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ABSTRACT

This report describes an experiment in using assertions to
dynamically test fault-tolerant flight software. The experiment showed
that Q7% of typical errors introduced into the program would be detected
by assertions. Detailed analysis of the test data showed that the
number of assertions needed to detect those errors could be reduced to a
minimal set. The analysis also revealed that the most effective
assertions tested program parameters that provided greater indirect
(collateral) testing of other parameters.

Index Terms: Assertion Testing, Dynamic Software Testing, Data
Dependency, Fault-Tolerant Software Testing, Flight Control Software/



11

TABLE OF CONTENTS

Page

Abstract i
Table of Contents ii

1 INTRODUCTION 1

2 ASSERTION TESTING 3
2.1 PROCEDURE FOR ASSERTION TESTING 4
2.2 FAULT-TOLERANT APPLICATIONS 5

3 RESEARCH EXPERIMENT 6-
3.1 TEST CASE SOFTWARE 6
3.2 PROCEDURE 7

4 ANALYSIS OF RESEARCH RESULTS 10
4.1 FLIGHT SIMULATOR TESTING 10
4.2 SIMULATION ON DEC-20 COMPUTER 12
4.3 OPTIMIZATION OF ASSERTION TESTING 14

4.3.1 Writing the Assertions 14
4.3.2 Number of Assertions 14
4.3.3 Placement of Assertions 17
4.3.4 Choice of Assertions 17

5 CONCLUSION 19

ACKNOWLEDGEMENT 20

REFERENCES ~. 21

Table Page

4.1 Types of Errors Detected by Assertions 13
4.2 Number of Errors Detected by Each Assertion 16

Figure Page

3.1 Flow of Data in Test Case Software 7



1 INTRODUCTION

In order to demonstrate the effectiveness of assertions in

detecting errors in flight software, an experiment was conducted using

Digital Flight Control System (DFCS) software as a test case [DFCR-96

80]. Flight software is real-time, has many logical variables, and uses

fault-tolerant techniques, such as, voters and limiters built into the

software. Assertions were written and embedded in the code by one

person; then errors, chosen independently by another, were inserted

(seeded) one at a time and the code was executed. The results from this

experiment showed that 87? of the errors introduced into the DFCS

program would be detected by assertions. Analysis of the research

results demonstrated the following:

* Assertions are effective in detecting errors in digital flight

control system software.

* The variables that are most dependent on other variables

provide the greatest collateral (indirect) testing and,

therefore, the assertions that test the "most dependent"

variables are the most effective and detect the largest

number of errors.

* Placement of assertions is an important factor in determining

the effectiveness of an assertion, since those assertions

placed in the procedures at the end of the calculations

detected the most errors.



The fact that assertion testing proved to be effective for flight

software has far reaching implications. The major one is that assertion

testing can be used to eliminate errors at an earlier stage in the

development cycle than before. Testing flight software has been

extremely costly and time consuming because the elimination of errors

has been done primarily by using simulators followed by actual flight

testing. If the number of simulations and flights can be reduced

because errors are detected sooner, there should be a considerable

reduction in time and money spent on testing. In addition, because

assertions have an excellent error detection rate, they can be used as a

basis for implementing fault-tolerant techniques in flight software.

In this report, background information about assertion testing is

presented first, then a description of the experiments, followed by a

discussion of the research results and a conclusion.



2 ASSERTION TESTING

Assertion testing is a technique for dynamically testing software

by embedding additional statements, called assertions, in the software.

An assertion states a condition or specification in the form of a

logical expression. During execution of the program, the assertion is

evaluated as true or false. If it is false, the presence of an error is

indicated. Notification of the error is most often made in an output

message, such as, "Assertion in module <xxxx> at statement // <nn> is

false."

Assertions can be written in the same language as the software, but

they usually have a slightly different format (typically beginning with

the word ASSERT) so they can be distinguished from the rest of the

software. Before the program can be executed, the assertions must be

translated into code that is acceptable by the compiler. This

translation is done by a preprocessor, program analyzer, or a pre-

compiler. Assertions are frequently made conditionally compilable, so

they can be turned into comment statements and easily stripped out of

the code after testing is finished.

Assertions may be inserted throughout the software, although

sometimes they need only be added to certain strategic modules and still

retain their effectiveness. An assertion can test the relationship

between one or more variables, the range or limit of a variable, or



check the results of a numerical computation. Some examples of

assertions are:

ASSERT (ABS (LAT_INN_CMD) > MAX_CPL)

ASSERT (ABS (K2 - 0.95133) > 0.0005)

ASSERT (ABS ((LAT_INN_CMD) - 0.5 * (RL5 + 0.753 * ROLL)) > 0.0001)

2.1 PROCEDURE FOR ASSERTION TESTING

Assertion testing differs from other forms of dynamic software

testing (such as functional, random, or path testing) because assertions

must be added to the code before it is executed. However, the

generation of input test data can be the same as is used in any other

testing procedure [Adrion 82], [Duran 84], [Gannon 79], [Howden 80],

[Ntafos 85]. The procedure for assertion testing of software is as

follows:

* Add assertions to the code - preferably this should be done

during code implementation.

* Check correctness of the assertions (one way this may be done

is by executing the code and, if any assertions are evaluated

as false, determining whether the assertion is incorrect or

an error is present).

* Generate test data automatically or by the usual testing

methods and execute the program.

* When test runs are finished, assertions may be removed or



left in the code to provide on-line testing (especially in

fault-tolerant applications).

Assertion testing has two distinct advantages over other testing

methods: First, determining the correctness of the output is remarkably

simplified because of the automatic notification of an error when an

assertion is violated. Second, because of this reduction of time

required for assessment of test results, the generation of a larger set

of input data becomes possible and automation of the process of

adaptively generating test data becomes easier to implement [Andrews

81 ,851 , [Cooper 76].

2.2 FAULT-TOLERANT APPLICATIONS

Another important use,of assertions is in building fault-tolerant

systems [Randall 75], [Andrews 78,79]. A designer of a fault-tolerant

system assumes that faults will occur and tries to prevent system

failures by incorporating methods for error detection and correction

during system operation. Assertions embedded in the software provide a

convenient and effective way to implement on-line fault tolerance for

hardware faults, as well as software errors. Assertions are used to

detect the errors, and additional code (traditionally referred to as a

recovery block) provides a way to handle the error. When an assertion

is evaluated as false, control is transferred to the recovery block

statements which are then executed. This technique allows

implementation of a variety of responses to potentially critical

problems.



3 RESEARCH EXPERIMENT

This section describes the flight control software used as a test

case and the procedure followed in developing the assertions and

generating the errors.

3.1 TEST CASE SOFTWARE

The software used as a test case was the autopilot code for a

large, wide-bodied airplane. It is a good example of Digital Flight

Control System software and is written in AED (Automated Engineer

Design) [DFCR-96 80]. The software was written incrementally over the

past decade and most of the "bugs" have been corrected. The code (which

is installed on a flight simulator at the NASA AMES Research Center) is

almost identical to that used in commercial planes at the present time.

The software is an integrated system that provides autopilot and

flight director modes of operation for automatic and manual control of

the plane during all phases of flight. The software is partitioned into

five major categories: the first, of course, is control and navigation

of the plane. In addition to this, are various supporting functions,

namely, testing and voting, logic (engage and mode calculations),

input/output (data handling, transmission, display, etc.), and the

executive. Several procedures from the control and navigation category

were used as the test case for the assertion testing experiment. These

procedures use the selected heading and data from sensors and then

calculate the commands to the ailerons (which cause the plane to change



direction). Figure 3.1 shows the relevant procedures and the flow of

data.
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Fig 3.1 Flow of Data in Test Case Software

3.2 PROCEDURE

The original plan for the experiment was to add assertions, put in

errors, and execute the autopilot code on the flight control computers

installed at the Digital Flight Control Systems Verification Laboratory



at NASA-AMES [de Feo 82]. This was tried, but it proved to be more

efficient to rewrite the program and execute it on another computer.

The reasons for this are as follows: Developing assertions involves a

certain amount of experimentation in order to refine them and measure

the desired condition. In addition, the errors were to be seeded one at

a time so it would be possible to determine whether or not a particular

error had been detected. Each change in the code, for refinement of

assertions or inserting an error, required recompilation of the entire

program by an AED compiler which was on a Univac computer at a different

location. Then the excutable code had to be downloaded into the flight

computers on the pallet. It soon became apparent that the process of

making changes to the code was so time consuming that very fews runs

could be made in one day. For this reason, the code was rewritten in

Pascal so it could be executed more efficiently on the DEC-20 at the

Stanford University campus.

There were two other even more important reasons for moving the

code to another computer. One was that introducing errors into the code

often caused the flight computers installed on the pallet to "crash" (or

not fly at all) because the effect of the error was so drastic.

Consequently, the section of code containing assertions was never

executed. The other reason was intrinsic to the nature of the flight

computers which have a dual-dual redundancy architecture. Aberrations

are corrected by voters and limiters built into the software [de Feo

82], so errors introduced in the software running on one channel would



be "corrected" by the voters or limiters before detection by an

assertion.

In this experiment, the assertions were written by one person and

the errors by another person. The reason for doing this was to maintain

complete independence. Since existing documentation did not contain

enough information to write assertions, the flight computers were run on

the simulator in conjunction with a strip chart recording device to

determine the normal values of the program variables. From this

information, it was possible to write assertions for the set of modules

to be tested. More detailed information may be found in the following:

a description of the experiment to test flight software with assertions

[Mahmood 84c]; suggestions for writing assertions in flight software

gained from this experience [Mahmood 84a]. A combination of these two

papers along with additional information was published as a technical

report of the Center for Reliable Computing at Stanford University

[Mahmood 84b].

The selection of errors was taken from two studies of errors made

during implementation of flight control software [Hecht 82]; one was

similar to the software used as a test case. Errors, chosen "from four

different classifications, were seeded one at a time in the software to

determine the effectiveness of assertions in finding errors of different

types. An effort was made to duplicate exactly the errors from the

study whenever possible.

r
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4 ANALYSIS OF RESEARCH RESULTS

This research study can be divided into three phases: the first was

the original software testing on the flight simulators installed at the

NASA-AMES Research Center; the second was conducting the tests on the

DEC-20 at Stanford University; and the third was a detailed analysis of

the factors affecting the effectiveness of the assertions themselves.

This section describes the results from each phase.

1.1 FLIGHT SIMULATOR TESTING

The results of the first phase, although inconclusive since few

tests were run on the flight simulator (because of the length of time

required to run each test), contributed greatly to understanding the

problems involved in testing real-time flight software. The first

results clearly showed that testing a software system with built-in

redundancy (that is, a fault tolerant system) is not possible using

normal testing techniques. These results also indicated that the same

problems encountered in testing fault tolerant hardware systems (fault

masking, etc) exist for testing fault tolerant software systems and that

"design for testability" features should be incorporated into fault-

tolerant software design specifications.

When the software was executed on flight computers in a simulated

real-time flight environment, the following characteristics of flight
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software that contribute to the problems in testing fault-tolerant

software were identified:

* USE OF LIMITERS In the autopilot code, there is frequent use of

limiters which reset certain variables whose values are not within

certain limits. This is done, not only to control possible errors,

but also to keep the values of those variables within the limits of

passenger comfort and within the stress limits of the airplane

structure, etc. However, this use of limiters throughout the program

interferes with detection of errors during testing because errors

can be corrected by a limiter and therefore masked.

* USE OF VOTERS The values of input data, as well as the values of

variables from computations, are continually voted upon. If one of

the values does not agree with the others, the majority vote prevails.

Therefore, errors can be masked and difficult to detect, since propag-

ation of errors is halted.

* AUTOMATIC CHANNEL SYNCHRONIZATION The autopilot flight computers

have a dual-dual redundancy architecture with automatic synchron-

ization of the channels provided by the software. Under these

conditions, assertions which monitor timing do not catch errors

because timing problems are immediately corrected.

From these results, it was clear that it would be necessary to use

different methods in order to test fault-tolerant flight software.

Consequently, the software was tested as a single entity in a non-real-

r
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time environment in subsequent runs. In other words, the redundancy and

automatic channel synchronization had to be removed to be able to test

flight software effectively without error masking. This same method,

the disabling of redundancy, has been proposed for testing fault-

tolerant hardware.

4.2 SIMULATION ON DEC-20 COMPUTER

When the flight software was executed on the DEC-20, eighty one

errors were seeded (inserted) in the program one at a time to determine

the effectiveness of assertions in finding errors of different types.

The errors were from four different error classifications - data

handling, logic, database, and computational. As Table 4.1 shows,

nearly 70? of the errors were detected and, if the software had been

fully asserted, nearly 90/5 of the seeded errors would have been

detected. Assertions were put only in the part of the code executed

during the heading select mode. The software was not fully asserted

because some of the flight modes were not implemented on the flight

simulator and, therefore, not enough information was available to

simulate flight conditions for those modes correctly on the DEC-20. It

was, however, possible to determine manually which of the errors could

have been detected by assertions and which could not.

The errors (usually logic errors) that caused execution of the code

for which assertions had not been written were not detected. The reason

the remaining errors were not detected was frequently due to the fact

that they had no effect on the computations. For example, Boolean
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variables (having values of either 0 or 1) are typically assigned a

value in flight software in statements such as, MODE = A or B or C and

not D. Suppose A equals 1, then an error resulting in a change in value

of B or C will have no effect on the outcome of this assignment

statement and therefore would not be detected by an assertion. In

another example, some errors changed the name of a Boolean variable into

another. When the value of the variables was identical, such an error

could not be detected.

Table 4.1 Types of Errors Detected by Assertions

ERROR
TYPE

DATA HANDLING

LOGIC

DATABASE

COMPUTATIONAL

TOTAL

NO.
INSERTED

22

19

19

21

61

X ERRORS
DETECTED

PARTIALLY
ASSERTED

63.6

47.3

78.9

76.1

66.6

FULLY
ASSERTED

90.9

04.2

94.7

80.9

87.6



4.3 OPTIMIZATION OF ASSERTION TESTING

After the experience in testing the flight control software,

efforts were directed toward answering questions about both the

qualitative and quantitative aspects of assertion testing. For example,

how should assertions be written, what type of assertions are the most

effective, where is the best placement for assertions, how many are

needed, etc.

4.3.1 Writing the Assertions

From the difficulty experienced in this experiment in trying to

write assertions with little knowledge of the program behavior and

inadequate software specifications, it is obvious that assertions should

be written in cooperation between a flight control analyst and the

system designer or the programmer who is implementing the code. Some of

the conditions that should be tested by assertions would only be known

by flight specialists; and for that reason, it is imperative to have

their help and guidance. The best time to add assertions is during the

original coding, so the assertions will detect errors during module, as

well as system integration testing.

4.3.2 Number of Assertions

The number of assertions depends on the phase of testing. When

used for debugging, assertions should be embedded frequently throughout

flight software code so they can point to the location of the errors.

The suggested procedure is to seed the program with errors (as was done



15

in this experiment) and then retain a covering set of assertions, that

is, the set detecting all seeded errors. Once the software is ready for

testing in a flight simulation environment, then fewer assertions can be

used so that memory space in the computer and execution time overhead

are minimized.

When assertions are used for error detection in implementation of

fault tolerance techniques, minimization of assertions (and the

consequent overhead) is also important. The assumption would be that

those assertions shown to be effective in error detection during the

testing phase would be most able to detect intermittent and transient

hardware faults, as well as any new software errors that might be

introduced during maintainance.

Nineteen assertions were added to the software during the second

phase of the experiment. Table 4.2 shows the number of errors detected

by each of those assertions. Most errors were detected by more than one

assertion. However, three errors were detected only by assertion number

nineteen and a fourth error was detected only by assertion number

seveteen. These two assertions constitute the set of "essential" or

"critical" assertions if those four errors are to be detected. These

two assertions also detected other errors. The remaining errors could

be detected by either assertion number ten or fifteen. This means that

out of all the assertions written, three assertions could be used to

detect all the detectable errors. The implication of these results is

that it may be possible to find a small subset of assertions capable of
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detecting a large number of errors, so space and time overhead can be

minimal. This result makes assertion testing even more attractive.

Table 4.2

Number of Errors Detected by Each Assertion

Assertion # // Errors Detected

1 5

2 6

3 14

4 20

5 3

6 6

7 15

8 16

9 41

10 40

11 6

12 30

13 0

14 27

15 44

16 41

17 13

18 36

19 11
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M.3.3 Placement of Assertions

The placement of the assertions is also dependent on the testing

phase. During the early debugging phase, it is most desirable to have

many assertions to check incoming data, outgoing commands, data storage

and retrieval, and the results of computations. The analysis showed

that the effective and essential assertions were in the last part of the

asserted code (the procedures that calculate the final commands to the

ailerons). This is not surprising since assertions placed earlier in

the code would not catch errors introduced later on. Although the

results of the first phase of the experiment showed that many of the

seeded errors would be corrected by the voters built into the software,

the results of the second phase demonstrated that assertions can detect

those errors when the software system1" is tested as a single entity (with

the redundancy disabled). In the testing phases where execution time

and computer space are important, assertions should be placed in the

procedures that calculate commands to the mechanical parts of a flight

system.

4.3.4 Choice of Assertions

Assertions can be different types. They can measure the

relationship between variables, check for maximum or minimum allowable

values of a variable, or perform a numerical computation with a

different algorithm to determine correctness of the calculation.

Examples of each of these types of assertions were given in Sec. 2.

Assertions also can have tests for more than one variable, and a factor
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for time may also be included in the assertion. All types of assertions

were written for this experiment and, interestly enough, none of these

factors - type of assertion, inclusion of a factor for time, or checking

multiple variables - seemed to affect the ability of the assertion to

detect errors.

Further in-depth analysis did reveal a factor that appears to

influence the effectiveness and criticality of an assertion. It seemed

possible that testing certain variables might be more effective than

testing others - depending on which variables provide greater collateral

testing. One measure of collateral testing is the number of variables

that are utilized in assigning a value to a variable. This number is

refered to as the "data dependency" of that variable. The variables

with the highest "data dependencies," therefore, would be expected to

provide the greatest collateral testing of other variables.

This hypothesis was tested against the results from this

experiment. A high correlation was found between the data'dependency of

the variables tested in an assertion and the effectiveness of the

assertion. Those assertions with the highest accumulated data

dependency factors (for the variables included in the assertion) proved

to be the most effective in detecting errors. The difference in

detection effectiveness was significant, since the assertions with high

dependency factors detected ten times as many errors as the assertions

with the lowest dependency factors. Not only did the most effective

assertions have the highest data dependency factor, but the two
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essential assertions also had very high dependency factors.

Therefore, to ensure that the greatest number of variables are

directly or indirectly tested, the dependency factor for each variable

should be calculated and the variables with the highest data dependency

number should be included in the assertions. This relationship between

assertion effectiveness and the data dependency factor of the variables

being tested should be of considerable help in writing good assertions

for flight software.

5 CONCLUSION

Initial test runs on flight computers installed on a flight

simulator at NASA-AMES revealed major differences between real-time

flight software and non-real-time software. More comprehensive testing

done in the second testing phase indicated that, regardless of these

differences, assertion testing is an effective method for detecting

errors in flight control software. A major implication of this result

is that assertion testing may be able to eliminate most errors at an

earlier stage in the development cycle than before, thus reducing

testing costs.

Therefore it is proposed that assertions be added to the software

during implementation and that assertion testing be utilized from the

beginning to shorten the testing cycle. Furthermore, in fault-tolerant

computing applications, the suggested procedure is to retain the

assertions during deployment and include additional code to provide

error recovery. One of the conclusions reached as a result of this
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experiment is that the number of assertions required to detect all

possible detectable errors may be a small, minimal set - therefore

making assertions a useful medium for providing fault tolerance in

flight software.

According to these test results, effectiveness of an assertion was

not affected by factors such as checking multiple variables, inclusion

of a factor for time, or type of assertion. However, testing program

parameters that provided the greatest collateral testing of other

parameters improved the effectiveness of an assertion.
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