
^eqter for
^-Delioble

•"onrputiqg
^*

(NASA-Cfi-176714) THE W A T C H D O G TASK: N86-23324
C O N C U R R E N T EEEOR DETECTION USING ASSERTIONS
(Stanford Univ.) 65 p HC A04/MF A01

CSCL 09B Unclas
G3/61 16616

THE WATCHDOG TASK: CONCURRENT ERROR DETECTION USING ASSERTIONS

Aydin Ersoz, Dorothy H. Andrews, and Edward J. McCluskey

CRC Technical Report No. 85-8
(CSL TR No. 85-267)

July 1985
sn**£%%»

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 9̂ 305

Imprimatur: Aamer Mahmood and Saied Bozorgui-Nesbat

This work was supported in part by the NASA-AMES under contract
No. NAG 2-2M6 and by the National Science Foundation under Grant
No. DCR-8200129.

Copyright (c)l985 by the Center for Reliable Computing, Stanford
University. All rights reserved, including the right to reproduce this
report, or portions thereof, in any form.

THE WATCHDOG TASK: CONCURRENT ERROR DETECTION USING ASSERTIONS

Aydin Ersoz, D. M. Andrews and E. J. McCluskey

CRC Technical Report No 35-8
(CSL TR No. 85-267)

May 1985

Center for Reliable Computing
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, CA 9^305 USA

ABSTRACT

The Watchdog Task is a software abstraction of the Watchdog-processor.
In this paper, the Watchdog Task is shown to be a powerful error
detection tool with a great deal of flexibility and the advantages of
watchdog techniques. A Watchdog Task system in Ada is presented; issues
of recovery, latency, efficiency (communication) and preprocessing are
discussed. Different applications, one of which is error detection on a
single processor, are examined.

KEYWORDS; Concurrent checking, system level checking, watchdog,
assertion, Ada , multiprocessing.

11

TABLE OF CONTENTS

Section Title Page

Abstract .. i
Table of Contents ii
List of Figures • iii

1 BACKGROUND .. 1
Assertions and the Assertion Watchdog Processor ... 2

2 A MULTIPROCESSING MODEL OF THE ASSERTION WATCHDOG
PROCESSOR SYSTEM 4

3 THE WATCHDOG TASK 5
Using the Software Watchdog 6

4 AN EVALUATION OF THE SOFTWARE WATCHDOG CONCEPT ____ 6
4.1 Advantages .. 7
4.2 Preprocessing 8
4.3 Difficulties Associated with Implementation 8

5 DEFINITION OF THE RESEARCH PROBLEM 10

6 THE WATCHDOG TASK SYSTEM 11
6.1 The Essential Structure 11

The type visibility problem 16
6.2 The Recovery Mechanism 17
6.3 The Latency Problem 19
6.4 Efficiency-Interprocess Communication 21

Implementing Communication 23

7 THE WATCHDOG TASK SYSTEM ON SINGLE PROCESSOR
ARCHITECTURES 31

8 ANOTHER APPLICATION FOR THE WATCHDOG TASK SYSTEM .. 32

9 SPECIAL PURPOSE WATCHDOG TASK SYSTEMS 33

10 THE PREPROCESSOR 3^

SUMMARY AND CONCLUSIONS 35

ACKNOWLEDGEMENTS 36

REFERENCES .. 37

APPENDIX .. 39

iii

Figure

1.1

2.1

1.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7a
6.7b

6.8

6.9

8.1

LIST OF FIGURES

Title . Page

The Organization of the Watchdog Processor System . 1

The Multiprocessing Model of the Assertion
Watchdog System 4

The Architectural Dependency 9

The Transparency of Transformation H

The Basic Structure of the Watchdog Task System ... 16

The Recovery Mechanism 17

The Latency Problem 19

Transforming the Program into Several Watchdogs to
Control Latency 20

Communication in Dual Processor Architecture 25

The Packet 28
Queues of Packets 28

Ring Buffer of Unit Size Data Items 29

The Double Buffer 30

Nesting Watchdog Task Systems 33

1 BACKGROUND

A Watchdog processor [Lu 80] is a small and simple coprocessor

used to perform concurrent system-level error detection by monitoring

the behaviour of a system (Fig. 1.1). The Watchdog is provided with

specifications of the desired behaviour of the system before

execution. During execution it compares concurrently collected

information about the actual behaviour of the system with these

specifications. A mismatch denotes an error.

Memory

* • i \

> r

Ad

., T

flairi Processor

Data Bus

dress and Control li

1 ..
Watchdog

nes

Fig. 1.1 The Organization of the Watchdog
Processor System

Many implementations of the Watchdog processor are discussed in

the literature. The distinctive characteristic of a Watchdog is the

particular aspect of the system behaviour it monitors. Watchdogs have

been proposed that monitor the memory access behaviour [Namjoo 82a],

the control flow [Lu 82] [Namjoo 82b] [Sridhar 82] [Namjoo 83] [Shen

83] [Eifert 84], the control signals [Daniels 833 and the

reasonableness of results [Saib 79][Mahmood 833.

For details on the Watchdog Processor, the reader- is referred to

[Mahmood 85], an excellent survey from which most of section 1. has

been taken.

Assertions and the Assertion Watchdog Processor:

The scheme based on checking the reasonableness of results

[Mahmood 83] relies on assertions inserted into the program running on

the main processor. An assertion is an invariant relationship about

the variables of a program written as a logical statement and inserted

at different.points in the program. It signifies what is believed to

be true at the point the assertion is inserted. The following

examples of assertion has been taken from the code for a flight

software package [Mahmood 833:

Define Procedure LAT.INNER to be
begin
•

if R.TEST.COMPL then begin
RL8 = RL8.D = DLIMIT (RL8.D+RL11.D+RL11.D.S,0.258);
RL11.D.S = RL11.D;
RL13 = LIMIT(RL7+RL8,0 .171429)/0.20333;

end
else RL3 = TEST.CMD (R A M . P T R (R . T E S T . P T R)) ;
•

DELA.CMD = RL13;
COMMENT ASSERT ABS(DELA.CMD) < 0.13;
•

end;

Anna, a specification language for Ada, provides comprehensive

support for assertions [Luckham 84]. The following example is a

result annotation defining the value returned by a function:

function COMMON_PRIME (M,N : INTEGER) return NATURAL;
—! where return P : NATURAL =>
—! IS_PRIME(P) and M mod P = 0 and N mod P = 0;

The use of assertions provides the notion of correctness that is

necessary to do semantic (reasonabless of results) checking. The

effectiveness of assertions in detecting all types of errors

(hardware as well as software) has been demonstrated in [Andrews 81]

and [Mahmood 84].

Assertions could certainly be executed on the same processor as

the program they check, but dedicating a Watchdog processor to this

task has several advantages: *,

1. Efficiency : The assertions are executed concurrently on a

different processor. This is particularly valuable in real time

systems, especially if the assertions are inserted after the system

has been developed. If the execution overhead of the assertions

has not been taken into consideration in the initial design, it is

likely that their effect on the timing will be intolerable if

executed on the same processor as the main program.

2. With a Watchdog processor, the checking is done by an

independent module.This independency is always desirable in

testing.

3. The dedicated Watchdog processor can be specially designed to

execute the assertions efficiently.

In a system that employs an Assertion Watchdog, the 'main'

program running on the system is preprocessed to extract the

assertions. These are then arranged to form the code for the Watchdog

processor. In a general implementation of this scheme [Mahmood 85],

the Main processor has to make the data necessary for the execution of

the assertions available to the Watchdog. This explicit communication

constitutes the bottleneck in the efficiency of such a Watchdog

system.
t

2 A MULTIPROCESSING MODEL OF THE ASSERTION WATCHDOG PROCESSOR SYSTEM

The system described in the preceding section can be modelled as

two communicating concurrent processes. As depicted in Figure 2.1,

process Main is the program running on the Main processor, the other

process is the Watchdog, which is made up of the assertions. The

communication consists of the data for the assertions that process

Main transfers to process Watchdog.

Software to
be checked:

PROCESS
MAIN PROGRAM

Assertions:

PROCESS
WATCHDOG

Communication:
Date for Assertions

Fig. 2.1 The Multiprocessing Model or the
Assertion Watchdog System

The multiprocessing model is abstract in the sense that it is not

bound to a particular implementation. The Assertion Watchdog monitors

the semantics of the Main process; the communication between the

processes is the explicit transfer of the values of program variables.

This independence of the Assertion Watchdog from low level

implementation issues is in contrast to the other watchdogs.

Watchdogs that perform structural integrity checking are also high

level in the type of checking they perform, and can be described as

abstract multiprocessing models [Lu 82]. With the Assertion Watchdog,

however; the processes are the actual programs running on the

processors, and the communication is program variables as opposed to

computed labels. The control-flow watchdog [Namjoo 82b] for example,

involves monitoring and compressing the instruction flow of the main

processor. The assertion Watchdog system, when viewed as two

concurrent processes, can be conceptualized without any reference to

the actual hardware. It would be possible to schedule the two

processes that make up the system on any single or multiprocessor

architecture.

3 THE WATCHDOG TASK

The Watchdog Processor is a powerful error-detection tool that is

completely transparent to the software running on the system. The

Watchdog Task is an analogous tool exclusively at the software level.

A software system with a Watchdog process can be built in a

multiprocessing environment without paying attention to the details

of the physical architecture. The abstract nature of the Assertion

Watchdog is the key to the feasibili ty of this scheme.

ouch a system can be implemented in a High Level Language (HLL)

that supports multiprocessing. The language should provide constructs

for expressing the concurrency and communication which are the very

essence of the Watchdog system.

The system that is presented in this paper is written in Ada. In

Ada terminology, processes are called tasks; hence the title 'The

Watchdog Task'.

Using the Software Watchdog:

The Software Watchdog can be used in developing a reliable

software system as follows: The starting point is a sequential ADA

program with assertions already inserted in it. A preprocessor

transforms this Main program into a Watchdog Task System with

multiple concurrent tasks, some of which are watchdogs. This system,

which is in ADA, can then be compiled and the different tasks

scheduled on the actual hardware.

4 AN EVALUATION OF THE SOFTWARE WATCHDOG CONCEPT

Now that the feasibility of the Software Watchdog system has been

described, it is worthwhile to examine its strengths and the

difficulties involved with its implementation before presenting the

actual system. In this section, it will be demonstrated that this

high level language approach to concurrent error detection generalizes

the watchdog concept and simplifies its integration into a system.

*J. 1 Advantages:

The arguments for using a HLL in any application apply to the

watchdog case as well.

1. Flexibility: The HLL approach results in a great deal of

flexibility. The system can now be conceptualized in the most

convenient way. It is no longer necessary, for example, to confine

the system to one watchdog; many Watchdog Tasks may be scheduled. It

will be shown later how such conceptualizations prove to be valuable.

2. Tools for Handling Recovery and Latency: In a system with

error detection, it is usually desirable to recover from the errors in

some specified fashion. The recovery procedure can be built into the

software watchdog, resulting in the integration of a reliable system.

The software system also provides the user with tools for handling the

latency problem, as discussed later (section 6.3).

3. Portability; The Watchdog Task System that is derived from a

Main program is in ADA and is almost completely independent of

architecture. Except for one package that contains hardware

information (see sections ^.3 and 6.M.1), the system is portable and

can run on any single or multiprocessor hardware with an Ada code

generator.

M. Single Processor Architectures; A New Application for the

Watchdog; The generality of the software watchdog makes it possible

to run the system without any changes on a single processor,

8

combining the watchdog and background checking techniques in a natural

way.

5. Simulation; The implementation of a software watchdog is

clearly simpler than implementing a hardware system with a watchdog

processor. The software system can therefore be utilized for

simulating and evaluating different watchdog schemes (particularly the

communication aspect).

4.2 Preprocessing:

Preprocessing is required in any system utilizing a watchdog

processor. In the case of the Assertion Watchdog, the assertions have

to be extracted from the original code and put together to create the

program for the watchdog processor.

If a software watchdog is built, no further preprocessing is

necessary since the Watchdog Task is precisely the code for the

watchdog processor. The effort that goes into transforming a Main

program into a Watchdog Task system, in other words, is not extra

overhead; it simply replaces the previous preprocessing.

4.3 Difficulties Associated with Implementation:

It was discussed by way of background (Sec. 1.1) that a good part

of the motivation behind the watchdog was an improvement in

efficiency. It is certainly important that the software watchdog

detracts minimally from the efficiency of the underlying system.

There are two conflicting goals here: The software watchdog is

implemented in a HLL and is meant to be an abstraction that has little

dependence on the architecture. However; in order to maximize

efficiency, it is desirable to have an accurate model of the

architecture to exploit its potential fully.

The only aspect of the architecture that has a major impact on

efficiency is the implementation of the communication between

processes Main and Watchdog. It is therefore possible to isolate the

critical hardware and map it into software. The intersection of the

software abstraction and the actual hardware, then, is well defined

and very limited (Fig M.I). The hardware dependency can be expressed

in an Ada package which needs to be written before the software

watchdog can be installed on a hardware system. (section 6.4.1).

This limited hardware map constitutes a satisfactory compromise

between abstraction and full exploitation of the hardware.

underlying
architecture

software
abstraction

intersection:
map of the communication aspect
of architecture into software

Fig. 4.1 The Architectural Dependency

The HLL implementation also gives rise to a quite different type

of efficiency problem. Many HLL constructs such as procedure calls

10

result in additional execution overhead. Clearly, this overhead can

be controlled by paying attention to the runtime behaviour of the code

when implementing the Watchdog System.

5 DEFINITION OF THE RESEARCH PROBLEM

The preprocessing that transforms the sequential Main program into

a Watchdog Task system is uniform. Different watchdog systems will

differ in the main program code and assertions they contain, but will

have the same basic structure. The objective of the research

presented in this paper is to design this underlying structure. Once

the basic format of the Watchdog Task system is determined, the

transformation from sequential Main program to system will be

straightforward.

The system template is designed with the following criteria in

m i nd:

1. The system should be general enough that any sequential main

program can be transformed into a Watchdog Task system through

simple preprocessing.

2. It should provide tools for controlling recovery and latency.

3. It should be 'efficient'. The notion of efficiency will be made

explicit in section 6.4.

6 THE WATCHDOG TASK SYSTEM

In this section, the system that was designed will be presented.

It should be emphasized that this system was meant to be completely

general. Improvements would be possible if the software is custom

designed for' an application (section 8).

The essential structure of the system will be discussed first; the

recovery and communication mechanisms will be covered later. The

format will be illustrated by actual examples from a flight software

package that was rewritten in Ada,

enter

Seq. Main Program

begin

end;

enter

TRANSFORM

Watchdog Taste
System

exit exit

Fig. 6.1 The Transparency of Transformation

6.1 The Essential Structure:

The Watchdog Task system is a multitasking Ada program which can

be activated from the external environment via a START procedure. The

12

t ransformat ion of the main program to a mult i tasking system is

transparent to the caller of the main program. The main program is

replaced by a call to procedure START which returns control to the

caller after the main program code and the assertions have been

executed. Figure 6.1 shows the transparency of the transformation.

The system consists of two packages, which are outlined below:

package SUPERVISOR is
NUMBER_OF_ASSERT-IONS : constant := 19;
type ERROR_RANGE is range 1..NUMBER_OF_ASSERTIONS;
procedure START;
procedure REPORT (E R R O R : E R R O R _ R A N G E) ;
func t ion ,IS_DONE return BOOLEAN;

" end SUPERVISOR;

package body SUPERVISOR is

DONE : BOOLEAN;

task M A I N is
entry START;

end MAIN;

task body MAIN is separate;

procedure START is
• • •

end START;

procedure R E P O R T (E R R O R : E R R O R _ R A N G E) is
• • •

end REPORT;

function IS_DONE return BOOLEAN is
begin

return DONE;
end IS_DONE;

begin
DONE := FALSE;

end SUPERVISOR;

with S U P E R V I S O R ;
package WATCHDOG is

func t ion IS_IDLE re tu rn BOOLEAN;
package QUEUE is

*

end Q U E U E ;
end WATCHDOG;

package body WATCHDOG is

package body Q U E U E is separate;

function IS_IDLE return BOOLEAN is'
•

end IS_IDLE;

task CHECK;
task body CHECK is

begin
if not SUPERVISOR.IS_DONE then

—execute the assertions

end CHECK;
end WATCHDOG;

Package SUPERVISOR contains the system's interface with the external

envi ronment and the main program code. Package WATCHDOG contains a

communicat ions package which will be explained in section 6 . ^ .1 , and

the code for executing the assertions. The main program code is in

task S U P E R V I S O R . M A I N , its internal structure (such as local

procedures, e tc .) has become local to task M A I N .

wi th WATCHDOG;
sepa ra te (SUPERVISOR)

task body MAIN is
— local declarations, subprograms, packages, etc. are inserted
— here

procedure WAIT_FOR_WATCHDOG is
begin

WHILE not WATCHDOG.IS_IDLE loop
delay WAIT_TIME;

end loop;
end WAIT_FOR_WATCHDOG;

begin
accept START do

— the sequential main program is inserted here
•

WAIT_FOR_WATCHDOG;
end START;

end M A I N ;

In order to control the execution of task M A I N , its body is inserted

wi th in an accept statement. A call to MAIN.START starts the main

program, the caller gets control back only when all of MAIN has been

executed. The net effect is that MAIN gets executed sequential ly with

the caller. This is the desired behaviour for the transparency of the

system.

The assertions are executed wi th in the body of task

WATCHDOG.CHECK. This task has to be compiled separately (that is why

it is in a separate package) for full generali ty. The main program

may be compiled with d i f fe ren t units and it may be desirable to call

the watchdog from within these units. If the WATCHDOG package is

separate, compiling any unit that needs the watchdog with package

WATCHDOG establishes the required visibility.

The watchdog executes in an inf in i te loop and terminates when the

flag SUPER VISOR. IS_DONE is set. The way the body of the task is

organized is mainly an ar t i fact of communication requirements and will

be discussed in connection with this issue (section 6 . 4 . 1) . When

the watchdog detects an error, it calls procedure SUPERVISOR.REPORT

which aborts task MAIN. SUPERVISOR.REPORT also logs the error:

procedure REPORT (E R R O R : E R R O R _ R A N G E 5 is
begin

—log the error:
case E R R O R is

when 1 => ...

end case;
abort MAIN;

end REPORT;

Procedure SUPERVISOR.START is what the external world uses to

activate the system:

procedure START is

begin
M A I N . S T A R T ;
DONE := T R U E ; — signal WATCHDOG to stop

exception
when TASKING_ERROR =>

— handle error reported by WATCHDOG;
when others =>

— handle other except ions;
end START;

The procedure remains in rendezvous with task MAIN unti l either the

task completes successfully, or is aborted. Upon normal completion,

the watchdog is signalled to terminate through flag IS_DONE. If the

task has been aborted, then the exception TASKING_ERROR is raised

since a rendezvous was in progress. The exception is detected, and

the recovery mechanism is in i t ia ted . This will be elaborated in

section 6.2.

The essential structure of the Watchdog Task System is summarized

in Figure 6.2. When procedure SUPERVISOR.START is called, it

activates task M A I N . The watchdog remains active until MAIN completes

execution, at which point SUPERVISOR.START is also exited.

As a last remark, notice that the system is guaranteed to have

executed all assertions since task MAIN expl ici t ly waits for the

16

watchdog to catch up by cal l ing WAIT_FOR_WATCHDOG before complet ing.

WAIT_FOR_WATCHDOG simply checks to make sure the watchdog is idle.

SUPERVISOR

enter

CALLER \ proc. START proc. REPORT
exit

M A I N WATCHDOG

Fig. 6.2 The Basic Structure of the Watchdog Task
System

The type visibility problem:

The watchdog and the main program are transformed into two

separate tasks, but the watchdog task needs data from task MAIN. The

so called type visibi l i ty problem arises because these data may be of

types local to task M A I N ; indeed, the types could be declared deep

within the hierarchy of the main program. These local types need to

be made visible to the watchdog task.

One solution to the problem would be to move the relevant local

ideclarations to the global level and make them accessible to the

watchdog. This is clearly not desirable since it violates the basic

principles of structured programming. The alternate solution, the one

17

that was implemented in the Watchdog Task system, is to convert the

data of local types into predef ined ADA types. Data of composite

types need to be broken down before the communicat ion in any case, so

the conversion is s t ra igh t forward , especially if the domain is

restricted to a small number of types. The conversion problem can be

completely resolved at preprocessing t ime.

SUPERVISOR
save global s ta te
before each action

enter

THE CALLER
exi t

proc START proc REPORT

MAIN

WATCHDOG

alternate actions

Fig. 6 3 The Recovery Mechanism

6.2 The Recovery Mechanism:

The standard recovery mechanism of having alternate actions

available in case of fa i lure [Randell 75] is integrated into the

Watchdog Task system. Figure 6.3 describes the arrangement. The

'alternate actions' are d i f ferent tasks that are internal to package

18

SUPERVISOR. These may be programs that are d i f ferent implementations

of the main program, or simple error handlers. The code for procedure

S U P E R V I S O R . S T A R T is modif ied as follows to accomodate the recovery:

type ACTION is ...
procedure START is

CURRENT_ACTION : ACTION;

begin
I N I T I A L I Z E _ C U R R E N T _ A C T I O N ;
loop

begin
— save global state;
case CURRENT_ACTION is

when ... => MAIN.START;
•

when ... => —handle error;
end case;
exi t ;

exception
when TASKING_ERROR =>

UPDATE_CURRENT_ACTION;
— restore global state;

when others =>
— handle other exceptions;

end;
end loop;
DONE := T R U E ; — signal WATCHDOG to stop

end START;

CURRENT_ACTION is a global variable that keeps track of the

actions being performed. If the task that is the current action

completes successfully, the watchdog is terminated and

SUPERVISOR.START is exited. If the CURRENT_ACTION fails and is

aborted, exception TASKING_ERROR is raised, CURRENT_ACTION is

updated , and a new task is started. Notice that this mechanism may be

used to handle other exceptions that propagate from task M A I N .

It may be necessary to 'roll back' the task that failed and was

aborted. If this is desired, the global state must be saved before

the task is -activated and restored after it is aborted. This is

19

discussed in [Randell 75]. The preprocessing can determine the

variables that need to be saved by scanning the code for places where

they are modified. Since task Main is a functional unit, this scan is

unlikely to be overly complicated.

error
occurs

error detected
by wotchdog

latent Interval

Fig. 6.4 The Latency Problem

6.3 The Latency Problem:

As shown in Figure 6.4, the watchdog is not guaranteed to detect

errors precisely when they occur. This leads to the presence of a

'latent interval' from the time~the error has occurred to the time it

is detected, during which the system is no longer operating properly.

This latency is intolerable if the system performs a critical action

during the latent interval. The latency problem is a fundamental one

and cannot be completely solved in the general case. Assertions and

the software watchdog, however, provide a tool that brings latency

under control by confirming the correctness of the program before

executing a critical action.

In the following, it will be assumed that the assertions inserted

into the program are complete in the sense that the correct evaluation

20

of all assertions inserted up to a critical point means that the

program contains no errors up to that point. This will make it

possible to isolate the latency of the watchdog from the latency of

the assertions. With this assumption, all that is required of the

watchdog system is to make sure there ar-e no unexecuted assertions

when the main program arrives at a critical point.

begin

critical nction

end;

Fig. 6.5 Transforming the Program into Several
Watchdogs to Control Latencg

The solution is to suspend the execution of task MAIN unt i l the

watchdog catches up by waiting until WATCHDOG.IS_IDLE. An

implementat ion of this mechanism will be presented in the next

section. As explained in section 6.1, this wait is already built

into the system so that all assertions are executed before the system

can be exited. A more formal solution to the latency problem,

therefore, is to break the sequential main program into subparts

delimited by critical actions. A Watchdog Task system can then be

generated for each as shown in Figure 6.5. This is a natural

formalization if the critical actions are relatively sparse and

independent.

6.JJ. Efficiency- Interprocess Communication:

The question of efficiency is meaningful when the Watchdog Task

system is to be scheduled on a multiprocessor. Efficiency, in the

sense it is employed here, is related to the total time it takes the

system to execute both the main program code and the assertions. The

purpose of dedicating a processor to the watchdog process is to reduce

this total time. As mentioned in section 1, it is critical that the

software watchdog detracts as little as possible from the gain in

efficiency achieved through this parallelism.

It is easy to demonstrate that the bottleneck in efficiency is

communication. The following is the inequality that should be

maximized by the Watchdog Task system:

Time of execution for > Time of execution for

main program + assertions Watchdog Task System

If perfect parallelism were possible, the left hand side of the

inequality would exceed the right hand side by 'Time of execution for

assertions'.

The inequality transforms into:

time of execution for > max [time of execution for

main program + assertions (task MAIN, watchdog task)]

22

Task MAIN will clearly take longer to execute than the watchdog

since the assertions are typically a fraction of the original code

and are being executed on a specialized processor. Also noting that

time of execution for task MAIN time of execution for

main program +• time for

data transfer to watchdog,

the inequality becomes:

time of execution for assertions time for data

transfer to watchdog.

Since the left hand side of the inequality is constant, the inequality

can only be maximized by minimizing the transfer time spent by task

MAIN. To maximize performance, therefore, the communication cost has

to be minimized.

It is also interesting to note that this inequality is critically

dependent on the type of assertions being executed. If the assertions

are computationally intensive, a less than optimal communication

scheme may be tolerable since the inequality will clearly be dominated

by the execution time of the assertions. If, on the other hand, the

assertions are data intensive, the communication cost will have to be

kept very low to justify executing the assertions in parallel.

23

Implementing Communication:

The most straightforward implementation of intertask communication

in Ada would be by rendezvous. Unfortunately, the rendezvous allows

only for tight synchronous coupling between tasks and is unsuitable

for the kind of asynchronous communication that is needed for the

watchdog. In an implementation employing the rendezvous, task MAIN

would have to wait for the watchdog task everytime it tried to send

new data. In the general case, this could reduce the parallelism

drastically and is clearly unacceptable.

Since the rendezvous construct cannot be utilized, the

asynchronous intertask communication has to be constructed explicitly

in software. In order to maximize the efficiency, it is necessary to

model the communication that actually goes on between processors as

accurately as possible.

At this point, then, the discussion becomes dependent on the

organization of the underlying system. The implementation that will

be presented assumes a two processor architecture and remains as

general as possible within the bounds of this assumption. The dual

processor architecture, with a main and a watchdog processor, is the

general scheme proposed in the literature.

Two processors generally communicate via a buffer or queue as

shown in Figure 6.6. The main processor only writes into the buffer,

and the watchdog processor only reads from the buffer. The

specification for the package that models this buffer is presented

below.

package QUEUE is
type DATA_TYPE is (I N T , FL_POINT); —all standard data types

—used in assertions;
type UNIT_DATA (K I N D : DATAJTYPE := FL_POINT) is

record
case KIND is

when INT =>
INT_ ATA : INTEGER;

when FL_POINT =>
FL_DATA : FLOAT;

end case;
end record;

MAX_LABEL : constant := 19;
type LABELJTYPE is range 1 . .MAX_LABEL; — the type for the

—assertion labels
MAX_NUMBER_OF_PARS : constant := 10; —the max . number of

—data items for the
—assertions

type PAR_RANGE is range 1..MAX_NUMBER_OF_PARS;

—DATA_ARRAY is defined to simplify getting data from the QUEUE
type DATA_ARRAY is array (PAR_RANGE range <» of UNIT_DATA;

funct ion IS_EMPTY return BOOLEAN;
procedure REQUEST_SPACE (FOR_NEXT
procedure INSERT (LABEL
procedure INSERT (FL_DAtA
procedure INSERT (INT_DATA
procedure GET_NEXT (LABEL
procedure GET_NEXT (NO_OF_PARS

PAR_RANGE);
in LABELJTYPE);
in FLOAT);

in I N T E G E R) ;
out LABELJTYPE);

in PAR_RANGE;
DATA : out DATA_ARRAY);

procedure FLUSH;

pragma I N L I N E (I N S E R T , GET_NEXT, IS_EMPTY, FLUSH,
REQUEST_SPACE)

end QUEUE;

Fig. 6.6 Communication in Dual Processor
Architecture

Package QUEUE is contained in package WATCHDOG. The specification

contains the data types and the basic QUEUE operations and attributes.

All procedures and functions are compiled with the pragma INLINE to

avoid the procedure call overhead. The basic data item in the queue

is a variant record which has fields for all the data types that will

get transferred, including the type for the assertion labels.

Task MAIN enters the data into the queue by first requesting space

for the data and then inserting it. The following example is from

the flight software package.

ASSERTION J4:
begin

WATCHDOG.REQUEST_SPACE(FOR_NEXT = > 4);
WATCHDOG.QUEUE.INSERT(LABEL => 4) ;
WATCHDOG.QUEUE.INSERT(FL_DATA => FLOAT(LAT_INN_CMD));
WATCHDOG.QUEUE.INSERT(FL_DATA r > F L O A T C R L 5)) ;
WATCHDOG.QUEUE.INSERT(FLJDATA => F L O A T (R O L L)) ;
WATCHDOG.QUEUE.INSERT(FL_DATA => FLOAT(ROLL_RATE));

end ASSERTION 4;

The REQUEST SPACE procedure is a simple check to see if the queue is

26

full. If it is, task MAIN has to wait until the watchdog processes

the next assertion from the queue, making more space available.

The watchdog side of the communication is equally

straightforward.

task body CHECK is
LABEL : QUEUE.LABELJTYPE;

begin
loop

if QUEUE.IS_EMPTY then
if SUPERVISOR.IS_DONE then exit;
else delay WAITJTIME;
end if;

end if;
while not QUEUE.IS_EMPTY loop

QUEUE.GET_NEXT(LABEL);
case LABEL is

when 1 = > ...

when 4 =>
ASSERTJI:
declare

PACKET : QUEUE.DATA_ARRAY(1..4);
begin

QUEUE.GET_NEXT(NO_OF_PARS => 4,
DATA => PACKET);

if abs(PACKET(1).FL_DATA -
0.5*
(PACKET(2).FL_DATA +
PACKET(3).FL_DATA * 0.764
PACKET(4).FL_DATA * 0.152533)) >

0.0001 then
SUPERVISOR.REPORT(ERROR => 4);
QUEUE.FLUSH;

end if;
end ASSERTJ4;

end case;
end loop;

end loop;
end CHECK;

If QUEUE.IS_EMPTY, there are no' assertions to be executed and the

watchdog is idle. When there is data in the queue, the watchdog reads

the label for the next assertion, gets its data and processes it.

Function WATCHDOG. IS IDLE, which task MAIN uses to find out if the

27

watchdog is still executing assertions, is implemented as a simple

boolean operation that checks if the queue is empty. If the Watchdog

detects an error that will result in aborting -task MAIN, it

invalidates the data for the remaining assertions by flushing the

queue.

The body of package QUEUE contains the actual hardware mapping in

terms of the implementations of the queue operations. As explained in

section ^.3. this isolates the hardware dependency. A different body

for QUEUE needs to be written for the different buffering schemes.

The buffering schemes can cover a wide spectrum. The packages

for a representative set have been written and simulated on a single

processor system. These differ in the type of the queue items, the

complexity of the queue management, and the assumptions made about the

memory the queue resides in.

The items in the queue can either be a simple data item as in the

package specification presented above (QUEUE. UNIT_DATA), or a packet

of varying size that contains the label for the assertion and its data

(Fig. 6.'7a). The packet is clearly a more convenient representation

to work with, but its varying size makes queue management considerably

more complex. The packet representation would not be feasible unless

it is supported by the underlying architecture and operating system.

Examples of a linked list and ring buffer with packets (Fig. 6.7b)

are given in the appendix. Again, these schemes would only be

feasible if the additional cost of queue management is justified.

For the case where the underlying system provides no support other

than a memory between two processors (Fig. 6.6), WATCHDOG.QUEUE has to

be more 'low level'. The data items have to be inserted one by one

28

label
data item 1
data item 2

data item n

Fig. 6.7a The Packet

front

P2 P3

rear

linked list of packets

ring buffer of packets

Fig. 6.7b Queues of Packets

29

(as opposed to a packet per assertion) and the queue management has to

be limited to schemes no more complicated than a ring buffer for cost-

effective communication. If the memory is dual ported (one write,

one read port), a ring buffer of data items establishes the desired

communication (Fig. 6.6). If the physical memory that is available is

single ported, it needs to be converted into the equivalent of a dual

ported memory by using a double-buffer scheme. The performance of the

single ported memory is unacceptable since it leads to the same

problem that came up with rendezvous communication: Task MAIN has to

wait until the watchdog finishes accessing the memory.

rear

front

A2 data item 2
A2 data item 1
A2 lobel
A 1 data item 1
A1 label

Fig. 6.8 Ring Buffer of Unit Size Data Items

A double-buffer is shown in Fig. 6.9. Task MAIN writes into one

buffer and the watchdog reads from the other. The buffers are

switched when the current buffer of the watchdog is empty and the

current buffer of the main task is filled up over a specified level.

The swapping time can be tuned to the system. The buffers no longer

30

need to be ring buffers; simple arrays are sufficient. The details of

the packages for both of these schemes are given in the appendix.

rear A2 doto item 2
A2 data item 1
A2 label
A I data item 1
A1 label

AO data item A
AO data Item 3
AO data Item 2
AO data Item 1
AO label

rear

current buffer
of MAIN

current buffer
of Watchdog

Fig. 6.9 The Double Buffer

All support provided by the underlying system for interprocess

communication should be exploited in implementing the package

WATCHDOG.QUEUE. The 'overhead for WATCHDOG:QUEUE.REQUEST_SPACE, for

example, can easily be disposed of in many cases. If the buffer is

large enough, or if the watchdog processor is fast enough, in short,

if the buffer is guaranteed to never overflow, it will be unnecessary

to check if it is full. Even if this is not the case, some simple

logic built into the physical buffer will be- sufficient to avoid

QUEUE.REQUEST_SPACE. Since the assertions are preprocessed, the size

of the largest data packet is known. A simple queue manager

monitoring the buffer can use this information to check if the buffer

is 'dangerously' full. If the next data packet may cause an overflow,

the main processor is suspended until more space becomes available.

It should be clear that all such optimizations depend on an accurate

model of the actual hardware.

7 THE WATCHDOG TASK SYSTEri ON SINGLE PROCESSOR ARCHITECTURES

At first glance, scheduling both task MAIN and the watchdog task

on the same processor seems contradictory to the rationale behind the

use of a watchdog. There is, however, a common application where

this is valuable.

As mentioned in Sec. 1.1, the timing in real-time systems is

critical', so it is usually not possible to insert assertions into the

code. Such systems, however, characteristically have idle time. The

watchdog task can be scheduled during these idle intervals and can

execute the assertions previously inserted by the main task into the

queue. In this scheme, the assertions become analogous to the

background checking routinely performed in real time systems.

The generality of the Watchdog Task system is demonstrated by the

fact that such an arrangement requires no changes to the software. To

install the system on a single processor, it is sufficient to assign a

low priority to the watchdog and a high priority to the main task by

using the PRIORITY pragma. This results in the correct scheduling,

at least on the Data General MV/10000 machine where the system was

implemented.

The queue that is used for communication on the single processor

is not restricted since it resides in a large main memory accessed by

two processes which are mutually exclusive. In this special case, the

32

l inked list of packets implementat ion of the queue (Fig. 6 . 7 b) , which

was too costly for multiprocessor architectures, becomes feasible.

The latency problem is even more d i f f i cu l t to control in the

single processor architecture. In this ar rangement , task MAIN may not

be able to wait for the watchdog to catch up before a critical action.

The situation may be part ial ly relieved if the idle time intervals are

frequent enough that the watchdog task is never too far behind, and

if the critical actions are relatively sparse. These 'optimistic

circumstances' are probably not unrealistic in typical real time

systems. An even further improvement may be possible by tagging

critical assertions and executing only these when there is limited

time available.

8 ANOTHER APPLICATION FOR THE WATCHDOG TASK SYSTEM

Consider the situation depicted in Fig. 8.1. Task MAIN in

system_1 calls a procedure that has been transformed into system_2.

The execution would proceed smoothly: The MAIN task of system_2 runs

sequentially with MAIN_1. The watchdog of system_1 is idle, and it

can be suspended while the watchdog of system_2 is scheduled. Once

system_2 has finished executing, watchdog_1 will be resumed. The

ability to 'nest ' systems provides a fur ther dimension of flexibility.

This suggests a further application for the Watchdog Task system:

Libraries of Ada packages that have assertions built into them can be

preprocessed and stored as Watchdog Task systems, ready to be called

by other Watchdog Task systems. This would result in a very

convenient environment for reliable software systems employing

33

watchdogs.

system_ 1

enter
SUPERVISOR.!

CALLER

exit

START
-M

REPORT
T

MAIN_1 WATCHDOG_J

system_2

enter
SUPERVISOR-2

CALLER

ex'i t

START
-4

REPORT
!

MAIN_2 WATCHDOG_2

Fig. 8.1 Nesting Watchdog Task Systems

SPECIAL PURPOSE WATCHDOG TASK SYSTEMS

[Mahmood 85] categorizes watchdog processors into two categories:

Special purpose and general purpose. The same distinction can be made

of Watchdog Task systems. The system that has been presented in this

paper falls into the general purpose category; it is meant to be

applicable to all sequential programs and to run on all common

architectures. There may be applications where it is possible to

specialize the Watchdog Task system, resulting in a reduction of cost

and an improvement in efficiency.

Special features of the application, for example, may simplify

communication. Consider a situation where the main program changes

global variables only during well defined intervals. A watchdog

system can be designed for this application that has no communication

overhead. Task MAIN no longer needs to insert data in a queue; the

watchdog simply accesses the globals during the 'stable' intervals.

This example demonstrates the extent of the improvement possible in

special cases.

10 THE PREPROCESSOR

The preprocessing that transforms the sequential main program to

the Watchdog Task system is straightforward. Once the assertions

have been replaced by queue insertions and the watchdog task has been

built, all that remains is to arrange everything into the predefined

structure. More careful preprocessing, however, can reduce the

runtime overhead significantly.

Assertions quite often occur in groups in the main program. Some

of these assertions may be referencing the same program variables,

the values of which stay constant from assertion to assertion (since

assertions do not have any side effects). It is clearly profitable to

merge the data transfer for such assertions together. This will not

only reduce the total amount of data that gets transferred, but will

also decrease the per assertion overhead of requesting space from the

queue, since this will be done for a group of assertions.

During preprocessing, it is also possible to detect variables that

do not get changed between certain assertions. The value of such

35

variables can be stored in the watchdog and used for later assertions,

further reducing the data transfer. Having the watchdog store state

may have other benefits: 'Virtual variables' (which can be used, for

example, to store the values of program variables) are usually

inserted into the main program to measure changes in variables between

different instantiations of the same assertion. Anna [Luckham 84]

provides support for extensive use of virtual Ada code. At least some

of the overhead of the virtual code can be taken over by the

watchdog.

In summary, the more work put into preprocessing, the more

significant the reduction in runtime overhead becomes.

SUMMARY AND CONCLUSIONS

The Watchdog Task is a software tool analogous to the Watchdog

processor. The Assertion Watchdog processor can be implemented as a

multitasking software system in a high level language. The main

motivation behind a software implementation is the flexibility

obtained by this high level approach. The software system can also

be used to model different hardware architectures.

The underlying structure of a Watchdog Task system in ADA was

presented. The system provides a recovery mechanism and a tool for

controlling latency. It was shown that the efficiency of the system

depended critically on communication. The communication problem,

which is meaningful only in multiprocessing, is solved by mapping the

architectural communication (usually just a buffer) into software.

Variations and optimizations were discussed.

36

The Watchdog Task System also runs on single processor

architectures as a type of background checking mechanism. This is an

attractive new application for the watchdog, but it has certain

difficulties, particularly a problem of latency, associated with it.

The issues of preprocessing, special requirements on the compiler

and scheduler, and an application for the watchdog system in reliable

libraries of packages were also discussed in this paper.

ACKNOWLEDGEMENTS

Special thanks are extended to Aamer Mahmood for his guidance

throughout this research. The authors are grateful to Doug Bryan,

Prof . D. H. Luckham and the Anna group for their invaluable help with

Ada . Acknowledgements are also due to Saied Bozourgi-Nesbat for

careful 'review of this report and to Lydia Christopher, Samiha Mourad

and the Rats group for their support.

This work was partially supported by NASA-AMES under Contract No.

NAG 2-246 and by the National Science Foundation under Grant No. DCR- '

8200129.

37

REFERENCES

[Andrews 81] Andrews, D. M., and J. P. Benson, "An Automated Program
Testing Methodology and its Implementation," Proceedings of the 5th
International Conference on Software Engineering, pp. 251-261, San
Diego, California, March 9-12, 1981.

[Daniels 83] Daniels, S. F., "A Concurrent Test Technique for Standard
Microprocessors," Digest of Papers, Compcon Spring 83, pp. 389-391,
San Francisco, California, February 28-March 3, 1983.

[Eifert 81] Eifert, J. B., and J. P. Shen, "Processor Monitoring Using
Asynchronous Signatured Instruction Streams," Digest, 11th
International Conference on Fault Tolerant Computing (FTCS-11), pp.
39^-399, Kissimmee, Florida, June 20-22, 1981.

[[Lu 80] Lu, D. J., "Watchdog Processors and VLSI", Proceedings of the
National Electronics Conference, Vol. 31, pp. 210-215, Chicago,
Illinois, October 27-28, 1980.

[Lu 82] Lu, D. J., "Watchdog Processor and Structural Integrity
Checking," IEEE Transactions on Computers, Vol. C-31, No. 7, pp. 681-
685, July 1982.

[Luckham 81] Luckham D., and F. W. Henke, "An Overview for Anna-A
Specification Language for ,Ada," Computer Systems Laboratory Technical
Report 81-265, Stanford, California, September 1981.

[Mahmood 83] Mahmood, A., D. J. Lu, and E. J. McCluskey, "Concurrent
Fault Detection using a Watchdog Processor and Assertions,"
Proceedings 1983 International Test Conference, pp. ' 622-628,
Philedelphia, Pennsylvania, October 18-20, 1983.

[Mahmood 81] Mahmood, A., D. M. Andrews, and E. J. McCluskey,
"Executable Assertions and Flight Software," Proceedings of the
AIAA/IEEE 6th Digital Avionics Systems Conference, pp. 316-351,
Baltimore, Maryland, December 3-6, 1981.

[Mahmood 85] Mahmood, A., and E. J. McCluskey, "Concurrent Error
Detection Using Watchdog Processors - A Survey," CRC Technical Report
Np_._ 85-7., Stanford, California, May 1985.

[Namjoo 82a] Namjoo, M., and E. J. McCluskey, "Watchdog Processors and
Capability Checking," Digest of Papers, 12th Ajinual International
Symposium on Fault Tolerant Computing (FTCS-JN2), pp. 215-218, Santa
Monica, California, June 22-21, 1982.

[Namjoo 82b] Namjoo, M., "Techniques for Concurrent Testing of VLSI
Processor Operation," Digest, 1982 International Test Conference, pp.
161-168, Philedelphia, Pennsylvania, November 15-18, 1982.

38

[Namjoo 83] Namjoo , M. ,"Cerberus-l6: An Architecture for a General
Purpose Watchdog Processor," Digest of Papers, 13th Annual
International Symposium on Fault Tolerant Computing (FTCS-13). pp.
216-219, Milano, Italy, June 28-30, 1983.

[Randell 75] R a n d e l l , B. , System Structure for Software Fault
Tolerance," IEEE Transactions on Software Engineer ing , Vol. SE-1, No.
2, pp. 220-232, June 1975.

[Saib 79'3 Saib, S. H., "Distributed Architectures for Reliability,".
Proceed ings of the AIAA Computers in Aerospace Conference, pp. 458-
462, Los Angeles, Cal i fornia , October 22-24, 1979.

[Shen 83] Shen, J. P., and M. A. Schuette, "On-Line Self-Monitoring
Using Signatured Instruction Streams," Proceedings 1983 International
Test Conference, pp. 275-282, Philedelphia, Pennsylvania, October 18-
20, 1983.

[Sridhar 82] Sridhar, T., and S. M. Thatte, "Concurrent Checking of
Program Flow in VLSI Processors," Digest, 1982 International Test
Conference, pp. 191-199, Philedelphia, Pennsy lvan ia , November 15-18,
1982.

39

APPENDIX

~ The SUPERVISOR package

with TEXT_IO;
package SUPERVISOR is

NUMBER_OF_ASSERTIONS : constant := 4;
type ERROR_RANGE is range 1 . . NUMBER_OF_ASSERTIONS;
procedure START;
procedure REPORT (ERROR : ERROR_RANGE) ;
function IS_DONE return BOOLEAN;

pragma INLINE(IS_DONE);

end SUPERVISOR;

package body SUPERVISOR is

type ACTION is range 0 . . 2;
CURRENT_ACTION : ACTION;
DONE : BOOLEAN;

task MAIN_PROGRAM is
—pragma PRIORITYr(lO); The pragma is necessary for proper

— scheduling on a single processor
entry START;

end MAIN_PROGRAM;

task body MAIN_PROGRAM is separate;

function IS_DONE return BOOLEAN is

begin
RETURN DOKE;

end IS_DONE;

procedure UPDATE_CURRENT_ACTION is

begin
CURRENT_ACTION := CURRENT_ACTION + 1;

end UPDATE CURRENT ACTION;

procedure START is

begin

CURRENT_ACTION := 0;
loop

begin
case CURRENT_ACTION is

when 0 => MAIN_PROGRAM.START;
when others => TEXT_IO.PUT ('no recovery specified11);

end case;
EXIT;

exception
when TASKING_ERROR =>

UPDATE_CURRENT_ACTION;
TEXT_IO.PUT ("error caught by WT") ;
TEXT_IO.NEW_LINE;

•when others =>
UPDATE_CURRENT_ACTION;

TEXT_IO PUT ('exception propagated from MP") ,
TEXT_IO.NEW_LIKE;

end;
end loop;
DONE := TRUE;

end START;

procedure REPORT (ERROR : ERROR_RANGE) is

begin
case ERROR is

when 1 => TEXT_IO.PUT ('error 1');
when 2 => TEXT_IO.PUT ('error 2 ') ;
when 3 => TEXT_IO.PUT ('error 3');
when 4 => TEXT_IO.PUT ('error 4") ;

end case;
TEXT_IO.NEW_LINE;
abort MAIN_PROGRAM;

end REPORT;

begin
DONE := FALSE;

end SUPERVISOR;

42

— The format of the Main task

with WATCHDOG;
separate (SUPERVISOR)

task body MAIN_PROGRAM is

WAITJTIME : constant := 1.0;

— internal declarations are inserted here

procedure WAIT_FOR_WATCHDOG is

begin
while not WATCHDOG. IS_IDLE loop

delay WAIT_TIME;
end loop;

end WAIT_FOR_WATCHDOG;

pragma INLINE (WAIT_FOR_WATCHDOG) ;

begin
accept START do

— body of the main program

WAIT_FOR_WATCHDOG;
end START;

end MAIN PROGRAM;

— Example call to the Watchdog with the unit-data queue implementation

ASSERT_1:
begin
WATCHDOG.QUEUE REQUEST_SPACE(FOR_NEXT => 3);
WATCHDOG.QUEUE.INSERT(LABEL => 1);
WATCHDOG.QUEUE.INSERT(FL_DATA => FLOAT(HDG_ERROR));
WATCHDOG.QUEUE.INSERT(FL_DATA => FLOAT(TAS_MS));
WATCHDOG.QUEUE.INSERT(FL_DATA => FLOAT(LAT_LIM_CMD));

end ASSERT 1;

— Example call to the Watchdog with the packet queue implementation

ASSERT_1:
declare

PACKET : WATCHDOG.QUEUE.DATA_ARRAY (1 .. 3);
begin

PACKET (1) := (KIND => WATCHDOG.QUEUE.FL_POINT.
FL_DATA => FLOAT (HDG_ERROR));

PACKET (2) := (KIND => WATCHDOG.QUEUE.FL_POINT.
FL_DATA => FLOAT (TAS_MS));

PACKET (3) := (KIND => WATCHDOG.QUEUE.FL_POINT.
FL_DATA => FLOAT (LAT_LIM_CMD));

WATCHDOG.QUEUE.REQUEST_SPACE;
WATCHDOG.QUEUE INSERT

(LABEL => 1. NUMBER_OF_PARS => 3, DATA => PACKET);
end ASSERT 1;

— Format of the Watchdog with the packet queue implementation

with SUPERVISOR;
package WATCHDOG is

function IS_IDLE return boolean;

package QUEUE is
type DATAJTYPE is (INT, FL_POINT);
type UNIT_DATA (KIND : DATAJTYPE := FLJPOINT) is

record
case KIND is

when INT =>
INT_DATA : INTEGER;

when FL_POINT =>
FL_DATA : FLOAT;

end case,
end record;

MAX_NUMBER_OF__PARS : constant := 10; ,
type PAR_RANGE is range 1 . . MAX_NUMBER_OF_PARS;

type DATA_ARRAY is array (PAR_RANGE range <>) of UNIT_DATA;

MAX_LABEL : constant := 4;
type LABELJTYPE is range 1 . . MAX_LABEL;

function IS_EMPTY return BOOLEAN;
procedure REQUEST_SPACE;
procedure INSERT (LABEL : LABELJTYPE;

NUMBER_OF_PARS : PAR_RANGE;
DATA : DATA_ARRAY);

procedure GET_NEXT (LABEL : out LABEL_TYPE);
procedure GETJfEXT (DATA : out DATA_ARRAY);
procedure FLUSH;

pragma INLINE (INSERT.GET_NEXT. IS_EMPTY,FLUSH.REQUEST_SPACE) ;

end QUEUE;

end WATCHDOG;

46

package body WATCHDOG is

package body QUEUE is separate;

function IS_IDLE return BOOLEAN is
begin

RETURN QUEUE. IS_EMPTY;
end IS IDLE;

task CHECK is
— pragma PRIORIT\'(0); The pragma is necessary for proper

— scheduling on a single processor
end CHECK;

task body CHECK is
WAIT_TIME : constant := 1.0;
LABEL : QUEUE. LABELJTYPE;

begin
loop

if QUEUE IS_EMPTY then
if SUPERVISOR. IS_DONE then EXIT;

else delay WAIT_TIME;
end if;

end if;
•while not QUEUE.IS_EMPTY loop

QUEUE.GET_NEXT (LABEL);
case LABEL is

when 1 =>
ASSERT_1:
declare

PACKET : QUEUE.DATA_ARRAY (1 .. 3);
begin

QUEUE.GET_KEXT (PACKET);
if (abs (PACKET (1).FL_DATA *

PACKET (2).FL_DATA) >= 0.02442) then
if abs (abs (PACKET (3).FL_DATA) - 0.5) >

0.0001 then
SUPERVISOR.REPORT (ERROR => 1);
QUEUE.FLUSH;

end if;
end if;

end ASSERT 1; ,

when 2 =>
ASSERT_2:

— evaluate the second assertion
end ASSERT_2;

— evaluate the rest of the assertions

end case;
end loop;

end loop;
end CHECK;

end WATCHDOG;

Format of the Watchdog with the unit-data queue implementation

with SUPERVISOR;
package WATCHDOG is

function IS_IDLE return BOOLEAN;

package QUEUE is
type DATAJTYPE is (INT. FL_POINT);
type UNIT_DATA (DATAJCIND : DATAJTYPE := FL_POINT) is

record
case DATA_KIND is

when INT =>
I_DATA : INTEGER;

when FL_POINT =>
F_DATA : FLOAT,

end case;
end record;

MAX_NUMBER_OF_PARS : constant := 10;
type PAR_RANGE is range 1 . . MAX_NUMBER_OF_PARS;

type DATA_ARRAY is array (PAR_RANGE range <» of UNIT_DATA;

MAX_LABEL : constant := 4;
type LABELJTYPE is range 1 . . MAX__LABEL;

function IS_EMPTY return BOOLEAN;
procedure REQUEST_SPACE (FOR_NEXT : PAR_RANGE) ;
procedure INSERT (LABEL : in LABELJTYPE);
procedure INSERT (FL_DATA : in FLOAT);
procedure INSERT (INT_DATA : in INTEGER) ;
procedure GET_NEXT (LABEL : out LABELJTYPE);
procedure GET_NEXT (NO_OF_PARS : in PAR_RANGE; DATA : out DATA_ARRA
procedure FLUSH;

pragma INLINE (INSERT. GET_NEXT. IS_EMPTY, IS__FULL.FLUSH. REQUEST_SPACE)

end QUEUE;

end WATCHDOG;

package body WATCHDOG is

package body QUEUE is separate;

function IS_IDLE return BOOLEAN is
begin

RETURN QUEUE. IS_EMPTY;
end" IS_IDLE;

task CHECK is
— Pragma PRlORITl(Q); The pragma is necessary for proper

— Scheduling on a single processor
end CHECK,

task body CHECK is
WAITJTME : constant := 1.0;
LABEL : QUEUE.LABELJTYPE;

begin
loop

if QUEUE.ISJEMPTY then
if SUPERVISOR . IS_DONE then EXIT;
else delay WAITJTIME.

end if;
end if; ,
while not QUEUE. IS_EMPTY loop

QUEUE.GET_NEXT (LABEL);
case LABEL is

•when 1 =>
ASSERT_1:
declare

PACKET : QUEUE.DATA_ARRAY (1 .. 3);
begin

QUEUE.GET_NEXT (NO_OF_PARS => 3. DATA => PACKET)
if (abs (PACKET (1).F_DATA *

PACKET (2).F_DATA) >= 0.02442) then
if abs (abs (PACKET (3).F_DATA) - 0.5) >

0.0001 then
SUPERVISOR.REPORT (ERROR => 1);
QUEUE.FLUSH;

end if;
end if;

end ASSERT_1;
when 2 =>

ASSERT_2:
— evaluate the second assertion

end ASSERT_2;
— evaluate the rest of the assertions

50

end case;
end loop;

end loop;
end CHECK; .

end WATCHDOG;

51

separate (WATCHDOG)

— Queue implementation : Linked list of packets

package body QUEUE is

type PACKET (NUMBER_OF_PARS : PAR_RANGE) ;
type PACKET_POINTER is access PACKET.
type PACKET (NUMBER_OF_PARS : PAR_RANGE) is

record
L : LABELJTYPE;
D : DATA_ARRAY (1 .. WUMBER_OF_PARS);
NEXT : PACKETJPOINTER;

end record;

type LINKED_LIST is
record

FRONT : PACKET_POINTER;
REAR : PACKET_POINTER;

end record;

' LIST : LINKEDJLIST;

function IS_EMPTY return BOOLEAN is

begin
RETURN (LIST.FRONT.NEXT = null);

end IS EMPTY;

procedure REQUEST_SPACE is

begin
null; — Assuming the linked list never fills up

end REQUEST_SPACE;

procedure INSERT (LABEL : LABELJTYPE;
NUMBER_OF_PARS : PAR_RANGE;
DATA : DATA_ARRAY) is

TEMP : PACKET POINTER;

52

begin
TEMP : = new PACKET (NUMBER_OF_PARS) ;
TEMP.L := LABEL;
TEMP.D := DATA;
TEMP. NEXT := null;
LIST.REAR NEXT •= TEMP;
LIST.REAR := TEMP,

end INSERT;

procedure GET_NEXT (LABEL : out LABEL_TYPE) is

begin
LABEL •= LIST.FRONT.NEXT.L;

end GET_NEXT;

procedure GET_NEXT (DATA : out DATA_ARRAY) is

begin

DATA .= LIST.FRONT.NEXT.D;

LIST.FRONT := LIST.FRONT.NEXT;

end GET_NEXT;

procedure FLUSH is

begin

LIST.FRONT.NEXT := null;

LIST.REAR .= LIST.FRONT;

end FLUSH;

begin

LIST.FRONT := new PACKET (1) ;

FLUSH;

end QUEUE;

separate (WATCHDOG)

— Queue implementa t ion . Ihny buffer of packets

package body QUEUE is

BUFFER_SIZE constant = 100.
WAIT_TIME constant = 1 0 .

type PACKET (NO_OF_PARS : PAR_RANGE .= 1) is
record

L • LABELJTYPE.
D DATA_ARRAY (1 .. NO_OF_PARS);

end record;

type PACKET_ARRAY is array (INTEGER range 0 . BUFFER_SIZE - 1) of PAC

type RING_BUFFER is
record

ITEMS : PACKET_ARRAY;
FRONT : INTEGER range 0 .. BUFFER_SIZE - 1;
REAR : INTEGER range 0 .. BUFFER_SIZE - 1;

end record;

BUFFER : RING_BUFFER.

procedure REQUEST_SPACE is

function BUFFER_IS_FULL return BOOLEAN is

begin
RETURN ((BUFFER . REAR + 1) mod BUFFER_SIZE = BUFFER. FRONT) ;

end BUFFER_IS_FULL;

pragma INLINE (BUFFER_IS_FULL) .

begin
while BUFFER_IS_FULL loop

delay WAITJTIME;
end loop;

end REQUEST SPACE.

function IS_EMPTY return BOOLEAN is

begin
RETURN (BUFFER.REAR = BUFFER.FRONT)

end IS EMPTY;

procedure INSERT (LABEL : LABEL_TYPE;
NUMBER_OF_PARS : PAR_RANGE;
DATA : DATA_ARRAY) is

begin
BUFFER.ITEMS (BUFFER.REAR) •=

(NO_OF_PARS => NUMBER_OF_PARS. L => LABEL. D => DATA);
BUFFER. REAR = (BUFFER. REAR + 1) mod BUFFER_SIZE;

end INSERT;

procedure GET_NEXT (LABEL : out LABELJTYPE) is

begin
LABEL := BUFFER.ITEMS (BUFFER FRONT) .L;

end GET_NEXT;

procedure GETJiEXT (DATA : out DATA_ARRAY) is

begin
DATA := BUFFER.ITEMS (BUFFER.FRONT).D;
BUFFER.FRONT := (BUFFER FRONT + 1) mod BUFFER_SIZE;

end GET_NEXT;

procedure FLUSH is

begin
BUFFER.FRONT := BUFFER_SIZE - 1;
BUFFER.REAR := BUFFER_SIZE - 1;

end FLUSH;

begin
FLUSH;

end QUEUE;

separate (WATCHDOG)

-- Q u c n c i i i ip lc inci i ld l inn ' Rnig buffer of nmt-da ta

package body QUEUE is

BUFFER_SIZE constant . = 2 0 .
WAIT_TIME ' constant . = 1 0 ,

type ITEM_TYPE is (LABL, DATA);
type ITEM (KIND . ITEMJTYFE .= DATA) is

record
case KIND is

when LABL =>
L : LABELJTYPE,

when DATA =>
D . UNIT_DATA;

end case;
end record,

type ITEM_ARRAY is array (INTEGER range 0 . . BUFFER_SIZE - 1) of ITEM;

type RING_BUFFER is
record

ITEMS : ITEM_ARRAY;
FRONT . INTEGER range 0 .. BUFFER_SIZE - 1;
REAR . INTEGER range 0 .. BUFFER_SIZE - 1;

end record;

BUFFER : RING_BUFFER;

function IS_EMPTY return BOOLEAN is

begin
RETURN (BUFFER. FRONT = BUFFER . REAR) ;

end IS_EMPTY;

procedure REQUEST_SPACE (FOR_NEXT : PAR_RANGE) is

function BUFFER IS FULL (FOR NEXT PARS : PAR RANGE) return BOOLEAN

TEMP INTEGER;
begin

— an t t e rn in the buffer «'.<? sacrificed to simplify
— overflow checking

TEMP '= INTEGER (BUFFER.REAR) + 1 + INTEGER (FOR_NEXT_PARS) ;
if BUFFER.REAR < BUFFER.FRONT then

RETURN (TEMP >= BUFFER . FRONT) ;

else
RETURN ((TEMP > BUFFER_SIZE - 1) and

(TEMP mod BUFFER_SIZE >= BUFFER. FRONT)) ;
end if;

end BUFFER_IS_FULL;

pragma INLINE (BUFFER_IS_FULL) ;

begin
whi le BUFFER_IS_FULL (FOR_NEXT) loop

delay WAITJTIME;
end loop;

end REQUEST_SPACE.

procedure INSERT (LABEL : LABELJTYPE) is

begin
BUFFER.ITEMS (BUFFER.REAR) := (KIND => LABL. L => LABEL);
BUFFER REAR. •= (BUFFER. REAR + 1) mod BUFFER_SIZE;

end INSERT,

procedure INSERT (FL_DATA : FLOAT) is

begin
BUFFER.ITEMS (BUFFER.REAR) :=

(KIND => DATA. D => (DATA_KIND => FL_POINT, F_DATA => FL_DATA))
BUFFER.REAR := (BUFFER.REAR + 1) mod BUFFER_SIZE;

end INSERT;

procedure INSERT (INT_DATA : INTEGER) is

begin
BUFFER.ITEMS (BUFFER.REAR) : =

(KIND => DATA. D => (DATAJCIND => INT. I_DATA => INT_DATA));
BUFFER.REAR := (BUFFER.REAR + 1) mod BUFFER_SIZE;

end INSERT;

57

procedure GET_NEXT (LABEL : out LABELJTYPE) is

begin
LABEL := BUFFER.ITEMS (BUFFER.FRONT) .L;
BUFFER.FRONT := (BUFFER.FRONT + 1) mod BUFFER_SIZE;

end GET_NEXT;

procedure GET_NEXT (NO_OF_PARS : PAR_RANGE; DATA : out DATA_ARRAY) is

begin
for I in 1 . . NO_OF_PARS loop

DATA (I) := BUFFER.ITEMS (BUFFER.FRONT).D;
BUFFER.FRONT := (BUFFER.FRONT + 1) mod BUFFERJSIZE;

end loop;
end GET_NEXT;

procedure FLUSH is

begin
BUFFER.FRONT := BUFFER_SIZE - 1;
BUFFER.REAR := BUFFER_SIZE - 1;

end FLUSH,

begin
FLUSH;

end QUEUE;

56

separate (WATCHDOG)

-- Q u e u e :m])lc.rncntalion : The double buffer

package body QUEUE is

BUFFER_SIZE . constant := 50;

type ITEMJTYPE is (LABL. DATA) ;
type ITEM (KIND : ITEM_TYPE := DATA) is

record
case KIND is .

when LABL =>
L : LABELJTYPE;

when DATA =>
D • UNIT_DATA;

end case;
end record;

type ITEM_ARRAY is array (INTEGER range 0 . . BUFFER_SIZE - 1) of ITEM;
-- Simple arrays are sufficient for the double buffer
— implementation

type BUFFER is
~ record

ITEMS : ITEM_ARRAY;
FRONT : INTEGER range 0 .. BUFFER_SIZE;
REAR : INTEGER range 0 .. BUFFER_SIZE;

end record;

BUFFER : array (BOOLEAN) of RINGJBUFFER;

OF_MP : BOOLEAN;

function OF_WT return BOOLEAN is

begin
RETURN (not OF_MP);

end OF IT;

59

pragma INLINE (OF_WT) ,

function IS_EMPTY return BOOLEAN is

begin
RETURN (BUFFER (OF_WT) .FRONT = BUFFER (OF_WT) . REAR) ;

end IS_EMPTY;

procedure REQUEST_SPACE (FOR_NEXT : PAR_RANGE) is

function MP_BUFFER_IS_FULL (FOR_NEXT_PARS : PAR_RANGE) return BOOL

TEMP : INTEGER;
begin

TEMP : = INTEGER (BUFFER (OF_MP) . REAR)
RETURN (TEMP > BUFFER_SIZE) ;

end MP_BUFFER_IS_FULL;

procedure SWAP is

begin
OF_MP := not OF_MP;
BUFFER (OF_MP) .FRONT
BUFFER (OF_MP).REAR :

end SWAP,

:= 0;
0;

pragma INLINE (MP_BUFFER_IS_FULL . SWAP);

begin
The su'apping of the buffers is performed by the
A/an; Task (producer) because this eliminates the
need for locking the queue. Task Main swaps the
buffers only when the Watchdog buffer is empty.

if MP_BUFFER_IS_FULL (FOR_NEXT) then
while not IS_EMPTY loop

null;
end loop;
SWAP;

end if;
end REQUEST_SPACE;

procedure INSERT (LABEL : LABEL_TYPE) is

begin

1 + INTEGER (F O R N E X T P A

60

BUFFER (OF_MP).ITEMS (BUFFER (OF_MP).REAR) :=
(KIND => LABL. L => LABEL);

BUFFER (OF_MP).REAR := (BUFFER (OF_MP).REAR + 1) mod BUFFER_SIZE;
end INSERT;

procedure INSERT (FL_DATA : FLOAT) is

begin
BUFFER (OF_MP).ITEMS (BUFFER (OF_MP).REAR) :=

(KIND => DATA. D => (DATAJCIND => FL_POINT. F_DATA => FL_DATA));
BUFFER (OF_MP).REAR := BUFFER (OF_MP).REAR * 1;

end INSERT;

procedure INSERT (INT_DATA : INTEGER) is

begin
BUFFER (OF_MP).ITEMS (BUFFER (OF_MP).REAR) :=

(KIND => DATA. D => (DATAJCIND => INT. I_DATA => INT_DATA));
BUFFER (OF_MP).REAR := BUFFER (OF_MP) REAR + 1;

end INSERT;

procedure GET_NEXT (LABEL : out LABELJTYPE) is

begin
LABEL := BUFFER (OF_WT).ITEMS (BUFFER (OF_WT).FRONT).L;
BUFFER (OF_WT).FRONT := BUFFER (OF_WT;.FRONT + 1;

end GET_NEXT;

procedure GET_NEXT (NO_OF_PARS : PAR_RANGE; DATA : out DATA_ARRAY) is

begin
for I in 1 . . NO__OF_PARS loop

DATA (I) := BUFFER (OFJTT) . ITEMS (BUFFER (OF_WT) .FRONT) .D;
BUFFER (OF_WT).FRONT := BUFFER (OF_WT).FRONT + 1;

end loop;
end GET_NEXT;

procedure FLUSH is

begin
BUFFER (OF_WT).FRONT := 0;
BUFFER (OF_WT).REAR := 0;
BUFFER (OF_MP).FRONT := 0;
BUFFER (OF_MP).REAR := 0;

end FLUSH;

61

begin
FLUSH;
OF_MP := TRUE;

end QUEUE;

