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1.0 INTRODUCTION

This is the fifth Semiannual Report submitted under Grant

NAGW-509 for the development of a Balloon-Borne Three-Meter Telescope

for Far-Infrared and Submillimeter Astronomy. It covers the period

1 September 1985 through 28 February 1986.

The Three-Meter Balloon Borne Telescope is a joint program of the

Smithsonian Astrophysical Observatory (SAO), the University of Arizona

and the University of Chicago. Under the terms of the Memorandum of

Understanding for this program, SAO is responsible for program

management and for providing the gondola structure with the attitude

control and aspect systems, mechanical systems and telemetry and

command systems; Arizona is responsible for optical design and

fabrication and Chicago is responsible for determining focal-plane

instrumentation requirements. SAO and Arizona share responsibility

for the ground support data and control computer system.

Effort at SAO and Chicago during this reporting period focused on

engineering evaluation of telescope gimbal designs. Arizona continued

its mirror development and test program using mirror test blanks from

Dornier and other sources under separate funding and will report on

its effort independently. SAO, Arizona, and Chicago met by telephone

conference during this period to coordinate activity and discuss

technical issues.
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2.0 SUMMARY OF WORK PERFORMED DURING REPORTING PERIOD

2.1 Introduction

A telescope bearing comparative study was done last year* as part

of an optimization of predicted telescope pointing performance. The

flex pivot was selected as the candidate bearing because:

1) It is frictionless;

2) It does not require a large support system (e.g., as an air

bearing with its compressor);

3) It does not release condensible vapors (such as hydraulic

oil) which are^a hazard to the telescope optics.

A preliminary mechanical design of a gimbal was done during this

reporting period based on the initial gimbal concept. We also talked

to engineers at SAO who developed a flex-pivot-based gimbal system for

a balloon spectrometer instrument and discussed their test results

with them. Problems with the flex pivot design became apparent. Its

limited rotation makes it cumbersome as an element in a gimbal system

with a large angular range and precise alignment of the flex pivots on

opposite sides of the gimbal is essential to achieving the desired

performance. In light of this, ball bearings have now been

re-examined for use as the main bearing elements.

*Fourth Semiannual Progress Report under this grant (NAGW-509)
"Balloon-Borne Three-Meter Telescope for Far-Infrared and
Submillimeter Astronomy", October 1985.
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In this report we review the drawbacks we uncovered in the

initial gimbal design, review the behavior of ball bearings in this

application and propose two candidate gimbal designs which overcome

the problems in the initial flex-pivot-based design.

2.2 Flex-Pivot-Based Design

2.2.1 Requirements -

The telescope gimbal and pointing control system design is driven

by several requirements:

1) It must be able to track objects for one hour (i.e., 15 at

the sidereal rate) with 1 arcsec RMS pointing accuracy;

2) It must be able to point the telescope to any azimuth angle

o
in a 360 circle and any elevation angle from the horizon to

the balloon obscuration angle (~ 67.5 ).

3) It must be able to place the telescope vertically during

launch and recovery operations for maximum protection of the

optics.

The 15-degree range of uncompensated sidereal rotation places

heavy demands on the flex pivot. It must support the telescope

weight, have a low linear spring rate and have a reasonable fatigue

cycle life (> 104) . A coarse positioning system is also required for

telescope celestial pointing in the elevation axis.
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2.2.2 Preliminary Design -

The preliminary global designed to achieve these requirements

consisted of two 6" diameter flex pivots, each with a large spring

constant, and a flex pivot recentering system. The recentering system

was envisioned as a standard worm and wheel acting on the gondola side

of the flex pivot. When necessary the system would be automatically

activated to unwind the flex pivot. During a slew or coarse pointing

maneuver a lock would be engaged across the flex pivot to transfer the

torque developed in the slewing maneuver across the gimbal and protect

the flex pivot from being overstressed. Slew maneuvers would be

carried out while the fine control loop was disabled. The gimbal lock

prevented free mass/spring oscillations from occurring across the flex

pivot.

2.2.3 Design Drawbacks -

The recentering system was a concern for several reasons:

1) It was another system which had to work to achieve a

successful mission;

2) Its effect on telescope stability, if it activated during

tracking, was unclear;

3) Its locking mechanism was an operational risk; it could fail

while latched, shutting down the mission.

Problems related to flex pivot hysteresis were discovered on

another SAO project. Hysteresis effects of the order of an arcminute

were observed in that application. Controlling this source of
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hysteresis and keeping its effect as low as possible require the

gimbals to be coplanar and concentric to approximately 1 arcmin and

0.001 inch, respectively. Achieving this is not possible for all

telescope load orientations in this telescope application.

2.2.4 Remedial Action -

In light of the design complications and hysteresis concerns

related to the use of flex pivots, ball bearings were re-examined as

the possible fine control bearing element. It was felt that many of

the complications encountered in the flex pivot design would be

eliminated.

2.3 Review of Ball Bearing Characteristics

2.3.1 Review Approach -

In order to compare the pointing precision of a gimbal system

using ball bearings with one using flex pivots, some ball bearing

characteristics must first be established. To do this, a general ball

bearing size was selected and the bearing behavior was calculated

under the known load conditions. The calculations drew heavily from

the SAO Multiple Mirror Telescope (MMT) design experience and

particularly on documentation by Philco/Ford from that program

regarding azimuth drive bearing selection.
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2.3.2 Results -

This review showed the following things:

1) The baseline bearing torque in this telescope is projected to

be between 0.2-0.5 Nm. This is the normal load times the

coefficient of friction acting at the bearing radius (i.e.,

TF = Wt./i.rb) .

2) Another important friction torque contribution comes from the

bearing's tendency to wobble. If the bearing is constrained,

the wobble will produce a cyclic frictional torque which adds

to the basic torque mentioned above. The phenomena of

bearing wobble is not well understood. Thus it is hard to

quantify the torque resulting from this effect. An estimate

of its torque contribution could be as high as 1.5 Nm in this

application.

3) Bearings in general exhibit a ± 10% variation in all sources

of torque while rotating.

If the only bearing effect on the controllability of the system

were the ± 10% variation in baseline torque, the ball bearing would

yield an acceptable gimbal design. This variation, when treated as

torque noise in the control models, yields a predicted pointing

performance of better than ± 1 arcsec rms where only tracking velocity

(angular rate) is controlled. Unfortunately, we must control the

tracking position of the telescope and thus must take twice the

prevailing bearing torque as the noise to the control system. This is

at its lowest 0.4 Nm, much too great to overpower and still control
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the pointing to better than 1 arcsec. We dealt with this problem

earlier by using flex pivots during fine pointing operations and

holding the main bearings fixed; now we want to look at how to

overcome this bearing noise problem directly and eliminate the flex

pivots from the main load bearing path.

2.4 A Proposed Design

2.4.1 Conceptual Approach -

A concept that utilizes the unlimited rotation of the ball

bearing yet removes its friction losses is proposed. This consists of

a ball bearing mounted directly to the telescope. The stationary side

of the bearing (i.e., the gondola side) is mounted to a torque sensor.

The measured torque indicated by the sensor is the frictional losses

developed in the bearing (if the bearing were perfect, there would be

no torque measured at its stationary side). This torque signal is fed

to a torque motor which crosses the gimbal. Its stator is mounted to

the gondola and its rotor to the telescope. The motor develops an

equal and opposite torque to the measured torque and thereby counters

the effect of the bearing noise on the telescope. The gimbal remains

in a zero torque condition with respect to the gondola and telescope.
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2.4.2 Requirements of a Successful Design -

In order to succeed this gimbal design must conform to a number

of specified and derived design requirements:

1) The torque sensor must be capable of supporting the weight of

the telescope in all orientations;

2) The sensor must have sufficient sensitivity to measure

torques to a tenth of the maximum permissible noise torque

(~.l Nm) ;

3) The sensor must have a. fast response (< 1ms) ;

4) The torque sensor must have a low enough spring constant to

permit some motion of the telescope while the ball bearing is

held up by friction. Thus for short ranges it must act like

a flex pivot;

5) The torque motor must have a linear current/torque

relationship or at least one which can be characterized and

is time invariant;

6) The friction-like magnetic losses of the torquer must be low;

7) The whole gimbal must be stiff enough orthogonal to the

gimbal axis to stay aligned.
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2.4.3 Candidate Designs -

Several candidate designs have been discussed, but they limit

themselves to two classes:

1) Use a flexure or flex pivot at the output side of the

bearing. This would be instrumented with a strain gauge to

determine torque and be calibrated and characterized to fully

specify its behavior. There is some development risk

associated with this method, but it has been done before.

2) Purchase or design a torque sensor that is capable of

supporting the 1000 pound load yet is sensitive enough to

yield the torque measurement. There are instruments like

this available on the market.

Upon review both approaches appear to be viable. No decision has

been reached on the method to employ.

2.5 System Controllability and Characteristics

2.5.1 Full System Model -

A nonlinear system block diagram is shown in Figure 1.

This is quite similar to the Figure 2.4-3 on page 53 of the

Preliminary Design Report*. The notable differences are the inclusion

of the ball bearing in the flex pivot/ball bearing block, the ball

bearing deflection, A © Bi; its accumulation shown as E A 631; and

*Fourth Semiannual Progress Report under this grant (NAGW-509)
"Balloon-Borne Three-Meter Telescope for Far-Infrared and
Submillimeter Astronomy", October 1985.
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the explicit representation of the gimbal motor's time constant. The

nature of the ball bearing deflection, which acts to reduce the

quantity (®r~Qg) > and thus the torque across the ball bearing and

sensor, is not clearly definable. It must be assumed to be nonlinear

and therefore beyond the capabilities of our present computer

modelling program. Linear modelling does provide interesting results,

though.

2.5.2 The Linear Model Configuration -

The telescope motion for most system operations will be absorbed

by the torque sensor. The torque sensor will act as a flexure since,

for small angles, the ball bearing will be locked by friction. When

the stored torque in the flexure is equal to the bearing baseline

friction, the ball bearing will rotate. There are many scenarios for

the ball bearing behavior at the time of release but the worst case is

a snap which centers the flex pivot (i.e., to zero torque). That this

is the worst case can be seen by the following scenario: If the

bearing were to relieve slowly the torque sensor would follow the

relaxation and demand less torque from the gimbal motor. Ideally this

would be transparent to the telescope as the gimbal motor would always

track the bearing torque. However, if the bearing snapped back to the

torque sensor's center point, the torque sensor and motor would not

have time to follow and the net torque on the telescope and gondola

would be that applied by the motor. The motor torque would decay to

zero as the sensor reading and motor driver electronics overcome the

motor time constant, Tm. However, the telescope would still have been

subjected to a torque pulse approximately .2-.5 Nm in height and about
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10 ms (4X the motor time constant) in duration.

A linear model can be constructed from these assumptions. It

yields a simulation of the pointing system from which worst case

performance can be judged. In that model the telescope is suspended

on a flex pivot, has two controlled torque sources, the reaction wheel

and the gimbal or ancillary motor, and yet is subjected to occasional

noise pulses of 5x10° Nms that model the ball bearing snap.

Assurance that this is a worst case system model will have to await

the results of the simulation. This will obviously not predict limit

cycle or other characteristic nonlinear behavior.

2.5.3 Possible Nonlinear Model -

In a nonlinear model the pivot/sensor torque would be compared to

the break free frictional torque of the bearing. When these torques

were equal the nonlinear representation of the bearing motion would be

triggered. This activity would take place at the A 831 node in the

block diagram representation of the system depicted in Figure 1. The

torque felt by the telescope would be given by the time -dependent

equation :

T(t) = A ê t) .KFP/9

for as long as the ball bearing deflected. The exact nature of the

model nonlinearity (as opposed to the true system nonlinearity) would

be twofold:



Page 13

1) The comparator operation between the sensor torque and the

breakfree frictional torque when it results in the switch

(i.e., the bearing breaks away; and its symmetric operation

to freeze the bearing motion); and

2) The nature of the function A 9m (t) .

However, the rest of the model and the equations will be the same

as the linear representation. The nonlinearity will only present

itself when the telescope has moved sufficiently to cause the flexure

or sensor to develop a torque equal to that of the bearing breakfree.

Q

The required angle for breakfree torque is about 1 . This depends on

the sensor spring constant and the bearing properties. The

telescope's prime operation will be tracking stars, which will be

o
rotating at 15 /hr. In their operation the nonlinearity will be

excited on the order of every 4 minutes, very infrequent when compared

to the control bandwidth of 2 Hz.

The linear model will not show any limit cycle behavior which

might result from the bearing's stiction, however, we can determine if

a limit cycle may result by looking at the system response to the

bearing noise pulse. If the telescope motion is large it may excite a

further bearing release (not shown by the linear model) and thus enter

a limit cycle. If the predicted motion is small this will not be a

problem. The linear simulation will indicate whether this is a

problem area.
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2.6 Development of System Equations

For the development of the linear equations please refer to

Appendix B of the Preliminary Design Report, which is reproduced here

as Appendix A. Referring to page 15 of the appendix we see that under

the new system model the figure of the torque summing junction is

still valid and the same as that shown here (in Figure 1 in dashed

enclosure) . In fact equations (l)+(2) of the appendix are still

valid, as far as they go.

The model for the proposed design will only change from the base

line in its control law for the gimbal motor. Thus equation (5) on

page 16 of the appendix will become:

(1)

where : TER = the flex pivot torque

(note a typo lists QRV as 6RW in the original text.)

Now TFP = KHp (6b - 61) . (2)

By adding equation (1) here to equation (1) of the appendix the

result is removal of the dependency on KFP and thus cancellation of

the effect of the flex pivot, or spring constant of the torque sensor.

Therefore, if we follow this through to page 17, equations 8-13

remain valid if we set KjP to zero.
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The same logic applies to the development in the earlier parts of

the appendix that yielded the general system equations. These remain

in force, with k (i.e., KEP) set to zero.

The ball bearing shows up as an impulse under Tn, noise torque,

to which we must determine the system response.

2.7 System Response

System response to an impulse, as described above, was simulated

using the computer program "TF" written at Stanford University. The

impulse, applied at T = 0, resulted in a maximum predicted excursion

of the telescope from its commanded position of .025 arcsec. This is

a very small angle. At this level the system behavior begins to be

quantized by the digital-to-analog converters in the gyros. Thus the

shape of response shown in Figure 2 is not a realistic image of the

true system dynamics. All resemblance to a linear system will begin

to erode on this scale. But we do see that the "snapping" of the ball

bearing has little effect on the telescope pointing.

The rest of the model behavior is nearly identical to the system

described in the preliminary report. The Linear Ball Bearing/Sensor

model predicts that the telescope is completely isolated from the

gondola. This is different from the earlier system model in which the

telescope was explicitly coupled to the gondola behavior by the flex

pivot. In practice, the gondola will excite some telescope motion

through the nonlinearities in the gimbal.
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3.0 RESEARCH PLANNED FOR NEXT REPORTING PERIOD

We plan to continue studies which will lead to determination of

system component specifications. A reaction wheel and gimbal motor

will be selected and characterized and the system response to these

characteristics assessed. Finally, an accurate model of the ball

bearing release mechanism must be developed, a goal that will probably

require experimentation that is beyond the scope of the present grant

but which is under consideration for next year's activity.

PAGE BLANK NOT FILMED
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Pointing Control System Servomechanism Analysis
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Glossary of Symbols

0 Angular command (desired pointing) of mirror assembly with respect to
inertial space

0 Angular response (actual pointing) of mirror assembly with respect to
m inertial space

e Angular pointing error of mirror assembly

Jt, Moment of inertia of momentum wheel
W

"£„„, Torque developed by momentum wheel torque motor

J Moment of inertia of mirror assembly
m }

T External torque applied to mirror assembly

k Spring rate of flex-pivot suspension of mirror assembly [torque units
per radian]

T Torque developed by ancillary torque motor

8 Angular position of Horseshoe gimbal with respect to local vertical
n

J Moment of inertia of Horseshoe gimbal

to Frequency of angular vibration of Horseshoe gimbal [rad/sec]

S Laplace operator

•

0 Angular velocity of momentum wheel with respect to inertial space
W

K1 Ancillary torque motor conversion gain [torque units per rad/sec]

AK Amplifier-Torque motor constant [torque units per radian]

T, Lead time constant of lead/lag network

T- Lag time constant of lead/lag network

applied Total systemic torque applied to the pendulous Horseshoe gimbal (reaction
of ancillary torque motor and flex-pivot)

T Torque Noise (bearing torque noise, motor cogging, etc.)
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TACHOMETER MEASURE OF
MOMENTUM WHEEL SPEED
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System Dynamics Equation is:

T,S+1
-k

T S+l
k + T̂ s+T AK-

K ,
K [(s2+4)vk]

0m

0H

O^S+l
3^ + T 4.c ext

1,3+1

T2S+1 r JWS c

Determinant is:

A(S) = (JmVH Hk)
J,,k } S'

K'J

which can be recast in form of:

S(T2S+1)

Stable!
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Full System Response to Pointing Command

T S+l

ext

T,S+1
•I

0 =
m

A(S)

or

-k

0 =
m A(S)

2
H) JH ̂ T W

T S+l

.2. .2
)JH+k ext

Final value of mirror pointing is:

0m
s. s.

= Lim S0 (S) = Limm

S+o

K'

ext
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or

0 = Lim
m c c 2 K'J

S'S- S+o "H -—^AK
JW T

S + K:\JvJ
kAKS

<4JH+k ext

W

= 0

K'J

with zero final error even with torsional

flex-pivots, external torque, and disturbing

horseshoe-motion coupling.
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m

T. + k 9
M m

'M

TjS+1

f^TTAKT

'H H• • »
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Mirror spectral sensitivity to Horseshoe Gimbal motion is given by:

0m _

where

K4 " T2JW

K-, = J.,
3 W

K = -= kT + -f- AK T
2 l JM 2 Jm T ]

JT AK K1 J
k- + T

 T , _W
l ~ J K + J Tl + J

m m m

AKTK
f

Jm

Note; -Zero at origin reduces steady-state sensitivity to zero,

•Sensitivity at "horseshoe" gimbal frequency is given by

above equation
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Because "horseshoe" gimbal characteristic frequency, ui , is very
n

low, the low frequency asymptote of spectral sensitivity

expression may be used:

9 k Jm w
0H A KT K'

where / 2 ku; = \ uv, + —
V H JH

, .ra d/ sec

k = flex-pivot constant, [torque units per radian]

Jw = momentum wheel moment of inertia [torque units per'W

radian/sec ]

AK = amplifier torque motor constant [torque units per radian]

K1 = ancillary torque motor conversion gain [torque units

per rad/sec.]

J = horseshoe moment of inertia [torque units per rad/sec ]H



System Spectral Sensitivity to Torque Noise

or

0

where:

™ u om H 2

K5 = JmJH

H
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K4 =

K3 =
2 K<JH

J Juo)u+J k+J k+AK JH+AKTT —m H H m H T H T l J ,w

K2 =
K'J

W

Kl =
K ' J

w

K0 =

K'J

w
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SPECTRAL TORQUE-NOISE SENSITIVITY

dbi

f ,2 . 2 k ]
S + u)H + y-

L H JHj

S(T2S+1)

\
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The low frequency asymptote may be approximated by:

(*£>-
Tv ARu^—H

T H Jw
(low freq.)

J
W

where o> is the circular frequency of the torque-noise in rad/sec,~ ~~
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Generic Control

The controlled system can be written as:
X K

Y = _ l f / T Y 4 - T / T -t- ̂  "" f 1 \

T FP T T c T J

where X is the angle being controlled

K is a spring constant
F P

J is an inertia

T is the control torque

X is the command input

If we select a simple proportional plus rate controller we have:

Tc = -K (XT T + XT) (2)

where: T is the zero location of the controller

K is the control gain
o

Combining (2) and (1) and rewriting we get:
K T (K__ + K ) Kv t *t+-v*-*t • f'.

The generic equation for a 2nd order system like this is:

X + 2i> X + u>2 X = u> 2 X (4)
n n n c

where: £ is the damping ratio

w is the natural frequancy

If we select w , C we can match coefficients between (4) & (3):
n

K + K
« . fp - -2 (5)

JT

K T

-JT = 25o»nT o

In this way we solve for K and T and get our control.
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The individual loops are then combined into a system of equations and solved.

Some adjustments are made for the ignored coupling.

Elevation Axis Equation.

Gm

n

FP

Telescope

The equation of motion of the telescope is;

VV + TGm + Tm + Tn (1)

where: JT is the telescope inertia

0 is the telescope angular position

K is the flex-pivot sprint constant

0 is the gondola's angular position
o

T is the gimbal motor torque
Gm

T is the reaction wheel motor
m

T is noise torque

The equation of motion for the gondola is

J 6 = K_ (0-0 ) - T - to J 0
g g F p T g G m P g g (2)

where: (o is the compound pendulum natural frequency.
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Elevation Axis Equation (continued):

Equation of motion of the Reaction Wheel is:

j 0
ru> Ru> m (3)

The control law states:

(4)

T = K 0
Gm 2 Roo (5)

If we put these equations into state space form as the following:

1

2

X3

X4

X5

1
•

= 0
T

= 0
g
.

= 0
g

= °K

(6)

X, = 0,

where: 0, is used to define a state existing in the control law or:

T = K 0
m 1 1

(7)
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Elevation Axis Equations:

Eqs. (1), (2), (3) & (4) with eqs. (6) can be put into 6 first order differential

equations:

-K_ X + K X - K, X + K X, + T
F p l F p 3 2 5 1 6 n

K_ X - X. (K_ + ID J ) + K0 X.Fp 1 3 Fp p g 25

y =
5

X2 - X6

Where: X, is the commanded signal for the telescope. These equations

can be placed in matrix form as

X = [A]X + [B]u

where: [A] is the matrix of coefficients of the x.'s

(8)

(9)

(10)

(11)

(12)

(13)

(14)

[B]

X
c

T
_ n

0

0

0

0

0

72

0

1
JT

0

0

0

0
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In this form the system was run through a program called "TF" (Transfer

Function) written at Stanford University to generate system responses.




