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LIST OF SYMBOLS

a Moving coordinate of erosion surface, inch.

b Liner ring outer radius, inch.

Ep, Ez Young's modulii in cloth plane and across ply, Msi.

F Composite compression strength, ksi.c

F t Composite tensile strength, ksi.

h Depth along liner wall measured radially, inch.

r Arbitrary radius, inch.

T Temperature above ambient, °F.

t Burn time, seconds.

u Radial displacement, inch.

V Fiber volume fraction,

f degree.

ep, _f Composite coefficients of thermal expansion,
per degree.

Cr' €8' _z Principal strains.

_p' _z Composite Poisson's ratios.

Principal stresses in cylindrical coordinates,or , 08 , oz
ksi.

Fiber fill orientation.

_V



TECHNICAL PAPER

POCKETING MECHANICS OF SRM
NOZZLE LINER

I. INTRODUCTION

In the course of a critical failure investigation, it may

sometimes be prudent to perform an independent brief analysis in
parallel with the more intensive long range team effort. The

analysis may be limited in detail, but must be broad in scope and

especially capable of rapid manipulation of input variations of

environments and properties for a harmonious accounting of a wide

range of experiences. Such was the plan of this analysis for the

purpose of expediently unfolding events leading to failure sce-

nario and for assessing operational risk periods and significant

material parameters requiring further definition.

Over the past dozen Shuttle flights, deep erosion pockets have

been observed in Solid Rocket Motor (SRM) nozzle liners and, par-

ticularly, on nose rings 403 and 404, Figure I. They range from

shallow wash pockets to 0.9 inch cavities oriented parallel to the

combustion gas flow. Erosion at joints have been well character-
ized as wedge spalls and manufacturing modifications have been

prescribed. Mid-length pockets were recognized as fiber rupture

in the liner material, but were not completely understood and

became the subject of this investigation.

PLY ORIENTATION _)GAS FLOW
(NORMAL TO FLOW

JOIN"

STEEL SHELL

CARBON CLOTH
_PHENOLICRINGS

Figure i. SRM Forward Nozzle Assembly



Special recognition for the outcome of this investigation is

due to Dr. George McDonough for initiating and staffing this level

of effort, and particularly for his notable insights and
suggestions. Acknowledgement is due to Morton-Thiokol

Incorporated for providing subject reports and liner material
properties data.

II. THERMOELASTIC MODEL

The nozzle liner is constructed of composite rings bonded onto

an outer metallic structural shell. The composite is a prepreg

phenolic carbon cloth and is plied in planes normal to the gas
flow. Dominate loading is caused by the temperature gradient
through the liner thickness which is symmetrical about the nozzle

axis. The most expedient and explicit formulation of this phenom-
ena was derived from the classical thermoelastic model of a

symmetrical cylinder, Figure 2.

Z

C
OUTER WALL

CLOTH PLY
RIENTATION

or EROSIONSURFACE

Figure 2. Composite Ring Model

Because of assumed symmetries, shear influences are ignored.

Composite properties provided in the fill and warp directions were
approximated for the principal stress coordinates in the cloth

plane. Both are acceptable compromises in the face of the prelim-
inary status of input data. Due to the high heat flux, the

temperature varies over the wall depth (h) with burn time, (t),
and, therefore, material properties vary with wall depth and burn
time. In addition, the surface at radius (a) recedes as a func-

tion of sublimation reaction and erosion and the temperature along
the z-axis is uniform.
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The equilibrium equation of this two-dimensional model is

given by

d or Or-OO_+ .------ =o (I)
dr r

and Hook's equations relating to strains induced by stress and

thermal expansion are

Or-apT = (ar-vpa_)/Ep-a z vz/E z

CS-O_pT= ( as- Vp ar)/Ep-a z Vz/E z (2)

Cz-_zT= a z/Ez - ( a o + a r) vp/Ep

Subscript p and z refer to material properties in the cloth plane

and normal to it (across ply), respectively.

A major portion of the wall thickness from the outer surface

(b) remains at room temperature with correspondingly stiff

modulii; therefore, the axial growth and outward radial expansion
are assumed restrained and define the boundaries

ez=0 and u=0 at r=b (3)

Substituting the first condition into equation (2), the prin-

cipal stresses and strains become

az=(ar+a _) vpEz/Ep--ezEzT

er- (ap+Vz °_zlT= ar-VpaO -
1 VpV z

< l+vz )1 (1-VpVz)/E p. (4)_@--(_P+Vz_z) T= 8-Vp°r '1 VpV z
Ep

[ _O (1-VpVz)+ Vp_r(l+vz)
08= (1-2 v PVz)

--(l+vp)(ap+VzO_ z) T]

Ep
[Cr(1-VpVz)+V p _0 (l+vz)

ar= (1_2 v p v z)
-(l+vp)(ap+Vzez)T]



Substituting the last two of equations (4) into the equilib-
rium equation (I) and defining plane strains in terms of radial
displacements (u),

u Ou
€0=_ and e =r r ar , (5)

gives

m

d r2 + ( C_p+ vz O_z)
r d r r2 -- Upv d r

which may be written in the form

d [ 1 d(_ur).]_(l+ep z/(O _ +VzO_z)d Tr dr ]-\1-,p, P

Integrating twice yields the radial displacement,

u= l/_+v p r C2";- -___-_pVz a f ( C_p+ ez °_z)Trdr + Clr + _ (6)
r •

where Poisson's ratios are assumed constant at all temperatures.

Strain equations may now be solved in displacement terms by
substituting equation (6) into equations (5);

u 1(1+Up ! r C2_8 - - r2 \l--epV z / (O_p+ezo_z) Trdr+C 1+r a r2

(7)

(: z>du_ 1 +ep j.r (O_p+ezo:z) Trdr+C 1- _- +Cr- dr 7 --VpV a

/11+VP Vz>(_ +v C_z)T-- Vp p z "



Substituting equations (7) into equations (4) will similarly pro-
vide a set of stress equations in terms of displacement and
integration constants:

Ep(a +Vz_z)Trdr-Ep(a'p+Vzaz )T + EpCI+Ep
°e -2VpV a P \1 +Vp

Or: -2VpV aS Ep(ap+Vz_z) Trdr+EpC 1 _ Ep_l__._ep )

l+vp _EzCI_ [_p(l+vp)+O_z(l+vz)] EzT

oz= 11-2

Constants of integration are determined by substituting the

outer shell constraint of u = 0 at r = b into equation (6) and

inner condition of o = 0 at r -- a into equation (8) to giver

el
\1 + Vp] a--"_

(9)

(1 + Vp)2 a2
b

C2 = _ f (ap+Vz O_z)Trdr .
(1-VpVz) [(1-vp) b2+(1+v z) a2] a

III. COMPOSITE MATERIAL PROPERTIES

The above thermoelastic response equations are presented as
functions of liner depth between radius "a" and "b". Since the

wall temperature gradient increases with time, and varies exten-

sively within these boundaries, then the composite input

properties which vary with temperature must necessarily vary with

the liner radius. The entire issue of appropriate material engi-

neering constants at elevated temperatures is key to predictions

of liner operational conditions. Perhaps the most timely and

rewarding approach is to use a common set of existing data [I],



however preliminary, and then adjust the most sensitive and likely

property until analytical results match observed liner conditions
of recovered nozzles.

The temperature profile, Figure 3, used in this analysis was

developed [I] using the conductive heat transfer method which is

also based on estimated high temperature properties of the compos-

ite. Radiation effects were not included so that the gradient is

considered relatively moderate.
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Figure 3. Liner Temperature Gradient
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All of the temperature dependent engineering properties for

carbon cloth phenolic are plotted versus the expected temperature

range in Figures 4 and 5. Orthotropic material properties along
the z-axis (across-ply) are designated by subscript z and those in

the warp and fill directions, assumed equal, are designated by
subscript I.

It will be noted in Figure 6 that warp and fill directions in

the c!oth plane are oriented 0 = 45 ° from a tangent to the liner
wall.

I, FIBER WARP DIRECTION

2, FIBER FILL
b DIRECTION

\ f------ _=45°

TANGENT TO
LINER WALL "0

Figure 6. Fiber Fill and Warp Directions in Cloth Plane

To transform the fill and warp oriented experimental properties

onto the principal stress and strain axes, coincident with cylin-
drical coordinates, we need only to know the tensor rank of the

engineering properties. Stress, strain and coefficient of thermal

expansion are all second rank and may be transformed simply by

m2 n2

{_O}= In2_r m2] {_12}

where m = cos @ and n = sin @. Since @p = _r and 9, = _2, then

_p=_l (m2+ n2) = _ 1 (10)

because m 2 + n 2 = I.



This implies that stress, strain and CTE properties are indepen-
dent of cloth orientation and that subscript p is interchangeable

with subscript I.

Hook's law relation to stiffness is a fourth rank tensor and

its transform complexity goes to the heart of micromechanics model

involving fiber and resin interaction. However, the most critical

part of the pocketing analysis iscarried over the charred mate-

rial, where the interaction between carbon fiber and resin breaks

down and lamina cross coupling components vanish. Thus, it can

be shown [2] that the fourth rank tensor transform reduces to

: n4 E2 /

= E 0 =where Ep = Er and E, E 2. Therefore,

Ep:El(m4+n4)=El/2 (ii)

for 0 = 45 ° and is the least value that may be assumed in princi-

pa! stress directions.

As usual, Poisson's ratios of composite are difficult to

acquire and especially for char conditions. A reasonable estimate

for the expected temperature range is

_P = _1 = .08 _z : .26 (12)

For convenience, modified properties are incorporated into

elastic response equations (7) and (8) and rewritten,

.56 a j.r I /a'_21o@ = _ _"EITrdr-'56_'E 1T + .5KE 1 1+
[

[(alar- r2 a _EITrdr +'5KE 1 1-
(13)

oz = 2-2KEz- [1.1e I+.77e z]TEz

1.1 ir _.Trdr+ K[.92+1.1<f/21cO- r2 a

[--1.1 j. r 2
Cr -- rTa _'Trdr+l.1 ._T+K .92-1.1



where

-I b
= (_1 +'26_z ) and K = _ _Trdr.92 a2 + 838 a

and the liner initial dimensions are assumed a o =30 and b = 33

inches.

IV. NOMINAL ELASTIC RESPONSE

Thermoelastic response equations (13) define the stress-strain

state of widespread regions and alone cannot explain the localized

nature of pockets. Therefore, basic to this investigation is to
establish a balance between the response model, engineering prop-

erties input and a limiting criterion such as to insure that
results represent a nozzle liner that is generally undamaged

throughout burn time. Pocketing is assumed to occur from very

localized abnominal effects superimposed on nominal response

regions.

Response equations are burn time dependent in two respects.

One is the moving coordinate, a, which increases with erosion rate

and given by

a = 30+.01t inches. (14)

The other is the changing temperature profile with burn time, over

each increment of radius, Ar, from the erosion surface, Figure 3.

To test the compatibility of the elastic model and material

properties with observed liner burnout conditions, a burn time of
80 seconds was used because of the deep temperature penetration in

a quasi steady state thermal condition. Radial increments of Ar =

0.1 inch seemed adequate for a first cut and the average tempera-
ture over each increment was picked from Figure 3. Engineering

material properties were selected from Figures 4 and 5 for each

average temperature and recorded in columns 2 through 7, Table I.
Elastic response is noted in columns 8 through 10 in the same
table.
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Because the liner wall thickness to radius is small, the
radial stress response was zero for all increments of radius and

because of symmetry the tangential strain was negligible and

therefore, not recorded. However, those presented revealed essen-

tial potential patterns but no clue for visually comparing liner
surface with recovered nozzle conditions. A failure criterion
was wanted.

TABLE 1

THERMOELASTIC RESPONSE WITH PROPERTIES INPUT

Dep Temp CTE I0"6 Mod MSI Strength Response Failure

h T _i _z E1 Ez Fcl Fcz o_ _Z cr _ oz €r
in. °F ksi ksl %ksi kSi

.I 5000 6 -11 .6 0 - 8 -12 -5.3 0 1.7 .9 = .7

.2 4400 6 9 .7 .I -10 -15 -6.3 .1 1.8 .6 .8

.3 3600 4 - 8 :9 .2 -11 -19 -3.5 1.2 .7 .3 .4

.4 2800 2 - 9 1.0 .3 -10 -22 .5 3.9 -.I 0.0 -.6

.5 2000 1 -12 1.2 .4 - 5 -21 2.8 6.4 -.5 -.6 ! -.3

.6 1200 I -13 1.3 .6 7 -28 1.9 6.3 -.3 -.3 'I -.3

.7 800 2 36 1.5 .7 -14 -36 -7.7 -16.9 1.0 .6 .5 1.0

.8 500 5 22 1.7 .9 -22 -47 -5.2 -I0.3 .6 .2 .2 .7

.9 400 5 12 1.8 1.0 -24 -52 -3.4 - 6.1 .3 .I .I .4
1.0 200 3 7 2.1 1.5 -30 -70 -1.2 - 2.9 .i 0.0 0.0 .I
1.1 100 3 5 2.5 1.7 -33 -85 .7 - 1.5 0.0 0.0 0:0 0.0

Clearly, the liner is in a biaxial compression stress state

with across ply stress interacting with cloth plane stress. The

lack of such biaxial stress test data dispensed with employing the

tensor polynomial criterion. Instead, the maximum stress theory,

ai/F i _ I,

taken about each axis independently was used with results entered
in columns 11 and 12, Table I.

Since the liner has no tension strength capability across ply
direction and above 1000°F, infinity noted in column 12 implies

that the liner delaminates from the surface to a 0.6 inch depth
without exception. This type failure is not observed on used

nozzles. Because only the across ply response is questionable and

only above 800 o temperature, material inputs were assessed and

noted that delamination will always occur when

iI



a z < --1.4 a 1 (15)

The across ply CTE was adjusted accordingly and proposed in

Figure 4.

Another failure mode examined was the exceptionally large

strain. To be sure, the thermal expansion is directed only in
the radial direction and in a tensile strain state, column 10,

Table I. But the corresponding radial stress is zero as discussed

earlierX This phenomena is analogous to an isotropic cylinder

subjected to uniaxial compression in which the hoop and radial

strains progress to a flat disc shape without experiencing hoop
and radial stresses. However, in a fiber reinforced matrix, the

expansion in the cloth plane is limited by the ultimate strains of
the fiber. When the composite is exercised in a thermal environ-

ment, as the nozzle liner, then the fiber elastic expansion limit

must include a thermal term as proposed in the expression,

Cfult = _fstress + _fT . (16)

For this investigation, the carbon fiber CTE was assumed con-

stant over the char temperature range, ef = 3.8 x 10 -6 per °F.
The fiber elongation was calculated from the uniaxial test rela-

tionship

fstress€ = Ft/E 1 = .0065 (17)

from 100 to 4000°F. Substitution of these fiber properties into
equation (16) gave the appropriate tension strain failure crite-

ria,

Cr/(.OO65+3.8x 10-6T) > 1 . (18)

When this criterion was imposed on radial strains, fiber fail-

ure potentials were noted, Column 13, near the erosion surface and

at the .7 inch wall depth. A review of the radial response

expression suggested it could be approximated for further examina-

tion by

€r _ 1.1 ( _ 1 +.26 _ Z) T • (19)

It became readily apparent that the potential near the erosion

surface was caused by the high temperature. On the other hand,

the marginal condition at .7 inch depth was entirely due to the

peak across-ply CTE associated with the 800°F experienced at that
increment, an obvious parameter to be explored further.

12



Finally, thermoelastic responses at 80 seconds were
recalculated using the proposed across-ply CTE and results pres-

ented in Table 2. Again, potential fiber failures were noted
near the erosion surface and the 800°F region but no exceedings
and no deliminations all of which demonstrated that the modified

m
material properties are nominal and compatible with the
thermoelastic model to provide a nominally behaved liner.

TABLE2

THERMOELASTICRESPONSEWITH MODIFIEDPROPERTIES

Dep Temp CTE 10-6 Mod MSI Strength Response Failure

h T al j =z EI Ez Fcl i F_i ao j a_ jcr ae az j €rin. °F ksi ksi ksl %

.I 5000 6 -9 .6 0 - 8 -12 -6.2 0 2 .8 0 .8

.2 4400 6 -7 .7 ,.I -10 -15 -7.3 .6 2 .7 0 .9

.3 3600 4 -5 .9 .2 -11 -19 -4.9 .5 I .5 0 .5

.4 2800 2 -3 1.0 .3 -10 -22 -1.9 0 .3 .2 0 .2

.5 2000 I -2 1.2 .4 - 5 -21 - .7 .2 .1 .I O .I

.6 1200 I -2 1.3 .6 - 7 -28 -5.2 .I 0 .I .5 0

.7 800 2 36 1.5. .7 -14 -36 -7.7 -16.9 1 .5 .5 1.0

.8 500 5 22 1.7 .9 -22 -47 -5.2 -10.3 .5 .2 .2 .7

.9 400 5 12 1.8 1.0 -24 -52 -3.3 - 6.2 .3 .1 .I .4
1.0 200 3 7 2.1 1.5 -30 -70 -1.2- 3.0 .I O.O 0.0 .1
1.1 100 3 5 2.5 1.7 -33 -85 - .8 - 1.7 0.0 0.0 0.0 0.0

V. ANALYTICAL METHOD VERIFIED

Balancing a technique to conform with nominal conditions of

recovered nozzle liners does beg for credence in the method. An

opportunity for verification was recognized in J. R. Koenig's
test report [3] on restrained thermal growth (RTG) specimen,
Figure 7.

13



Z The specimen was a

solid cylinder of car-
bon cloth phenolic

_CLOTH with the cloth plane

PLANE ormal to the z-axis.

The thermoelastic
method developed above
was applied with
experimental
boundaries.

Figure 7. RTG Specimen Coordinates

Specimen was axially restrained, e =0, as was the nozzle ring.z
Applying the center condition of u = 0 at r = 0 to equation (6)

and letting a = 0, one constant was determined to be c2=0. Then

applying the radia! condition of a =0 at r=b into the second of

equations (8) the other constant was _etermined

1 ib
C1= V o (o_ 1 +VzO_ z) Trdr . (20)

Since the specimen was tested with a uniformly distributed temper-
ature, the coefficient reduced to

Ci=(_ l+vz_ z) T/2 (21)

and equations (7) and (8) became

€@=or =1.05(_1 +'26_z ) T
(22)

Oz= -Ez_zT

for
v1=.08 and v=.26.

To predict the temperature causing fiber rupture, the first of
equations (22) was substituted into the failure criterion equation
(18). To predict the axial stress corresponding to rupture tem-
perature, the last of equations (22) was employed. Predictions
are noted in Table 3.

14



TABLE3

RTG FRACTUREPREDICTIONS

Temp CTE 10-6 Mod Response Failure

al az Ez °z ¢r Or/Of> I
°F Msi ksi %

1000 I 12 .65 - 8 .4 .4
900 1.5 22 -7.0 -14 .7 .7
800 2.0 36 .7 -20 .9 1.0
700 3.0 37 .75 -19 .9 1.0
600 4.0 36 .8 -17 .8 .9
500 5.0 21 .9 - 9 .5 .6

and imply that the fiber will rupture between 700 and 800°F with

a corresponding axial compression load of 20 ksi. Experimental
results are summarized in Table 4 and

TABLE 4

RTG COMPOSITE TEST RESULTS [3]

w

Heating F i b e r R u p t u r e No. of

Rate Temp Stress Specimen
°F/Sec °F Ksi

10 734 8.6 17
% COV + 28 + 36

30 732 8.7 17
% COV + 27% + 20

temperature prediction is noted to be in very good agreement with

the test average. However, the predicted stress is about twice

the average tested and implies that the across-ply modulus of the
RTG specimen is half that of the SRM nozzle liner.

Since radial and tangential strains are independent of com-

posite modulus, the good agreement of fiber rupture between
predicted and test temperatures is sufficient verification of the
thermoelastic method and strain failure criterion.

15



VI. POCKETING PHENOMENA

An engaging output to emerge from the RTG experiment was the

large coefficient of variation (COV) in temperature, Table 4,

causing fiber rupture. If a set of parameters responsible for

large strain variations can be identified, then is it not possible

that these parameters are randomly deviated during the liner manu-

facturing process, and are the cause of localized fissures? If

deep pockets are the principal concern, then wouldn't the fiber

rupture potential noted at 800 °, Table 2, be a case to ponder?

Starting with the approximated radial response equation (19),

the sensitivity coefficients of the three material variables at
800°F are

8€ r _e r _er
..... .032 . (23 )

, 230, a v za _1 880 _ a z

When these variables were increased, a common percentage, the

radial strain increased twelve times more with the across-ply CTE

increase than with the other two variables. Then here was a sig-

nificant parameter, e , that might be associated with pocketing,

but it was a dependen_ one. To formulate it into its carbon fiber

and phenolic resin constituents, Halp and Pagano's
micromechanics model was used,

_z=(l+Vm)(1-Vf)_m+(l+vf)afVf-_l(Vfvf+Vm(1-Vf)). (24)

The nominal fiber volume fraction was assumed, Vf = 0.6, and the
fiber and resin Poisson's ratios were estimated as

_f = .2 and _m = .45.

The composite CTE 's were obtained from Table 2 at 800°F. The
resin CTE was found:

a m=6OxlO -6 per degree. (25)

Constituent modulii were determined from the rule of mixtures in

the fiber direction

E1 = Em (1 --Vf) + EfVf (26)

and from

°_1E1 = Em (_m(1 -- Vf) + Ef Vf vf

where E_ = 1.5 and el = 2, Table 2.

16



Solving simultaneously the resulting modulii

= Ef .Em 0 and = 2 5 Msi,

were substituted into equations (26) to yield e, = ef. Having
solved each independent variable in equation (24) it was znterest-

ing to note that the across ply CTE was independent of the

constituent modulii. Furthermore, the only parameter that might
be controlled in liner processing is the fiber volume fraction

with a sensitivity given by

8ez _ _ (l_vm)_O_m(l+vm) : 85x10_ 6
Vf f -- "

When this coefficient was combined with the second of equation

(23), the desired sensitivity of strain with the across ply CTE
independent variable was found

ae r 8E r ae r
- - .02 . (27)

8 Vf 8 o_z 8 Vf

Applying this sensitivity to the variational expression,

A_r_ AVf c3Er
_r € r _Vf

the remarkable conclusion was that a 10% increase in resin volume

fraction caused a 12% increase in radial strain. It was therefore

presumed, that if a high concentration of resin is allowed to flow

or pool locally during cure, then an abnormally high across ply
CTE will exist to promote localized fiber rupture at the 800°F

char region and cause deep pockets.

17



Another independent liner parameter under intense materials

investigation is the carbon fiber strength reduction during pro-
cessing and cure. The elongation associated with the fiber

strength is a significant parameter in the proposed failure crite-

rion, equation (18). It becomes obvious from equation (16) that a

10% reduction in fiber strength translates into a 7% elongation

reduction and therefore, reduces the radial straining limit by 7%
at 800°F. When this variation and the above resin volume varia-

tion occurs separately or in combination, a pocketing scenario is
cast.

The scenario begins with the following conditions in place:

I. A region in the liner, Figure 8, has been degraded during
processing by an excessive redistribution of resin into a highly
concentrated region, a reduction of fiber strength and elongation
in a small region, or a combination of both.

BOUNDARY OF h
\ DEGRADED _ 1.6"

REGION = 1.4"_ CHAR LI

o.
RUPTURED FIB_

REGION
EROSION .CHAR LINE

I SURFACE AT 80 SEC =.8 @31 SEC

//- ho=O LINER INNER

Figure 8. Pocketing Scenario of Degraded Material
Region in Cloth Plane

2. Highest potential for fiber rupture occurs when the

degraded region is swept by a temperature of approximately 800 o

often referred as the char line. This temperature corresponds to
the peak value of across ply CTE and penetrates the liner wall at
an approximate rate of

hcE = [(LOGt)-.22] /2.6 inches (28)

18



from the eroded surface.

3. The liner inner walls recede due to erosion at the rate
of

hER = .Ol.t inches.
(29)

The total penetration of the char line from the initial inner wall
is, therefore, the sum of equations (28) and (29) or

hcL = hCE +hER (30)

As the char line traverses the edge, ha, of the abnormally
processed region, fibers begin to rupture and continue to do so

until the char line covers the entire abnormal region or until

burn-out. When the liner inner surface erodes to the h edge and

exposes the ruptured fibers into the gas flow, the disintegrated

material is flushed and eroded into pockets in the direction of

the gas flow. Using this proposed pocketing model, several time-

critical events may be concluded.

Response analysis performed at different burn times similar

to Table 2 indicated that high strain potential levels and liner

depth are constant. Therefore, no burn time is more favorable to

bolstering pocket formation nor depressing it from static strain

and pocketing scenario viewpoints. Only the size and location of

the degraded region determines the pocket size formed and pocket
size observed at burnout.

To demonstrate this, a degraded region was assumed to have a

radial dimension of .8 inch (h - hb) and with the nearest edge .8
inch (h ) from liner inner surface. Using equation (30), the char

line will begin to traverse the degraded region at 31 seconds and

start the fiber rupturing process. It will take the surface ero-

sion process 80 seconds, equation (29), to reach the degraded

region at point, ha, to expose and flush away ruptured fibers. At
this time of 80 seconds, the char line will have traveled a dis-

tance of 1.4 inches and will have ruptured all the fibers in its

path for a total pocket depth of (equation 28) of h = .6 inches
ce

at that burn time. At the same time, a pocket begins to wear in

the degraded material region because of the increased erosion rate

characteristic of the ruptured material. The temperature gradient

in the region is about the same and the pocket depth continues to

increase until all the ruptured material is flushed out or until

terminated by burnout. In general, no pocketing will occur if

the edge h of the degraded region is greater than the eroded sur-

face at burn out, 1.2 inches. Pocket depths at burnout decrease

as the degraded region edge, hb, becomes less than the char line
travel at burn out, 1.9 inches.
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Another, perhaps insidious, condition for deep, narrow pocket
formation is that the degraded material region must be

ellipsoidally shaped with the longest axis parallel to the liner
radial axis. This turns out to be compatible with a manufacturing

feature in which the compaction roller axis is parallel with the

radial axis. In this orientation, the roller provides the

greatest opportunity to create voids with major axis in the radial
direction. The voids are presumed to fill with resin which flows

into paths and hallows of least resistance during cure and,
therefore, produce liner regions of degraded material susceptible

to pocketing.

VII. RECOMMENDATIONS

Based upon sensitivity analyses, any processing improvement

which inhibits fiber stress (therefore, elongation) reduction or

resin concentration will also repress pocket formation. Upgrading

specs of fiber cloth strength and resin content for acceptance

might also be considered.

Undoubtedly, an FEM analysis will provide a refined basis for

strain predictions. However, the classical method used here indi-

cated rather conclusively that strain, and not stress, was the

dominant failure mode. Engineering material properties associated

with it are rather few and should influence the mechanical proper-
ties test programs. A better definition of carbon fiber CTE and

elongation over the char temperature range may be required to sup-

port the failure criterion. The composite CTE across ply also

requires better description over the char temperature range and

rate. Resulting values much above 40 x 10 -6 per degree must be

suspected and test conditions examined for representing char line

phenomena existing in the operating nozzle. There is some doubt

that material modulii require an improved data base; they are not

significant to strain analysis. Same comments apply to composite
strengths.

VIII. CONCLUSIONS

A pocketing mechanism was identified in this investigation.

It was based on fiber rupture in liner regions which have been

degraded during manufacturing process by reducing the fiber

strength and allowing resin to flow and concentrate. Failure cri-
terion with a thermal term was proposed.

Pocketing scenario was constructed which noted that only the

size and !ocation of the degraded region in the liner determines

the size of the pocket formed and the depth observable at burn-
out.
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Materials testing program may be modified to exclude composite

modulii and strength since data available is adequate and pocket-

ing is rather insensitive to them. Across ply CTE is the driving

input property and should be better defined. This is also true of

the fiber CTE and elongation over the char temperature range.
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