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FOREWORD 

This report describes the work performed by Scientific Systems, Inc. 

from 12/12/84 to 7/10/85 under National Aeronautics and Space 

Administration Award No. NASl-17946. The work represents the first of a 

three-phase project aimed at development of theory, computational tech­

niques, and a commercial grade control synthesis/analysis software package 

for large space structures; the approach is based on recent stable fac­

torization and Roo techniques. The objective of Phase I effort was to 

demonstrate the feasibility o~ the concept. Dr. Earnest Armstrong was the 

project director for NASA. 

Dr. Hamid Razavi was the principal investigator. Professor M. 

Vidyasagar of the University of Waterloo was the consultant. Special 

thanks go to Ms. Alina Bernat for supervising the documentation. 

- 1 -



SUMMARY 

Large space structures are characterized by the features that (i) they 
are in general infinite-dimensional systems, and (ii) they have large num­
bers of undamped or lightly damped poles. Any attempt to apply linear 
control theory to large space structures must therefore take into account 
these features. Phase I of this project consisted of an attempt to apply 
the recently developed Stable Factorization (SF) design philosophy to 
problems of large space structures, with particular attention to the 
aspects of robustness and fault tolerance. 

The final report on the Phase I effort consists of four sections, each 
devoted to one task. The first three sections report new theoretical 
results, while the last consists of a design example. Significant new 
results were obtained in all four tasks of the project. More specifically, 
(a) an innovative approach to order reduction was obtained, (b) stabilizing 
controller structures for plants with an infinite number of unstable poles 
were determined under some conditions, (c) conditions for simultaneous sta­
bilizability of an infinite number of plants were explored, and (d) a 
fault-tolerant controller design that stabilizes a flexible structure model 
was obtained which is robust against one failure condition. 

The overall objective of phase II effort will be to further develop the 
analytical foundation laid in Phase I, evolve computational algorithms, and 
test the stable factorization methodology on a realistic model of a large 
flexible structure. Thus by the end of phase II effort the stage will be 
set for the development (in Phase III) of a state-of-the-art computer-aided 
control system synthesis/analysis package for large space structures, based 
on the stable factorization/~ approach. 
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O. INTRODUCTION 

In Phase I of this project, we proposed four tasks, namely (i) order 

reduction, (ii) coprime factorizations, (iii) robustness, and (iv) applica-

tions. Of these, the first task was carried out to its natural completion, 

while the progress realized on the other three was more than sufficient to 

demonstrate their feasibility. 

We now describe in detail the four Phase I tasks and the results 

obtained. 

Throughout this report, the following symbols are used: S denotes the 

set of proper stable rational functions, i.e. functions that are proper and 

have all of their poles in the open left half-plane. A denotes the set of 

distributions f(.) of the form 

00 

f(t) = I fi O(t-ti) + fa(t), 
i=O 

(0.1) 

where 0 denotes the unit impulse distribution, 0~tO<t1< ••• " fa( ) is a 

Lebesgue measurable function, and in addition, 

00 00 

IIfIlA = I I fi I + J I fa(t) I dt (0.2) 
i=O 0 

is finite. One can think of A as the set of all regular measures of 

bounded variation on the half-line [0,(0) that do not have any singular 

part; see Rudin (1962) or Hille and Phillips (1957). We refer to fa as the 

nonatomic part of f, and to the sum of delayed impulses as the atomic part 
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of f. The set A consists of all Laplace transforms f of distributions in f, 

defined according to the familiar rule. 

~ 

res) r fi e-sti + J~ faCt) e-stdt. (0.3) 
i=O 0 

If re:A, we define nrliA = IIfIlA where f is the inverse Laplace transform 

of r. Note that S is a subset of A, and that S, A, A are all rings. We 

use the symbols M(S), M(A) and M(A) to denote the set of matrices, of wha-

tever order, whose elements all belong to S, A, A, respectively. 

On the set A it is sometimes convenient to use the so-called ~- norm, 

denoted by n.n~, and defined by 

nru~ = sup I t(jw) I 
w 

Note that 

sup I res) I 
Res)O 

nfll~ < IIfllA for all fe: A. 

(0.4) 

(0.5) 

Finally, we introduce the so-called disk algebra, denoted by An, which 

consists of functions that are analytic on the open unit disk and con-

tinuous on the closed unit .disk. The norm on An is defined by 

IIfnAn = max I fez) I = max I f(ej 6~ • 
I z I <I 6e:[0 ,21TJ 

(0.6) 
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1. TASK 1: ORDER REDUCTION 

Task 1 was as follows: find computational algorithms for the reduced­

order modeling of large or infinite-dimensional systems, where the objec­

tive is to minimize the graph metric distance between the true system and 

the reduced-order model. 

For ease of discussion, we reproduce below the definition and some pro­

perties of the graph metric, as taken from Vidyasagar (1984), Vidyasagar 

(1985), and Vidyasagar and Kimura (1984). Given a matrix P, a pair (N,D) 

is said to be a right-coprime factorization (r.c.f.) of P if (i) N,D£M(A), 

(ii) pes) = N(s)[D(s)]-1 such that 

Xes) N(s) + yes) D(s) I for all s. 0.1) 

If, in addition, it is true that 

N*(j w) N(j w) + D*(j w)D(j w) = I for all w, ( 1.2) 

where * denotes the conjugate transpose, then (N,D) is said to be 

normalized r.c.f. or n.r.c.f. of P. If P has an r.c.f., then it has an 

n.r.c.f.; see Sz. Nagy and Foias 1970. Note that (N,D) is an n.r.c.f. if 

and only if the matrix 

B=[~J 
is inner. If P has an n.r.c.f., then it is unique to within right 

multiplication by an orthogonal matrix. 

(1.3) 

Next, we define the graph metric. Let P2, P2 be plants of the same 

dimensions, and let (Nl,Dl), (N2,D2) be n.r.c.f.'s of PI and P2, respec­

tively. Define inner matrices Bl,B2 as in (3.1.3), and let 
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o(PI,P2) inf IIBI-B2 Ulloo 
U£M(A), IlUlloo~I 

(1.4) 

Then the graph metric distance d(PI,P2) between the two plants is defined 

by 

d(PI,P2) max {o(PI,P2)' o(P2,PI)}. (1.5) 

Now we give some criteria for the robustness of feedback stability, 

given a plant P and a controller C of commensurate dimensions, define 

T(P,C) 
[

(I+PC)-I 

C(I+PC)-I 

-P(I+CP)-I] 

-CP(I+CP)-I 

r:::] (1+PC)-1 [I -pl. (1.6) 

Suppose a nominal plant-compensator pair (PO,CO) is stable, and suppose 

Po,Co are perturbed to P,C respectively. Then the pair (p,C) is also 

stable provided 

d(P,PO) IIT(PO,CO)1100 + d(C,CO) UT(CO,PO)U oo <1. (1.7) 

In particular, Co stabilizes P provided 

d(P,PO) IIT(PO,CO)U oo <1. (1.8) 

This concludes the summary of known results, and also shows why the 

graph metric is a good measure of proximity in comparing unstable or 

nearly unstable systems. Note that there are no assumptions to the effect 

that P,PO must have the same number of RHP poles, or that they should have 

no jw-axis poles, as is the case in the work of Doyle and Stein 1981. Thus 
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the above theory is ideally suited for studying the robustness of feedback 

stability in situations where the plant poles migrate across the stability 

boundary as the plant parameters vary. 

Now consider the problem of order reduction in the graph metric. 

Suppose Pt is a "true" plant, for which we wish to construct an 

"approximate" model Pa • Then Pa is used to design a controller C, designed 

on the basis of the approximate model Pa , to stabilize the true plant Pt. 

We know this is the case provided 

d(Pa,Pt) ( l/nT(Pa,C)H oo • (l.9) 

Next, suppose (Nt,Dt) is an n.r.c.f. for Pt, and (Na,Da) is a (not 

necessarily normalized) r.c.f. of Pa • Define 

Bt [~~ , Ma = [~~, 

v = HBt-Malioo • 

It is shown in Vidyasagar 1984 that if v(I, then 

d(Pa,P t ) ~ ~ , 
I-v 

(1.10 ) 

(l.ll) 

( 1.12) 

In fact, a close examination of the proof reveals that (Na,Da) need only be 

a right fractional representation of Pa ; it need not be coprime. This 

suggests the following procedure for approximating Pt. 

(i) Find a normalized r.c.f. (Nt,Dt) for Pt. 

(ii) Form the matrix Bt. 

(iii) Approximate Bt by Ma. 
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To date, there are no known algorithms for optimal approximation in the 

norm 11.11 00 • However, the pioneering work of Adamjan et al (1971, 1978) has 

led to a theory of optimal approximation in the so-called Hankel norm. 

More recently, Glover (1984) has derived bounds on the Loo-norm of the 

approximation error Bt-Ma , where Ma is found using the optimal Hankel norm 

technique. The method is described next: 

In the sequel, some assumptions are made concerning the plant Pt so 

that various technical assumptions are avoided. Task 2, discussed in the 

next section, is addressed to weakening some of these assumptions. Note 

that all of the assumptions below are automatically satisfied if Pt is 

rational, so that the problem at hand is one of approximating a finite-

dimensional plant by another of lower McMillan degree. 

(AI) The function Pt (s) has an unambiguous limit as I s I +00 with Re 

s~o. Hence, we can speak about Pt(oo). 

(A2) Pt has only isolated singularities in the closed RHP, and each 

of these is a pole of finite McMillan degree. 

The above assumptions ensure (see Callier and Desoer 1978) that Pt has 

an n.r.c.f. Bt • Moreover, since Pt(oo) is well-defined, so is Bt(oo). Now 

introduce the bilinear transform 

z = s-l --' s+l 
s = l+z 

1-z 
( 1.l3) 

Then the function Bt(s) gets transformed into an associated function 

Bt [(l+z/(l-z)], which we again denote (by a slightly sloppy notation) as 
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Bt(z). Note that when z=l, s=oo, so that Bt(oo) must be well-defined in 

order for this procedure to be valid. Now Bt(z) belongs to the Hardy space 

Roo over the unit disk (see Duren 1970). Hence it has the power series 

Bt(z) 
00 

l: Bizi. 
i=O 

(1.14) 

By the manner in which Bt was formed, it is always a "tall" matrix. Let us 

square up Bt as well as all of the Bi's by adding columns of zeros, and 

form the block Hankel matrix 

BO B1 B2 

B1 B2 

H B2 (1.15) 

L: J 
n 

Now H can be viewed as a bounded operator on the space t2, consisting of 

all square summable, n-vector valued sequences. Moreover, H has finite 

rank if and only if Bt is rational. Now consider the matrix H*H and exa-

mine its spectrum. If Bt is rational (i.e. Pt is lumped), then this 

spectrum consists solely of real eignevalues. In general, if Pt has an 

infinite-dimensional state space, the spectrum is real but need not contain 

only eigenvalues. 

McMillan degree k. 
2 2 

Suppose we wish to approximate Pt by a plant Pa of 

If it happens that the spectrum of H*H consists of 
2 

eigenvalues crO~cr1~ ••• )crk' plus a subset of the real line contained in 

[O,crk], this is easily done. Suppose first that k>n, and that 

2 2 2 2 
crO)cr1)···)crk-n>crk-n+1 

2 

Ok-n+2 
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In this case, there exist n linearly independent eigenvectors x(l), x(2), 
n 

••• , x(n) , each belonging to t2, of the matrix H*H. That is, each vector 

x(l), ••• , x(n) has the form 

Let y(i) denote Hx(i), and partition each y(i) as above. Finally, define 

the functions 

co (i) 
Xi(z) = 1: xjzi 

i=O 

X(z) [x1(Z) •••• xn(z)], (1.18) 

and note that X(z) is an nxn matrix-valued function. Define Yi(Z) and Y(z) 

accordingly. Then Adamjan et al. 1978 show that the function 

Ma(z) = Bt - ak X(z)[Y(z)]-l 

has McMillan degree k. Moreover, Glover 1984 has shown that 

co 

IIB t -Ma ll co ~ 2 .1: 
i=k+1 

ai, 

(1.19) 

(1. 20) 

if the spectrum of H*H consists solely of eigenvalues. If the multiplicity 

condition (1.16) does not hold, then one has to use so-called augmentation 

(see Adamjan et al. 1978). We will not discuss it here in the interest of 

brevity. 

So far we have accomplished the following: given a possibly distri-

buted plant Pt, we have formed the associated inner matrix Bt , and found a 
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stable matrix Ma of McMillan degree k that approximates Bt • The last step 

is to go from the matrix Ma to the approximating plant Pa. This is done as 

follows: First, carry out the z to s transformation of (1.13), and par-

tition Ma(s) in the form 

Ma(s) 
[

Na(S)] • 

Da(s) 
0.21) 

Then define 

Pa(s) = Na(s) [Da(s)]-l. (1.22) 

It can be shown that the McMillan degree of Pa is at most k, and is generi-

cally equal to k. An easy way to see this is as follows: Let 

(Am,Bm,Cm,Em) be a state-space realization of the transfer matrix Ma(s), 

and partition 

Cm G:J· EM = G:J (1.23) 

Then, provided ED is nonsingular, which it is generically, a state-space 

realization for Pa is given by the quadruple 

Aa ~BMED-ICD' Ba = BM, 
(1.24) 

Ca = CN-ENED-1CD, Ea = ENED- 1• 

In summary, we have presented an order reduction procedure that has the 

following novel and desirable features: 

(i) It allows approximation of distributed plants by lumped plants. 
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(ii) It allows one to specify a priori the McMillan degree of the 

approximate plant. 

(iii) It gives an a priori upper bound on the graph metric distance 

between the true and approximate plants. This bound, together 

with the stability condition (1.8), can be used to determine a 

priori whether a controller designed to stablize the approximate 

plant also stabilizes the true plant. 

One final feature of the approximation procedure is worth noting. Even 

if Pt has infinitely many unstable poles, Pa has only finitely many. 

Further, the locations of the unstable poles of Pa need not correspond to 

those of Pt. This feature defies conventional wisdom, which states that, 

when approximating an unstable plant, one must faithfully reproduce the 

"unstable part" of the plant. This is made possible by the use of the 

graph metric, which allows one to approximate the stable factors of a plant 

rather than the plant itself. 
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2. TASK 2: COPRIME FACTORIZATIONS 

Task 2 was as follows: Extend the existing theory of designing stabi­

lizing controllers for linear distributed systems to the case where the 

plant has an infinite number of right half-plane poles, with particular 

emphasis on deriving conditions for the existence of a right-coprime fac­

torization in such a case. 

The motivation behind this task is as follows: Vidyasagar 1978 showed 

that every rational matrix has both right and left coprime factorizations 

over!. More generally, Callier and Desoer 1978 introduced a class that 

they call S_, with the property that. every matrix whose elements all belong 

to S has both an r.c.f. and an l.c.f. However, functions in ~_ can have 

only finitely many singularities in the closed RHP, and each of these must 

be a pole of finite order. Nett et al 1983 showed that plants in M(~_) 

could be stabilized by lumped compensators. The objective of this task is 

to see whether similar statements can be made about plants with infinitely 

many unstable poles (which, per force, cannot belong to B_). 

To motivate the discussion, consider the plant 

p(s) = tanh s, (2.1) 

which has poles and zeros alternating along the j~axis. Hence this is an 

infinite analogy of an LC admittance, i.e. a nondissipative system. It is 

easy to see that pes) has a coprime factorization over A, since 
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pes) = 

-2s 
1-e 
--2s 
l+e 

(2.2) 

and since n(s)+d(s)=l. Hence it is certainly possible for plants with 

infinitely many unstable poles to have coprime factorizations. The objec­

tive thus is to determine necessary and sufficient conditions for a plant p 

to have a coprime factorization. 

The question can be divided into two parts: (i) Given pes), when does 

it have a fractional representation, i.e. when can it be expressed as a ratio 

n(s)/d(s), where n,deA?; (ii) Given a pes) with a fractional represen­

tation, when does it have a coprime factorization? 

The first question is very difficult to answer in very general terms, 

since the number of possible functions pes) is limitless. However, a few 

quick necessary conditions can be used to rule out functions that don't 

have fractional representations. 

Theorem 2.1 A function pes) can be expressed as a ratio n(s)/d(s) 

where n,deA only if it satisfies the following conditions: 

(i) In the open half-plane Re s)O, the only singularities of pare 

poles of finite order. 

(ii) On any vertical line cr+jw, weR, cr~O, the zeros and poles of pare 

asymptotically almost periodic. 

Proof Any function feA has the form 
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f(s) 
co 

L fi e-st + fa(s), 
i=O 

(2.3) 

where fa is the Laplace transform of an L1 function. Hence, by the 

Riemann-Lebesgue lemma, I fa(s) I +0 whenever I s I +co with Re s~O. Now the 

function 

fapU (0) 

co 

~ fi e-j ooti 
i=O 

(2.4) 

is almost-periodic, as shown by Callier and Desoer 1972. In fact, if the 

delays ti are periodic, i.e. if ti iT for some constant T)O, then fap is 

actually periodic. Hence, if pes) = n(s)/d(s) and n,deA, then along any 

vertical line cr+joo with cr~O, the functions n(cr+joo) and d(cr+joo) converge 

respectively to their almost periodic parts. This proves (ii). To prove 

(i), note that d is analytic in the open RHP, and as a consequence its 

zeros are isolated and of finite multiplicity. 

Using Theorem 2.1, one can quickly conclude that 

1 
pes) IS-l (2.5) 

does not have a fractional representation, since its singularity at s=l is 

a branch point. 

The answer to the second question is, in principle, contained in the 

following result from Vidyasagar 1985, Section 8.1. 

Lemma 2.2 Suppose pes) n(s)/d(s), with n,deA. Then p has a coprime 

factorization if and only if the ideal in A generated by nand d is 

principal. 
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Though Lemma 2.2 contains a necessary as well as sufficient con-

dition, it is difficult to apply it to a specific situation without further 

effort. The next result provides a useful sufficient condition. 

Theorem 2.3 Suppose p(s) has a fractional representation n(s)/d(s) 

where n,d£A. Then p has a coprime factorization provided the number of 

RHP zeros of either n or d is finite. 

Proof We consider the case where n has only finitely many zeros in the 

closed RHP, the other case follows by symmetry. Let zl, ••• ,zk denote the 

RHP zeros of n, and assume, by renumbering if necessary, that zl, ••• ,zr are 

also zeros of d, while the rest are not. Let ml, ••• ,mr denote the minimum 

multiplicities of these as common zeros of nand d. Then, as shown by 

Callier and Desoer 1978, the function 

f(s) 
r 
IT 

i=l 
rs-Zi ] mi 

Ls+l 
(2.6) 

divides both nand d. Let nl=n/m,dl=d/m. Then, by assumption, nl and dl 

have no common zeros, and nl is bounded away from zero at infinity; that 

is, if {Si}is any sequence in the closed RHP with' Si' +00, we have lim inf 

, n(si) I >0. Hence 

inf 'n 1 (s) , + I d 1 (s) I >0. (2.7) 
Re s~O 

This implies that nl and dl are coprime, as shown by Callier and Desoer 

1978. Since clearly p=n/d=n1/dl, it follows that (n,d) is a coprime fac-

torization of p. 
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We conclude this section by giving a very definitive theorem concerning 

coprime factorizations over the disk algebra AD. 

Theorem 2.4 Suppose p(z) has a fractional representation n(z)/d(z), 

where n,dEAD. Then p has a coprime factorization over AD if and only if the 

following condition holds: Let Zn denote the set of zeros of n inside the 

closed unit disk, and define Zd similarly. Then the cluster points of Zn 

and Zd do not intersect. 

Before proceeding to the proof, let us explain what the theorem means. 

Recall that a point y is a cluster point of a set S if every neighborhood 

of y contains a point of S other than y. Also, note that since both nand 

d are analytic in the open unit disk, any zeros of these functions therein 

must be isolated. Hence the only cluster points of Zn and Zd (if any) must 

be on the unit circle. Thus the theorem says that nand d can have common 

zeros in the open unit disk, and they can have common zeros on the unit 

circle provided that any such point is an isolated zero of at least one of 

the functions. But there cannot be a point on the unit circle which is a 

limit of both a sequence of zeros of n and a sequence of zeros of d. 

Proof "If" Suppose the hypothesis holds. Then there can only be fini­

tely many common zeros of nand d in the closed unit disk, and each has 

only a finite multiplicity for at least one of the functions. Hence, as in 

the proof of Theorem 2.3, one can extract a polynomial as a common divi­

sor of both functions. 

"Only if" This part of the proof closely follows Vidyasagar et aI, 

1982. Suppose I zO I = 1, and that zO is the limit of a sequence {ad of 
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zeros of n as well as of a sequence {bi} of zeros of d. We show that the 

ideal generated byn and d in AD cannot be principal. Suppose by way of 

contradiction that there exist functions f,g,h,x,y in AD such that 

xn + yd h, n = fh, d gh. (2.8) 

Then gn=fd, so that f(ai)=O, g(bi)=O. Also, since 

xf + yg 1, (2.9) 

we have 

x(bi) f(bi) = 1 for all i (2.10) 

Now let i~. Then lim bi=lim ai=zO. Since f is continuous at zo' we have 

f(zO) = lim f(ai) = O. (2.11) 
i 

But (2.10) shows that 

x(zO) f(zO) = lim x(bi) f(bi) = 1. (2.12) 

This contradiction concludes the proof. 
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3. TASK 3: ROBUSTNESS 

Task 3 was as follows: Investigate the simultaneous stabilizability of 

an infinite family of systems. 

In its most abstract version, the problem is stated as follows in 

Vidyasagar 1985, Chapter 7. Let A be a first-countable topological space, 

let AD be an element of A, and let PA' AsA be a family of plants. When -
does there exist a neighborhood B of AO such that there exists a common 

stabilizing controller for all plants PA' AsB? The explanation behind this 

problem statement is as follows: A represents a set of physical parame-

ters, and PA represents the corresponding system description. AD is the 

nominal set of parameter values, and PAD is the corresponding nominal plant 

description. The objective is to determine whether a stabilizing 

controller for the nominal plant PAD also stabilizes all plants PA when A is 

"sufficiently close" to AO, Le. whether there is a controller that achieves 

stability under nominal conditions and also maintains stability when the 

parameters are slightly perturbed. 

In one sense, the above problem formulation is incomplete. The objec-

tive of controller design is not merely to stabilize the plant but also to 

achieve a desired closed-loop response. With this in mind, the following 

approach is used in Vidyasagar 1984, 1985. Define the closed-loop transfer 

matrix 
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H(P,C) 
[

(I+PC)-l 

= C(I+PC)-l 

-P(I+CP)-lJ 

(I+Cp)-l 
(3.1) 

Say that the family {PA} is robustly stabilizable at AO if there exists a 

neighborhood B of AO and a controller C such that 

(i) C stabilizes PA for all A in B, and 

(ii) H(PA,C) is continuous in A at AO. 

With this definition, a complete solution is given in Vidyasagar 1985, 

namely: robust stabilization is possible if and only if PA is continuous 

in the graph topology at AO. The graph topology is discussed at great 

length in this reference, and a characterization of continuity that is ade-

quate for present purposes is this: PA is continuous if and only if there 

exists an r.c.f. (NO,DO) of PA and a family of r.c.f.'s (NA,D A) of PA such 

that NA+NO, DA+DO. 

In view of the aforementioned result, the only remaining interest in 

this problem concerns the case where the requirement that H(PA,C) be con-

tinuous is removed. Suppose (NA,DA) is an r.c.f. of PA' that NA,D A are 

continuous, and approach NO,DO respectively as A+AO. Let PO=NODO-1. Is 

there a controller that stabilizes Po as well as PA for all A in some 

neighborhood of AO? If NO and DO are right-coprime, the answer is clearly 

"yes", by virtue of the aforecited results. Consider now the case where 

NO ,DO are not coprime, so that there is pole-zero cancellation in the 

extended closed RHP. One can ask: Is it still possible to stabilize 

simultaneously Po as well as PA? The next theorem shows that this is 

possible only if the cancellation is on the jw-axis or at infinity. 
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Theorem 3.1 Suppose N\,D\ are continuous with limits NO,DO, respec-

tively as \+\0. Suppose N\,D\ are right-coprime for \*\0 and let R be a 

greatest common right divisor of NO,DO' Let r = I RI Po NODO-1, p\ 

N\D\-l. If r has any zeros in the open RHP, then there does not exist a 

controller that stabilizes both Po and p\, \*\0. 

Proof We prove the contrapositive. Suppose C stabilizes both Po and 

p\ for \*\0. Let NO=NR, DO=DR. Then N,D are right-coprime, and there 

exists a t.c.f. (DC~NC) of C such that 

DCD + NCN = 1. (3.2) 

Now consider the return difference matrix 

U\ = DCD\ + NCN\. (3.3) 

Since C stabilizes p\, U\ is unimodular for all \*\0. Letting \+\0 in 

(3.3) gives 

R lim U\. 
\+\0 

(3.4) 

In particular, ~ RI is the limit of I U\ I. Now I U\ I has all of its zeros 

in the open LHP, since it is a unit. Hence the zeros of r can at best be 

on the jw-axis or at infinity. 

As an application of Theorem 3.1, suppose 

P\(s) s-l-\ , \0 = 0, PO(s) 
s-1+\ 

1 

Then no controller can stabilize both Po and p\, \*0. 
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Theorem 3.1 is the best possible result, because if I RI does not have 

open RHP zeros, then it may be possible to achieve simultaneous stabiliza-

tion. This is illustrated by the following singular perturbations example. 

Let A [0,=], AO=O, and consider the plants PA'PO described in state-

space form by the equations 

[~J = [: _:] [:] + C] u, y ~ x + z + 2u, (PAl 

x 3x-u, y 2x+u, (PO) 

or in the transfer function form by 

PA(S) 2AS2+( 1-A)s-5 
AX2+(l-A)S-3 

PO(s) = 

Now a coprime factorization of PA is given by 

As A+O, we get 

nA(s) = 2AS2 + (1-A)s-5 , dA(s) 
(s+1)2 

nA+no = s-5 
(s+1)2 

dA+dO = s-3 
(s+1)2 

s-5 
s-3 

As2+(l_~)s-3 
(s+1)2 

Clearly nO and dO are not coprime, since they have the nominal common 

divisor 

res) = 1 
s+l 

However, the controller 

( ) - - 8 
c s - 8+12 

stabilizes PO as well as PA for sufficiently small positive values of A. 

- 22 -



In this case the only zero of the common factor r is at infinity. 
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4. TASK 4: FLEXIBLE STRUCTURE EXAMPLE 

In order to illustrate the usefulness of the Stable Factorization 

approach in a specific control example, a four-disk model of a flexible struc­

ture will be presented here. 

s .... 

ActuaCo~ 

Figure 1 

The disks are connected by torsion springs. Let Ki denote the spring 

constant for the spring between i-th and (i+l)-th disk; let Ji denote the 

inertia for i-th disk. The equations of motion for the system are: 
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1 •• 1 
81 

•• 
82 

•• 
83 

•• 
84 

I 

+ 

r Kl 

J1 

Kl 

J2 

o 

o 

+ 

Kl 

J1 

(Kl + K2) 

J2 

K2 

J3 

o 

o 

K2 

J2 

o 

o 

+(K2 + K3) -K3 

J3 

K3 

J4 

K3 

J3 

1 r 1 
I 81 

I 
82 

83 

84 

I 0 1 

o 

T3 

J3 

o 

(S) 

where 8i denotes the angle of deflection of the i-th disk from normal posi-

tion. Each dot indicates differentiation with respect to time. The right 

hand side indicates the scaled torques applied (in this case to the 3rd 

disk). 

The motivation of this model is that by applying actuator inputs 

(torques) ui and disk i, one wishes to control the outputs 8j, for i equal 

to or different from j. The transfer function from each input ui to each 

output 8j can be easily calculated from the dynamic system (S). For the 

purpose of illustration we assume that the spring constants Ki are equal to 

unity. The nominal plant is further assumed to have Ji 1, i=l, 2, 3, 4 

(e.g. equal inertia). Note that due to the fact that there is no damping 

in the system, the transfer function from any input to any output will have 

all of its poles and zeros located on the jw-axis. 

For example, the transfer function from u3 to 84 will be of the form 
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b(s) 
p(s) 

a (s) 

S2 + 82 
1 

4 
S2 1T (S2 + a2i) . 

i=1 

where 81 and ai are real positive scalars, corresponding to a zero at 

zl = j81 and poles Pi = jai, i = 1, 2, 3, 4. The rigid body modes 

correspond to the poles s2 = O. 

In the following we present a fixed controller that simultaneously sta-

bilizes a nominal plant PI and a contingent plant P2. This is an example 

of the simultaneous stabilization techniques introduced in Vidyasagar and 

Viswanadham (1982) as discussed earlier. The particular pole zero loca-

tions correspond to the experimental set-up described in Cannon and 

Rosenthal (1984), also reported in Razavi, Mehra, and Vidyasagar (1985). 

The computation of the actual controller using state-space versions of the 

stable factorization approach is carried out based on methods of Minto 

1985. 

The system under study consists of four steel disks connected by three 

steel rods as shown in Figure 1. A control input is applied to the second 

disk from the top, and the two outputs are the positions of the first and 

fourth disks, respectively. Two different situations are considered. In 

the first, all four disks are identical. In the second, the first three 

disks are identical and the last disk has a moment of inertia that is one 
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quarter of those of the rest. In the nominal case, the system is denoted 

by PI(s) and equals 

where 

PI(s) 

ales) 

bll (s) 

827,200 
al(s)- [

bll (S)J ' 
b12(s) 

s2 (s±j23.81) (s±jI8.22) (s±j9.863), 

(s±j20.85) (s±j7.96) 

bI2(s) = (s±jI2.886) 

When the last disk is smaller than the rest, the system is 

where 

P2(s) 

a2(s) 

b21(s) 

bZ2(s) 

827,200 
a2(s) 

"Lb21 (S)J1 
, 

b22(s) 

s2 (s±j29.34) (s±j21.48) (s±jI1.938), 

bll(s), 

(s±j25 .95). 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The objective is to find a single controller C that stabilizes both PI 

and P2. In the present instance both systems are entirely undamped, i.e. 

all poles and zeros are purely imaginary. If we stabilize the two systems 

by moving the poles into the left half-plane, it is possible to come up 

with designs that yield closed-loop systems that are nominally stable, but 

have poles with very little damping. To rule out this possibility, we 
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define the stability region to be the region {s: Re s<-I}. Thus, in order 

for the closed-loop system to be stable in this more restrictive sense, its 

poles must have real parts less than -1. 

Using the methods of Minto 1985, we have designed a seventeenth order 

controller that achieves the above objectives. The closed-loop poles of 

the two compensated plants are shown in Table 1. The controller itself is 

shown in modal form in Appendix 1. Note that modes 7,8,11, and IS can 

essentially be ignored, resulting in a thirteenth order controller. 
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(PI) 

-1.OOI1D.oG .2. 22'4D+011 
_ ..... ID-01.;.08500+011 
-1.0011D.00 -2.22.40.011 
_ •.••• 10-01 -2.0850D.011 
-l.00~D+OO .1.28370.011 
-l.00~O+OO -1.28370.011 
-2.00000.01 +a.1744D-16. 
- •.•• 520-01 +7 .• 6350.001 
- .... 520-01 -7 .• 6350+001 
- .... 700-01 +a-.1881D-l01 
-1. 73030+00 ... 44t07D-oll 
-1. 73030+00 -e. 44t07D-O 11 
-a.2062D+OO -3.34230-0.1 
-a.~+a.~1 
-4.06760+00 +2.211.0-101 
-4 ..... 0+00 -7.85590-101 
-5.~ +5.35.30-101 
-7.00S9D+OO -1.90770-101 
-7. 9971D+OO +3. 2835D-ll1 
-1.03070+01 -4. 1801D-l01 
-1.0109D+Ol +2. 9323D-ol1 
-1.01a.D+Ol -2.93230-011 
- •. ~D+OO +2.10020-011 
-1.00020+01 +1.47190-101 
- •. 73680+00 -2. 10020-011 

(P2) 

-4. 039'D-Ol ~, 9'640·001 
-1. 00000+01 ~1. ~9970-t~i 
-1.70100+00 -9. ,941D-Oli 
-1.70100+00 +S. '9410-01i 
-1. '01'D.OO +0.9'.00-101 
-2.49750+00 -1. 3710D-09i 
-3. 49 .. D+OO -3.2S.'D-O~i 
-4. 5034D+OO +4. 42400-091 
-'.4.76D+OO -2. 2343D-091 
-6.5007D+OO +4.82130-101 
-7.4...a.oo -3.92340-111 
__ .~ + •. 4.47o-1~i 
-2 .••• 40+01 -1. 1,tSD+Oll 
-2 .••• 4D+Ol +1. 1515D+Oli 
-2.90170+00 -2.7'.SD+Oii 
-2.90170+00 +2.7"'0.011 
-1.oo11D+OO -a. 2294D+Oll 
- ..... ID-ol -2.0850D+Oll 
-1.00110+00 +2. 2294D+Ol1 
-9 .... 1D-ol +2.0850D+Oll 
-1.00790+00 -1. 28370+01i 
-1.0079D+OO +1. 2837D+Oll 
- •.•• '2D-Ol -7. 9635D+OOi 
-9 ... '2D-Ol +7. 9635D+OOi 
-4.039'D-ol -'.9'620+001 

Table 1. Closed loop poles of nominal (PI) and 
contingent (P2) plants 
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APPENDIX 1 

Controller Equations for Simultaneous Stabilization 
(Section 4) 

Controller dynamic equations: 

~ xc(t) = (AC)xc(t)+(BC)uc(t) 
dt 

yc(t) = (CC)xcH) + (EC)uc(t) 

Controller input uc : 2x1 vector 

output Yc: 1x1 scalar 

state xc: 17xl vector 

Controller matrices: 

AC: 17x17 matrix (diagonal) 

BC: 17x2 matrix 

CC: 1x17 vector 

EC: 1x2 vector 

AC = DC - 117 

117: identity matrix of dimension 17 

A-I 



Diagonal elements of DC 

-3.1.a6D+Ol +1.9.550.011 
-3. 1626D+Ol -1.96550+011 
-1.95870+00 +2.17920+011 
-1. 9587D+OO -2. 77920+01i 

1.4405D+01 +1.18250+011 
1.44050+01 -1. 18250+01i 
9. 2047D-ol +7 ... 960+001 
9. 20470-01 -7 ... 960+001 

-1.86410+01 +4. 4481D+OOI 
-1.86410+01 -4.44eID+OOi 
-7.5467D+OO +3.34700+001 
-7.54670+00 -3.34700+001 
-9.33100+00 +1.57560+001 
.-9.33100+00 -1.57560+001 
-1.ooooD+01 +3.67360-141 
- •. 9921D+OO +4. 1201D-0li 
- •. 9921D+OO -4.12080-011 

BC = 

-4. 7854D-02 -1.022OD-021 
-1.092'D+Ol +2. 1710D+Oli 

1.70110+01 +4.62690+001 
-1. 2311D-03 +7.15970-041 
-7.57121-05 +7. 1595D-041 
-1.18690+01 -3.26380+011 

2. 127'7D+Ol +6. 2140D+01 1 
2.15890-0' -2.28100-051 

-e. 621D-02 +2.4038D-02i 
-1. 04lt9D-01 -6. 5944D-Oai 

4. 7822D-Oa +7.2364D-Oai 
-9. 815D-09 +3.704~71 

3.97270+00 +5.5"7D+OO1 
-7.4"40-01 -4.8371D-Oli 
9.41730+01 +1.64820+021 
3.61190+00 -1.27550+001 

-3 ..... 0-02 -3. 7931D-02i 

A-2 



CC = 

CaluMft. 1 ~G 3 
-~9"'D+Ol -1.58070+011 -1.73100.03 +2. '2940+031 -9.32290+02 +8.78510+031 

Colu.n. 4 '0 • 
- •• 7S3~ -4. 732SD+031 -1.6065D+Ol .. 9. 8320D+001 

Col u.n. 7 '0 9 
1.30IOa.GI -'.272aD+OO1 -2.00740+01 +1.92910+011 3.2937D+Ot -•. 2'770+011 

Colu.ns 10'0 12 
-7.2Ia.a.oo +3. ~li -1.0716Dt04 -1.341-.03' 2. 172'D+OO +3. 10'10+00' 

Colu.ns 13 '0 l' 
4.~7D+01 -2.8I440+01i -4.a,.7D+Cl +6."6ID+OSi -1.834'D-Oa -,.4aotD-Ol1 

Col u.n. 1. '0 17 
-1.15770-01 +3.0041D-Ol1 2.3"40+00 -7.89OOD-Ol1 

EC = 

-4.47310-01 O.OOOCO+OO 

A-3 
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