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ABSTRACT
AAnumerical mefhod 1s;develobed to analyze theAinv1scid,flowfield of a
high Speed inlet by the solution of the Euler equations. The LU implicit
scheme 1in conjunction w1th adapt1ve d1ssipat1on proves to be an effﬁcient and
robust nonoscil]atory shock captur1ng technique for high Mach number flows as
well as for transonic f]ows.
INTRODOCTION
Recenf;1nterest in the aerospece plane and ofher hypersonic vehic]es
revita]ized the research on high speed propulsion systems as we11 es hypersonic
aerodynamics In the'des1gn of superson1c and hypersonic propulsion systems
the ana]ys1s of high speed flow past an inlet plays a cr1t1ca1 role. While
there are haif a dozen propulsion study concepts for high speed flight, many |
candidate concepts share a common idea of combination of turboramjet eng1nes
for sub end'supersbnic flights and scramjet (supersonic combustion ramjet)
eng1nes'for hypersonic flight Resulting speeds of f]ows through the engines
range w1de1y from subsonic to hypersonic reg1mes

The analysis of hypersonic flows would require the full Navier-Stokes

equations with s1ip effects and chemical reaction. It is also important to
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‘ understand the compiew_structure of shock waves. The'turboramjet inlet
flowfield inciudes the incomingtsupersonic fiow defiected by‘ob]ique shock
waves and the subsonic diffuser fiow after the terminal normal shock wave
while the scramjet inlet f]ow-is characterized by strong oblique shock waves.
The Euier equations which represent hyperbolic conservation law can be a useful
testbed for developing and'evaiuating a shock capturing numerical algorithm.

It has been a difficuit task for computational aerodynamicists to capture
nonoscillatory shock waves as a converged solution. Unbounded growth of
spurious osciiiations often resulted in numerical instability. It is well
known that upwind difference schemes can eliminate osciiiations in the
neighborhood of shock waves at the expense of a substantiai increase of
computationai Wka{ In paraiiei with the deveiopments in upwind schemes it
;has been found.that steady aerodynamic flows containing moderately strong shock
waves'can be quite well predicted by a central difference scheme augmented by
a carefuiiy controiied blend of first and third order dissipative terms.]
“In this paper the performance of adaptive dissipation is demonstrated for
strong obiique shock waves in high Mach number flows on a near- uniform mesh.

Aithough a space marching method has been usefui it is not well-posed
when there is upstream influence through subsonic portions of the flowfield
such as a boundary layer. It also cannot handie the terminai shock and the
subsonic diffuser f]owfieid as weii as the flow with streamwise separation
Eariy time- integration codes for caicuiating the supersonic fiow through an
'iniet used popular MacCormack schemes 2, 3' A disadvantage of these schemes
for steady state caicuiation is that the computed steady state depends on the
time step. Another drawback of MacCormack S impiicit scheme is the difficuity
in treating boundary conditions.

During the last decade, the Navier Stokes equations have been the subject
of exploratory investigations aimed at estabiishing the feasibiiity of their
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solution, but the methods so far developed have been too expensive to permit
their use in a routine production mode. However, recent developments of modern
implicit schemes""6 in conjunction with multigrid methods are encouraging. The
authors5 developed an optimal d1ss1pat10n model for the alternating direction
implicit (ADI) scheme and proved that the improved ADI scheme is ideal for
multigrid in two dimensions. Unfortunately, the ADI scheme in delta form to
ensure the time step independent solution has stability and convergence
problems in three d1mensions. Two new implicit schemes which are
unconditionally stable in any number of space dimensions were'ﬁuccessful]y
developed by the authors6 recently. They are ]ower-upﬁer (LU) implicit
scheme and LU-SSOR (symmetric successive over-relaxation) scheme; .The Ly
implicit scheme has bgen tried on an H-mesh in this work for high speed flow
calculations: '
GOVERNING EQUATIONS

The Euler equations are obta1ned from tﬁe Navier-Stokes equations by
neglecting viscous terms. Let p, U, v, E, H, and p be the density,
Cartesian velocity components, total energy, total enthalpy, and pressure, and
let x and y be Cartesian coordinates. Then for a two-dimensional flow
these equations can be written as

W 3F 236

at Yax "oy = 0 | ()

where W 1s the vector of dependent variables, and F and G are convective

flux vectors

T
W= (p,pu,pv,pt)

-
1}

;
(pu,pu’ + p,pvu,u(pE + p)) (2)

.
6 = (pv,puv,pv> + p,V(pE + D))

The pressure is obtained from the equation of state
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These equations are to be solved for-a steady state aW/at = 0 where t
denotes’ time.
SEMI-DISCRETE FINITE VOLUME METHGD

A convenient way to assure a steady state solution independent of the time
step is to separate the space énd time discretization procedures.. In
semi-discrete finite volume method one begins by applying a semi-discretization
in which only the spatial derijvatives are approximated.] The use of a finite
volume method for space discretization allows one to handie arbitrary *
geometries - and helps one to avoid problems with metric singu]aritjes-that;are
usually associated with finite difference methods. The scheme reduces to a.
central difference scheme on a Cartesian grid, and is second order accurate in
space provided that the mesh is smooth enough. It also has the property that
uniform flow is an exact solution of the difference equations.

| " NONLINEAR ADAPTIVE DISSIPATION

In typical calculation of flow with discontinuities by a central -
difference .scheme, wiggles appear in the neighborhood of shock waves. where:
pressure gradient 1s severe. 1In order.to.suppress the tendency for spurious
odd and even point oscillations, and to prevent unsightly overshoots near
shock waves, the scheme is augmented by art1f1c1al dissipative terms. The
d1§sipat1ve term, which 1s constructed so that it is of third order in smooth
régioﬁ;‘of fhe.fiow, 1§ éxp]1cif]y added to the residual. Fof the density
equation, for example, the dissipation has the form |

d d

14172,5 = Y12172,5 * 44,5012 7 Y4, 5-172

where

: _ (2) e (8) .
Yar/2,5 7 S10172,30P101,3 7 P1Lp) 7 f1a2,30Phe2,y T 3P,y T B0y Ry

(4)



Let 'S be the cell area which is equivalent to the inverse of the determinant

of transformation Jacobian. Both coefficients include a normalizing factor

. (2)
51+1/2,J/At ;proportional.-to the length of the cell side, and €3+1/2, 3 is

also made proportional to the normalized second difference of the pressure

CPia,g T Pig Py

] (5)
3T P,y Py TPy

in the adjacent cells. The third order»terms provide background damping of
high frequency modes. The first order terms are needed to ;ontro] oscillations
in the neighborhood of shock waves, and are turned on by sensing strong
pressure gradients. in the flow. The dissipative ferms for the other equations
~are.constructed from similar formulas with the exception of the ehergy equation
where; the djfferenceé_are of pH rather than pE. The purpose.pf th1s is to
allow.a:steady state solution for which H remains constant. Increasing. the .
amount of artificial viscosity improves the rate of convergence a]though.tqo
much dissipation can hurt it.. However, it is desirable to make the_amouht be
as small. as possible in order not to degrade the accuracy of solution. Typical
amount of the third_order terms is almost negligible when combared to the
physical viscosity. -

o LU IMPLICIT SCHEME

 Let the Jacobian matrices be .

A=W B = oW N (6)
and let the correction be
sw o= WM W”

here n.. denotes the time level.

The linearized implicit scheme for a system of nonlinear hyperbolic

'equét1on§ such as the Euler equations can be formulated as6

LS

“(1 + B At (DA + DB)ISW + At R =0 (7)
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where R 1s the residual
S NS
R.= D F(W )«+.DyG(N )

Here"Dx. and’ 0, ‘are céntral difference operators that approximate . .3/ax

e “

and a/93y.’
4 If B =1/2 the schemeifEmajns §egqnq‘0fder accurate in time, for other
vé]ues of B, the time Accuracy:dfops to first order. The unfactored implicit
scheme (Eq. (7)) produces a large block banded matrix which is very costly to’
invert and requires hugh -storage. One can solve the system ¥ndirectly using a
relaxation algorithm. Then it is desirable that the matrix shoﬁ]d be
diagonally dominant to meet a convergence criterion of a relaxation method.
This can be achiéved by flux splitting at the expense of a substantial increase
in the computational work. Moreover, 5t seems that second order flux splitting
methods  in conjunction with relaxation algorithms are either conditionally- -
stable or-slow: | S
“ The oberaf16h:count can be reduced by factorizing the operator of Eq. (7)
7

épprbkimaté]y in various ways. The first way is known as the ADI Scheme."

(1 + B at DA (I + B ot D B)sH +AtR=0 - T8

Although the introduction of opt1ma1 artificial d1ssipa~t10nS makes the
scheme be very desirable in two d1hensions, the scheme 1in Qeltg form is only
conditionally stable in three djmensions. The ADI schemé 16trodﬁces efror
Eéfms of order (At)3 in three dfmens1ons whieh reduce the convergence rate.

1f one concerns about memory requirement, each factor c¢an be'sp]1t'1nto two

8 If B =1, the scheme becomes

subfactors.
(1 + at D;A+)(I + At D;A—)(I + At D;B+)(I +fAt‘o;B?)aW-+ At'R =0 (9)

X

y

“where D and D; are backward difference operators and D; and 0
are forward difference operators. Each factor can be constructed using the

X

diagonally dominant ADI factor‘izat‘\on.9 This scheme has six factors in three
' . 6



dimensions and 1ntr9Quces error terms of order (At)6 which reduce the
éonvergence rate further.:

While the ADI scheme has been valuable in two d1méns1ons; its inherent
1imitations in three dimensions suggest an alterﬁat1ve approach. An
unconditionally stable implicit scheme which has error.terms at most of order
(At)2 in ény nﬁmber of space dimensions can be derived by the LU

'factorizat1on.6

S {148t (A" + D BN)) {I,+ Bt (DA™ + DBT))sH + 8t R =0 (10)

Here, A+, A, B+, and B~ are constructed so that the eigenvalues of "+"

matrices are nonnegative and those of w_n matrices are nonbositive.
-A+- v=']2—(A+rA-I), A’=%(A-rAI)¢
b A : (11)
Bt - % (B +rgl), B = % (B - rgl) |
where . o
Ty > max(le|), rs > max(|x8|) | . (12)

Here, XA and ’XB represent eigenvalues of Jatobjan matrices. Equation (10)
. c£an be-inverted in two steps. The LU implicit scheme needs the inversion of
sparse triangular matrices which can be done efficiently without using large
storagg. Th1s scheme has only two factors in three dimensions. Other forms

of factorization in conjunction with flux splitting can be found in Ref. 10.

For example,
o : -+ " o + -
(1 +8at (0pa" +08)y(1+8 Bt OZAT S+ BER - 0) (13)
This §chéme requires a-b1ock;trjd1ag§na1'1nvef510n in one direction. If one
wants to include thin-layer viscous terms in the implicit operator, this scheme

may-be useful. However, it does not seem to be necessary to insert viscous

terms into the operator when only the Steady—sfate solution is desired.1]
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In order to test the performénce of the LU implicit scheme for high speed
flow calculations, a two-dimensional model problem was se]ecfedi F1gure'1
shows a typical hypersonic inlet and Fig. ‘2 shows a 54 by 32 H-mesh for-a
schematic high speéd inlet. This mesh was used in all cases except the
terminal shock wave problem where a 104 by 32 mesh was used for better |
resolution of the normal shock wave. HoweQer, all figures of convergence
history are the results on the 54 by 32 mesh for comparison. The ramp angle
is 9° and the-shoulder éng]e is set to 0.5° for the terminél shock wave
prob]em.c |

At the inflow boundary all the flow quanfitiés are 3pec1f1ed; and they .
are extrapolated from‘the interior at the outflow boundary for supersonic
. outflow.. For,thewtermina];shock,wave‘ptoblemAthe_pressureVwasﬁprescr1bed,at,,,
the outflow boundary. . |

' . Four plots including Mach number contours, Mach number and préssure along -
thé.centerline, and the convergence history are shown in-each set of Fjgs. 3‘
to 6. Terminal shock wave problem with freestream Mach number 2‘1s;shown in’
Fig. 3. Figures 4 to 6 are for supersonic throughflows with freestream Mach
numbers 5,_10; anq 29, respettive]y. The pressure plots show the values of
the pressure normalized by freestream static pressure so that the strengths of
shock waves can be compared. Two indicators in the convergence histories are
the maximum and the average density residual in logarithm scale.

As the figures show the wave structures in high Mach number flows
including oblique shock waves, reflected shock waves, expansion fans, and the
interaction of shock waves with expansion fans are succéssfui]y captufed.
These_resu}ts clearly demonstrate the capability of the presentAﬁhmerica]
metﬁod for high gpeed f]oys. Figurés-s and 6 show that the location of the
shock waveg 1§ hard]y.chaﬁged as the Mach number jncréases féom 10 fo 20.
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However;rthe pressure b]dts show that the strehgths'of shock,waves‘are quite
different. |

The convergence histories show that the residuals drop linearly and
continuously. These prove the efficjency_of the present numerical method.
However, as the Mach number increases the convergénce rate is slowed down.
This problem will be investigated in the future. Another.d1ff1cu1ty
encounfered in high Mach number f]owé is the’sens1t1v1ty'to'the way of starting
the solution procedure. Sudden 1ntroduct1bn of the boundary condition to the
freestream uniform flow is 1§kely to cause numerical instability in high Mach
number flows. Gradual 1ncreése of the time stép is fbund to be effective to
fix this problem.

o -~ CONCLUSION

The LU implicit scheme combined with the nonlinear adaptive dissipation
s sﬁchészu]i&bdévelobéd as a robust and efficient shock'captu}1ng method for
higH;Mach'humber ﬁhiet flows. It seems to be possible to 1mprove'thé
resolution and the accdfacy of shoﬁk waves by us1ng a total variation _
diminishing stheme[' Extension to the Navfer-stokes equations is desirable for
more- accurate ‘simulation of the flow through“integrated hﬁgh“speed'propuTsidn
system. |
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Figure 1. - A typical hypersonic inlet.

Figure 2. -54x32 H-mesh for a schematic high speed inlet. Ramp angle
9° and shoulder angle 0° or 0,59,
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Figure 3, - Mach 2 infet with the terminal shock wave,



PSIPSFS

LOG RESIDUAL

MACH NUMBER

[L%

5.2

{a) Mach number contours.

48 —

4.4 —

4.0

.4 .6

s (c) Pressure along the centerline.

| l 1 I 1

200 300
{d) Convergence history.

Figure 4. - Mach 5 inlet.




MACH NUMBER

PS/PSFS

LOG RESIDUAL

10.5
9.5
8.5

15

6.5
0

(a) Mach number contours,

E

1 | i | 'y I 1 I P I

.2 4 .6 8 1.0
{b) Mach number along the centerline.

N R T T

.2 .4 .6 4 Lo
(c) Pressure atong the centerline.

100 . - 200 300 400 -+ 500
{d) Convergence history.

“Figure 5. - Mach 10 inlet,



MACH NUMBER

PSIPSES

LOG RESIDUAL

24
20
16

12

25.0

20.0

15.0

10.0

-5.0

{a) Mach number contours.

1 | 1 | 1 | 1 J
0 .2 .4 .6 .8 Lo
{(b) Mach number along the centerline.
r__ !
1 I 1 ] | L
] .4 .6 .8 Lo
{c) Pressure along the centerline.
PR TN ST T B
0 100 200 300 400 500

(d) Convergence history.
Figure 6.- - Mach 20 inlet.




. . R i . 3. Recipient’s Catalog No.
1. Report No NASA CR-175098 2. Government Accession No. ecipien og

ATAA-86-1520

4. Title and Subtitle . L 5. Report Date

’ ‘April 1986

.| 6. Performing Organization Code

An LU Implicit Scheme for ﬂigh Sbééd'1n1g¢ Analysis

7. Author(s) 8. Performing Organization Report No.

Seokkwan Yoon and Antony Jameson : None

10. Work Unit No.

9. Performing Organization Name and Address

‘ 11. Contract or Grant No.
Sverdrup Technology, Inc. and Princeton University

Lewis Research Center Princeton, New Jersey NAS 3-24105
Cleveland, Ohio 44135 08544 i 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address ) Cont ractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546
_ 505-62-21 (E-3022)

15. Supplementary Notes

Final report. Project Manager, Peter M. Sockol, Internal Fluid Mechanics
Division, NASA Lewis Research Center, Cleveland, Ohio 44135. Prepared for the
22nd Joint Propulsion Conference, cosponsored by the AIAA, ASME, SAE, and ASEE,
Huntsville, Alabama, June 16-18, 1986.

16. Abstract

A numerical method is developed to analyze the inviscid flowfield of a high speed
inlet by the solution of the Euler equations. The LU implicit scheme in conjunc-
tion with adaptive dissipation proves to be an efficient and robust nonoscilla-
tory shock capturing technique for high Mach number flows as well as for tran-
sonic flows. '

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
High speed flow Unclassified - unlimited
Computational aerodynamics . STAR Category 02
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price*
Unclassified Unclassified

“For sale by the National Technical Information Service, Springfield, Virginia 22161




National Aeronautics and SECOND CLASS MAIL ‘ “ “ |
Space Administration

Lewis Research Center ADDRESS CORRECTION REQUESTED
Cleveland. Ohio 44135 :

Official Business

Penalty for Private Use $300 Postage and Fees Paid

National Aeronautics and
Space Administration
NASA451

NNASN






