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Abstract

A Geometric Approach to Failure Detection
and Identification in Linear Systems

by
Mohammad-AIi Massoumnia

Submitted to the Department of Aeronautics and Astronautics on
February 20, 1986 in partial fulfillment of the requirements for
the degree of Doctor of Science in Aeronautics and Astronautics

In this work, using concepts of (C, A)-invariant and unobservability
(complementary observability) subspaces, a geometric formulation of the failure
detection and identification filter problem is stated. Using these geometric
concepts, we shall show when it is possible to design a causal linear time-invariant
processor that can be used to detect and uniquely identify a component failure in a
linear time-invariant system, assuming: i) The components can fail simirltaneously,
ii) The components can fail only one at a time

In addition, a geometric formulation of Beard's failure detection filter problem
is stated. This new formulation completely clarifies the concepts of output
separability and mutual detectability introduced by Beard and also exploits the
dual relationship between a restricted version of the failure detection and
identification problem and the control decoupling problem.

Moreover, the frequency domain interpretation of the results is used to relate
the concepts of failure sensitive observers with the generalized parity relations
introduced by Chow. This interpretation unifies the various failure detection and
identification concepts and design procedures.
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Chapter 1

Introduction

In many applications high reliability control systems are necessary. For

example, in some space missions, a system with hundreds of components is required

to operate for a period of several years. Such systems must naturally employ

highly sophisticated fault tolerant control systems (FTCS) with redundant capacity

to perform a given task. The need for very high reliability has led to extensive

research into design of systems which can do their job using more than one

configuration of their components.

Currently there are two different approaches to the design of reliable systems.

In the first approach, the objective is to reduce the dependence of the system on

the operation of individual components and develop systems that remain

operational even in the presence of a failure without any corrective action being

undertaken. A few examples of this passive approach to FTCS are qxiadriplexed fly

by wire digital flight control systems and the mid-value select algorithm. The state

feedback controllers that are designed based on a Lyapunov equation (instead of

Ricatti equation) for which the closed-loop system remains stable even in the

presence of actuator failures (assuming the open-loop system is stable) [19], is

another example of such passive FTCS design methodology.

Instead of triplicating the expensive hardware components or sacrificing the

performance of the system under nominal operating conditions in order to gain

fault tolerant capability, one can first detect and identify the failed component

using additional information processing and next reconfigure the system to
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accommodate the failure. A block diagram of this active approach to the design of

FTCS is shown in Fig. 1-1.
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Figure 1-1: Block Diagram of an FTCS

Clearly, the failure detection and identification task can not be performed

perfectly, and there is a possibility of false identification. In addition, even if the

failed component is correctly identified, in some cases it is not at all obvious how to

reconfigure the system to accommodate the failure. Therefore, this approach

requires more complex information processing capabilities and has a few of its own

drawbacks", but with the increasing availability of low cost digital computers this

will be the preferred approach- especially if it can result in superior performance.
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An important part of an active FTCS is failure accommodation. In this work

it is assumed that the corrective actions for accommodating the failures are known

before hand. However, this might very well turn out to be a naive assumption

since, in complex systems with many components, it is almost impossible to

enumerate all possible failure combinations and the corrective measures for
j

accommodating them. The issue of reconfiguration or failure accommodation in

closed-loop control systems is an interesting problem for future research, and in this

work we shall not concentrate on it.

The other integral part of an FTCS is failure detection and identification

(FDI). An FDI process essentially consists of two stages. The first stage is residual

generation, and the second stage involves using the residuals to make the

appropriate decisions. In this work we shall only concentrate on residual

generation, and the reader is referred to the extensive literature available for the

decision making phase of FDI (see [48] and [44] for a comprehensive survey).

1.1 Residual Generation

A residual is by definition a function of time which is nominally zero or close

to zero when no failure is present, but is distinguishably different from zero when a

component of the system fails. For example, the difference between the outputs of

two identical sensors measuring the same quantity is the simplest form of a

residual. A failure of either sensor corrupts the residual and this can be used to

detect a failure. The process of generating the residuals from relationships among

instantaneous outputs of sensors is usually called direct redundancy Two examples

where direct redundancy was exploited are [14]. [17].

It is also possible to generate the residuals using temporal redundancy, which
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is the process of exploiting the relationship among the histories of sensor outputs
i

and actuator inputs. This is usually done by using a hypothesised model of the

dynamics of the system to relate sensor outputs and actuator inputs at different

instants of time. We refer the reader to [10] for an example of using temporal

redundancy in residual generation. To illustrate the concept, let us consider the

following simple first order discrete system.

= a x(t) + b u(t),

cx(t) . . (1.1)

Here y(t) is the sensor output and u( t ) is the actuator input. A simple computation

shows that if the system is functioning properly and no failure is present, then

y(t) - a y(t-l) - cb u(t-l] = 0. (1.2)

Relations like (1.2) are known in the literature as generalized parity relations

[5, 6, 29]. Often, a parity relation by itself is used to generate a residual r(t). In

our example, simply take

r(t) = y(t) - a y(t-l) - cb u(t-l). (13)

Assuming the actuator is perfect and no measurement noise is present, r(t) can be

used to detect any sensor failure. Chow and Lou have studied the generalized

parity relations in detail, and the interested reader is referred to [5, 29] for a

thorough treatment of this approach to residual generation In Chapter 5, we shall

expose the fundamental relation between the generalized parity relations and

failure sensitive observers (FSO) which are the mam theme of this work.

FSO are another class of processors which use temporal redundancy to

generate the residuals. To illustrate the concept of an FSO for the case of actuator
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failures, let us consider an observable linear time-invariant (LTI) system with two

actuator inputs:

= A x(t) + B u(t) + B^^t) + B2m2(t),

= Cx(t). (1.4)

In (1.4), Bl is the first column of the control effectiveness matrix B, and similarly,

B2 is the second column of B. The term Sjm^f) characterizes a failure of the first

actuator, and 52m2(0 characterizes a failure of the second actuator. The functions

m t(t) are assumed to be completely unknown. However, by definition, m t(t) = 0

when no failure is present. Also for this example we assume that our sensors are

perfectly reliable.

Consider designing a full order observer with the following structure for the

system given in (1.4).

w(t) = (A+DC) w(t) - D y(t) + B u(t) . (1.5)

Now use the estimated value of the state to generate a pseudo measurement

z(t) .== C w(t). If no failure is present, the difference ~ ( t ) — y(t) will die away if

the observer is stable. However, when an actuator fails, e g., r n ^ ( t ) ^£ 0, the

observer continues to predict the unfailed nominal behavior of the plant, but the

actual output y(t) certainly contains the effect of the failure. Thus in the presence

of a failure, the innovation :(t) — y(t) will start to grow, and by putting a threshold

on the magnitude of the innovation we can detect the presence of a failure in the

system.

The more complicated problem is whether we can use the directional

properties of the innovation to identify the failed component. Beard [3] was the
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first to realize that through appropriate choice of the gain matrix it was possible to

confine the innovation caused by an actuator failure to a fixed direction in the

output space. He derived a set of sufficient conditions for the existence of a filter

such that the innovation is constrained to lie in independent subspaces for different

actuator failures. Shortly afterward, Jones [22] extended some of the results in

[3] and gave a complete procedure for modeling failures and designing a failure

detection and identification filter. Nevertheless, there are some fundamental

difficulties associated with the approach used by Beard and Jones. In Section 4.2,

we shall discuss some of these difficulties and shall rederive most of the results

reported in [3, 22] using our geometric approach. However, we do not intend by

any means to discredit the fundamental contribution of Beard and Jones to failure

detection and identification theory. Our work builds on their ideas, but the

mathematical tools we use are more general.

Let us continue our example so that we can illustrate how the directional

properties of the innovation can be used in identifying a failure Define two

different linear transformations of the innovation, r^t) and r.^t), as follows:

ri(t) := H! U(0 - y(0), (1.6)

r2(<) := H2 (z(t) - y(t)). (1.7)

If we can find matrices D, H^ and /f.> such that the failure of the first actuator

shows up in r^t) but has no effect on r2(£). and the failure of the second actuator

shows up in r0(£) but has no effect on r^t), then the identification task is trivial.

One only needs to compare the magnitudes of r^ ( t ) and r .•>(£) with some appropriate

thresholds to decide whether either or both of the actuators has failed.

Clearly, if the innovation growth is constrained to independent subspaces,

then HI and H<± can simply be taken as the projection matrices onto these
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independent subspaces. This is basically the approach taken by Beard and Jones.

However, a more natural approach is to find the matrices #,- with the gain matrix

D as part of the design process.

To further illustrate the concept, let us define e(t) := w(t) — x(t). Using

(1.5), (1.8), and (1.7), we have

e(t) = (A+DC) e(t) - Bl m^t) - B2 m2(t), (1.8)

rx(0 = H^C e(t), r2(l) = H2C e(t). (1.9)

From elementary system theory, for a nonzero m2(f) not to affect r^(t), the

image of £?2 should be in the unobservable subspace of the system (H±C,A+DC).

This restriction guarantees that the transfer function from rn2(£) to r^(t) is zero.

Also for a nonzero in^t) to show up in r^t), the image of B^ should not intersect

the unobservable subspace of (H]C,A+DC). Similar arguments can be given for

the unobservable subspace of (H^C,A+DC).

By proper choice of the matrices D, H^, and //2
 we can modify the

observability properties of the system relating the failure events to the residuals.

Clearly, the unobservable subspace of (HiC,A+DC) is simply the subspace spanned

by those eigenvectors of A+DC which are in the null space of H^C. Also, the

column vector B<y should be a linear combination of those eigenvectors, since the

second actuator failure should not show up m the first residual. Therefore, our

problem is really to use the freedom m assigning the eigenvectors of A+DC (see

[31]) to satisfy the failure detection and identification requirements.

On the other hand, instead of looking for the matrices D, H\. and //"2, we can

formulate the problem in terms of the existence of subspaces S^ and S2 that contain

the images of B2 and B^ respectively and that can be assigned as the unobservable
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subspaces of (HlCrA.-lrDC] and (H2C,A+DC) respectively for some Hlt H2, and D.

If such subspaces 5^ and So exist and can be computed only from A, C, B^, and £?o,

then we can easily find #1? H<>, and D from 5t and 5.?, and hence solve the problem

in an indirect manner. This is the essence of the geometric approach that we shall

use in this work (see [50]). When this method is applicable, it converts a highly

complicated problem in Hlt H2, and D to a straightforward problem in Sl and S2-

A subspace like 5j which can be assigned as the unobservable subspace of

(HiC,A+DC) by appropriate selection of the matrices H^ and D is called an

unobservability subspace (complementary observability subspace [47]). As should

be clear by now, these subspaces play a central role in the FDI problem, and the

entire subject of Chapter 2 is devoted to exploring the properties of these subspaces

and the related concepts.

1.2 Overview

Now let us say a few words about the organization of this thesis. In Chapter

2, the mathematical tools needed for solving the failure detection and identification

problem are reviewed. The first section recalls linear algebra and system theory

concepts. As is clear from the past section, characterizing the eigenspaces of an

observer plays an important role in the problem of failure detection and

identification. In Section 2.2, the concept of the (C*,A)-mvariant subspaces, which

is a powerful tool for modifying the eigenspaces of an observer, is reviewed. That

section also reviews the concept of invertibility and input observability of linear

time-invariant systems In Section 2.3, we review the concept of unobservability

subspaces. These objects are extensions of the (C,A)-mvariant subspaces, and they

play a central role in the solution of failure detection and identification problems.
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In Section 2.4, we introduce the concept of compatibility of a family of

(C,A)-invariant subspaces, which is used later on to reduce the order of the failure

detection and identification filter. Also, we extend the definition of output

separability given by Beard [3] and relate this concept to the compatibility of a

family of (C,A)-invariant subspaces.

In Chapter 3, we show how different component failures like actuator failures,

sensor failures, or changes in the characteristics of the plant can be modeled. We

continue with definition of the failure detection and identification filter problem

(FDIFP) in its most general form. In Section 3.2, the effect of sensor failure on the

innovation of a full order observer is analyzed. This leads to the introduction of the

new concepts of modified (C,/^-invariant and (C,J;A) unobservability subspaces.

Most of the contributions of this work are contained in Chapter 4. First, in

Section 4.1, the fundamental problem of residual generation (FPRG) is introduced

and solved. In this problem, only two failure events are present and it is desired to

design a residual generator that is sensitive to the failure of one of the actuators

but is not affected by the failure of the other actuator. Next, FPRG is extended

(EFPRG) to the case where multiple failure events are present, and it is required to

design a residual generator that detects and correctly identifies failure events in the

presence of multiple simultaneous failures. Using the solvability conditions of

EFPRG, the fundamental concept of a strongly identifiable family of failure events

is introduced. In Section 4.1.2, we consider the special case where the measurement

matrix is full column rank, i.e., the case of fully measurable state, and give a

minimal solution to EFPRG

In Section 4.2, a new formulation of the Beard and Jones detection filter

problem (BJDFP) is given. Our formulation of BJDFP is somewhat different from

the formulation that Beard gave in his doctoral thesis [3], but there are enough
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similarities to justify the name. We show that BJDFP has a computationally

simple solution when the failure events are one-dimensional. Also, we derive the

interesting relation between the fixed spectrum of the detection filter and the

invariant zeros of an appropriate system.

In Section 4.3, we restrict the structure of the residual generator, and

introduce the restricted diagonal detection filter problem (RDDFP). The nice

feature of RDDFP is that when a solution to the problem exists, then the solution

is usually of a lower order than the solution to EFPRG. It turns out that RDDFP

is an exact dual of the restricted control decoupling problem which has been

studied extensively in the 1970's [49, 32, 34]. Next, we expose the relationship

between RDDFP and BJDFP.

In Section 4.4, the requirement of detecting and identifying simultaneous

failures is relaxed, and the triangular detection filter problem is formulated and

solved. This problem is an exact dual of the triangular decoupling control problem

introduced in [33]. Finally in Section 4.5, the necessary and sufficient conditions

for the existence of a solution to FDEFP are derived. Using the solvability

condition of FDEFP, the important system theoretic concept of an identifiable

family of failure events is introduced.

In Chapter 5, the frequency domain interpretation of the results in Chapter 4

is discussed. This interpretation is used to relate the strong identifiability of a

family of failure events with the left invertibihty of an appropriate system, and

hence develop a simple procedure for solving EFPRG in the frequency domain.

Also the frequency domain interpretation is used to relate the closed-loop residual

generators of Chapter 4 with the residual generators which are designed based on

the generalized parity relations. This enables us to unify the residual generation

concepts.
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Finally in Chapter 6, we conclude our work with a summary and suggestions

for future research. We have also included some useful definitions and additional

results in the appendices at the end of the thesis.
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Chapter 2

Mathematical Preliminaries

In this chapter, we review the geometric ideas relevant to our work. First our

notation and the preliminary linear algebra concepts are reviewed. The reader is

referred to [18], [16], and [50] for a more in-depth treatment of these subjects. Then

we go over the concept of a (C,A)-invariant subspace, which forms the backbone of

our approach to the failure detection and identification filter problem. Next, we

give a new interpretation of an unobservability subspace based on a measurement

mixing map. At the end of Section 2.3, we have included an example which

illustrates the concepts developed in Sections 2.2 and 2.3. Finally, in Section 2.4,

the issues related to the compatibility of a family of (C,A)-in.variant subspaces are

addressed.

2.1 Notation and Background

Theorems, Lemmas, Propositions, and Definitions are all numbered together,

e.g., there will not be a Theorem 3 and also a Definition 3.

With £ a positive integer, k denotes the set {1,2, . . . ,&}. Similarly

k0 = (0,1, . . . ,k}, and k-1 = {1,2, . . . ,k-l}. If A is a finite set, \A\ denotes the

number of its elements. The symbol •= means equality by definition. We denote

the spectrum of A by a(A). The identity matrix is denoted by /. The symbol y

denotes union with any common elements repeated. We say A is a symmetric set if

x G A with x complex implies x* £ A, where * denotes the complex conjugate.
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Script letters JT, y, Z, ... denote real vector spaces with the elements x, y,

z,...; the zero space and zero vector are denoted by 0 ; the empty set is denoted by

0. The dimension of the vector space X is denoted by d(JC). In this work we shall

be concerned only with finite dimensional spaces. If the vector spaces Jf and ]/ are

isomorphic (i.e., rf(JT) = d(y)), we write JT ~ ]/.

If S and T are two subspaces, then 5 C T means S is a subspace (not

necessarily proper) of T If 5 and K. are subspaces of X, then k + S and K. 0 5 are

defined as follows:

% + S := {r+a :r £ Z,s € S}, (2.1)

R 0 5 := {x : x £ R and z G 5}. (2.2)

The family of all subspaces of T is partially ordered (see Appendix A) by

subspace inclusion (C) (i.e., 1. 5 C S, 2. if S C R and ^ C T then S C T, 3. it

S C K. and K. C 5 then 5= K.). Under the operations + and H, this family forms

a lattice (see Appendix A): namely S + % is the smallest subspace containing both

K. and S, and 5 0 K- is the largest subspace contained in both K. and S. The

concept of a lattice will be used later on when we deal with the compatibility issue.
•

Two subspaces S and R are said to be independent if S Pi % = 0. A family of

k subspaces {IV;, i £ k} is independent if1

^ n

If {"Wt, i £ k} is a family of independent subspaces, their sum will be written as

Unless otherwise noted all sums and intersections are over k
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W := JJ>i © • • • 0 % . (2-4)

In general © indicates that the subspaces being added are known or claimed to be

independent. Clearly if S and K, are independent then d(S+R) = d(S) + d(R).

Let JTj and JT2 be arbitrary linear spaces over the field of real numbers R.

The external direct sum of ^ and JT2, written Xi © JT2, is the linear space of all

ordered pairs

under componentwise addition and scalar multiplication. Note that we are using

the same symbol for both external and internal direct sums; however, the

distinction will be clear from the context. Sometimes it is convenient to write
*

xl © X2 instead of (xi,x<>) for elements of ̂  0 T2.

t
Let JC and y be linear spaces over the field of real numbers K; C: X. —* y

denotes a linear transformation (or map) from t to ]/. Let {or,', i G n} be a basis

for X. and {y,-, i G 1} be a basis for ]/; then

Cfc,- = Cj.yj + • • • + chylt i G n',

for uniquely determined elements c,,- G R- The /X / i array [c- ] is the matrix

representation of the map C. Both maps and their matrix representations are

denoted by capital italic letters A, B, C, ... We assume that the reader is

already familiar with matrix operations and concepts like rank, determinant, and

minors of a matrix.

Let C: X —»• y be a map. The vector space JT is called the domain of C, and

y is the codomain. The kernel (or nullspace) of C is the subspace
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Ker C := {x : x € JT and Cx = 0} C JT. (2.5)

The image of C is the subspace

Im C := {y : y £ ]/ & 3x E JT, y = Cx} C I/. (2.6)

We usually denote the image of an arbitrary map C by script C. Note that the

image and the codomain of a map are not necessarily the same because the map is

not necessarily onto.

If K. C r, CK. denotes the image of K. under C and is defined by

{y : y e y & 3x 6 R, y = Cz} C ]/. (2.7)

If 5 C y, C~*S denotes the inverse image of 5 under C and is defined by

:= {x : x e r & Cx 6 5} C r (2.8)

Note that C~l is the inverse image function of the map C, and as such it will be

regarded as a function from the set of all subspaces of y to those of JT. If

C : r — » y and K.I} £2 Q %< it is simple to show

(2.9)

but in general

c ( R l r \ ^ o ) c c R l n c ^ l 2 (2.10)

with equality if and only if

Dually if 51( S2 C y we have
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n s2) = c-1*! n c~ls2, (2.11)

but

C~l (S1 + S2) D C~^Sl + C~1S2. ! (2.12)

Also if {£,-, t G k} is a family of independent subspaces, then

t f (* i © • • • ©**) = ££!© • • • © C£j. (2.13)

if and only if

( # 1 © • ' • © > e / f c ) n K e r C ' = > e i n K e r C © • • • © je j tDKerC. (2.14)

We say C is epic if Im C = y (i.e., the matrix representation of C has full row

rank). If C is epic then it has a right inverse C~r such that CC~r = I. We say C

is monic if Ker C = 0 (i.e., matrix representation of C has full column rank). If C

is monic then it has a left inverse C~l such that C~1C = I.

Let V C JT, d("V) = k. Since V can be regarded as a k dimensional linear

vector space, a vector v £ V can be described as an element of either "V or JT. Let

{v,-, * € k} be a basis for V, and {r,, i £ n} be a basis for Z". Then each u, can be

represented as follows:

The nX/: matrix [v,-y] determines a unique map V: V — »• Jf. We call this map the

insertion map of V in JT.

Let C : X. — * ]/, and V C JIT be a subspace with insertion map V- V —* X.

The restriction of C to V is the map (C : V) : V — »• ]/, and is given by

(C : V) := CV. Now suppose Im C C W C I/. We can restrict the codomain of C
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to "W. If W: IV — » y is the insertion map of "W in y then the new map

C\V: C] : T -+ Wwith the restricted codomain is given by (X/: (7) := VT-'C*.

Let JT be a linear vector space over the field of real numbers R. We denote

the set of all linear functionals x ' : X -» R by T' . This set of linear functional

is turned into a linear vector space over R by the definitions

(xt' + x<>')x := xj'ar + x2'x; x/ £ JT ', x € I

(cxjOr := cfo'z); a^G*1 , e £ R-

The vector space T' is called the dual space of Jf.

If (xlt . . . , xn} is a basis for X, the corresponding dual basis for I"' is the

unique set (x^, . . . , xn'} C Z ' such that x,'x = <$• where 5,^ is the Kronecker

delta.

Let C : r — »• y be a map. The dual map C ' : y ' — * X. ' is defined as

follows. Fix J/Q' G y ' and let x £ X" vary. The scalar yg'^x is clearly a function of x

and a linear functional on JT Hence there exists x0' £ T ' such that x0'
x — 2/o'^x-

Now let j/0'
 to varv over I/ '• The correspondence x0'x = yg'^ defines a

transformation between y§ and x0' which is defined to be the dual map C '. By

choosing arbitrary bases for JC and y, and their duals X ' and y ', it is easily shown

that if C l=[c,-J] then C" = [cjt]. Therefore, in matrix notation 6" is just the

transpose of C.

If 5 C I", then S-L is the aptuhilator of 5 and is defined as follows:

5-L .= { x ' . x'5 = 0, x' £ r'} (2.15)

Clearly S-L is a subspace of I ' Thus, 0-L = I ', JC-L = 0.

If je C I and 5 C X, then
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(je + s)-L = je-L n s-L, (2.16)

(je n 5)-L = jei + 51. (2.17)

Also

K. C S if and only if £-L D $1. (2.18)

We now form the dual space (1C'}' of I"'. Fix XQ £ I", and define z in

Z := (r') 'by

^(y') = y'x0, y ' e r ' . (2.19)

Note that ^(fljyi'+aoyo') == ai5:(yi')+a2-(y2') ^or ai> °2 ^ ^' hence 2 £ Z is a linear

functional on Z'. Also for every linear functional ^0 G Z, there is a vector IQ 6 JT

such that

*o(y') = y %, (2.20)

for every y'G £'• Equations (2.19) and (2 20) provide a basis independent natural

isomorphism! 2 ~ I", and from now on we identify (T')' as I". Thus, if £ C I"

then

(jeJL)-L = je. (2.21)

Let C: I -H. ]/, je C I, and S C ]/; then

(Im C7)l = Ker C", (2.22)

(Ker <7)J-= Im C", (2.23)

(2.24)

(2.25)
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CK. C 5 if and only if k C C~1S,

C~l (CR) = £ + Ker C.

(2.26)

(2.27)

(2.28)

Using the above identities, the subspaces R + 5, K. fl 5, and A"1 S can be

computed with the following matrix algorithms. Let R: R. -* 1C and 5: 5 -* JT
*

be the insertion maps. Let R-L (5-L) be a maximal solution (i.e., a solution with

maximum rank) of R^-R = 0 (5-1-5 = 0); then

= Im[R, 5],

S = Ker

A~1Z = Ker

We shall use the following trivial facts throughout this thesis.

(2.29)

(2.30)

(2.31)

Proposition 1: Let B and C be arbitrary nXm and nXl matrices

with entries in an arbitrary field F. Then the linear matrix equation

BX=C (2.32)

has a solution for X if and only if Im C C Im B Thus, (2.32) has a

solution if B is epic Similarly,

(2.33)

has a solution for A" if and only if Ker B C Ker C Thus, (2 33) has a

solution if B is monic. (x)

Now we work out an example to familiarize ourselves with using matrices in
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and T2 = Im T2 where and TO are

" 1 0*
0 1
0 0

f T2~

i o"
-1 0
0 1

representing subspaces. Let Tj = Im

r, =

In our terminology 7^ and !T2 are the insertion maps of 7^ and To- First we find the

annihilators of T! and T2 (see (2.15)). Obviously these subspaces are the left

nullspaces of 7\ and T2.

"o "
0
1

C r', T2-L = Im
"l "
1
0

Now we compute the Tj n T^> using (2.30).

T, n To = Ker

Obviously Tj fl T? C T1( and in the given basis, Tj n To considered as a subspace of

T! has the representation [1 —1]' because

"o o i "

1 1 0
= Im

1
-1
0

1
-1
0

=

" i o "
0 1
0 0

1" 1
[-1

Keeping this in mind, we compute the inverse image of To under T\ using (2.31).

10
01
00

= Ker [1 1] = Im

Note that rl~
1(T2) = T^^ n T2) as should be .

Let S C JT. We say vectors x, y 6 X are equivalent mod S if x—y £ S (see
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Chapter 7 of [16]). Clearly equivalence mod S is a relation satisfying the reflexive,

symmetric, and transitive properties (see Appendix A). Each vector i £ X has

associated with it an equivalence class w defined as follows:

V) := {y • y € I, y-x £ 5}. (2.34)

If we take two equivalent classes u>j and u;2 and add the elements of w^ with

arbitrary elements of w?, then all the sums belong to one and the same class, which

will be called the sum of the classes w^+w^. Similarly, if all the elements of the

class w are multiplied by a number a E R, then the products belong to -one class

which will be denoted by a w. Hence, the set of all equivalence classes w^, w^, ...,

with the two operations addition and scalar multiplication as defined, form a linear

vector space, which is called the factor space JT/S. It is simple to see that

d(£/S) = <f(JT) - d(S}. For x E Z" the element w E T/S is the coset of I mod S; w

is sometimes written x + S. The map P: Z" —* JT/S such that w = Px is called the

canonical projection of I" on JT/S. Obviously Ker P= S and P is epic.

Let A : X —*• JT. A subspace S C Z" is A-invanant if A S C S . Let S C Z be

A-iuvariant and P: X —> £/S be the canonical projection. There exists a unique

map (A : JT/S) : r/S - I/S such that (A: X/S)P*= PA. A : X/S is the map

induced by A on the factor space X/S. Let S: S —* X be the insertion map.

There exists a unique map (A : S) : S —* S such that A5 = S(A : S). A: S is the

restriction of A to S with the restricted codomain S (i e., short for S: (A S)). Let

£ be any subspace such that I" = S © £, and let {r{, i G k} be a basis for £.

Choosing a basis {s , ;E 1} for S, we see that in the basis [s^, . . . ,rf.} for JT the

matrix representation of the map A has the following form
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A =
Al

(2.35)

AI and A2 are the matrix representations of the maps A: S and A: JT/5

respectively. The block-diagonal structure of A in this new basis clearly shows that

ff(A] = ff(A : 5) W ff(A : T/5). (2.36)

If 5 and Tare both A-invariant subspaces and S C T, we write A : T/S for the

operator induced by the restriction of A to Ton the factor space T/S.

The maps A: X -» I, S: U - I, and C: r -* ]/ (</(!) = n , </(]/) = /,

</(£/) s=m ) will be fixed throughout and are associated with the system

S : x(t) = A x(t) + B u(t), y(t) = C x(t). (2.37)

We refer to (2.37) as the "system (C,A,BY or "system £"' interchangeably.

We write B = Im B and

<A\B> := 5 + AS + • • • + A^S (2.38)

for the infimal A-invariant subspace containing B, 5 e., the controllable subspace of

the pair (A,B). We write X = Ker C and

<X|A> := K n A ~ l < n • • - nA~ n + l < (2.39)

for the supremal A-invariant subspace contained in K", i.e., the unobservable

subspace of the pair (C,A).

i
Consider the system E given in (2.37). Let S C JT be A-invariant, S C Ker C,

and P: X. -* JT/S be the canonical projection. The symbol 17: JT/S denotes the

factor system defined by the triple (CQ,AQ,BQ) with AQ := A: JCfS, BQ := PB,
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and CQ the unique solution of C$P = C which exists because 5 = Ker P C Ker(7

(see Proposition 1). Therefore, if 5 is the unobservable subspace of the system E,

then 27: JT/S is the system with the unobservable subspace factored out, and thus

is observable.

Proposition 2: Let S C X. be A-invariant. Let 5: S —» Jf be the

insertion map, and (C,A) be observable. Then (COH4g) is observable where

CQ := (C: S) (i.e., C0 = CS) and AQ := (A : S) (i.e., Ag is the unique

solution of AS = 5Ag).

Proof: Because (C,A) is observable,

0 = Ker C n Ker CA fl • • • fl Ker CAn~l.

Taking the inverse image under S of both sides and remembering that 5 is

monic and 5-1 (Ker C} = Ker CS, then

S-lQ = 0 = Ker CS n Ker CAS n • • • H Ker CAn~lS.

Substituting for CS and .45, we have

0 = Ker CQ n Ker C^ n • • • H Ker C^A^-1.

i
«

Thus (CQ,AQ) is observable. 0

2.2 (C,A)-invariant Subspaces

As we noted in Chapter 1, the essence of the geometric approach is to look

for subspaces that solve our design problem. In the failure detection and

identification problem, our goal is to design an observer. Hence, characterizing the

invariant subspaces of A+DC (i.e , the eigenspaces of the closed loop filter) is
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fundamental to our synthesis problem. With this motivation, the concept of a

(C,,4)-invariant subspace is introduced.

Definition 3: Let A : T -» T and C : T -* y. We say a

subspace V) C X. is (C*,A)-invariant if there exists an output injection map

D : y -» r such that [2, 50, 47]

(A+£C) W C W . (2.40)
®

The class of D for which (2.40) holds will be denoted by D(W). Given any

(C, A)- invariant subspace, it is simple to characterize the elements of D("W). Let

W: IV — »• Jf be the insertion map and P be a maximal solution (i.e., a solution of

maximum rank) of FW=Q. Then it is immediate from (2.40) that D £ D(1V) if

and only if D is a solution of i
•

P(A+DC)W=0. (2.41)

Given a subspace "W, it will be fruitful if we can tell whether it is

(C, A)- invariant or not without computing a D G £(W). The following lemma

provides an answer to this problem, and so is of fundamental importance.

Lemma 4: A subspace "W is (C,.4)-invariant if and only if

) C W (2.42)

Proof: (if) Let w^, . . . ,Wfc'wk+i> • • • >wp ^e a basis for IV such that
W-L, . . . ,wk spans Wfl Ker C. From (2.42) Au*t =• st (i E k) for some

a,- £ W. Also (A+DC}wt = st (i £ k) for arbitrary D because

Wf £ Ker C (i € k). Now, denote Aw = x (k < j r < p) for some

X £ JT. Let D be a solution of
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. . . ,wp\ = -[xk+1, . . . ,xp\ (2.43)

which exists because C[wk+1, . . . ,wp] is monic. With this D, clearly

(A+DC]w{ = Si (i £ p) for some sf G TV, and (A+DC) W C "W follows

immediately.

(only if) Let "W be (C,A)-invariant. Let {wit i G k} be a basis for

Wn Ker C. By hypothesis, (A+DC] W C W; thus (A+DC) u;,- G V. But

Cw,- = 0; therefore, Aw{ G Tf, and we have A (Vn Ker (7) C W. ®

It is clear from (2.43) that any D0 such that DQCwj= —%j + y,- (k < j < p), for

any y^ G W, is also a member of £(W). Thus, if D G D(W) then a sufficient

condition for D0 G D(W) is

(Z>-Z>0) CW C W. (2.44)

This condition is also necessary as is obvious from (2.40). Let P: X. — * JT/H/ be

the canonical projection. Clearly, (2.44) implies that if D G P_(W) and PD = PDQ

then DQ G P_(W)- Moreover, if C is epic and W + Ker C — JC, then it follows from

(2.44) that for all D, DQ G D("W], PD = PD0.

From the definition of a (C,A)-mvariant subspace, it is obvious that IV is

(C,A)-invariant if and only if IV is (C,A+DQC)-mva.ri&nt for any arbitrary map D0.

Also, any A-invariant subspace is automatically (C,A)-invariant (simply choose

D = 0).

Consider the system given in (2 37) with B = 0. We can state the concept of

a (C",A)-invariant subspace in terms of designing an observer that estimates a

certain linear transformation of the states. This concept is due to Willems [47] and

is formalized in the following proposition.

Proposition 5: A subspace If is (<7,A)-invanant if and only if there
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exist matrices E and F such that w(0) = Pz(0) yields w(t] = Px(t) for
t > 0 where

(2.45)

and P: X — » r/W is the canonical projection of W. J

Proof: (if) Let "H> be (C*,A)-invariant, then by definition there exists
a D such that (A+DC) W C V. Let P: £ -* Jt/W be the canonical
projection of IV and w(t) := jRr(f). Let us define F and .E as follows:

F := A+DC : JC/1V and E := -PD. (2.46)

Then

= PA x(t) + FDC x(<) - PD y(t) = FP x(t) - PD y(t)

(only if) Let x(t] G Ker C; then obviously y(t) = 0 and

w(t) = Fw(t) = Px(t) = PA x(t).

Moreover, if x ( f ) E W n K e r C , then w(t) = 0, and the above relation
implies PA x(t) = 0. But this implies that A x(t) 6 IV Hence
A( ) fn Ker C) C Tf, and using Lemma 4, it follows that "W is
(C7,A)-invariant. 0

The philosophy behind the interpretation of Proposition 5 is to give special

attention to those outputs w(t) = Px(t) which, with Ker P= TV, may be

reconstructed exactly from y(t) [47].

Assume contrary to the assumption we made previously that B 7^ 0. Then a
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simple computation shows that the result of Proposition 5 still holds if we add the

term PB u(t) to the right hand side of (2.45). Now if the subspace IV is such that

ImBC IV, then obviously PB = 0. In other words, the observer given in (2.45)

does not need to have any knowledge of the input to the system, u(t), in order to

perfectly estimate Px(t), e.g., even if the actuator fails and its behavior is unknown,

the observer is still capable of perfectly estimating Px(t) given the initial conditions

are perfectly known.

For completeness, we go over the concept of an (A,.S)-invariant subspace and

exploit the duality that exists between an (A,jB)-invariant and a (C,A)-invariant

subspace. We say a subspace "V C JT is (A,.B)-invariant if there exists a state

feed-back map F: X -» U such that (A+BF) V C V [50, 45]. Obviously,

(A,5)-invariant subspaces will be useful when we try to use state feedback to

modify the characteristics of the plant. It is simple to show [50, Lem. 4.2] that V is

(A,.B)-invariant if and only if

A V C V + Im B. (2.47)

Similarly, it is immediate from the definition that V is (A,.B)-invariant if and only if

it is (A+BF0,B)-\nv3irisint for any arbitrary map FQ. Also any A-invariant subspace

is automatically (A,B)-invariant (simply choose F = 0).

Theorem 8: Let W C L IV is (C,A)-mvariant if and only if 1C-1- is

(A ',C ')-invariant.

Proof: (if) By hypothesis IV is (C,A)-invariant, thus

(A+DC) W C W

WC (A+DC)-11V (by (2.26))
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D (A '+C 'D ') W-L (by (2.25)).

Therefore, "W-1- is (A ',C")-invariant.

(only if) By hypothesis W-^ is (.4 ',C")-invariant. Therefore, using

(2.47) we have

A'1 W D W n Ker C (by (2.21), (2.22), and (2.24))

A ( U / n K e r C ) C V (by (2.26)). 0

Now we continue with exploring the properties of a family of (C,A)-invariant

subspaces. Let L C JT. We denote the class of (<7,A)-invariant subspaces

containing L by W(L). Using this notation, the class of all (C,.4)-in variant
*

subspaces of JT can be written as )V(0).

Lemma 7: The class of subspaces W(L) is closed under

intersection.

Proof: Let ^ € W(£) and W> £ ML) Then obviously

1 C Vlf W2; hence, L C ^ n W2- Moreover, from (2.42)

n Ker (7) C ^

A ( Wj n Ker C) n A ( W> n Ker C} C ^ n W2

A ( Vt n W2 n Ker C) C ^ n W> (by (2.10)).

Thus ^ 0 ̂ 2 6 1(1). 0

Unfortunately, the family of all (C,A)-invariant subspaces of 1C is not closed under

subspace addition (e.g., the sum of two (C,A)-invariant subspaces is not necessarily
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(C,A)-mvariant); thus thb family is not a sublattice of all subspaces of T.

Because "Vt(L) is closed under intersection, it follows immediately that it

contains an infimal element "W* := inf W(L) [47]. By an infimal element of a

family we mean a member of the family that is contained in all other members of

the family.

Now let L C Jf. We denote the family of (A,J3)-invariant subspaces

contained in L by V(£). It is simple to show that V(l) is closed under addition

[50J; therefore, it contains a supremal element V* := sup V(£). By a supremal

element of a family we mean a member of the family that contains all other

members of the family.

These extremal subspaces have interesting system theoretic interpretations.

Consider the system S, and let W* .= inf W(B). A choice of output injection map

D € £(W*) amounts to rendering the system minimally controllable from the input

u (i.e., the subspace <.A+DC]B> will be as small as possible). This interpretation

of W* will be useful in FDI as we shall see in Section 4.2. Systems for which

}V* = JT are called perfectly controllable, since the controllability of such systems

cannot be altered by output injection.

Another interesting property of "W* is that

W* C <A\B>. (2.48)

Note that <A\B> is A-invariant and also B C <A\B>. Hence, <A\B> is

naturally (C,A)-invariant, and we have <A\B> £ W(B). Using the definition of

IV*, (2.48) follows immediately

Dually, let V* := sup V(Ker C). A choice of state feedback F £ F(V*)

amounts to rendering the system maximally unobservable from the measurement y
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(i.e., the subspace <Ker C\A+BF> will be as large as possible). Systems for which

V* = 0 are called perfectly observable [23], since the observability of such systems

can not be altered by state feedback.

The dual of (2.48) is also true. Namely

<Ker C\A> C V*. (2.49)

The derivation is dual to the one given for (2.48).

The extremal subspaces W* and V* are also useful in checking the right and

left invertibility (cf. [38]) of a given system. Because the concept of left invertiblity

will be used later on in formulating the failure detection and identification problem,

it is helpful to formally state it in here.

Definition 8: Consider the system L, and assume x(0) = 0. We
say £ is left invertible if y(t) = 0 for t > 0 implies that u(t) = 0 for t > 0.

®

Clearly, this definition is equivalent to requiring that the transfer matrix

C(sl— A)~1B has a left inverse (i e., the columns of the transfer matrix are linearly

independent over the field of rational functions).

Now we state the result which relates the invertibility of a given system to

the extremal subspaces W* and V*.

Proposition 9: Consider the system (C,A,B). Let
W- := inf yfimB) and V* := sup V(Ker C). For the moment let

/ < m. Then the system (C,A,B) is right invertible if and only if C is epic

and

Ker C + W = T. (2.50)
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Now let / > m. Then the system (C,A,B) is left invertible if and only if B
is monic and

I m B n V = 0. (2.51)
0

t
4

We refer the reader to [34] (also see Exc. 4.4 of [50]) for a complete derivation of

the above proposition. Using Proposition 9, it follows immediately that every

perfectly controllable system with C epic is right invertible. Dually, every perfectly

observable system with B monic is left invertible. A perfectly observable and

perfectly controllable system with C epic and B monic is called irreducible [8].

Note that an irreducible system is square and invertible.

Now we state the definition of input observability (cf. [38]).

Definition 10: We say the system (C,A,B) is input observable if B
is monic and

<Ker C\A> n B = 0.
<8>

We can give a more intuitive interpretation of an input observable system.

Consider commanding the system (C,A,B) with a step input of strength UQ, and

observing the system output y(t). This system is input observable if and only if we

can uniquely determine u0 from observing the output y(t) for t > 0 [38J. Also it is

simple to show that the system E is input observable if and only if there does not

exist a nonzero mXl constant vector / such that C(sl— A)~lBl — 0; i.e., the

columns of the transfer matrix are linearly independent over R.

The concept of input observability is closely related to the concept of left

invertibility. As a matter of fact every left invertible system is input observable.
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"0 3 4~
1 2 3
0 2 5

,B =
1 -3 "
0 1
0 0

, c =

This simple fact follows immediately from Proposition 9, (2.49), and Definition 10,

but the converse is not necessarily true. For example, the following system is input

observable but not left invertible.

0 1 0

0 0 1

Note that the transfer matrix of this system is simply

(s-5) (s-3)(s-5)

2 2(s-3)

which is not left invertible since the columns of G(s) are linearly dependent over

the field of rational functions. However, there does not exist any nonzero constant

vector / for whcih G(s) I = 0, so the system is input observable.

However, if the system is single-input and multi-output, then input

observability implies left invertibility.

Lemma 11: Consider the system (C,A,B) with B monic and

d(B) = 1. The system (C,A,B) is left invertible if and only if it is input

observable.

Proof: From the remark preceeding the lemma, we need only to

prove the sufficiency. Assume (C,A,B) is input observable but not left

invertible. Let V* be as defined in Proposition 9. Because d(B) = 1, using

(2.51) and the assumption of non invertibility we have B C V*. From
(2.47), we know AV* C V* + B or equivalently AV* C V* But

<Ker C|A> is the largest .4-invariant subspace in Ker C. Therefore,

B C. "V* C. <KerC|A>. Obviously, this contradicts the assumption of

input observability (x)
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No\v we give a finite recursive algorithm for computing the infimal element of

the family TJflL).

Theorem 12: (((7,A)-invariant subspace algorithm) Let L £ £ and
W* := infill). Then Ttf* = lim'Wk where 1Vk satisfies the following
recursion [50j

CAISA WM = L + A ( W n K K C } , W° = 0. (2.52)

We can simply implement CAISA in terms of matrices. Let Im L = L and

Pk be a maximal solution of PkWk = Q. With VV° = 0 solve the following

equations recursively.

Pk

C
Tk = Q and Wk+ l = [L, ATk\. (2.53)

Stop when Rank WkJr l — Rank Wk; then IV* = Im Wk. Obviously the algorithm

should converge for k < n.

A similar algorithm for computing V* is given in Chapter 4 of {50]. Van

Dooren [43] has recently published a reliable algorithm for computing V*. His

algorithm is quite elegant and can be dualized for computing "W* We also refer the

reader to [27] for another reliable algorithm for computing V*.

The following pole placement result will be useful when it is desired to design

observers that play the twin roles of being detection filters and full state

estimators.

Proposition 13: Let (C,A) be observable, TV G TjjO) with
rf(TV)= m , and P- I -* T/TV the canonical projection. If DQ € D_(W)
and A is an arbitrary symmetric set of m complex numbers, there exists a
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D : y -* JT such that

PD = PD0 (2.54)

<r(A+Z)C) = ^(A+ZX? : IfW) W A. (2.55)

Proof: Let VK: W — *• JT be the insertion map and write

AQ = (A+D0C : IV). Clearly WA^ = (A+DQC)W and C : IV = CW . Using

Proposition 2, observability of (C,A) implies that (CW,Ag) is observable.

Therefore, there exists a D1 : y —• V such that o-^+^CTVO = /i .

Define D = DQ + WDl . Then PD = PD0 because PW = 0 ; therefore,

£ € £W Also (A+DC : W) = (A+DQC : W) + D1CW= AQ + D1CW;
thus

er(A+DC :

In Proposition 13, we did not mention whether it is possible to assign the spectrum

of A+DC : ICfW arbitrarily. It turns out that in general this is not possible, and

this will be the topic of the next section.

i
•

2.3 Unobservability Subspaces

In Proposition 5, we gave an alternative interpretation of a ((7,^4)-invariant

subspace in terms of designing an observer which estimates a linear transformation

of the states. However, in that discussion we said nothing about the error

dynamics of the observer. Let W be (C*,A)-invariant, and P X —> JC/1V be the

canonical projection. Consider the observer given in (2 45), and define the error

vector e(t) := w(t) — P x(t). It follows immediately that e(t) satisfies

e(t) = w(t) -Px(t) = Fw(t) + Ey(t) - PA x(t)
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= Fw(t) - P(A+DC) x(t] = F(w(t) - Px(t))

= Fe(t}. (2.56)

If, contrary to the assumption in Proposition 5, e(Q) ^ 0, then the error dynamics

become relevant, and they are characterized by the spectrum of F as given in

(2.56). Therefore, the case that ff(F) can be assigned arbitrarily is of special

interest. Unfortunately, if "W is only (C*,A)-invariant, it is not always true that the

spectrum of F can be assigned arbitrarily. Based on these ideas, we introduce the

concept of an unobservability subspace.

Definition 14: We say a subspace 5 C JT is a (C,A)
unobservability subspace (u.o.s.) if

{ (2.57)
«

for some output injection map D : y — »• T and measurement mixing map

H-.y - y. <S>

Later on, we shall derive the relation between the pole assignability of F and the

definition of a u.o.s.

It is clear from the definition that a u.o.s. is (A+ZX7)-invariant; thus it is a

(C,.A)-invariant subspace, and Z)(S) j^ 0. (Recall that Z)(S) denotes the class of all

maps D:]J -+ X. such that (A+DC) S C S.) We use the notation S(L) for the

class of u.o.s. containing L. Using this notation, the class of all unobservability

subspaces of JT can be written as S(0).

Dually, we say a subspace Z is a controllability subspace if

K. = <A+BF\lm BG> for some state feedback map F: I — U and some input

mixing map G : U — * U (see Chapter 5 of (50, 45]). Applying the duality relations
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(2.23) and (2.17) to (2.57), we conclude immediately that

SJ-=<A'+C'D'\ImC'H'>,

and 5-L is a controllability subspace of the dual system.

Now we try to eliminate the appearance of H in (2.57). The following

proposition is the dual of the Propsitions 5.2 and 5.3 of [50].

Proposition 15: Let S C JT. Then 5 € 5(0) if and only if there

exists a map D : ] / — > • Jf such that t
•

S = <Ker C + S\A+DC>. (2.58)

Moreover, if 5 G 5(0), then (2.58) holds for every map D 6 D(S). <g>

Using the above proposition, if we are given a u.o.s. 5, then a measurement mixing

map H can be computed from S by solving the equation Ker HC = Ker C + S.

It is clear that S defined in (2.57) is the unobservable subspace of the pair

[HC,A+DC]; therefore, if this subspace is factored out according to the procedure

given in Section 2.1, then the resulting factor system Is observable, and its

spectrum is arbitrarily assignable. This fundamental property is stated in the

following theorem.

Theorem 16: Let S be a u.o.s. with d(S) = k. For every

symmetric set A of n—k complex numbers, there exists a map D : y ~*• Z"

such that

<r(A+DC:X/S) = A. (259)

Proof: Because S is a u.o s., there exist DQ and H such that

5 = <Ker HC\A+DQC>. Note that DQ can be computed from (2.41),
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and H can be computed from Proposition 15. Let P: X -* X/S be the

canonical projection, and consider the factor system defined by (C0,A^)

where AQ := (A+D0C : T/S), and C0 is the solution of CQP= HC (e.g.,

CQ = HCP~r). Clearly (C0,A^) is observable; therefore there exists a Dl

such that ^(AQ+D^CQ) = A for an arbitrary symmetric set A. Let

D = DQ + P~rDlH. (2.60)

From (2.60), (D-DQ)CS = 0, and using (2.44), we have D G £(5).

Clearly, this D satisfies all the requirements. 0

The reader should note that we can use any technique we please to find the

map DI- For example, one possible choice is to design a (steady state) Kalman

filter for the observable system (C0,A0) and set D± equal to the steady state

Kalman gain.

The converse of the above theorem is also true, and its proof is the dual of

the one given in Theorem 5.2 of [50]. Here we just state the result.

Theorem 17: Let S C £ be a subspace with d(S] = k. Suppose

that for every symmetric set A of n— k complex numbers there exists a

map D \ y - + X such that (A+DC) 5 C S and <r(A+DC • JC/S) = A, then

5 is a u.o.s. ®

Using the last two theorems, it is clear that the spectrum of F given m (2.56) is

arbitrarily assignable if and only if IV is an unobservability subspace.

As with W(£), the family of u o.s.'s S(£) is closed under intersection;

therefore, it contains an infimal element S* .= inf S(£) [47j. We give two

different algorithms for computing 5*. Both algorithms require a precomputation

of "W* which requires the use of CAISA. The first algorithm, like the CAJSA, is a

recursive procedure. The second method is not a recursive procedure but requires a
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computation of the map D.

Theorem 18: (Unobservability Subspace Algorithm) Let L C JT,

W* := inf )V(L), and S* := inf 5(1). Then, S* = limSk where Sk

satisfies the following recursive relation [50].

UOSA 5fc+1 = W* + (A-15*) n KerC, 5 ° = I. (2.61)

It follows immediately from the above theorem that

Ker C + W* = Ker C + S*. ' (2.62)

Now we restate UOSA in terms of a matrix algorithm. Let Im W* = ~W*. Let Pk

be a maximal solution of PkSk = 0. With S° = I, solve the following equations

recursively:

PkA

C
= 0 Sk+l = [W*, Tk \ .

Stop when Rank Sk+l = Rank 5^; then Im Sk = 5*. Note that the algorithm

converges for k < n.

A similar algorithm for computing £* is given in Chapter 5 of [50] Also an

stable implementation of this algorithm is given in [43] (see also [27]). The dual of

this reliable algorithm can be used to compute S*

The second method of computing S* is as follows

Theorem 19: Let L C X, and S* = inf S(L). Then

S* = <KerC+ W*\A+DC>
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for W := inf }%L) and D £ D(}V*) [50, Dual of Thm 5.5]. <g>

The reader should note that the above algorithm is of mostly theoretical value, and

in actual practice other more numerically reliable algorithms should be used (see

[43] and [27]).

As an immediate corollary of Theorem 19, we have the following important

result:

D(W) C D(S*) . (2.63)

Stated in words, (2.63) implies that every map D which makes W* (A+DC)-

invariant also renders 5* (A+DC)-invariant.

As we stated previously, if 1> is an arbitrary (C,A)-invariant subspace, the

spectrum of A+DC : Jf/V is not usually arbitrarily assignable. The following

proposition will help us to identify the fixed eigenvalues.

Proposition 20: Let V be (C,.4)-invanant, Sx = inf S(M), and

D 6 D(V). Then

ff(A+DC: r/V) = (T, I±)<T

where

a := <r(A+DC: 1/5*)

is freely assignable by a choice of D £ DC\J), but

<rz := <r(A+DC:

is fixed [50, Dual of Thm. 5.7). Moreover, if V = i n f W(lm B), then crz

corresponds to the set of invariant zeros (see Appendix B) of the system
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(C,A,B) [9, 15].

For completeness, a brief review of the concepts of invariant and transmission zeros

of a multivariable system is given in Appendix B.

Most of the results in this section are stated without any proof. Our main

goal is to apply these results to our problem instead of re-deriving them. However,

the interested reader can dualize the proofs given in Chapter 5 of [50].

Now we give a numerical example to illustrate some of the concepts that we

have reviewed in the past two sections. Consider the system (C,A,B) with

, C= [0 1 0 ].

Using CAISA and UOSA, we can compute W := mf W(B) and S* .= inf S(B)

Carrying out the calculation, W* = Im Wand S* = Im S where

" 2 - 1 0 "
0 0 0

- 1 0 0
,B =

' 0 "
0
1

0
0
1

c
0 1
0 0
1 0

Now we want to characterize the elements of D(S*). Let D = [d^, d*, d^} '. Using

(2.41), D E D(W) should satisfy

= 0.

Clearly any D satisfies the above relation. Also remember that D{1V*) C D{S*);

therefore, any D = [d±, do, d^ \ ' also belongs to D[S*).

Let P: X —* XfW* be the canonical projection and x = [x^, x^, x^\ '. By

1 0 0]
0 1 0 j

2 -1+rfj 0 "
0 rf0 0

"I rfg 0

"o "
0
1 _
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Proposition 5, we should be able to design an observer which reconstructs Pi =

(zj, z2j '. Note that because B C IV*, the observer does not need to know the input

u(t) in order to successfully estimate Px, assuming the initial condition is perfectly

known. In a failure detection context, this means that the observer can estimate

Pi even if the actuator fails and its behavior is unknown. Let D £ D(W*) and

AQ = A+DC; then F= AQ : XfW is simply

1 0 0
F=

2 -l+dl 0 "
0 <f0 0

-1 dz 0

" 1 0 "
0 1
0 0

Moreover a simple computation shows that

Evidently, one of the eigenvalues of F is fixed in the right half plane and cannot be

moved. Therefore, if the initial observation error is not zero, then we cannot

reconstruct Px. However, we show that this is not the case for a u.o.s.

Consider the u.o.s. 5* defined and computed at the begming of the example.

Let P: X. — » JC/S* be the canonical projection. Then obviously Px = z2, and we

should be able to asymptotically reconstruct x2 even if the initial conditions are not

properly chosen. Also to reconstruct x2, the observer does not need to know the

input u(t). Let F= ^ JT/5*, then

F= f 0 1 0

Clearly, the spectrum of F is arbitrarily assignable, and E = —PD = —d%. The

filter which reconstructs z2 is simply

2 -
0

-1

l+dl 0
rfo 0

d~3 0

"o "
1
0
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Now we want to find the invariant zeros of the system (C,A,B). Let

D £ D(W) and AQ = A+DC; then AQ • S* is simply

A. ••$* =
o o i 2 -l+dl 0

0 0
0 1
0 0
1 0

0 -1
0 2

Let us denote the insertion map of W* in S* by W±. Then obviously Wj = [ 1 0 ]',

and the canonical projection P: S* -*• S*/}V* is simply P= [ 0 1 ]. Thus,

0 1] [0 -1 1[0
[0 2 J[l

= 2.

Note that the transfer matrix of the system (C.A,B] is 0, but the system has an

invariant zero at 5 = 2 which is identical to Ag : S*/W* as we expected.

2.4 Compatibility of a Family of (C,A)-invariant Subspaces

Assume {W,-, i G k} is a family of (CVi)-mvariant subspaces It is clear from

the definition that each W} can be made invariant by appropriate output injection,

i.e., there exist Di such that (A+DtC) If,- C TC, (i £ k). It will be rewarding to see

what additional constraints (W,-, « G k} should satisfy in order to be assignable as

the invariant subspaces of just a single observer. In other words, we ask under

what conditions does there exist a map D such that (A+DC) Wt- C W, (i G k), i.e.,

under what conditions is n._, ^(W,) 7^ 0 To formalize this idea, we introduce

the concept of compatibility.

Definition 21: We say a family of (C,A)-mvariant subspaces

i G k} is compatible if there exists a map D : y — >• 1C such that
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(A+DC) ty C ty, i € k. (2.64)

We can state the compatibility property in terms of the solvability of a set of

linear equations. The following result is an immediate consequence of (2.41).

Lemma 22: Let (W,-, * € k} be a family of (C, A)- invariant

subspaces, Wi : Wj -*• £ (i G k) be the insertion maps, and Pt be the

maximal solutions of PtWt = 0; then the family {W,, i G k} is compatible

if and only if the set of linear equations

P-AWf = -P.ZX7VK,., f E k, (2.65)

has a solution for D. ®

Now we introduce a property of a family of subspaces that will be used to

address the compatibility issue. To simplify the notation, we define

(2.67)

Definition 23: Let {Wt-, i 6 k} be a family of subspaces of JC. We
say { "Wf, i £ k} is a codependent family of subspaces of Jf if the

annihilators of the family are independent, i.e.,

E -=i

or equivalently njLj (W,- + W,) = T .

Lemma 24: A family of codependent (C,A)-invariant subspaces

» G k} is compatible.

Proof: Let Dt 6 ^("WJ (t € k). Let P, : K. -* r/W be the
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canonical projection. Because the family (TV,-, i £ k} is codependent (row

spaces of Pf are independent), P defined below is epic.

P :=

Therefore, using Proposition 1, there exists a Z>0
 SUCQ that PtD,- = PtDQ

(i £ k). Thus DQ £ C\ ,D(W t) and consequently {W,, » '£k} is
compatible. 0

The following proposition shows how the codependence of a family of u.o s.

will result in a filter with all of its eigenvalues arbitrarily assignable.

Proposition 25: Let (C,A) be observable, and {5,-, « £ k } be a
family of codependent unobservability subspaces. Let A; (i £ k0) be a

family of symmetric sets with \A;\ = n—d(S t), i £ k, and |/!Q| = d(C\ St).
Then there exists a

D * n

such that

ff(A+DC:X/Sl)=Al

Proof: Because S, is a u.o s., there exists a D( . y — > J( such that

<r[A+DtC: T/5,) = /!,. i

Let P, : JT -* Z/5, be the canonical projection Because {$,, i £ k} is
codependent, from Lemma 24 we know there exists a DQ such that

PtD0 = PtDv i £ k ;
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thus D0 6 n*=1^(5,-). Let S := n*=1$,- = Ker P. Clearly D0 E D(S)
and

Also by Proposition 13, there exists a D : y -* T such that PD = PD0

and c(A+DC : S) = AQ-, thus

: I/S)

-=<

In order to provide a more general sufficient condition for compatibility, we

need to introduce the concept of the dual radical of a family of subspaces. The

concept of the radical of a family was first introduced in [50]; here, we shall dualize

these original results and later on apply them to our problem. Assume {W,-, i E k}

is a family of subspaces. Associate with this family a subspace defined as follows:

$ := (W,)o := n*=1(W,- - f t f , ) . (2.68)

We shall call "W the dual radical of the family ("W,-, i E k} Using the above

definition, a family (W,-, i E k} is codependent if and only if (W()° = T -- see

Definition 23. Qualitatively, we can think of "W as a measure of codependence of a
*

family of subspaces. Also, another important property of "W is that it can be used

in constructing a family of codependent subspaces from a given non-codependent

family of subspaces. We now state a few simple facts about the dual radical of a

family of subspaces. The dual of these results are given in Chapter 10 of [50]:

(270)
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The most important property of the dual radical is the one given in (2.70).
• a

Relation (2.70) implies that W, fl W , considered as subspaces of W , are
« •

codependent subspaces of IV . Moreover, IV is the largest subspace with this

interesting property.

Now assume (W,-, i E k} is a family of compatible (C',^4)-invariant subspaces,

and let D E n 0 ( W } . Then

(A+DC) V,- C W,, » E k.

Using (2.9), it follows immediately that

for any J?Ck. Hence the sum of any members of the family {lVt, i E k} is
i_

(C",A)-invariant. As a matter of fact, all elements of the enveloping lattice of

{"Wf, i 6 k} is (C,A)-invariant2. By the enveloping lattice of a family {1C,-, i E k},

we mean the smallest set of subspaces that contains {TV,, i E k} and is closed under

addition and intersection.

Moreover, from the definition of dual radical it follows that D E D{"W ), i.e ,

the dual radical is (CVi)-invariant. Also, with a little more work we can show that

D E n 2 ( > " , n V ) . Stated formally

) c n^w.ni' ). (2.71)

Unfortunately, the (C,A)-invariance of the dual radical of a family does not

necessarily imply compatibility. However, in the next lemma we show that if TV is

"Recall that the family of (C,.4)-invanant subspaces is closed under intersection
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(C,A)-invariant, then the right hand side of (2.71) is non-empty. Therefore, if the

family {W,-, i £ k} is such that the relation given in (2.71) holds with equality, then

the (C,A)- invariance of the dual radical of the family is a necessary and sufficient

condition for compatibility of {W,-, i € k}.

Lemma 26: Let {W,-, i £ k} be (C,A)-invariant. If W is
(C,A)-invariant, then the family

V , N! n V , . . . , Vfc n V

is compatible.

Proof: Let W : W -+ T. From (2.27)

-1 ,̂- n Ker C]\ = V n V,- n Ker C.

Let Z?0 G />(W), A) := A+D0C, Al := (^ ), and
Clearly W, n W is (C,.4)-invariant; thus

n K e r C ) C U/.-nTi '

, n Ker C) ] C V, n

Ker CWJ C W, n

n Ker CW C W'

Therefore, W~l}Vi is (C^AJ-invariant. From (270), we have that the

family of subspaces IV"1 'Wl (i £ k) are codependent subspaces of )i> .

Hence, by Lemma 24, we know there exists a D\ such that

^) C (W-^). (2.72)

Now we want to show that D = DQ + WD\ is the map we are looking for.
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Operate both sides of (2.72) by W

W(A1+D1C1) (Vr-lH/.) C

(AO\V+WDICW) (w-*ivt) c iv l n iv

ty n w ) c v,- n v

Also (A+/X7) V C AglJf + I m V T = V f and the conclusion follows
immediately. 0

As should be clear by now, answering the compatibility question in its most

general form is quite complicated, but we have given useful results that work for

important special cases. However, if the family of subspaces that we are
*

considering has only two elements, then we can completely resolve the

compatibility issue. The proof of the following simple result, which is an immediate

corollary of Lemma 26, is left to the reader.

Lemma 27: Let H/j and IV. 2 be two (C*,.4)-invariant subspaces.

Then Ti^ and W2 are compatible if and only if "Wl + H/2 is (CV,4.)-mvanant.

Now we introduce the concept of an output separable family of subspaces.

Definition 28: We say a family of subspaces {W,, i G k} is C

output separable if C'Wl n (]T , t Oi^) = 0, i £ k. i e., if the images of TV,
(i 6 k) under C are independent. ®

When it is clear from the context, we shall refer to a C output separable family as

simply an output separable family and delete the C

The following lemma shows the relation between output separability and
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compatibility.

Lemma 29: A family of C output separable (C,.4)-invariant
subspaces {W,-, i G k} is compatible.

Proof: Let V,- be subspaces such that IV j = V, 0 l»j n Ker C. Let
•u;1. (i G 1,) be a basis for W, such that wl (/ G P7) spans V,-. Then Aw1 = yl

j *• j' j j ^ r j' r j j j
for some y. G I". Let £> be a solution of

-ft/1 t^1 t/1 tAl = ^Cfw1 u/l W1 t*/*lly i i • • • tU i • • • )»(.) • • • iy \ — •L/v-'la'1t • • - , « / i • • • i*1'?.) • • • iar ]1 1 * k L 1 * f c

which exists because output separability implies that

C[wl . . . ,ttfi ----- w[ ----- to?*]1 1 K fc

is monic. Also because W. are (C.A)-invariant, (A+DO)wl.= Awl.= u\
• J ' ,- , J J J

(P, < * < ';) for some « . 6 V,. Thus (A+£>C)w = u . for i E ly, J £ k,
ti1. 6 Wji and (A+DC) W, C V,- (j G k). <g)

Now we derive another important property of a family of output separable

(C,A)- invariant subspaces.

Lemma 30: Let (C,A) be observable. A family of C output
separable (C,.4)-mvariant subspaces {W,, i G k} is independent.

Proof: By hypothesis CM; 0 (£ . , . Cl^) = 0 (/ G k); therefore

i'l) = 0. /6k (2.73)

Also it is shown in Lemma 29 that (W,-, i G k} is compatible; therefore ty

is (C,A)- in van ant. Let us assume that {}Vt, i G k} is not independent;

then for some i G k,

0.
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From (2.73) TC Ker C ; therefore

(Ker C D V,-) fl (ty n Ker C] = 7. (2.74)

Operating on (2.74) by A on both sides and remembering that

A ( }Vf D Ker C] C Wt- because W,- is (C,A)-invariant (and similarly for ~W t),

then

^ n ^ D A T . (by (2.10))

Note that AT ^ 0 because TC Ker C and (C,A) is observable. If

A TC Ker C, repeat the process and for some m < n—1, CAm T j^ 0

because otherwise the observability is violated. Thus 1C,- n ^,- 2 A™ Tfor

some m such that CAm T 7^ 0 which contradicts (2.73). 0
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Chapter 3

Failure Modeling and Problem
Formulation

In Chapter 1, we briefly reviewed the problem of failure detection and

identification in linear time-invariant dynamic systems. In this chapter we

formulate the problem in its most general form. We also show how to model the

effect of failure of different components like sensors and actuators. A good

reference for failure modeling with some actual examples is Chapter 4 of [22]. Also,

in order to gain a better understanding of the effect of sensor failures on a failure

detection filter, the concepts of modified (C,/;A)-invariant subspaces .and modified

(C,J;A) unobservability subspaces will be introduced. These concepts are

somewhat related to the dual of the output nulling invariant and controllability

subspaces of Anderson [1] (see also [35] and Exc. 4.6 & 5.9 of [50]); and they are

natural extensions of the results presented in Chapter 2.

3.1 Problem Formulation and Failure Representation

Assume our nominal linear time invariant (LTI) system can be described by

the triple (C,A,B)

y(t) = Cx(t). (3.1)

Here x(t) £ I", u(t) £ U, and y(t) £ y. The dimensions of Z, U, and y are n, m, and
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/ respectively. Our observables are the nominal input u(t) to the plant and the

measurement y(t).

Now assume that some unknown disturbances affect the behavior of the

plant. These disturbances can either be sensor failures or disturbances at the

output, which directly corrupt the measurement y(t), or they can be actuator

failures and external input disturbances which will show up in y(t) after their

effects are integrated through the dynamics of the system. The most general form

of disturbances that can affect the output of the system shown in (3.1) can be

represented as follows:

x(t) = A x(t) + B u(t) + £f=1 L tm t(t),

y(0 = Cr(0 + ̂ =1/,n,(0. (3.2)

Here m t(t) E M, (d(M t) = kt) and n t(t) £ Mt (d(M t) = <?,) are unknown functions of

time and can be arbitrary. However, when no failure or disturbance is present,

m t( t) and n t( t) are all, by definition, equal to zero. We refer to the functions m t ( t )

and rij(t) as failure modes.

In order to model the effect of the j-th actuator failure, simply set Lj = B

where Bj is the j-th column of the control effectiveness matrix B. Note that, if the

actuator does not respond to the input and is dead, then obviously m^t) = — u ( t )

where «,•(/) is the j-th element of the input vector u(t). If the actuator has a bias

6, then m^t) = 6. If the actuator saturates at one of its end points, then

mj(<) = 6— u (t). Clearly, because we do not constrain m t ( t ) to any special

function class, a wide variety of actuator failure modes fits this representation.

From now on we shall refer to the maps L;. Mt —* 1C as actuator failure

signatures. Also if the actuator fails in such a complicated way that its output

does not affect the system through the B^ anymore, (3.2) can still be used to model
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its effect. Note that here the L,- can be matrices, and are not constrained to just

being vectors.

We can also model a change in the dynamics of the plant, i.e., a change in the

A matrix, by choosing £,- appropriately. (In this case m t(t) will be a linear

combination of the states of the system x(t).) Thus, as far as failure modeling is
i

concerned, a change in the dynamics of the system can be modeled as an actuator

failure. Therefore, the generic notion of actuator failure will be used to refer to any

failure event that can be modeled by choosing Z/r appropriately.

Similarly, if we want to model the failure of the j-th sensor, then we simply

set /! = gj • where e^- is the j-th column of an /X/ identity matrix. Note that if the

sensor fails dead, i.e., zero output, then n^t) = — cjitf) where c}' is the j-th row of

the measurement matrix, C. As should be clear by now, this representation can be

used to model a wide variety of sensor failure modes. Moreover, as in the case of

actuator failures, /,- can be matrices, and they are not constrained to be vectors.

From now on we shall refer to the maps /, : A/,- —» y as sensor failure signatures.

Without loss of generality, we assume that the failure signatures are monic.

Note that because m t(t) (and similarly n t ( t ) ) is arbitrary, if the map Li is not monic

then obviously there exists a monic map G, which has the same image as L, and

L^m t(t) = G ld l(t) for some other arbitrary function d^t). For our purpose, Gt can

be used to model this failure.

Clearly, the major attribute that distinguishes our approach to failure

modeling from the majority of the approaches reported in the literature is that we

do not assume any a priori mode of component failure, i e., m t(t) and n t(t) in (3.2)

can be arbitrary. However, it is assumed that the failure can be represented by

choosing an appropriate L, or /,-. Also once in a while we shall make the
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assumption that the failure modes are generic in a sense that will be specified when

the need arises. As is clear from (3.2), our mathematical model is general enough so

that it may prove useful in other contexts besides failure detection and

identification theory.

To simplify the notation, let us define n(t), m(t), L, and J as follows:

n(t) := [ntfO, . . • , nq'(t)]', (3.3)

m(<) := (mi'(t), . . . , mk'(t)]'t (3.4)

L := [Ilf . . . , Lk\, (3.5)

/ := [/lf . . . , Jq]. (3.6)

Then (3.2) can be rewritten as follows:

x(t) = A x(t) + B u(t) + L m(t),

y(t) = C x(t) + J n(t), (3.7)

where n(t) E M :— M1@ • • • © Mq and m(t) £ At = Ml © • • • 0 Mk. The

above model will be used from time to time in our developments instead of (3.2).

We also point out that any sensor failure can be modeled as a pseudo

actuator failure through appropriate state augmentation This follows from the

assumption that n,-(£) is an arbitrary function of time. Hence without loss of

generality it can be assumed that the unknown function n t( t ) is the output of some

linear time-invariant system J7, with impulse response h t( t ,T) and some arbitrary

input 5,(f). The only restriction on .T, is that it should be right invertible so that

for any n}(t) there exists a s t(t) such that

) S.(T} dr, t > 0.
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For the case where n,-(<) are simply scalars, without loss of generality we can

assume

n,<0 = «,•«,(<)+ «,<<)

for some scalar a,- and some unknown function s,(f). If the dynamics of the systems

generating the sensor failure modes are added to the dynamics of the system, the

sensor failures can be represented as actuator failures. To see this assume that

s t(t) = n t(t) which is a simple choice of a right invertible system (an integrator),

and rewrite (3.7) as follows:

(3.8)

(3.9)

" i ( 0 "

m n ( t ) m
—

'A o '

0 0

" x(t) '

. nM .
+

" B '

0
«(*) +

" L o "

0 / _

" ™ ( 0 "

. s(0

y(0 = [ C J] [x(0
I n(t)

Clearly in this formulation no sensor failure signature is present. Hence, in all of

our developments in Chapter 4, we shall use the model

x (0 = A x(f) + B u(f) + £f=1 L,m,(0,

= Cx(i), (3.10)

and assume that the maps A, Lit and C have already been appropriately modified

so that the sensor failures are properly represented as pseudo actuator failures. In

Section 3.2 we shall illustrate some of the difficulties associated with handling the

sensor failures directly, and state why it is useful to model sensor failures as

actuator failures by state augmentation. One caveat to be aware !>f is that the

augmented model may not be observable even if (C,A) was observable. However,

by properly choosing the augmented dynamics so that they do not coincide with
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the spectrum of A, it is always possible to get an observable augmented model if

(C,A) is observable.

Now that we know how the effect of different component failures can be

modeled, the most general form of the problem that we are trying to solve is

defined. Considering the system in (3.10), we define the failure detection and

identification filter problem (FDEFP) as the problem of designing a dynamic

residual generator, Ur, that takes our observables, u(t) and y(t), as inputs and

generates a set of residuals r,(£) (i G p) with the following properties:

1. When no failure is present, the residuals r,(<) (i G p) are identically
equal to zero. Hence, the net transmission from the input of the
system u(t) to the residuals r t(t) (i G p) should be zero.

2. When the j-th component fails (i.e., rn^t) ^ 0), the residuals r t(t) for
i G ftj should be nonzero, and the other residuals r3(t), s G p— /?y, all
should be identically equal to zero. Here the family of coding sets
flf C p (i G k) are such that we can uniquely identify the failed
component by knowing whether the r t(t) are zero or not.

We say more about the coding sets /?, later in this section and also in Section 4.5.

A block diagram of an FDIF is given in Figure 3-1. Note that in the general

problem, there is no constraint on the number p of the residuals.

If we can generate a set of residuals with the above properties, then the

identification task is trivial. One only needs to compare the magnitudes of the

residuals against some appropriate thresholds to decide which ones correspond to

responses to actual failures, and then by referring to the table of the coding sets

one can identify the failure, if a failure is present.

One important design consideration is how to choose the coding sets /?,. The

simplest choice is just to let J7, = {1} (i G k), or equivalently, to let only one of the

residuals be nonzero for any one failure. In addition, this coding scheme enables us
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r1(t)
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Figure 3-1: Block Diagram of an FDIF

to detect and correctly identify simultaneous failures. This is because

/?,• j^ Uj£_dflj f°r any '^k, J £ A.. ID Sections 4.4 and 4.5, we shall go over more

complicated coding schemes. The reader should note that with some coding

schemes it is not possible to detect and identify the presence of simultaneous

failures. As a matter of fact, for some coding sets, simultaneous failures can lead to

identification of the wrong component as failed. However, no matter what coding

sets are used, there are families of components for which a failure of! a component

within the family can not be uniquely identified. This fundamental limitation will

be discussed in Section 4.5.

Now, consider the most general form of a realizable LTI processor that takes

y(t) and u(t) as inputs and generates a set of residuals r,(£) (i E p) as outputs,

w(t) = Fw(t) -Ey(t) + G u(t),

r,(<) = Mf w(t) - H{ y(t) + Kt u(t),

r(t) = [riW . - . , r'(0]'

(3.11)

(3.12)

(3.13)
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Here r,-(f) £ £,• and r(t) G % '•= #1 © • • • © Rp. Also the minus signs in E

and //,- are just chosen for convenience in what follows.

Now we can restate FDIFP as the problem of finding F, E, G, A/,-, Kf, and Hi

in (3.11), (3.12), and (3.13) such that the transfer matrix that relates m^t) to r t(t)

has certain nice properties that enable us to compare the residuals r t(t) with zero

and decide whether m t(t] are zero or not.

In order to make the problem more tractable and be able to derive the

solvability conditions, we need to make a few more assumptions. In Chapter 4,

based on different practical considerations, we formulate and solve several

restricted versions of FDIFP. Several of the practical issues that we consider are

ease of implementation, order of the processor (i.e., dimension of the F matrix),
t

sensitivity to the variation of system parameters, and availability of reliable

numerical design algorithms.

By ease of implementation, we mean the special structure of the F matrix

which simplifies the actual computation, e.g., a processor which is a collection of

several decoupled subprocessors is superior to a lower order processor which does

not have this decoupled property.

Also the sensitivity of the residual generator is quite important because the

hypothesised model of the system (i.e., the model given in (3.10)) is usually not well

known. Considering this, a robust residual generator should not rely heavily on the

model of the dynamics of the system. However, in this work it is deemed more

appropriate to address other fundamental problems, and hence the main

concentration is not on the sensitivity issue.

With respect to numerically reliable design algorithms we point out that

unfortunately the design procedures used in the geometric control theory, though
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constructive, usually cannot readily be translated into numerically reliable

algorithms. However, in Section 4.2 we shall outline the steps one should take for

reliably implementing the solution to a restricted version of FDIFP.

Before proceeding with the soluion of various FDI problems, we illustrate

some of the difficulties associated with the case of sensor failures.

3.2 Sensor Failures
i
4

In Chapter 1, we illustrated the effect of actuator failures on the behavior of

an observer. Then those properties were used in formulating a failure detection

and identification problem in which the failure of two distinct actuators could be

identified. In this section, we consider a similar problem involving sensor failures

which are inherently difficult to handle. The difficulty arises from the fact that in

this case some columns of the observer gain matrix are the failure signatures;

hence, the problem requires special treatment.

Consider the system

y(t) = C x(t) + /! nj(0 + J2 n.2(t), (3.14)

with n,{<) £ A/,- being arbitrary unknowns. In the terminology of Section 3.1,

/,- : > / , - — > • y are the sensor failure signatures. When no failure is present,

n,(i) = 0. Consider designing a full order observer for the system given in (3.14),

with the following form:

w(t) = (A+DC) w(t) - D y(t) + B u(t),

r(t) = H (C w(t) - y(t)). (3.15)
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Here the residual vector, r(t), is a linear transformation of the innovation

Cw(t) - y(t). Let us define the error e(t) := w(t) - x(t). Using (3.14) and (3.15),

the equation for the error vector e(t) is simply:

I
e (t) = (A+DC) e(t) - DJl n^t) - DJ2 n2(t),

r(t) = HC e(t) - HJl n^t) - HJ2 n2(t). (3.16)

Now we ask under what conditions an arbitrary n2(t) will have no affect on the

residual r{t), while any nonzero n^(t) shows up in r(t}. From (3.16), it is obvious

that for n2(t) not to affect r(t), we should have HJ2 = 0, and Im DJ2 should be in

the unobservable subspace of (HC,A+DC). This is equivalent to the statement

that the transfer matrix from n2(s) to r(s) should be zero. Of course, the

complication arises from the fact that the map D is unknown, but it should satisfy

the constraint Im DJ2 C S = <Ker HC\A+DC>Z With this motivation, the

following concept is introduced.

Definition 1: A subspace, S, is a modified (C,J,A) unobservability

subspace (m.u.o.s.) if there exist a D : y —>• JC and an H: y —+ ]/ such
that

1. S = <Ker HC\A+DC>

2. Im DJ C S

3. HJ=Q. <g>

It will shortly be shown how these m . u o s . can be computed. Also their other

Q
For the moment we do not concern ourselves with the condition under which a nonzero

will show up in r(t)
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interesting properties will be discussed as well.

As the reader may expect, it should be possible to extend the concept of a

(C,A)-invariant subspace (which was introduced in connection with actuator

failures) to the case of sensor failures. The following definition is an extension of

the result given in Proposition 5 of Section 2.2.

Definition 2: Consider the system

i(0 = A z(0,

y(t) = C x(t) + J n(t), (3.17)

with n(t) unknown. We say a subspace "W is a modified (C,J;A)-invariant

subspace (m.c.a.i.s.) if there exist matrices E and F such that
w(0) = Px(0) yields w(t) = Px(t] for t > 0 where

(3.18)

and P: JC — »• XfW is the canonical projection of "W. ®

The philosophy behind this definition is to give special attention to those outputs

w(t) = Px(t) that, with Ker P— W, may be reconstructed exactly from y(t) even in

the presence of an arbitrary unknown n(t).

For n(t) not to affect the dynamics of w(t) in (3.18), we should have EJ= 0.

This leads us to the following result.

Proposition 3: A subspace W is a modified (C,/;.4)-invariant

subspace if and only if there exists a map D . y — * T such that

1. (A+DC) IV C W

2. Im D J C W . (X)
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It is possible to define a m.c.a.i.s. as in Proposition 3, and then derive the result

given in Definition 2 from it. However, it seems that Definition 2 is more

illuminating. Using the result of Proposition 3 and Definition 2, it follows

immediately that any m.u.o.s. is a m.c.a.i.s. Also, a simple computation shows that

the matrices E and F mentioned in Definition 2 are the same as the ones given in

(2.46). Note that Im DJ C "W implies PDJ=0, and the condition EJ=0 is

satisfied. '

It is also possible to give an interpretation of a m u o.s. in terms of the

existence of an observer as is done in Definition 2. The only discrepancy arises

from the fact that for a m.u.o.s. the spectrum of F should be assignable to an

arbitrary symmetric set; hence, the assumption that the observer is perfectly

initialized can be omitted.

Now it is shown how these m.c.a.i.s. and m.u.o s can be computed. Consider

rewriting the system given in (3.17) such that n( t ) is the input to the system and

y(t) is the the output of the system. This simply corresponds to rewriting (3.17) as

follows:

ie(t) = Aexe(t) + Leh (t),

y(t) = C*x*(t), (3.19)

where xe(t) = x(t) © n(t) E V .= X ® M. It is helpful to visualize the maps in

(3.19) in terms of their matrix representations:

Ae =
'A o "

0 0
Le —

"o "

_ / _
=(C, J\ (3.20)

Let x £ I", and define the embedding map Q . X. -* Te as follows-
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. (3-21)

Let V C Xe; then

€ V). (3.22)

Less precisely, we can write Q~l"V as Vfl T.

Now we shall prove the interesting fact that the intersection with JT of the

ordinary (Ce.Ae)-invariant subspaces of Xe which contain Im Le = 0 0 M are

m.c.a.i.s.

Proposition 4: Let IK be (Ce,.Ae)-invariant and 0 0 JV C V. Then
Q-1H/ is a m.c.a.i.s. Conversely, if 5 is a m.c.a.i.s., then 5©>/ is a
(CVie)-invariant subspace.

Proof: Let S := Q~1W, obviously H>= S® >/. Because )V is a
(Ce,Ae)-invariant subspace, there exists a map De . y — * Z"e such that

(Ae+DeCe)W C TV. (3.23)

Let us partition De as De = [D ', D\\ where the row dimensions of D and
.4 are equal. Let s £ S; then

(Ae+DeCe) (a00) = (A+DQ a © DjCs

6 V=S © -V. (by (3.23))

Thus, (A+DC) SC S. Let n 6 >/; then

e) (0 © n) = D/n © ZP^n

G W=S © M. (by (3.23))
V

Hence, DJn G S for*arbitrary n £ >/, or equivalently DJC.tS; and using
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Proposition 3, it follows that 5 is a m.c.a.i.s.

Conversely, because S is a m.c.a.i.s., there exists a D : y —» 1C such

that (A+DC) S C 5 and Im DJ C S. Let De : y -> JCe be any extension

of D, i.e., De = [D', Dfi with Dl arbitrary, and define W := 5®JV.

Then a simple computation shows that

(Ae+DeC*) W C W;

thus, )!/ is (Ce,Ae)-invariant. 0

From the proof of Proposition 4, it is clear that the zero matrix in the lower right

corner of Ae defined in (3.20) can be replaced with any matrix of appropriate

dimensions. Also the identity matrix in Le can be replaced with any nonsingular

matrix. Note that it follows from Proposition 4 that the computation of the

modified subspaces introduced in this section amounts to extending the state space

and is really equivalent to the heuristic argument we used in Section 3.1 for

modeling the sensor failures as pseudo actuator failures with appropriate state

augmentation.

We can derive a similar result for a m.u.o.s. Here we shall only state the final

result; the proof is similar to the one given before.

Proposition 5: Let S be a (Ce,Ae) unobservability subspace and

0 @ M C 5. Then Q~1S is a m.u.o.s. Conversely, if IV is a m.u o s., then

TV 0 M is a (Ce,Ae) unobservability subspace. 0

Propositions 4 and 5 are quite useful in computing the m c.a.i.s. and m.u.o s.

Also these results and the results of Chapter 2 can be used to derive some of the

useful properties of these modified subspaces

For example, let us show that the families of m.c a.i s. and m.u.o.s. are closed
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under intersection. Let Ifj and W2 be two (C'e,Ae)-invariant subspaces containing

Im Le, and let us denote their intersection by )f3. Using Lemma 7 of Section 2.2,

W3 is (C
e,Ae)- invariant. Also we know

From Proposition 4, Q"1)^- are m.c.a.i.s.; hence, the family of m.c.a.i.s. is closed

under intersection, and it should contain an infimal element. A similar argument

shows that the family of m.u.o.s. is closed under intersection and it too contains an

infimal element. Also all of the results in Chapter 2, which deal with pole

placement techniques, can be used equally as well with m.u.o.s. and m.c.a.i.s.

Now a simple example is worked out to illustrate some of the concepts we

developed in this section. Consider a second order system with two sensors

represented as in (3.2) with

" i o "

0 2
,c =

' 1 0 "

.° 1
,B =

' 1 "

1
> A =

" i "

0
, J-2 —

" o "

1

Referring to our intuition, we can design two different observers each using only

one of the sensors to generate two separate innovations. Then a threshold on the

magnitude of these innovations can be used to identify each sensor failure. Let us

instead use the concepts of this section to design a residual generator.

Let IVi denote the smallest modified (C,Jo;.<4.)-mvanant subspace. From

Proposition 4, }Vl = Q~^'W where ~W is the smallest (CV^J-invariant subspace

containing Im Le with Le = [0, 0, 1]' and Ce = [C, /2]. A simple computation shows

that IV = Im Le\ hence, Tl^ = Q~ l*W = 0. Also De = [d t j} (i E 3, ; 6 2) belongs to

D(}V) if </12 = do2 = 0. Let D be the upper 2X2 partition of De. A simple

computation shows Z>/2 = 0 and (A+DC] 1Vl C Wj. Using Proposition 3, it follows
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immediately that Wj = 0 is a modified (C,J2',A}-'mva,ria.nt subspace; and obviously

it is infimal.

Similarly, let S1 denote the smallest (C,J^;A} unobservability subspace. From

Proposition 5, 5j = Q-15 where 5 is the smallest (Ce,Ae) unobservability subspace

containing Im Le with Le = [0, 0, 1]' and Ce = [C, /2j. A simple computation shows

that

= lm
0 0
1 0
0 1

hence, Sj = Q 1S = Im [0, 1] '. Note that 5^ is simply the unobservable subspace

of the first sensor. Also D e =\d i j \ (i € 3, ;£2) belongs to D(S) if rf12 = 0.

Moreover, from 'the definition of an unobservability subspace, there exists an Hl

such that S = <Ker /f1C
e|.4e+Z)eC'e> A simple computation shows that

HI = [1, 0). Let D be the upper 2X2 partition of De. A simple computation shows

£>/2 = [0, </22] ', H^ = 0, and Sl = <Ker H^A+DO. Using Definition 1, it

follows immediately that Sj is a (C,Jc,;A) unobservability subspace. This subspace

is also infimal. Moreover by choosing <fn properly, we can arbitrarily assign the

spectrum of a(A+DC : r/Sj).

Now we can use Sj to design a residual generator such that its output, r^t),

is not affected by the failure of the second sensor. Note that H^J^ = 1, hence the

failure of the first sensor will show up in r^t). Let y(t) = [y^t), y2(0i'- Carrying

out the computations it follows that the residual generator has the form

n) 1^(0 - dn y i(t) + u(t)

= Wl(t) -
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where d^ can be used to arbitrarily assign the spectrum of the observer. Note that

this residual generator is simply an observer for that part of the state space "which

is observable from the first sensor. Clearly, the residual r^(t) is not affected by the

failure of the second sensor; hence, a nonzero r^(t) implies that the first sensor has

failed.

A similar procedure can be used to design a second residual which is affected

by the failure of the second sensor but not by the failure of the first sensor. Note

that the residuals r^t) and r2(£) are all we need to completely detect and identify

the failure in each or both of the sensors. This approach to the failure detection

and identification problem will be discussed in detail in Chapter 4; here we only

used this example to illustrate some of the concepts we introduced in this chapter.

It is interesting that the solution to this example is the same as the intuitive

solution we proposed. Each individual observer simply uses one of the two sensors

to generate the residual vector. Thus the failure of any sensor only corrupts the

residual of the filter that is using the failed sensor. Moreover, because each sensor

can only observe part of the state space, the unobservable subspace of each sensor

can be factored out so that the order of each individual observer is reduced.

In fact, the above concept can be generalized to any LTI system. To show

this, consider a system with / sensors and assume that the actuators are perfectly

reliable. Now consider the problem of designing / residuals such that the failure of

the i-th sensor only affects the i-th residual. Note that in here we are assuming

that the failure signatures /, are simply the column vectors of an /X/ identity

matrix. A simple computation shows that the mfimal modified (CJ,\A)

unobservability subspace. where /,• is the /X/ identity matrix with the i-th column
i•

deleted, is simply the unobservable subspace of the i-th sensor. Clearly we can use

these infimal subspaces to design / separate residual generators J7, each only
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sensitive to the failure of the i-th sensor. This amounts to designing an observer

for that part of the state space which is observable from the i-th sensor and then

using the innovation of these filters as our residuals. Contrary to the difficult

statement of the failure detection and identification problem for sensor failures, the

solution of the problem is quite simple and intuitive. However, the reader should

be aware of the assumptions that these results are based on: namely, the failure

signatures J,- should be the columns of the identity matrix, and the actuators are

assumed to be perfectly reliable. Note that the problem we addressed here is a

special case of the extension of the fundamental problem of residual generation

which we shall solve in Section 4.1.1.

The approach outlined above for detecting and identifying sensor failures is in

fact identical to the one proposed by Clark [7]. Note that the sum of the orders of

these / observers can be prohibitively large. However, by hypothesising that only

one sensor failure is present at a time, the number of the observers can be

substantially reduced (see [7]).

The reader should note that the Clark's approach applies only to the case of

sensor failures that can be modeled by choosing the matrices Jt as columns of the

identity matrix, but the concepts outlined in this section are much more general,

and they can be used to treat both sensor and actuator failures simultaneously.

Nevertheless, for specific cases, our general approach can be specialized to the one

proposed in [7].
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Chapter 4

Failure Detection and Identification
Problems

In Chapter 3, the function of a failure detection and identification filter was

explained in detail. Also it was shown how the effect of different component

failures can be modeled. Hence, the reader should have a clear understanding of

the problem that we are trying to solve. In this chapter, we shall formulate and

solve various FDI problems, each emphasising different practical considerations.

All of the major contributions of this thesis are included in this chapter. We

start with simple detection filters and gradually extend them to the most general

cases. Numerical examples are used throughout this chapter to familiarize the

reader with the actual design procedure. In all of the developments, without loss of

generality (see Section 3.1), it is assumed that the system can be described by the

model given in (3.10).

l
4.1 The Fundamental Problem in Residual Generation

In this section, a restricted version of FDIFP is introduced and solved. First,

we assume that only two failure events are present, and it is desired to design a

residual generator which is sensitive to the failure of the first actuator but is

insensitive to the failure of the second actuator. This restricted version of FDEFP

will be called the fundamental problem in residual generation (FPRG). Later on,

FPRG will be extended to more general cases.
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Consider the model given in (3.10) with k = 2,

x(t) = A x(t) + B u(t) + L! m^t) 4- L2 m2(t),

= Cx(t). (4.1)

The dimensions of the maps shown in (4.1) are the same as the ones given in (3.1)

and (3.2). The term Lj m^t) represents the faulty behavior of the actuator that we

are trying to monitor, i.e., a nonzero m^(t) should show up in the output of the

residual generator r(t). Similarly, L2 m<i(t) represents the faulty behavior of the

other actuator which should not affect r(t). As usual, our observables are the

measurement y(t) G ]/ and the known actuation signal u(t) £ U.

As in Chapter 3, consider a residual generator of the form

h K u(t). , (4.2)
i

Note that this is the most general form of a realizable LTI processor which takes

the observables y(t) and u(t) as inputs and generates a residual r(t).

Let us rewrite (4.1) and (4.2) as follows:

' x(t) '

>(<).
'A o "

_-EC F

' x(t) '

w(t) _

r(0 = [ -HC M } T x(t) ' +

" B Lr , '

G 0

"«(0 "

-2(0.

K o ] r u(o "

" ^ l "

0

(4.3)

Define the extended spaces Ze = T 0 W and Ue = U 0 A(2. Let (x, w)

and («, m2) E Z/e- Equation (4 3) can be rewritten as follows-

ie(t) = Aexe(t] + Be ue(t] + L'm^t),
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r(0 = Hexe(t) + Keue(t). (4.4)

The maps Ae, Le, Be, He, and Ke in (4.4) have obvious correspondence with the

matrices shown in equation (4.3).

Consider the systems given in (4.3) and (4.4). Temporarily, we define FPRG

as the problem of finding F, E, G, M, H, and K such that the following transfer

matrix relationships hold:

ue = (u, J7i2)
|-* r ~ °> (4-5)

rrij i-* r left-invertible. (4.6)

I
4

The relation (4.5) indicates that m2(0 and u(t] should not affect the output of the

residual generator, r(t). Also, (4.6) states that if r(t) = 0, then m^(t) must be zero,

i.e., if the first actuator fails, then its effect should show up in the residual vector

r[t), or equivalently the mapping from m^(t) to r(t) should be one to one. A brief

review of the concept of left invertibility is given in Definition 8 of Section 2.2.

When the condition in (4.5) is satisfied and the first actuator is functioning

properly, all signals r(t) obtainable by varying the initial conditions z(0) and w(Q)

are exactly those outputs obtainable by varying the initial condition e(0) of

e = F0 e, r = A/0 e, for some observable pair (M0,FQ). We call the spectrum of F0

the dynamic of the residual generator. Naturally, in FPRG in addition to the
«

conditions in (4.5) and (4 6), the dynamic of the residual generator should be stable.

Because when no failure is present, the residual caused by the initial condition

mismatch should die away.

For practical reasons, the requirement of left invertibility given in (4.6) can be

relaxed and replaced by the condition of input observability (see Definition 10 of

Section 2.2). We note that even if the system relating m^( t ) to r(t) is not left
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invertible but is input observable, it will be extremely unlikely that an arbitrary

nonzero m^t) will hide itself in the null space of the mapping from m^t) to r(t) so

that the failure can not be detected. (See Section 2.2 for an example of an input

observable but not left invertible system.) Hence, if we replace (4.6) with the

condition of input observability, then almost all failure modes will show up in the

residual r(t). Also in identifying the failure, only the magnitude of r{t) and not its
•

functional behavior is used. Therefore, the ideal requirement of left invertibility is

really an overkill for the failure detection and identification purposes.

It may be argued that we can even relax the condition of input observability

and require only that the transfer from m^s) to r(s) should be nonzero. However,

then it is not necessarily possible to reconstruct m^t) from r(t], but the input

observability implies that if the failure mode m^(t) has some rather mild properties,

then it is still possible to reconstruct m^t] from r(t).

In addition, if we are dealing with a single-input multi-output system, i e., the

transfer function is simply a column vector, then input observability automatically

implies left invertibility (see Lemma 11 of Section 2 2). In the context of the FDI

problem, the transfer matrix 7\s) relating m^s) to r(s) is usually a column vector

(or an scalar), since the failure signature L1 is usually a column vector. Therefore,

in the FDI problem typically the input observability of T(s) is equivalent to its left

invertibility.

Based on these arguments, we restate FPRG as follows. Consider the system

given in (4.3) and (4.4). FPRG is the problem of finding F, E, G, A/, H, and K such

that:

ue= (u, m2)~ r = 0, (4.7)

m^^ r input observable, (4.8)
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and the dynamic of the residual generator is stable.

We need a few preliminary results for deriving the solvability condition of

FPRG. Let jCe be as defined previously in this section, and define the embedding

map Q : JC -* t* as in (3.21) (see also (3.22)). It is relatively simple to relate the

unobservability subspaces of the two systems in (4.4) and (4.1). The following

fundamental result is crucial to the solvability condition of FPRG.

Proposition 1: Let Se be the unobservable subspace of (He,Ae);

then Q~lSe is a (C,A) unobservability subspace [46, 41, 40]. 0

Less precisely, Q~^Se can be written as 5efl Jf. With this result at our disposal,

the solvability condition of FPRG is immediate.

Theorem 2: FPRG has a solution if and only if

S* n L! = 0, (4.9)

where 5* = inf 5(£2)- Also ^ (4-9) holds, then the dynamic of the
residual generator can be assigned to an arbitrary symmetric set A.

Proof: (only if) Consider the systems given in (4.4) and (4.3). For

(4.7) to hold, we should have Ke = 0, and

<Ae\Be> C Se := <Ker H£\Ae> (4.10)

Equation (4.10) implies Be C Se; hence,

Q~ lBeC S := Q~lSe.

By Proposition 1, S is a (C,A) u.o.s Also Q~ lBe D Lo- Therefore,

S E 5(12). (4.11)
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For (4.8) to hold, we should have Le monic and Le D Se = 0; thus we

should have £/j monic and

Q~ l(Le n Se) = Q- lLen Q~lSe

= £ l n 5 = 0. (4.12)

Obviously (4.11) and (4.12) hold only if (4.9) is true.

(if) Using Theorem 16 of Section 2.3, let DQ € D(S*),

P: X — »• JT/S* be the canonical projection, and AQ := (A+DQC : JT/5*).

Let H be a solution of Ker HC — S* + Ker C and M be the unique
solution of MP=HC. By construction, the pair (M,^) is observable,

hence there exists a D± such that a(F) = A where F := AQ-}-D1M and A

is an arbitrary symmetric set. Let D — DQ+P~rDiH, E — PD, G = PB,
T = 0. Define e(t) •= w(t) - Px(t). Then

= w-Px=Fw-Ey + Gu- PAx - PBu - PLlml -

= Fw- PDCx - PAx -PLlml

= Fe —

(Note that PL2 = 0, since L2 C S* ) Also

r = M w - H y = Mw - HCx = Mw - MPx = Me.

Thus, the system relating m^t) to r(t) is (M,F,—PLi). (Hence the transfer

matrix -T(s) relating mj(s) to r(s) \s~M[sI—F}~lPL^.) Obviously, the

requirement in (4.7) is satisfied Moreover, S * n L ^ = 0 and Z/1 monic

imply that PL^ is monic. Also, (M,F) is observable; hence from the

definition of input observability it follows that the system relating m^t)

to r(t) is input observable and (4 8) is satisfied. ®

Note that the major step in the design of the filter is to place the image of the

second failure signature in the unobservable subspace of the residual, r(t), and then
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use the procedure given in Section 2.1 to factor out the unobservable subspace so

that the order of the filter is reduced. Also, the necessary condition simply states

that the image of the first failure signature should not intersect the unobservable

subspace of the residual generator, so that a failure of the first actuator shows up

in the residual r(t).

Moreover, the failure signature Zq is only used to check the solvability

condition, and the actual construction of the filter is independent of Zq. Hence the

filter given in Theorem 2 can be used to identify any actuator failure with

signature L3, if S* D £.3 = 0. Also the failure of any other actuator with signature

L4 such that 14 C S* will not show up in r(t).

We can state an interesting interpretation of the solution to FPRG.

Referring to Theorem 2, the dynamic of the residual generator can be rewritten as

follows:

w(t) = A) "(0 ~ PDQy(t) + G u(t) +

r(t) = M w(t) - H y(t). (4.13)

Note that by choosing DQ and H appropriately, we change the observability

property of (HC,A+DQC) in such a way that the second actuator failure becomes

unobservable from the residual. Next, by injecting the residual r\t) back to the

filter, we modify the spectrum of the residual generator as we wish. Clearly, the

residual generator given in (4.13), can be thought of as an observer for the

hypothetical system

(4.14)
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where uh(t) := P[Bu(t)—D0y(t}) is the hypothetical input, and y^t) := H y(t) is

the hypothetical measurement. This interpretation of the residual generator can be

used effectively in computing an appropriate gain D± that minimizes the effect of

measurement and process noise on the residual r(t).

To illustrate this point, consider the original system model given in (4.1) and

assume that an additive white noise v^(t) with covariance ^[^(fjvj'fr)] = R^ 8(t—r)

is entering the system as an input. Also assume that the measurement y(t) is

corrupted by an additive white noise v2(t) with covariance E[v2(t)vr>'(T)\ = ^2 ^~T)

and uncorrelated with the input noise v^t). Now if we incorporate the effect of Vj

and z>2 on the hypothetical system of (4.14), we get

Z(t) = AQ Z(t)

yh(t) = M z(t) (4.15)

where v%(t) :== P(vi(t)—DQV2(t)) and v±(t) •= Hv^t}- Note that v3 and i>4 are now

correlated. A simple computation shows that the intensity /?34 of the noise driving

the system in (4.15) is

= E
'+PDQR2DQ'P' -PDQR.2H'

D'P' HR.H'
(4.16)

With the objective of whitening the residual r{t), simply design a steady state

Kalman filter for the system given in (4.15) with the noise statistics as in (4.16).

Then use this steady state Kalman gain for the matrix Z)1 of (4.13)

Note that in order to compute the gain matrix D± as the solution of an

optimal estimation problem, we need the covariance matrices R^ and /?2 which

most probably are difficult to determine. However, a non stochastic approach is to



-83-

choose PI so that the transfer matrix T(s) = Mfc/— An—D-lM)~lPLl has certain

nice properties. For example, it is not difficult to see that increasing the

bandwidth of T(s), which is desirable for fast response, can translate into low

steady state gain which can lead to difficulty in distinguishing the response due to

a failure from that due to background noise. Therefore, the gain matrix D± can be

used to find a compromise between different conflicting desirable properties.

Another important observation is that the sensitivity of the solution strongly

depends on the choice of the matrices DQ and H. Note that these two matrices are

the only parameters used in fixing the unobservable subspace of (HC,A+DQC).

Therefore, an important practical consideration is to choose DQ and H such that

the unobservable subspace of (HC,A+DQC) is made relatively insensitive to changes

in the system matrices A and C.

It is clear that the order of the residual generator given in Theorem 2 is

n—d(S*), and this order is in general conservative. This is because there may be a

u.o.s., 5, which satisfies (4.9), and contains 5*. Clearly, using this S the order of

the residual generator can be further reduced. Unfortunately, there is no

systematic way of constructing such non-infimal unobservability subspaces.

However, for the case of monic C, the minimal solution is obvious, and this special

case is discussed in Section 4.1.2.

Also, it follows immediately from (4.9), that the independence of £j and L2 is

a necessary condition for the existence of a solution to FPRG . This is intuitively

obvious, because if the failure signatures are not independent, then there exist

failure modes such that L^m^t) = Lom^t), and there is no way to distinguish

between these two failure events by observing the output of the system.

The reader who is familiar with the disturbance decoupled estimation



-84-

problem (DDEP) [46, 4] can readily recognize the relationship between DDEP and

FPRG. However, these two problems have subtle differences which completely

distinguish them from each other. In DDEP, the state that is to be estimated is

given as part of the problem statement. In FPRG, we have to find that part of the

state space that can be estimated even in the presence of unknown input m2(£)-

Now the issue of generic solvability is discussed. Genericity is a qualitative

measure that can be used to decide whether it is almost certain that a problem is

solvable if all the elements of the matrices modeling the problem are chosen

arbitrarily. If a matrix equation is violated only for very special choices of entries

of the matrix (more specifically, for choices corresponding to algebraic varieties in

the parameter space), then the equation is said to be generically satisfied. We refer

the reader to [50] for a thorough discussion of this subject, and here only list a few

important results that one should know about genericity.

Let A, C, and L be arbitrary matrices with dimensions n X n , / X n , and nXm

with m < n; then

- The generic rank of L is m.

- Let W* := inf ]V(L). Then generically

= (£' °
ir, ij

i f m < l
W* '

if m > I

- Let S* := inf S(£). Then generically

ft, ,7m </
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Note that the set of points on which the above generic conditions do not hold has a

Lebesgue measure of zero. However, in some actual problems the generic

conditions may not hold.

Now the above facts are used to state the generic solvability of FPRG.

Proposition 3: Let us assume that A, C, L^, and L2 are arbitrary

matrices with the respective dimensions n X n , lXn, nX/c^, and n

Then FPRG generically has a solution if and only if

^ n>

< I.

(4.17)

(4.18)

Proof: (only if) As we mentioned previously, the independence of LI

and £2 is a necessary condition for the existence of a solution; hence,

(4.17) follows immediately. Also, if / < £2, then generically S* = X", and

obviously (4.9) can not hold; thus (4.18) is necessary.

(if) If (4.17) holds then £1 and £2
 are generically independent. Also

if / > fro, then S* defined in Theorem 2 is generically equal to L2.

Therefore, (4.18) is generically satisfied and FPRG has a solution. 0

Note that if the S* defined in Theorem 2 is used to design a residual generator,

then the generic order of the processor is n—k2-

Now we solve a simple example to illustrate the design procedure. Consider

the system given in (4.1) with

0 1 0

0 0 1

'0 3 4"
1 2 3
0 2 5

, L! =
l

-.5
.5

, Lo =
"-3

1
0

, c =

and B — [L^, L2]. Now assume we want to design a residual that is sensitive to the
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failure of the first actuator, and is insensitive to the failure of the second actuator.

First, let us compute S* defined in Theorem 2. Using UOSA,

5* :=
-3 1
1 0
0 0

Clearly L^ H 5* = 0; therefore, FPRG is solvable. Now we want to use the

procedure given in Theorem 16 of Section 2.3 and Theorem 2 here to find the F

matrix with arbitrarily assignable spectrum. First we characterize the elements of

/>($*). Let D0 = [dy-] (i G 3,/G 2); then DQ € D(S*) if and only if

[ 0 0 1 ]
0 3+</11 -3 1

1 0
0 0

= 0.

This equality implies </31 = —2, and all other dtj are arbitrary. Let us choose DQ as

follows:

Dn =
0 0
0 0

-2 0

Define AQ = (A+DQC : £/$*). A simple computation shows that

= [ o o i ]
0 3 4
1 2 3
0 0 5

0
0
1

= 5.

Also we know Ker HC = S* + Ker C Substituting for C and S* we have

H = [0, Ij. Moreover, CQ •= HCP~r, hence CQ = 1. Let us choose £>j such that

^(AQ+D^CQ) = {—5}. To place the pole at s = —5, we should choose D^ = —10,

and thus D = DQ+P~rDlH is simply
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0 0
0 0

-2 -10

By Theorem 2, we have M— HCP~r = C0, E = PD = [-2, -10], and G = PB

= (.5, Oj; thus the residual generator has the following form:

w(t) = -5 w(t) - [-2, -10] y(t) + [.5, 0] u(t)

r(t) = w(t) - [0, 1] y(t}. (4.19)

Note that the residual generator does not use the signal commanded to the second

actuator. This necessarily follows from the fact that the failure of the second

actuator should not affect the residual r(t}. Note that if the first failure signature

had been

L! = [l, 0, 0]',

then clearly LI C S* and FPRG would not have had a solution. We shall continue

this example in the next subsection, after some preliminary theoretical

developments.
t
i

4.1.1 Extension of FPRG to Multiple Failure Events

In this section we extend FPRG to the case of multiple failures. Let us

assume that k failure events are present, and we want to design a processor which

generates k residuals, r^t) (i G k), such that the failure of the i-th component, i.e.,

nonzero m,(2), can only affect the i-th residual r t(t) and no other residuals r (t)

(j -^ j). In the notation of Chapter 3, this is equivalent to choosing the coding sets

to be J?, = {i} (i £ k). We call this problem the extended fundamental problem in

residual generation (EFPRG).
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Obviously, if EFPRG has a solution, then it is possible to detect and identify

even simultaneous failures with almost arbitrary modes for each component failure.

Note that for identifying simultaneous failures, we need at least as many residuals

as there are failure events. In this sense, the coding set /?, ={i} (i G k) (or any

permutation of it) is minimal.

In the preceeding paragraph, we used the phrase almost arbitrary mode of

failure, because as in FPRG we shall only require that the system relating m t(t) to

r t(t) be input observable, there by allowing the possibility that some special m t(t)

can not be detected. For the filter to be capable of detecting simultaneous failures

with arbitrary modes for each component failure, the requirement of input

observability of the system relating m^t) to r t(t) should be replaced by the

condition of left invertibility. However, this is jiot typically necessary in failure

detection and identification, and as was explained in Section 4.1, when m t(t] are all

scalars, the condition of input observability and left invertibility are equivalent.

Now the solvability conditions of EFPRG are stated.

Theorem 4: EFPRG has a solution if and only if

5,*nL,- = 0, * G k , (4.20)

where S,-* := inf S(£ , ^ Ly), i G k.

Proof: (only if) The necessity follows immediately from the proof of

Theorem 2. Just replace the LI and Li in Theorem 2 with L, and

Y]. / 1 respectively.

(if) For sufficiency, the procedure given in Theorem 2 can be used to

design k different residual generators, J7rj, each generating the residual

r,(f). Let Df G D(S*) and Ft = (A+Z>,C T/S,*). Obviously, Dt can be
chosen such that cr(F;) = Al for arbitrarily given symmetric sets At (see
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Theorem 16 of Section 2.3). Let E( = P{D{, G{ = P{B, Hf be any solution

of Ker HfC = 5,-* -1- Ker C, Mi the unique solution of M,P,- = H{C, and

Kf = 0. A simple computation shows that rt(s) = —Tt{s) m t(s) with

Tt(a) = Ml(sI—Fl}~lPtLi. Using the same argument as in Theorem 2, the

system relating m t(t) and rt(t) is input observable; thus the collection of

the residual generators £ri (i £ k) is a solution to EFPRG. 0

A family of failure signatures satisfying the conditions in (4.20) will be called a

strongly identifiable family. This concept has important system theoretic

consequences because it is not possible to design an LTI residual generator which

identifies simultaneous failures within a family of failure events if the family is not

strongly identifiable. Therefore, the concept of strong identifiability is fundamental

in the FDI problem.

Note that the solution given in Theorem 4 is a combination of k separate

FPRG each generating a different residual rt(t). The block diagram of this residual

generator is given in Fig. 4-1. Also using (4.20) and the definition of 5,*, it follows

immediately that for EFPRG to be solvable, the family of failure signatures

{£,-, i £ k} must necessarily be independent.

The order of the residual generator given in Theorem 4, i.e., the sum of the

orders of k different residual generators, can be quite large. Nevertheless, in this

filter, the residuals are generated by k completely decoupled filters, and there is a

great deal of freedom in choosing the F,- matrices of these individual residual

generators. This freedom can be used to realize the other desirable properties of

the residual generator like enhancing the effect of the failure or supressing the

effect of noise on the residual, as was explained in Section 4 1. Also, the freedom in

choosing the gain matrices can be used in reducing the sensitivity of the solution to

the variation in the system parameters Now we proceed with stating the generic



-90-

y ( t )

u ( t )

J '
Figure 4-1: Block Diagram of EFPRG

solvability conditions of EFPRG.

Proposition 5: Let us assume that (A,C,Lt) are arbitrary matrices
k•with dimensions n X n , l X n , and nXfc , respectively. Let K := £ =1 *V

Then EFPRG generically has a solution if and only if

K < n.

K - min {/:,-, i G k} < /.

(4.21)

(4.22)

Proof: (only if) Necessarily, Lt (t £ k) should be independent.

Hence (4.21) is immediate. Also if / < V / ^r then generically
S* = r. Therefore, (4.22) is necessary.

(if) Inequality (4.21) implies that {!„ i £ k} is generically an
independent family of subspaces. Also, (4.22) implies that / > y^ / k ;

hence, generically St* = £ ^ , £j From the independence of {£.,, i G k}
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it follows immediately that (4.20) holds, and EFPRG is generically

solvable. 0

Note that if the family (5,-*, i G k) defined in Theorem 4 is used to design a

residual generator, then the generic order of the processor is

To illustrate the design procedure given in Theorem 4, we shall now continue

the example in Section 4.1. The residual generator we designed previously is the

same as I7rl of Theorem 4. Therefore, rename the r(t) given in (4.19) as r^), and

we only need to design the residual generator, £"r2, which is sensitive to the failure

of the second actuator but is not affected by the failure of the first actuator. Using

UOSA, we have

p * —
>2 —

1

-.5
.5

Also let

f l 2 0]
D2= 1° 1 !J

be the canonical projection. Now we use the procedure given in Theorem 16 of

Section 2.3 to find £>2
 suc^ that (-^D^C: £/S2*) nas arbitrary spectrum. First we

find a £>02 E J2($2*)- ^ s™P^e computation shows

0 -7
0 0
0 -6

is a suitable choice. Let Ago = (A+.D02C : r/52*) then
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I 3

By definition of a u.o.s., there exists an Ho such that Ker H2C =52*+Ker C. A

simple computation shows H2 = [1, 1] is appropriate. Also

C02 = H2CP2~
r = [0, 1].

Moreover, (CQ2,A^2) is by construction observable. Therefore, there exists a D12

such that the spectrum of F2 = ^2+D-i2CQ2
 can ^e assigned arbitrarily. Let us

choose A2 = {-2,-3}. Then D12 = [-23, -9]'. Also

D2 = £>02 P2~
rDl2H2

-23 -30
0 0

-9 -15

From Theorem 4, we know E2 = P2D2, A/2 = C'02, and G2 = P2B. Therefore, the

residual generator which is sensitive to the failure of the second actuator and is not

sensitive to the failure of the first actuator is simply

"2 -20 "

1 - 7
„(„-

" -23 -30 "

-9 -15
-o.

"o -i "

0 1
u(t) . (4.23)

r.2(0 = [ 0 1 ] w2(t) - ( 1 1 ] y(t).

Note that this residual generator does not use the signal commanded to the first

actuator.

As we said before, rename the residual r(t) given in (4.19) as r-^(t) and write

both (4.19) and (4.23) in a single equation as follows:



' -5
0
0

[ 1
o

0
2
'l

0
0

0
-20
-7

w(t)-
"-2
-23
-9

o 1 fo
1 wit) - 1

-10 '
-30
-15

1
1

0(0 +
' .5
0
0

y(t),

o '
-1
1
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w(t)= 0 2 -20 w(t)- -23 -30 y(t) + 0 -1 u(t), (4.24)

HO

where r(t) := [r^t), r.2(t)}'.

To gain some insight into the problem, let us compute several different

transfer matrices associated with this example. First denote the transfer matrix

relating m(s) = (m^s), m2(s)]' to y(s) by Gm(s). A simple computation shows

-.5(s2-10s+6) (s-3)(s-5)

.5(s2-4s+l) 2(s-3)

Now consider the residual generator given in (4.24) and let us compute the transfer

matrix, HJa), relating y(s) to r(s). It follows immediately that
if

2 -(a-5)

The next step involves finding the transfer matrix from m(s) to r(s). This transfer

matrix is simply Hy(s) Gm(s), and carrying out the multiplication

-.5
i

<7m(«) =
0

-(3-3)

(3 + 5)

0

As was required, m^ can only affect rlf and similarly mo can only affect TO. Also it

can be shown that the transfer function from u(s) to r(s) is zero. Therefore,

EFPRG is really the problem of designing a stable diagonalizing post compensator.

We shall expand this view point in the next chapter.
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It seems that the minimum order residual generator for this particular

example is not less than third order. Thus the filter we have designed is minimal in

this sense. Note that in this example, n and k are very close to each other. In

problems where the number of failure events is much less than the number of the

states, the order of the residual generator should be reduced using other clever

design procedures. However, these lower order residual generators will not

necessarily have the decoupled properties of the solution given in Theorem 4.

These decoupled filters can be considerably less sensitive to variations of system

parameters than a filter of lower dimension which is not decoupled. Moreover, the

block diagonal structure permits the filters to be designed and implemented

independently of each other, which can result in considerable simplification of both

tasks.

Nevertheless, an interesting question is how to reduce the order of the

processor given in Theorem 4. As the reader may expect, this question can

heuristically be answered using the concept of the compatibility of a family of

unobservability subspaces, which was introduced in Section 2.4. In the following

sections we shall formulate several different problems which usually have solutions

of a lower order than the solution given in Theorem 4. First we begin with the

special case where the measurement gradient matrix C is monic.

4.1.2 The Special Case of C Monic

As remarked in Section 4.1, we do not know at present what the minimum

order solution to FPRG is. However, if the C matrix in the model (3.10) is monic,

then we can easily answer the minimality question. It follows from this assumption

that any arbitrary subspace of 1C is an unobservability subspace, since output

injection can be used to completely erase the structure of the A matrix and replace
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it with whatever we want it to be; i.e., when the map C is monic, the equation

A+DC = X has a solution for any arbitrary matrix .Yof compatible dimensions.

Now, assume that the subspaces L, are independent. Because C is monic, S*

defined in Theorem 4 is simply S* = £ . / . Ly Using the independence of

{£,-, i £ k}, it follows immediately that EFPRG has a solution. In other words, if

C is monic, then any independent family of failure signatures is strongly

identifiable. Now let us choose a family of subspaces {5,-, i £ k) such that the

elements of this family each satisfy the following conditions:

£;y,.£yCS,, i £ k , (4.25)

Li 0 Si=X, i € k . (4.26)

Since C is monic, it follows that the S,' are unobservability subspaces. Hence these

subspaces can be used to design a family of residual generators which is a solution

to EFPRG. Simply find Df £ £($,) which arbitrarily assigns the spectrum of Fj

where Fi= (A+Df! : T/5,). Let Pt : X. — »• T/5,- be the canonical projection and

define Ei = PtZ),-, G, = PtB, H{ a solution of HtC = Ker C + S{, and M, the

solution of M,-P,- = H^C. Clearly, the collection of the residual generators

r,(0 = Mi w t(t) - Hi y(t], i € k,

is a minimal solution to EFPRG. When the above design procedure is used, the i-

th residual generator is k-ih dimensional. Hence the collection of these residual

generators is simply K dimensional.

However, the special case where C is monic is quite uncommon in actual

practice, and in other more general cases, the task of reducing the order of the
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residual generator is difficult. In Section 4.3, we shall use the concept of

compatibility to reduce the order of the solution to a restricted version of EFPRG.

This restricted version of EFPRG is very closely related to the Beard and Jones

detection filter problem which we shall formulate geometrically in the next Section.

4.2 Beard and Jones Detection Filter Problem

In this section we reformulate the original failure detection filter problem

stated and solved by Beard [3] and later extended by Jones [22]. Our approach is

based on the (C,A)-invariant and unobservability subspaces which leads to a

numerically simple design algorithm when the failure signatures are column vectors.

Consider the model given in (3.10) and consider a full-order observer of the

form:

w(t ) = (A+DC] w(t) - D y(t) + B u(t),

r(t) = C w(t) - y(t). (4.27)

Also assume that the pair (C,A) is observable. Define e(t) := w(t) — x(t), and for

the time being assume e(0) = 0. Using (4.27) and (3 10), we have

r(t) = Ce(t). (4.28)

If the i-th actuator fails, then m t(t) j^ 0, e(t) G V, := <A+DC\L t>, and

r(t) G CVt. Now consider the problem of finding a map D . y — » JT such that the

family of subspaces (C"V(, i G k} is independent; in this case residual generated by

each different actuator failure is confined to an independent subspace.. If such a D
•

exists, then the failure can be identified by finding the projection of r(t) onto each
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of the independent subspaces CV, and comparing the magnitude'of this projection

to a threshold.

The reader should note that in this formulation, the filter is capable of

detecting simultaneous failures with almost arbitrary mode of failure4. We say

almost because the observability of (C,A) and the monicity of L,- do not imply that

all nonzero m,(/) will show up in r(t). However, the system (C,A+DC,Lt) is

obviously input observable (see Definition 10 of Section 2.2) and in the scalar case,

i.e., kf = 1, this is equivalent to the condition of left invertibility (see Lemma 11 of

Section 2.2). Hence, if m t(t) ^ 0, then r(t) ^ 0.

We shall refer to this formulation of the failure detection and identification

problem as the Beard and Jones detection filter problem (BJDFP). This

formulation is somewhat different from the one given by Beard [3j, but both lead to

the same result when the subspaces CV,- are restricted to be one-dimensional. Also

for the time being, we do not include a stability requirement in the problem

formulation. Remember that we assumed e(Q) = 0. Obviously any practical filter

should be stable; otherwise the unknown initial condition results in a nonzero

residual vector even when no failure is present. Later on, we shall deal with the

stability issue in detail.

We should point out that Beard's and Jones' formulation of the failure

detection and identification problem is fundamentally different from what we

considered in Section 4.1.1, and it is somewhat limited. We shall illustrate this

By relaxing the requirement of identifying simultaneous failures, we can greatly enlarge the class
of solvable problems.

5Note that the observability of (C..4) implies that (C,A+DC) is observable.
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limitation at the end of this section through an appropriate example. Also in

Section 4.3.1, we shall exploit the relationship between BJDFP and the dual of the

control decoupling problem. In spite of its shortcomings, BJDFP is quite

attractive for practical applications and it leads to a computationally simple design

procedure when the failure events are one dimensional. This is the most important

reason for discussing BJDFP.

4.2.1 Solution of BJDFP

Assuming the filter has the structure given in (4.27), BJDFP can be stated as

follows: Given A, Lt (i £ k), and C, find an output injection map D : y — » T and a

family of subspaces {"H/,-, f £ k} such that

(A+DC) W{ C Wit i £ k, (4.29)

L{ C l»it i £ k, (4.30)

. n

Condition (4.31) requires that {W,-, i £ k} be output separable, and (4.29) requires

that the family of (C,.4)-invariant subspaces {"Wt, i £ k} be compatible!.

In order to take care of the trivial cases, we assume that the family

{£,-, i £ k} is independent. To justify this assumption, we know from Lemma 30 of

Section 2.4 that if there exists a family {Wt, i £ k} such that (4.29) and (4.31) hold,

then this family is independent. Therefore, if {£,, i £ k} is not independent, then

(4.30) cannot hold, and BJDFP does not have a solution. Now we state the

solvability condition for BJDFP.

Theorem 6: Let "W* = inf ]W(£,); then BJDFP has a solution if

and only if



CWy) = 0, i E k . (4.32)

Proof: (only if) Necessity follows immediately from the infimality of

(if) Clearly (4.32) indicates that the family {V,-*, * 6 k} is output

separable, and from Lemma 29 of Section 2.4 it follows that this family is

compatible. Hence r\.__,D(}Vf*) ^ 0, and {"W*, * £ k} is a solution to

BJDFP. 0

Obviously, the solution of the problem is straightforward because output

separability implies compatibility and that is all we need to solve BJDFP if pole

assignability is not a requirement.

When the failure signatures are simply column vectors (the scalar case),

computation of the subspaces "W-* is particularly simple. Using CAISA given in

Theorem 12 of Section 2.2, it follows immediately that:

UM = 1 - © ... © A»i L ,, (4.33)

where /*,- is the smallest integer such that CA^iLj ^ 0 . (Generically p- = 0, and

ty* are generically equal to Im L,-.) Using (4.33), it follows that in a given basis the

insertion map W- : IV f* — > X. is simply

Let us define

/,- := AHLi, and / .= [/ l f . . . ,lk\. (4.34)

Using the insertion map of TUt* we have

V,* = Im'/, © W,-* n Ker C. (4.35)
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Now assuming that {W,-*> » G k} is output separable or equivalently Rank Cl = k,

we want to find a Dd G r\i_lD('Wv*). From the proof of Lemma 29 of Section 2.4

and equation (4.35), it is immediate that if Dd is a solution of

-A[/ l f . . . , / * ] = £>/?[/!, . . . , / * ] . (4.36)

then Dd G D^^W*)- Clearly one solution to (4.36) is

Dd = -Al(Cl)-1. (4.37)

Note that this Dd is a solution of BJDFP when the failure signatures are
«

simply column vectors. We shall later on show how the gain matrix can be

modified so that some part of the spectrum of the detection filter can be assigned

arbitrarily.

If the initial error e(0) is not zero, then naturally we should add a stability

requirement to the problem statement so that the initial observation error dies

away and the residual stays close to zero when no failure is present. It will be

shown shortly that output separability is not a sufficient condition for pole

assignability, and other additional requirements are necessary. To derive these

conditions, we need a few preliminary results.

Lemma 7: Let W,-* := mfW(t,-) , and {TV*, f 6 k} be output

separable; then

W* := inf B= £,) = *= W,.*. (4.38)

Proof: Let W = £*=1 TV* , and L := £^=1 Lt. It is always the

case that "W* D IV ; therefore, we only need to show the reverse inclusion.

We know IV is (C,.4)-invariant since {W,*, » G k} is output separable and

hence compatible. Therefore,
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(4.39)

Also

inf ]V(1V) D inf JJflL), (4.40)

since W D L. Using (4.39) and (4.40), it follows that W* C WJ and the
conclusion is immediate.

Note that, because the output separability of {"W*, i G k} implies the output

separability of { W,-*, t G /?} for any /2Ck, it is immediate that

6r?l,) = E.6r?^. (4.41)

Now assuming {TV,-, : G k} is a family of (C,A)-invariant subspaces that solves

BJDFP, we want to find what the spectrum of the resulting observer is, and

whether it is possible to assign all of the eigenvalues of A+DC arbitrarily.

Theorem 8: Let {IV ,-, i G k} be a family of subspaces satisfying

(4.29), (4.30), and (4.31). Then there exists a D0 such that

<r(A+DQC : W,-) = Ait i G k, (4.42)

where ;i,- (i G k) are arbitrary symmetric sets with |/i,| = d("Wt). Also for

all D0 G njL^W,), the spectrum of

<r[A+DQC:T*/lV) (4.43)

is fixed where W := E*=1 W,- and T* := inf S(]V).

ff
Proof: Let Dd G n._.^()^,) which obviously exists because

t 'Gk} is a solution of BJDFP. Let .4rf •= ,4+^(7 and

,- : "Wl -* JT be< the insert?ion maps. Deffhe* A, :=^ (Ad : If,), and
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C,- := CWf. Because (C,A) is observable, using Proposition 2 of Section

2.1 we know (C,-,A,) are observable; therefore, there exist Z>,- such'that

Let £>r be a solution of

= DrC( Wlt ... ,Wk \ (4.44)

which exists because {IV f, « £ k} is output separable and hence

independent (see Lemma 30 and Proposition 1 of Chapter 2). Let

F,- : JC — »• JC/W,- be the canonical projection and define D0 := Dd + Dr

Clearly PiDQC\Vi = PlD^O\Vl; thus DQ £ flJl^W,). Alsc ,ve have

and because the family {W,, t £ k } is independent (see Lemma 30 of
Section 2.4),

<r(A+DQC : W) = wJ.jA-

Now let T* := inf S(X/)- For al1 ^o ^ n ^ W , ) , Z>0 € ^(^); and
using Proposition 20 of Section 2.3, it follows that the spectrum of

A+D0C:T*/1V is fixed. $

Now we specialize the result of Theorem 8 to the family {IV t*, i £ k} defined

in Theorem 6. Let D £ n^L^W,*) and define IV* = £* "W*. Obviously

D £ D(W], and from Theorem 8,

crfw := v(A+DC T*/W) (445)

is fixed where T* := inf S(W*). Now using Proposition 20 of Section 2.3 and

Lemma 7, it follows that a rw is the same as the set of invariant zeros, av of the
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system (C,A,[Li,...,L^). Therefore, if the family {If,*, i £ k} is used to design a

failure detection filter, then the set of fixed eigenvalues is simply <rz.

However, we can easily reduce the number of fixed eigenvalues without

compromising the solvability by using a family of u.o.s.'s instead of {"W*, i £k}.

Remember that {M/,-*, i '£k} defined in Theorem 6 is only one of the possible

solutions and it is not the only solution. Now define

Tf* := inf $(£,-), ' £ k. (4.46)

Following Beard [3], we shall call T* the detection space of the failure signature £,-.

This is because as with Vi)*, through appropriate selection of the gain matrix D in

(4.27) it is possible to hold the error vector, e(t), caused by a failure of the i-th

actuator inside T*. Moreover, T* has this additional property that the spectrum

of A+DC: X/T* is arbitrarily assignable. Also, T,* is the smallest subspace with

these two fundamental properties, and if we are interested in the pole assignability

of the observer, T,* are the subspaces that we should work with.

As is stated in (2.62), T* + Ker C = IV* + Ker C; thus CTf = CIV*. From

here it follows that output separability of {"W*, i € k} is equivalent to output

separability of {Tf, i £ k}. Therefore, if {W,*, j £ k} is a solution to BJDFP, then

{T-*, i £ k} is also a solution and vice-versa. However, we shall show shortly that

by using the family {Tj-*, i £ k} as a solution of BJDFP, the number of fixed

eigenvalues of the detection filter can be reduced. Also we shall derive the

fundamental relation that the family of detection spaces {T,*, i £ k} should satisfy

so that the whole spectrum of the filter can be assigned arbitrarily.

For the following, let us assume that the failure signatures are simply column

vectors, i.e., A:,- = 1. Using (4.35), it follows immediately that
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,-* = CT;-* = C7,-; (4.47)

hence CT* are one dimensional. Therefore, in the scalar case, the output images of

the detection spaces are one dimensional. This is the special case considered by

Beard and Jones. Now we give an algorithm for computing T* in this special case.

First we construct a Z>,- E D.(W*}- Using (4.36) and (4.37), it follows that:

Also using Theorem 19 of Section 2.3, it follows that T* is simply the unobservable

subspace of (H,C,A+D,C) for £>,• as above and H; satisfying

Ker tf.C = Ker C + W,*.

Using the insertion map of "W* given in (4.34), it follows immediately that

-<, (4.48)

is an appropriate choice. This algorithm for computing the detection space T,* is

the same as the one given in [3] Note that as we said in Section 4.2, contrary to

UOSA, the procedure given in here is a non-recursive algorithm for computing T,*.

However, this algorithm has mostly theoretical value, and later on other

numerically more reliable algorithms are developed.

Now a simple preliminary result that will be useful in stating the pole

assignability condition is proved.

Lemma 9: Let 7J-* := inf S(L t), and {7j*. t 6 k} be output
kseparable. Let T •= V , T*; thenL_JI= i »

T* := inf S(T) = mf S(^ £.,). (4.49)
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Proof: Let L := £*=1 L{, V,-* := inf )£(£,•), and

£>d £ nf^^W,-*). From (4.38), Dd G £()!>*) where IV* := inf ]V(£) =

E?=i ^i*' Using Tneorem 19 of Section 2.3,

inf S(L) = <Ker C+ !V*\A+DjC>. (4.50)

Also inf 5(7) = <Ker<7+ T\A+DdC>, since inf JjJT) = T and
Af € n*=1^(7;-*). But from (2.62) we know Ker C+ T= Ker C + F*;
and using (4.50), (4.49) follows immediately. 0

Now we state the necessary and sufficient condition that the family of output

separable detection spaces {T*, i E k} should satisfy so that, when used as a

solution of BJDFP, the spectrum of A+DC is arbitrarily assignable.

Theorem 10: Let {Tf, i £ k} defined in (4.46) be output
separable. Then there exists a map £ > : ] / — » • T such that

<r(A+DC : T-*) = A{, i G k,

= y= ,1,,

for arbitrarily given symmetric sets /!,- (i G k0) with \ A t \ = d(T^) (i G k),

and |4,| = n -£k
i=l d(T*), if and only if

T* := inf 5(= £,-) = = T,*. (4.51)

Proof: (only if) Let T .= ^J 7J*. By hypothesis, the T,* are
compatible; therefore, Tis (C,A)-invariant. .AJso by hypothesis it is given
that ff(A+DC : X/T) is arbitrarily assignable to a symmetric set; thus, T
is a u.o.s. (see Theorem 17 of Section 2.3). Clearly this implies
T= inf 5(T), and using Lemma 9, we have
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(if) Use the procedure given in Theorem 8 to find a D0 such that

<r(A+D0C : T;*) = At, i G k. (4.52)

Obviously DQ G £(T*), and because T* is a u.o.s., there exists an H such

that

T* = <KQTHC\A+DQC>.

Now let P: K — > T/T* be the canonical projection. Using the procedure

given in Theorem 16 of Section 2 3, we can find a D / such that

ff(Ao+DjC0) = AQ, (4.53)

where AQ := (A+DQC : JT/T*) and CQ is the unique solution of

= HC. Finally, it follows that

D = DQ + I^rDfH (4.54)

is a solution of the pole assignment problem. 0

Following Beard, a family of u.o.s.'s {T,*, i G k} satisfying (4.51) will be

called mutually detectable. Therefore, the issue of mutual detectability arises from

the fact that although the sum of a compatible family of u.o.s.'s is (C',A)-mvariant,

this sum is not necessarily a u.o.s.

In the scalar case, we can use the same procedure as we used before for T,* to

compute T* defined in (4.51). Using Theorem 19 of Section 2.3,

T* = <Ker HC\A+DdC> = <KerC+ }V*\A+DdC>

for Dd G D(}V*) and W defined in (4.38). By construction Dd of (4.37) is in

nJ=i-W*)' Hence usinS Lemma 7, it follows that Dd G £(U>*). Also the H
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matrix should satisfy Ker HC = Ker C + TV*. Using the result of Lemma 7 and the

insertion map of "W,-*, it follows immediately that

is an appropriate choice. Naturally, checking the condition in (4.51) amounts to

comparing the sum of the detection spaces T* with T*.

Now let us assume that the family {T,*, i £ k} is used to design a detection

filter, and assume that the failure signatures are simply column vectors. Then the

equation used in Theorem 8 for computing Dr can be simplified. To conform with

the notation of Theorem 8, let us rename the family of detection spaces

{T;-*, i E k} as ("Wf, i 6 k}. Then using the result of (4.47), and the relation for Dr

given in Theorem 8^ it follows that in the scalar case Dr is simply

Dr = [Wi^CTj ----- ̂ cy(c/)-<. (4.55)

Also, we showed earlier that the output images of the detection spaces are simply

Clf when the failure signatures are column vectors. Hence we can multiply the

residual r(t) with any left inverse of Cl and use the transformed residual
rt(0 :== (Cl)~lr(t) to detect and identify the failures. Clearly, if the i-th

component fails, then the i-th element of r t(t) will be nonzero and all other

elements will be zero. San Martin [39] has done some preliminary study of the

effect of different left inverses of Cl on the sensitivity of the detection filter.

Now assume that the family {T,*, i 6 k} is output separable but not mutually

detectable, and we want to determine the fixed spectrum of the resulting observer.

Let D 6 nk
{=lD(Tt*). Clearly D 6 Z>(T) for T = ^J=1 T*. Using Theorem 8,

it follows that the fixed spectrum of the detection filter is simply
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ffft := ff(A+DC : T*/T) (4.56)

where T* := inf S(T). Also using Lemma 9, we have T* = inf S(£ £j.

Obviously TD IV* where W* is defined in Lemma 7, and hence we have

*ft C ffr (4-57)

Stated in words, when the family {T,*, i £ k} is used to design a detection filter,

then the fixed spectrum of the filter is a subset of the invariant zeros of the system

If elements of a rt are in the open left half complex plane, we call {T,*, i" £ k}

a good non-mutually detectable family. Clearly, if only the stability of the filter is

required then a good non-mutually detectable family can be used as the solution of

BJDFP. Also in this case an obvious modification of the procedure given in

Theorem 10 can be used to place the assignable poles of the detection filter.

Now we are in a position to state an interesting interpretation of mutual

detectability in terms of the invariant zeros of some appropriate systems. Later on,

this interpretation will be used in developing a numerically reliable algorithm for

checking the condition of mutual detectability.

Theorem 11: Let {T,*, i £ k} defined in (4.46) be output

separable . Then {T,*, i £ k} is mutually detectable if and only if

(4.58)

where ]?, are the set of invariant zeros of (C,A,Lt), and /? is the set of

invariant zeros of (C,A,(Ll, . ,Lf.\).

Or equivalently, let {"Wt*, i e k} be ou tpu t separable
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Proof: (if) Let D 6 nL^W,*). Using Proposition 20 of Section

2.3, we can rewrite (4.58) as

<?(A+DC : T*/W*) = &.=a(A+DC : T^/ty*). (4.59)

where IV* and T* are defined in Lemmas 7 and 9. Let us assume that 7j*
jfc

is not mutually detectable, and T := T"]._1 T!-*. Using Lemma 9 we
™"^ I • •• X

know TC T*. But output separability of {Wj*, i £ k} implies that

a(A+DC :

and this clearly contradicts (4.59).

(only if) Let D € n*=1^(V,-*) and {?;•*, » G k } be mutually
Detectable. From the definition of mutual detectability and Lemma 7 it

follows that:

<r(A+DC:

Now (4.58) follows from Proposition 20 of Section 2.2. 0

Note that in general, ^2W-_,^r Therefore, mutual detectability states

that the failure signatures, L,, should not combine with each other and create new

zeros and zero directions.

Because of the reliable software now available for computing the zeros of a

multivariable system [13], the condition given in (4.58) can be readily verified. It

should be mentioned here that in actual implementation, under mild conditions ,

we only need to find the elements of J? with their corresponding ze"ro directions.

We assume that the elements of I? are distinct Our results can be extended to the cases where
elements of /? have the same geometric and algebraic multiplicities (see Appendix B), but we shall
not treat these special cases here.
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This information is enough to allow us to deduce the elements of J?t- from /?. We

illustrate this point through the following observation. Without loss of generality

we only consider Q^. Let Zj £ j?j; then there exist v± and wl such that

v

= 0,

but this implies

" 9 T A \T T T 1 "
*1»™~^» 1^1 > *-"i) • • ' ! •'•'JfcJ

C 0

" v l "wl
0

0

= 0.

Thus every element of /? with zero directions as above is an element of fl^. Also

HI C /?; hence, using this procedure we can find all the elements of J?j.

Now we want to develop numerically reliable procedures for computing the

detection spaces T*. Note that, even in the scalar case, the algorithm previously

given is not numerically reliable because it involves the computation of £>,-. In the

following we use a procedure that is dual to the one given in [27] for reliable
i

computation of the supremal controllability subspaces. We can also compute T*

using the dual of the elegant algorithm given in [43].

Proposition 12: Consider the system (C,A,B) and assume that the

invariant zeros of this system have the same geometric and algebraic

multiplicities (see Appendix B). Let TV* := inf ~W(B), S* := mf S(B),
and V be the subspace spanned by the state zero directions (see Appendix

B) associated with the invariant zeros of (C,A,B). Then

(4.60)
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Proof: Let r* and ]/* be respectively the supremal (A,B)-invariant
and the supremal controllability subspace in Ker C. It is simple to show
that S* = IV* + I* and y* = W* n ** (see Exc. 5.17 [50]). In (27), it is
shown that !"* = ]/* ® V. Hence (4.60) is immediate. 0

From Proposition 12, we know that 7J-* defined in (4.46) is simply

7;.* = w.* e v,,

where "W* has been defined in Theorem 6 and Vt- is the subspace spanned by the

state zero directions associated with the elements of /?,-. Therefore, in the scalar

case, (4.33) and V,- can be used to reliably compute T-*. We shall later illustrate this

procedure through an example.

Now we discuss the generic solvability of BJDFP.

Proposition 13: Let us assume A, C, and Z/,- are arbitrary matrices
with dimensions n X n , lXn, and nXkf respectively. Also lett •
K := £,-_! &,- and assume k > 1. Then BJDFP is generically solvable if
and only if K < I. Also the family of detection spaces {T,*, i £ k} is
generically mutually detectable if and only if K < /. Moreover, if K=l,
then generically the fixed eigenvalues of the filter are the same as ffrw

defined in (4.45).

Proof: (if) If Jfct- < /, then generically W,- = £,. Also if K < I then
generically the family {W,-*, i 6 k} is output separable. Similarly if fc,- < /,
then generically T* = Lt, and K < / implies that T* defined in (4.49) is

IL

generically equal to T ^ - . £,» an^ hence the family {T,*, t € k} is
mutually detectable.

(only if) If K > /, then {C'W,-*, i G k} cannot be an independent
family and BJDFP does not have a solution. Moreover, if K=l, then T*
defined in (4.49) is generically equal to JT, and the family {7]-*, j 'Ek}
cannot be mutually detectable. Using (4.56), it follows that in this case
the set of fixed eigenvalues is generically the same as GJW. 0
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To illustrate the results of this section, we design a detection filter for the

example of Section 4.1. For this example k=2. Using (4.33), it follows that

"W* = Im Lf, i £ 2. Also the output images of {W,*, i G 2} are independent, and

thus the family is output separable, and BJDFP is solvable. A simple computation

shows that ]?= {3}, and the corresponding zero directions are

[w1, tw1=r [100, 01].

From the structure of w we deduce that J?2 = {3} and (1^ = 0. Therefore,

T2* = W2* 0 Imu and 7i* = ty*; hence the family {T,*,i62} is mutually

detectable, and the spectrum of the filter can be assigned arbitrarily. Now let

A<2 = {—2,—3} and A± = {—4} and use the procedure given in Theorem 8 to find a

D0 such that a(A+DQC: 7}*) = -'I,-. Using equation (4.37), Dd € ^.=1D(}V*) is

simply

fd —

Also using the insertion map of (7^-*, i E k}, it follows that

Al := (A+DdC:Tl*) = 0,C l := (C . Tf) = [-.5, 5]'.

.5 3 "
1.5 -1
1.5 2

"-.5 1
.5 0

-l

=
"-3 -4

1 -2
-2 -5

Thus Dl = [8, 0] will place the spectrum of ^ at s = —4. Similarly,

A.2 := (A+DjC • T2*) =
0 1
0 3 C2 := (C:T,*)=

1 0
0 0 ,

and

-8
-30



will place the spectrum of

-6 -14
-8 -4
0 -4
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at s=— 2 and s=— 3. Using (4.55), then

-9 -18
-7 -6
-2 -9

Note that for this example Tj* ® T2* = Z", and the last design step in Theorem

10 corresponding to the construction of Dt is absent.

Now let us replace the second failure signature with L2 defined as follows:

0
0
1

A simple computation shows that "W* = 1,-. Also the family (W,-*, i € k} is output

separable, and hence BJDFP has a solution. Now let us compute the invariant

zeros of (C^AjJLj, L2]). A simple computation shows j?= {2}. Also computing the

zero directions associated with this invariant zero we find

\v ' , w1} = [1 00, -2 1].

The structure of w implies that neither of the two systems (C^A,!/,) have any

invariant zeros; hence /?,-= 0. Clearly T* = "W*, and the family {7j*, z € k) is

not mutually detectable. Also the set of fixed eigenvalues of the resulting filter is

simply ffft = {2}. Therefore, for this particular example the detection filter is

always unstable, and the filter is useless.

Note that the fixed eigenvalues are not always unstable. For example,

replace the second failure signature with

Ln =

0
-1
.5
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A simple computation shows that "W* = £,-. Also the family {W,-*, i £ k} is output

separable, and hence BJDFP has a solution. Now let us compute the invariant
•

zeros of ((7A,[L1( L2]). Carrying out the computations, we get /? = {—2}. Also

computing the zero directions associated with this invariant zero we find

[v1, w1 = [l 00, 2 -2].

The structure of w implies that neither of the two systems (C,A,L^) have any

invariants zeros; hence /?,- = 0. Clearly Tt* = ty*, and the family {7}*, i £ k} is

not mutually detectable. Also the set of fixed eigenvalues of the resulting filter is

simply ffrt = {—2}. Hence, for this family of failure signatures a stable BJDF

exists.

Now we illustrate the limitation of BJDFP through an example. The

limitation follows from the fact that there are families of (C,A)-invariant subspaces

which are not C output separable but are TC output separable for an appropriately

chosen matrix T. Let us consider the following system

A =

0 0 0 1 0
1 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 0 0 1 0

1 1 0 0 1
1 0 0 0 1
0 0 1 0 0
1 0 0 1 1

1 0
0 0
0 0
0 0
0 1

with L := [L1( Lo]. A simple computation shows that "W* = 1, (i £ {1,2}).

Hence CIV^* = CWo* and these two failure events are not C output separable

However, let us replace the C matrix by TC where
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T=
2 - 1 0 - 1

0 0 2 0

This amounts to ignoring some part of the measurement space and is a perfectly

legitimate operation. Now if we compute Wt- that is defined to be the smallest

subspace containing £,-, we get

' i o"
0 1
0 0
0 0
0 0

t ^2 =

" o o "
0 0
0 1
0 0
1 0

Clearly "Wi are TC output separable, and hence if we replace C by TC then the

BJDFP will have a solution. We also remark that it is simple to show that the

failure signatures Lj and L2 are strongly identifiable. Hence there are families of

strongly identifiable failure signatures that do not have C output separable

detection spaces.

Note that when the failure events are scalars and the number of the failure

events is the same as the number of the measurements, i.e., k=l, the BJDFP

(without any stability requirement) is solvable if and only if

Cl is invertible (4.61)

(see (4.34) for the definition of /), and in this particular case there is no limitation

to BJDFP.

In the next section we shall formulate a more general version of the BJDFP

which circumvents the limitations we have illustrated in here.
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4.3 Restricted Diagonal Detection Filter Problem

In the last section we formulated and solved BJDFP. Our objective in that

section was to find an output injection map D so that the innovation due to each

actuator failure is confined to an independent subspace of the output space. In the

actual identification phase, one should use the projection of the innovation onto

these independent subspaces. In this section we include these projection matrices

in the problem statement and try to find them as part of the design process.

To elaborate on this idea, consider the residual generator

w(t) = (A+DC) w(t) - D y(t) + B u(t),

r t(t) = Hi(Cw(t)-y(t)) , i 6 k. (4.62)

In (4.62), the residuals r t(t) are simply different linear transformations of the

innovation Cw(t}— y(t). Also, this processor has the same structure as the one given

in (3.11) and (3.12) if we require that F= A+DC, E = D, G = B, and M, = HtC

for some output injection map D . y -» 1C and measurement mixing maps

Hi- .y -> y.
Let e(t) := w(t) — x(t) be the error vector. Using (4.62) and (3.10), we have

r,(0 = ff,Ce(0, « e k . (4.63)

Now assume that a nonzero m t( t) should only have a nonzero effect on r t(t) and

none of the other residuals r ( t ) , j j£ i. More precisely we would like the system

relating m^t) to r,(£), i.e., (/fJC',J4+.DC,Z,J), to be input observable. As we have

indicated in the previous sections, when the m t ( t ) are scalars, this corresponds to
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the left invertibility of the transfer matrix relating m,-(s) to r,(s), and hence any

failure mode will show up in the corresponding residual.

This problem will be called the restricted diagonal detection filter problem

(RDDFP). We call it restricted because the residual generator is of the same order

as the system model. Also it is diagonal because the transfer matrix relating

m(8) = K(*), . . . . mk'(s)}' to r(8) = MS), . . . , rk'(s)}'

is restricted to be block diagonal. Note that this formulation of the FDI problem,

although restricted in the structure of the residual generator, does not have the

limitation we mentioned at the end of Section 4.2.1, since such cases are taken care

of through appropriate selection of the projection matrices //,-.

Let us denote the unobservable subspace of the i-th residual by 5,; then

S{ := <Ker H{C\A+DC> = <Ker C + St\A+DC>, i 6 k, (4.64)

where the equality in (4.64) follows from Proposition 15 of Section 2.3. Because a

nonzero m,(f) should not affect r (t) (j ^ i), Im L (j =£ i) should be in the

unobservable subspace of the i-th residual; hence,

( - > • • = Z, , t iLjQSi, « € k . (4.65)

Also the system relating m^t) to r t(t) should be input observable or equivalently

L,-n5, = 0, i € k . (4.66)

Clearly, (4.64) implies that the family of subspaces {S,, » £ k} should be

compatible, i.e., the family (5,-, i 6 k} should be assignable as the invariant

subspaces of a single observer (see Section 2 4).
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Thus RDDFP can be stated as follows: Given A, C, and L{ (i £ k), find an

output injection map D: y -* X and a family of compatible u.o.s.'s {5,-, i 6 k}

such that (4.64), (4.65), and (4.66) hold. The reader who is familiar with the

restricted decoupling control problem (RDCP) [50, 49] can immediately recognize

the duality between RDDFP and RDCP.

We make the following assumptions in order to avoid trivial cases:

1. The family {£,-, i £ k} is independent; otherwise £,- f| £.,• 7^ 0 for
some i £ k, and (4.65) implies that £, fl 5, j^ 0 which contradicts
(4.66).

2. The pair (C,A) is observable; otherwise factor out the unobservable
subspace and work with the factor system.

Let us define

V := inf S(£J, » 6 k . (4.67)

Clearly {5,-*, i £ k} satisfy (4.65). Because 5,* (i £ k) are infimal, a necessary

condition for the existence of a solution to RDDFP is

S,-*fU ,- = <>, a 6k. (4.68)

Assuming the necessary condition is satisfied, it remains to determine whether the

family {$,-*, : £ k} is compatible. If {S,-*, i £ k} is compatible, then we are done.

If not, the problem remains unsolved because there may be compatible u.o.s.'s that

are larger than 5,* but satisfy (4.66).

To illustarte some of the points, consider the following example:

A =
"o i o "
0 0 0
0 0 1

,L =
"o o "

1 0
_ 1 1
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[l 0 0],
L O o i j

where L := [L^, L<^. A simple computation shows

S2* = li and S1* = 12.

This implies that the failure signatures are strongly identifiable, i.e., the necessary

condition in (4.68) is satisfied. Now a simple computation shows that $i* + 52* is

not (C,A)-invariant, hence S^ and 52* are not compatible (see Lemma 27 of

Section 2.4). Also, for this particular example there does not exist any larger

compatible family of u.o.s.'s; hence RDDFP does not have a solution.

Even if the family {5,*, i £ k} defined in (4.67) is compatible, it does not

mean that the spectrum of A+DC is arbitrarily assignable. However, if {5,-*, i 6 k}

is codependent, then Proposition 25 of Section 2.4 can be used to assign the

spectrum of A+DC. Now we state the condition under which the family of infimal

unobservability subspaces {5,-*, i £ k} will be compatible.

Proposition 14: The family of infimal u.o.s.'s {5,*, i £ k} defined

in (4.67) is compatible if and only if the dual radical of this family is

(CV4.)-invanant.

Proof: (only if) The necessity is obvious and follows from the

discussion of Section 2.4.
«

(if) Let us denote the dual radical of the family {$,-*, i 6 k} by S .

From (2.68)

By construction £,- C St* and using (4.69) we have
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S D v nj ̂  3^r ^J L
* - £ 3 6k ' j 6 k £ r e k L r -

Because EFPRG is solvable, we know {£,-, i G k} is an independent

family. A simple computation shows that the right hand side of (4.70) is

just J^ c. t. ^r Therefore

E r e k ^ r C S . (4.71)

Hence, from the definition of S * it follows that

E r f k ^ C S n ^ / C S / O'Gk). (4.72)

» »

By hypothesis S is (C,A)-invariant; hSnce S D S^* (;' G k) are

((7,A)-invariant. Let us define Sj := inf S(5/nS) (;€k). Then the

infimality of Sf and (4.72) implies that S; = S*. Using (2 63), we
conclude that

D(S j* r \S )CD(S*) . - (4.73)

Moreover, (4.73) also implies

ny€k£(S/ n 5) c nj€k£(S/). (4.74)

Now using (2.71) and the discussion in the paragraph following it, we
\

conclude that {S,-*, i £ k} is compatible. ®

When certain additional restrictions are added to RDDFP, the family of

infimal u.o.s.'s satisfying these restrictions are automatically compatible, and hence

the compatibility issue disappears and (5,*, J G k} defined in (4.67) provide a

solution to RDDFP. For example, one of these restrictions is the requirement that

Ker HC = Ker C (4.75)
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where

H := [#!', . . . ,Hk1'. (4.76)

(We refer the reader to [34] for other special cases of RDCP which can be dualized

to RDDFP.)

Let us translate the restriction in (4.75) to a restriction on the family of

u.o.s.'s (5,-, i G k} defined in (4.64). Clearly, the requirement given in (4.75) is

equivalent to

n*=1Ker HtC = Ker C. (4.77)

From the definition of 5,-, we know 5,- C Ker HtC. Moreover, Ker C C Ker /f,C,

hence

Si + Ker C C Ker H,C. (4.78)

Using (4.77) and (4.78), it follows

Ker C = fljL^Ker H£ D flJl^S,- + Ker C). (4.79)

Therefore, the requirement given in (4.75) is equivalent to

Ker C = n*=1(S}- + Ker C). (4.80)

Also if we use (2.10), it is simple to show that (4.80) is equivalent to

Now the solvability condition of RDDFP restricted to (4.80) is stated.

Proposition 15: A solution to RDDFP restricted to (4 80) exists if

and only if
l
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Ker C = n*=1(S,-* + Ker Q, (4.82)

where 5,* := inf S(£,-).

Proof: For the proof of the dual problem see [34]. ®

Recently, Descusse et. al. [11] have solved a less restricted version of RDCP

(see also [24, 25]). The dual of their results amounts to restricting the output

injection map D to the form DH where H is defined in (4.76). We refer the reader

to [11] for more details.

We also point out that quite recently Suda et. al. [42] (see also [12]) have

found the necessary and sufficient solvability condition for RDCP. Unfortunately

the author was unable to obtain a copy of their paper, and we shall not concern

ourselves with this difficult problem because our whole purpose in introducing

RDDFP is to exploit its relation with BJDFP, and to point out the duality existing

between the FDI problem and the control decoupling problem.

Now we address the pole assignability issue. Note that even if a family

{5,-, » € k} satisfies the conditions in (4.64), (4.65), and (4.66), and hence is a

solution to RDDFP, there is no guarantee that the spectrum of A+DC can be

assigned arbitrarily. To find the fixed eigenvalues of A+DC in this case, we proceed

as follows. Let Dd £ fl^L^S,-); then obviously Dd £ D(S) where S is the dual

radical of the family {S,-, i € k}. Let 5 : S -* I" be the insertion map, and define
1

Sir := S-lSi = S-l<KerHlC\A+DdC>. (4.83)

Simplifying the right hand side of (4.83), we have
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where C0 := C: S and A$ := A+DC: S; hence, Sir are (CO,AQ) u.o.s.'s. Also

from (2.70), it follows that the subspaces Sir, i G k, are codependent subspaces of
•

5 . Moreover, using Proposition 2 of Section 2.1, the observability of (C,A) implies

that (CQ^Q) is observable. Hence, using Proposition 25 of Section 2.4 it is possible

to construct a DQ such that8

<T(AQ+DOCO : 5 ) = W*=0A, (4-84)

where Af are the same as the ones defined in Proposition 25 of Section 2.4. Also let

us define D := DfJfS~lDQ where S~l is the left inverse of 5; obviously D E D(S )

and

A+DC: S = AQ+DQCO.

Now it is enough to see whether it is possible to assign the spectrum

a(A+DC: JC/S) arbitrarily. This is possible if and only if S is a u.o.s. (see
•

Theorem 17 of Section 2.3). But compatibility of {5,-, i £ k} only implies that S is

(C,>l)-invariant (see Section 2.4). Hence the fixed spectrum of the filter is simply

ff(A+DC: S/S), I (4.85)

where S := inf S(5).

We also point out that if the necessary solvability condition of RDDFP given

in (4.68) is satisfied, i.e., the family of failure signatures {L,-, i £ k} is strongly

identifiable, then it is possible to construct a family of compatible extended

unobservability subspaces which is an extension of the family {$,•*, « '€k}. We

o «
Note that S plays the role of £ in Proposition 25 of Section 2 4.
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refer the reader to Appendix C for a discussion o/ the extension procedure.

In the next subsection, we show that if BJDFP has a solution, then the

RDDFP subject to the restriction in (4.80) will have a solution.

4.3.1 Relation Between BJDFP and RDDFP

Let us assume that the family of the detection spaces {7|-*, i G k} defined in

Section 4.2.1 is output separable and hence BJDFP is solvable. Define the family of

subspaces {V,-*, i G k} as follows:

V := inf M E - £ ; ) - <4-86)

Of course, the output separability of (T,*, i G k} is equivalent to the output

separability of the family of subspaces {IV,-*, i G k} defined in Section 4.2.1. Using

(4.41), it follows that i

Also the output separability of {IV*, i G k} implies that

Now using (4.87) and (4.88) we have

Also CV,-* = CS* where S* is defined in (4 67). Hence the family of subsapces

{S,-*, i G k} satisfies the condition in (4.81) (or equivalently the condition in (4.80)),

and {S;*, i G k} is a solution to RDDFP subject to the restriction in (4.80).

Recall that any family of failure signatures for which RDDFP is solvable is
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necessarily strongly identifiable (see (4.68)). Hence, using the above arguments it

follows that any family of failure signatures with C output separable detection

spaces is strongly identifiable. Note that the converse of this statement is not

necessarily true as the example at the end of Section 4.2.1 illustrates.

Once again let us assume that the family of subspaces {W,-*> i E k} defined in

Theorem 6 is output separable, and hence BJDFP is solvable. Let us see whether it

is possible to find the measurement mixing maps, Hit given in (4.62) or (4.64), from

the family of subspaces {W,-*, t 'Ek}. Let Dd E njL^W,-*)- 'UsinS (4-41)»

Dd E £(V,-*). Moreover, from the definition of 5,-* and V,-* (see equations (4.67)

and (4.86)) and equation (2.63), it follows that Dd E D(Sj*). Hence using Theorem

19 of Section 2.3, $,-* is simply

S* = <Ker HlC\A+DdC>

for any Hf satisfying Ker HtC = Ker C + V,-*. But from (4.41), we know that

V,* = y . , . TV * Hence Ht should satisfy
1 •C-iJ 7* J J »

Ker H.C = Ker C + y . , . W*
1 ^J 7^ « J

When the failure signatures are simply column vectors, i.e., the scalar case,

computation of the matrices Hi is particularly simple. Let us define

V := l'i> • • • J i-i,l i+i, • • • > lk}>

where /,- are defined in (4.34). Using (4.35), it follows that Hf is simply any

maximal solution of H^l* = 0. Obviously one such //", is

)-<. (4.90)

In actual implementation, one only needs to compute the singular value
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decomposition of Cl* from which the matrices #,- follow immediately.

Note that the matrices #,- have a very interesting interpretation. In Section

4.2, when BJDFP was formulated, we said that for identifying the i-th component

failure, one should project the innovation onto the output image of the i-th

detection space and check whether this projection is larger than a threshold, i.e.,

look for the i-th component failure in the i-th detection space. But multiplying by

matrices //,- can be simply interpreted as not looking in the detection spaces of

components other than the i-th one. For this reason it is more natural to refer to

the 5,-* defined in (4.46) as the undetectable space of the i-th failure signature

instead of the detection space. This point will be made clearer when we state the

solution of FDIFP in Section 4.5.

As should be clear by now, when the detection spaces of the failure signatures

are output separable, we can use the procedure in Section 4.2.1 to design a

detection filter, and then use the matrices Hl defined in here to generate the

residuals r,(J). In the scalar case, which is practically important, this approach for

assigning the spectrum of A+DC and finding the maps H^ has a computational

advantage over the procedure that is based on the computation of the dual radical

of a family.

4.4 Triangular Detection Filter Problem

In the remainder of this chapter, we no longer consider the simple coding sets

]?,-= {i}, and we shall go over other more complicated coding schemes. By doing

so, it is usually no longer possible to detect and identify simultaneous failures, but

instead a much larger class of problems can be solved Note that simultaneous

failures are unlikely events in many applications, and assuming that they do not
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happen may not be unreasonable.

The first problem in this category that we formulate and solve is the

triangular detection filter problem (TDFP). Consider the system in (3.10) and the

residual generator (4.62). In TDFP the objective is to design k residuals r t(t) (i £ k)

such that a nonzero m± affects r1 and possibly affects r2, . . . ,rk; a nonzero m2

affects r2 without affecting rl but possibly affecting r3, . . . ,rk, ...; finally a nonzero

mk affects rk without affecting r1( . . . ,rk-l. In the notation of Chapter 3, this

process of relating the failure events to the residuals corresponds to the coding sets

j?t- = {j} u Af where yi,- is some subset of {i+1, . . . ,k}. The input-output relation

of TDFP is- shown in Fig. 4-2.

X
X

r x ( t )

r 2 ( t )

Vt)o » *<> r
k ( t )

Figure 4-2: Input Output Relationship of TDFP

As the reader may expect, the name triangular follows from the lower

tringular structure of the transfer matrix relating m(s) to r(s) (see Section 4 3 for

the definition of m(s) and r(s)).

The concept of TDFP is an exact dual of the triangular decoupling control

problem introduced and solved in [33]. Interestingly enough, this formulation is

more applicable to failure detection and identification, since it is assumed that

simultaneous failures are not possible. Even if simultaneous failures do occur, their

presence in the#TDFP will not lead to incorrect identification as it may in other
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coding schemes. In such cases, at least, the failure of the component with highest

priority (i.e., the m,-(£) with the smallest value of t) can correctly be identified.

Using the statement of the problem, TDFP can be stated in geometric

language as follows: Given A, C, and L,- (i G k), find an output injection map

D : y — *• X. and a family of u.o.s.'s {$,-, i £ k} such that

S{ := <Ker HtC\A+DC> = <Ker C + St\A+DC>, i G k,

EJLf+i *-j £ S,- i ek- l ,and 0 C Sk, (4.91)

5,-nl,- = 0 iek . (4.92)

The requirement given in (4.91) implies that the failures of (i+l)-th up to k-th

component should not affect the i-th residual, and (4 92) implies that the failure of

the i-th component should at least show up in the i-th residual. Now the

solvability conditions of TDFP are stated.

Theorem 16: Let (C,A) be observable. TDFP has a solution if and

only if

$i* 0 Lf =0, » G k,

where 5,* := inf S(£fc
=(+1 LJ (i € k-1), and Sk* = 0. Moreover

:S£l/St*) = Al, t 6 k,

.
* • ••

where SQ* = JT, and Al (t E k) are arbitrary symmetric sets.

Proof: The proof is the dual of the one given in [33j, and hence is

deleted (also see Section 9 8 of [50]) (x)
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Referring to Theorem 16, it is clear that any strongly identifiable family of failure

events satisfies the solvability conditions of TDFP. For such families, the order of

the filter which solves TDFP is only n (same as the order of the system model), but

for this family of failure signatures, RDDFP may not have a solution, and it may

be required to extend the state space. The following is an example of an strongly

identifiable family of failure events for which the RDDFP does not have a solution

A =

C =

where L := [Z»1; Z2j. Of course the solvability conditions of Theorem 16 are

satisfied, since the failure signatures are strongly identifiable, but the failure

signatures are not output separable and hence there is no solution to RDDFP (see

(4.61) and remember that k=( in this case).

However, the converse of the above observation is not true. Namely, a family

of failure signatures satisfying the solvability conditions of TDFP is not necessarily

a strongly identifiable family. To illustrate this fact, consider the following

example:

"o i o"
0 0 0
0 0 1

'l 0 0"

0 0 1

,L =
" o o "
1 0
1 1

I

A =
0 0 0 0
1 - 1 - 1 0

- 1 1 1 0
0 1 0 0

0 0 1 0

0 0 0 1

' Ll =
" o
0
1
0

o "
0
0
1 _

, L2 =
" 1 "
0
0
0
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Computing 5,* defined in Theorem 16,

$,* =
1 0
0 1
0 -1
0 0

= 0.

Clearly, the solvability conditions given in Theorem 16 are satisfied, but it can be

shown that the failure signatures are not strongly identifiable.

The only limitation of TDFP, in a failure detection and identification context,

is its inability to detect simultaneous failures; however, this is a minor shortcoming.

Our last remark about TDFP concerns the case of simple sensor failure9

From Section 4.3, we know that a family of failure signatures with output separable

detection spaces is strongly identifiable. Also using the state space augmentation

procedure given in Section 3.1, it is possible to model / sensor failures as a family of

/ output separable pseudo-actuator failures. Therefore, there always exists an n-f/

dimensional filter with arbitrarily assignable spectrum that triangularly detects and

identifies any family of / sensor failures.

4.5 Failure Detection and Identification Filter Problem

In this section, we solve FDIFP introduced in Chapter 3. In all of the

developments, it is assumed that only one failure is present at a time. Our other

objective is to answer the following fundamental question: Given a family of failure

events and assuming that there is only one failure present at a time, when is it

Q

By simple sensor failure we mean those sensor failures whose signatures are columns of the
identity matrix.
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possible to design a residual generator which can be used to uniquely identify the

failed component. This question will lead to the introduction of the fundamental

concept of an identifiable family of failure signatures.

Before attacking the problem, let us more concretely define the coding sets /?,-

(t £ k) introduced in Section 3.1. First define an auxiliary coding matrix A = [<5,-y]

with $••= 1 if i 6 /?y for i £ p, and <$,/= 0 otherwise. An element <5,-y= 0 implies

that the j-th component failure should not affect the i-th residual. Similarly,

6fj = 1 implies that the the j-th component failure should affect the i-th residual10.

Hence, our goal is to design a residual generator such that the transfer matrix

relating the failure events and the residual vectors is structurally the same as the

coding matrix A defined.

Before proceeding any further, let us give a simple example of a coding set

and its associated coding matrix A. Assume that 6 failure events are present, and

three residuals are defined such that /?!={!}, /?.2={2}, J?3={1,2}, /?4={3},

J?5={1,3}, and J?6={2,3}. Using the definition of a coding matrix, we construct A:

1
0
0

0
1
0

1
1
0

0
0
1

1
0
1

0
1
1

A= 0 1 1 0 0 1 (4.93)
0 0 0 1 1 1 J

The coding scheme used in this example is called a binary coding. This is because

the columns of A (e.g., [0, 1, 1]') are just the binary representations of the

corresponding column indices of A (e.g., 6). Note that if a unique ordering

(1,2, . . . ,k} is assigned to the set of failure events {Lt, i £ k}, then the binary

representation of the index i (i £ k) can be used to generate the coding sets. When

^3y affecting we mean that the transfer matrix relating the j-th component failure to the i-th
residual should be input observable.
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binary coding is used, the miuinvim number, p, of residuals is simply

P = Pog2 (*+!)!, (4-94)

where [x] is the smallest integer such that [i] > x . It is simple to show that the

number given in (4.94) is the minimum number of residuals required no matter

what coding scheme is used. This is the major desirable attribute of the binary

coding. However, intuitively, the probability of false identification associated with

this coding scheme can be large. In the event of a failure, some of the residuals

may not cross the threshold, and therefore a totally incorrect component can be

identified as failed.

Now let us consider some of the fundamental properties of the coding matrix

A. First of all, no row of A should be identically zero, since this implies that none

of the failure events affect the residual corresponding to this row, hence this

residual is superfluous. Also, no column of A should be identically zero since the

failure event corresponding to this column would not affect any of the residuals and

therefore could not be detected. Most imporatantly, no two columns of A should

be the same, since otherwise the failure of the components corresponding to these

columns could not be distinguished from each other. Moreover, permutation of the

rows and columns of A corresponds to a renumbering of the residuals and the

failure events respectively.

Also let us define the sum (+) of any two rows of _1 as the Boolean or of the

elements of one row with the corresponding elements of the other row. Using this

definition, for example

[1,0,0] + [1,1,0] = [1,1,0].

Clearly, any row of A which is the same as the sum of other rows of A is
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redundant. For example, assume that for some coding matrix the first row is the

same as the sum of the second aiid third rows. Then the residuals two and three

are sufficient for FDI purposes, and the first residual is not necessary; however, this

redundant residual may be useful in the decision making process.

Now the coding matrix A associated with a family of coding sets is used to

solve FDIFP. First define the finite set /",- as the collection of all those j G k for

which <5,-y= 0. For example, the family Ff (i G p) associated with the binary coding

sets we used in the previous example is simply:

/*! = {2,4,6}, r2= {1,4,5}, r3 = {1,2,3}.

Note that the sets /",- (i G p) contain all the necessary information required for

shaping the structure of the transfer matrix relating the failure events to the

residuals.

Now recall the FDIFP of Chapter 3. The objective of FDIFP is to generate p

residuals, r j ( f ) (/€ p), such that when the j-th component fails, the residuals r t(t)

for f 6 flj should be nonzero, and the other residuals all should be identically zero.

Clearly we can think of FDIFP as p separate FPRG (see Section 4.1} corresponding

to different rows of A which should be solvable simultaneously This follows from

the trivial observation that each residual r,{£) can be generated separately from the

others. Using the necessary solvability condition for FPRG (see Theorem 2) and

the assumption that there is only one failure present at a time, a necessary

condition for the existence of a solution to FDIFP is simply

s r .nLj = o, yek-r,, i e p , (4.95)

where
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Sr, :=inf (4.96)

The condition given in (4.95) is also sufficient. Simply use the unobservability

subspaces Sp. (i G p) to design p separate residual generators each being the

solution to an FPRG corresponding to different rows of the coding matrix (see

Theorem 2 for construction of the residual generator). Also all of our remarks in

Section 4.1 about accommodating the effect of sensor and process noise and

sensitivity of the solution are applicable here.

To illustrate the design procedure, consider the following system:

1 0 0 0 0 0
1 1 0 0 1 1
0 0 1 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

1 1 0 0 0
0 1 0 0 0

A = 0 0 - 1 1 0
0 0 0 - 2 0
0 0 0 0 - 2

1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 1

Note that for convenience the failure signatures Lt are stacked in L. Now the

problem is to design a residual generator for this example with the binary coding

scheme we mentioned a while ago. The coding matrix A for this example is given in

(4.93), The reader should note that the failure signature L6 is a linear combination

of the failure signatures Z/2
 an<^ ^4- First, the infimal subspaces Sp. defined in

(4.96) are computed. Deleting the details, one can show .

e

£
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A simple check shows that the necessary condition in (4.95) is satisfied. Hence $r.

can be used to design a residual generator £t according to the procedure in

Theorem 2. It is clear that 27j will be a third order filter, and the other two

residual generators 272 and £3 will each be second order filters. Therefore, the over

all residual generator is 7-th order.

We also point out that if the columns of L are permuted (this permutation

corresponds to a renumbering of the failure signatures), then the problem may not

have a solution. To illustrate this, consider the permutation cycle (5,6). This

permutation corresponds to the reordering "five becomes six and six becomes five."

However, if we still use the coding matrix in (4.93), it is immediate that the

problem does not have a solution. This follows from the fact that (the new) L5 is a

linear combination of L2 and L4. In practice, special care should be used in

specifying the coding sets, so that trivial impossibilities like the above are

eliminated.

Now our objective is to show that for certain families of failure events, it is

not possible to design a residual generator in the sense of Chapter 3 no matter

what family of coding sets is used. For this we shall assume in the remainder of

this section that the failure signatures are column vectors.

The following result will be crucial to our derivation.
•

Lemma 17: Let (C,A) be observable, d(Li) = d(L*} = 1, and
LI C To* where To* := inf S(12). Then Tt* = T2* where

V :=*inf

Proof: Since Lj C T2* and To* is a u.o.s., T2* G S(£-i)- Thus the
infimality of Tt* implies that TL* C T.2*t and hence CTj* C CT2*. From
Section 4.2, we know CTj* and CT2* are both one dimensional; thus
CTj* = C7o*, or equivalently
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rx* -I- Ker C = T2* + Ker C := V. ' (4.97)

Also To* and Tj* are compatible since T1*+T2* = T2* is (C,yl)-invariant
(see Lemma 27 of Section 2.4). Let DenD^*). Using (4.97) and
Proposition 15 of Section 2.3, we have

Recall no two columns of the coding matrix are the same. Using this

property, it follows that given any two distinct integers /,;' £ k, there should exist

an i such that either

or

/ € r{ but y g r,-. (4.99)

As in (4.46), denote the family of detection spaces associated with the family of

failure signatures {Lit i E k} by (T,*, t € k}. If (4.99) holds, then obviously

TI* QSp. Similarly, if (4.98) holds, then T* C Sp. Now using the necessary

condition given in (4.95) and the argument in (4.98) and (4.99) it follows that given

any /,;' G k

either Lt D Tf = 0 or £; n T;* = 0. (4.100)

Now using Lemma 17 and (4.100) we conclude that

i inr/ = o, / . y e k . / ^ y , (4.101)

necessarily should hold. Because of Lemma 17, the condition given in (4.101) is
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equivalent to

. . . ,*}, / e k . (4.102)

Now we prove that the condition in (4.102) (or equivalently (4.101)) is also

sufficient. Namely we show that if a family of failure signatures satisfies the

condition given in (4.102), then there exists a family of coding sets for which the

FDIFP, with the assumption that only one failure is present at a time, has a

solution. Interestingly enough the solution is quite simple. Just use the poor man's

coding sets

/?,- ={!,... ,t-l,t+l, . . . ,k}, i 6 k, ! (4.103)

to design k different residual generators such that the unobservable subspace of the

i-th residual is simply T* so that the failure of the i-th component will not show up

in this residual. From here, it is immediate that undetectable spaces is a more

appropriate name for each of the subspaces {T,*, i 6 k}, since if a failure signature

is inside T,*, then the effect of this failure will not show up in the residual r t(t)

designed according to the coding sets in (4.103).

A family of scalar failure signatures {L,-, i £ k} satisfying the condition given

in (4.102) will be called an identifiable family of failure signatures. Note that if a

family of failure signatures is not identifiable, then there does not exist any

processor with which it is possible to detect and identify the failures in the sense of

Section 3.1.

The coding matrix corresponding to the poor man's coding sets given in

(4.103) has an interesting structure. This matrix is simply the complement of the

identity matrix. Note that this might cause some practical difficulties in the

decision making phase of FDI. because some of the residuals which are supposed to
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cross the thresholds may actually remain quite small and hence no decision will be

possible. Also note that the order of the residual generator which solves FDIFP

with the coding sets given in (4.103) is generically k(n— I). Clearly this number can

be quite large. However, the order of the filter can be substantially reduced if some

of the results in Section 4.2 are used.

The reduction procedure hinges around the idea of subdividing the family of

detection spaces {7J-*, t E k) into q disjoint families of mutually detectable

detection spaces, i.e., finding Tf such that UJL^T,- = q, TtClTj— 0, and (7J-*, i E Ty}

is mutually detectable for each j E q. Note that mutual detectability implies that

the set {Tj*,i£Tj} should be output separable, and the invariant zeros of

(C}Ai{L{, i E T:}) should be equal to the union of the invariant zeros of (C,A,L-)

(i E 7y). Next we can use each of the mutually detectable families to design a

BJDF. The procedure for designing these filters is outlined in Section 4.2.1. For

example, the j-th detection filter will have the following form:

wj (t) = (A+Df) Wj (t) - Dj y(t) + B «(«),

rij(t) = H i j(CwJ(t}-y(t))> (,'er,), (4.104)

with D j E f!3 e rA"^*) and H{J any maximal solution of fftjClf = 0 (i E T) where

/,- are defined in (4.34). With this choice of Hijt the failure of the i-th actuator

(i E T,) will not show up in r (t) but will show up in all other residuals rat, s j£ i

and t T& j. It should be clear to the reader that in some applications other residual

mixing maps H^ may be more appropriate, and there is a great deal of freedom in

choosing the H ,,-. The mam point is that the concept of compatibility and the

results of Section 4.3 and 4 2.1 can be used effectively to reduce the order of the

residual generator.

We should mention that all of the results of this section hold equally as well



-139-

for discrete systems. Note that we are not referring to discrete models of

continuous systems, because the failure of actuators of a continuous system can not

be accurately modeled by an appropriate discrete system; however, if the sampling

time is small enough, there should not be any difficulty in treating sudh problems.

An interesting characteristic of the residual generators for discrete systems is

that we can assign the spectrum of the residual generator to the origin of the

complex plane, and hence obtain a dead-beat behavior (e.g., the F matrix in (4.2)

can be made nilpotent). These residuals are known in the literature as generalized

parity relations [8j. It is clear that if there does not exist an FSO for a particular

problem, then it is not possible to find any parity relation either, since parity

relations are simply a special case of the residual generators we have considered in

this chapter. In the next chapter, we shall further illustrate the relation between

the generalized parity relations and the residual generators of this chapter.

As should be clear by now, geometric control theory and the concept of

unobservability subspaces can be used effectively to solve many different

formulations of the FDI problem, and the reader himself can formulate and solve

other problems with any desirable coding sets using our geometric approach.

In the next chapter, we shall reformulate and solve the problems we have

defined in this section in terms of transfer matrices.
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Chapter 5

A Transfer Matrix Approach

la this Chapter, we develop a procedure for constructing the residual

generator by performing algebraic operations on rational transfer matrices. This

approach enables us to unify the concept of failure sensitive observers with the

generalized parity relations introduced by Chow [5] and Lou [29] and will lead to a

numerically reliable procedure for computing the single sensor parity relations.

Throughout this chapter we assume that the failure signatures are simply column

vectors (i.e., the scalar case). It is not difficult to extend our results to the more

general cases, but these general cases have more limited practical applications. Also

we make extensive reference to the problems defined in Chapter 4, and it is

assumed that the reader is relatively familiar with those problems previously

defined.

First some notation and definitions are explained. We denote by R[q] the

ring of polynomials in q with coefficients in the field of real numbers R. Also, R(q)

and RO(<?) respectively denote the field of rational functions and the ring of proper

rational functions with the coefficients in the field of real numbers. The symbols

Rn[q] (Rn(q), Rj(g)) and Rr*s[q] (RrX3(?), RgX'(?)) respectively denote the n-

dimensional column vector and the ( rXs) matrices with entries in R[q] (R(<?),

R0(<?)). Clearly, Rn(q) is an R(^)-vector space; however, RQ(Q) is an R0(<j)-module

(see Appendix A).

We say G(q) G Rn X n(g) is invertible if its determinant is not identically zero.

Similarly, G(q) £ RnX3(g) with n > 3 is left invertible if there exists an sXs minor
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of G(q) which is not identically zero. In this case we say the subspaces spanned by

the individual columns of G(q) are linearly independent, or G(q) has full column

rank and is monic. Note that the subspace Im G(q) spanned by the columns of G(q)

is simply defined as

Im G(q) := (x(q) : x(q) = G(q)r(q), r[q) G

Also the linear independence of a family of vectors rt(q) G Rn(?) (i G k) over

implies that

£=! *,i G Rfo),

holds if and only if at(q) = 0 (i G k).

We define the leading coefficient of a vector r(q) G Rn(<7) ^ ^ne first nonzero

coefficient in the expansion of r(q) in powers of q~l. Also the smallest power of q~^

with a nonzero coefficient is defined to be the order of r(q). For example, the

leading coefficent of

" tf2"
jz±L

2±JL
L 9+2 .

=

"o "

0

1 _
g° +

i

i

-i

1-1

is simply [0, 0, 1]', and the order of r(q) is zero. We say r t(q) G Rn(<?) (» 6 k) are

property independent [2ll if the leading coefficients of r t(q) (i G k) are linearly

independent over R.

In the frequency domain, causal LTI systems are characterized by proper

rational matrices. Note that the set of proper rational matrices R" n(q) forms a

ring with respect to ordinary matrix operations. In other words, the parallel and
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cascade connection of causal LTI systems is a causal LTI system. The units of this

ring, i.e., the elements of the ring that have a multiplicative inverse, are of

significant importance and in the literature are referred to as bicausal systems

[21, 20). Note that bicausal systems are the only causal systems with causal

inverses. By expanding G(q) £ R*Xn in powers of g"1, it is simple to show that

G(q) is bicausal if and only if lim G(q) is nonsingular. In other words, a square
q -» oo

system is bicausal if and only if its columns (or equivalently its rows) have order of

zero and are properly independent. Note also that the set of bicausal systems form

a group with respect to matrix multiplication; hence the cascade of two bicausal

systems of equal dimension is bicausal.

5.1 Frequency Domain Solutions of FDI Problems

Let us assume that the dynamics of the system and the effect of the

component failures can be described by the discrete model

G u (q)u( t ) + Gm(q)m(t), (5.1)

m(t) = [

with y(t) € y (d(y} = l], u(t) 6 U (d(U} = m), and m t(t) 6 Mt (d(M t) = 1). In

(5.1), Gu(q) and Gm(q) are proper rational matrices in the forward shift operator q,

i.e., qu(t) := u(t+l) (we assume that Gu(q) is strictly proper so that the actuator

failures do not affect the output of the system instantaneously). As in Chapter 3,

we can use Gm(q) m(t) to model the effect of a wide variety of component failures.

Also as usual, we assume that the failure modes m t(t) are zero when no failure is

present and are arbitrary when the i-th component of the system fails. For

example, to model the effect of actuator failures assuming that the sensors are
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perfectly reliable, we simply set Gm(q) = Gu(q). Similarly, if we assume that the

actuators are perfectly reliable and want to model the effect of sensor failures,

choose Gm(q) = //x/. To model the effect of the first sensor failure and the second

actuator failure, take Gm(q) = [Gu (q), ej where el is the first column of the Ixl

identity matrix and Gu (q) is the second column of Gu(q). These few examples

clearly illustrate that by appropriate selection of the columns of Gm(q), a wide

variety of component failures can effectively be modeled. In what follows, we

assume that the columns of Gm(q) are either the same as some of the columns of

Gu(q) or the columns of an /X/ identity matrix. This is because we are only

concerned with modeling either sensor or actuator failures.

Now let the triple (C,A,B) be an observable realization of the transfer matrix

Gu(q), i.e.,

Gu(q) = C(qI-A)-lB, (5.2)

with C and ql— A being right coprime (cf. [23]). Because of the assumption we

made earlier, we can realize Gm(q) as

Gm(q) = C(qI-A)-l[L, 0] + [0, J], (5.3)

for appropriate matrices L and /H In the state space notation, we can rewrite

(5.1) as follows:

*(*+!) = A x(t) + B u(t) + [L, 0] m(0,

y(t) = C x(t) + (Q, J] m(t). (5.4)

Note that we can always realize <7U(<?) and Gm(q) as in (5 2) and (5 3) by simply realizing the
transfer matrix (Gu(q), Gm(q)\, and it is not required to restrict the columns of Gm(q). The
restriction that we imposed is for simplifying the exposition.
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In (5.4), the state vector x(t) £ X with d(JC) = n. Also we define the observation

space 7 := ]/ © U, and the observation vector z(t] := y(t) © u(/) G Z

In terms of transfer matrices, the objective of EFPRG (see Section 4.1.1) is to

come up with a k dimensional residual vector r(t} by passing the observation vector

z(t) through a causal LTI system characterized by the transfer matrix H(q), i.e,

r(t) = H(q) z(t) = [HJq), Hu(q)}

u(t)

(5.5)

such that the net transmission from the input u(t) to the residual vector r(t) is zero,

and the failure mode m^t) only affects the i-th component of the residual vector

r(t). In other words, the objective is to find a proper post compensator H(q) such

that

(5.6)

where the 0 in (5.6) is a kxm matrix,

Gm(9) GJi
(5.7)

and T(q) is a kXk diagonal matrix with nonzero diagonal elements Tt(q).

Moreover, when no failure is present, the effect of the initial mismatch

between the state of the residual generator and the state of the system should die

away so that the residual vector r(t) stays close to zero. The residual due to a

nonzero initial condition x(0) is simply Hy(q}G3(q)i(Q) where

G,(q) := (5.8)
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Hence the transfer matrix Hy(q)G3(q) should be stable. Also the residual due to

nonzero initial conditions of the post compensator should die away so we require

that H(q) should be stable.

The problem we have formulated has a very simple solution in terms of

transfer matrices.

Theorem 1: Assuming the failure events are scalars, EFPRG has a

solution if and only if the transfer matrix Gm(q) is left invertible.

Proof: (only if) If EFPRG has a solution, then there exists an HJq)y
such that Hy(q) Gm(q) = —T(q). But T(q) is by definition full column

rank; hence Gm(q) should be full column rank or equivalently left

invertible.

(if) Let us denote the left inverse of Gm(q) by Gm~l(q). Using (5.1),

we have

m(t) = Gm-l(q) y(t) - Gm^(q} Gu(q) u(t). (5.9)

To generate the residual r(t), pass — m(t) through a diagonal filter T(q)

with nonzero diagonal elements. It is clear that by appropriate selection

of the diagonal elements of T(q) it is possible to arbitrarily assign the

dynamics of the proper transfer matrix Hy(q) and Hy(q)Gs(q) where

Hy(q) = -T(q)Gm-l(q). (5.10)

Note that in this case,

rn-[(q)Gu(q), (5.11)

and the stability of Hy(q)G3(q) implies that Hu(q) = -Hy(q)G3(q}B is

stable. 0

Using the above theorem, a family of scalar failure signatures {Lf, i £ k) is
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strongly identifiable (see Section 4.1.1) if and only if the transfer matrix

C(qI-A)-l[Llt ... ,Lk\ (5.12)

is left invertible.

When in addition to the observability assumption the pair (A,L) is

controllable, the selection of the diagonal elements of T(q) is particularly simple.

In this case, just let the numerator of Tt(q) be the least common multiple of the

denominators of the elements of the i-th row of G ~ l ( q ) , and set the denominator

of Tt(q) to any stable polynomial with a degree such that the i-th row of Hy(q) is

proper12.

Using this procedure, the transfer matrices H' (q) and Hy(q)Gm(q) are clearly

stable. Now we show that the controllability of (A,L) implies that Hy(q)Gg(q) is

also stable. First, let Di~^(q) $(q) be a left coprime factorization (cf. [23]) of Ga(q).

Also, let Nh(q) Dh~l(q) be a right coprime factorization of Hy(q). Using these

definitions, HyG3 = N^D^)-1* and HyGm = N^D^-^B (to simplify the

notation we have deleted the argument q). To prove the stability of HyG3 using

the stability of HyGm, we have to show that any possible cancelation between

DiDfr and $B is a stable cancelation, since the polynomial matrices D^D^ and $ are

left coprime and have only unimodular common factors. Because (A,L) is assumed

to be controllable, the polynomial matrices £>j and &B are left coprime and using

the generalized Bezout identity (Lemma 6.3-9 of [23]), we know

i"Note that the non-minimum phase zeros of Gm(q) will automatically show up in the
numerators of T(q).
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y "

VB

' I 0"

0 /
(5.13)

for appropriate matrices Nr, Dr, X, Y, X*, and Y*. (Note that all three block

matrices in (5.13) are unimodular.) Multiplying both sides of (5.13) by the block

diagonal matrix diag{Dfl, /}, we get

(5.14)

Now let us denote the greatest common left divisor of D^D^q) and V(q}B by

Q(q). We know there exists a unimodular matrix U(q) (with block partitions U^,

U12, U2i, and C/"22) such that (see Lemma 6 3-3 of [23]):

' -Nr X*'

D. Y*
• * •

'-XDh Y '

. DlDk *B

=
'Dh 0'

0 /

Un U12 (5.15)

Multiplying both sides of (5.14) by U and using (5 15), we have

' -Nr X*'

. »r V* .

MI Mo

=

" Dh 0 1

0 /J ^

(5.16)

for appropriate matrices Mj and M2. Using the unimodular property of the block

matrices in the right and left hand side of (5.16), it follows immediately that

det (Q(q))Xdet (M2(?)) = constantXdet (Dh(q)).

Also the stability of Hy(q) implies that det (D^q)) = 0 has stable roots. Hence the

roots of det (Q(q)) = 0 are stable, and using the stability of HyGm, it follows that

HyG3 is stable.
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Let us illustrate the above procedure through an example. Let

Gu(q) = Gm(q) =
0

L 9-1 f-1 J

The left inverse of Gm(q) is simply

Let us choose T,(g) = 1/q2 (for dead-beat response). Then using (5.10),

-1 0

i -g-'

Also using (5.11),

o

Translating back to the time domain

r2(«) = «2(*-2)

(The subscript denotes the component of a vector, e.g., r^t) is the first component

of the vector r(t).) Note that r^t) and r*(t} are simply the parity relations (see

Section 1.1 for definition and for a complete treatment of the subject see (5, 29]) for

identifying actuator failures. It is clear that these relations are obtained by

assigning dead-beat dynamics to the residual generator, and the parity relations are
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1. The columns of Gm(q) are properly independent.

2. There exists a bicausal L(q) such that L(q)Gm(q) is diagonal with
nonzero diagonal elements.

Proof: We refer the reader to [21] for the proof of the dual problem.

(We refer the reader to [21] for the solution of RDDFP with stability.) Note

that the necessity of the second condition is obvious because the ffJq) given in
j

(5.17) is bicausal. However, the above theorem implies that if there exists any

bicausal matrix L(q) that diagonalizes Gm(q), then L(q) can be realized with output

injection as in (5.17).

The reader should be quite careful in interpreting the above result, since

given any arbitrary /X/ bicausal matrix L(q), it is not always possible to realize L(q)

with output injection as in (5.17). The conditions under which this is possible are

given in [20] and here we only state the result.

Proposition 3: Let L(q} be an /X/ proper rational matrix, and
D~l(q)N(q) be a left coprime factorization of C(ql-A)'1 with (C,A)

observable. The transfer matrix L(q) is realizable as m (5.17) if and only if
L(q) is bicausal and D(q)L~ l(q) is a polynomial matrix. ®

Note that when /=0, the condition of proper independence on the columns of

Gm(q) is equivalent to the condition given in (4.61). This can be shown by writing

(see [26])

Gm(q) = C(qI-A)-\L = Jfa C^}(qI-A}L (5.19)

PAGE BUMC NOT
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where A(q) := det(gl-A) = qn+an_1qn~1+ • • • +fljj+a0. Clearly, the leading

coefficients of the columns of Gm(q] are CA^X,- where ^,- is the smallest integer

such that CA^iLj j£ 0 (CA^iLf is the first nonzero Markov parameter of the

system relating the i-th failure event to the output). Thus the condition of proper

independence is equivalent to the condition given in (4.61).

When the number of measurements and scalar failure events is not the same,

it is not yet known what are the necessary and sufficient conditions for the

existence of a solution to RDDFP. This fact was pointed out in Section 4.3.

However, a simple sufficient condition is that the columns of Gm(q] should be

pjoperly independent. Also a slight generalization of the above statement is as

follows.

Proposition 4: If there exists a constant matrix T such that
rank TGm(q) = rank Gm(q) and such that the columns of TGm(q) are
properly independent, then the RDDFP has a (not necessarily stable)
solution. 0

Note that the transfer matrix Gm(q) for the last example in Section 4.2.1 is

-1
1
1

Clearly the columns of Gm(q) are not properly independent; however, if we let

T =
2 - 1 0 - 1
—^

0 0 2 0

then the columns of
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and Gmi(q) is left invertible.

Proof: (only if) If (5.23) does not hold, then there exist failure

modes m^t) and m2(£) with transforms m^q) and m^q) such that

Gml(q)mi(q) = Gm2(q}m2(q}. Hence these two failures can result in the

same output and cannot be distinguished from each other. Also the null

space of Hy(q)Gml(q) is a subspace of the nullspace of Gml(q). Thus if the

null space of Gmi(q) is nonzero, it is impossible to find H (q) so that the

condition in (5.22) is satisfied.

(if) Let the left invertible matrix G2(q] have the same image as

Gm2(q} (i-e., Gm2(q) = G2(q)K(q) for some K(q)), and define

G0(q) := (Gml(g), G2(q)]. (5.24)

Let N(q) be the first kl rows of any left-inverse of G0(q) (which exists

since (5.23) holds). Clearly, there exists an appropriate stable 1\q) such

that

Hy(q) = -T(q)N(q) (5.25)

is proper and stable, and also T (q)N(q)G 3(q) is stable. Let

ffu(q) = —H(q}Gu(q}. Now H(q] satisfies the requirements in (5.21) and

(5.22), and hence is a solution to FPRG. 0

Next consider the FDEFP formulated in Section 3.1 and solved in Section 4.5.

Let us assume that there is only one failure present at any time, and that the

failure events are scalars. Also assume that the dynamics of the system are

governed by (5.1). As explained in Section 4.5, FDIFP with its associated coding

sets is just a combination of several FPRG's which need to be solvable

simultaneously. Using the result of Theorem 5, it follows that the FDIFP has a

solution if and only if

PJ7ECEEHWG PAGE gUWK NOT FILMED
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Im Gm. n (£, g r. Im GOTtf(g)) = 0, for ; G k-r,, i <= p, (5.26)

where Gm (g) is the j-th column of Gm(q). (Since Gm (q] are column vectors, the

condition of left invertibility of Gm (q) given in Theorem 5 is automatically

satisfied.)

Using the coding sets in (4.103) and the solvability condition in (5.26), it

follows that a family of failure signatures {£,-, i G k) is identifiable (see 4.5) if and
, .. Section

only if

Im [C(qI-A}-lL^ H Im [C(qI-A)-lLj = 0 (5.27)

for any distinct i, j € k.

Interestingly enough, the solvability conditions of the FDI problems we

formulated in Chapter 4 are quite simply expressible m terms of transfer matrices,

and they depend on various independence properties of the columns of the transfer

matrix relating the failure events to the output of the system. However,

performing algebraic operations on transfer matrices is not simple and reliable at

all, and this is the major advantage of using a time domain approach to the FDI

problem.

We also mention that all of our results in this section are based on the

fundamental assumption that the failure modes m,(i) are arbitrary, and hence can

have any proper rational function as their transform. However, if we restrict the

class of the failure modes, then the whole picture of the problem changes. This

fundamental observation is inherent to the R0(<7)-module structure cf R|!(<?)- We

shall further clarify this point in Section 6.2.

In the next section we discuss single sensor parity relations in detail.
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5.2 Single Sensor Parity Relations

A very simple residual for detecting and identifying sensor failures is found by

forming a linear combination of the finite past and present output of a single

sensor. This combination is chosen to be zero when the sensor is functioning

properly but nonzero when the sensor fails. We call this form of a residual a single

sensor parity relation (SSPR). (It will be shown shortly that SSPR's are special

cases of the generalized parity relations discussed in Chow [5] and Lou [29].) To

illustrate the idea, assume that we are at time t+s and we combine, with

appropriate weightings, the measurements of the i-th sensor from the past time t
1 1up to the present time t+s . Using the known dynamics of the system and

assuming that the actuators are perfectly reliable,

y,(0
y,<*+i)
.

. y,(*+«) .
^

c/A
.

c/A3
x(t) +

' 0 0 0
ct'B 0 0

cjA3-lB c/A«-2J3 c/B _

' «(<)
«((+!)
.

_w(H-*-l) .
5.28)

We can rewrite (5.28) as

r3 v(t) - y,-(0 = -Pa i(0, (5.29)

where j/,(0 = [y,(0, y,('+l), • • • ,y,('+*)]'» B(0 = [«'(0, «'('+!), • • X(<+s-1)]',

and Fa and F, have obvious correspondence with the matrices in (5 28). A single

sensor parity equation r t(t+s) is simply defined as

(5.30)

•f
To simplify the notation we use s instead of a,-.
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\vhere a' is some row vector such that ct'P3 = 0 (compare with the results of Chow

[5]). Note that for appropriately large s, it follows from the Cayley-Hamilton

theorem that such a always exists. Now using the definition of a, it is clear that

r^t+s) is zero when the sensor is functioning properly, but in the presence of a

failure in the i-th sensor this residual becomes nonzero; hence it can be used to

detect and identify the failure of the i-th sensor. (Recall that for the moment the

actuators are assumed to be perfectly reliable.) Let the components of a be as

follows:

a f = ( a 0 , a l > . . . , QS_V Ij. (5.31)

For normalization purposes and without loss of generality, we have set the last

component of a to 1. Now rewrite (5.30) as

(5-32)

where

tfafo) = 1-

Clearly, the polynomials 0; (q) satisfy the backward recursion

^1(9) = ^j (9)9 + Oj-i, (; e s), ^(g] = i. (5.33)

Note that the elements of the vector a are the only unknowns in (5.32). Also
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the length of the window 3 has not yet been specified. Of particular interest are

those parity relations for which the length of the window is minimal. We refer to

these residuals as the minimum length SSPR (also see [29]). Interestingly enough,

this problem has a very simple solution. We can rewrite a'P3 = 0 as cf-V0(A) = 0.

It follows from here that the polynomial ^Q(?) ^ simply the minimal annihilating

polynomial of c- with respect to A. (See Chapter 5 of [16J for the definition of the

minimal annihilating polynomial of a vector with respect to a linear operator.)

This fact can be restated in more familiar terms if we change the basis by an

appropriate similarity transformation. Let us define the transformation

z(t) = Tx(t) where T := [Q1, P3-i\' with P3_i as before and Q any matrix such

that T is nonsingular. Note that when s is minimal, the rows of P3_l are linearly

independent, and the last row of Pa is a linear combination of the rows of P,_I. In

the new basis, the transformed matrix At = TAT1"1 and the transformed

measurement vector c,-t' = c/T1""1 will have the following structure

A\ A2

°
C0'] (5.34)

where

0
0

1
0

0
1

0
0

0 0 o (5.35)

It is clear that the pair (CO',AQ) is observable and the polynomial ^0(<j) is simply the

characteristic polynomial of AQ. In other words, the minimal annihilating
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polynomial of e,-' is the product of the terms (q— X ) where X,- are the eigenvalues

corresponding to those modes of A which are observable from c/. (We define the

observable subspace of an arbitrary pair (C,A) as the -smallest A '-invariant

subspace containing the Im C'.}

This interpretation provides us with a numerically reliable procedure for

computing the coefficients of the polynomial t^Q(q). One only needs to find the

observable modes of (c,',A) using a numerically reliable algorithm (see [28, 43, 37]).

One of the simplest solutions is to choose a random n vector dl and compute

ffQ = a(A] and ff± = o^A^djC,-'); the unobservable spectrum cruo almost surely

consists of the set of common elements of <rQ and a^. Let ffob = (T0—ffuo; then

= n (?-x)-
Knowing 0o(?)' we caQ compute c/'0y(A) (see (5.32)) using the backward recursion

in (5.33). Note that we only need to compute c,'V (A) and not the computationally

more expensive terms $ (A). Also, if in the process of computing the unobservable

modes, a reliable canonical projection P: X. — » t{S for the unobservable subspace

5 of (c^A) is computed, then use the factor system (CQ',AQ) (see Section 2.1 for the

definition of a factor system) can be used in place of (ct',A) in (5 32). Note that the

coefficients of the minimum length SSPR do not depend on the particular basis

used for computing them and are invariant under similarity transformation.

We also point out that the residual in (5.32) is simply the innovation of a

dead-beat observer which asymptotically reconstructs the portion of the state space
&

in the factor space Jf/S. In other words, to findHhe minimum length SSPR for the

i-th sensor, simply factor out that part of the state space which is unobservable

from the i-th sensor and then construct a dead-beat observer for the remainder of

the state space. The innovation of this observer is the residual that we are looking
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for14. The relation between these residual generators and the ones we proposed at

the end of Chapter 3 which are known in the literature as Clark's dedicated

observers (7) should now be obvious.

Let us rederive the results of this section using an algebraic approach. The

output of the i-th sensor can be written as

+ ( q )
u(0, (5-37)

where <t>t(q) 6 Rn[g) and ^(g) are a coprime factorization of c/(g/— A)"1, and m t(t)

is an arbitrary unknown scalar function representing the effect of the failure.

Reordering (5.37), we have

*(*)
u(t). (5-38)

Now we generate the residual r t(t) by filtering m t(t) through any one-to-one linear

system satisfying certain stability requirements. In order to assign the dynamics of

the residual generator to arbitrary locations inside the unit circle, we simply take

, x
".('), (5-39)

where p(q) is any arbitrary polynomial (which should be set equal to a constant for

the minimum length parity relation), and u(q) is any desired stable polynomial with

an order at least as large as the order of ti(q)ifr(q} (the minus sign in (5.39) is for

convenience and consistency with the previous results). Note that when the residual

In an appropriate basis, the coefficients of V'ofa) are in ^act tne elements of the observer gain
vector.
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is generated as in (5.30), the transfer vector relating the effect of the initial
-/*(«)•

condition r(0) on the residual r t(t) is simply <t>i'(q)/u(q) which is stable.

Substituting (5.38) in (5.39), we have

.(')• (5-40)

If we choose u(q) = qa for some appropriate integer s, the residual generator will

exhibit a dead-beat response and the rational function coefficients of y t(t) and u(t)

in (5.40) can be rewritten as polynomials in the backward shift operator q~l, i.e.,

the residual generator will be a finite impulse response (FIR) filter.

Note that using the definition of ifj(q) and <j>/(q), we have

ql-A (5.41)
= 0.

Hence the parity relation is simply a polynomial vector in the left null space of the

singular pencil P(q) = [c,-, ql— A'\ '. This interpretation of a parity vector is

discussed in detail in [29]. (Note that because c,- is just a vector, the left null space

of P(q) is one-dimensional, and using some of the results of [23], the order of the

minimal basis for this null space, i.e., the left Kronecker index of P(q), is simply

the observability index of (ct',A).)

We now show that the polynomial if>(q) in (5.40) is the same as the minimal

annihilating polynomial ^0(9) we defined earlier in this section. Note that

.4)-l, (5.42)

and the only possible cancellations on the right-hand-side of (5 42) are because of
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the possible unobservable modes of (c^A). If we denote the common factors of

c-a.A](qI-A) and det(ql-A) by i(q), it is clear that ^(q) = det (ql — A)/^q)

which is equal to i>o(q). Also the reader should note the relation between the

recursive polynomials in (5.33) and the method of Faddeeva [16, 23] for computing

the adjoint of ql — A,

We conclude by mentioning that the results of this chapter are applicable to

continuous systems as well. Clearly, the dead-beat response is a characteristic of

discrete systems, and this is the only special result of this section that does not

extend to the continuous case.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have formulated and solved several fundamental problems in

failure detection and identification (FDI) theory. It has been shown that the

solvability conditions of many FDI problems depend only on how the failure events

affect the output of the system, and many of these properties are invariant under

state feedback or output injection.

We first in Section 4.1 considered the problem of identifying the failure of a

component, given that there are two possible faulty components in the system.

More specifically, the objective was to generate a residual that is affected only by

the failure of one of the components and not by the failure of the other. We

showed that through appropriate selection of the output injection matrix D and the

measurement mixing map H, it was possible to change the observability properties

of (HC,A+DC) in such a way that one of the failure events becomes unobservable

from the residual. Hence the occurence of this failure event does not show up in

the residual. Interestingly, the solution of this problem is completely characterized

by the fundamental geometric concept of an unobservability subspace, which we

reviewed in Section 2.3. This problem can in fact be used as a practical motivation

for defining such subspaces.

Next in Section 4.1 1 we formulated the extension of the fundamental

problem of residual generation (EFPRG) in which a family of k possible failure
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events is present and the objective is to generate k residuals such that the failure of

the i-th component only affects the i-th residual. If it is possible to generate such

residuals, one can identify the component failures even if more than one failure is

present at a time. The solvability condition of the EFPRG led to the introduction

of the fundamental system theoretic concept of a strongly identifiable family of

failure events. If a family is not strongly identifiable, there are combinations of

failure events that result in the same output, and hence it is not possible to

distinguish between these failure events (even if a non-linear processor is used).

Also, using a frequency domain approach in Chapter 5! we showed that a family of

scalar failure events is strongly identifiable if and only if the transfer matrix from

these failure events to the output of the system is left invertible.

Note that when we are modeling the effect of all actuator failures, the failure

signatures are simply the columns of the control effectiveness matrix B and the

solvability condition states that the transfer matrix C(sl— A)~1B should be left

invertible. Since the invertibility of the transfer matrix is invariant under state

feedback and output injection (C(sl— A)~1B is left invertible if and only if

C(aI—A—BF—DC]~^B is), the solvability of the problem does not depend on

whether the residual generator is designed for the open loop system (as is done in

this work) or for the closed loop system (C,A+BF,B).

We later in Section 4.2 generalized Beard's formulation of the FDI problem

[3]. Beard's approach was based on the idea of designing a full order observer for a

given observable system, and choosing the observer gain matrix D in such a way

that the failure of different components show up in independent subspaces of the

innovation space. By restating Beard's formulation of the FDI problem in

geometric language, we clarified the concepts of output separability and mutual

detectabiiity. We showed that the issue of mutual detectability comes into the
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picture when the failure signatures {L{, i G k} combine with each other and create

new invariant zeros; these zeros are the fixed spectrum of the resulting observer.

Moreover, we illustrated some of the fundamental limitations of BJDFP through an

example. It was shown that there are families of failure events which are not C

output separable but are TC output separable for some appropriate matrix Tt i.e.,

the innovation vector due to different failures can not be confined to independent

subspaces, but some linear transformation of the innovation can be confined to

independent subspaces. Later in Chapter 5, it was shown that a family of scalar

failure events is C output separable if and only if the columns of the transfer

matrix relating the failure events to the output of the system are properly

independent.

In order to generalize Beard's formulation of the FDI problem and circumvent

some of its limitations, we introduced the restricted diagonal detection filter

problem (RDDFP) in Section 4.3. The objective of RDDFP was to generate the

residuals as different linear transformations of the innovation of an ordinary full

order observer. It was shown that RDDFP is a restricted version of EFPRG and is

an exact dual of the restricted control decoupling problem (RCDP). Because the

solution of the RCDP in its most general form is not known presently, it follows

that RDDFP in its most general form is presently unsolved. We later showed that

if the number of the scalar failure events is the same as the number of the

measurements, RDDFP has a (not necessarily stable) solution if and only if the

columns of the transfer matrix relating the failure events to the output of the

system are properly independent

Next we considered more complicated FDI problems which were based on the

idea of systematically coding the way the failure events show up in the residuals.

Obviously, by going to more complicated coding schemes, it was no longer possible



-165-

to detect and identify simultaneous failures, but this was considered to be a minor

shortcoming, since in many applications simultaneous failures are highly unlikely.

By making such an assumption, we showed that the most general coding scheme is

to generate k residuals such that the failure of the i-th component does not affect

the i-th residual but affects all other residuals. Using this fact, the concept of an
5.1

identifiable family of failure events was defined. Later in Section, we showed that a

family is identifiable if and only if each column of the transfer matrix relating the

failure events to the output of the system spans a different subspace of R"(<?).

Moreover, the relation between parity relations and other residual generation

techniques of Chapter 4 was exploited. We showed that by assigning the spectrum

of the residual generator to the origin of the complex plane, one obtains a finite

impulse response (FIR) filter which is the same as a so-called parity relation. Using

our approach, we can equally as well find the parity relations for the case of

actuator failures; using other approaches [5], this may be a difficult task for certain

problems. It was also shown that the minimum length single sensor parity relations

are simply the innovation of a deadbeat observer designed to reconstruct that part

of the state space which is observable from the sensor. This interpretation clarified

the relation between these single sensor parity relations and Clark's dedicated

observers for identifying sensor failures [7].

It should be stressed that almost every residual is the prediction error of an

appropriate estimator or observer. By using the past measurements and inputs of a

system, one predicts the present value of the measurement and subtracts it from

the measured value. If all components are functioning properly, this prediction

error should be zero (ideally); however, when a component of the system fails, the

prediction error will be nonzero. The challenge of the FDI problem is to generate

the prediction errors by estimating different subspaces of the output space in a way
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that enables us to uniquely identify the failed component. Our contribution is that

we have provided a systematic procedure for doing exactly this task.

6.2 Recommendations for Future Research

We point out that all of our results in this thesis hinge around the idea that

the failure modes of the components are arbitrary and are not known before hand.

This assumption is quite desirable in applications where it is difficult to guess the

nature of a component failure, and this attribute distinguishes our approach from

many other approaches which are tuned to specific modes of component failures

(see [48] for some examples).

However, the assumption that the failure modes are arbitrary translates into
*

the fact that the transform of the failure modes can be any proper rational

function. It can therefore be argued that this assumption is too restrictive. Rather

it might be more reasonable to assume that the failure modes belong to a subset of

the ring of proper rational functions. We now illustrate that when the failure

modes are restricted, it may be possible to identify a failure within a family that is

not identifiable in the sense defined in this work. Consider the following two-input

two-output causal LTI system

(6.1)

Assume we are concerned with characterizing the effect of actuator failures, and

hence let Gm(q) = Gu(q). It is clear that the failure events are neither strongly

identifiable nor identifiable (see (5 27)). Now denote the transform of the failure

modes by m^q) G RO(<?)> aQd ^et m
t(Q)==ni(<l)/^i(<j)- Also temporarily denote the
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order of a polynomial n(q) by n. It is clear that if

»1 T^ Ay-"* (6-2)

then the two failure events always generate different outputs, i.e., when (6.2) is

satisfied,

Gmi(9)mi(g) ¥> Gmty(q}m2(q). (6.3)

Hence, if for example it is assumed that the failure modes belong to the set of

rational functions with a fixed specified difference between the order of the

denominator and the order of the numerator, then for all failure modes within this

set it should be possible to distinguish between the failures. Note that this

observation has its roots in the R0(<7)-module structure of RQ(<?). However, carrying

out the details and determining the solvability condition for the general problem

does not seem to be simple, and it is an interesting topic for future research.

Another interesting topic is to extend our results in Section 5.2 for the single

sensor parity relations to the case of multiple sensor failures. Specifically, given a

subset of all sensors whose indices are collected in an index set cr, we want to find a

parity relation of minimum length such that a failure of a sensor within this subset

results in a nonzero residual. Let us denote by D~l(q)N(q) a left coprime

factorization of Ca(ql— A)"1 where the rows of Ca are simply c,', i G & Also

assume that the rows of Ca are linearly independent and the polynomial matrix

D(z) is row reduced [23]. Using the results of Section 5.2, the residual generator has

the general form
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where the polynomial row vector n'(q) should be chosen such that the vector

li'(q}D(q} has no zero entry. This requirement guarantees that if the i-th sensor

with i £ cr fails, then the residual ra(t) will be nonzero. (We assume that there is

only one failure present at a time.) Also the stable polynomial u(q) is chosen so

that the rational matrix coefficient of y3(t) in (6.4) is proper. Note that the effect

of a nonzero initial condition x(0] on the residual rff(t) is simply —p'(q)N(q)/u(q)

which certainly dies away since u(q) is stable. (This is the reason for working with

a left coprime factorization of Cff(qI—A)~l and not Ca(ql— A)~^B.)

It seems that constructing a residual generator with an order equal to the

observability index of (Cff,A) is quite simple, since the vector p'D(q) will have all

nonzero entries for almost any random constant row vector /z! Also the degree of

n'D(q) is at most equal to the largest of the row degrees of the polynomial matrix

D(q) which is the observability index, or equivalently the largest Kronecker index of

the singular pencil P(q) = [qI-A't CJ\'.

Using the results of Lou [29], it is immediate that the set of all the parity

relations involving the sensors in <7 corresponds to the left null space of P(q), e.g.,

[n'(q)N(q), —p.'(q)D(q}} is a polynomial row vector in the left null space of P(q).

However, Lou [29] did not mention how to construct the parity relation of the

shortest length such that any failure of a sensor within the set shows up in the

residual. The importance of this problem and its advantage over the Clark's

observers we mentioned in Section 3.2 is as follows. Using Clark's approach, given

the index set a, one would use the sensors in this set to design an observer for that

part of the state space which is observable from these sensors, and use the

innovation of this observer as the desired residual. Genencally, the order of this
i,"

filter is the same as the dimension of the state space; however, the observability

index of (Cff,A) is generically [n/|a|] ( \ f f \ denotes the number of the elements in cr)
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which can be considerably smaller.

Finally, the most challenging problem is to generate residuals that are

insensitive and robust to the changes in the dynamic of the system. Lou [29] has

done some preliminary work on the problem of robust parity relations, but the

robust solutions of the more general problems that we have formulated in this work

are not yet available. Using our results, it is clear that the residual generator is a

finely tuned processor that relies heavily on the given dynamics of the plant.

Specially for actuator failures, the design of the residual generator relies on

inverting the transfer matrix of the system, which can be quite sensitive to changes

in the system parameters. We also point out that the issue in robust residual

generation is not simply the stability of the perturbed system as in many robust

control problems, but the major issue is to preserve as nearly as possible the

decoupled nature of the transfer matrices in the presence of plant uncertainty

which, in the author's view, is a much more complicated problem.
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Appendix A
Some Useful Definitions

Definition 1: A relation R defined on a set JT is said to be

1. Reflexive, if for all x in JC, z R x, i.e., x is related to z.

2. Symmetric, if x R y implies and is implied by y R x.

3. Antisymmetric, if z R y and y R z imply z = y.

4. Transitive, if z R y and y R 2 imply xR 2.

Definition 2: Equivalence is a relation with reflexive, symmetric,

and transitive properties.

Definition 3: Partial Ordering is a relation with reflexive,

antisymmetric, and transitive properties.

Definition 4: A partially ordered set 5 with relation R is called a

lattice if to every pair s,t £ S there are elements s V t and s A t in 5 that

satisfy:

1. s,t R s V t] and if s,t R r then 5 V t R r. We call 5 V t the least
upperbound (supremum) of s and t.

2. s / \ t R s,t; and if r R s , J then r R s / \ t . We call sA* the
greatest lowerbound (infimum) of s and t.

Definition 5: A set G with a binary operation X is a group if

1. The binary operation X is associative
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2. There is a unity element e 6 G such that eXx — xXe = x for all
z6G.

3. For all z£G there is an element x"1 such that xX(x~1) =

If the binary operation of the group is also commutative, then the group is

called an Abelian group or a commutative group.

Definition 6: A set R with two binary operations + and X is a
ring if

1. R with the binary operation + is an Abelian group.

2. The binary operation X is associative.

3. The distributive law holds, i.e., xx(y+z) = xXy+xXz and
(z+y)Xz = xXz+yXz for all x, y, z 6 R-

A ring R is a commutative ring if in addition to the above conditions, the

binary operation X is also commutative.

Definition 7: Let R be a ring. A (left) R-module consists of an
abelian group M together with an operation of external multiplication of
each element of M by each element of R on the left such that for all
a, 0 G M and x, y € R, the following conditions are satisfied:

1. za 6 M.

2. z(a+/3) = xa+x/3.

3. (z+y)a = xa+yot.

4. (xXy)a = x(ya).
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Appendix B
Zeros of a Multivariable System

Now we give a brief review of the concepts of the transmission and invariant

zeros of a multivariable system. We refer the reader to [30] for a comprehensive

treatment of these subjects. Consider the system (C,A,B) given in (2.37). On

taking the laplace transform we have

P(a)
x(s)

where

P(s) =
sI-A -B

C 0

and IQ is the initial condition. Apply an input u(a) = UQ/(S—z) to the system and

consider the problem of determining if there exists a combination of XQ and UQ for

which y(s) = 0. A simple computation shows that such an input and initial

condition exist if and only if

P(z) = 0.

We call XQ the state zero direction, and u0 the input zero direction. Moreover, it

can be shown that if such an XQ exists, then x(s] = XQ/(S—z).

Therefore, we are interested to see for what values of z the rank of P(z) is
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smaller than its normal rank. Remember that the normal rank of a polynomial

matrix is the order of the largest minor not identically equal to zero. Let us

assume / > m (the case of more measurements than inputs). Obviously P (s) is a

polynomial matrix; hence it can be reduced to its Smith canonical form S(s) by

multiplying it with unimodular matrices (i.e., polynomial matrices with constant

non-zero determinants). Thus P(s) = L(s) S(s) R(a] for some unimodular matrices

L(a) and R(a). Also $(a) has the following form

S*(s) 0

0 0

where S*(s) = diag{el(a), . . . ,er(s)}. The diagonal elements, {et(s), i £ r}, are the

invariant polynomials of P(s) and each is divisible, by the proceeding one.

Moreover, r is the rank of S(s). The invariant zeros of a system are the zeros of the

invariant polynomials {et(s), i £ r} including the multiplicities.

The rank deficiency of P (s) at the complex frequency z is called the geometric

multiplicity of the corresponding zero and is equal to the number of the elementary

divisors of P(s), which are associated with this 2. The degree, p, of the product of

the elementary divisors corresponding to z is called the algebraic multiplicity of the

complex frequency z, and it is in general greater than the geometric multiplicity.

Systems for which the geometric and algebraic multiplicities of all zeros are the

same are called systems with simple structure.

Now consider the transfer matrix G(s) = C(sI—A)~lB. Write G(s) as

G(s) = N(s)/d(3) where d(a) is the least common denominator of nonzero elements

of G(a). Then N(a) is a polynomial matrix, and we can reduce it to its Smith

canonical form T[s). Thus N(s) = L(a) T(S) R(S) for some unimodular matrices

L[a) and R(a). Clearly 7\a) has the form
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I 0"

0

where T*(a) = diag{e1(a)) . . . ,er(s)}. The diagonal elements, {et(s), i £ r}, are the

invariant polynomials of N(s), and r is the rank of the transfer function matrix. Let

M[a) = T[s)/d(a) and carry out all the possible cancellations. M[a) is called the

Smith-Mcmillan form of the transfer matrix. The zeros of the numerator

polynomials of M[s) (including the multiplicities) are called the transmission zeros

of the transfer matrix G(a). It is simple to show that for a complete system (i.e.,

(C,A) observable and (A,B) controllable) the sets of transmission zeros and

invariant zeros of the system coincide.

We can also give a geometric definition of the zeros of a system. Based on

the spirit of this work we give a definition in terms of (CV4)-invariant and

unobservability subspaces. This definition is just the dual of the one given by

Morse [36] (also see [15]). Consider the system (C,A,B) given in (2.37). Let

W* = inf 1V(B), S* = inf S(B), and D £ D(W*). Then the zeros of the system are

defined as the spectrum of AQ where

Morse and Corfmat [9] have shown that <T(AQ) is the same as the set of invariant

zeros of the system (C,A,JB) including the multiplicities.
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Appendix C
Extension of RDDFP

In Section 4.3, we pointed out that the solvability condition of RDDP in its

most general form is unknown at this time, and in one development we required

additional restrictions in order to determine solvability conditions. However, if the

dimension of the residual generator is not restricted, then a substantially larger

class of problems can be solved. The objective of this appendix is to construct a

compatible family of u.o.s.'s which is related to the (probably non-compatible)

infimal u.o.s.'s {5,-*, i G k} satisfying the necessary condition of RDDFP. The

procedure is an exact dual of the one used in the extended decoupling control

problem (EDCP) [50, 32].

Assume that the system model is as described in (3.10) and consider the

residual generator:

A 0

0 0

#11 #12

LJ921 D.22

o / L t i » 2 ( O

y(t) - Cw^t)

w2(t)

, « € k .

0
ti(0

J
(C.I)

This processor is a restricted version of the general residual generator given in

(3.11)-(3.13); however, it is more flexible than the filter we considered in Section

4.3. Qualitatively, the flexibility is gained through the integration of the

innovation.

Let us define the extended subspaces JTe := I © Ia and j/e := ]/ © Xa where
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d(X*)=n* . Let we(t) := w^t) 0 u>2(0 and ye(t) := y(t) 0 0 € ]/e. We can rewrite

(C.I) as follows:

i/«(f) = Ae we(t] - De (ye(t] - Ce we(t)) -f Be u(t),

r,<0 = #,e (C* we(t) - y«(0), « € k. (C.2)

The extended maps Ae : V -> re, Be : U -+ Xe, Ce : Xe -+ ye, De : ye -* re,

and /f,-e : ye —>• ye have obvious correspondence with the matrices of equation

(C.I).

Similar to RDDFP, let us investigate the problem of designing a processor

with a structure as in (C.I) and with the following properties. A nonzero m t(t)

should only affect r,(£) and no other residual ry(f) , / 5^ i. Also the system relating

m,-(<) to rt(t) should be input observable so that the failure of the i-th actuator

almost always shows up in the i-th residual. This problem will be called the

extended diagonal detection filter problem (EDDFP).

It is possible to write the dynamics of the system relating the failures to the

residuals in terms of an extended error vector e£(t) := e(t) 0 ^o(') WQere

e(t) := tw1(0-x(t). Using (C.I) and (C.2), we have

°C<) e«(«) - £=1 L* m t(t),

r,<0 = HfC* ee(t), i G k. (C.3)

where L,-e := [L/, 0] '.

Similar to RDDFP, EDDFP can be stated in a geometric setting as follows.

Given A, C, and L,- (i £ k), find the dimension of the state space extension

na = d(JTa), an extended output injection map De : ye —* Xe, and a family of

compatible extended (Ce,Ae) unobservability subspaces (e.u.o.s) {7J, »' £ k} such
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that

7J := <Ker Ht
eCe\Ae+DeCe> = <Ker Ce + Tt\A

e+DeCe>, i € k, ((7.4)

(4-00)C7;, t e k , (C.5)

7;. = 0, t € k . (C.6)

It is clear that EDDFP is an exact dual of the decoupling problem with dynamic

compensation; therefore, any of the existing solutions of the latter [50, 32], when

dualized, is a solution to EDDFP. For this reason we shall only outline the main

steps in the extension procedure.

The most important step is to relate a (Ce,Ae) e.u.o.s and a (C,A) u.o.s.

First, let us define some notation. Let £ be an arbitrary subspace of Ze, and

denote the family of (Ce,Ae) e.u.o.s containing {. by Se(£). Similarly, denote the

family of (Ce,Ae) extended invariant subspaces containing L by W(L). Using this

notation, we state the following elegant result of Schumacher [41] (see also [46])

which relates the elements of Se(0) and Jj^O) with those of S(0) and

respectively.

Proposition 1: Let Q : JCe — •• JT be the embedding map defined in

(3.21) and TC Ze; then

T 6 Se(0) if and only if Q~1T £ 5(0).

Also

7 € W (0) if and only if Q~1T 6

(NoteHhat the-result of Proposition 1 of Section 4.1 is an immediate consequence of
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the above proposition.) Now let E : Xa -+ X. be any arbitrary map and S be a

u.o.s. Using Proposition 1, Se := [/, E]~1S is an e.u.o.s. We also have

(5®0)CSe. Using this simple extension procedure, we construct a family of

codependent, and hence compatible, e.u.o.s {7J-, i G k} such that Q~17j-=S,-*

where {5,-*, i G k} is defined in (4.67). The details of this procedure are given in

the next proposition.

Proposition 2: EDDFP is solvable if and only if

S,-*rU,- = 0, V G k , • (C.7)

where S,-* := inf 5(£ ., . Lj) (i.e., if and only if the family {Lit i G k} is

strongly identifiable).

Proof: (only if) Suppose {T,, i G k} is a solution of EDDFP. By

(C-5),

Hence,

^ c g-1?;, (c.8)

Also from (C.6), Q~ l(Li © 0) n Q"1^- = 0, hence

l.-nQ-^^O. (C.9)

Using Proposition 1 and (C 8), we know Q~^Tf G 5(£,). Also because Sf*

is infimal, 5,* C Q~ lT l t and using (C.9), the necessity of (C.7) follows

immediately.

(if) Let Z",a be linear spaces with dimensions n— </(S,-*). Define

Ta = 0 *=ir,-
a. Let Ef : T,-a -* JT be arbitrary maps such that
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S,-* 0 Im Ef = I. Define

Tj := [IE10 ••• Op1*!*

T2 := [70 E2 ... OpV
•

Tk := [700 ... E#-lSk*.

By Propositon 1, Tj- are e.u.o.s's. Also a simple computation shows that
the row spaces of the canonical projections of the family {7J-, t £ k} are
independent. Therefore, the family {7}, i £ k} is codependent, and hence
compatible. Also the family {7J-, i G k} clearly satisfies (C.6) and (C.5).
Moreover, the observability of (C,A) implies that the pair (Ce,Ae) is
observable, and using the codependence property of {7J-, i £ k}, we can
use Proposition 25 of Section 4.4 to assign the eigenvalues of Ae+DeCe

arbitrarily. 0

Interestingly enough, the solvability condition of EFPRG and EDDFP is the

same. Namely, for EDDFP to have a solution, the family of failure signatures

should be strongly identifiable. This follows from the fact that any non-compatible

family of u.o.s.'s satisfying the necessary condition given in (4.68) can be made

compatible by appropriate extension. Note that in EFPRG, the compatibility was

not an issue at all, since each residual was generated by a filter independent of the

other filters.

We should mention that the dimension of the extension in Proposition 2, i.e.,
t.

(52._ n—rf($,-*)), is unnecessarily large. In general it is possible to develop more

efficient extension procedures. For that, a better compatibility test than the

codependence property is needed. From Proposition 14 of Section 4.3, the family
•

{$,-*, i € k} is compatible if and only if the dual radical of the family, S, is

(C,A)-invariant. Using this fact, our objective shall be to construct a family of

extended unobservability subspasces {7J-, » G k} such that Q-17j- = 5,-*, and the
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dual radical of {7J, i G k} is (Ce,Ae) invariant. However, to assign the eigenvalues

of Ae+DeCe arbitrarily, the dual radical of (7J-, t G k} should be an e.u.o.s (see

(4.85)) and being (Ce,Ae) invariant is not enough. Hence, first compute the

subspace 5 := inf S[$) where S is the dual radical of {5,-*, t G k}. Then
__ * •» *

construct {7^, t G k} such that S = Q~1T . The details of constructing such

{7J-, i G k} are the dual of the extension procedure given in Chapter 10 of [50]. We

omit the repeatition of these details.

As should be clear, EDDFP can be formulated as an EDCP by a simple

dualization, and then the transpose of the state feed-back gain which solves EDCP

is the output injection map for EDDFP. Hence, it is possible to use the existing

software for EDCP in solving EDDFP. Now the generic solvability of EDDFP is

stated.

Proposition 3: Let A, C, and L,- be arbitrary matrices with the
IL

respective dimensions n X n , / X n , and nX/:,-. Also let K := £ •_,£,••
Then EDDFP is generically solvable if and only if

K < n, (C.10)

kf, i £k ] < /. (C.ll)

Moreover, if EDDFP is solvable, the order of the extension is generically

f(k-i)(n-K), i f K > l
n * = < . (C.12)

I 0, i f K < l

•

Note that when (C.10) and (C.ll) are satisfied, then the dual radical S is

generically equal to y^ L,. The bound on the extension follows from the generic
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dimension of the smallest unobservability subspace which contains the dual radical.

For a proof of these results we refer the reader to Theorems 11.1 and 11.3 of [50],

Interestingly enough, when K > /, the order of the solution to EFPRG given

in Theorem 4 of Section 4.1.1 is generically same as the order of the solution to

EDDFP with efficient extension. To show this fact, from Section 4.1.1 the order of

the solution to EFPRG is generically

which is equal to the order of the solution to EDDFP with efficient extension, i.e.,

n+(k— l)(n— K) (see (C.12)). Using this equality, a solution to EFPRG is generically

preferable over a solution to EDDFP, since the solution to EFPRG is a collection of

several different decoupled filters that are less sensitive to perturbations and are

computationally more advantageous to implement.
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