the routine which interfaces the model data structures to the rendering
method. Thus, when the SOLID 3000 system was added as an optional rendering
method, SMP's model data structures had to be interfaced to the data structures
required by SOLID 3000. Briefly, each of the model's polygon vertices and
normals are stored in arrays indexed by coordinate axis (1, 2, and 3 signify.
x-axis, y-axis, and z-axis, respectively) and vertex number. Normals are also
indexed by coordinate axis and vertex number. These arrays of vertices and
normals can then be passed to SOLID 3000. To see details of this process, such
as code to avoid divide by zero) see the 1isting which follows.

SUBROUTINE STRMDL (NMAX,NN,X,N,IF,T,IPC,INERR)

c

c* ROUTINE TO STORE ALL MODEL NODES AND FACES IN ONE PART
CSLD:

C N.B. DEVECE DEPENDENT CODE

C

C NMAX = MAXNPP (MAX NODES PER PART PARAMETER IN PARTS.PRM
C ACTUALLY SHOULD NOT BE PASSED)

C NN = NPOINT (# OF VERTICES (NODES) IN THIS PART)

c X(3,4) = XKNOT (VERTEX (NODE) LIST)

c N = NFACE (# OF FACES IN THIS PART)

C IF(5,MAXFPP)= IFACE (LIST OF FACES (3 OR 4 VERTEX POLYGONS))
C T(4,4) = TRANSFORMATION ARRAY TO RE-ORIENT PART FOR VIEWING)
C IPC = THIS PARTS COLOR. (SET BY SUBR. STRCOLR)

C INERR = ARRAY OVERFLOW INDICATOR = 0,1, OR 2. (RETURNED)
c

c NPF = # OF NODES PER FACE IN THIS FACE

- 142 -

INCLUDE 'PARTS.PRM'
INCLUDE 'PARTS.CMN'
INCLUDE 'DEVICE.CMN'
CSLDEND
INCLUDE 'HS.CMN'
C
COMMON /TMNMX/ TXMIN, TXMAX, TYMIN, TYMAX, TZMIN, TZMAX
COMMON /HSOPT/ SORL,BFCULL,ISMOTH,DIF,EN,DORD
CHARACTER*1 SORL,BFCULL
COMMON /OBSRVR/ 0X,0Y,0Z
CSLD: DIMENSION X(NMAX,3),IF(5,1),T(4,4)

CSLD:
DIMENSION X (NMAX,3),IF(5,MAXFPP),T(4,4)
INTEGER*2 COLORA, COLORB, COLORC, ON, NORMS(4,5), NRMLST, DUMMY
INTEGER*2 ICOMP, I2NPF, OFF, LIGHT1, SCOLOR
INTEGER*2 XLITVEC, YLITVEC, ZLITVEC, VECTOR, IBFINV
INTEGER*2 AMBLIT, DIFUSE, RFLCTD, EXPONT, WEIGHT, WHITE
REAL*4 XT(4,5), NORM
CHARACTER*1 ANS
DATA NRMLST/1/, ON/1/, OFF/0/
DATA XLITVEC/100/, YLITVEC/100/, ZLITVEC/-500/, VECTOR/0/
c
(g Uy VO g U PR U U LU
CSLDEND
C
C CHECK FOR NODE NUMBER AND FACE NUMBER LIMITS
- INERR = 0
IF ((NG+NN) .GT. MAXNOD) THEN
INERR = 1
GO TO 999
END IF
IF ((NF+N) .GT. MAXFAC) THEN
INERR = 2
GO TO 999
END IF
C
C TRANSFORM AND STORE NODES
CSLD:
IF (IDEV .EQ. 6) THEN
DO 10 I=1,NN
NODENO = I + NG
CALL UAPPLY (X(I,1),X(I,2),X(1,3), T,
XG (NODENO) , YG (NODENO) , ZG (NODENO))
TXMAX = MAX (TXMAX , XG(NODENO))
TXMIN = MIN (TXMIN , XG(NODENO))
TYMAX = MAX (TYMAX , YG(NODENO))
TYMIN = MIN (TYMIN , YG(NODENO))
TZMAX = MAX (TZMAX , ZG(NODENO))
TZMIN = MIN (TZMIN , ZG(NODENO))
10 CONTINUE
ELSE
CSLDEND
DO 11 I=1, NN

- 143 -

IT = I+NG
CALL UAPPLY (X(I,l),x(é,%%5§(l,3), T, XG(II),YG(II),ZG(II))

TXMAX = MAX (TXMAX , XG(
TXMIN = MIN (TXMIN , XG(II))
TYMAX = MAX (TYMAX , YG(II))
TYMIN = MIN (TYMIN , YG(II))
TZIMAX = MAX (TZMAX , ZG(II))
TZMIN = MIN (TZMIN , ZG(II))
11 CONTINUE
CSLD:
END IF

CSLDEND

CSLD 10 CONTINUE

C

C DEFINE OBSERVER POSITION
CRG 0Z = TZMAX + 0.1*ABS(TZMAX-TZMIN)
0Z = TZMAX + 2.0* ABS(TZMAX-TZMIN)

CSLD:
IF (IDEV .EQ. 6) THEN
c
c GIVE COLOR OF PART TO SOLID-3000:
CALL GET SLD COLR(IPC, COLORA, COLORB, COLORC)
ICOMP = SCOLOR(COLORA, COLORB, COLORC)
c
C IF REQUESTED, DO SMOOTH SHADING:
IF (ISMOTH .EQ. 1) THEN
CALL SLDSMOOTH(NN, N, IF)
RETURN
END IF
END IF
CSLDEND
c
C STORE FACES AND COLOR
II = NF
DO 30 I=1,N
CSLD:
NPF = IF(1,1)
c
c FOR EACH FACE, GIVE FACE DATA, COLOR, & NORMALS TO SOLID:
IF (IDEV .EQ. 6) THEN
c
c FORM THIS FACE'S NORMAL (REQUIRED BY SOLID-3000):
C
c 1ST, COPY THE FACE POINTERS INTO FACE(J,II) FOR PLANEQ
C IGNORING POINT OR LINE ELEMENTS:
IF (NPF .GE. 3) THEN
II = II+1
FACE(1,II) = NPF
c
DO 14 J=2,NPF+1
FACE(J,II) = IF(J,I) + NG
14 CONTINUE
C
c LET PLANEQ COMPUTE THE EQUATION OF THE PLANE:

- 144 -

e Xgl OO0

OOOOOO0O

12

CALL PLANEQ (II,A,B,C,D)

NORMALIZE EQN OF THE PLANE OF THIS FACE TO GET ITS NORMAL
AND CONVERT IT TO A 16-BIT SIGNED FRACTION FOR SOLID-3000:
NORM = SQRT(A*A + B*B + C*C) / 32767.0

INSURE THAT THERE WILL BE NO FLOATING DIVIDE BY ZERO:
IF (NORM .EQ. 0.0) THEN
A

= 32767.0

B = 32767.0

C = 32767.0
ELSE

A = A / NORM

B =B / NORM

C = C / NORM
END IF

SOLID-3000 ONLY REQUIRES 1 NORM FOR EACH FACE:
THE NORMALS ARE INVERTED BECAUSE SMP HAS A
RIGHT-HANDED COORDINATE SYSTEM AND

SOLID-3000 HAS A LEFT-HANDED COORDINATE SYSTEM:

INSURE NO OVERFLOW WHEN CONVERTING FROM REAL*4 TO I*2:
IF (A .GT. 32767.0) THEN
NORMS(1,1) = -32767
ELSE
NORMS(1,1) = -NINT(A)
END IF

IF (B .GT. 32767.0) THEN
NORMS(2,1) = -32767
ELSE _
NORMS(2,1) = -NINT(B)
END IF

IF (C .GT. 32767.0) THEN
NORMS(3,1) = -32767
ELSE
NORMS(3,1) = -NINT(C)
END IF

COPY FACE'S POINTS TO XT(4,5) SO SEND_2_SOLID CAN GET THEM:
DO 12 J = 2, NPF + 1

JM1 = J -1

INDEX = IF(J, I) + NG

XT(1,JM1) = XG(INDEX)

XT(2,JM1) = YG(INDEX) .

XT(3,JM1) = 2G(INDEX)
CONTINUE

GIVE FACE'S POINTS & NORMALS TO SOLID-3000:
I2NPF = NPF
CALL SEND_2_SOLID(I2NPF, XT, NORMS, IDASH)

END IF

- 145 -

ELSE

CSLDEND
NPF = IF(1,I)
c
C IGNORE POINT OR LINE ELEMENTS
IF (NPF .LT. 3) GO TO 30
II = II+1
FACE(1,II) = NPF
IFC(II) = IPC
DO 20 J=2,NPF+1
FACE(J,II) = IF(J,I) + NG
20 CONTINUE
C
C "CULL" THE BACK-FACES BY TAKING DOT PRODUCT OF PLANE
C NORMAL WITH VECTOR IN DIRECTION OF OBSERVER
IF (BFCULL .EQ. 'Y') THEN
C
C COMPUTE THE PLANE EQUATION OF THE GIVEN FACE
CALL PLANEQ (II,A,B,C,D)
DOTPR = A*OX + B*QY + C*0Z
IF (DOTPR .LE. 0.0) THEN
PFLAG(II) = .FALSE.
II = II-1
END IF
END IF
CSLD:
END IF
CSLDEND
30 CONTINUE
c
C UPDATE NODE AND FACE COUNTERS
NG = NG+NN .
NF = II
C
999 CONTINUE
C
RETURN
END

- 146 -

APPENDIX I
REFERENCES

Randall, D. P., K. H. Jones, et. al., "SMP - A Solid Modeling
Program." NASA CR 172473, November 1984,

Anon., RDS 3000 User's Guide. ADAGE, Inc., No. 10-301-095-10A,
Billerica, Massachusetts. March 1982.

Anon., BPS 32 Programming Guide. ADAGE, Inc., Billerica,
Massachusetts, July 1982,

Anon., SOLID 3000 Users' Guide. ADAGE, Inc., No. 104174, Rev. C.
Billerica, Massachusetts, August 1985.

Anon., IDL2 Reference Manual. ADAGE, Inc. Billerica,
Massachusetts, March 1983.

Foley, J. D. and A. VanDam: Fundamentals of Interactive Computer
Graphics. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1983.

General

Schumacker, R. A. et. al., "Study for Applying Computer-generated
Images to Visual Simulation." AFHRL-TR-69-14, U.S. Air Force
Human Resources Laboratory, September 1969.

- 147 -

10.

11.

REFERENCES
(Concluded)

Newman, W. M. and R. F. Sproull: Principles of Interactive
Computer Graphics. McGraw-Hill Book Company, New York, 1973.

Anon., VAX-11 FORTRAN Lanquage Reference Manual. Digital Equip-
ment Corporation Order No. AA-DO34C-TE. April 1982.

Anon., VAX-11 FORTRAN Users Guide. Digital Equipment Corporation
Order No. AA-D035C-TE. April 1982.

Anon., VAX-11 Linker Reference Manual. Digital Equipment Corporation
Order No. AA-D019C-TE. May 1982. _

- 148 -

Standard Bibliographic Page

1. Report No. ' " | 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-178065
4. Title and Subtitle pispiay System Software for the Integration - Report Date

of an ADAGE 3000 Programmable Display Generator into March 1986

the Solid Modeling Package C.A.D. Software 6. Performing Organization Code

7. Author(s)
R. J. Montoya and H. H. Lane, Jr.

8. Performing Organization Report No.

RTI1/3052/00-01F

9. Performing Organization Name and Address 10. Work Unit No.

Research Triangle Institute T T ——

P.0. Box 12194 wontrash or Bramt To-
Research Triangle Park, NC 27709 NAS1-17890

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

84
86

. 126/
National Aeronautics and Space Administration 14ngf;?§tareRea?St 3/31/
Washington, D.C. 20546 - Sponsoring Agency Lode

15. Supplementary Notes

Langley Technical Monitor: Dariene D. DeRyder

16. A%5¥tware system that integrates an ADAGE 3000 Programmable Display Generator
into a C.A.D. software package known as the Solid Modeling Program is described.
The software system was designed, implemented, and tested at the Research Triangle
Institute and later installed and demonstrated at the Systems and Analysis
Branch's display system laboratory.

The Solid Modeling Program (SMP) is an interactive program that is used to model
complex solid object through the composition of primitive geometric entities. In
addition, SMP provides extensive facilities for model editing and display. SMP
was developed at LaRC by Computer Sciences Corporation.

The ADAGE 3000 Programmable Display Generator (PDG) is a color, raster scan,
programmable display generator with a 32-bit bit-slice, bipolar microprocessor
(BPS). The modularity of the system architecture and the width and speed of the
system bus allow for additional co-processors in the system. These co-processors
combine to provide efficient operations on and rendering of graphics entities.

The resulting software system takes advantage of the graphics capabilities of
the PDG in the operation of SMP by distributing its processing modules between the
host and the PDG. Initially, the target host computer was a PRIME 850, which was
later substituted with a VAX-11/785. Two versions of the software system were
developed, a phase I and a phase II. In phase I, the ADAGE 3000 is used as a
frame buffer. 1In phase II, SMP was functionally partitioned and some of its
functions were implemented in the ADAGE 3000 by means of ADAGE's SOLID 3000
 software package :

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

Interactive graphics, computer aided
design, solid modeling, distributed soft- s ..
ware system, programmable display gene- Unclassified - Unlimited
rator, shading models

19. Security Classif.(of this report) 20. Security Classif.(of this page) |21. No. of Pages|22. Price
Unclassified Unclassified “159

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)

- 149 -

