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INTRODUCTION

Spectral collocation methods have proven to be efficient discretization
schemes for many aerodynamic (see e.g., refs. 1-5) and fluid mechanic (e.g.,
refs. 6-9) problems. The high-order accuracy and resolution shown by these
methods allows one to obtain engineering-accuracy solutions on coarse meshes, or
alternatively, to obtain solutions with very small error. One drawback to these
techniques has been the requirement that a complicated physical domain must map
onto a simple computational domain for discretization. This mapping must be
smooth if the high-order accuracy and exponential convergence rates associated
with spectral methods are to be preserved (ref. 2). Additionally even smooth
stretching transformations can decrease the accuracy of a spectral method, if
the stretching is severe (ref. 5). A further difficulty with spectral methods
has been in their implementation on parallel processing computers, where effi-
cient spectral algorithms have been lacking.

The above restrictions are overcome in the present method by splitting the
domain into regions, each of which preserve the advantages of spectral colloca-
tion, and allow the ratio of the mesh spacings between regions to be several or-
ders of magnitude higher than allowable in a single domain. Such stretchings
would be required to resolve the thin viscous region in an external aerodynamic
problem. Adjoining regions are interfaced by enforcing a global flux balance
which preserves high-order continuity of the solution, regardless of the type
(diffusion- or advection-dominated) of the equations being solved. This inter-
face technique maintains spectral accuracy, even when mappings and/or domain si-
zes are radically different across the interface, provided that the discretiza-
tion in each individual subdomain adequately resolve the solution there. Addi-
tionally, the present technique allows spectral collocation methods to effi-
ciently utilize parallel processing (ref. 10) where the application of conven-
tional single-domain spectral discretizations have not been found to be effi-
cient.

A number of other spectral multi-domain techniques have appeared in the 1it-
erature. Application of finite element methodology, using Galerkin spectral
discretization in the variational formulation within the elements, is a popular
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technique {(refs. 11-12). One drawback with such techniques is that a split
Galerkin-collocation discretization must be used for convection-diffusion
problems. These spectral-element methods also seem to work best in practice
when used in a manner similar to classical finite element techniques: low-order
internal discretization using many elements with no internal stretchings to
mmprove resolution, In other words, resolution 15 increased in such methods by
packing more elements in appropriate areas, rather than by increasing the order
of discretization or applying an appropriate stretching within an element. The
use of low-order spectral discretization over many elements does not take
advantage of the exponential order convergence properties of spectral methods
even if the split Galerkin-collocation discretization can display such
properties. Techniques which the authors are aware of for interfacing
collocation-discretized domains seem to 1nvolve explicit enforcement of contin-
uity of the solution and its first derivative across the interface (refs.
13-14). It is not clear how well these techniques perform for strongly convec-
tion-dominated problems; the second author's experience with such techniques
{ref. 1) has shown them to be not entirely satisfactory.

Results

In this section, the present global flux-balance spectral multi-domain method
will be shown as applied to a number of one- and two-dimensional test problems.
(Detarled explanation concerning the implementation of the algorithm is given 1n
ref. 10.) The one-dimensional examples will serve to show that thi1s method can
maintain the exponential-order error convergence which 1s characteristic of
collocation methods, even when adjoining domains have radically different dis-
cretizations in terms of domain size, number of points, or stretchings.

The first example 1s the equation

- X, - =
Uy = COS =3 xe[-2,2], U(-2) =U(2) =0 (1)
for which the exact solution is:
U(x) = flg cos(%i) (2)

Eq. (1) is discretized in two unstretched domains: x(1)¢ [-2,0]1; x(2)¢
[0,2], with N1 and N2 points, respectively. In table I is listed the maximum
relative error as a function of N1 and N2. Note that the error decay is clearly
faster than algebraic down to machine zero when N1 = N2. Also shown 1n table I
1s the behavior of the solution when one discretization 1s held fixed (N1) and
the other refined (N2). The overall error remains constant at a level essen-
tially one-half of that seen when both domains were discretized at the coarser
level. This is expected behavior, since the error 1n the interface condition
has components from both domains; 1f one discretization is very much coarser
than the other, 1ts error will dominate the overall error of the solution. When
both have equal error, then they must contribute equally to the overall error.
The next example w11l illustrate the capability of the method for resolving
very high gradients in a solution while 1mposing an interface condition which
preserves spectral accuracy. Consider the viscous Burger's equation:

Up+ 3 WA = v Uys x e [-1,1] (3)

U(-1,t) = u(1,t) = 0 U(x,0) = -sin(wx)

This problem has been studied extensively by a number of authors, using tech-
niques ranging from standard finite difference, to single-domain spectral collo-
cation and spectral element (ref. 15). The solution to this problem develops a
very steep gradient region in the center of the domain; the slope at x = 0
reaches a maximum, then decreases as the initial energy is dissipated away. For
the parameters studied in ref. 15 (v = 0.01/x), this maximum 1s reached at t =
0.5; a very accurate analytical solution gives a value of 152.00516 for this
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maximum slope. The evolution of this solution calculated from the present
method 1s shown in fig. 1 at time increments of 0.1.

In the present study of this problem, three domains were used, the middle
domain spanning a very small region (+0.05) around the “"shock." Additionally, a
mapping was applied in the middle domain to improve resolution. The maximum
stretching allowable in this mapping is subject to the same restriction as
stretchings_in single-domain discretizations; e.g., maximum metric ratios on the
order of 103.

From the comparison study contained in ref. 15 the two methods giving the
best accuracy for a given number of grid points were single domain spectral
collocation and spectral element. The collocation scheme used a mesh stretching
with a maximum-to-minimum metric ratio of about 100. Beyond this stretching a
degradation in accuracy was found to occur. The spectral element discretization
utilized four elements with 16 nodes in each. The behavior of the error in max-
1mum slope from these methods and the present scheme are shown in table II. As
can be seen, the present method with just 35 total points (12 points 1n the
outer domain, 13 points 1n the middle domain, 12 points 1n the left outer
domain, hereafter denoted 12/13/12) yield results of equivalent accuracy to the
spectral element and single-domain spectral collocation methods of ref. 16 both
using 64 total points. Further mesh refinements using the present method show
exponential-order error convergence, as seen in table II by the order-of-
magnitude decrease in relative error as the mesh is refined to 20/21/20, and
again with mesh refinement to 32/33/32. For the same total number of points,
the present method is an order of magnitude more accurate than the single-domain
collocation or spectral element solutions of ref. 15.

In order to demonstrate the capability of the present method to handle
radically-different mappings between gdjacent domains, a solution to the above
viscous Burger's equation for v = 10°%, 1s shown in fig. 2. The maximum slope
for this solution is greater than 5000. The discretization used was 12/31/12;
the stretching in the middle domain was so severe that the ratio of largest mesh
spacing_in the outer domains to the smallest in the middle domain 1s greater
than 105. A factor of 5000 magnification of the high-gradient region of this
solution 1s shown in fig. 3. The emphasis in this plot is the oscillation-free
resolution of this region. (Linear interpolation between points is used for
plotting, making the plot appear somewhat jagged.)

To demonstrate the maintenance of conservation by the present interface
technique, an initial condition was applied to the viscous Burger's equation to
generate a moving "shock" which passed through the interface, as shown 1n fig.
4. No oscillations, reflections, or abrupt changes in wave speed are seen as
the "shock" passes through the i1nterface. A very skewed discretization of
12/17/27 was used for this case. Note that a multi-domain method formulated
only for hyperbolic or for elliptic equations would be unable to perform well on
this probtem, since the dissipation-dominated region passes through the
interface.

Two-dimensional examples show similar performance of the present method.
Shown in fig. 5 are constant-value contours for the solution of the Poisson
equation:

Uy * Uyy = cos(%l)- cos(%i); x e [-2,2], y ¢ [-1,1] (4)

Ulx,-1} = U{x,1) = U(-2,y) = U(2,y) =0

using two domains interfaced at x = 0 (the dashed line 1n fig. 5). Note that
the contours pass smoothly through the interface.

Table III contains the maximum relative error for various multi-domain
discretizations of eq. (4). Exponential-order error convergence is again
apparent from the rapid decrease with mesh refinements. The first group of re-
sults in table III 1s for equal discretization in both domains, whereas the




second group shows the effect of having different discretizations in the
direction along the interface. Only a small amount of accuracy is Tost through
the 1nterpolation between two radically-different discretizations across the
interface.

An example of discretization on four domains with a corner point is shown 1in
fi1g. 6, where isolines of the spectral solution to

vey = cos(%é) . cos(%1), xe [-2,2], y e [-2,2] (5)

U(x,-2) = U(x,2) = U(-2,y) = U(2,y) =0

are displayed. An influence-coefficient matrix algorithm described in ref. 10
was used to compute this solution. This algorithm was developed for parallel-
processor applications.

Spectral discretization of problems with discontinuous coefficients or source
terms (or equivalently, discontinuous transformation metrics), or discontinuities
in boundary condition typically yields solutions with large oscillations and
low-order error convergence. The present multi-domain technique may be used to
jsolate such discontinuities and recover exponential-order convergence. Figs. 7
and 8 11lustrate such an application; shown are solutions to Laplace's equation
in which a jump in boundary conditions is enforced on one side of the domain.
When the discontinuity 1ies at a point interior to one of the discretizations
(f1g. 7), oscillations are seen clearly in the solution 1solines. When the dis-
continuity occurs where the interface meets the boundary, however, the contour
lines are smooth (fig. 8).

Another example of the application of the multi-domain technique to isolate a
discontinuity is in solution of the following equation:

v « (kvl) = 0; xe [-2,2], y ¢ [-1,1] (6)
U(x,-1) = U(x,1) = U(-2,y) =0 u{2,y) = cos (%1)

where k = k1, -2 < x <0, and k = kg =10 k3, 0 < x < 2, with the inter-

face at the line of coeff1c1ent discontinuity as shown in fig. 9. The computed
solution is everywhere smooth, and the gradient jump at x = 0 is automatically
enforced.

To demonstrate the generality of the technique, eq. (4) was solved on the
skewed two-domain mesh shown in fig. 10. This mesh, containing 17 x 16 and 18 x
17 points in the left and right domains, respectively, was generated by first
choosing the interface line, in this case a cubic polynomial. Chebyshev distri-
butions with respect to arc length were used to establish the mesh points on the
interface, as well as along the domain boundaries at x = +2. One curvilinear
coord1nate fam1ly was generated by connecting these corresponding points with
straight lines. Mesh points along these coordinate 1ines were then established
with Chebyshev distributions with respect to arc length, resulting in a sheared
non-orthogonal mesh. Eq. (4) was written in generalized contravariant flux form;
the metrics were evaluated by spectral differentiation of the coordinate distri-
butions. The flux component normal to the interface was taken to be continuous
1n the 1nterface condition. As can be seen 1n the isolines of the solution
shown in fig. 11, the solution 1s everywhere smooth and regular.

Conclusions

The present global flux balance spectral multi-domain method has demonstrated
maintenance of exponential-order accuracy herein on a variety of advection- and
diffusion-dominated test problems. Extremely large difference in discretization
across an 1interface, through domain size, number of points and stretchings, have
been shown to not disrupt this property of the present method. Additionally,
this technique can be used to isolate certain types of coefficient, mapping or




boundary condition discontinuities. A further application of the present method
lies in implementation of spectral methods on parallel-processing computers,
where the global nature of collocation methods have limited their effective-
ness. The solution algorithm described is well-suited for machines with only
nearest-neighbor connections between processing units.

Further areas of applications being examined for the present method include
implementation (1} in a time-dependent incompressible Navier-Stokes code for
transition simulation, which w111 be run on the large scale Navier-Stokes
Computer parallel computer under construction at Princeton University (private
communication with D. Nosenchuck, Princeton University), and (2) in an
external-aerodynamic compressible Navier-Stokes scheme which will interface a
fine discretization of a nearfield region and a coarse discretization of the
farfield to reduce storage and increase convergence rate.

References

1 Gottlieb, D. L.; Lustman, L.; and C. L. Streett: Spectral Methods for
Two-Dimensional Shocks. ICASE Report No. 82-83, Nov. 1982.

2 Streett, C. L.: Spectral Method for the Solution of Transonic Potential
Flow About an Arbitrary Two-Dimensional Airfoil. AIAA Paper No.
83-1949-CP. Paper presented at the AIAA 16th Computational Fluid
Dynamics Conference, Danvers, MA, July 13-15, 1983.

3 Hussaini, M. Y.; Streett, C. L. and Zang, T.: Spectral Methods for Partial
Differential Equations. NASA CR-172248, August 1983

4 Streett, C. L.; Zang, T. A.; and Hussaini, M. Y.: Spectral Multigrid
Methods with Appliations to Transonic Potential Flow. Journal of
Computational Physics, Vol. 56, 1984,

5 Streett, C. L.; Zang, T. A.; and Hussaini, M. Y.: Spectral Methods for
Solution of the Boundary-Layer Equation. AIAA Paper 84-0170. Paper
presented at the AIAA 22nd Aerospace Sciences Meeting, Reno, NV, Jan.
9-12, 1984.

6 Macaraeg, M. G.: Numerical Experiments of Axisymmetric Flow in a
Nonuniform Gravitational Field, AIAA Journal, July 1986.

7 Macaraeg, M. G.: The Effect of Power Law Body Forces on a Thermally-
Driven Fluid Between Concentric Rotating Spheres. Journal of the
Atmospheric Sciences, Vol. 43, Feb. 1986.

8 Macaraeg, M. G.: A Mixed Pseudospectral/Finite Difference Method for the
Axisymmetric Flow i1n a Heated, Rotating Spherical Shell. Journal of
Comutational Physics, Vol. 61, 1985.

9 Malik, M. R.; Zang, T. A.; and Hussaini, M.: A Spectral Collocation
Method for the Navier-Stokes Equations. NASA CR-172365, June 1984,

10 Macaraeg, M. G.; Streett, C. L.: Improvements in Spectral Collocation
Through a Multiple Domain Technique. Applied Numerical Mathematics,
1986.

11 Patera, A. T.: A Spectral Element Method for Fluid Dynamics: Laminar Flow
in a Channel Expansion. Journal of Computational Physics, Vol. 54,
1984.

12 Ghaddar, N.; Patera, A. T.; and Mikic, B.: Heat Transfer Enhancement in
Oscillatory Flow 1n a Grooved Channel. AIAA Paper 84-0495. Paper
presented at the AIAA 22nd Aerospace Sciences Meeting, Reno, NV, Jan.
9-12, 1984,

13 Metivet, B.; and Morchoisne, Y.: Multi-Domain Spectral Techniques for
Viscous Flow Calculations. Proceedings of the 4th Conference on
Numerical Methods i1n Fluid Dynamics, Oct. 1981.

14 Migliore, H. H.; and McReynolds, E. G.: Multi-Element Collocation Solution
for Convective Dominated Transport. Numerical Methods 1n Laminar and
Turbulent Flow. C. Taylor, J. Johnson, and W. Smith, eds., 1983.

15 Basdevant, C.; Deville, M.; Haldenwang, P.; lLacroix, J.; Orlandi, D.;
Quazzani, J.; Patera, A.; and Petret, R.: Spectral and Finite
Difference Solutions of the Burgers' Equation. Computers and

Fluids, Vol. 14, 1986, pp. 23-41.
5




Table I.- Maximum relative error vs. domain discretization for equation (1).
Numerials in parentheses are powers of ten.

u = uexact
NI’NZ uexact
5, 5 1.78 ( -3)
7, 7 9.81 ( -5)
9, 9 2.79 ( -8)
11,11 4.85 (-11)
13,13 2.10 (~13)
5, 7 8.82 ( -4)
5, 9 8.88 ( -4)
5,11 8.88 ( -4)
7, 9 4.89 ( -5)
7,11 4.90 ( -5)
7,13 4,90 ( -5)
9,11 1.39 ( -8)
9,13 1.39 ( -8)




Table II.- Maximum slope and percent relative error in maximum slope for viscous
Burgers' equation (eq. (3) ); comparison of present method with results from
reference 15 .

(ref. 15)

Method Discretization Max. slope % Relative error
3 domains:

Present 12/13/12 152.03544 1.99 (-2)
Present 20/21/20 152.00011 3.23 (-3)
Present 32/33/32 152.00513 2.14 (-4)
Spectral 4 elements:

element 16/16/16/16 152.04 2.29 (-2)
(ref. 15)
Spectral 1 domain:
colloc. 64 152,025 1.31 (-2)
(ref.15)
exact 152.00516




Table III.- Maximum error vs. domain discretization for equation (4) .

U = Yaxact
u
(le,Nyl)’ (NXZ’NyZ) exact"m
(6, 6), (6, 6) 0.16809 ( -3)
(8, 8), (8, 8) .13260 ( -5)
(10,10), (10,10) .71081 ( -8)
(12,12), (12,12) .27290 (-10)
(16,16), (16,16) .71054 (-13)
(6, 6), (6,12) 44939 ( -3)
( 8, 8), ( 8,16) .54130 ( -5)
(10,10), (10,20) .33158 ( -7)
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Figure 1. - Computed solution to equation (3) at time increments of 0.1:
v = 0.01/w, discretization 32/33/32, interfaces at + 0.05.
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Figure 2. - Computed solution to equation (3) at time increments of 0.1:
v = 10-4, discretization 12/31/12, interfaces at + 0.02.



Figure 3. - Expansion of high gradient region of figure 2.
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v = 0.01,

(3) with moving shock:

discretization 12/17/27, interfaces at + 0.25.

- Computed solution to equation

Figure 4.
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Solution of Poisson eqn on Four Domains

u, + u, = cos(mx/4)-cos(my/4)

b4

D: xe[-2,2], ye[-2,2], u=0 on 4D

T

-
=

5
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n
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Figure 6. - Computed solution to equation (5) on four domains; interfaces at
dotted lines.
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Figure 7. - Computed solution to Laplace's equation with discontinuous boundary
conditions as noted; interface at dotted line.
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Figure 8. - Computed solution to Laplace's equation with discontinuous
boundary conditions as noted; interface at dotted line.
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u = cos (my/2)

Figure 9. - Computed solution to equation (4); interface at dotted line.
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