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ABSTRACT

This report describes an experiment in dynamically testing flight

software with assertions. Digital flight control system software was

used as a representative test case. The experiment showed that Q7% of

typical errors introduced into the program would be detected by

assertions, thus demonstrating that assertion testing would provide a

good basis for a flight software testing methodology. Detailed analysis

of the test data showed that the number of assertions needed to

detect those errors could be reduced to a minimal set. The study also

revealed that the most effective assertions provided greater collateral

testing of the program parameters than those assertions detecting fewer

errors.
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1. INTRODUCTION

The Center for Reliable Computing at Stanford University has

completed a two year study on the application of executable assertions

to testing flight software. The purpose of this study is to develop a

methodology for testing real-time flight software. Prior to this study,

the results from other research projects had already demonstrated the

practicality and effectiveness of assertion testing [Andrews 78-81].

However, even though assertions had proved to be successful in detecting

errors in other types of software, it was important to show they could

be used for testing flight software because it has different

characteristics. (Flight software is real-time, has many logical

variables, and uses fault- tolerant techniques, such as, voters and

limiters built into the software.)

In order to demonstrate the effectiveness of assertions in

detecting errors in flight software, an experiment was conducted using

Digital Flight Control System (DFCS) software as a test case [DFCR-96

80], Assertions were written and embedded in the code, then errors were

inserted (seeded) one at a time and the code was executed. The results

from this experiment showed that 87% of the errors introduced into the

DFCS program would be detected by assertions.

Following the experiment, analysis of the research results

demonstrated the following:

* Assertions are effective in detecting errors in digital flight



control system software.

* Assertion testing can reduce the time and cost of testing

flight software in simulators and in actual flight.

* The variables that are most dependent on other variables

provide the greatest collateral testing and, therefore, the

assertions that test the most dependent variables are the

most effective and detect the largest number of errors.

* Placement of assertions is an important factor in determining

the effectiveness of an assertion, since those assertions

placed at the end of modules detected the most errors.

* Assertions can be used as a basis for implementing fault-

tolerant techniques in flight software because they have an

excellent error detection rate and can have a low overhead.

* Assertions can be executed independently of the main processor

by using a separate "watchdog" processor to reduce the overhead

of assertion testing.

The fact that assertion testing proved to be effective for flight

software has far reaching implications. The major one is that assertion

testing can be used to eliminate errors at an earlier stage in the

development cycle than before. Testing flight software has been

extremely costly and time consuming because the elimination of errors

has been done primarily by using simulators followed by actual flight



testing. If the number of simulations and flights can be reduced

because errors are detected sooner, there should be a considerable

reduction in time and money spent on testing.

Many potential applications for assertions have not yet been fully

explored. Due to their excellent error detection capability, assertions

can provide detection for faults that can be corrected by fault

tolerance techniques incorporated in the software. The use of

assertions, however, is not limited solely to testing or fault-tolerant

applications. System specifications and requirements can be expressed

in assertions before implementation of the code as an aid in writing

assertions, as well as in providing documentation throughout the entire

software cycle.

In this paper, background information about assertion testing is

presented first, then a description of the experiments, followed by a

discussion of the research results and a conclusion.



2. ASSERTION TESTING

Assertion testing is a technique for dynamically testing software

by adding additional statements, called assertions, to the software. An

assertion states a condition or specification in the form of a logical

expression. During execution of the program, the assertion is evaluated

as true or false. If it is true, then the condition is true at that

particular point in the program; if it is false, then an error has

occurred. Notification of the error is most often made in an output

message, such as, "Assertion in module <xxxx> at statement # <nn> is

false."

Assertions are written in the same language as the software, but

they usually have a slightly different format (typically beginning with

the word ASSERT) so they can be distinguished from the rest of the

software. Before the program can be executed, the assertions must be

translated into code that is acceptable by the compiler. This

translation is done by a preprocessor, program analyzer, or a pre-

compiler. Assertions are frequently made conditionally compilable, so

they can be turned into comment statements and easily stripped out of

the code after testing is complete.

Assertions may be placed appropriately throughout the software,

although sometimes they need only be added to certain strategic modules

and still retain their effectiveness. An assertion can test the

relationship between one or more variables, the range or limit of a

variable, or check the results of a numerical computation. Some



examples of assertions are:

ASSERT (ABS (LAT_INN_CMD) > MAX_CPL)

ASSERT (ABS (K2 - 0.95133) > 0.0005)

ASSERT (ABS ((LAT_INN_CMD) - 0.5 « (RL5 + 0.753 * ROLL)) > 0.0001)

2.1 PROCEDURE FOR ASSERTION TESTING

Assertion testing differs from other forms of dynamic testing of

software because assertions must be added to the code before it is

executed. Assertion testing has two distinct advantages over other

testing methods: First, determining the correctness of the output is

remarkably simplified because of the automatic notification of an error

when an assertion is violated. Second, because of this reduction of

time required for assessment of test results, the generation of a larger

set of input data becomes possible and automation of the process of

adaptively generating test data becomes easier to implement [Andrews

81,85], [Cooper 76]. However, the generation of input test data can be

the same as is used in any other testing procedure [Adrion 82], [Duran

84], [Gannon 79], [Howden 80], [Ntafos 85]. The procedure in testing

software with assertions is as follows:

* Add assertions to the code - preferably this should be done

during code implementation.

* Execute the code to test the correctness of the assertions.

* Generate test case data automatically or by the usual testing



methods.

» Input test data and execute the software.

* When testing is complete, assertions may be removed or left in

the code during deployment.

2.2 FAULT-TOLERANT APPLICATIONS

Another important use of assertions is in building fault-tolerant

systems [Randall 753, [Andrews 79]. A designer of a fault-tolerant

system assumes that faults will occur and tries to prevent failures by

incorporating methods for error detection and correction during system

operation. Assertions embedded in the software provide a convenient and

effective way to implement on-line fault tolerance for hardware faults,

as well as software errors. Assertions are used to detect the errors,

and additional code (traditionally referred to as a recovery block)

provides a way to handle the error. When an assertion is evaluated as

false, control is transferred to the recovery block statements that are

then executed. This technique, although simplistic in concept, allows

implementation of a variety of responses to potentially critical

problems.

Due to the increasing criticality of computer applications, it has

become necessary to provide recovery from software, as well as hardware

errors. Even with state-of-the-art program validation and verification,

there can be no guarantee that the software is correct and free of

errors. The complexity of a software system is at least an order of



magnitutude greater than that of the hardware because of the enormous

number of different states in a program. This makes it possible for an

error that will only surface under a rare combination of input values to

remain undetected. Therefore, it is not surprising that residual errors

in software have been a major source of system failures [Losq 77].

Although implementation of tolerance for hardware faults has been

commonly used in the past, there are many reasons why it is becoming

even more important. For one, the problems of adequately testing

hardware are increased drastically by development of microelectronic

systems, including submicron devices, Very Large Scale Integrated (VLSI)

circuits, and large-scale electronic systems. Second, not all hardware

faults are detectible and, when more than one fault is present,

detection becomes more difficult. Because assertions can check that

data is within an acceptable range of values, they can easily detect

some types of hardware faults. For example, a typical problem that can

have catastrophic consequences is a transient hardware fault. If the

problem is due to a faulty sensor, the bad data can be discarded and a

second data point could be read or another could be calculated based on

the previous reading and the rate of change. Such simple procedures can

prevent undesirable consequences that can result from intermittent or

transient hardware faults [Andrews 79].



3. RESEARCH EXPERIMENT

This section describes the flight control software used as a test

case and the procedure followed in developing the assertions and

generating the errors.

3.1 TEST CASE SOFTWARE

The software used as a test case was the autopilot code for a

large, wide-bodied commercial airplane. It is a good example of Digital

Flight Control System software and is written in AED (Automated Engineer

Design) [DFCR-96]. The software was written incrementally over the past

decade and most of the "bugs" have been corrected. The code is almost

identical to that in use at the present time. (It is the next to the

last version before deployment.)

The software is an integrated system that provides autopilot and

flight director modes of operation for automatic and manual control of

the plane during all phases of flight. The software is partitioned into

five major categories: the first, of course, is control and navigation

of the plane. In addition to this, are various supporting functions,

namely, testing and voting, logic (engage and mode calculations),

input/output (data handling, transmission, display, etc.), and the

executive. The subset of modules chosen for testing calculates the

commands to the ailerons. They use the selected heading and data from

sensors as input. Figure 3.1 shows the relevant procedures and the flow

of data.
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Fig 3.1 Flow of Data in Test Case Software

3.2 PROCEDURE

The original plan for the experiment was to add assertions, put in

errors, and execute the autopilot code on the flight control computers

installed at the Digital Flight Control Systems Verification Laboratory

at NASA-AMES [de Feo 82], However, developing assertions involves a

certain amount of experimentation in order to refine them and measure
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the desired condition. In addition, the errors were to be seeded one at

a time so it would be possible to determine whether or not a particular

error had been detected. Each change in the code, for refinement of

assertions or inserting an error, requires recompilation of the entire

program by an AED compiler which is on a Univac computer at a different

location. Then the excutable code must be downloaded into the flight

computers on the pallet. It soon became apparent that the process of

making changes to the code was so time consuming that very fews runs

could be made in one day. For this reason, the code was rewritten in

Pascal so it could be executed more efficiently on the DEC-20 at the

Stanford University campus.

There were two other even more important reasons for moving the

code to another computer. One was that introducing errors into the code

often caused the flight computers installed on the pallet to "crash" (or

not fly at all) because the effect of the error was so drastic.

Consequently, the section of code containing assertions was never

executed. The other reason was intrinsic to the nature of the flight

computers which have a dual-dual redundancy architecture. Aberrations

are corrected by voters and limiters built into the software [de Feo

82], so errors introduced in the software running on one channel would

be "corrected" by the voters or limiters before detection by an

assertion.

In this experiment, the assertions were written by one person and

the errors by another person. The reason for doing this was to maintain
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complete independence. Since existing documentation did not contain

enough information to write assertions, the flight computers were run on

the simulator in conjunction with a strip chart recording device to

determine the normal values of the program variables. From this

information, it was possible to write assertions for the set of modules

to be tested. More detailed information may be found in the following:

a description of the experiment to test flight software with assertions

[Mahmood 84a]; suggestions for writing assertions in flight software

gained from this experience [Mahmood 8̂ b], A combination of these two

papers along with additional information was published as a technical

report of the Center for Reliabile Computing at Stanford University

[Mahmood 84c].

The selection of errors was taken from two studies of errors made

during development of flight control software [Hecht 82]; one was

remarkably similar to the software we were using as a test case.

Errors, chosen from four different classifications, were seeded one at a

time in the software to determine the effectiveness of assertions in

finding errors of different types. Effort was made to duplicate exactly

the original errors whenever enough information was available.



4. ANALYSIS OF RESEARCH RESULTS

This research study can be divided into three phases: the first was

the original software testing on the flight simulators installed at the

NASA-AMES Research Center; the second was conducting the tests on the

DEC-20 at Stanford University; and the third was exploration of the

factors affecting the effectiveness of the assertions themselves. The

results from each of these phases contributed to understanding the

problems of testing flight software. This section describes the results

from each phase.

4.1 FLIGHT SIMULATOR TESTING

The results of the first phase, although not productive in

quantitative results (because of the length of time required to run each

test), contributed greatly to understanding the problems involved in

testing real-time flight software.

The first results clearly showed that testing a software system

with built-in redundancy (that is, a fault-tolerant system) is not

possible using normal testing techniques. These results also indicated

that the same problems encountered in testing fault-tolerant hardware

systems (fault masking, etc) exist for testing fault-tolerant software

systems and that "design for testability" features should be

incorporated into fault-tolerant software design specifications.

When the software was executed on flight computers in a simulated

real-time flight environment, the following major differences between
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real-time fault-tolerant software and non-real-time software without

redundancy were identified:

* In the autopilot code, there is frequent use of limiters which

reset certain variables whose values are not within certain limits.

This is done, not only to control possible errors, but also to keep

the values of those variables within the limits of passenger comfort

and within the stress limits of the airplane structure, etc.

However, this use of limiters throughout the program interferes with

detection of errors during testing because errors can be corrected

by a limiter and therefore masked.

* The values of input data, as well as the values of variables from

computations, are continually voted upon. If one of the values does

not agree with the others, the majority vote prevails. Therefore,

most errors are masked and become difficult to detect, since

propagation of errors is halted.

* The autopilot flight computers have a dual-dual redundancy

architecture with automatic synchronization of the channels provided

by the software. Under these conditions, assertions which monitor

timing do not catch errors because timing problems are immediately

corrected.

From these results, it was clear that it would be necessary to

incorporate into a flight software test methodology some of the same

concepts that have been proposed for simplifying the testing of fault-



tolerant hardware; such as, building observation points into the

software to break the system into manageable partitions, removing

redundancy during testing, and removing internal automatic channel

synchronization. Therefore, in the subsequent testing, the program was

tested as a single entity (without redundancy and synchronization).

4.2 SIMULATION ON DEC-20 COMPUTER

The initial test runs on the flight computors revealed major

differences between real-time flight software and non-real-time

software. More comprehensive testing done in this phase indicated that,

regardless of these differences, assertion testing of Digital Flight

Control System software is an effective method for detecting errors.

Eighty one errors were seeded in the program one at a time to

determine the effectiveness of assertions in finding errors of different

types. The errors were from four different error classifications - data

handling, logic, database, and computational. As Fig. 4.1 shows,

nearly 70% of the errors were detected and, if all paths had been

asserted, nearly 90? of all errors would have been detected. Assertions

were not written for the parts of the code that were not supported by

the flight simulator. Some errors (especially logic errors) caused

execution of the code without assertions and, consequently, were not

detected. The reason the remaining errors were not detected was due

most frequently to the fact that they had no effect on the computations.

For example, Boolean variables (having values of either 0 or 1) are

typically assigned a value in flight software in statements such as,



MODE = A or B or C and not D. Suppose A equals 1, then an error

resulting in a change in value of B or C will have no effect on the

outcome of this assignment statement and therefore would not be detected

by an assertion. In another example, some errors changed the name of a

Boolean variable into another. When the value of the variables was

identical, the error could not be detected.

EXPERIMENTAL RESULTS

ERROR
TYPE

DATA HANDLING

LOGIC

DATABASE

COMPUTATIONAL

TOTAL

No.
INSERTED

22

19

19

21

81

% ERRORS
DETECTED

PARTIALLY
ASSERTED

63.6

47.3

78.9

76.1

66.6

FULLY
ASSERTED

90.9

B4.2

94.7

80.9

87.6

Fig 4.1 Types of Errors Detected by Assertions



4.3 OPTIMIZATION OF ASSERTION TESTING

Once the effectiveness of assertion testing of flight software was

established, it became necessary to explore various aspects of

optimizing the use of assertions in order to develop an efficient

testing methodology. Efforts were directed toward answering questions

about both the qualitative and quantitative aspects of assertion

testing. For example, how should assertions be written, what type of

assertions are the most effective, where is the best placement for

assertions, how many are needed, etc.

4.3.1 Writing the Assertions

From the difficulty realized in this experiment in trying to write

assertions with little knowledge of the program behavior and inadequate

software specifications, it is obvious that assertions must be written

in cooperation between a flight system analyst and a software person who

is designing or implementing the code. Some of the conditions that

should be tested by assertions would best be known to flight

specialists; and for that reason, it is imperative to have their help

and guidance. The best time to add assertions is during the original

coding, so the assertions will detect errors during module, as well as

system integration testing.

4.3.2 Number of Assertions

The number of assertions depends on the phase of testing. When

used for debugging, assertions should be embedded frequently throughout



flight software code so they can best pinpoint the location of the

errors. However, once the software is ready for testing in a flight

simulation environment, then a smaller number of assertions is desired

in order to minimize memory space in the computer and execution time

overhead.

This is also true when assertions are used for error detection in

implementation of fault tolerance techniques. In that case, the

suggested procedure is to seed the program with errors (as was done in

this experiment) and then retain a covering set of assertions, that is,

the set detecting all seeded errors. The assumption would be that those

assertions would be most able to detect intermittent and transient

hardware faults, as well as any new software errors that might be

introduced during maintainance.

Analysis of the test results showed that four errors were detected

by only one assertion. One assertion detected one of those errors and

another detected the remaining three errors. These two assertions

constitute the set of "critical" assertions, that is, those assertions

that were necessary if all errors were to be detected. Of the remaining

assertions, either one of two assertions would detect all of the errors

not detected by the two "critical" assertions. This means that out of

all the assertions written, three assertions could be used to detect all

the detectible errors. The implication of these results is that it may

be possible to find a small subset of assertions capable of detecting a

large number of errors, so space and time overhead can be minimal. This



result makes assertion testing even more attractive. Nevertheless,

suggestions for alternate methods of executing assertions in parallel

may be found in [Saib 77], [Mahmood 85d], [Ersoz 85].

4.3.3 Placement of Assertions

The placement of the assertions is also dependent on the testing

phase. During the early debugging phase, it is most desirable to have

many assertions to check incoming data, outgoing commands, data storage

and retrieval, and the results of computations. The analysis showed

that the effective and critical assertions were in the last two

procedures. This is not surprising since assertions placed earlier in

the code would not catch errors introduced later on. Although at first

it appeared that most of the errors would be corrected by the limiters

built into the software, this result demonstrated that many errors do

escape those built-in protections and that assertions can detect those

errors when the software system is tested as a single entity (with the

redundancy disabled). In the testing phases where execution time

computer space are an important factor, then assertions should be placed

in the procedures that calculate commands to the mechanical parts of a

flight system.

4.3.1 Most Effective Assertions

Assertions can be different types. They can measure the

relationship between variables, check for maximum or minimum allowable

values of a variable, or perform a numerical computation with a
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different algorithm to determine correctness of the calculation.

Examples of each of these types of assertions were given in Section 2.

Assertions also can have tests for more than one variable, and a factor

for time may also be included in the assertion. All types of assertions

were written for this experiment and, interestly enough, none of these

factors - type of assertion, inclusion of a factor for time, or checking

multiple variables - seemed to affect the ability of the assertion to

detect errors.

Further in depth analysis did reveal a factor that appears to

influence the effectiveness and criticality of an assertion. It seemed

possible that testing certain variables might be more effective than

testing others - depending on which variables provide greater collateral

testing. One measure of collateral testing is the number of variables

that are utilized in assigning a value to a variable. This number is

refered to as the "data dependency" of that variable. The variables

with the highest "data dependencies," therefore, would be expected to

provide the greatest collateral testing of other variables.

This theory was tested against the results from this experiment. A

high correlation was found between the data dependency of the variables

tested in an assertion and the effectiveness of the assertion. Those

assertions with the highest accumulated data dependency factors (for the

variables included in the assertion) proved to be the most effective in

detecting errors. The difference in detection effectiveness was

significant, since they detected ten times as many errors as the



assertions with the lowest dependency factors. Not only did the most

effective assertions have the highest data dependency factor, but the

two critical assertions also had very high dependency factors.

Therefore, to ensure that testing covers as many of the variables

as possible, the dependency factor for each variable should be

calculated and the variables with the highest data dependency number

should be included in the assertions. Discovery of this relationship

between assertion effectiveness or criticality and the data dependency

factor of the variables being tested should be of considerable help in

writing good assertions for flight software.
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5. CONCLUSION

The broad and important conclusion to be reached from this research

investigation is that assertion testing is an effective and efficient

method of detecting errors in flight software. A major implication of

this result is that assertion testing can be used effectively to

eliminate most errors at an earlier stage in the development cycle than

before. Testing flight software has been extremely costly and time

consuming, because the elimination of errors primarily has been done

using flight simulators as well as actual flights. If the number of

simulations and flights can be reduced because errors are discovered

sooner, there should be a considerable reduction in time and money for

testing.

Therefore it is proposed that assertions be added to the software

during implementation and that assertion testing be utilized from the

beginning to shorten the testing cycle. Furthermore, in fault tolerant-

computing applications, the suggested procedure is to retain the

assertions during deployment and include additional code to provide

error recovery. One of the conclusions reached as a result of this

experiment is that the number of assertions required to detect all

possible detectable errors may be a small, minimal set - therefore

making assertions a useful medium for providing fault tolerance in

flight software.
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Assertions should be written as a cooperative project by a flight

systems specialist and a software person. According to these test

results, effectiveness of an assertion was not affected by factors such

as checking multiple variables, inclusion of a factor for time, etc.

However, testing program variables that provided the greatest collateral

testing of other variables seemed to improve the effectiveness or

criticality of an assertion.
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