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Closeout of Gran t NAG 9-68
An Archean Suture Zone in the Tobacco Root Mounta ins? (1984)
Evolution of Archean Continental Crust. SW Montana (1985)
Awarded to: David W. Mogk

Dept of Ear th Sciences
Montana State Univers i ty
Bozeman. MX 59717

Final Technical Repor t

T h e f o l l o w i n g s p e c i f i c a c c o m p l i s h m e n t s w e r e ach ieved d u r i n g t h e
g r a n t i n g pe r iod . A list of a b s t r a c t s , p a p e r s in r ev iew or a c c e p t e d ,
and papers in prepara t ion fol lows.

1 . M a p p i n g and g e o c h e m i c a l s a m p l i n g of the Lake P l a t e a u a rea .
B e a r t o o t h M o u n t a i n s , M o n t a n a . This w o r k se rves t o t i e t o g e t h e r t h e
earlier investigations of Mogk in the Nor th Snowy Block (to the wes t )
a n d M u e l l e r a n d W o o d e n i n t h e e a s t e r n B e a r t o o t h M o u n t a i n s . R e s u l t s
have been repor ted in 2 abs t rac ts and 2 papers in prepara t ion .

2. The al lochthonous na tu re of the St i l lwater Complex has been
investigated. The results have been repor ted in 2 abstracts , one paper
accepted for publ icat ion and one paper in prepara t ion .

3 . The N o r t h S n o w y Block, B e a r t o o t h M o u n t a i n s , has been re -
in te rp re ted as a Cordi l leran-style cont inenta l margin. This paper is
in review.

4 . The m e t a m o r p h i c and t e c t o n i c h i s t o r y of the B e a r t o o t h
Moun ta ins has been addressed in 3 abst racts , one paper accepted for
publ icat ion, and one paper in p repara t ion .

5 . The A r c h e a n g e o l o g y of the S p a n i s h Peaks a rea , n o r t h e r n
M a d i s o n R a n g e has been a d d r e s s e d in 2 a b s t r a c t s and one pape r in
p r e p a r a t i o n . A v o l u m i n o u s g r a n u l i t e t e r r a i n of s u p r a c r u s t a l o r ig in
h a s b e e n i d e n t i f i e d , a s w e l l a s a h e r e t o f o r e u n k n o w n A r c h e a n
bathol i th ic complex.

6 . M a p p i n g , p e t r o l o g i c . and g e o c h e m i c a l i n v e s t i g a t i o n s of the
B l a c k t a i l M o u n t a i n s , o n t h e w e s t e r n m a r g i n o f t h e W y o m i n g P r o v i n c e ,
are comple ted . Two abs t rac ts have been p resen ted and the m a n u w s c r i p t
is in preparation.

7. M a p p i n g at a scale of 1 :24000 in the A r c h e a n rocks of the
G r a v e l l y R a n g e i s nea r c o m p l e t i o n . This s e q u e n c e i s d o m i n a n t l y of
s t a b l e - p l a t f o r m o r i g i n . S a m p l e s h a v e b e e n c o l l e c t e d f o r
g e o t h e r m o m e t r i c / b a r o m e t r i c analysis and for U-Pb zircon age dat ing.
M i n e r a l ana lyses a r e w a i t i n g f o r a cces s (and f u n d i n g ) t o d o f u r t h e r
microprobe work .



8. S imi la r r e c o n a i s e a n c e s tud ies are in p r o g r e s s for s table-
p l a t f o r m derived m e t a s e i m e n t a r y rocks in the Tobacco Root Mountains
( m a p p i n g , s t r u c t u r a l a n a l y s i s , g e o t h e r m o m e t r y / b a r o m e t r y , a n d
goechronology) . Prel iminary minera l analyses indicate t empera tu res in
excess of 700°C and Pressures in excess of 7 Khars for this terrain.

9 . Our f i e l d s t ud i e s of t hese n u m e r o u s a reas have p r o v i d e d the
bas i s fo r a d d i t i o n a l g e o c h e m i c a l and g e o c h r o n o l o g i c s tud ies by Paul
M u e l l e r and Joe W o o d e n . At th is t i m e t h e r e i s no t an a d e q u a t e
geochronologic f r a m e w o r k for the Archean basemen t of SW Montana . Our
f ie ld studies have al lowed rocks to be dated in a s y s t e m m a t i c manner ,
and in a geologically reasonable context .

10. These numerous independen t lines of evidence have al lowed us
to present a model for the tectonic and geochemical evolution of the
A r c h e a n b a s e m e n t o f SW M o n t a n a (one m a n u s c r i p t i s a c c e p t e d and
others are in p repa ra t ion ) .



Papers Submitted

Hogk. D. W., Mueller, P. A., and Wooden, J. L., Tectonic Aspects
of Archean Continental Development in the North Snowy Block, Beartooth
Mountains, Montana (in review, Geology)

**Geissman, J. W., and Mogk. D. W.. Late Archean Tectonic Emplacement
of the Stillwater Complex along Reactivated Basement Structures,
Northern Beartooth Mountains, Southern Montana, USA,
(in review, Proceedings VI International Basement Tectonic Symposium)

**Mogk. D. W., and Henry, D. J., Metamorphic Petrology of the
Northern Archean Wyoming Province, SW Montana: Evidence for
Archean Collisional Tectonics (invited paper for Rubey Colloquium VII)
(in review)

**Wooden, J. L., Mueller, P. W., and Mogk, D. W., A review of the
geochemistry and geochronology of the northern Archean Wyoming
Province (invited paper for Rubey Colloquium VII, in review)

** Accepted for Publication

Papers in Preparation:
Two Occurrences of Magmatic Epidote in the Archean Basement of
SW Montana (vith Richmond, Salt, Mueller, Wooden, and Henry)

Latest Archean Tectonic Emplacement of the Stillwater Complex
(with J. Geissman)

Metamorphic Petrology of the Beartooth Mountains, Montana
(with Barrel Henry)

Archean Geology of the Spanish Peaks Area, northern Madison Range,
Montana (with Ken Salt)

Archean Geology of the Lake Plateau Area, Beartooth Mountains, Montana.
I. Petrology and Structure, (with Doug Richmond)

Archean Geology of the Lake Plateau Area, Beartooth Mountains, Montana.
II. Geochemistry and Geochronology. (with D. Richmond and P. Mueller).

Archean Geology of the Blacktail Mountains,' Montana,
(with Mike Clark)

Metamorphic Petrology of the northern Gallatin Range, Montana,
(with Karen May).

Tectonic Evolution of the North Snowy Block, Beartooth Mountains,
Montana.



ABSTRACTS

Mogk, P., Mueller, P., and Wooden, J., 1984, Secular variation
in ARchean tectonic style, Beartooth Mountains, Montana: EOS
volume 65, (transactions of the American Geophysical Union).

Mogk, D., and Geissman, J., 1984, The Stillwater Complex is
allochthonous: Geol. Soc. Amer. Ann. Meet. Progr. w. Abstr, Reno.

Mueller, P., Mogk, D. W.. WOoden, J., Henry, D., Bowes, D., 1984,
Archean metasedimentary rocks from the Bearooth Mountains:
evidence for an accreted terrane? Geol. Soc. Amer. Ann. Meet.
Progr. w. Abstr., Reno.

Salt, K., and Mogk, P.. 1985 Archean geology of the Spanish Peaks
area, southwestern Montana: Geol. Soc. Amer. Rocky Mtn Section, Boise.

Richmond, P., and Mogk, P., 1985, Archean Geology of the Lake
.Plateau area, Beartooth Mountains, Montana: Geol. Soc. Amer.
Rocky Mtn Section, Boise.

Clark, M., and Mogk, D., 1985, Pevelopment and significance of the
Blacktail Mountiahs metamorphic complex, Beaverhead County, Montana.
Geol. Soc. Amer. Rocky Mtn. Section, Boise.

Mogk, P.. Richmond, P., Salt, K., Clark, M., Mueller, P., Lafrenze, P.,
Wooden, J., Henry, P., Archean collisional tectonics in SW Montana:
Geol. Soc. Amer. Ann. Meet. Progr. w. Abstr., Orlando.

Geissman, J., and Mogk, P. W., 1985,
Reactivated latest Archean structures, NE flank, Beartooth Mountains,
Montana, and the Tectonic emplacement of the Stillwater Complex:
6th International Conference on Basement Tectonics, Santa Fe.

Mogk, P., 1985, A review of the Archean basement of SW Montana,
Tobacco Root Geological Society, Bozeman.

Clark, M., and Mogk, P., Tectonic setting of the Blacktail Mountains
Archean supracrustal sequence, SW Montana 19o6
Geol. Soc. AMer. Rocky Mtn Section.

Salt, K., and Mogk, P., 1986 Archean allochthonous terranes
inithe Spanish Peaks Area, SW Montana: Geol. Soc. Amer. Rocky Mtn Section.



.Secular Variation jji Archean Tectonic Style,
Beartooth Mountains. Montana

W. MogK (Dept. Earth Sciences, Montana
State University, Bozeman, Montana 59717)

A. Mueller (Dept. of Geology, University of
Florida, Gainsville, Florida 32611)

L. Wooden (USGS, Menlo Park, CA 94025)

P.

J.

Archean rocks of the Beartooth Mountains,
Montana show evidence of at least three dis-
tinct stages of crustal evolution: 1) genera-
tion of t rondhjemit ic continental crust, 2)
deposition of thick supracrustal sequences, 3)
generation of rocks and structures similar to
Cordilleran-type orogens.

In the NW Beartooth Mountains there is a
trondhjemitic gneiss-amphibolite unit, with
apparent age of 3.6 Ga. REE geochemistry indi-
cates the trondhjemite was derived by partial
melting of an amphibolite source. Between 3.4
and 3.2 Ga numerous supracrustal sequences
were deposited in either ensialic basins or at
contintental margins. Closure of these basins
resu l t ed in g r a n u l i t e grade (P=6 K b a r ,
T=800*C) metamorphism or migmatization. The
burial mechanism is interpreted as tectonic
thickening dur ing compression. Late Archean
tectonothermal events include 1) generation
of a 3.0 Ga old andesitic suite, 2) regional
amphibol ite-grade metamorphism at 2850 Ma,
w h i c h c u l m i n a t e d in 3) g e n e r a t i o n of
vo luminous calc-alkal ine granitoids at 2800
Ma, 4) tectonic thickening of the crust in an
early stage of transcurrent faulting followed
by emplacement of two major thrust sheets.

This terrane contains a variety of Archean
rock types and structures, characterist ic of
d i f f e r e n t c ru s t a l levels; this a l l ows
documentation of the thermal history and
a t tendant igneous and tectonic processes
responsib le for the evo lu t i on of this
continental crust.
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3 0 3
THE STILLWATER COMPLEX IS ALLOCHTHONOUS I

MOGK, David W., Department of Earth Sciences, Mont.| \'-
State University, Bozeman, MT 59717; and GEISSMAN, John W.,
Department of Geology, Colorado School of Mines, Golden, CO 80401

Field relations and petrologic and paleomagnetic studies indicate that
the Stillwater Complex and associated hornfels aureole are tectonically
emplaced against the Archean basement of the Beartooth Mountains, Mont.
The Archean basement consists of 2.8 Ga granitic gneiss and biotite
schist. The raetamorphism is of Buchan type; characteristic minerals
include subsets of the assemblage bio-gar-staur-plag-anth-cord. A
well-developed transposed foliation is axial planar to pervasive
isoclinal folds. Metasedimentary rocks of the contact aureole are
typically fine-grained elastics with interlayered banded iron
formation. Primary cross bedding and graded bedding are locally
present; relict minerals and structures that would indicate an earlier
metamorphic cycle are not preserved. Contact metamorphism formed cord-
anth or cord-opx assemblages; pressure estimates are about 2 kb, based
on hornfels assemblages and igneous phase equilibria for the depth of
emplacement of the complex. The Stillwater Complex has an age of
2700-2720 m.y. and is not affected by high grade regional metamorphism.
The Mouat quartz raonzonite cross cuts both the complex and basement
rocks and has an age of circa 2700 m.y. Intrusion of the Stillwater
Complex and tectonic emplacement must have occurred in rapid
succession. After correction for local tilt of igneous layering,
paleomagnetic data which reflect the initial cooling of the Stillwater
Complex are not coincident with those from undeformed, nearly time-
equivalent units in the Superior Province. Much of the 25-35
discrepancy in directions may reflect the allochthonous nature of the
Stillwater Complex. Emplacement of the complex probably occurred along
a wrench fault, possibly associated with the Nye-Bowler lineament.

For review purposes, you must
specify only one of the following
categories Pick the one in which
reviewers can be expected to
evaluate your abstract properly.
If you are unsure, check category
31. The category checked here
does not necessarily determine
the technical session In which
your abstract will be included, If
accepted.
O 1 archaeological geology
O 2 coal geology
D 3 economic geology
O 4 engineering geology
O 5 environmental geology
O 6 general geology
Q 7 geochemistry
O 8 geology education
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O 10 geophysics
O 11 geosclence Information
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O 14 marine geology
D 15 mathematical geology
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D 17 mineralogy/cryetallograph;
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O 19 petrology, experimental
D 20 petrology. Igneous
O 21 petrology, metamorphic
Q 22 petrology, sedimentary
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N2 48289ARCHEAN METASEDIMENTARY ROCKS FROM THE BEARTOOTH
MOUNTAINS: EVIDENCE FOR AN ACCRETED TERRANE?

MUELLER, P. A., Dept. of Geology, Univ. of Florida,
Gainesville, FL 32611; MOGK, D. W., Dept. of Earth Science,
Montana St. Univ., Bozeman, MT 59717; WOODEN, J. L., U.S.
Geol. Survey, Menlo Park, CA 94025; HENRY, D. 0., ARCO Oil
and Gas, 2300 Piano Pkwy, Piano, TX 75075; and BOWES, D. R.,
Dept. of Geology, Univ. of Glasgow, Glasgow, Scotland

The Beartooth Mountains contain several metamorphosed supracrustal
assemblages with metasedimentary members that were derived from source
regions that formed at least 3.1-3.4 Ga ago. A section in the eastern
Beartooth Mountains (EBT) contains ironstones, quartzites, wackes and
volcanic rocks that were metamorphosed to granulite facies ̂ 3.4 Ga ago.
The North Snowy Block (NSB) contains two sequences now at amphibolite
grade, one dominated by metabasalt, marble, and quartzite and the other
by quartzite, amphibolite, and metapelite. The contact aureole of the
Stillwater Complex (SCA) contains hornblende and pyroxene hornfels that
were pelites, wackes, quartzites and ironstones.

Despite their relatively high metamorphic grade, these rocks display
chemical features suggestive of separate provenances. All clastic
rocks have transition metal contents higher than average post-Archean
crust, e.g., Cr contents ranging from ~50 ppm in EBT quartzites to ̂ 300
ppm in SCA quartzites. REE patterns of the EBT clastic rocks (La =
lOOx, (La/Yb)n = 7-15) are clearly different from those of the NSB (La
= 50x, (La/Yb)n = 4-7). Other differences include Ba contents,
accessory mineral suites, and Nd and Sr isotopic systematic*. These
observations, in conjunction with the lithologic variety and
differences in metamorphic history, suggest that these metasedimentary
suites did not evolve in their present geographic positions. It seems
more reasonable that they evolved in widely separated areas and were
juxtaposed -̂2800 Ma ago as a result of processes similar to those
producing modern accreted terranes.

REVIEW CLASSIFICATION
For review purposes, you must
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* N2 71427ARCHEAN GEOLOGY OF THE SPANISH PEAKS AREA,
SOUTHWESTERN MONTANA

SALT.KJ.end MOCK.David W.Dept.of Earth Sciences,
Montana State University.Bozeman.MT 59717

The Spanish Peaks area of SW Montana contains two distinct suites of
Archean rocks including a large volume of high-grade meta-supracrustal
rocks and a batholithic complex consisting of at least 4 distinct
intrusive phases. Supracrustal rocks include biotite quartzofeld-
spathic gneiss, metapelites (biot-gnt-ky-sill-musc-qtz;biot-anth-ky-
plag-qtz) and emphibolites (gnt-diop-hbld-plag). The rocks are
isoclinally folded on a cm- to m-scale with displacement common on
small-scale nappes.Crystallization foliation is well-developed and is
axial planar to the isoclinal folds.

The intrusive phases include trondhjemite, hornblende monzo-
diorite, granodiorite and granite. The trondhjemite and hornblende
monzodiorite are intruded by the granodiorite;all 3 are moderately to
well foliated. Late-stage, unfoliated granites and associated
pegmatites cut all of the above units. Amphibolitized dikes and
sills occur throughout the area and are folded and boudinaged. A
northeast trending mylonite zone divides the area into predominantly
Supracrustal rocks to the northwest and granitic rocks to the
southeast;mylonitization occurred under epidote stable conditions.

• The abundance of clastic Supracrustal rocks in the Spanish Peaks
contrasts sharply with the dominantly granitic Archean rocks of the
Bear tooth Mountains . to the east. The high grade of metamorphism and
structural style requires deep burial of these sediments; the
preferred burial mechanism is tectonic overloading. The subsequent
formation of calc-alkaline intrusives suggests that this area may be
part of a late Archean,Cordilleran-type continental margin.
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N2 69398
ARCHEAN GEOLOGY OF TOE LAKE PLATEAU AREA,
BEARTOOTH MOUNTAINS, MONTANA

RICHMOND, Douglas P., and MOGK, David W., Dept. of Earth
Sciences, Montana State Univ., Bozeman, MT 59717

The Lake Plateau area in the central Beartooth Mountains is comprised
of voluminous intrusive rocks ranging from diorite to granite in
composition with a variety of supracrustal inclusions. The inclusions
range in size from centimeter to kilometer scale and include calc-
schists (bio-qtz-hbld-epi-plag), pelitic schists (bio-plag-qtz±gar)
and well foliated amphibolites. Some inclusions show small scale
isoclinal folds and transposition foliation that is axial planar to
these folds.

The intrusive rocks vary in modal mineralogy and texture on a
meter scale. In some places they have a foliated augen texture, and
in others they have an hypidiomorphic granular texture. Foliation is
better developed near inclusions and in most cases is conformable
with foliation of the inclusions. Emplacement occurs as lit-par-lit
injections; assimimilation of inclusions is common. Pegmatite and
aplite veins associated with the intrusive rocks cut across nearly
all Archean rocks and comprise 20% of the total rock volume.

Structural trends are north-south and include foliation, broad
open kilometer scale folds, and at least two shear zones with
mylonitic textures and retrograde roetanorphism to chlorite and
epidote. Younger rocks include amphibolite dikes and a few Tertiary
felsic dikes.

The inclusions at Lake Plateau are similar to the Archean supra-
crustal rocks of the North Snowy Block mobile belt to the west, and
the intrusives are similar to the 2750 m.y. granites in the eastern
Beartooths. This association in the Lake Plateau area marks the
boundary between these two Archean terranes.
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ARCHEAN METAMORPHIC COMPLEX, BEAVERHEAD COUNTY, MONTAN/

CLARK, Michael L. and MOGK, David W., Department of Earth Science,
Montana State University; Bozeman, Montana 59717

The southwestern most major exposure of Archean metamorphic rocks in
Montana is found in the Blacktail Mountains. Quartzofeldspathic
gneisses are predominant with characteristic mineral assemblages of
quartz-plag-Kspar±bio±hblnd±garnet. Compositional layering occurs on
a centimeter to meter scale and is defined by variations in color
index (5 to 40), variation in Kspar/plag and variation in biotite,
hornblende and garnet content. A NE-SW striking crystallization
foliation, parallel to compositional layering, and SW trending mineral
streak lineation are well developed. Interlayered and conformable
with these gneisses are discrete amphibolite bodies, meters to tens of
meters thick. Layering and foliation have been deformed into tight to
isoclinal folds, with wavelengths on a tens of meters scale and with
axial plane traces parallel to foliation. Several small bodies of
late to post kinematic biotite granite intrude the gneisses. These
granites are foliated to non-foliated and are locally injected lit-
par-lit. The youngest Precambrian features seen are unfoliated
diabase dikes intruded at high angles to foliation and unfoliated
granite bodies intruded subparallel to foliation.

The fine scale layering and lack of any relict igneous textures
suggest that these interlayered gneisses are a sequence of clastic
sediments metamorphosed to at least amphibolite grade. These rocks
may represent the southwestern edge of the Archean basin proposed by
Vitaliano, et.al.,(1979), wherein the marble bearing sequences in the
central Dillon Block are the basin's center and the marble-deficient
sequences proximal to the older Beartooth Block are the basin's
eastern margin. Alternatively, the Blacktail complex may represent
one of several separate sequences accreted eastward onto the Beartooth
Block.
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MOCK, D., RICHMOND, D., SALT, K., CLARK, M., Dept. Earth Sciences,
Montana State Univ., Bozeman, MT 59717; MUELLER, P., LAFRENZE,
D., Dept. Geol., Univ. Florida, Gainesville, FL 32611; WOODEN,
J., USGS MS 937, Menlo Park, CA 94025; HENRY, D., Dept. Geol.,
Louisiana State Univ., Baton Rouge, LA 70803

The Archean cont inen ta l crus t of SW Montana evolved through
alternating cycles of stable platform sedimentation followed by
crustal thickening through collisional tectonics. The ancient sialic
crust in the Beartooth Mountains served as the nucleus for accretion
of younger terranes to the vest.

The oldest erogenic cycle recognized in the Beartooth Mountains
involves a 3.4 Ga old supracrustal sequence which was metamorphosed in
the granulite fades (T=700-800°C, P«=6Kb, 35°C/Km); deep burial is
interpreted as the result of collisional tectonic thickening. The
second orogenic cycle is subduction related and has produced 2.8 Ga
old andesites, 2.75 Ga old calc-alkaline intrusives, upper amphibolite
grade metamorphism, transcurrent faulting (in the North Snowy Block
and Yankee Jim canyon at 2.8 Ga) and nappe emplacement. In the central
Beartooths post-orogenic granites intrude pelitic schists (T=600°C,

? P=8Kb, 25°C/Km).
| West of the Beartooths the basement consists of 2.75-2.70 Ga old,
2 tectonically telescoped coarse elastics (Gallatin, Madison Ranges) and
| stable platform sequences (Gravelly, Tobacco Root, Ruby Ranges). Nappe
5 formation and granulite-migmatite (700-750°C) associations are common,
g suggesting deep burial through tectonic thickening. A late-kinematic

mesozonal (8Kb) qtz diorite-granodiorite batholithic complex is
present in the northern Madison Range. Quartzofeldspathic paragneisses
in the westernmost Archean basement (Highland, Blacktail Ranges) are
derived from either a continental or island arc source.
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REACTIVATED LATEST ARCHEAN STRUCTURES, NE FLANK, BEARTOOTH MOUNTAINS.
MONTANA. AND THE TECTONIC EMPLACEMENT OF THE STILLWATER COMPLEX

GEISSMAN. John Urn.. Department of Geology, University of New Mexico,
Albuquerque. NM 87131, USA; and MOGK, David U., Department of
Earth Sciences, Montana State University, Bozeman, MT 59717, USA

A major basement feature 1n the northern part of the Bighorn Basin,
northern Wyoming, 1s the Nye-Bowler lineament, first described by C.W.
Wilson (1936, A.A.P.G. Bull.), running from the Crazy Basin in southern
Montana to the northern end of the Bighorn Mountains. Subsurface ex-
ploration has Indicated that the feature was active many times during
the Phanerozoic, especially during Laramide and younger activity. Field
relations, petrologic observations, and paleomagnetic and regional
geophysical data all indicate that transcurrent faulting along portions
of the lineament occurred 1n the Precambrian. Geochronologic data on
rocks along the northeast flank of the Beartooths imply that faulting
may have taken place as long ago as in the latest Archean. The
Still water igneous complex and associated hornfels have been tectoni-
cally emplaced against 2.8 Ga basement, consisting of granitic gneiss
and biotite schist, along the Mill Creek-Still water fault zone. Base-
ment metamorphism is of Buchan type; characteristic minerals include
subsets of the assemblage bio-gar-staur-plag-anth-cord. Transposed
foliations are axial planar to pervasive isoclinal folds. At the con-
tact, metasedimentary rocks are fine-grained elastics with interlayered
banded iron formation. The presence of primary cross- and graded-
bedding implies lack of significant penetrative deformation at an
earlier time. Contact metamorphism formed cord-anth or cord-opx assem-
blages yielding pressure estimates of 2 kb. The Stillwater Complex has
an age of 2720-2700 Ma and is not affected by high grade regional meta-
morphism. The Mouat quartz monzonite cross cuts both the complex and
basement rocks and has an age of circa 2700 Ma. Intrusion of the
Stillwater Complex and tectonic emplacement must have occurred in rapid
succession. Paleomagnetic data, after correction for local structure,
are not coincident with results from undeformed, nearly time-equivalent
units in the Superior Province. Much of the 25-35 of discrepancy in
directions may reflect the allochthonous nature of the Stillwater
Complex. This portion of the Nye Bowler lineament must have been
stabilized in latest Archean time.
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N2 1 0 0 9 5 5ARCHEAN ALLOCHTHONOUS TERRANES IN THE
SPANISH PEAKS, SOUTHWESTERN MONTANA

SALT, K.J., and MOGK, David W., Dept. of Earth Sciences,
Montana State University, Bozeman, MT 59717

Two distinct Archean domains are juxtaposed along a NE trending,
steeply SE dipping mylonite zone in the Spanish Peaks of SW Montana.
These domains are characterized by differences in lithology, metamorphic
grade, and structural style.

The southern domain is a batholithic complex intruded into supra-
crustal gneisses, metapelites and amphibolites with scattered quartzites
and metaultramafites. Paragneisses are tonalitic. Orthoamphibole assem-
blages are common occurences and kyanite is the stable aluminosilicate
of this domain. Scattered sequences of layered amphibolite-trondhjemite
also occur within this domain. The batholithic phases follow a
fractionation path different from most Cordilleran sequences, ranging
from older monzodiorite and quartz diorite to younger granodiorite and
granite. Peak conditions of metamorphism were 650-700 C at 7-8 kbars.

The northern'domain is predominantly metasupracrustal, consisting
of gneisses, metapelites, quartzite, and amphibolites. The gneisses are
granitic and are less mafic than those of the southern domain. Silli-
manite replaces kyanite. Amphibolites have lower granulite facies assem-
blages. Notably absent are the batholithic phases, the amph-trond
sequences, and orthoamphibole assemblages. Metaultramafites are much
less abundant. Peak metamorphism occurred at 680-720 C at 6-7 kbars.

Preliminary structural analysis suggests an oblique sense of slip
and possibly several periods of motion along the shear zone, resulting
in emplacement of a higher P intrusive complex over a lower P metasupra-
crustal sequence. The last motion occurred under epidote-amphibolite
facies conditions. Juxtaposition probably occurred during Archean oro-
genesis, with renewed activity possibly occuring during a greenschist
facies thermal event postulated by Giletti (1966) at 1.6 b.y.
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ABSTRACT

The North Snowy Block (NSB). Beartooth Mountains. Montana is an

Archean terrain that exhibits numerous aspects of Phanerozoic orogens,

including sedimentary sequences characteristic of stable platforms, a wide

range of metamorphic grades, transcurrent and thrust faulting, and injec-

tion of granitic sills. The occurrence of contemporaneous late-Archean

andesites and voluminous calc-alkaline granitoids in the central and

eastern Beartooth Mountains suggests this terrain may have evolved in

response to orogenic forces generated by plate tectonic-like processes.

In particular, the local and regional geology appears consistent with

development in a Cordilleran-type orogeny.

INTRODUCTION

Many workers have proposed that most of the Earth's continental crust

formed during the Archean (e.g. Moorbath, 1977, 1978; Moorbath and

Windley, 1981; Taylor and McLellan. 1981) and that this process occurred in

environments similar to those of the modern plate tectonic regime (e.g.

Windley. 1981; Burke et al.. 1976). However, it has proved difficult to

develop comprehensive models for the Archean tectonic regime because of

the restrictions imposed by the generally limited area! extent and selec-

tive preservation of Archean terrains, the later orogenic reworking of this

older crust which has generally destroyed the original paleomagnetic re-

cord, and the lack of paleontologic/stratigraphic control. In light of

these problems, it is important to thoroughly investigate as wide a

variety of Archean terrains as possible if we are to clearly understand

Archean tectonics and crustal growth. The high relief, excellent exposures

and wide variety of rock types in the North Snowy Block (NSB) offer unique



insight into the breadth of Archean tectonic style. In this .paper we

review the large-scale structures, lithologies and ages of this critical

area in the Archean basement of SW Montana.

The NSB defines a zone of tectonic dislocation between two fundamen-

tally distinct terrains in the Archean basement of the northern Wyoming

Province (Figure 1). To the east, the Beartooth Mountains and other expo-

sures of Archean rocks are comprised dominantly of late Archean granitoids

with inclusions of older supracrustal rocks (Peterman. 1979; Henry et al.,

1982; Mueller et al.. 1985). The voluminous late-Archean granitoids and

associated igneous rocks of the Beartooth Mountains have been interpreted

as the products of subduction along a continental margin (Mueller and

Wooden, in prep.). The western terrain consists dominantly of 2.75 Ga old

(James and Hedge. 1980) high-grade metasedimentary rocks as exposed in the

Gallatin (Spencer and Kozak. 1975). Madison (Erslev, 1983). Ruby (Garihan.

1979) and Tobacco Root Mountains (Vitaliano et al.. 1979). The metasupra-

crustal rocks include quartzites, marbles, aluminous schists, banded iron

formation, and quartzofeldspathic gneiss that have been interpreted as

stable platform associations (Vitaliano et al.. 1979). Individually, these

lithologic sequences must have evolved in a variety of environments.

Collectively, their present configuration suggests later tectonic

juxtaposition.

NORTH SNOWY BLOCK

The NSB was first described in detail by Reid et al. (1975). Our

current investigations have expanded upon this earlier work and suggest

that the NSB is a zone of extensive tectonic mixing of both metaigneous and

metasedimentary rocks as a result of transcurrent and thrust faulting. The



NSB consists of four lithologically and metamorphically distinct linear

belts separated by faults and overlain by two apparently east-verging

thrust sheets (Figure 2). These six units are distinguished by abrupt

discontinuities in lithology, metamorphic grade, .structural style* and, to

a lesser extent, isotopic age. A late open folding event post-dates the

faulting events. The following summarizes the characteristics of these

units as they .occur in an east-west cross section; more complete

descriptions can be found in Mogk (1984).

Paragneiss Unit (PG). This unit is a broken formation which is

comprised of a wide variety of supiracrustal rocks including quartzofeld-

spathic gneisses, pelitic schists, amphibolites, and banded iron formation.

These rocks have been metamorphosed in the upper amphibolite facies and

yield garnet-biotite temperatures (Ferry and Spear, 1979) of 650-700°C.

Anastomosing shear zones surround meter- to tens-of-meter scale phacoid-

shaped pods of the various lithologies; internal tectonic mixing occurred

under greenschist or epidote-amphibolite facies. A strong mineral streak

lineation lies.in the plane of foliation with a small angle of rake.

Rocks of similar composition, metamorphic grade, and structural style lie

along strike in Yankee Jim Canyon of the South Snowy Block (Burnham, 1983;

Figure 1).

Mount Cowen Augen Gneiss (MCA). This granitic augen gneiss occurs as

sill-like bodies which have been injected parallel to the regional NE

strike. It is characterized by an anastomosing foliation defined by

biotite and chlorite around K-spar porphyroclasts. Late to post-kinematic

emplacement of the granitic protolith occurred along a postulated fault

between the Davis Creek Schist and the PG. Local contact metamorphism of



the Davis Creek Schist produced static growth of biotite and indicates

that the MCA is the youngest major rock unit in the NSB.

Whole-rock Rb-Sr isotopic data suggest the MCA is 2737 +/- 52 Ma old

with an initial Sr isotopic ratio of 0.7023 +/- 20 (Figure 3). The age

and initial ratio of this unit are indistinguishable from those of the

igneous rocks of the eastern and central Beartooth Mountains (Wooden et

el.* 1982; unpubl.).

Davis Creek Schist (DCS). The DCS is a phyllitic metapelite with

subordinate layers of quartzite. The dominant metamorphic assemblage is

chlorite-muscovite-albite-quartz (greenschist facies). The DCS is struc-

turally below and in tectonic contact with the trondhjemitic gneiss-amphi-

bolite complex (see below) as evidenced by their strongly mylonitic con-

tact. This contact also shows wispy intercalations in map view and cannot

readily be reconciled as either imbricate slices or intrusive contacts. A

weakly developed quartz rodding lineation lies in the plane of foliation

with a subhorizontal plunge direction. Rare intrafolial isoclinal folds are

overprinted by asymmetric kink folds.

Trondhjemite-amphibolite complex (TGA). This unit consists of tron-

dhjemitic gneisses interlayered with a series of conformable, but discon-

tinuous, amphibolites. The amphibolites range from fine-grained, well-

lineated. basaltic varieties, to coarse-grained metamorphosed gabbros and

anorthositic gabbros. Cross-cutting relationships are rare, but where

present indicate that portions of the trondhjemitic gneiss are younger than

at least some of the amphibolites. The entire unit has experienced

pervasive ductile shearing (Mogk. 1982) during metamorphism in the epidote-

oligoclase facies (X500°C based on coexisting neoblasts of albite and



oligoclase). It characteristically exhibits blastomylonitic texture,

passive flow folding, and a mineral streak lineation lies in the plane of

foliation with an average orientation of 15°S48°W. Discrete amphibolite

layers are rotated into conformity with the shear foliation. The ductile

shearing that is characteristic of this unit is not recorded in the

overlying Pine Creek Nappe Complex.

Age relations in this highly sheared complex are difficult to define.

Rb-Sr whole-rock measurements yield scattered data that lie mostly along a

3400 Ma reference line (Figure 4). Several samples appear to have lost Kb.

probably as a result of shearing, and lie above the reference isochron.

Sm-Nd whole-rock determinations yield chondritic model ages of 3.26 and

3.59 Ga (Table I). Initial zircon studies (Mueller et al.. unpubl.) also

suggest ages in the range 3.1-3.4 Ga. Together these data suggest that this

unit may be composed of a variety of quartzofeldspathic components as old

as 3.4 Ga.

Pine Creek Nappe Complex (PCN). Structurally overlying the TGA is the

Pine Creek Nappe Complex (Reid et el.. 1975; Mogk. 1984; Figure 2). This

is an isoclinally folded thrust-nappe structure (Mogk, 1981). The regional

isoclinal structure consists of an amphibolite core with symmetrically

disposed marble and quartzite. Closure of this isoclinal structure is

observed in the NE corner of the map area. The lower limb of the nappe

complex is strongly attenuated indicating that this is a detached

antiformal structure. Mylonites are well-developed in quartzites only along

the lover contact with the TGA. Isoclinal folding occurs on all scales in

this complex and fold axis lineations display an average orientation of

20°N40°E. Metamorphism is in the middle to upper amphibolite facies with



garnet biotite temperatures in the range of 600-650°C. A strong crystalli-

zation schistosity is developed along the axial surfaces of the isoclinal

folds. A single Sm-Nd chondritic model age (Table I) on a sample of the

amphibolite in the core of the nappe suggests a protolith age of

approximately 3.2 Ga for this supracrustal sequence.

Heterogeneous Gneiss and Quartzite-Amphibolite Units (HG and Q-A).

A second major thrust fault has emplaced the migmatitic HG and

associated high-grade supracrustal rocks of the Q-A units over the PCN

(Mogk. 1982). The occurrence of the Q-A unit is restricted to the upper

section of this thrust sheet (Figure 2). Metamorphism is in the upper

amphibolite fades; subordinate pelitic layers in the Q-A unit record

garnet-biotite temperatures up to 700°C. A synkinematic transposition

foliation is axial planar to small-scale isoclinal folds. In the lower

section of the thrust sheet the HG consists of lit-par-lit injections of

granite to tonalite in the metasupracrustal sequence. Locally, foliation

in the supracrustal rocks is truncated by the intrusive rocks and partial

assimilation of the supracrustal rocks is common.

These observations supplement those of Reid et al. (1975) and have

resulted in a different tectonic interpretation of this area than that

proposed in this earlier work. The wide variety of rock types and the

abrupt discontinuities in metamorphic grade, structural style, and isotopic

ages (Table II) discussed above suggest significant tectonic displacements.

Although it is not possible to determine the original orientations of the

major faults because of lack of control over later block rotations, the

style and timing of the original tectonic juxtaposition are constrained by

the following observations. 1) All units in the NSB have recorded unique



metamorphic and deformational histories. Each unit exhibits the same meta-

morphic grade along strike; the breaks in metamorphic grade between units

can only be rationalized in terms of tectonic juxtaposition. 2) Within the

PG the phacoidal form of individual lithologic pods, separated by anastomo-

sing shear zones, and the subhorizontal mineral streak lineation suggests

that intraformational tectonic mixing occurred during transcurrent faulting

rather than imbricate thrusting. The greenschist-grade DCS also displays a
v.

subhorizontal lineation and is separated from the amphibolite-grade PG by a

thin sill-like body of MCA which produced clear evidence of contact

metamorphism in the DCS. Juxtaposition of the DCS and PG units is inter-

preted as the result of transcurrent faulting and must have occurred prior

to the injection of the MCA at a time of 2735 Ma ago. 3) The contacts

between the DCS and the TGA are strongly mylonitic. both units also show

subhorizontal lineation and the wispy intercalations of these two units in

map view (stylistically represented in Figure 2) suggest that these units

were also emplaced along a transcurrent fault. 4) The age relations between

the TGA and the PCN preclude the possibility that the trondhjemite was

injected into the nappe complex as was originally suggested by Reid et al

(1975). In addition, the ductile shearing in the trondhjemitic gneiss must

have occurred prior to the emplacement of the PCN. 5) Emplacement of the

two thrust sheets marks a major change in tectonic style during the

evolution of the NSB. The metamorphic grade increases discontinuously up

section from the TGA through the PCN to the HG. The PCN structure formed

synkinematically during amphibolite grade metamorphism; its current struc-

tural position requires post-metamorphic tectonic emplacement. The overall

isoclinal structure of the nappe complex and the strong attenuation of the



lower limb indicates that this unit was emplaced along a thrust fault. The

overlying oigmatites of the HG must represent a deeper crustal process that

occurred prior to the emplacement of this unit. In addition, the H6 now

appears to occupy an older-over-younger structural position suggesting that

this unit also was emplaced along a thrust fault.

TECTONIC EVOLUTION OF THE NSB

The North Snowy Block is an aggregation of discrete lithologic asso-

ciations that evolved over a period of approximately 600 million years.

These associations developed in a variety of tectonic environments and are

present now as allochthonous units in the NSB. The tectonic evolution of

the NSB, therefore, must be interpreted not only in terms of the geologic

history of the individual lithologic associations, but also in terms of the

history of adjoining Archean terrains. Taken as a whole, the NSB and

adjacent terrains exhibit many features consistent with development in a

late-Archean Cordilleran-style orogeny. These features are:

1) There are remnants of relatively thick (%20 km), continental crust

of at least 3.4 Ga age preserved in the eastern Beartooth Mountains

(Henry et al., 1982). In the NSB, at least portions of the TGA appear to be

of equivalent age and may be part of the same ancient continent. This

continental mass served as the nucleus for both magmatic and tectonic

continental growth in the latest Archean.

2) Voluminous, late-Archean, calc-alkaline granitoids and associated

igneous rocks, including andesites, were emplaced into the older continen-

tal nucleus about 2.75 Ga ago (Mueller and Wooden, in prep.; Richmond and

Mogk, 1985). The chemical and isotopic compositions of these rocks have

been interpreted to indicate derivation as a result of subduction-related



processes (Mueller and Wooden, in prep.). These rocks represent the major

magnetic aspect of this late-Archean orogeny.

3) The association of quartzites and marbles in the Pine Creek Nappe

Complex suggests that these rocks were originally deposited in a stable

platform environment. This sequence was probably deposited during a period

of tectonic quiescence on a continental margin or in an ensialic basin.

The similarity between these rocks and other platformal rocks in the Ar-

chean of southwestern Montana, as well as the closure of the nappe

structure, suggests that original deposition occurred west of the NSB.

4) The final tectonic juxtaposition of the lithologic associations in

the NSB probably occurred prior to, or contemporaneous with, the develop-

ment of the late-Archean magmatic complex in the Beartooth Mountains based

on the similarity of ages of the Mount Cowen Augen Gneiss and the magmatism

in other portions of the Beartooth Mountains.

DISCUSSION

The NSB has experienced a complex history of tectonic juxtaposition

of dissimilar units probably by means of both transcurrent and thrust

faulting. It is difficult to demonstrate the magnitude and original orien-

tation of of these displacements because Archean exposures in this region

are locally limited to Laramide uplifts. However, immediately adjacent

Archean lithologic associations exposed to the east (Wooden et al., 1982),

south (Erslev, 1983; Casella et al., 1982), and west (Spencer and Kozak,

1975; Salt and Mogk, 1985) are not readily comparable to the main units in

the NSB. When considered in light of the adjacent and contemporaneously

developed magmatic terrane of the eastern Beartooth Mountains (Wooden et



al., 1981. 1982; Mueller and Wooden, in prep.) and the dichotomy between

this magmatic terrane and the metasedimentary terrains of SW Montana, it

appears that the NSB lies along a late-Archean continental margin (Mueller

et al.. 1985; Mogk and Henry, in review; Wooden and Mueller, in press) that

was involved in a complex orogenic episode 2700-2800 Ma ago.

This orogenic event involved the addition of segments of- continental

crust to an older Archean continent via mechanical and magmatic processes.

The" spatial and temporal association of andesitic and calc-alkaline

magmatism in the Beartooth Mountains and the tectonic juxtaposition of

widely disparate in the NSB is analogous on a small-scale with the tec-

tonic features described for the Cordillera of western North America (e.g.

Burchfiel and Davis. 1972; Coney et al.. 1980). If this analogy is valid,

it suggests that all of southwestern Montana is a collage of allochthonous

terrains that were aggregated in a Cordilleran-style orogeny during late

Archean time. The existence of such orogenic zones has not been clearly

demonstrated for the Archean, althogh allusion to their existence has been

made (Windley and Smith. 1976; Dewey and Windley. 1981; Dickinson. 1981).

Documenting the existence of these zones and the orogenic processes that

produced them remains an important, yet unresolved, aspect of Archean

geology that has important implications for understanding the relative

importance of mechanical versus magmatic aggregation of continents.
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FIGURE CAPTIONS

Figure 1: Index map of the northern portion of the Archesn Wyoming

Province showing the location of the North Snowy Block mobile belt, igneous

and metaigneoue rocks to the east, and dominantly metasupracrustal rocks to

the vest.

Figure 2a: Sketch map showing part of the North Snowy Block mobile belt.

The linear belts of the trondhjemitic gneiss-amphibolite complex, Davis

Creek Schist. Mount Cowen Augen Gneiss, and Paragneiss Units are overlain

by the thrust sheets of the Pine Creek Nappe Complex and Heterogeneous

Gneiss*

Figure 2b: Schematic cross section across strike of the North Snowy Block

mobile belt (un;Lts denoted as in Figure 2a).

Figure 3: Rb-Sr whole rock isochron for the Mount Cowen Augen Gneiss.

Figure A: Rb-Sr whole rock isochron for the trondhjemitic gneiss. This

unit is strongly sheared and all samples may have lost some Rb; open

circles denote samples that appear to have lost substantial amounts of Rb.
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Table I. Sm-Nd Chondritic Model Ages in the North Snowy Block

Chondritic
Sm Nd 147Sm/U4Nd 143Nd/144Nd Model Age

BCA-1 6.97 32.74 .1288 .510495*27 3.20 Ga
Barney Creek Amphibolite

243 2.63 15.08 .1056 .509791*36 3.55 Ga
Trondhjemitic Gneiss

161 1.94 14.88 .0790 .509393±29 3.26 Ga
Trondhjemitic Gneiss



Table II: Characteristics of the Lithologic Units of the North Snowy Block

Unit

Heterogeneous
Gneiss

Pine Creek
Nappe Complex

Trondhjemite-
Amphibolite
Complex

Davis Creek
Schist

Mount Coven
Augen Gneiss

Faragneiss

Metamorphic Grade

Upper amphibolite
650-700°C(gar-bio)

Mid- Upper-
Amphibolite
600-650°C (gar-bio)

Epidote-oligoclase zone
500°C, coexisting
albite-oligoclase

Greenschsit Facies
chlor-musc-albite-qtz

Greenschist Facies

Upper amphibolite
700°C (gar-bio)

Structural Style

Transposition foliation,
intrafolial isoclinal
folds

Isoclinal folding on all
scales,

Ductile shear zone,
biastomylonitic,
passive flow folds

Phyllitic, local
isoclinal fold
late-stage kinks

Granitic augen gneiss

Anastomosing shear zones,
high degree of internal
tectonic mixing

Isotopic Ages

3.4 Ga Rb-Sr whole rock
on injected migmatites

3.2 Ga Sm-Nd chondritic
model age on amphibolite

3.55 and 3.26 Ga Sm-Nd
chondritic model age
~3.4 Ga Rb-Sr whole rock

2.74 Ga Rb-Sr whole-rock
isochron -:

2̂.8 Ga on quartzo-
feldspathic gneiss
in Yankee Jim Canyon
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ABSTRACT

A major basement feature of the northern Bighorn Basin, northern Wyoming,

is the Nye-Bowler Lineament (NBL). Field relations, petrologic observations,

and paleomagnetic and regional geophysical data all indicate that transcurrent

faulting occurred along strands of the NBL in latest Archean time. Structures

along the northern flank of the Beartooth Range and isopach data Indicate the

NBL to have been active as recently as Laramide time. The Mill Creek-

Stillwater fault zone, a probable splay of the NBL, tectonically juxtaposes a

portion of the Stillwater Complex and its thick hornfels aureole against

Beartooth massif schists and granitoids. Hornfels rocks contain opx-cord and

anth-cord assemblages, with TS800°C and P._~2-3Kb. Penetrative deformation

fabrics are absent and sedimentary structures are often preserved. Regional

metamorphism of the schists, however, formed subsets of the assemblage

bio-gar-staur-anth-cord-sill and TS600°C and P_~7-8Kb. The Stillwater Complex

(Ca. 2700 Ma) is not affected by high grade regional metamorphism. It, as

well as basement rocks, is cut by the Mouat Quartz Monzonite (MOM), whose age

is also Ca. 2700 Ma. Tectonic emplacement of the complex and hornfels

occurred soon after intrusion and differentiation. Paleomagnetic data from

Banded Series units are discordant with respect to nearly age-equivalent

results of the Superior Province. Data from latest Archean dikes, units

thermally reset by the MQM, and Middle Proterozoic dikes are, after partial

correction for Phanerozoic deformation alone, coincident with those of

respective age from the Superior Province and also support a pre-MQM age of

dismemberment. Significant gravity and magnetic anomalies southwest of

Billings (the "Fromdorf High") may signify the buried remainder of the

complex.
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INTRODUCTION

The Stillwater Complex, a Late Archean stratiform mafic-ultramafic

intrusive, is exposed along the northern flank of the Beartooth Mountains,

Montana, in the Archean Wyoming Province (e.g., Condie, 1976) of the western

Cordillera. It has been the topic of extensive petrologic and geochemical

studies (Jones and others, 1960; Hess, 1960; Jackson, 1961; Page, 1977, 1979;

McCallum and others, 1980; Raedeke and McCallum, 1984). Much recent work is
e

summarized in Czamanski_ and Zelntek (1985). The nature, significance, and

origin of the tectonic setting of the Complex have been relatively overlooked;

the most comprehensive discussions are by Page (1977) and Page and Zeintek

(1985). Its layered nature at least suggests that the Stillwater Complex

might serve as a chronologic structural marker of Archean tectonism in the

northern Wyoming Province. Our recent field, petrologic and paleomagnetic

studies provide strong evidence for Page's (1977) suggestion that the

Stillwater Complex was tectonically emplaced against the main Beartooth massif

initially in the latest Archean, and that structures responsible for

emplacement were reactivated at least once, during Laramide uplift of the

Beartooth Mountains.

GEOLOGIC SETTING

The Stillwater Complex and associated hornfels rocks comprise one of four

Archean structural/lithologic blocks in the Beartooth Mountains (Figure la),

as defined by J. T. Wilson (1936). To the west is the North Snowy Block, a

mobile belt consisting of tectonically juxtaposed metaigneous and

metasupracrustal rocks (Mogk, 1984).



Gelssman, Page 2

The main Beartooth massif (Granite Range Block), consists of voluminous

calc-alkallne granitoids with inclusions of high-grade metasupracrustal rocks

(Mueller and others, 1985; Henry and others, 1982; Mogk and others, 1985,

unpublished data). The South Snowy Block also consists of schists and

gneisses and is separated from the main Beartooth massif by unconformably

overlying Phanerozoic strata. At its eastern end, the Mill Creek-Stillwater

Fault Zone (MCSFZ) (J.T. Wilson, 1936) juxtaposes the Stillwater Complex and

hornfels aureole with the main Beartooth massif. Where it intersects the

northeastern front of the range, the MCSFZ delineates a marked change in

Laramide structures, as described below. Latest Archean quartz monzonite

plutons (e.g., the Mouat Quartz Monzonite in the Stillwater River area)

intrude both the Stillwater Complex and schists and gneisses of the Beartooth

massif.

The Stillwater Complex is continuous in outcrop for almost 50 km along

the northern margin of the Beartooth Mountains, is approximately 6 km in

maximum thickness, and dips steeply to the north-northeast. The original size

and shape of the complex are unknown (Page, 1977). Hess (1960) recognized

that approximately 3 km of the upper zone, gabbroic-composition stratigraphy

is missing. Furthermore, the eastern margin of the complex is truncated by a

splay of the MCSFZ. The underlying hornfels aureole is up to 10 km thick

(Vaniman and others, 1980; Page and Zientek, 1985) (Figure Ib) and has been

tectonically juxtaposed against the main Beartooth massif. West of the main

Boulder River the hornfelses are in tectonic contact with high-grade schists

along a proposed splay of the MCSFZ. These schists are part of a large

pendant in Archean granitoid rocks.

Phanerozoic sedimentary rocks unconformably overly the Stillwater

Complex. The entire Beartooth Range is a Laramide foreland uplift block
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(Foose and others, 1961), and numerous faults of Laramide and younger age cut

all older rock units (Jones and others, 1960; Page, 1977, J.T. Wilson, 1936).

Laratnide structures and associated igneous activity along the northeast front

of the Beartooth Range have been described by J.T. Wilson (1936), C.W. Wilson

(1936), and Foose and others, (1961). East of the intersection of the MCSFZ

with the front (Figure Ib) to beyond Red Lodge, the front is marked by

overthrusting of basement units and Paleozoic strata into the northern Bighorn

Basin. West of the West Fork of the Stillwater River, the front is

characterized by asymmetrical folds and small reverse faults.

TECTONIC EMPLACEMENT OF THE STILLWATER COMPLEX

The Stillwater Complex and associated hornfelses and the Archean basement

of the Beartooth Mountains represent two fundamentally different terraines.

Differences in their geologic histories can best be documented by the

composition, metamorphic grade, and structural style of their metasedimentary

rocks. Butler (1969) suggested that the hornfelsic aureole of the Stillwater

Complex merely overprinted the regional metamorphism recorded by the

high-grade schists and gneisses of the main Beartooth massif. Page (1977) and

more recently Page and Zientek (1985), however, recognized that the hornfelsic

aureole and the high-grade schists and gneisses experienced distinct geologic

histories. Our current investigations further support the latter hypothesis.

Observations on the Metasedimentary Hornfelses

Composition

Metasediroentary rocks of the Stillwater hornfelsic aureole include

fine-grained pelites with locally well-preserved sedimentary structures,

banded iron formation, a blue metaquartzite, and a diamictite unit (Page,
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1977; Page and Zeintek, 1985). Whole-rock analyses of the pelitic hornfelses

are presented In Table 7 of Page (1977). These rocks are somewhat unusual in

their relatively high MgO and FeO and low Ha JO and K20 contents. Pelites also

show unusally high Cr (up to 1400 ppnrt and Ni (up to 1000 ppm) values. Page

(1977) has recognized the chemical similarities between these pelites and the

Fig Tree Group, South Africa, and has postulated an ultramafic or mafic source

area for these sediments.

The high-grade schists of the Beartooth massif, on the other hand, occur

as pendants and screens on a meter- to kilometer-scale within voluminous

granitoids. The most abundant rock type is hornblende schist, similar to the

andesitic amphibolites described by Mueller and others (1985) in the eastern

Beartooth Mountains. Pelitic to psammitic schists occur in pendants on the

south side of the West Fork of the Stillwater River, southwest of Mount

Douglas, and on both sides of the main Boulder River north of the MCSFZ

(Figure Ib). Representative chemical analyses of these rocks are presented in

Table 1. Chemical variation diagrams (Figure 2) illustrate the diagnostic

compositional differences between schists and Stillwater hornfelses. We

propose that the two protolith sequences were derived from very different

source areas.

Metamorphlsm

Metamorphism of the pelitic Stillwater hornfelses is characterized by the

assemblage orthopyroxene-cordierite-biotite; in the distal portions of the

aureole anthophyllite occurs in place of orthopyroxene (Page, 1977; Page and

Zientek, 1985). In the banded iron formation the dominant assemblage is

quartz-magnetite-orthopyroxene +/- grunerite. Vaniman and others (1980) and

Labotka (1985) have estimated metamorphic conditions to have been approxi-

mately 800°C and most importantly, 2-3 Kb total pressure. This pressure
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estimate is consistent with a shallow emplacement level of the Complex

inferred from magmatic fractionation trends (McCallum and others, 1980).

Metamorphism of the Beartooth massif schists is of the Barrovian style.

The dominant assemblage in pelitic schists is biotite-garnet-plagioclase-

quartz +/- sillimanite and cordierite. Weeks (1980) and Labotka (1985) also

report staurolite in the Boulder River area. The hornblende schists contain

the assemblage hornblende-biotite-plagioclase-quartz +/- epidote.

Garnet-biotite geothermometry (Ferry and Spear, 1978) of the pelitic schists

yields temperatures in the range 650-700°C. Pressure estimates of 7-8 kbar

have been calculated based on the garnet-cordierite-sillimanite-quartz

geobarometer (Newton, 1983). Pressures during metamorphism of the granitic

gneisses exceeded A Kb, based on the association of primary muscovite and

quartz, and may have been as high as 8 Kb based on the presence of magmatic

epidote (Richmond and Mogk, 1985).

Structural Style

Hornfels textures are usually granoblastic, while a strong

recrystallization foliation is developed in the schists. There is no relict

penetrative fabric in the hornfelses, nor are there relict garnet or

staurolite porphyroblasts or Al-rich domains which would imply contact

metamorphic overprinting of existing regionally metamorphosed rocks.

Primary sedimentary structures, including graded bedding, cross bedding,

and cut-and-fill structures, are well-preserved in hornfelses. The

metasedimentary rocks underwent a complex folding history prior to contact

metamorphism; however, the only penetrative structural element developed is an

incipient axial planar cleavage associated with mesoscopic folds (Page, 1977;

Page and Zeintek, 1985). Rare intrafolia] isoclinal folds appear to predate

the first major folding event, and may be the result of soft sediment
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deformation. The first major fold generation includes closed to open, similar

to isoclinal folds. These folds have been overprinted by open, large

wavelength folds (Page and Zientek, 1985).

The regional schists exhibit a strong foliation defined by compositional

layering and preferred orientation of micas. This foliation is transposed and

is axial planar to intrafolial isoclinal folds. Large-scale isoclinal folds,

plunging gently to the north, have been recognized in the granitic gneisses in

the Cathedral Peak area (Butler, 1969) and in the Lakes Plateau area (Richmond

and Mogk, 1985).

Age Dates and Time of Tectonic Emplacement

The discontinuities in metamorphic grade, structural style, and

geochemistry documented above indicate that the Stillwater Complex and its

thermal aureole are allochthonous with respect to rocks of the Beartooth

massif. The age of tectonic emplacement is constrained by the age of

intrusion of the Mouat Quartz Monzonite, which cross cuts both the Archean

schists and gneisses and the basal zone of the Stillwater Complex.

A summary of radiometric determinations for Beartooth Mountains rocks is

given in Table 2. The age of the gneisses is not well-known. Based on work

in the eastern Beartooth massif (Mueller and others, 1985) amphibolite grade

metamorphism took place at approximately 2800 Ma. Granitic plutons which cut

schists and gneisses in the Beartooth massif and North Snowy Block were

intruded between 2750-2735 Ma, (Mueller, and others, 1985; Mogk and others,

1985, unpublished data). Most attempts to date the Stillwater Complex and its

hornfels aureole indicate an age of emplacement of approximately 2700 Ma.

Dates on the Mouat Quartz Monzonite range from 2760 to 2690 Ma.
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Based on field relations, the Stillwater Complex must have been

tectonically Juxtaposed against the Beartooth massif prior to intrusion of the

Mouat Quartz Monzonite. The isotopic ages of the Stillwater Complex and the

Mouat Quartz Monzonite are almost identical, requiring that in the Late

Archean the Stillwater Complex was intruded and crystallized and then, along

with at least some of its contact aureole, faulted, in rapid succession, into

its approximate position with respect to the Beartooth massif and North Snowy

Block.

Sense and Mechanism of Displacement

The concept that the Stillwater Complex is allochthonous with respect to

the schists and gneisses of the rest of the Beartooths has been previously

offered by Page (1977) and Bonini (1982). It has long been recognized that

the exposed stratigraphy of the Stillwater Complex is compositionally

incomplete in comparison to similar layered intrusives such as the Bushveld

Complex. Based on mass balance calculations, Hess (1960) estimated that

between 27 and 50% of the Stillwater Complex section is presently unexposed or

missing. That the eastern end of the complex is truncated by faults of the

MCSFZ suggests that the original lateral extent of the complex was

significantly greater than present strike length.

The most logical structure along which dislocation of the Stillwater

Complex occurred is the MCSFZ and an eastern extension (Figure la), as

suggested by Page (1977). Tectonic emplacement was suggested to have occurred

by wrench faulting and such motion could have involved both tilting and more

complicated rotations, about axes nearly perpendicular to igneous layering.

The serse and magnitude of overall displacement may be inferred from regional
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structural and geophysical data. The MCSFZ Is probably a splay of a much

larger regional structure, originally described as the Nye-Bowler Lineament by

C.J. Wilson (1936), which strikes northwest from the northern Bighorn Basin to

Livingston, Montana (Figure la). Regional gravity data (Bonini, 1982; Bonini

and others, 1969) for the area including this structure reveal a prominent

anomaly north of the Nye-Bowler Lineament extending to the northwest end of

the Pryor Mountains (Figure la). We agree with Bonini's (1982) suggestion

that a probable location for buried portions of the complex is northeast and

east of present exposures (Figure 1) rather than directly to the north-

northeast, as suggested by Kleinkopf (1985). If the Nye-Bowler Lineament was

indeed responsible for the tectonic emplacement of the Stillwater Complex, it

probably was a large, Late Archean wrench fault with a minimum of 100 km

dextral displacement.

We discount the possibility of major sinistral motion emplacing the

Stillwater Complex, even though Proterozoic sinistral motion along numerous

northwest-trending faults has been well-documented by Schmidt (1985) in the

Tobacco Root Mountains. The remaining portion of the complex would be located

northwest of the Beartooth Mountains, and neither geologic nor geophysical

evidence support this location. The original position of the entire complex

would have coincided with the northern extension of the North Snowy Block,

which exposes compressional structures active just prior to complex

emplacement. Little is known of the few exposures of Archean rocks northwest

of the Beartooth Mountains.

PALEOMAGNETIC DATA AND IMPLICATIONS FOR POST-EMPLACEMENT TECTONIC DISRUPTION

Paleomagnetic data from Banded Series rocks of the Stillwater Complex

allow the possibility of significant structural disruption since intrusion.
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Early investigations by Bergh (1968, 1970) and renewed work by one of us (JWG)

and graduate students has identified a magnetization component which in all

likelihood is a thermoremanent magnetization (TRM) acquired during initial

cooling of the complex. Evidence for an early age for this magnetization

(Geissman and others, 1985, unpublished data) is briefly reviewed here. The

in-situ magnetization characteristic of the Banded Series units is of

northeast to southeast declination and usually moderate to steep negative

inclination. This direction is not one we can readily associate with any

portion of Phanerozoic time. The magnetization is of high coercivities and

narrow, high laboratory unblocking temperatures (Figure 3) and is carried by

low-titanium magnetite inclusions in cumulus plagioclase grains. We are not

aware of any one particular, or series of, geologic events affecting the

Stillwater Complex which could have led to remagnetization, which would

require temperatures exceeding 530°C, of this magnetization after initial

cooling.

On a small scale, the TRM exhibits considerable directional variability

which most likely reflects rapid, short-term Archean field behavior. The data

do not support a hypothesis calling for deep burial and later, slow

uplift/cooling (̂ 5°C/Ma) of the complex in latest Archean and younger time.

Finally, magnetization data from cross-cutting plutons of latest Archean (?),

Proterozoic, and I.aramide age are statistically distinct from the

magnetization characteristic of the Banded Series (Figure 4a).

Unfortunately, no other magnetization of comparable age has been

identified in rocks of any portion of the Wyoming Province. Several

investigations have been conducted on Late Archean and earliest Proterozoic

rocks of the Superior and Slave Provinces (Interior Laurentia). These results
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fora a sizeable and temporally appropriate data base with which to compare

Stillwater magnetizations.

Figure 4a shows data from several localities in Banded Series units

across the strike length of the complex. The results have been corrected for

attitudes of igneous layering, assuming simple local tilting of originally

horizontal or sub-horizontal layering. The correction does not take into

consideration additional, undetectable deformation such as a regional plunge

of the complex. The corrected locality mean directions may be compared with

Interior Laurentia data (Figure 4b) calculated from paleomagnetic pole

positions (e.g., Irving, 1979). Our calculations assume an axial geocentric

dipole for the time-averaged Archean geomagnetic field and paleomagnetically

insignificant motion of the entire Wyoming Province following Stillwater

intrusion. The latter assumption is difficult to evaluate (e.g., Green and

others, 1985). The Stillwater magnetization is statistically distinct from

Superior Province magnetizations of latest Archean to earliest Proterozoic age

(Figure 4b). Superior Province data define a track of directions from east

southeasterly, and shallow negative inclination, to northerly (and their

antipodes) of moderate positive inclination. Comparing Banded Series data

with those of latest Archean (?) Superior Province Matachewan dikes (Figure

4b) results in a discrepancy (T, Figure 5), largely in inclination, of at

least 30°, which could possibly be resolved by assuming that igneous layering

originally dipped moderately southwards and therefore that our tilt correction

is incorrect. Alternatively, the age of the Banded Series magnetization may

predate that of Matachewan dikes by several tens of millions of years. In

this case, comparing the Stillwater data with Abitibi Subprovince metavolcanic

and western Superior Province pluton data also results in a significant

discrepancy (R, Figure 5) but now a possible explanation, involving rotation
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of the complex about an axis nearly perpendicular to layering, is geologically

more reasonable.

Earliest Proterozolc dikes and a large xenolith of metamorphosed diabase

in the Mouat Quartz Monzonite give data, corrected for full tilt of igneous

layering, which are similar to latest Archean directions (Figure 4a). Results

from weakly to umnetamorphosed diabase dikes of probable Middle Proterozoic

age are, however, discordant with expected Superior Province directions

acquired during early-post and post-Hudsonian uplift (Figure Ab) . Discordancy

between corrected Middle Proterozoic dike and Superior Province data suggests

that this portion of the Stillwater Complex must have been deformed prior to

emplacement of Middle Proterozoic dikes; the structural correction most likely

exceeds the total deformation following dike emplacement. Page (1977)

documents an early, pre-Cambrian deformation of the Complex, resulting in a

10-30° angular unconformity with Cambrian strata. Paleomagnetic data suggest

that this deformation occurred well-after tectonic emplacement of the complex

in latest Archean time and specifically prior to intrusion of the

unmetamorphosed mafic dikes. We are currently dating several of the dikes

studied for their paleomagnetlsm to better refine the age of this phase of

Proterozoic deformation. The data suggest that deformation included simple

tilting of the complex about a near-horizontal axis.

TECTONIC SETTING FOR STILLWATER COMPLEX INTRUSION AND DISMEMBERING

In Figure 6 we offer a model describing the tectonic history of the

Stillwater Complex and associated units which is consistent with

geochronologic data and geologic relations (Figures Ib, 6a). Injection of a

7+ km thick layered mafic-ultramafic p]uton requires thick continental crust,
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probably within a tensional, yet generally stable tectonic environment (e.g.,

Weiblen and Morley, 1980). A period of tectonic quiescence of on the order of

3 x 10 years must be allowed for emplacement and large scale chemical

differentiation of the complex (e.g, Irvine, 1970), even though there is

evidence of small-scale deformation at some partially crystallized levels.

Formation of thick continental crust within the Beartooth Mountains area

prior to Stillwater intrusion is depicted in Figures 6b, c. A trondhjemitic

gneiss-amphibolite complex in the North Snowy Block (Mogk, 1984) has yielded a

Nd-Sm chondritic model age of 3.55 Ga and Rb-Sr whole rock ages in excess of

3.4 Ga (Mogk and others, in review). Metasupracrustal inclusions in the Quad

Creek and Hellroaring Plateau sections of the eastern Beartooth Mountains were

metamorphosed in the granulite facies (T = 700-800°C, P = 6Kb) (Henry and

others, 1982) at 3.4 Ga (Mueller and others, 1985). Burial of sedimentary

protollths to depths of 20 km occurred in the very early history of this

terrane.

Extended periods of tectonic stability must also have been common to the

northern Wyoming Province prior to Stillwater intrusion. Metasupracrustal

rocks of the eastern Beartooth massif and the North Snowy. Block contain

quartzite-pelite +/- marble associations. These sequences are interpreted as

stable platform or continental margin deposits (Mogk, 1984). By the latest

Archean (ca. 2700 Ma), thick, stable continental crust must have evolved

throughout this portion of the Wyoming Province.

We propose that the tensional tectonic environment existing during

emplacement of the Stillwater Complex was established in direct response to a

Late Archean compressional orogeny experienced throughout southwest Montana

(Figure 6c) (Mueller and others, 1985; Mogk and others, in review). In the

Beartooth Mountains, generation of voluminous andesitic magmas occurred at
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about 2.8 Ga (Mueller and others, 1985), and was followed by 2.75 Ga

emplacement of calc-alkaline granitic rocks. Geochemical and isotopic data

indicate that these rocks reflect subduction-related processes (Mueller and

others, 1985). Contemporaneous tectonic mobilization in the North Snowy Block

involved early transcurrent faulting and later eastward-verging nappe

emplacement (Mogk, 1984) (Figure 6c). West of the Beartooth Mountains the

Archean basement appears to have been deformed over a period of somewhat

younger tectonic mobilization, in the range of 2.75-2.70 Ga (James and Hedge,

1980). Several workers have reported high-grade supracrustal rocks,

metamorphosed in the upper amphibolite to granulite facies, and isocllnally

folded, east-verging nappe structures, throughout the Madison, Gallatin,

Tobacco Root, and Ruby Ranges.

The deep burial of supracrustal rocks and the prevalent compressional

structural styles suggest wholesale thickening of continental crust through

collisional tectonics (Mogk and others, 1985, unpublished data). A tensional

tectonic environment leading to emplacement of the Stillwater Complex possibly

occurred during wrench faulting within the continental interior (Figure 6d)

while contraction continued to the west. Modern analogues of rift graben

formation along wrench faults include the Rhine Graben and Lake Baikal (Molnar

and Tapponier, 1975). If the Stillwater Complex was emplaced along a wrench

fault, recurrent movement can account for minor deformation of the igneous

stratigraphy. Large-scale dextral motion along an ancestral Mill

Creek-Stillwater-Nye-Bowler fault system shortly after crystallization of the

Stillwater Complex (Figure 6e) dismembered and juxtaposed the exposed portion

of the complex and associated hornfelses with the Beartooth massif in

approximately their present position. The youngest deformation event

recognized in the North Snowy Block is the intrusion of the Mount Cowen Augen
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Gneiss, a granitic sill, at 2734 Ma (Mogk and others, 1985, unpublished data).

Other granitic bodies in the Lakes Plateau area were intruded at this time;

the Stillwater Complex was emplaced against the Beartooth massif and North

Snowy Block after congressional deformation. After emplacement of the Mouat

Quartz Monzonite (Figure 6f), the MCSFZ experienced relatively little tectonic

activity throughout much of the Proterozoic. The Mill Creek-Stillwater and

Nye-Bowler fault zones may have been reactivated during Proterozoic

development of the southern margin of the Belt Basin, as discussed by Reynolds

(1984). Minor northward tilting of the complex in Middle Proterozoic time

may have reflected motion along the MCSFZ. Reactivation of the MCSFZ and

Nye-Bowler zone occurred during Laramide uplift of the Beartooth Range (Figure

6g). The eastern portion of the MCSFZ, as well as structures along the front

of the Beartooth Range farther to the east, were reactivated as a series of

high-angle reverse faults (Figure 6g).
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SUMMARY

Geologic and geophysical evidence suggest that the Stillwater Complex and

associated hornfelses were tectonically emplaced against the Archean basement

of the Beartooth Mountains. That the Mouat Quartz Monzonite intrudes both the

Stillwater Complex and regional gneisses and schists requires that

juxtaposition must have occurred shortly after crystallization of the complex,

prior to about 2700 Ma. We are currently determining the age of

recrystallization of a diabase xenolith within the Mouat Quartz Monzonite to

more accurately date the intrusion. Paleomagnetic data corroborate the field

observations indicating that regional, pre-Cambrian tilting of the complex

occurred by Middle Proterozic time. Initial injection of the Stillwater

magmas required thick continental crust in a tensional, but largely quiescent,

tectonic environment. This environment was created in response to a Late

Archean 2800-2750 Ma collisional orogeny that stabilized the northwestern

portion of the.Wyoming Province.
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FIGURE CAPTIONS

Figure 1. (a) Generalized geologic nap of the Beartooth Mountains and

vicinity, showing major structural/lithologic "blocks" of

Precambrian rocks comprising the range and regional Bouger gravity

anomaly data for its northern flank and the northern Bighorn Basin.

Modified from Bonini (1982), Page (1977), and J.T. Wilson (1936).

SC, Stillwater Complex; GRB, Granite Range Block; NSB, North Snowy

Block; SSB, South Snowy Block; MCSFZ, Mill Creek-Stillwater Fault

Zone; NBL, Nye-Bowler-Lineament; B, Billings; RL Red Lodge; L,

Livingston. (b) Simplified geologic map of the Stillwater Complex

area, showing important structural relations among the complex,

associated hornfelses, and schists and gneisses of the Beartooth

Massif (GRB), North Snowy Block (NSB), and Mouat Quartz Monzonite

(MQM). Both regionally metamorphosed schists and hornfelses occur

north of the MCSFZ; we propose the existence of a fault zone

(dotted) north, and probably a strand, of the MCSFZ, separating the

Stillwater Complex (SC) and hornfels (H) from schists (RS) and

gneisses to the south. Our own observations indicate the validity

of the fault zone, although it is not accurately located. The

fault zone is required to allow the emplacement of the complex and

hornfelses without creating westward-verging structures in older

units.

Figure 2. Chemical variation diagrams showing compositional differences

between Stillwater hornfelses and regionally metamorphosed schists.

Hornfels data are from Page (1977).
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Figure 3. Representative paleomagnetic results. Orthogonal demagnetization

diagram of the end-point of the natural remanent magnetization

(NRM) projected onto the horizontal (closed) and vertical (open

symbols) planes (geographic coordinates). Temperatures of each

demagnetization step are along the vertical projections.

Demagnetization of plagioclase-clinopyroxene cumulate (gabbro),

west side, Stillwater River Valley. In this case, a single

magnetization (most likely a TRM) is removed in demagnetization.

Figure 4. Equal area stereographic projections of (a) paleomagnetic data from

Stillwater Complex and associated units and (b) approximately age-

equivalent units of Interior Laurentia. In (a), for Banded Series

units (circles), we show locality mean directions, determined from

the means of several individual sites/locality. For Proterozoic

dikes (inverted triangles) and Tertiary intrusives, each mean

refers to a single pluton. In (b) magnetizations are described by

approximate age. Most data are referenced by Irving (1979). The

directions enclosed by dots are predominantly of Late Archean (ca.

2700 Ma) age. Those enclosed by dashes are of latest Archean to

earliest Proterozoic (ca. 2650 to 2500 Ma) age. MD1 and MD2 refer

to data from independent studies of Matachewan dikes. Middle

Proterozoic (inverted triangles) and Tertiary (upright triangles)

directions are from Irving (1979). Closed (open) symbols refer to

lower (upper) hemisphere projections.
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Figure 5. Possible mechanisms to account for discrepancies between

structurally corrected Stillwater (Fig. 4a) and Superior Province

data, as explained in the text. R refers to rotation (about a

near-vertical axis), with respect to Late Archean data. T refers

to tilting (about a near-horizontal axis), with respect to

latest-Archean-earliest Proterozolc data.

Figure 6. Sketch maps of the northwestern Wyoming Province illustrating a

sequence of tectonic events associated with and following the

emplacement and disruption of the Stillwater Complex. Regional

geologic relations taken from Mueller and others (1985), Mogk

(1984), and Mogk and others (1985, unpublished data).
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Table 2. Summary of Radiometric Age Data, Stillwater Complex and Surrounding Beartooth Mountains Rocks.

3
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Unit Lithology Location Age (Ma) Method

Stlllwater Complex Ultramafic Series,
pegmatite

Banded Series,
Gabbro

Mountain View Mine

West Fork Adit

2540 - 2640 K-Ar, phlogopite

2701 ± 8 Sm-Nd, mineral sep.

Basal Series,
Norite

Hornfels

Scattered

Scattered

Stillwater River
Valley

Chrome Mountain

Boulder River

2896 ± 34
2742 ± 34
2793 ± 21
2683 ± 87
2667 ± 3

2710
2713 ± 3

2672 ± 150
2692 ± 45
3100
3140
2719 ± 76

2822 ± 23

2573 ± 29

Sm-Nd, whole rock
Sm-Nd, mineral sep.
Sm-Nd, mineral sep.
U-Pb, Zircon
U-Pb, Zircon

U-Pb, Zircon
U-Pb, Zircon

Rb-Sr, whole rock
Rb-Sr, whole rock
U-Pb, Zircon
U-Pb, Zircon
Rb-Sr, whole rock

Rb-Sr, whole rock

Rb-Sr, whole rock

Mouat Ouartz
tc

Kci : ru: • < . /] ' 're

Stillv/nter River
Yc> 1 3 r-y

S-r i l lv/attv F'-'VI T
V.i 1 • , ̂

2750 U-Pb, ?.1rcon

i -

Ultramafic and
Banded Series,
Combined

Scattered localities 2662 ± 12 Pb-Pb, whole rock

as
-.25

> o
r- m

W
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Table 2. (cont.)

Unit Lithology Location

Dikes Metamorphosed diabase Stillwater Complex
Beartooth Massif

PLcket Pin Mtn.

linnet £mcrphosed Picket Pin Mtn.

Age (Ma)

2650
2562 ± 126

2441

1640

Method

Sm-Nd, mineral
Rb-Sr and K-Ar,
whole rock

K-Ar, whole rock

K-Ar, whole rock
diabase

Unmetaraorphosed
diabase

Metamorphosed,
tholelitic, picritic
noritic

Unmetamorphosed,
olivine-normative

Unmetamorphosed,
quartz-normative

Beartooth Massif

Eastern Beartooth
Mountains

Eastern Beartooth
Mountains

Eastern Beartooth
Mountains

1500 - 1800

?500 - 2800

1370

740

Rb-Sr and K-Ar,
whole rock

Rb-Sr, whole rock

K-Ar, whole rock

K-Ar, whole rock

Regional Gneisses Mount Cowen
Augen Gneiss

Trondhjemite
amphibolites

North Snowy
Block

North Snowy
Block

2734

3190
3100

± 72

- 3390
- 3400

Rb-Sr, whole rock

Sra-Nd , whole rock
U-Pb, Zircon

Quartzofeldspathic Stillwater River
Valley, Beartooth
Massif

2750 ± 150 Rb-Sr, K-Ar, mineral
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Unit Lithology Location Age (Ma) Method

Regional Supracrustal
rocks

•Granitoids

Quartzofeldspathic
gneiss, metasedlmentary
and metaigneous rocks

Quartzofeldspathic
gneiss, metasedimentary
and metaigneous rocks

Metafelsites

Eastern Beartooth
Mountains

Eastern Beartooth
Mountains

3390 ± 55 Rb-Sr, whole rock

Amphibolites

Unfoliated quartz
monzonite (?)

Foliated granodiorite

Granitoids combined
with amphibolites

Eastern Beartooth
Mountains

Eastern Reartooth
Mountains

Eastern Beartooth
Mountains,
Long Lake

Eastern Beartooth
Mountains,
Long Lake

Eastern Beartooth
Mountains,
Long Lake

2900 ± 3550 Sm-Nd, whole rock

2831 ± 128

2750 ± 75

2800 ± 45

2750 ± 80

2790 ± 35

Rb-Sr, whole rock

Rb-Sr, whole rock

Rb-Sr, whole rock

Rb-Sr, whole rock

Rb-Sr, whole rock

Specific references for data presented here may be found in Lambert and others (1985) , Mogk and others
(in review), Mueller and others (1985), and Page (1977).
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ABSTRACT

The major exposures of Archean rocks in the western U.S. are
•found in what is called the Wyoming Province which encompasses
Wyoming, Montana, and parts of Idaho, Utah, and South Dakota.
Archean exposures are confined to crustal blocks uplifted during
Laramide time and therefore represent only a small fraction of
the surface area of this region. This lack of continuous
exposure prevents widespread correlations and means that the
exposed rocks are not necessarily representative of the province
as a whole. The major exposures in the northern part of the
Wyoming Province consist of the Beartooth, Bighorn, Owl Creek,
and Tobacco Root Mountains, and the Gal latin, Madison, and Ruby
Ranges.

The Beartooth Mountains have been more extensively studied than
the other areas and can be divided into several distinct terranes
that have general counterparts in other areas. The eastern and
central Beartooth Mtns. are dominated by a late Archean suite of
andesitic amphibolites and granitoids that have ages in the range
2.79-2.74 Ga. A period of deformation and middle amphibolite
grade metamophism occurred in the earlier part of this range.
Many of the foliated granitoids in the Bighorn Mtns. have a
similar age and were synkinematically emplaced. Thus the eastern
Beartooth and Bighorn Mtns. may represent a major, late Archean,
magmatic arc. In both areas the late Archean suites intruded
older rocks. In the Bighorn Mtns. these rocks are a
trondhjemitic, tonalitic, and amphnbolitic gneiss suite that is
2.9-3.1 Ga old. A suite of mafic amphibolites and dacitic
gneisses similar in age and composition to the older Bighorn
Mtn. suite is present in the Owl Creek Mtns. This Owl Creek
suite is the nearest equivalent to a greenstone belt type
assemblage in this part of the Wyoming Province. In the eastern
Beartooth Mtns. the older rocks appear to be a varied
supracrustal suite that is 3.2-3.4 Ga old. Supracrustal rocks
2.9-3.1 Ga old are present in the southwestern Beartooth Mtns.
and immediately south of the 2.70 Ga old Still water Complex in
the northcentral Beartooth Mtns.

The northwestern Beartooth Mtns. represent a different type of
terrane. This area seems to have been assembled from as many as
six different crustal segments by tectonic processes like those
that operated in the Cordilleran orogeny. Some of the crustal
segments in this terrane may be as old as 3.4 Ga (a trondhjemitic
and amphibolitic gneiss complex) while others are late Archean in
age. The late Archean event that formed this terrane may be the
same one that was responsible for the 2.8 Ga old magmatic arc to
the east or a somewhat younger event. The northern part of the
southern Madison Range is also cored by a 3.4 Ga old tonalitic
gneiss complex that is intruded by late Archean, gneissic
granitoids. Thus the oldest rocks presently recognised in the
northern Wyoming Province are found in a limited area formed by
the Beartooth Mtns. and the southern Madison Range.



The northern Madison and Gal latin Ranges are a transitonal area
composed dominately of strongly deformed, high grade
quartrofeldspathic gneisses that were intruded by a late Archean
granitoid suite. This area lies between the terranes to the east
that contain early Archean rocks and/or are dominated by late
Archean granitoids and the terranes to the west that contain
rocks of a definite continental shelf affinity and seem to be
only late Archean in age. Thus the region from the Ruby Range
and Tobacco Root Mtns. on the west to the northwestern Beartooth
Mtns. on the east may represent a late Archean continental margin
that was shaped by tectonic processes like those operating in the
Phanerozoic that produce areas of strong defomation and high
metamorphic grade, juxtaposition of terranes, and magmatic arcs.
The number of discrete events that formed this margin is not
resolved at this time.

INTRODUCTION

There are two major exposures of Archean rocks in the United States.
These are the southern extension of the Superior Province into
Minnesota, northern Michigan, and Wisconsin and the Wyoming Province
of Wyoming, southwestern Montana, and minor parts Idaho, Utah, and
western South Dakota. This paper will concentrate on the northern
part of the Wyoming Province where the authors have done most of their
work and are most familiar with the work of other researchers. The
reader is refered to the papers of Peterman (1979) and Condie (1976)
for more comprehensive reviews of the geology and geochronology of the
Wyoming Province.

The exposures of Archean rocl-s in the Wyoming Province (Fig. 1)
differ from those of most other shield areas in that they consist
of discrete blocks uplifted during the Larimide orogeny. Unlike
the Superior Province where there is little relief and continuous
exposures except where they are covered by glacial deposits, the
Archean rocks of the Wyoming Province are characterized by over a
km of topographic relief and as much as 1O km of structural
relief. In the Wyoming Province Archean rocks form less than a
third of the exposures. The wide separation of these exposures
poses a major problem for interpretation of the Archean history.
It prevents widespread correlation of structural or lithologic
trends and probably makes it impossible to ever know if the area
is divisible into subprovinces such as those that are
distinguished for the Superior Province. The general lithologic
character of the province is also impossible to know. As
presently exposed the province would seem to be dominated by
gneissic and granitoid rocks with only minor exposures of
greenstone belt type rocks. Peterman (p.c.) has pointed out
by superposing a map of the Wyoming Province exposure pattern on
the Superior Province that the distribution of lithologic types
in the Wyoming Province could easily come from an area with
alternating greenstone-granite and granite-gneiss terranes such
as those seen in the Superior Province.

In spite of the fairly small area of Archean rocks in the Wyoming
Province, these rocks have not been extensively studied. Archean



shields in other parts of the world have received more extensive study
•for two major reasons. The first of these is economic deposits which
in Archean rocks are concentrated in greenstone-volcanic belts. The
previously mentioned paucity of exposed greenstone belt like rocks in
the Wyoming Province can be directly related to the minor occurence of
major economic deposits in the Archean rocks of the area. The second
reason for major interest in a particular Archean area is the presence
of early Archean rocks which provide us with what little information
there is available about the earliest geologic history of the earth.
Although there is growing evidence, as will be discussed later, that
rocks 3.4 Ga or older must e::ist in the Wyoming Province, the oldest
unambiguously dated rocks in the Wyoming Province are only 3.2 Ga old.

The northern part of the Wyoming Province that will be discussed in
detai] in this paper consists of the Beartooth, Bighorn, Owl Creek,
Teton, Madison, Gallatin, Ruby, and Tobacco Root Mountains.
The geochemistry and geochronology of each area will be discussed
separately. Special emphasis will go to the Beartooth Mountains
because of the authors'" research experience there, because
this area has been studied in greater detail than others in the
region, and because the rocks there cover a greater range of ages
and lithologies than is presently known elsewhere. Many of the
problems of geologic interpretation that are detailed for the
Beartooth Mtns. are valid for the other areas discussed and
Archean terranes in general. The reader is refered to Mogk and
Henry (this vol.) for a complimentary study of the metamorphic
petrology and tectonic evolution of the Archean rocks of
southwestern Montana.

BEARTOOTH MOUNTAINS

The Beartooth Mountains of Montana and Wyoming <Fig. 2) lie
immediately north of Yellowstone National Park and are a roughly
WNW trending block that contains over 5000 km2 of Archean rocks.
The Beartooth block can be divided into four areas: 1) the late
Archean granitoid rocks of the eastern area that contain km size
inclusions of older supracrustal rocks (Mueller and others,
1982a,b, 1985; Wooden and others, 1982; Mueller and Wooden,
1982), 2) the metasedimentary rocks of the northcentral area into
which the Stillwater Igneous Complex was intruded (Page, 1977)
and associated granitoid rocks, 3) the metasedimentary plus minor
granitoid rocks of the southwestern area (Casella and others,
1982), and 4) the metamorphosed supracrustal and igneous rocks of
the northwestern area that have been tectonically interleaved by
thrusting (Reid and others, 1975; Mogk, 1982,1984; Mogk and
others, 1986). Because the geology of each area is significantly
different, individual areas will be discussed separately. It is
not clear at this time what the relationship of individual areas
are to each other, and it is possible that fundamentally
different areas were tectonically juxatosed in the late Archean.

EASTERN BEARTOOTH MOUNTAINS

The eastern Beartooth Mountains were studied in detail in the
late 1950's and early 1960"s by Arie Poldervaart and his students



(Eckelman and Poldervaart, 1957; Harris, 1959; Larsen and others,
1966; and Casella, 1969). The dominate granitic rocks of this
area along with the minor associated metasedimentary rocks were
explained originally as the result of the granitization of a
sequence of folded sedimentary rocks. Later models from this
group recognised the probable role of igneous processes and
multiple deformation and metamorphism. Work during the last ten
years by Mueller, Wooden, Bowes, and coworkers (see Mueller and
others, 1985 for a summary) has lead to a model involving the
intrusion of a suite of late Archean rocks into a middle to early
Archean supracrustal sequence parts of which had experienced a
granulite facies metamorphic event (Henry and others, 1982).

Geochemistry of Late Archean Rocks

There are at least three distinctive compositional members of the
late Archean suite (Fig. 3). These three groups have been given
the following informal names — andesitic amphibolite, Long Lake
granodiorite, and Long Lake granite. Field relationships
indicate that the andesitic amphibolite is the oldest member of
this group and that these rocks "experienced an amphibolite grade
metamorphism before the other members of the suite were emplaced.
The present mineralogy of these amphibolites is biotite,
hornblende, plagioclase, and quartz. The andesitic amphibolite
is found as meter to km size inclusions in the younger granitoid
rocks. The Long Lake granodiorite is intermediate in age being
found in some places as weakly foliated inclusions in the Long
Lake granite. The Long Lake granodiorite is compositionally
distinctive but very difficult to distinguish in the field from
the Long Lake granite. Both these rocks are leucocratic, medium
to coarse grained, two feldspar and quartz rocks with biotite as
the only mafic mineral (Wooden and others, 1982; Warner and
others, 1982). It is difficult, therefore, to estimate the
relative abundance of the granodiorite vs the granite in the
field. Geochemical sampling indicates, however, that the granite
is much more abundant.

The major element composition of the andesitic amphibolites is
restricted to the andesitic or dioritic field (Fig. 3). There
is, however, a good deal of variety in major element abundances
in this group, and several subgroups can be distinguished within
which there are regular elemental changes that may be related to
fractionation processes. According to the classification
developed by Gill (1981) for modern orogenic andesites, the
andesitic amphibolites have major element compositions that fall
into both the calc-a]kaline and tholeiitic field. The
calc-altaline types dominate and are found over a wide geographic
area in the eastern and central Beartooth Mountains. The
tholeiitic types seem to be restricted to the eastern Beartooth
Mountains. Because these rocks have been recrystalized in the
middle amphibolite facies, it is not possible to reliably
classify them according to their alkali contents. The major
element compositions of the andesitic amphibolites are not
unusual with respect to modern or Archean andesites (Gill, 1981;
Condie, 1976, 1982).



The trace element concentrations of the andesitic amphibolites
deserve special mention. While the range and abundance of the
compatible trace elements in these rocks is within the normal
range found in andesitic rocks, that of the incompatible trace
elements is not. Sr concentrations range from 200-100O ppm, Zr
from 40-30O ppm, Ce from 2O-30Oppm, and Ba 200-150O ppm. In
addition the abundances of these incompatible elements are well
correlated with each other (Fig. 3). This is particularly
unusual for Sr which typically shows little variation within an
andesitic suite even when fractionation has produced obvious
variations in other elements. The best explanation for these
chemical characteristics is a model that involves the interaction
of an incompatible element rich fluid with a partial melting
process (Mueller and others, 1983). Variable degrees of partial
melting can explain the range of major element compositions and
some of the trace element variation. An incompatible element
rich fluid is needed to produce the unusually high concentrations
of these elements in many of the rocks. Since Sr acts as an
incompatible element, these processes must be occurring in a
plagioclase free environment, possibly the mantle.

The Long Lake granodiorite has the major element composition
(Fig. 3) of a typical calc-al kal me granodiorite (63-70 '/. Si02).
Although it overlaps the Long Lake granite in SiO2 content, it
maintains a lower Na2Q concentration. In keeping with its lower
Si02 contents, the granodiorite is generally a more mafic rock
than the granite with higher FeO, MgO, and CaO concentrations.
It is the trace element contents of the granodiorite that really
distinguish it from the granite. The granodiorite has higher Sr,
Ba, and REE concentrations than the granite. The REE pattern of
the granodiorite is particularly distinctive being higher in both
the LREE and HREE and having a noticeable negative Eu anomally
(Fig. 3). The high incompatible trace elements of the
granodiorite suggest that it also could have had a trace element
fluid involved in its genesis. The negative Eu anomally,
however, indicates that plagioclase was important as either a
source or fractionating mineral and therefore that at least part
of this rock's genesis was accomplished at crustal P and T.

The Long Lake granite is the vo]umetrical1y dominant rock type in
the eastern Beartooth Mountains. It is divisible into at least
two subgroups on the basis of Na2O vs SiQ2 relationships (Fig.
3). The high Na group is volumetrical1y more important and
compositlonally more coherent than the low Na group. Although
the silica content of the granite suite is restricted, the
variation in Na2O and K2O concentrations (and modal plagioclase
and K feldspar) mean that the rock types vary from high silica
tonalite to average granite. The negative correlation between Na
and Si in both subgroups is unusual in modern calc-alkalme rocks
but is typical of Archean tonalite and trondhjemite suites. The
genesis of tonalite and trondhjemite suites is best explained as
the result of partial melting and/or fractionation of a basaltic
parent. The lack of sodic suite rocks with intemediate



compositions strongly favors an origin by partial melting of a
mafic source (basaltic and/or mafic andesite) that contained
garnet, amphibole, or clinopyroxene to hold the HREE
concentrations at 4X chondrites or lower. The strong LREE vs
HREE fractionation seen in these rocks, along with the relatively
low Sr and Rb contents, the low Rb/Sr ratios, and the high
average r'/Rb ratio of 350 with respect to other granitic rocks,
all are compatible with an origin from a mafic source.

Geochronology and Isotopic Systematics Late Archean Rocks

A range of isotopic data is now available for the late Archean
rocks of the eastern Beartooth Mountains. Recently obtained
U-Pb zircon data (Mueller and others, in prep.) provide the best
chronologic information for this group. These data are in
agreement with the previously discussed field relationships and
give the following ages: andesitic amphibolite, 2789 + /- 5 Ma?
Long Lake granodiorite, 2782 + /- 3 Ma? Long Lake granite, 2748
+ /- 41 Ma. The imprecise age of the Long Lake granite results
from these zircons being at least 60% dicordant. Within
confidence limits this suite of rocks covers a time period of 10
to 90 Ma. Previously available Rb-Sr whole rock data (Wooden and
others,1982) gave a composite isochron for all three major groups
of 2790 + /- 45 Ma (Fig. 4). The initial Sr ratio of this
isochron is O.7O22 +/- 2. Common Pb isotopic data (Fig. 5) for
whole rocks and feldspars from the same three groups give an age
of 2780 +/- 100 Ma (Mueller And Wooden, in prep.). The feldspar
separates provide a good estimate of the initial Pb isotopic
ratio in these rocks at the time of their formation. These
ratios are 13.86 for 2O6Pb/204Pb, 14.97 for 207Pb/204Pb, and
34.15 for 208Pb/204Pb (avr. of 3). Sm-Nd chondritic model ages
(Fig. 4) vary from 2.88 to 3.O2 Ba, and initial epsilon Nd values
calculated for an age of 2.78 Ba range from -1.5 to -3.1 for five
samples.

The chronologic and isotopic data for the late Archean suite
clearly show that they are restricted to a small time interval
and are remarkably homogeneous in their initial Sr, Nd, and Pb
isotopic ratios. A time interval of 1O-5O Ma for andesitic
volcanism, deformation, and metamorphism, and additional major
plutonism is not remarkable for the Archean or the Phanerozoic.
It is unusual that such a compositiona]1y diverse suite of rocks
would have the same initial isotopic ratios. These ratios are
not what would be expected for new crust that was forming from
primitive or depleted mantle. Initial Sr, Nd, and Pb ratios in
this case would be approximately 0.7010, epsilon of O to +2, and
6/4 = 13.40, 7/4 = 14.58, 8/4 = 33.16 respectively. The
difference between these values and those observed in the late
Archean suite suggest either an enriched mantle source or
contamination of the suite by older Archean crust. The very high
Pb ratios strongly favor the involvement of Archean crust in
whatever process was responsible because it is only in crustal
environments that the necessary high LJ/Pb could be produced to
allow the Pb 6/4 and 7/4 to grow as high as needed. If crustal
contamination occurred during emplacement of the late Archean
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suite into an older crust, then it is hard to understand how the
necessary homogeneity was acheived. It seems most probable that
a portion o-f the mantle itself was contaminated possibly by
introduction of crustal material through subduction, dewatering
of the slab, and penetration of the overlying mantle wedge by
fluids carrying Pb, Sr, and Nd with a crustal signature (Mueller
and Wooden, in prep.). Crust made from this contaminated mantle
would then have the necessary isotopic values and be isotopically
homogeneous across a whole spectrum of compositional types
especially if the crust forming cycle was confined to a short
time period that limited further radiogenic growth.

Geochemistry of the Older Archean Rocks

Enclosed in the late Archean rocks of the eastern Beartooth
Mountains are meter to several km sized inclusions of
metamorphised supracrustal rocks. At least some of these rocks
have experienced both a granulite grade metamorhpic event (Henry
and others, 1982) and the late Archean amphibolite grade event
discussed above. This granulite event was characterized by
temperatures of about SOO^C and pressures of about 6 kb which
suggest a geothermal gradient similar to those of modern orogenic
zones (about 4O-45°C/km). These rocks are strongly deformed and
isoclinally folded and many lithologic layers exist only as
boudins of various lengths. The metamorphic equivalents of
ironstones, basalts and ultramafic rocks, pelites, wackes,
quartzites, and felsic volcanics can all be found in the
supracrustal assemblages. At present no older plutonic rocks
have been unequivocally identified.

In spite of the deformation and metamorphism that has affected
these rocks, they appear to have largely retained their original
bulk chemistries. The variation diagrams shown in Fig. 6 have no
unusual features. If the obvious samples with strongly
fractionated sedimentary compositions are not considered (high Si
quartzites, low Na pelites, high Fe ironstones), the remaining
samples show the expected compositional variations of an igneous
calc-alkaline sequence. Most of this sequence has moderate K20
contents (27. or less), and K20/Na2D less than 1. Only the
samples with Si02 in the mid 70's have K2O/Na20 of about 1.

Specific compositional features of some of the rock types in the
older Archean sequence are worth emphasizing. The basaltic
amphibolites are close to average basalt in composition and show
little to only moderate Fe enrichment. Rare earth patterns are
generally unfractionated and less than 2OX chondrites, Sr
contents are about 100 ppm, and Cr and IMi contents are about 250
and 100 ppm respectively. The samples with Si02 contents between
65 and 73 weight 7. are comparable to moderate K dacites. These
samples have strongly fractionated REE patterns and no Eu
anomalies. There is a group of rhyolitic composition rocks with
K20/Na2O = 1 that have fractionated REE patterns and strong
negative Eu anomalies. The quartzites range in Si02 from SO to
97 7., are locally fuchsitic and contain up to 1OO ppm Cr, and
contain obvious detrital zircons. Iron-rich rocks vary in Si02
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•from 47 to 61 7. and in total Fe as FeO from 30 to 40 '/.. Their
compositional characteristics favor a continental shelf rather
than a eugeoclinal depositional environment. Pelitic rocks in
the section have Si02 contents in the low 6O's, and very low CaO
and NaO2 contents. The combination of quartzites, iron rich
rocks, and pelitic rocks strongly indicate that at least part of
the history of this sequence involved a continental shelf
environment.

Geochronology of the older Archean rocks

The age of the ol.der Archean sequence is problematical and will
remain so until new U-Pb zircon studies are completed. The
zircon data that is available now (Mueller and others, 1982)
indicate a minimum age (2O7Pb/2O6Pb age) of 3295 Ma for a
quartzite and 3220 Ma for a granitic migmatite from Hellroaring
Plateau. This data was produced by acid leaching of zircons that
fell on a discordia line that intersected concordia at about 3100
Ma. The 3100 Ma age may have no geological meaning because it
may be a point along an episodic cord between the true age of the
zircons and the time of new zircon growth and/or Pb loss. The
lower end of this episodic cord is represented by clear, acicular
zircons with an age of about 280O Ma. The 28OO Ma age is
consistent with the amphibolite metamorphic event that is
recorded by the andesitic amhibolites although it could also
repesent an event that preceded the crystalization of
the igneous precusors of the andesitic amphibolites at 2790 Ma.

Rb-Sr, Sm-Nd, and common Pb data also provide information about
the age of the older Archean rocks. A Rb-Sr isochron for the
granitic migmatite discussed above gives an age of 2830 + 130 Ma
and an initial ratio of 0.738 + 7. The high initial ratio of the
isochron clearly shows that it represents the time at which a
much older rock had its Rb-Sr system reset. A model age based on
the average Rb and Sr contents and Sr isotopic values of this
rock is approximately 3500 Ma if an initial Sr ratio of O.700 is
used. Rb-Sr data for other rocks in the older comple:: also
indicate an early Archean age. Henry and others (1982) reported
data for many of the lithologic types discussed above that fall
along a 3350 Ma reference isochron with an initial ratio of
0.70O (Fig. 4). Additional work (Mueller and Wooden, unpub.)
continues to confirm this trend. These data do not define an
isochron because samples scatter both above and below the
reference line. This scatter may be caused by many factors
related to the complicated geologic history of these rocks.
Possibilities include Rb or 87Sr loss during high grade
metamorphism, Rb addition during metamorphism or later plutonism,
mixing of different age rocks during plutonism or deformation, or
improper identification of younger rocks included in the older
complex. Although the lower Rb/Sr samples could represent mixing
between late and early Archean materials, the high Rb/Sr's of
some of the rocks on the reference line provide clear evidence
that some early Archean material must be present.

The implication for ages of 3.3 Ga from the Rb-Sr system is
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supported by Sm-Nd and Pb-Pb data. Four samples have Sm-Nd
chondritic model ages between 3.3 and 3.5 Ga (Fig. 4). Three
other samples have model ages between 3.1 and 3.2 Ga. Common Pb
studies just started show that the same samples that have high
Rb-Sr and Sm-Nd model ages have very radiogenic Pb compositions
that are consistent with a minimum age of 3.3 Ga and very high
U/Pb ratios (Fig. 5). The high initial Pb ratios o-f the late
Archean suite (see above) also require the presence of older
Archean material. Therefore there is strong inferencial along
with reasonable direct evidence that rocks at least 3.3 Ga old
exist in the eastern Beartooth Mountains. Further studies are
needed to provide details of their complex history.

NORTHCENTRAL BEARTOOTH MOUNTAINS

The area surrounding the Still water Complex has been of special
interest to geologists studing the origin of this famous layered
mafic igneous complex. Unfortunately the field relationships in
this area are complicated by major faults that separate the
Stillwater Complex and the metasedimentary rocks it intrudes from
the main exposures of Archean rocks in the rest of the Beartooth
Mountains. Butler (1966) was one of the first studies to
consider the transition from the Stillwater Complex and its
contact metamorphosed border rocks into the dominately
crystalline Archean rocks that lie to the south. Page (1977),
Wooden and others (1982), and Czemanske and Zientek (1985)
contain the best recently published information on the area. The
following discussion also utilizes unpublished data from ongoing
studies by Wooden, Mueller, and Mogk and students.

The Stillwater Complex intruded a sequence of metasedimentary
rocks (Page, 1977; Page and Zientek, 1985) 2700 Ma ago (DePaolo
and Wasserburg, 1979; Mueller and Wooden, 1976). These
metasedimentary rocks are variable in composition with Si 02
ranging between 45 and SO percent. Low Na and Ca contents across
this range indicate that all these rocks went through a strong
weathering cycle. High Fe, Mg, Cr, and Ni contents throughout
this range indicate that these rocks farmed by mixing between
quarts rich and high Mg sources. Nunes and Til ton (1971)
reported U-Pb zircon ages for these rocks of 3060 and 3O90 Ma
(Fig. 8). DePaolo and Wasserburg (1979) reported a single
chondritic model age of 3130 Ma for a hornfels sample. These
rocks are therefore well dated at about 3100 Ma. At present
there is no compositional and geochronological equivalent to
these rocks known in the rest of the Beartooth Mtns.

These metasedimentary rocks are separated from the crystalline
rocks of the Beartooths by faults. This crystalline complex is
similar in many ways to the late Archean complex of the eastern
Beartooth Mtns. The granitoid rocks are dominated by high Si02
members that have variable Na02/K20 ratios (Fig. 7). These rocks
contain numerous inclusions of amphibolitic and schistose rocks
that have dioritic/andesitic bulk compositions. The style of
intusion for the granitic rocks seems to be one of numerous thin
sheets that can produce a lit-par-lit appearance. Pegmatite and
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aplite veins are the latest intusions and account -for about 2O7.
of the volume. A composite Rb-Sr isochron for the granitoid
rocks gives an age of 27OO + 1OO Ma with an initial Sr ratio of
0.7023 (Fig. 7) . A LJ-Pb zircon age for one of the granitoids is
2752 + 14 Ma. Thus the presently available data suggest that
these rocks are roughly equivalent to those of the eastern
Beartooth Mtns in both age and composition.

There is a small body of coarse grained granite that occurs at
the boundary between the Still water Complex and the
meatsedimentary rocks. This granite may be a member of a major
suite of medium grained granitoids (Page and others,1972). Nunes
and Tilton (1971) obtained a zircon age of 2700 Ma on the coarse
grained granite (Fig. 8). This is the youngest reliable age for
granitoids in the Beartooth Mtns.

SOUTHWESTERN BEARTOOTH MOUNTAINS

The Archean geology of the southwestern Beartooth Mtns. is known
from the work of C. J. Casella and students and is reported in
detail in Casella and others (1982). Metasedimentary rocks are
the dominate rock type here. These metasedimentary rocks are
intruded by a variety of granitoids, and the synkinematic
intrusion of these rocks produced migmatitic zones. The
metasedimentary rocks occur as thinly bedded units of schist,
quartzite, meta-conglomerate, and rare iron formation.
Sedimentary structures including graded bedding, cross-bedding,
and channel cut and fill have been preserved in spite of the
multiple periods of deformation and metamorphism that these rocks
suffered. The major period of deformation produced isoclinal
folds and was accompanied by amphibolite grade metamorphism. A
second period of amphibolite grade metamorphism is associated
with only minor deformation and the intrusion of two mica
granites. These granites have a minimum Rb-Sr age of 274O Ma and
a high initial Sr ratio indicating that they are partial melts of
upper crustal rocks (Wooden, 1979). Bulk compositional data for
the metasedimentary rocks suggest that they were originally
mostly graywackes with a minor shale component. The age of the
metasedimentary sequence is uncertain but seems to be in the
range of 2.9-3.1 Ga based on model Rb-Sr data and a single model
Sm-Nd age (Montgomery and Lytwyn, 1984; Wooden, unpub.).

The metasedimentary sequence is intruded along the eastern edge
of its exposure by granitoids. The earliest of these granitoids
is a quartz-hornblende diorite that seems to be the equivalent of
the andesitic amphibolites of the eastern Beartooth Mtns.
Intrusive into these rocks is a composite batholith with phases
varying from tonalite to granite but with granodiorite
dominating. The bulk compositions of some of these rocks are
similar to the granitoids of the eastern Beartooth Mtns. However
the majority of these rocks have higher K2Q/Na2Q ratios at the
same SiO2 level, and a greater number of the samples have wt./i
Si02 contents in the 6O*s in keeping with their granodioritic
modal classification. Rb-Sr and U-Pb zircon data (Montgomery,
1982; Montgomery and Lytwyn, 1984; Wooden, 1979) are consistent
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with these rocks being the same age as the granitoids of the
eastern Beartooth Mtns., but a significant reheating o-f this area
in the Proterosoic has complicated the Rb-Sr systematics of these
r oc k s.

NORTHWESTERN BEARTOOTH MOUNTAINS

The northwestern part of the Beartooth Mtns. is commonly referred
to as the North Snowy block. This area was first described in
detail by Reid and others (1975). Subsequent work by Mogk (1982,
1984) has added to the structural and geochemical knowledge of
the area and allowed for new interpretations. Mogk and others
(1986) can now show that this area is a series of 1ithologically
and metamorphical1y distinct packages that have been juxtaposed
by tectonic processes. There are six major units which can be
defined from east to west (Fig. 9).
1) A paragneiss unit that contains a heterogeneous assemblage of

supracrustal rocks including quartzofeldspathic gneisses, pelitic
schists, amphibolites, and banded iron formation.
2) The Mount Cowen augen gneiss (Fig. 10) is a granitic,

sill-like body. Unlike the granitic rocks of the east and
central Beartooth Mtns., this unit has Na02/K2O ratios less than
one and higher Rb/Sr ratios. A Rb-Sr isochron for this rock
gives an age of 2740 + 5O Ma and an initial ratio of 0.7O23 both
of which are within error of the data for the eastern and central
gram toi ds.

3) The Davis Creek schist is a phyllitic metapelite with minor
layers of quartsite.
4) A trondhjemite-amphibolite complex that consists of

trondhjemitic gneisses interlayered with a variety of
amphibolites that range in composition from basaltic to
anorthositic gabbroic. The trondhjemitic gneisses are like those
found in Archean terranes elsewhere. They are high in Si02
(68-767.) and Na2O (8-47.), low in K20 «2.57.), total Fe «27.), and
MgO (<s!7.). Unfortunately these rocks are in a ductile shear zone
metamorphosed in the epidote-oligiclase facies. This probably
explains why the Rb-Sr whole rock data for these rocks is
scattered (Fig. 9). The majority of the data lie close to a 3.4
Ga reference line but a significant number of samples lie to the
left of this line indicating immpossibly old ages. An early
Archean age for this unit is supported by two Sm-Nd chondritic
model ages of 3.26 and 3.59 Ga.
5) The Pine Creek nappe complex is cored by amphibolite that

has symmetrically disposed quartzite and marble outside it. The
amphibolite has an andesitic bulk composition. A single
chondritic Sm-Nd model age of 3.2 Ga is the only chronologic
information available for this unit.
6) The heterogeneous gneiss consists of a supracrustal package

with quartzites, amphibolites, and minor schists that contains
gneisses of granitic to tonalitic composition that appear to have
been injected into the supracrustal rocks. Rb-Sr whole rock data
for gneissic samples indicate that these rocks are approximately
3.4 Ga old. The data lie along the reference isochron for the
trondhjemitic gneiss discussed above and there are compositional
similarities between some members of the heterogeneous gneiss and
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the trondhjemitic gneiss.

SOUTHERN MADISON RANGE

The southern Madison Range (Fig. 11) lies southwest of the
Beartooth Mountains and has been studied in detail recently by
Erslev (1981, 1982,, 1983). The -field oriented studies of Erslev
are now being extended by chronologic studies involving Erslev,
P. Mueller, and J. Sutter, and the ages used in this section
should be considered preliminary because these studies are not
complete and not formally published. The major features of this
range are a northern gneissic and migmatitic terrane. This
terrane is separated from a southern sequence of meta-pelitic to
psammitic schists and marbles called the Cherry Creek metamorphic
suite (Erslev, 1983) by a thick sequence of mylonites called the
Madison mylonite zone (Erslev, 1982).

Two units in the northern terrane have been analyzed by the Rb-Sr
whole rock technique. A tonalitic gneiss has a limited spread in
Rb/Sr ratios and somewhat disturbed systematics but the data for
this unit clearly fall along a 3400 Ma reference isochron (Fig.
11). This age is similar to that of the trondhjemitic gneiss of
the northwestern Beartooth Mtns. and the supracrustal sequence of
the eastern Beartooth Mtns. The composition of the tonalitic
gneiss is distinct from any member of these other units since it
is a typical calc-alkalme tonalite with Si02 in the low to
middle 6O's. The other unit examined is a granitic augen gneiss
that is the main phase of a gneiss dome that penetrated the
tonalitic gneiss. Limited Rb-Sr data for this unit indicate that
it is approximately 27OO Ma old and support the observations of
Erslev (1983) that the tonalitic gneiss is older than the
granitic gneiss. The granitic gneiss is richer in K and Rb and
has higher Rb/Sr ratios than the typical granitoid of the eastern
and central Beartooth Mtns. The preliminary similarity in age
between this part of the southern Madison Range and the Beartooth
Mtns. is intriguing and will be examined in detail as more data
become availabe.

The only chronologic data available for the southern terrane is
limited Rb-Sr and U-Pb zircon data that indicates an age of
about 25OO Ma for a granodioritic augen gneiss. This gneiss was
syntectonically intruded into the metasedimentary sequence and
provides a minimum age for the last deformation in this area and
the deposition age of the sediments. This age is distinctly
younger than those presently known from other parts of the
northern Wyoming Province. The younger age, the lithologic
distinction of this supracrustal sequence from those in the
Beartooth Mtns., and the supracrustal vs. orthogneiss contrast
between northern and southern terranes suggest that the Madison
mylonite zone represents a significant crustal discontinuity.

NORTHERN MADISON AND GALLATIN RANGES

Earlier work in the the northern Madison Range by Spencer and
Kozak (1975) described an extensive terrane of quartzofeldspathic
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gneiss that had been multiply de-formed and metamorphosed in the
amphibolite facies. This work is currently being extended by D.
Mogk and students. Salt and Mogk (1985, unpub.) have recognised
three distinctive terranes. The first is a granulite and
migmatite association in the Gallatin and Madison River valleys.
A previously unrecognised batholitic complex that contains
quartz-diorite, monzodiorite, granodiorite, and granite comprises
the second terrane. The third terrane consists of
metasupracrustal rocks in the upper amphibolite to granulite
facies. The northern Gallatin Range appears to be an extension
of the granulite and migmatite terrane mentioned above (May and
Mogk, unpub.). No detailed geochemical or geochronologic data
are available from this area at this time. James and Hedge
(1980) included three samples from this area in their regional
Rb-Sr study that produced a composite isochron age of about 2750
Ma for the Ruby, Tobacco Root, and northern Gallatin ranges.
Additional data for this area will be important because it
represents a transition between the metamorphosed shelf sequences
to the west and the granitoid and older supracrustal sequences to
the east.

TOBACCO ROOT AND RUBY RANGES

Vitaliano and others (1979) and Garihan (1979) provide the
geologic framework for the Tobacco Root and Ruby Ranges,
respectively. These two areas are similar and consist of a
heterogeneous assemblage of quartzofeldspathic and mafic gneiss,
para- and orthoamphibolite, metamorphosed ultramafic rock,
marble, quartzite, pelitic schist, and iron formation. These
areas have experienced at least one period of deformation that
resulted in isoclinal folds. Two periods of metamorphism are
possible with an amphibolite facies event overprinting a
granulite facies event. Notable for these areas is the major
metasedimentary component that is indicative of a continental
shelf environment - marble, quartzite, schist, and iron
formati on.

Two Rb-Sr whole rock studies supply the only geochronologic
information for these areas. Mueller and Cordua (1976) obtained
an age of 2670 Ma for quartzofeldspathic gneisses for the Horse
Creek area in the southern Tobacco Root Mtns. An initial ratio
of about 0.704 indicates that these metamorphic rocks could not
have had a long history before this time. James and Hedge (1980)
analysed a suite of quartzofeldspathic gneisses from the Tobacco
Root, Ruby, and Gallatin Ranges. These samples gave an age of
2760 + 115 Ma by themselves or an age of 2730 + 85 Ma when
combined with the data of Mueller and Cordua (1976). No
comprehensive geochemical data are available for these samples
but their Rb and Sr contents and Rb/Sr ratios are consistent with
evolved granitic rocks or arkosic sediments. There is no
evidence from either of these studies that this area had a
history before approximately 280O Ma; however, the existing
database is small and only quartzofeldspathic samples have been
examined.
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BIBHORN MOUNTAINS

The Bighorn Mountains are located in north-central Wyoming (Fig.
1), west-southwest of the Beartooth Mtns, and contain major
exposures of Archean rocks (about 2SOO sq. km). The Bighorn
Mtns. (Fig. 12) can be divided into a northern terrane of
granitoids ranging in composition from tonalite to granite and a
southern terrane consisting of orthogneisses and foliated
granitoids (Heimlich and others, 1972; Barker and others, 1979).
K-Ar dating throughout the range (Heimlich and Banks,1968; Condie
and Heimlich,1969; Heimlich and Armstrong, 1972) showed that all
the country rocks were Archean, and a careful K-Ar biotite age
study (Heimlich and Armstrong, 1972) showed that ages in the
northern terrane averaged 2.73 Ga while those in the southern
terrane averaged 2.51 Ga. The reasons for the difference in age
are unclear, but it serves to show that the two areas have more
than lithologic differences. U-Pb studies in the northern
terrane gave ages between 2840 and 2865 Ma while those in the
southern terrane gave ages in the range 2890 to 2905 Ma with one
younger age of 2710 Ma (Heimlich and Banks, 1968; Banks and
Heimlich, 1976). A Rb-Sr whole rock study of granitoids and
gneisses from both terranes gave an age of 2805 + 60 Ma (Steuber
and Heimlich, 1977).

The only intergrated field, geochemical, and geochronologic study
in the Bighorn Mtns. is that of Barker and others (1979) and Arth
and others (19SO) in the Lake Helen area of the southern terrane.
These studies established that two generations of rocks are
present - an older E-l and a younger E-2. The older E-l
assemblage consists of trondhjemitic and tonalitic gneiss,
basaltic amphibolite, and hornblende — biotite gneiss. The
sequence of events is intusion of trondhjemitic magmas,
deformation and metamorphism, synkinematic intrusion of tonalitic
magmas, and very late synkinematic intrusion of andesitic
(hornblende - biotite gneiss) magmas. The basaltic amphibolites
are associated with the trondhjemitic rocks and may represent
inclusions or later dikes of mafic compositions. These
trondhjemi tic and tonalitic rocks (Fig. 12) have similar major
element contents with SiO2 69-72 wt.'/., A12O3 15-16 wt.7., and
NaQ2/K20 ratios between 3 and 4. REE patterns are strongly
fractionated with minimal Eu anomalies and moderate LREE
abundances (30-80X chrondrites) and low HREE abundances (1-4X).
The amphibolites show a range of basaltic compositions for both
major and trace elements. A composite Rb-Sr whole rock isochron
(Fig. 13) for trondhjemitic, tonalitic, and amphibolitic samples
gave an age of 3007 + 68 Ma (ISR = 0.70O1 + 1), and a U-Pb zircon
age for the trondhjemitic - tonalitic gneisses was 2947 + 100 Ma.
The compositions of these rocks are similar to those of the
trondhjemi11c - amphibolitic complex of the western Beartooth
Mtns. but apparently they are distinct in age. The andesitic
gneisses of the Bighorn Mtns. are so similar in major and trace
element contents to those of the andesitic amphibolites of the
eastern and central Beartooth Mtns. that some genetic
relationship must exist (Mueller and others,1983). The age of
the Bighorn andesitic rocks is unknown.
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The younger E-2 event in the Lake Helen area starts with the
synkinematic intrusion of a trondhjemitic to leucogranodioritic
pluton that sharply cuts the structures of the E-l
rocks. This pluton was followed by additional synkinematic
intrusions of hornblende-biotite tonalite, biotite tonalite,
biotite granodiorite, and biotite granite. The trondhjemitic
rocks are similar to the older E-l trondhjemitic - tonalitic
rocks (Fig. 12) in all respects except for slightly higher LREE
contents. Compositional data for the later intrusions is not
published except for information that these rocks range in SiO2
from 57 to more than 75 wt.7. and are typically calc-al kal ine. A
Rb-Sr whole rock isochron (Fig. 13) that includes samples from
all the E-2 rock types gave an age of 28O1 + 62 Ma with an
initial ratio of 0.7015 + 2.

OWL CREEK MOUNTAINS
The Owl Creek Mountains are located in central Wyoming
and represent several small areas of exposure. The work that has
been done there is concentrated in Wind River Canyon which
transects one of the areas of exposure. This area has been
described by Condie (1967), Branath (1975), Mueller and others
(1985), and Stuckless and others, C?). The rocks exposed in the
canyon represent a multiplely folded, amphibolite grade,
supracrustal sequence that consists of interlayered gneiss,
amphibolite, and minor schist. The supracrustal sequence is cut
by a potassic granite of late Archean age.

Mueller and others (1985) have shown that the supracrustal
sequence is largely of igneous origin. As presently exposed the
sequence is composed mostly of two types of amphibolite - one
with tholeiitic basaltic compositions and flat REE patterns and
another with basaltic andesitic compositions and LREE enriched
REE patterns. A gneiss with dacitic compositions is found
interlayered with the tholeiitic amphibolites. These dacitic
rocks have Si02 between 66-72 wt.7., average K2O/Na2O = 0.65, and
strongly fractionated REE patterns (La = 1OOX and HREE = 3X). A
U-Pb zircon age (Fig. 14) for a dacitic sample is 29O5 ± 25 Ma
and is interpreted as the time of crystalization. A Rb-Sr
isochron (Fig. 14) for dacitic samples gives an age of 2755 + 96
Ma and is interpreted as the time of metamorphism. Samples of
basaltic andesite fall on this isochron but tholeiitic samples
fall slightly below suggesting that there is some genetic link
between the dacitic and basaltic andesitic samples. Model
initial Sr ratios in the range O.702-0.7O4 for the dacitic -
basaltic andesitic rocks between 2.75 and 2.90 Ga indicate that
the genesis of these rocks involved the crust in some way.

SYNTHESIS

This review should make it clear to the reader that a reasonable
amount of information is available about the geochemistry and
geochronology of the northern part of the Wyoming Province and
that some first order hypotheses about the origin of this area
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can be made. The authors wish to make it clear that the data
available for this area is really very fragmentary, even in the
better studied areas such as the Beartooth and Bighorn Mtns. We
expect that the ideas presented here about the Archean history of
this area will change a great deal as more information becomes
available. We hope that this review will convince readers that
the Archean terranes of the western U.S. have much to tell us
about early crustal evolution and are worthy of much additional
study.

There is a growing body of data that strongly suggest that there
are rocks 3.3 Ga old and older in the northern Wyoming Province.
Rb-Sr data from the eastern and northwestern Beartooth Mtns. and
the southern Madison Range indicate ages of 3.3-3.4 Ga. Sm-Nd
and Pb-Pb data support these ages in the Beartooth Mtns.
Unfortunately the meager zircon data available for these rocks
tend to provide only minimum ages of about 3.1 Ga, but the data
contain obvious indications of comple:: systematics and modern
analytical techniques should be able to yield more information
for these systems. These older rocks are trondhjemites and
tonalites in the southern Madison Range and northwestern
Beartooth Mtns. This type of rock is known to be the most common
component of early Archean terranes (Barker and Peterman, 1974;
Wooden and others, 1980). However the older rocks of the
eastern Beartooth Mtns. are dominately potassic gneisses and a
1ithological1y varied supracrustal sequence. Trace element and
common Pb isotopic data support the evolved nature of these
rocks. The early Archean rocks of the eastern Beartooth Mtns.
indicate that crustal processing of the more "primitive", low Y.
rocks suites most common in the early Archean did take place.

Middle Archean rocks <2.9-3.1 Ga old) are common in the northern
Wyoming Province. Supracrustal rocks of a dominately sedimentary
origin in the northcentral and southwestern Beartooth Mtns. and
trondhjemitic, dacitic, and basaltic amphibolitic suites in the
Bighorn and Ow] Creek Mtns. are all in this age range. It is
perhaps significant that the low K suites of this age are common
in the areas where there is no present evidence of older Archean
crust.

It seems likely that these middle Archean rocks experienced at
least an amphibolite grade metamorphic event before they became
involved in major late Archean events. Both the eastern and
central Beartooth Mtns. and the Bighorn Mtns. contain major
suites of magmatic rocks that are 2.75-2.80 Ga old. In the
Beartooth Mtns. the earliest members of this suite are andesitic
amphibolites that record a middle amphibolite grade metamorphic
event. This period of metamorphism preceded the intrusion of a
dominantly high silica and sodic granitoid suite. Activity in
the Bighorn Mtns. started with trondhjemitic rocks that are
intruded by a synkinematic calcalkaline suite. The geology of
both these areas is consistent with the development of a major
magmatic arc like those associated with modern day convergent
plate tectonics.
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The northwestern Beartooth Mtns. and the area west of it
represent a very different late Archean environment (Mogk and
Henry, this vol.). There is evidence for plutonic activity only
in the northern and southern Madison Ranges and the northwestern
Beartooth Mtns. The plutonic rocks are subordinate to sequences
of quartzofeldspathic gneisses and/or supracrustal rocks
containing quartzites and carbonates. The rock associations in
the Tobacco Root Mtns. and the Ruby Range are particularly
indicative of a continental shelf environment. Many of the rocks
in this western area have high amphibolite or granulite grade
metamorphic assemblages that could be produced in crustal
doubling events (Newton and Perkins, 1982). A good case can be
made that the northwestern Beartooth Mtns. are an assemblage of
at least six terranes that were tectonically juxtaposed during
the late Archean. Thus this area seems to be experiencing major
tectonic activity like that seen along continental margins
undergoing convergent, plate tectonics while the area inboard of
it was developing a magmatic arc. The major activity in
the magmatic arc seems limited to about 50 Ma but chronologic
constraints are not available for this western area. Its history
may involve several distinct events.
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Introduction

The Archean basement of southwest Montana comprises the northern

part of the Wyoming Province as def ined by Condie (1976). Archean

rocks are current ly exposed in a series of foreland block up l i f t s

across this terrain (e.g. Foose et al., 1961). A major discontinuity

in the nature of this Archean continental crust is defined by a mobile

belt in the North Snowy Block, western Beartooth Mounta ins (Mogk et

, al., in review; Figure 1). To the east of the North Snowy Block

mobile belt the central and eastern Beartooth Mountains , Bighorn

Mountains, and deep-drill samples of Archean rocks are comprised

dominantly of late Archean granitoids with inclusions of older

supracrustal rocks (Barker et al., 1979, Peterman, 1981; Henry et al.,

1982; Timm, 1982; Mueller et al., 1985). To the west the Nor th Snowy

Block mobile belt the Archean terrains consist dominantly of 2.75 Ga

old (James and Hedge, 1980) high-grade metasedimentary rocks as

exposed in the Gallatin (Spencer and Kozak, 1975), Madison (Erslev,

1983), Ruby (Garihan, 1979), and Tobacco Root Mountains (Vitaliano et

al., 1979). These rocks have been isoclinally folded and emplaced as

nappes, and have at tained upper amphiboli te to granuli te grades of

metamorphism.

The metamorphic history of each of these areas provides an

important framework in the understanding of the tectonic evolution of

this Archean continental crust. The determinat ion of the physical

conditions of metamorphism, using heterogeneous phase equilibria and

m i n e r a l o g i c a l g e o t h e r m o b a r o m e t e r s , p rov ides t h e bas i s f o r

const ruct ion of P-T t ra jec tor ies , a l lows the in terpreta t ion of

tectonic and geochemical processes, and aids in the recognition of



allochthonous units. Specific areas in the Beartooth Mountains and

adjacent ranges wil l be described in detai l to characterize their

lithologic associations, metamorphic grade, and s t ructural style.

This i n f o r m a t i o n w i l l be combined w i t h g e o c h e m i c a l and

geochronological information (Wooden et al., this volume) to present a

working model for the evolution of this continental crust.

BEARTOOTH MOUNTAINS

The Beartooth Mountains have been divided into four dis t inct

domains, including the central Beartooth Block, the Stillwater Block,

the North Snowy Block, and South Snowy Block (Wilson, 1936) (Figure

2). A major project conducted by Arie Poldervaart and his students in

the eastern and central Beartooth Mountains provided the first field

and petrologic studies (Eckelmann and Poldervaart , 1957; Spencer,

1959; Harris , 1959; Casella, 1964, 1969; Prinz, 1964; Butler, 1966,

1969; Larsen et al., 1966; Bent ley, 1967; and Skinner et al., 1969).

Their initial interpretation of this area called for granitization of

a sequence of openly-folded supracrustal rocks. Recent petrologic,

geochemical , and geochronologic studies (Muel ler et al., 1985 and

references therein) have demonstra ted that the Beartooth Mountains

consist predominant ly of voluminous late-Archean granitoids wi th

inclusions of supracrusta l rocks which exhibit a wide range in

composi t ion, metamorphic grade and isotopic ages. The fo l lowing

sections describe those areas in the Beartooth Mountains where

detailed petrologic studies have been done.



A. Quad Creek and Hellroaring Plateau, central Beartooth Block

The easternmost portion of the central Beartooth Mountains is

composed predominantly of granitic to tonalitic granitoids, gneisses

and migmat i t e s whose Rb-Sr isotopic sys temat ics indicate an age of

formation of 2.8 Ga. (Wooden et al., this volume). Within these felsic

rocks there are inclusions of various supracrustal lithologies ranging

in size from a few cent imeters to several kilometers. These earlier

' lithologies include quartzite, felsic gneiss, pyribolite, amphibolite,

iron formation, pelitic schist and ultramafite. Similar to many high-

grade terrains in the Archean (Windley , 1977) this assemblage of

lithologies is more reminiscent of a shelf environment rather than a

eugeoclinal or typical greenstone-belt setting. This is supported by

bulk compositions and REE abundances of the lithologic units (Mueller

et al., 1982, 1985).

The structural features of the rocks of the eastern Bear tooth

Mountains are dominated by two phases of deformation. The first major

phase of de format ion is characterized by a series of SSW-plunging

isoclinal and intrafolial folds formed during the passive flow folding

of a high grade metamorphic event (Rowan, 1969). The second major

d e f o r m a t i o n a l phase i s c h a r a c t e r i z e d by u p r i g h t , t y p i c a l l y

nonisoclinal fo lds which form about SSW- to S-plunging axes and in

which flexure is the dominant fold style. The common large antiformal

and synformal structures with wavelengths of several kilometers are a

mani fes t a t ion of the second deformat ion. There are some minor

subsequent deformations that produced broad, symmetric, open folds and

relat ively minor development of mineral l ineations parallel to the



axial planes of the folds (Skinner et al., 1969; Rowan and Muel l e r ,

1971). The supracrustal lithologic units are commonly boudin-shaped

and separated by mylonitic zones and probably underwent a significant

amount of tectonic thinning. Isoclinal and intrafol ia l folding are

common in these units indicating their involvement in the f i rs t

deformation.

Most of these earlier lithologies display mineral assemblages

that are indicative of granuli te grade metamorphism [ M l ] (Table 1;

Figure 3,4). A p p l i c a t i o n of a series of g e o t h e r m o m e t e r s and

geobarometers (Ferry and Spear, 1978; Ellis and Green, 1979; and

Newton and Perkins, 1982) yield temperatures of 750 - 80(PC and

pres su re s of 5 - 6 kba r (Henry et al., 1982). Some of t he se

lithologies are part ial ly-to-completely reset by a subsequent

amphiboli te grade metamorphism [ M 2 ] (Table 1; Figure 5). In the

pelitic schists, coexisting sil l imanite and muscovite are locally

stable placing the stabil i ty f ie ld for M2 below the muscovi te

breakdown curve (Figure 3). Application of geothermobarometers (Ferry

and Spear, 1978; Plyusnina, 1982) to those assemblages showing

amphibolite grade reequilibration indicate this metamorphism developed

at temperatures of 575 - 625% C and pressures of 3 - 5 kbar. The

degree of retrogression of a given lithology is related to the size

and rock type (the quartzites and ironstones being the least subject

to retrogression). The Rb-Sr isotopic systemstics of the supracrustal

rocks are very d i f f e r en t than those of the fels ic intrusive rocks

involved in the 2.8 Ga. event. Most samples def ine a 3.4 Ga. isochron



that is interpreted as the approximate t ime of granulite grade

metamorphism with a fev samples partially reset toward a 2.8 Ga.

isochron (Wooden et al., this volume).

It is currently believed that the granuli te grade supracrustal

lithologies are restr icted to the eastern portion of the central

Beartooth Block. Consequently, this is a site of deposition of a

• series of platform-type supracrustal rocks that suffered large scale

horizontal shortening and deep burial to about 20 ki lometers at 3.4

Ga. A continent-continent collisional mechanism can most easily

explain such deep burial of supracrustal rocks and implies that this

early Archean crust locally doubled to at least 40 ki lometers

thickness (Newton, 1983; Mueller et al., 1985).



B. Long Lake and Broadvater River areas, central Beartooth Block

The Long Lake portion of the central Beartooth Block is also

dominated by granitoid plutons, gneisses and migmat i tes . The most

voluminous rock type is a tonalitic-to-granitic plutonic rock (the

Long Lake granite (LLG)) that is weakly foliated, retains its igneous

texture and surrounds the rest of the major rock units (Warner et al.,

1982; Wooden et al., this volume). The LLG intrudes a ubiquitous,

atrongly-lineated granitoid gneiss (LLGd). Both of these units include

blocks (1 m - 1 km) of a strongly-lineated and foliated amphibolite of

basal t ic andesite to andesitic composit ion (termed the andesitic

amphiboli te (AA)). This amphiboli te shows no evidence of having

previously reached granulite grade metamorphism. There are also minor

amounts of quartz-microcline pegmatites that cut all of these units.

The structural features that affect this area are similar to those of

the eastern Beartooth Mountains (Harris, 1959; Casella, 1969; Khoury

and Ghaly, 1973).

The typical mineral assemblages of these lithologies are given in

Table 2. Although there are no well calibrated geothermobarometers for

these mineral assemblages some indication of the P-T conditions can be

obtained f rom the hornblende-plagioclase relations (Spear, 1980;

Plyusnina, 1982; Nabelek and Lindsley, 1985). In the amphiboli tes ,

temperatures of 550-600 C are obtained. The geobarometric calibration

of Plyusnina (1982) yields pressures of 4.5-6 kbars. However, the high

tetrahedral Al in the hornblende may indicate metamorph i sm of even

higher pressures (Spear, 1981). The minor amount of pegmatitic dikes

suggest a relatively low P H20.



Rb-Sr and Sm-Nd isotopic systematics of these units suggest that

the AA and possibly LLGd were formed and underwent metamorphism during

the period 3.0-2.8 Ga. Finally, Rb-Sr systematics were disturbed and

at least partially reset at 2.8 Ga. during emplacement of the LLG.

In addition to these units , minor amounts of supracrustal

xenoliths (including pelitic schist, quartzite and iron formation) are

found to the west of Long Lake in the Lonesome Mountain and Broadwater

River areas (Larsen et al., 1966; Timm, 1982). Unlike the Quad Creek

area, these supracrustal lithologies contain assemblages of medium-to-

upper amphiboli te grade metamorphism with some indications of an

earlier lower P-T metamorphism (Timm, 1982). Preliminary U-Pb analyses

of zircons from some of the metasedimentary xenoliths suggest that the

source region for the sediment was about 3.1 Ga old (Montgomery et

al., 1984).

These data are interpreted as signalling a major crust-forming

event (3.0-2.8 Ga.) that began with the development of large amounts

of andesi t ic magma as extrusive or shallow intrusive rocks in a

convergent plate margin (Mueller et al., 1985). It is suggested that a

compressions! regime continued until about 2.8 Ga. culminating in an

episode of amphiboli te grade metamorphism and development of

voluminous granitoid magmat ism that also entrapped metasedimentary

units that were derived from a 3.1 Ga old source terrain.



> C. Lake Plateau Area

The Lake Plateau area is similar in many respects to the central

Beartooth Mountains; however, it does appear to have formed at much

deeper crustal levels. Regional mapping was originally done by Page

et al., 1973 a and b) and Butler (1966) and detailed petrologic

studies of this area have been reported by Richmond and Mogk (1985).

Large volumes of pegmatite-rich granite-granodiorite have been

intruded as sheet like bodies into a series of metasupracrustal rocks

(Wooden et al., this volume). To the east the inclusions are

dominantly andesitic amphibolites, similar to those reported by Butler

(1966, 1969) in the Cathedral Peak area and also the Long Lake area

(as described above). The west side of the area has meter- to

kilometer- sized inclusions of pelitic and psammit ic schists. Both

types of inclusions have a strong crystal l izat ion schistosi ty

developed parallel to the axial surfaces of isoclinal folds.

Injection of the granites appears to be in lit-par-lit fashion into

this earlier schistosity.

Metamorphism of the supracrustal inclusions pre-dates intrusion

of the granites and is in the amphiboli te fades. The dominant

assemblage in the pelit ic schist is: garnet-biotite-plagioclase-

quartz+/-cordier i te+/-s i l l imanite; s tauroli te is present in the

Boulder River area. Application of the garnet-biotite geothermometer

(Ferry and Spear, 1978) yields temperatures in the range of 570-62(TC.

The garnet-cordierite-sil l imanite-quartz barometer (Thompson, 1976;

Lonker, 1981; Newton , 1983) yields pressures of 7-8 Kbars (assuming

p

H20 = Ptotal) and the garnet-plagioclase-sillitnanite-quartz barometer



(Ghent, 1979; Newton , 1983) yields similar pressure estimates. The

andesitic amphibolites contain the assemblage hornblende-plagioclase-

biotite-quartz+/-epidote.
The granites of the Lake Plateau are similar in many respects to

Caledonian-type granites as described by Pitcher (1982). They have a

restr icted range of compositions, from granite to granodiorite

(tonalite is conspicuously absent). Rb-Sr whole rock systematics

indicate an age of 269S+/-86 Ma and a D-Pb zircon age Of 2748+/-20 Ma

has been determined (Wooden et al., this volume). These granites are

pegmati te rich and contain magmatic muscovi te (wt % Ti02 > 0.7)

(Speer, 1984) suggesting PH20 in «xcess of 4 Kbars. The occurrence of

magmatic epidote (euhedral grains with straight grain boundaries

against hornblende and biotite) indicates that PH20 may be as blgh as

8 Kbars (Zen and Hammars t rom, 1984), which is consistent with the

pressure estimates based on the pelitic assemblages. The granites were

emplaced into amphibolite-grade supracrustal rocks at the culmination

of this late-Archean erogenic cycle. Generation of the Lake Plateau

granites is interpreted as the result of post-collisional, adiabatic

melting (Richmond and Mogk, 1985; Wooden et al., this volume).

D. North Snowy Block

The N o r t h Snowy B l o c k ( N S B ) i s an A r c h e a n m o b i l e be l t

character ized by tectonic juxtaposi t ion of both metaigneous and

metased imentary rocks. The NSB consists of four lithologically and

metamorphically distinct linear belts separated by transcurrent faults

and overlain by two east-verging thrust sheets (Mogk, 1984)(Figure 6).

These six uni ts are dist inguished by abrupt discontinuit ies in



metamorphic grade, structural style, and isotopic age. The evolution

of this continental crust is dominated by tectonic thickening as

opposed to the magmat ic thickening which occurred in the main

Beartooth mass i f . The fol lowing summarizes the characterist ics of

these units as they occur in an east-west cross section (Table III).

1. The Paragneiss Unit consists of a wide variety of quartzo-

feldspathic gneisses, pelitic schists and amphibolites. Anastomosing

shear zones are responsible for abrupt discontinuities of lithology on

a meter- to tens-of meter scale and a strong subhorizontal lineation

is defined by mineral streak lineations. Metamorphism is generally

upper a m p h i b o l i t e fades w i t h garnet-biotite pairs yielding

temperatures of 700NC; tectonic mixing of the individual units

occurred under epidote amphibolite or greenschist facies conditions.

2. The Mount Cowen Augen Gneiss is a late- to post-kinematic,

sill-like granitic body which has been emplaced along a postulated

faul t between the Paragneiss Unit and the Davis Creek Schist. The

augen texture is defined by an anastomosing fol ia t ion, defined by

ragged chlorite and muscovi te , which wraps around microcline

p o r p h y r o c l a s t s . The p re sence of ep ido te and chlorite suggest

recrysta l l izat ion in the greenschist facies. The Mount Cowen Augen

Gneiss is the youngest major rock unit in the NSB (2737+7-52 Ma).

3. The Davis Creek Schist is a phylli t ic metapel i te wi th

subordinate quartzite layers. The dominant metamorphic assemblage

is chlorite-muscovite-albite-quartz. Rare intrafolial isoclinal folds

are overprinted by asymmetric kink folds. Contacts with the overlying



Trondhjemitic Gneiss-Amphibolite Complex are strongly mylonitic and

occur as wispy intercalations.

4. The Trondhjemit ic Gneiss-Amphibolite Complex is a ductile

shear zone characterized by blastomylonitic texture, passive flow-

f o l d i n g and s u b h o r i z o n t a l m i n e r a l s t reak l inea t ion in the

trondhjemit ic gneiss. The amphiboli tes occur as rigid bodies that

have been rotated into conformity with the ductile shear foliation in

the trondhjemitic gneiss. They include fine-grained well-lineated

varieties as well as coarse-grained metagabbros and anorthositic

gabbros metamorphosed in the epidote-bearing and epidote-free

amphiboli te facies. Hornblende-plagioclase relations (Spear, 1980)

are consistent with recrystal l izat ion in the lower to middle

amphibolite facies. Individual amphibolite layers yield a variety of

P-T conditions (e.g. 520-54(TC, 6-7 Kbar; 560-580XC, 4-6 Kbar; 620-

650 N C, 4-5 Kbar; using the phase relations of Plyusnina, 1982)

suggesting tectonic mixing of different levels of mafic crust during

duct i le shearing. Dynamic recrys ta l l iza t ion of both albite and

oligoclase neoblasts around oligoclase porphyroclasts in the

trondhjemitic gneiss indicates ductile shearing ocurred at less than

500%C (below the crest of the peristerite solvus), and post-dates the

peak amphibolite metamorphism recorded in the amphibolites.

5. The Pine Creek Nappe Complex is an isoclinally folded thrust-

nappe consisting of amphiboli te (core), with symmetrically disposed

marble and quartzite on the upper and lower limbs. The lower limb is

strongly attenuated and mylonites are well-developed in the quartzite

at the lower contact. Isoclinal folding occurs on all scales and is



contemporaneous with a crystallization schistosity which is parallel

to the axial surfaces. Metamorphisn is in the middle to upper

amphibolite fades as indicated by hornblende-plagioclase relations in

the amphiboli tes (Spear, 1980) wi th average temperatures of 58CPC-

620 X C and pressures of 4-6 Kbars (Plyusnina, 1982), garnet-biotite

temperatures of 600-65CPC in rare pelitic layers in the quartzite, and

calcite-dolomite-diopside-phlogopite-retrograde tremolite assemblages

in the marble.

6. The Heterogeneous Gneiss unit consists of a migmat i t ic

complex associated with a high grade metasupracrustal sequence which

have been thrust over the Pine Creek Nappe Complex. In the lower part

of the thrust sheet lit-par-lit injections of granite to tonal ite

invade the country rock. Locally, foliation is truncated and partial

assimilation of the supracrustal rocks is common. Higher in the thrust

sheet the igneous rocks are absent and the supracrustal assemblage

includes orthoquartzite, feldspathic quartzite, amphibolite, and minor

pelite. Metamorphism at the base of the thrust sheet is in the upper

amphibolite facies as demonstrated by the occurrence of sillimanite

in pelit ic rocks, hornblende-plagioclase relations and garnet-

biotite temperatures in the range 650-700"C.

Within the North Snowy Block the wide variety of rock types and

the abrupt discontinuities in metamorphic grade, structural style and

isotopic ages suggest significant tectonic displacements. The

Paragneiss Unit , Davis Creek Schist and T r o n h j e m i t i c Gneiss-

Amphibolite Complex probably were emplaced along transcurrent faults

as evidenced by their subhorizontal lineations. These units cannot be

readily restored to a pre-faulting stratigraphy, as would be expected



if they currently represent a series of stacked thrust faul ts . In

addition, the Paragneiss Unit is a chaotic mixture of tectonical ly

juxtaposed, diverse rock types; the style of deformation of this unit

is analogous to the tectonic mixing associated with wrench f au l t s

rather than thrust faul ts . The minimum age for the transcurrent

faulting is 2.75 Ga based on the age of the protolith of the Mount

Co wen Augen Gneiss. The emplacement of the two thrust sheets marks a

signif icant change in the tectonic style of the NSB and appears to

post-date the transcurrent faulting. The ductile shearing observed in

the Trondhjemitic Gneiss is absent in the overlying thrust sheets. It

is also significant to note that the metamorphic grade increases

discontinuously up-section from the Trondhjemitic Gneiss through the

overlying thrust sheets. The age of the protolith of the amphibolite

in the Pine Creek Nappe is 3.2 Ga, which precludes the possibility of

intrusion of the Trondhjemit ic Gneiss as suggested by Reid et al.

(1975), and the Heterogeneous Gneiss is older than the Pine Creek

Nappe requiring tectonic juxtaposition to achieve the observed older-

over-younger stacking sequence.

E. Yankee Jim Canyon

The Yankee Jim Canyon area is a ducti le shear zone (Burnham,

1982) which is similar in all respects to the Paragneiss Unit in the

North Snowy Block. A wide variety of lithologies, including quartzo-

f e l d s p a t h i c gne isses , q u a r t z i t e , pe l i t e s , a m p h i b o l i t e s a n d

u l t r amaf i t e s are tectonical ly mixed on a meter to tens-of-meters

scale. Common assemblages include:



K-spar-plag-qtz-bio+/-mu8c (quartzofeldspathic gneisses)

bio-gar-sill-plag-qtz (pelitic rocks)

hornblende-plagioclase-quartzW-Biotite (metabasites)

opx-hornblende (ultramafites)

Although diagnostic index minerals are rare, these assemblages

indicate peak metamorphism is in the upper amphiboli te facies.

Garnet-biotite temperatures are in the range of 680-740NC. Retrograde

minerals occur in anastomosing shear zones in this area and include

ch lo r i t e , ep ido te , a c t i no l i t e , and sericite. Calculated r im

temperatures on garnet-biotite pairs of 480-52(PC reflect retrograde

metamorphic temperatures. The age of metamorphism is about 2.8 Ga

(Rb-Sr whole rock age by Paul Mueller, unpubl. data) and there is some

evidence of zircons as old as 3.6 Ga in some of the units (Guy and

Sinha, 1985). The mixture of lithologies, metamorphic grade, and

structural style of the Yankee Jim Canyon area are similar to those

observed in the Paragneiss Unit of the North Snowy Block.

F. Jardine-South Snowy Block

The Jardine area is characterized by a sequence of fine-grained

detri tal sediments and associated iron formation. Included in this

sequence are quartz-biotite schists, chlorite-muscovite schists, and

gruneri te-bearing ironstones (Hallager , 1984). This sequence is

interpreted as the distal fan sediments associated wi th a r i f t ed

continental margin (Thurston, 1986). Sedimentary structures such as

graded bedding and cut-and-fi l l channel s t ructures are locally

preserved; penetrative deformation is conspicuously absent. Towards



the margins of this sequence the "grade apparently increases as

evidenced by the occurrence of andalusite, garnet, and staurolite in

the pel i t ic units. These low-grade me ta sed imen t s are rare in the

Archean basement of southwes tern Montana. The Jardine sequence is

tectonical ly- juxtaposed along duct i le shear zones in the Yankee Jim

Canyon area on the west and Broadwater River area to the east. 2.6 Ga.

old quartz monzonite stocks have been emplaced in this sequence.

The bulk of the South Snowy Block cons is t s of an extensive

metasedimentary sequence which is intruded by late-Archean granites

(Casella et al., 1982). The dominant rock type is biotite schist with

varying modal abundances of quar tz , plagioclase, muscovite, garnet,

s tauro l i t e , and andalusi te . Gruneri te-bearing ironstones are also

present in this area. On the eastern margin the schists are upgraded

to upper amphibolite facies indicated by the presence of sillimanite

and in jec t ion- type migmat i t es . Isoclinal fo ld ing accompanies

amph ibo l i t e grade m e t a m o r p h i s m and a second open fo ld ing event is

also recorded. ,

G. Stillwater Complex Hornfels Aureole

The Sti l lwater Complex aureole has been described by Page

(1977), Vaniman et al. (1980), Page and Zientek (1985) and Labotka

(1985). The aureole consis ts of layered , f ine-grained c l a s t i c

sediments, iron formation, blue quartzi te and diamictite. Sedimentary

s t ruc tu res such as cross bedding, graded bedd ing , and cut and f i l l

s t ruc tu res are locally preserved. The d iagnos t i c assemblages in

pe l i t ic rocks are or thopyroxene-cord ier i t e and a n t h o p h y 1 1 ite-

cordier i te w i th assoc ia ted q u a r t z , p lag ioc lase , spinel , b io t i t e ,



i lmenite, and sulf ide minerals. The iron format ion contains the

assemblage: quartz-magnetite-orthopyroxene-grunerite; clinopyroxene,

olivine and chlorite are locally present. The estimated conditions of

metamorphism are P = 2-3 Rbars based on the composition of pigeonite

in the iron formations (Vaniman et al., 1980) and T = 71(PC (garnet-

biotite) to 825*C (minimum temperature of pigeonite stability at 3

Kbars) (Labotka, 1985). The hornfels aureole is truncated by a splay

of the Mill Creek-Sti l lwater Fault Zone (Figure 7) (Geissman and

Mogk, in review). Metasediments in the Boulder River area (Weeks,

1981), on the south side of this f au l t , have mineral assemblages,

penetrative deformation, calculated pressures and temperatures, and

whole-rock c h e m i s t r i e s more characterist ic of the regionally

metamorphosed schists described in the Lake Plateau area. Labotka

(1985) has recently reported fine-grained garnet, staurolite, and

chlorite in this area. The St i l lwater Complex and its associated

aureole have been tectonical ly emplaced against the Beartooth

Mountains shortly a f te r the t ime of crystal l izat ion of the complex

(2700-2720 Ma) and prior to the emplacement of the 2700 Ma old Mouat

Quar tz Monzonite (Mogk and Geissman, 1984; Geissman and Mogk, in

review).

Summary of the Archean Geology of the Beartooth Mountains

The Beartooth Mountains have evolved through at least two

orogenic cycles separated by long periods of tectonic quiescence

during the mid to late Archean (Mogk et al., 1984; Mueller et al.,

1985). P la t form-type sediments in the Quad Creek and Hellroaring

Plateau areas which have been metamorphosed to granulite grade are the

only remnants of the f i rs t cycle, recorded at 3.4 Ga. Deep burial of



these sediments is interpreted as the result of deep burial by

continental collision. A second orogenic cycle involved both magmatic

and tectonic thickening of the crust. Generation of andesitic rocks

occurred at about 2.8 Ga and voluminous granitoids were emplaced at

2.75 Ga in the central Beartooth Mountains. These rocks are

interpreted to be subduct ion-related (Mueller et al., 1985).

Tectonic th icken ing in the N o r t h S n o w y Block is r o u g h l y

contemporaneous with the magmatic activity of the central Beartooth

Mountains. The metasupracrus ta l rocks of the Beartooth Mountains

exhibit a broad range of metamorphic grade, s tructural style, and

whole-rock chemistry, suggesting that they were derived from a variety

of source areas and experienced independent geologic histories

(Mueller et al., 1984; Mogk et al., in review).

OVERVIEW OF THE WESTERN WYOMING PROVINCE

The m o b i l e be l t in the N o r t h Snowy Block marks a m a j o r

discont inui ty in the nature of the Archean continental crust of the

northern Wyoming Province (Figure 1). Rocks to the west of this

mobile belt include vast expanses of quartzofeldspathic gneiss with

interlayered maf i c granul i te and ex t ens ive p l a t f o r m - t y p e

sediments. Metamorphism is dominantly in the upper amphibolite to

granulite facies . Isoclinal folding on all scales and nappe

emplacement characterize the regional structural style. Recognizable

plutonic rocks are restricted to one narrow belt in the Spanish Peaks
*v

area. Rocks wi th oceanic a f f i n i t y are also absent in the northern

Wyoming Province; there are no greenstone belt associations similar to

those observed in the southern Wyoming Province and the sediments are



distinctly of platform-type as opposed to an eugeoclinal assemblage.

A model is proposed that calls for early development of a rift-bounded

ensialic basin, or Tetbyan-type basin with only limited generation of

oceanic crust , fol lowed by deep burial of sediments by means of

tectonic thickening (A-type subduction). The following summarizes

the major features of the exposures of Archean basement in an east-

west cross progression.

A. Northern Gallatin Range

The northern Gallatin Range consists dominantly of a variety of

q u a r t z o f e l d s p a t h i c gne i s ses , w i t h s u b o r d i n a t e layers o f

orthoquartzite and pelitic schists, and meter-scale boudins of mafic

granulite. Compositional layering on a centimeter scale is defined

by wide variations of modal abundances of microcline and plagioclase

and color index. This fine-scale layering and the association of

quartzites and pelites strongly suggests that these rocks are derived

from supracrustal assemblages. Metamorphism is in the upper

amphibolite facies to hornblende granuli te facies. The dominant

assemblage in m a f i c layers is: clinopyroxene-garnet-hornblende-

plagioclase-quartz+/-scapolite. Garnet-clinopyroxene temperatures

in maf i c granuli tes (Ellis and Green, 1979; Dahl 1980) yield

temperatures of 700-75CPC. Orthopyroxene is also recognized in

centimeter-scale m a f i c layers in the quar tzofe ldspa th ic gneisses.

Garnet-biotite temperatures in the gneissic and schistose layers also

yield temperatures of 700-750%C. Within the quar tzofe ldspathic

gneisses there are numerous layers of both concordant and discordant

remobilized granit ic leucosome. These are interpreted as anatect ic

melts, produced in response to vapor-absent melting during granulite

facies metamorphism. The granulite facies assemblages are overprinted



by amphibolite facies assemblages; no new structural elements are

recognized in this area so the amphibolite event is interpreted as

part of the retrograde path of this metamorphic cycle.

B. Spanish Peaks Area, Northern Madison Range

The Spanish Peaks area has many of the same components recognized

in the Gallatin Range. Migmatitic gneiss-granulite associations are

present in both the Gallatin and Madison River Canyons. The lithologic

sequence, metamorphic grade, and structural style observed in these

areas are identical to those reported above. However, in addition, a

mesozonal batholithic complex is present in the central part of the

range (Salt and Mogk, 1985). The batholithic terrain is separated

from the high-grade metasupracrustal terrains by NE-trending ductile

shear zones. The intrusive phases follow a differentiation trend from

gabbro- quartz diorite-monzodiorite-granodiorite-granite; only the

late-stage granites are unfol ia ted. Magmat ic epidote has been

observed suggesting intrusion of these plutonic rocks under 8 Kbars

p
H20* The host rock is dominantly tonalitic gneisses with subordinate

pelitic layers and maf ic granulites. The pelitic gneisses are

kyan i t e bea r ing ; g a r n e t - b i o t i t e and c l i nopyroxene -ga rne t

geothermometry yields t e m p e r a t u r e s of 6 5 0 - 7 0 0 X C and garne t -

plagioclase-quartz-kyanite geobarometry indicates pressures in the

range of 7-8 Kbar .

W e s t o f the b a t h o l i t h i c t e r r ane the pa r agne i s se s a re

characteristically K-rich. In the pelitic rocks sillimanite replaces

kyanite as the stable a luminosi l icate polymorph, and amphiboli te

assemblages replace the mafic granulites. Calculated temperatures are

somewhat higher in this terrane, in the range of 680-750NC and



pressu res are lover , in the range of 6-7 K b a r s . There is a

conspicuous absence of plutonic phases in this terrane, as veil. The

apparent break in metamorphic grade, and lithologic sequences

suggests large scale displacements along the ducti le shear zones;

dominant dovn-dip lineations suggest that juxtaposit ion occurred

along thrust faults.

C. Tobacco Root and Ruby Ranges

Extensive platform-type metasedimentary rocks, including,

marble, pelitic schists, banded iron formation, and orthoquartzites,

are exposed in these ranges. Quartzofeldspathic gneisses are still the

most abundant rocks, vith both plagioclase- and K-spar rich varieties,

and maf i c granulites and metau l t ramaf i tes are also present (e.g.

Cordua, 1973; Vitaliano et al., 1979; Garihan, 1979; Desmairais,

1980). Isoclinal folding is present on all scales, and detachment

along at tenuated limbs has resulted in nappe emplacement . This

sequence has also attained upper amphibolite to granulite facies grade

metamorphism. Diagnostic assemblages include:

olivine-diopside-scapolite-phlogopite-calcite-dolomite (marble)

garnet-biotite-kyanite-sillimanite-plagioclase (pelitic schist)

garnet-orthopyroxene-quartz-magnetite-retrograde grunerite (BIF)

olivine-orthopyroxene-spinel (ultramafites)

garnet-clinopyroxene-plagioclase-hornblende (metabasites)

Garnet bioti te temperatures are in the range of 700-800XC (Mogk,

unpubl data) as are garnet - clinopyroxene temperatures (Dahl, 1979,

1980). Pressure estimates based on the garnet-aluminosilicate-quartz-

plagioclase barometer are on the order of 7 Kbars.



D. Blacktail Range

West of the above platform-type assemblages the dominant rock

type is again quar tzofe ldspath ic gneiss wi th a vide range of

p l a g i o c l a s e / K - s p a r ra t ios and color index. These gne i sses

characteristically have at tained a granoblastic texture and the

fol lowing mineral assemblages have been recognized in discrete

centimeter-scale layers:

plag-k-spar - qtz

biotite-garnet-k-spar-quartz

biotite-cordierite-sillimanite-plagioclase-qtz

hbld-cpx-plagioclase-qtz-garnet+/-orthopyroxene

These gneisses are interpreted as a supracrustal sequence originally

comprised of arkoses, graywackes, mafic sills or flows, and possibly

felsic volcaniclastic sediments (Clark and Mogk, 1985 and 1986).

Evolution of the western Wyoming Province

To the west of the Beartooth Mountains, during the interval 2.75-

2.70, crustal evolution was dominant ly through tectonic thickening.

A working model for the evolution of this terrane includes early

formation of a rift-bounded ensialic basin, with possible formation of

a small amount of oceanic crust, followed by collapse of this basin

and u l t i m a t e deep bu r i a l t h rough s t ack ing of nappes . The

quar tzofe ldspathic gneisses have been interpreted as paragneisses

based on fine-scale c o m p o s i t i o n a l l aye r ing and the i n t i m a t e

interlayering of pelitic and quartzitic units. It is significant to

note that these are the oldest K-rich gneisses (sediments) recognized



in this area. Presumably they vere once arkoses derived from an

erogenic terrain similar to those found in the Beartooth Mountains,

rich in late-Archean silicic volcanic and plutonic rocks. The mafic

rocks have been interpreted as continental quartz tholeiites (e.g.

Hanley, 1976) and probably occurred originally as flows or sills in

the supracrustal pile. The platform-sediments must have been

deposited in the basin during a long period of quiescence. The

structural style and high metamorphic grade now observed in these

rocks requires large scale horizontal shortening and deep burial of

these supracrustal rocks. Continental collision is the most

reasonable process, as suggested by Newton and Perkins (1982). No

direct evidence of ancient oceanic crust is preserved in the northern

Wyoming Province. There is a distinct lack of large volumes of

mafic rocks or eugeoclinal sediments preserved in this area (in

contrast to characteristic greenstone belt assemblages). However,

the batholithic rocks in the Spanish Peaks area may be a remnant of a

magmatic arc generated in response to consumption of a small oceanic

basin. The absence of platform sediments in the ranges to the far

west of the Wyoming Province (and dominance of quartzofeldspathic

gneisses ) suggests that there was another sialic clastic source to

the west which we do not now recognize. This phantom sialic source

area could simply represent the western margin of the basin,

another colliding continental mass (in a Tethyan-type setting), or a

colliding island arc (e.g. Cheyenne Belt, Wyoming; Karlstrom and

Houston, 1985). Figure 9 presents a schematic east-west cross section

of the northern Wyoming Province, highlighting the salient properties

of each of the major ranges.



SUMMARY

With in the Archean basement of southwestern Montana crustal

evolution has occurred by means of both tectonic and magmat i c

processes. Discrete metamorph ic /de format iona l cycles have been

followed by long periods of quiescence and deposition of platform-type

sediments. The best documented orogenic events recorded in the

Archean basement of southwestern Montana include:

1) Granulite grade metamorphism of platform-type sediments at a

time of 3.4 Ga in the Quad Creek and Hellroaring Plateau areas of the

Beartooth Mountains; deep burial of these sediments is interpreted as

the result of tectonic thickening.

2) Generat ion of 2.8 Ga old andesites and voluminous 2.75 Ga

granitoids in the eastern and central Beartooth Mounta ins , and

c o n t e m p o r a n e o u s t ec ton ic th i cken ing by m e a n s of th rus t and

transcurrent faulting in the North Snowy Block.

3) Deposition of thick supracrustal sequences in the western

Wyoming Province, fol lowed by large-scale crustal shortening and

granulite-grade metamorphism of platform-type sediments in the latest

Archean (ca. 2.70-2.75 Ga); this style of orogeny is interpreted to

be the result of continental collision.

Based on these observation, we propose that in the latest Archean

that continental growth occurred through processes analogous with

those of contemporary-style plate tectonics. The ancient rocks

recognized in the Beartooth Mountains , incuding the 3.6 Ga old

t rondhjemi t ic gneiss in the North Snowy Block and the 3.4 Ga old

metasupracrustal sequences in the Quad Creek and Hellroaring Plateau



areas, are remnants of the oldest continental material recognized in

the Wyoming Province. The orogeny that occurred between 2.8 Ga and

2.75 Ga in the Beartooth Mountains produced large volumes of igneous

rocks through subduction-related processes (Mueller et al., 1985) and

the North Snowy Block has many aspects of a modern Cordilleran-type

continental margin (Mogk et al., in review). Orogenesis continued to

the west of the Beartooth Mountains in the latest Archean and

continental collision is believed to be the culminating event in this

cycle. The evolution of the continental crust of the Northern Wyoming

Province has occurred through late Archean magmatic and tectonic

accretion to an ancient sialic continental nucleus.

The metamorphic petrology and structural relations observed in

the northern Wyoming Province have implications for the nature of the

Archean continental crust in general. The pressures and temperatures

calculated in the granulite-grade mineral assemblages in supracrustal

rocks requires deep burial of these rocks on the order of 20-25 Km as

far back as 3.4 Ga in the Earth's history. This requires that thick,

continental crust must have been developed, at least locally, early in

the geologic record. The widespread occurrence of p la t form- type

sediments in these high-grade terrains requires long periods of

tectonic quiescence, calling into question the concept of the Archean

"permobile" tectonic regime. Finally, the temperatures and pressures

of metamorphism recorded in these Archean rocks are similar to those

observed in modern orogens, suggesting that the mechanism for

dissipation of the Earth's internal heat has been fundamen ta l ly the

same throughout the history of the Earth.



ACKNOWLEDGEMENTS

This research has been supported by the NSF-EPSCOR program and

the NASA Early Crustal Genesis project (DWM). DJH would like to

acknowledge support by the National Research Council for the early

stages of this study. Paul A. Mueller and Joseph L. Wooden have

contributed substantially to the ideas presented in this paper through

numerous years of collaboration.



REFERENCES CITED

Barker, F., Ar th , J. G., and Millard, H. T., Jr., 1979, Archean

trondhjemites of the southwestern Bighorn Mountains, Wyoming: a

preliminary report: In: F. Barker (ed.), Trondhjemites, Dacites

and Related Rocks, Elsevier: Amsterdam, pp 401-414.

Bentley, R. D., 1967, Geologic evolution of the Beartooth Mountains ,

Montana and Wyoming, Part 9. The Cloverleaf Lakes area. PhD

dissertation, Columbia University, New York, pp. 153.

Burnham, R.L., 1982, Mylonit ic basement rocks in the Yankee Jim

Canyon and Sixmile Creek areas, Park County, Montana: Geol. Soc.

Amer. Rocky Mountain Section Abstr. w. Progr., 305.

Butler, J. R., 1966, Geologic evolution of the Beartooth Mountains ,

Montana and Wyoming, Part 6. The Cathedral Peak Area, Montana:

Geol. Soc. Amer. Bull., 77, 45-64.

Butler , J. R., 1969, Origin of Precambrian granite gneisses in the

Beartooth Mountains, Montana and Wyoming. In: L. H. Larsen

(ed.), Igneous and Metamorphic Geology, Geol. Soc. Amer. Memoir

115, 73-101.

Casella, C. J., 1964, Geologic evolution of the Beartooth Mountains ,

Montana and Wyoming. Part 4. Relat ionship between Precambriand

and Laramide structures in the Line Creek area: Geol. Soc. Amer.

Bull., 75, 969-984.

Casella, C. J., 1969, A review of the Prewcambrian geology in the

eastern Beartooth Mountains, Montana and Wyoming, In: L. H.

Larsen (ed.) Igneous and Metamorphic Geology, Geol. Soc. Amer.

Memoir 115, 53-71.



Casella, C.J., Levay, E.E. Hirs t , B., H u f f m a n , K., Laht i , V., and

Metzger , R., 1982, Precambrian geology of the southwestern

Beartooth Mounta ins , Yel lowstone National Park, Montana and

Wyoming. In: Mueller , P. A. and Wooden, J. L., eds., Precambrian

Geology of the Beartooth Mountains, Montana and Wyoming, Mont.

Bur. Mines and Geol. Sp. Publ. 84, 1-24.

Chat te r jee , N. D. and Froese, E., 1975, A thermodynamic study of the

pseudobinary join muscovite-paragonite in the system KAlSi308-

NaAlSi308-A1203-Si02-H20: Amer. Min., 60, 985-993.

Clark, M. L., and Mogk, D. M., 1985, Development and s ignif icance of

the Blacktail Mountains Archean metamorphic complex, Beaverhead

County, Montana: Geol. Soc. Amer. Rocky Mtn. Section Meet ing

Progr. w. Abstr. , Boise.

C la rk , M., and M o g k , D . W., 1986, E v o l u t i o n of the A r c h e a n

Metasupracrustal Sequence, Blacktail Mountains, Montana: Geol.

Soc. Amer. Rocky Mountain Section Progr. w. Abstr., Flagstaff.

Condie, K. C., 1976, The Wyoming Archean Province in the western

United States, In: B. F. Windley (ed), The Early History of the

Earth, Wiley: London, pp 499-511.

Cordua, W. S., 1976, Precambrian geology of the southern tobacco Root

Mountains , Madison County, Montana : PhD dissertat ion, Indiana

University, 247 p.

Dahl, P. S., 1979, Comparative geothermometry based on major element

and oxygen isotope distributions in Precambrian metamorphic rocks

from southwestern Montana: Am. Mineral., 64, 1280-1293.



Dahl, P. S., 1980, The thermal-composit ional dependence of Fe^ ~ M8

d i s t r i b u t i o n s b e t w e e n coex i s t ing ga rne t and pyroxene:

appications to geothermometry: Am. Mineral., 65, 852-866.

Desmarais, N.R., 1980, Metamorphosed Prwecambrtian ultramafic rocks

in the Ruby Range, Montana: Precambrian Research, 16, 67-101.

Eckelmann, F. D., and Poldervaart, A., 1957, Geologic evolution of the

Beartooth Mountains, Montana and Wyoming, Part 1. Archean history

of the Quad Creek area: Geol. Soc. Amer. Bull., 68, 1225-1262.

Ellis, D. J., and Green, D. H., 1979, An experimental study of the

e f f e c t of Ca upon garnet-clinopyroxene exchange equilibria:

Contrib. Mineral. Petrol., 71, 13-22.

Erslev, E.A., 1983, Pre-Beltian Geology of the Southern Madison Range

Southwestern Montana: Montana Bureau of Mines and Geology,

Memoir 55, p. 1-26.

Evans, B. W., 1977, M e t a m o r p h i s m of a lp ine p e r i d o t i t e and

serpentinite: Ann. Rev. Earth Planet. Sci., 5, 397-447.

Ferry, J. M., and Spear, F. S., 1978, Experimental calibration of

the part i t ioning of Fe and Mg between biot i te and garnet:

contrib. Mineral. Petrol., 66, 113-117.

Foose, R. M., Wise, D. D., anmd Garbarini, G. S., 1961, Structural

geology of the Beartooth Mountains, Montana and Wyoming: Geol.

Soc. Amer. Bull., 72, 1143-1172.

Garihan, J. M., 1979, Geology and structure of the central Ruby Range,

Madison County, Montana. Geol. Soc. Amer. Bull., Part II, 90,

695-788.



Geissman, J. W., and Mogk, D. W., in review, Late Archean tectonic

emplacement of the Stillwater Complex along reactivated basement

structures, northern Beartooth Mountains, southern Montana, USA:

Proceedings VI International Conference on Basement Tectonics.

Ghent, E. D., 1976, Plagioclase-garnet-A12Si05-quartz: a potential

geobarometer-geothermometer: Am. Mineral., 61, 309-340.

• Guy, R. E. and Sinha, A. K., 1985, Petrology and isotopic geochmistry

of the Archean basement lithologies near Gardiner, Montana: Geol.

Soc. Amer. Abst. w. Progr., 17, 601.

Hallager, W. S., 1984, Geology of gold-bearing metasediments near

Jardine, Montana, In: R. P. Foster (ed), Gold 82: The Geology,

Geochemistry and Genesis of Gold Deposits, Balkema: Rot te rdam,

191-218.

Hanley, T. B., 1976, Stratigraphy and structure of the central faul t

block, nor thwestern Tobacco Root Mounta ins , Madison County,

M o n t a n a : The Tobacco Root G e o l o g i c a l Society 1976 Field

Conference Guidebook, Mont. Bur. Mines and Geol. Sp. Publ., 73,

7-14.

Harris, R. L. Jr., 1959, Geologic evolution of the Beartooth

Mounta ins , Montana and Wyoming, Part 3: Gardner Lake Area,

Wyoming: Geol. Soc. Amer. Bull., 70, 1185-1216.

Henry, D.J., Muel ler , P.A., Wooden, J.L., Warner , J.L., Lee-Berman,

R., 1982, Granulite grade supracrustal assemblages of the Quad

Creek a rea , e a s t e r n B e a r t o o t h M o u n t a i n s , M o n t a n a . In :

Muel ler , P.A., and Wooden, J. L., eds., Precambrian Geology of



the Beartooth Mountains, Montana and Wyoming, Montana Bureau of

Mines and Geology Sp. Publ. 84, p. 147-159.

Holdaway, M. J., 1971, Stability of andalusi te and the a luminum

silicate phase diagram: Amer. Jour. Sci., 271, 97-131.

James, H.L., and Hedge, C.E., 1980, Age of the basement rocks of

southwest Montana: Geol. Soc. Amer. Bull, v. 91, p. 11-15.

***Karlstrom and Houston, 1984 , Cheyenne Belt, Precambrian Research

Khoury, S. G. and Ghaly, T. S., 1973, Geological evolution of the

Archean basement in the Long Lake area, Beartooth Mountains:

Earth Sci., 1, 1-15.

Labotka, T. C., 1985, Petrogenesis of the metamorphic rocks beneath

the S t i l l va t e r C o m p l e x : a s s e m b l a g e s and cond i t ions of

metamorphism, In: G. R. Czamanske and M. L. Zientek (eds), The

Stillvater Complex, Montana: Geology and Guide, Montana Bureau

of Mines and Geology Sp. Publ. 92, 70-76.

Larsen, L. H., Poldervaart , A., and Kirchmeyer , M., 1966, Geologic

evolution of the Beartooth Mountains, Montana and Wyoming, Part7.

Structural Homogeneity of gneisses in the Lonesome Mountain

area: Geol. Soc. Amer. Bull., 77, 1277-1292.

Lonker, S. W., 1981, The P-T-X relations of the cordierite-garnet-

sillimanite-quartz equilibrium: Am. Jour. Sci., 281, 1056-1090.

Mogk, D. W., 1984, Petrology, Geochemistry and Structure of an Archean

Terrane in the North Snowy Block, Beartooth Mountains, Montana.

PhD Dissertation, University of Washington, Seattle.

Mogk, D. W., and Geissman, J. W., 1984, The St i l lwater Complex is

allochthonous: Geol. Soc. Amer. Ann. Meet. Progr. w. Abstr. , Reno.



Mogk, D. V., Mueller, P. A., and Wooden, J. L., 1984, Secular

variation in Archean tectonic style, Beartooth Mountains,

Montana: EOS, 65, 230.

Mogk, D. W., Mueller, P. A., and Wooden, J. L., in review, Tectonic

aspects of Archean continental development in the North Snowy

Block, Beartooth Mountains, Montana.

Montgomery, C. W., Kirsling, T. J. and Gray, B. A., 1984, Ages and Sr

and 0 isotope systematics of Archean granitic gneisses of the

south-central Beartooth Mountains: Geol. Soc. Amer. Abet. w.

Progr., 16, 599.

Mueller, P. A., Wooden, J. L., Odom, A. L. and Bowes, D. R., 1982,

Geochemistry of the Archean rocks of the Quad Creek and

Hellroaring Plateau areas of the eastern Beartooth Mountains:

Montana Bureau of Mines and Geology Sp. Publ., 84, 69-82.

Mueller, P. A., Mogk, D. W., Wooden, J. L., Henry, D. J. and Bowes,

D. R., 1984, Archean metasedimentary rocks from the Beartooth

Mountains: Evidence for accreted terrane?: Geol. Soc. Amer. Abst.

w. Progr., 16, 602.

Mueller, P. A., Wooden, J. L., Henry, D. J., and Bowes, D. R., 1985,

Archean crustal evolution of the eastern Beartooth Mountains,

Montana and Wyoming: In: Czamanske, G.R., and Zientek, M. L.,

eds., Stillwater Complex, Montana Bureau of Mines and Geology Sp.

Publ., 92, 9-20.

Nabelek, C. R. and Lindsley, D. R., 1985, Tetrahedral Al in amphibole:

a potential thermometer for some mafic rocks: Geol. Soc. Amer.

Abst. w. Progr., 17, 673.



Newton, R. C., 1983, Geobarometry of high-grade metamorphic rocks:

Am. Jour. Sci., 283-A, 1-28.

Newton, R. C., and Perkins, D., 1982, Thermodynamic calibration of

geobarometers based on the assemblages garnet-plagioclase-

orthopyroxene (clinopyroxene)-quartz: Am. Mineral., 67, 203-222.

Page, N. J., 1977, St i l lwater Complex, Montana: rock succession,

metamorphism and structure of the complex and adjacent rocks: U.

S. Geol. Surv. Prof. Paper 999, 79 p.

Page, N. J., .and Zientek, M. L., 1985, Petrogenesis of the metamorphic

rocks benea th the S t i l l w a t e r C o m p l e x : l i t ho log ie s and

structures , In: G. K. Czemanske and M. L. Zientek (eds), The

Stillwater Complex, Montana: Geology and Guide, 55-69.

Page, N. J., S imons , F. S., and D o h r e n w a n d , J. C., 1973a,

Reconnaissance geologic map of the Mount Douglas quadrangle,

Montana: U. S. Geol. Surv. Miscellaneous Field Studies Map MF-

488, scale 1:62500.

Page , N. J., S imons , F. S., and D o h r e n w a n d , J. C., 1973b,

Reconnaissance geoligic map of the Mount Wood Quadrangle,

Montana: U. S. Geol.Surv. Miscellaneous Field Studies Map MF-491,

scale 1:62500.

Peterman, Z. E., 1981, Dating of Archean basement in northeastern

Wyoming andsouthern Montana. Geol. Soc. Amer. Bull, Part I, 92,

139-146.

Pitcher, W. S., 1982, Granite type and tectonic environment, In: K.

J. Hsu (ed), Mountain Building Processes, Academic Press:London,

19-40.



Plyusn ina , L. P., 1982, G e o t h e r t n o m e t r y and g e o b a r o m e t r y of

plagioclase-hornblende bearing assemblages: Contrib. Mineral.

Petrol., 80, 140-146.

Prinz, M. J., 1964, Geologic evolution of the Beartooth Mountains ,

Montana and Wyoming, Part 5. Mafic dike swarms of the southern

Beartooth Mountains: Geol. Soc. Amer. Bull., 75, 1217-1248.

Reid, R.R., McMannis , W.J., and Palmquist , J.C., 1975, Precambrian

geology of the North Snowy Block, Beartooth Mountains, Montana.

Geol. Soc. Amer. Sp. Pap. 157, p. 1-135.

Richmond, D.P., and Mogk, D.W., 1985, Archean Geology of the Lake

Plateau Area, Beartooth Mountains , Montana: Geol. Soc. Amer.

Rocky Mtn. Section Abstr. w. Progr., Boise.

Rowan, L. C., 1969, Structural geology of the Quad-Wyoming-Line Creeks

area, Beartooth Mountains , Montana: Geol. Soc. Amer. Mem., 115,

1-18.

Rowan, L. C., and Mueller , P. A., 1971, Relations of folded dikes and

Precambrian polyphase deformation, Gardner Lake area, Beartooth

Mountains, Wyoming: Geol. Soc. Amer. Bull., 82, 2177-2186.

Salt, K.J., and Mogk, D.W., Dept. of Earth Sciences, 1985, Archean

Geology of the Spanish Peaks Area, Southwestern Montana: Geol.

Soc. Amer. Rocky Mtn. Section Progr. w. Abstr., Boise.

Skinner, W. R., Bowes, D. R., and Khoury, S. G., 1969, Polyphase

deformation in the Archean basement complex, Beartooth Mountains,

Montana and Wyoming: Geol. Soc. Amer. Bull., 80, 1053-1060.

Spear, F. S., 1980, NaSi=CaAl exchange equilibrium between plagioclase

and amphibole: Contrib. Mineral. Petrol., 72, 33-41.



Spear, F. S., 1981, An experimental study of hornblende stability and

compositional variabili ty in amphibole: Amer. Jour. Sci., 281,

697-734.

Speer, J. A., 1984, Micas in igneous rocks, In: S. W. Bailey (ed),

Reviews in Mineralogy, Volume 13, Micas, 299-356.

Spencer, E. W., 1959, Geologic evolution of theBeartooth Mountains,

Montana and Wyoming, Part 2. Fracture Patterns: Geol. Soc. Amer.

Bull., 70, 467-508.

Spencer, E.W., and Kozak, S.V., 1975, Precambrian evolution of the

Spanish Peaks, Montana: Geol. Soc. Amer. Bull, 86, 785-792.

Thompson, A. B., 1976, Mineral reactions in pelitic rocks II.

Calculation of some P-T-X (Fe-Mg) phase relations: Am. Jour.

Sci., 276, 425-454.

Thompson, A. B. and Algor, J. B., 1977, Model systems for anatexis of

pelitic rocks I. Theory of melting reactions in the system KA102-

NaA102-A1203-Si02-H20: Contrib. Mineral. Petrol., 63, 247-269.

Timm, R. W., 1982, Mineralogy and petrology of some metasedimentary

xenoliths in granitic gneisses of the Broadwater River area,

Beartooth Mountains, Montana, In: P. A. Mueller and J. L. Wooden

(eds), Precambrian Geology of the Beartooth Mountains, Montana

and Wyoming, Mont. Bur. Mines and Geol. Spec. Publ. 84, 25-40.

Vaniman, D. T., Papike, J. J., and Labotka, T. C., 1980, Contact

metamorhic effects of the Stillwater Compoex, Montana: the

concordant iron formation: Am. Mineral., 65, 1087-1102.



Vitaliano, C.J., Cordua, W.S., Hess, D.F., Burger, H.R., Hanley, T.B.,

Root, F.K., 1979, Explanatory text to accompany geologic map of

southern Tobacco Root Mountains, Madison County, Montana. Geol.

Soc. Amer. Map and Chart series, MC-31.

Warner, J. L., Lee-Berman, R., Simonds, C. H., 1982, Field and

petrologic relations of some Archean rocks near Long Lake,

eastern Beartooth Mountains, Montana and Wyoming, In: P. A.

Mueller and J. L. Wooden (eds), Precambrian Geology of the

Beartooth Mountains, Montana and Wyoming, Mont.Bur. Mines and

Geol. sp. Publ. 84, 57-68.

Weeks, G., 1981, Precambrian geology of the Boulder River area,

Beartooth Mountains, Montana. MS thesis, University of Montana,

Missoula.

Wilson, J. T., 1936, Geology of the Mill Creek-Stillwater area,

Montana. PhD Dissertation, Princeton, New Jersey, 202 pp.

Windley, B. F., 1977, The Evolving Continents. Wiley: London, 385 pp.

Wooden, J. L., Mueller, P. A., and Mogk, D. W., this volume, A Review

of the Geochemistry and Geochronology of the Beartooth Mountains,

Montana.

Zen, E-An, and Hammarstrom, J. M., 1984, Magmatic epidote and its

petrologic significance: Geology, 12, 515-518.



Table 1

Typical granulite and amphibolite (retrogressed) mineral assemblage
of the supracrustal lithologies

Lithology

Quartzite

Pelitic schist

Pyr ibolite

Amphibolite

Iron formation

Dltramafite

Granulite assemblage

Qz+biot+opx+plag(1)
Qz+biot+cord+sill

Qz+biot+plag+ksp+sill
Qz+biot+gar+cord+sill+plag
Qz+biot+plag+sill+cord

Qz+biot+plag+hb+gar+opx+cpx
Qz+biot+plag+hb+opx
Qz+biot+plag+cord+opx

Amphibolite assemblage

Qz+biot+hb+plag

Qz+biot+plag+mu+sil1

Qz+mt+gar+opx+cpx+hb
Qz+mt+gar+opx

Hb+opx+gr sp
01+opx+hb+gr sp

Qz+biot+hb+plag
Hb+plag
Qz+biot + plag + cord + antl

Qz+mt+grun

Anth+biot+hb

(1) Abbreviations used: anth = anthophy11ite/ biot = biotite/ cord
cordierite/ cpx = c1inopyroxene/ gar = garnet/ gr sp = grei
spinel/ grun = grunerite/ hb = hornblende/ ksp = K feldspar/ i
= magnetite/ mu = muscovite/ ol = olivine /opx = orthopyroxeni
plag = plagioclase/ Qz = quartz/ sill = sillimanite



Table 2

Mineral assemblages of the lithologic units of the Long Lake area

Unit Mineral assemblage/

Long Lake g ran i t e Q z + b i o t + p l a g + m t + k s p

Long Lake g r a n o d i o r i t e Q z + b i o t + p l a g + m t + / - k s p

A n d e s i t i c amph ibo l i t e H b + p l a g + q z + b i o t + m t + e p i d + s p h + / - k s p

P e g m a t i t e Q z + k s p + / - p l a g + / - m u

A b b r e v i a t i o n s u s e d : b i o t = b i o t i t e / e p i d = e p i d o t e / h b
h o r n b l e n d e / ksp = K f e l d s p a r / mt = m a g n e t i t e / mu = m u s c o v i t <
plag = p l ag ioc l a se / qz = q u a r t z / sph = s p h e n e



Table 3 Characteristics of the Lithologic Units of the North Snowy Block

Unit

Heterogeneous
Gneiss

Pine Creek
Nappe Complex

Trondhjemite-
Amphibolite
Complex

Davis Creek
Schist

Mount Cowcn
Augen Gneiss

Faragneiss

Metamorphic Grade

Upper amphibolite
6 50-700 °C (gar-bio)

Mid- Upper-
Amphibolite
600-650°C (gar-bio)

Epidote-oligoclase zone
500°C, coexisting
albite-oligoclase

Greenschsit Facies
chlor-musc-albite-qtz

Greenschist Faciea

Upper amphibolite
700°C (gar-bio)

Structural Style

Transposition foliation,
intrafolial isoclinal
folds

Isoclinal folding on all
scales,

Ductile shear zone,
blastomylonitic,
passive flow folds

Phyllitic, local
isoclinal fold
late-stage kinks

Granitic augen gneiss

Anastomosing shear zones,
high degree of internal
tectonic mixing

Isotopie Ages

3.4 Ga Rb-Sr whole rock
on injected migmatites

3.2 Ga Sm-Nd chondritic
model age on amphibolite

3.55 and 3.26 Ga Sm-Nd
chondritic model age
3̂.4 Ga Rb-Sr whole rock

2.74 Ga Rb-Sr whole-rock
isochron

Ga on quartzo-
feldspathic gneiss
in Yankee Jin



Figure Captions

Figure 1: Sketch map of the northern Wyoming Province showing major

exposures of Archean rocks. The North Snowy Block mobile belt

delineates a major discontinuity in the nature of the contnental crust

in this area, with dominantly rocks of igneous origin to the east and

rocks of supracrustal origin to the west.

Figure 2: Sketch map of the Archean rocks of the Beartooth Mountains,

showing the location of the areas discussed in the text: QC--Quad

Creek, HP—Hellroaring Plateau, LL—Long Lake, BR—Broadwater River,

LP—Lake Plateau, SH—Stillwater hornfe ls aureole, NSB—North Snowy

Block, YJ—Yankee Jim Canyon, J—Jardine, SSB—South Snowy Block.

Figure 3: P-T diagram showing s tabi l i ty f ie lds for Ml and M2

metamorphism based on several geothermobarometers. Reference reaction

curves are shown for aluminosi l icates (Holdaway, 1971), muscovite

breakdown (Chatterjee and Johannes, 1975), granite melting (Thompson

and Algor, 1971), Mg-chlori te and Mg-cordieri te breakdown (Evans,

1977).

Figure 4: Photomicrograph of a mafic granulite with the assemblage

game t-orthopyroxene-clinopyroxene-hornblende-plagioc las e-quart z-

biotite-magnetite.

F igu re 5: P h o t o m i c r o g r a p h of hornblende par t ia l ly replacing

orthopyroxene during the M2 metamorphic event.

Figure 6: Sketch map of part of the Nor th Snowy Block, showing

distribution of major units: 1) heterogeneous gneiss, 2)Pine Creek

nappe complex, 3) t rondhjemi t ic gneiss-amphibolite complex, 4) Davis

Creek Schist, 5) Mount Cowen Augen Gneiss, 6) paragneiss.
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