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ABSTRACT

In this paper we consider a model problem that simulates an atmospheric

acoustic wave propagation situation that is nonlinear. The model is derived

from the basic Euler equations for the atmospheric flow and from the regular

perturbations for the acoustic part. The nonlinear effects are studied by

obtaining two successive linear problems in which the second one involves the

solution of the first problem. Well-posedness of these problems is discussed

and approximations of the radiation boundary conditions that can be used in

numerical simulations are presented.
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i. ]ntrodtmtion

In this paper we are interested in a two dimensional model of

acoustic wave propagation in the atmosphere. The propagation originates

from a point source with a high intensity of sound. It is well known that

acoustic wave propagation in the atmosphere is rather a complex

phenomenon. It is influenced by atmospheric conditions such as

pressure, density, temperature, and wind variations. To analyze the

complete problem is a difficult task. However, numerical methods have

proven capabilities of handling such problems, but it has not yet been

carried out for this class of problems. During the 1960's approximate

analytical methods have been attempted for simplified models of the

atmosphere. Axisymmetric three dimensional models were done by Cole

and Oreifinger [1], and discussions on the physical nature were clone by

Pierce [2]. These models essentially handle only linear wave

propagation but allow inhomogeneities in the atmospheric conditions on

pressure and density. Our ultimate goal is to treat the full nonlinear

model which can incorporate all variations of atmospheric conditions.

However, at the present time we shall be concerned with the simplified

situations of the above model, but retaining nonlinearity.

The goal of the paper is two- fold. First one is to define the problem

that governs the nonlinear behavior. It turns out that the problem can be

decomposed into two linear ones. We examine the well-posedness of

these problems, i.e., devise the mechanism that will lead to the

existence and uniqueness of the solution of these problems. The second

part will contain a brief discussion on radiation or absorbing conditions
that are suitable for" numerical calculations. It turns out that



these are derived from the appropriate dispersion relations for the

linear problem. The question of well-posedness of the problem also

plays a crucial role in the numerical simulation. In this particular

study, modelling the acoustic source is a crucial part. The source

should be of the nature that does not violate the well-posedness of the

problem. Here we are interested in including sources that are rather

nonsmooth. An example is a blast wave sound such as a space shuttle

takeoff situation. The sound soumes may be pulses, i.e., " delta

functions" in both space and time. However, other standard sinusoidal

types of sources can be included without difficulty. It turns out that the

well posedness of the problem yields the regularity of the source and

thus gives a guideline to approximate a source such as the delta

function type in a proper manner. The analysis of this class of

problems can be treated according to the theory of Kreiss[3] for

hyperbolic systems. Unfortunately what turns out is a characteristic

problem. This does not conform with Kreiss's analysis entirely. We

take a slight deviation from his approach. As an outcome of this

analysis, one can also derive a family of boundary conditions that can be

used for numerical computations. The numerical results will be

reported elsewhere.

As we mentioned earlier the governing equations are derived from

the Euler equations for the atmosphere. As in Cole and Oreifinger [i],

we consider an isothermal atmosphere, above a ground plane with sound

produced by instantaneous energy release at a point on the ground. We
will also consider cases other than that of instantaneous release rate

such as sources of smooth sinusoidal type.



We shall begin with the statement of the fluid flow problem which

governs the acoustic phenomena. The model assumes strictly a two

dimensional field of atmosphere with a source that produces a release

of sound energy at a point z0 above the ground. The case we treat is of
an isothermal atmosphere with the standard model of exponentially

varying pressure and density fields. We shall not be concerned with

wind speed so that the atmosphere is in equilibrium. Then the

equilibrium atmosphere is characterized by exponential distributions

for pressure and density with a scale height h,

PO(z) -z '°o(Z)= e - (1.t)
P p

where P, p, and T are sea level pressure, density, and temperature

respectively. Also,the scale height h is given by

RT
h= -- . (1.2)

g

To nondimensionalize the problem we need

c - V_yRT (1.3)

which is the isentropic sound speed and

cg = (1.4)

3



the gravity sound speed. Then the nondimensiona] form of" the Euler

equations (the equations of" continuity, balance of" momentum, and

energy) is

8p
_- + div ( p9) = 0 (1.5)

A

ag + vp- k

a + q.V p i ef"(x,z,t) ._ (1.7)
Ot p? py-I

A ,%

Note that in equation (1.6) the forcing term, -l__k (k is the unit vector
Y ,%

in the z direction) , arises due to the forcing term per unit mass -gk in

the original variables which is due to gravity. In equation (1.7), f(x,z,t)

dictates the space time dependency of the source (see figure 1) and

measures the energy release per unit volume. For the case of an

instantaneous energy release, e is given by

= (Y-I)Q0

h2p. , (1.8)

where QO isthetotalenergyreleasedattimet= 0.Theinitial
conditionsare

p=p=e -z, q=_O at t=O. (1.9)

TheBoundaryconditionsat z = 0 are
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%=o_ (1.1o)
which states that the vertical component of the flow is zero at z = O.

source > (0,z0)

////////////////////// <--ground

2. Formulation of the Acoustics Problem

The acoustic expansionis basedon _ << I and represents the flow as

small changessuperimposedon the flow of the ambient state. We note

that the ambient velocity is zero , but pressure and density have the

form e-.z Thus the expansionsare

q = _u + _2u1 + ..... (2.I)

p=e-Z{ i +_p+_2pi + ..... } (2.2)

p=e-Z{ i +_+. _2_1 + ..... } (2.3)

whereu_= (u,w),andu__i = (ul,wl).Quantitiesu,uI andw,wI arex
and the z componentsof the acousticvelocities,respectively.We

substituteexpansions(2.1)- (2.3)intoequations(i.2)-(1.4),initial

conditions(i.?)and boundaryconditions(i.8)to obtainthe field

equations.

Problem that results from order E is linear and is similar to the
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onereportedby ColeandGreifinger [i]. This is as follows:

<Tt+ Ux+ Wz- w = 0 (2.5)

ut + 1_Px = 0 (2.6)
Y

wt + 1 Pz- P-<7 = 0 (2.7)
7 Y

Pt - Y<Tt+ (),-1)w = f(x,z,t). (2.8)

Werewrite (2.8) using (2.5) as

Pt + YUx+ YWz- w = f(x,z,t) . (2.8)

Initial andboundaryconditions for these perturbations are

p = <7= u= w = 0 (2.9)

w=O at z=O, t>O. (2.10)

For conveniencewe will call (2.5) - (2. lO) problem PI'

Similarly the problem that results from order _ 2 has the form

<71,t +ul,x +wl,z-wl = fl (2.11)

ut,t + (i/y) Pt,x = f2 (2.12)

wl, t + (l/y) P2,z- (P-<7)/Y= f3 (2.13)

PI,L - Y <71,t + (y-l) w1 = f4 ' (2.14)

&



with initial conditions

Pi =(zi =ui=wi =0 at t=O (2.15)

and boundary conditions wI = 0 at z = O, t > 0 . (2.16)

Here,

fi =-[ ( _U)x + (_W)z- _w]

f2 = CrPx/Y- (uu x+wu z)

f3 = _(pz- p )/Y -(uw x+w,w z) (2,17

f4 = {Yp _ - (Y+t) _/2 }t - u ( p - y _ )x + ( p - Y_ )z
+ (y - i) ( p - y _ ) - ( y - i ) _ f (x,z,t) .

Again for conveniencewe shall refer equations (2. i I) - (2.16) as

problem PII" We allow sufficient smoothness on the right hand side

which contains terms given by (2. t7) so that PII is well-posed. In fact

this gives us the regularity of solution of PII" Once a numerical

procedure is constructed for the solution of problem PI' the same

procedure can be used to compute the solutions of PII since

the differential operator on both problems is the same with the bonus

of identical initial and boundary conditions. Also once the solution (P'Pl

), ( or, <Zl), and ( u, u1) are known, then the solutions of the nonlinear
field are given by:

2
P=_P+_ Pl

2
_=_+_ _ (2.18)I

2
q=_u +_ u .

1
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This procedure can be continued to obtain higher order

approximations for the nonlinear problem. However, a sequenceof study

reported by Hariharan and Lester [4,5] for one dimensional problems

and by Hariharan [6] for two dimensional problems of nonlinear

acoustic calculations shows that only two terms are needed to

investigate the nonlinearity, evenfor the case of shock waves.A natural

question one may ask is why not solve the nonlinear problem directly,

as in the above references, including discontinuities in the solutions

such as shock waves?. The solutions may form shockdiscontinuities in

the vicinity of the source, in which case considering two linear

problems PlandPII separately will not beuniformly valid. However, we
are interested in the sound field far away from the source, and the

region of possible shock discontinuities is still considered as a source

region. A full mathematical justification may be a difficult task.

3. Formal Solutions and Estimates

Here, we discuss the existence and uniqueness of the initial boundary

value problems PI and PII" We shall accomplish this by obtaining proper

energy estimates. The first step is to write the governing equations in
the following form:

ut+AUx+BUz+Cu = f (3.1)

where

A =aij , a12= 1, a24= l/y, a42=yandallotheraij=0,



B =bij, b13= I, b34= I11,,b43=Yandallotherbij=0,

C = ci_ c13 = -i, c31 = - c34 = I/y, c43 = 0 the rest 0.J

Also, u = (cr,u,w,p)T for PI and u = (cri,ui,vl,wI)T for PII'

Similarly the right hand side f has the following definition"

f = (O,O,O,f)T for PI and f = (fi,f2,f3,f4)T for PII' The boundary
conditions are:

w=Oonz:O forP I

0 on z= 0 for PII"WI=

Initial conditions are : u = 0 at t = 0 for both Pl andPII'
Wewant to treat the problems in the context of hyperbolic equations.Let

us collect neededrelevant information from the theory of hyperbolic

equations.First consider the definition of hyperbolicity. Let Aj (u)
andC(u)be suchthat

u t + _ Aj(u) u x. + C(u) u : f (x,t) . [3.2)J

Definition 3. i

If the eigenvaluesof

A ( u, w) : _ Aj (u) wj

are real for real vectors u andw then the system [3.2) is said to be

hyperbolic.If the eigenvaluesare real and distinct, then the system is

said to bestrongly hyperbolic.

According to this definition it is easy to verify from (3. i) that the
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satisfyinghyperbolicity,butnotstonghyperbolicity.Thenextnotionwe

requireisthesymmetryproperty.Againwe considerthesystem(3.2)

forthispurpose.IngeneralAj(u)neednot besymmetric.Thereareva-
rietiesofprocedureswhichareequivalenttosayingthesystem(3_2)

canbe writteninsymmetricform.One ofwhichisintheFreidrich's

sense;i.e.,thereexistsa matrixvaluedfunctionE(u)whichdependson
-i

u such that the matrices Bj (u) = E(u) Aj (u) E(u) are
symmetric and then system (3.2) can be written in the symmetrc form:

v +_.Bj(v)v. = E(u)f(x,t). (3.3)
J

InourconsiderationsA andB donotdependonu implyingE willnot

dependonueither.Our firstgoalistoobtainthismatrixE whichwe

callthesymmetrizer.Theconstructionfollowsfrom:

Lemma 3.i

Thereexistsa matrixE suchthatthesystem(3.I)canbewrittenin

a symmetricform

vt + Pv x + Qv z- R v= E f (3.4)

where, P andQ are symmetric andv = E u.

Proof:

Theprocedureconsistsof finding amatrix which will simultaneously
symmetrize both A and B. The first step is to find a matrix T such that

T-1AT is diagonal. This is easily accomplished by forming the matrix T

using eigenvectors of A. In this case T is given by

lo



i 0 i i

0 i i -i

T = 0 i 0 0

0 0 7 7

so that T-iA T = diag (0,0,i,-i). (3.5)

The diagonal elements are simply the eigenvalues of A. This in turn

yields:

0 0 0 0

0 0 i i (3.6)
T-IBT = 0 ½ 0 0 "

o ½ o o

This matrix is not symmetric. So we further investigate possibilities of

symmetrizing this matrix which preserves the symmetry of A.

Consider a diagonal matrix D = diag(cq/_,¥,6). This gives the above

property for properly chosen constant diagonal elements. We observe
that

D-IT-IATD = diag (0,0,1,-i) , (3.7)

which simply shows the diagonal form of A is preserved, while

:0 0 0 0

o o _/_ _/17
0 ½#/¥ 0 0 . (3.8)D-IT-tBTD =
o ½/;/_,o o

We choose a,/_,¥, and 6 in (3.8) so that the right hand side will be
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symmetric. This restriction gives us the following relations:

¥/8 = 8/2¥

6/8 = 8/2¥ and ccarbitrary.

Upon solvingtheseequations,we findthatone solutionis_ = V2,
_l=_=I.Since_ is arbitrarywe chooseit to be I. Then D =

diag(i,_2,l,l). Thus the rn_trix G = TO gives both G-lAG and G-tBG

as symmetric. Hence,we have the following symmetric hyperbolic
system:

vt+Px v +OyV-Rv=F (3.9)

where, v=Gu, P=GAG-, IQ =GAG -1R=-GCG -tandF=Gf.

The next step is to consider the well posednessof the problems

PI and PII" Any definition of well-posedness of an initial boundary value.

problemconsistsofseveralsteps.Namely,theyare:

a) Specification of spaces HF to which F belongs,

b) the spacein which the solution v is sought,

c) existence anduniquenessof the solution v e Hv for any F e HF,
d) continuousdependenceof the solution on the function F.

Composition of all these steps leads to a detailed analysis of the

problem. The machinery to establish such steps follows from Friedrich

[7], provided a suitable energy estimate is derived. Therefore, we shall

be concerned only with deriving an estimate for these problems. It

turns out that the energy estimate indicates the regularity of F, which

gives a guide to modelling the source in our acoustic problem.

To derive energy estimates for both problems, we define the
following quantities.

12



Denote the innerproduct of two vectors by

(u,v) :uTv
Let £2C R2 be the half spacez > 0, -co < x < co.Define the L2

norm of a vector in f_ by
co co

II u II2 =f (u,_)dxdz=f f (u,u)dxdz. (3. i0)
o _-_ o -co

We introduce functions w = e-qt v, H = e-qt F, for some positive

constant rF Then (3.9) becomes

wt+PWx+QWz-RW+Olw = H. (3.11)

Now consider the derivative of the inner product

(w,w)t = (w,wt) + (wt ,w)

Using equation (3. i l) we have

(w,w)t = -(Pw,wx ) - (w,Pwx) - (w,Qwz ) - (QWz,W)+(w,(R+RT-20I )w)
+ 2(w,H ) .

Now using the symmetry properties of P andQ derived in Lemma 3. i,
we obtain:

(w,w)t = - (w,Pw)x - (w,QW)z+ (w,(R+RT-2riI)w) + 2(w,H ). (3. f2)

Integrating (3.i 2) over f2 we obtain the following energyintegral:

2 co
d Ilwll = j" (w,Qw) '1 + j {(w,(E+ET-2QI)w)}dxdz +
d-t o _co Iz:0

2_ (w,H) dxdz. (3.i3)
f2

Is



Recallouraim istoobtainan energyintegralinequality.At thispoint

we needthenotioncalled"maximal dissipativity."A discussionofthis

conceptcanbe foundinKreiss[8].Supposea boundaryconditionofthe

form Biw = O atz =0 isposedwhereB lisa rectangularmatrix.Then

we havethefollowing:

Definition3.2:

Theboundarycondition,Biw = 0_atz=0 ismaximallydissipative

provided(Y'QY)II < 0 forally satisfyingBly= 0.z=0 -

For the moment we shall assumethere is a boundaryoperator B1 which
satisfies the definition 3.2. This means that we need to prove the

following:

Lemma 3.2

There is a boundaryoperator BlW = 0__satisfying maximal
dissipativeness,providedw(x,0,t)= p(x,o,t)= 0.

Remark3.I TheresultingboundaryoperatorB1 is exactlythe
rectangularmatrix:

O0 I0
B -

1 0001

Remark3.21ntheoriginalstatementoftheproblem,we didnotrequire

p(x,0,t)= 0. Thisconditionensuresthewell-posednessoftheproblem
aswe willsee.

Returningto the equation(3.13) the energyintegral, we useLemma

3.2 andobtainthefollowing inequality,

14



2
!llwll gf {(w,(R+RT-2riI)w)}dxdz+2f (w,H)dxdz. (3.14)
dt o _2

If qo is big enough, rioI > R + RT for instance, set

rio=2 IIRII/_ (6<11.
Thenfor rI > 2 rio

-(w,(R+RT)w) + 2ri (w,w) _ 2(ri - rio) (w,w) > ri (w,w) . (3.15)

On the other hand we have the inequality,
2 2

Cw,H)_ Ilwll IIHII -<d2 Ilwll +1/(2_)IlUlI.
Take _ = ri _/2, so that

2 2 2
_/2Ilwll =ri_/4Ilwll _ri/4 Ilwll •

Thus the inequality (3.14) becomes

2 2 2 -1 2
d Ilwil -<-_Ilwll +ri/2Ilwll +2ri /,SIIHII • (3.t6)
dt o o o o

Integrating (3.16) from time t=0 to t=T and using the zero initial

conditions, we obtain the following inequality:
2 T 2 T 2

II e-riTv (x,T) II + ri/21 Ile-ritv(x,t)ll dt< C I le-ritFCx,t)lldt.
o 0 o 0 o

(3.17)

Here,x= (x,z),ri> 2ri°andC isaconstantindependent0fF(x,t).

Inequality(3.17)holdsforbothproblemsPIandPIIwithanappropriate
forcingfunctionF.Insummary theaboveprocedureyieldsthe

15



desiredresult.

Theorem 3. I

Problem PI together with additional boundarycondition p(x,0,t) = 0 is

well-posed, i.e., for any F _ L2(_2), there exists a unique solution v in
L2 (_2),satisfying the estimate

2 T 2 t i T 2l lv(x,T)@tITII + ½riS I Iv(x,t) drlt I I NK ri- l lF(x,t)e-qtl I dt (3.18)
o 0 o 0 o

for any ri > rio>0 and for some constant K independentof F.

Remark 3.3 Observe that u = G-lv, f = G-IF, and it is readily verified

that u satifies the same estimate as that of (3.18) with F replaced by f.

Remark 3.4 Theorem 3. I suggests that the forcing function f should be

at least in L2 (_2).Thus for practical considerations even if the acoustics
is generated by pulse sources (i.e., of the "delta function" type) it should

be approximated by a function which is in L2 (_2).

Proof of the weU-posednessof the problem PlliS similar as
mentionedearlier andwe merely state it.

Theorem3.2

For any fl _ L2(_2)there exists a uniquesolution u _ L2 (_2) such that

2 T 2 T 2
I lul(x,t)e-riTII +½riJ'ilul(x,t)e-ritlI dt <K ri-tf/lfl(x,t)e-ritl I dto 0 o 0 o

(3.19)

I&



holds,providedthattheadditionalboundaryconditionPl(x,o,t)= 0 is

satisfiedandthesolutionofPI'i.e.,u andtheforcingtermfareboth
in Ht (£2).

Remark 3.5 The requirement u,f _ Hi (£2)( which is the Sobolev space of

order 1) arises because forcing term fop PII contains derivatives of the

soution of Pland its forcing term.

Recall that the nonlinear solution is sought in the form:

=_u+ 2ul (3.20)Un

This is as stated in equation (2.18) the linear combination of

problems PI and PII" Combiningtherems 3.1 and 3.2 we have the
following:

Theorem3.3

There exists a unique nonlinearsolution un _ Ht (£2)for the two term

linear solutions of PI and PII for the nonlinear acoustic problem

providedthat the forcing function f for PI is in H1(f2).

This theorem tells us that the smoothness of the source of acoustics

should be more than a square integrable function. Its first derivative

must also be square integrable. In such a situation it is necessary to
assume sufficient smoothness on it. This becomes crucial in the

numerical computations. If one uses a second order finite difference

scheme, all the spatial derivatives need to be at least in C'3(£2). Thus

rather than considering step by step the regularity of the source, it is

easier toapproximate it by a C_ function. For example if we consider"

source term of the form f(x,z,t) = 6(x) g(z,t), where g is a smooth

17



function, thenonemay approximate fby fm where,

f = m/qflr exp ( - m2x2). (3.20)

Similar modifications are easily made when the soume is a pulse in
the other independent variables z and t.

To end this section let us conclude with the proof of Lemma 3.2.

Proof (Lemma 3.2)

Same proof holds for both PI and PII" The given boundary condition in

both problems is the normal velocity component is zero. i.e., p = 0 on

z = 0. Therefore, let y = (p,u,0,p) T. For any vector in this form, we

compute Cw,Qw).That is

(w,Qw) = yTGTGBG-l Oy.

Noting that O = TD, we have

1 0 1 l

o ",12 J. -t
C_ -- - °

0 '#2 0 0

0 0 ¥ ¥

Then simple matrix manipulations yield

(w,Qw) = p p/¥ + q_2u p/¥ + p2 ¥.

A variety of conditions may yield

(w,Qw) -<O. However,if we choosep = O, it is clear that

(w,Qw) = 0 and the correspondingboundaryconditions have the form:

18



°°1 L0 0 0 u =0
W

,P _

andtherectangular"matrixB i iseasilyidentified.

Conditionssuchas p(x,0_t)- 0 havea physicalpointofview.This

conditionsaysthatthegroundis"soft."A common terminologyis z -0

isa no reflectionboundary.Perhapsotherboundaryconditionsthatmake

(w,Qw) negativemay correspondto otherphysicalconsiderations.At

thispointwe havenotyet exploredthem.

4. Radiation bo,.undary conditions

For computational purposes it is essential to tn.r_zate half space f/

into a finite region _'. for example if one uses a finite difference

scheme, then it makes computations easier if f!' is a rectangle as

indicated in figure 4. I.
A

z F3

Fi source _' F2

/ _/////////////_/////////////////> x



Then the pieces of the boundaries F l, F2, and F3 need to be non-
reflecting or radiating boundaries since they must correspond to wave

behavior at far distances. For simple wave simple wave equation such

•discussions are extensively known. A summary of these may be found in

Hariharan [9]. In this reference, particularly the work of Engquist and

Majda [10] is noted. What follows is an attempt to extend the idea in

[t0] to obtain necessary boundary conditions for the linear problems

under consideration. For this purpose we shall be concerned with only

the problem PI' The same radiation conditions are applicable to

problem PII" Recall that problem PIis prescribed by equations (2.5) -
(2. t0) together with the additional boundary condition p(x,0,t) = 0, at

z = 0. Suppose we are interested in the radiation boundary condition

on the boundary F3. It is sufficient to treat this boundary alone

for obtaining radiation conditions. That is to say treat the problem as a

half space problem, with F3 playing the role of of the x axis ( -co < x <
co).

To follow the idea of [10], we take Laplace transform with respect to
time t (since the initial values are specified ) and Fourier transform

with respect to x of equations (2.5) - (2.8). Using initial conditions
(2.9) we obtain,

J,_ A A

s¢+i_u+w -w=0Z

A

su+i_/yp =0 (4.1)
A

A

E-_ =0
sw+ l/_p z- Y

sp+iy_u+yw -w =0.

20



At far distances the effect of the forcing term f vanishes.Thus we seek

homogeneoussolutions of (4. i) with dependenceexp(kz). This leads to

the characteristic equation

s i_ k-I 0

0 s 0 i_/y
det = 0. (4.2)

i/y o s (x-1)/_,

o iy_ (yx-l) s _

This has roots

Xl, 2 = ½+-/_(s,_), (4.3)
where

/2(s,[) = (_ + s2+ [2 +/32_:2/s2) ½ (4.4)

with

82 = (_,2-l)/y. ( > 0 ) (4.5)

For a decaying wave we choosethe negative root of (4.3). Moreover,

/l(s,{) can be written in the form

= c4.61
Indeed one can obtain a theoretical solution of (4.i) by variation of

parameters using the homogeneoussolution dictated by exp(Xz) with the

values of X given by (4.3). But the dificulty will be to invert the

transforms using the boundaryconditions.A similar difficulty arises

at far distances even without the source term. It is easy to see
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that the integrand will contain terms of the form exp(_z - /_(s,_)z ).

From equation (4.6) we obtain o)1 and _o2 explicitly as follows:

o)l (0 = ½[(_+{2+2/_{)_+ (_ +{2-2/_0½1
(4.7)

6o2(_)= _[_+t2+2fl_) ½+ C_+t2-2_) ½] •

Let s = if. Then (4.6) becomes

= [c 2-  ctllc 2-  ctll]½. c4.81
For propagatingwaveswe require that/J to be imaginary. This is

ensuredby Irl >_l (t)and Irl <o_2(0.From (4.7) onefinds sucha

requirement issatisfiedprovidedIt/_l <<l,orequivalentlyIt/sl <<l.
Thus we shall beconcernedwith approximating/l(s,O for large values

of s. To see this let us emphasizethat the solution of X we seek is of
the form

X = ½- p(s,_). (4.9)

Multiplying equation (4.9) by exp(Xz),we obtain anassociated

differential operator

A

A

dd-Ez=½p - _(s,_)p. (4.10)

In the pseudodifferential operator terminolgy/_(s,_) is the symbol of an

associated pseudodifferential operator.. To obtain radiating solutions

equation (4. i 0) needsto be inverted for both the Laplace transform and

the Fourier transform. Indeeda perfectly absorbing boundarycondition

arising from (4. i 0) is given by the inversion,
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0 icoco^ icoco^
_--_f. f p(z;_,s) eSt-i_Xd_ds= S / p(z;_,s){½-/a(s,O} eSt-i_Xd_dx.

-Ico-co -ico-co

The aboveexpressionsimplifiesto

ico co ^ st - i_x
8p = ½P- f / /a(s,O p(z;_,s) e d_ds. (4. il)az

-ico-co

Equation(4.ii)providesa boundaryconditionthatisnonlocaIinLime

andspace.Asimilarproceduretothatdiscussedabovewillholdfor

boundaryconditionson theboundaries['iandF2 providedwe takethe

Fouriertransformwithrespecttoz andconstructdifferentialoperators

inthedirectionofx.Boundarycondition(4.ii)isnoteasyto

implement. However, if we approximate the symbol/a(s,O for large

values of s then it is possible to obtain approximate local boundary

conditions from (4. i l). To do this we consider/a(s,O again and

investigate its nature when ]t/s] (( 1. We rewrite _uas

/_(s,O= s[ J.+ (_+_2)/s2 +/72_2/s4]½. (,t.12)

A crude approximation is/a = s. Substitution of this approximation in

equation (4. i i) gives the boundary operator

&ap = ½P- . (4.t3)az at

This is a possible boundary condition, Using the Taylor approximation of

(t+x) ½for small x, we see from (4.12) that the next level of

approximation is
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/_(s,_)= s[ 1+ 1/(8s2)+ ½_2/s2] . (4.14)

Wedifferentiate (4.11) with respect to t andsubstitute the

approximation (4.14) to obtain the next order boundarycondition

Pzt = ½P- (Ptt + p/8 - ½Pxx) ' (4.15)

Similarly, higher order accurate boundaryconditions can be derived.

This process seemselegant. However,not all suchboundaryconditions

yield stable results. That is tosay, weli-posednessof the problems is

not guaranteedwith the all suchboundaryconditions. At this point it

remains to be shownthat we can derive energyestimates oFthe form

(3.18) with boundaryconditions of the abovetype on the boundaries1-"1'
I_, and F3 .Discussion of"these results including correspondingdiscrete

versions of our problems will be reported elsewhere.
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