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INTRODUCTION

As part of the NASA Highly Integrated Digital Electronic Control (HIDEC)
program, the performance improvements due to the integration of the propulsion and
flight control systems on an F-15 airplane are being evaluated. Results of the
previously conducted Integrated Research AirCraft Technology (INTERACT) program
(ref. 1) has shown the benefits of integration of the propulsion and flight control
systems. Two of the control modes investigated in the INTERACT studies were optimum
flight path trajectories and adaptive engine stall margin. These modes have been
incorporated in the HIDEC program. The adaptive engine stall margin mode, or uptrim,
allows engine stall margin to be traded for increased thrust. However, during
unusual manuevers or transients, the full stall margin (no uptrim) is required. The
optimum flight path modes allow the airplane to be more efficiently flown from one
flight condition to another. For this report, the optimum trajectories for minimum
time and minimum fuel are determined, and the effects of the the adaptive stall
margin (uptrim) are evaluated. Comparisons are made to a pilot's estimate of the
optimum flight paths. The data used in this study is limited to standard day
conditions at maximum thrust for the clean configuration of the F-15.

SYMBOLS AND ABBREVIATIONS

Units are given in the International System of Units (SI) and parenthetically
in U.S. Customary Units. Most of the calculations were made in Customary Units and
converted to SI Units.

Alpha angle of attack, deg

cDh drag coefficient

CL 1lift coefficient

DEEC digital electronic engine control
EMD engine model derivative

Es specific energy, m/kg (ft/1b)

INTERACT Integrated research aircraft technology

M Mach number

H altitude, m (ft)

HIDEC highly integrated digital electronic control
Ps specific excess power, m/sec (ft/sec)

P3OWDT Ps divided by fuel flow, m/kg (ft/lb)

PTINF free stream total pressure, kN/m2 (lb/inz)

PT2 engine inlet total pressure, kN/m2 (1b/in2)



DESCRIPTION OF AIRPLANE

The simulation used for this optimization and comparison study was of an F-15
supersonic fighter powered by two F100 Engine Model Derivative (EMD) engines. The
F-15 is an all-weather air superiority fighter with excellent transonic
maneuverability and Mach number capability to 2.5. A three-view drawing of the F-15
is shown in figure 1. The takeoff gross weight for this study was 173.5 kN

(39,000 1b).

Aerodynamics

Aerodynamic characteristics of the airplane were represented in terms of lift
and drag coefficients and angle of attack as a function of Mach number. These data
were obtained from F-15 flight tests (ref. 2). Figure 2 shows the drag coefficient,
CD, as a function of Mach number and lift coefficient, CL. The angle of attack,
Alpha, is shown in figure 3 as a function of CL and M.

Inlet

The inlet characteristics, in terms of total pressure recovery, PT2/PTINF, of
the F-15, were determined for the maximum power airflow values of the F100 EMD
engine over the Mach number range as shown in figure U4, These values were used as
inputs to the EMD engine thrust deck.

Engine

The engines used in this evaluation were the F100 EMD engines, shown in
figure 5. These engines were built by Pratt And Whitney Aircraft and have a company
designation of PW 1128. The engine is a low bypass after-burning turbofan which is
an upgraded version of the F100-PW-100 engine which powers the production F-15
airplanes. Figure 5 shows the features of the F100 EMD engine and the differ-
ences from the F100-PW-100 engine. It has a sea-level-static thrust rating of
approximately 122.33 kN (27,500 1b). The F100 EMD engine is equipped with a digital
electronic engine control (DEEC). Because of its ability to accept airplane inputs,
the DEEC makes it practical to vary the engine stall margin as a function of
appropriate airplane inputs. For this study, the uptrim capability determined from
the INTERACT study {(ref. 1) was used.

Thrust and Fuel Flow

The values of thrust and fuel flow for the F100 EMD were generated through the
use of the Pratt and Whitney F100 EMD status deck, PWA CCD 1194.2 (ref. 3). Figures
6 and 7 show the thrust and fuel flow data respectively as a function of Mach number
and altitude. These data were generated for standard day conditions only. Typical
horsepower extraction (48,470 W (65 hp)) and customer bleed (0.32 kg/sec )

(0.7 1b/sec)) values were assumed, and the inlet recovery of figure 4 was used.

Uptrim
Figure 8 shows the engine uptrim that may be expected for an engine with an

adaptive stall margin capability, as determined from the INTERACT studies. The
uptrim factors as a function of Mach number and altitude are applied to thrust and




fuel flow for the maximum afterburning power setting. This produces a thrust
increase without any change in specific fuel consumption.

OPTIMIZATION TECHNIQUE

The optimization technique of Rutowski (ref. 4) has been used in this study to
determine minimum time and minimum fuel consumed trajectories,

To generate the minimum time profile, the specific energy and specific excess
power must be known. For this study, specific energy, Es, is defined as the sum of
the potential and kinetic energy per unit weight, and is a function only of altitude
and velocity and is independent of airplane configuration. Specific excess power,
Ps, is defined as the time derivative of Es, that is, dEs/dt. Ps is a function of
the airplane thrust and drag, and thus must be determined for each flight condition
and power setting. The Ps contours and the lines of constant specific energy are
superimposed upon each other and the points of tangency define the minimum time path
for a given configuration, as indicated schematically in figure 9. The minimum fuel
profile requires the same type of manipulation, but the two variables are Es and
PsOWDT, specific excess power divided by fuel flow, or energy gain per kilogram
(pound) of fuel burned. A minimum fuel profile is shown schematically in figure 10.

The flight paths were optimized for the F100 EMD without and with uptrim. Once
the optimum flight path for each engine control mode was determined, the correspond-
ing differences between the two modes were compared.

TRAJECTORY PROGRAM

A computer program was used to generate time histories of airplane trajectories
and provide calculated values of velocity, range, fuel consumed, Ps, PsOWDT and
numerous other parameters. The three dimensional trajectory analysis program uses a
point mass representation of the airplane and integrates the equations of motion
while following a given flight profile.

The program was used for two different purposes. The first purpose is to
generate the data for the Ps and PsOWDT contours by computing level accelerations at
various altitudes. The second purpose is to evaluate the optimum flight paths
generated by the Rutowski technique. The trajectories were input to the program as
Mach number--altitude flight profiles. -

PROCEDURE

The data for the Ps and PSOWDT contours was obtained by computing level
accelerations at altitude increments of 1,524 m (5,000 ft) from sea level to
16,764 m (55,000 ft) with the three dimensional trajectory program. Beginning
weight for each acceleration was 173.5 kN (39,000 1b) and weight decreased as fuel
was burned.



All the optimum flight path profiles started at Mach 0.15 and 1,524 m
(5000 ft). In some cases, simplifications to optimum profiles were made to
facilitate implementation in the trajectory program. The ending conditions were
Mach 2.0 at 13,716 m (45,000 ft). All of the trajectories started with a level
acceleration to an optimum climbing Mach number. The flight paths were input to the
trajectory program in short straight line segments as determined by the Ps and
PSOWDT contours,

The optimum flight profiles were compared to a pilot's estimated optimum
profile, which was calculated without uptrim. The pilot's estimate was based upon
the information in the F-15 flight manual (ref. 5) and from previous flight
experience in the F-15,

RESULTS AND DISCUSSION
Minimum Time Profiles

Figure 11 shows the Ps contours for the F-15 with the F100 EMD engines without
uptrim, for 1 g flight. Maximum Ps values occur at low altitudes around Mach 0.9.
At higher altitudes and at supersonic speeds, Ps values are lower, The minimum time
to climb path is also shown. It consists of a level acceleration at 1,524 m
(5000 ft) to Mach 0.98, a climb with a slight acceleration to 8,077 m (26,500 ft),
an acceleration with a slight climb to Mach 2.0, and a constant Mach climb to
13,716 m (45,000 ft). The final constant Mach climb is used in place of the optimal
flight path which would include an acceleration to a slightly higher Mach number
followed by a climbing deceleration along a constant energy line.

The Ps contours for the F-15 with uptrim are shown in figure 12. The Ps values
for a given Mach number and altitude are greater than those of Figure 11 without
uptrim, although the shape of the two sets of contours are similar. The profile for
minimum time is also shown, and is similar to the optimum profile without uptrim.

The two minimum time profiles are compared in figure 13. Also shown is the
pilot's estimate of the minimum time profile, based on information in the F-15
flight manual. The figure shows that for transonic and higher Mach numbers, the
optimum profiles are flown at lower altitudes than the pilot's estimate.

The times required to reach Mach 2.0, at an altitude of 13,716 m (45,000 ft)
are compared in Table 1. The pilot's estimate took 2.97 min, while the optimum
profile without uptrim took 2.54 min, or 15 percent less. The optimum profile with
uptrim took 2.28 min, or 23 percent less than the pilot's estimate. The profile
with uptrim is 10 percent faster than the profile without uptrim. The optimum time
profiles used more fuel than the pilot's estimate.

Minimum Fuel Profiles

The contours of PsOWDT for the F-15 without uptrim are shown in figure 14,
Maximum values of PsOWDT lie in the Mach 0.8 to 1.0 range. The minimum fuel to climb
flight path without uptrim is also shown. It consists of a level acceleration at
1,524 m (5,000 ft), followed by a constant Mach climb at Mach 0.98 to an altitude of
13,716 m (45,000 ft). The remainder of the profile is an acceleration with
altitudes slightly lower than 13,716 m (45,000 ft).



Figure 15 shows the PSOWDT contours with uptrim and the corresponding minimum
fuel path. The contours and the profile for mimimum fuel are very similar to those
without uptrim (fig. 14).

The two minimum fuel profiles and the pilot's estimate are shown in figure 16.
The pilot's estimate of the minimum fuel profile was derived from the pilot's manual
and the pilot's previous experience. In this case, the pilot's estimate was very
close to the optimum profiles,

Results of the three profiles are compared in Table 2. The pilot's estimate
took 1,755 kg (3,870 1b) of fuel, while the minimum fuel profile without uptrim took
1,735 kg (3,826 1b), a savings of 1 percent. The time required was 15 percent less
even though the fuel saving was small. The minimum fuel profile with uptrim took
1,659 kg (3,658 1b) of fuel, a saving of 5 percent compared to the pilot's estimate,
and the time required was 20 percent less. The profile with uptrim used 4 percent
less fuel than the profile without uptrim. In this case, the very good pilot's
estimate minimized the benefit of the optimization technique in fuel savings, but
the optimization did show reduced times.

CONCLUSIONS

A computer study was performed on an F-15 fighter with two Pratt and Whitney
F100 EMD engines installed. This study was conducted to determine optimum time and
fuel trajectories for the F100 EMD engines without and with uptrim. These
trajectories were then compared. The following conclusions were reached:

1. Ps and PsOWDT contours with uptrim are similar in shape and greater in value
than the corresponding contours without uptrim.

2. The minimum time trajectory without uptrim was 15 percent faster and used 8
percent more fuel than the pilot's estimate for minimum time.

3. The minimum time trajectory with uptrim was 23 percent faster and used 5 percent
more fuel than the pilot's estimate for minimum time.

4, The minimum fuel trajectory without uptrim used 1 percent less fuel and was 15
percent faster than the pilot's estimate for minimum fuel.

5. The uptrimmed minimum fuel trajectory used 5 percent less fuel and was 20
percent faster than the pilot's estimate for minimum fuel.

6. For transonic speeds and above, all optimum trajectories are lower in altitude
than the pilot's estimate.

Ames Research Center
Dryden Flight Research Facility
National Aeronautics and Space Administration
Edwards, California 93523, April 3, 1984
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TABLE 1., - TIME AND FUEL FOR MINIMUM TIME PATHS
Time Fuel
Minimum time paths Min. Percent kg (1b) Percent
difference difference
Pilot's estimate 2,97 | eemm—-- 1789 (3944) |  ==-=---
Without uptrim 2.54 -15 1949 (4297) +8
With uptrim 2.28 -23 1881 (4146) +5

TABLE 2. - TIME AND FUEL FOR MINIMUM

FUEL PATHS

Time

Fuel

Minimum fuel paths Min. Percent kg
difference

(lb)‘ Percent
difference

Pilot's estimate 4.15 | —----- 1755
Without uptrim 3.54 =15 1735
With uptrim 3.32 =20 1659

(3870) |  -----
(3826) -1
(3658) -5
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