
NASA Technical Memorandum 88263

(NASA-TH-88263) AN ENGINEERING APPBOACH TO N86-2U687
THE USE OF EXPEB1 SYSTEMS IECBHCIOGY IS
AVIONICS APPLICATIONS (NASA) 12 p
HC A02/MF A01 CSCL 01D Onclas

63/05 43063

An Engineering Approach to the Use
of Expert Systems Technology in
Avionics Applications
Eugene L. Duke, Victoria A. Regenie, Marylouise Brazee,
and Randal W. Brumbaugh

May 1986

f\l/\SA
National Aeronautics and
Space Administration

NASA Technical Memorandum 88263

An Engineering Approach to the Use
of Expert Systems Technology in
Avionics Applications
Eugene L Duke, Victoria A. Regenie, and Marylouise Brazee
Ames Research Center, Dryden Flight Research Facility, Edwards, California
Randal W. Brumbaugh
PRC Kentron, Edwards, California

1986

NASA
National Aeronautics and
Space Administration
Ames Research Center
Dryden Flight Research Facility
Edwards, California 93523

AN ENGINEERING APPROACH TO THE USE OF EXPERT SYSTEMS
TECHNOLOGY IN AVIONICS APPLICATIONS

Eugene L. Duke, Victoria A. Regenie, and Marylouise Brazee
NASA Ames Research Center

Dryden Flight Research Facility
Edwards, California

Randal W. Brumbaugh
PRC Kentron

Edwards, California

Abstract

This paper presents the concept of using a
knowledge compiler to transform the knowledge base
and inference mechanism of an expert system into
a conventional program. The motivation for this
discussion is the need to accommodate real-time
systems requirements in applications such as
embedded avionics. The paper presents an over-
view of expert systems and a brief comparison of
expert systems and conventional programs. Avi-
onics applications of expert systems are briefly
discussed before the detailed discussions of
applying the proposed concept to example sys-
tems using forward- and backward-chaining.

Introduction

Expert systems technology offers tremendous
potential for the next generation of avionics
systems. The power of this technology lies both
in its separation of domain specific knowledge
from program control mechanisms and in the devel-
opment methodology and development environment.
However, as expert systems technology moves out
of the research laboratory and into severely
demanding applications such as avionics, new
problems arise. While the power of expert sys-
tems is evident in the laboratory environment,
many of the most attractive features of this
technology become burdensome in applications.
It is argued in this paper that, by treating
expert systems as development tools for more
conventional programs, many of the problems
emerging in applications may be solved. It is
the thesis of this paper that an engineering
approach to the use of expert systems technol-
ogy in avionics application may minimize the
need for special purpose computers.

The concept of using an expert system as
a development tool for a conventional program
arose from the applications research at the
Dryden Flight Research Facility of the NASA
Ames Research Center (Ames-Oryden) and was
suggested by the research at the University
of California, Los Angeles (UCLA), under the
direction of Professor Jacques Vidal. This
research in real-time mechanizations of expert
systems has influenced some of the key ideas

presented in this paper. In particular, the
doctoral thesis of John Helly [1] has provided
a unique and original view of the transforma-
tion of a knowledge base into an equivalent
logic representation.

At Ames-Oryden, expert systems technology
is being applied to avionics systems on high-
performance aircraft In two projects: the expert
system flight status monitor for the X-29 forward-
swept-wing aircraft [2],[3] and in the joint NASA/
DARPA automated wingman program. Both NASA proj-
ects focus on the use of expert systems technology
In real-time applications. The application areas
1n which this research is being conducted are such
that extreme computational demands are placed on
the host computer system. The complexity of high-
performance aircraft place severe demands on
expert systems technology. The following sec-
tions present an overview of expert systems and
a comparison of expert systems and conventional
programs as background before proceeding with
the main argument of the paper: expert systems
can be converted automatically into conventional
programs and the process from development to
deployment retains the best features of both
types of systems.

It is the thesis of this paper that the
knowledge base and inference mechanism of an
expert system can be converted into a conventional
program using a knowledge compiler. The concept
of a knowledge compiler is explained using example
forward- and backward-chaining expert systems.
The main benefit of converting the expert system
into a conventional program is increased execution
speed and, hence, reduced processor requirements.
The knowledge compilation method described in this
paper is completely compatible with the usual
environment available for expert systems develop-
ment and allows the system developer to exploit
the desirable features of expert systems while
developing conventional programs.

Overview of Expert Systems

Artificial intelligence (AI) is described in
Ref. 4:

"...the part of computer science concerned
with designing intelligent computer systems,

that is, systems that exhibit the characteris-
tics we associate with intelligence in human
behavior...."

AI research focuses on understanding the basic
processes of intelligence as well as on computer-
based methodologies for solving difficult problems
that would otherwise require human intelligence.
The field of AI is concerned with a wide range of
problem classes that are associated with intel-
ligence in humans: problem solving, reasoning,
understanding language, learning, robotics, auto-
matic programming, and vision.

The research in problem solving and reasoning
has led to the development of the subfield of
applied AI known as expert systems in which
general-purpose reasoning engines (inference
mechanisms) are utilized to reason about domain
specific knowledge in a target application area.
An expert system is described in Ref. 5:

"An expert system is one that has expert
rules and avoids blind search, performs well,
reasons by manipulating symbols, grasps funda-
mental domain principles, and has complete weaker
reasoning methods to fall back on when expert
rules fail and to use in producing explanations.
It deals with difficult problems in a complex
domain, can take a problem description in lay
terms and convert it to an internal representa-
tion appropriate for processing with its expert
rules, and it can reason about its own knowledge
(or lack thereof), especially to reconstruct
inference paths rationally for explanation and
self-justification."

This description of an expert system is more
of a future goal than a current reality. The
incorporation of fundamental domain principles
into what are known as "deep" expert systems is
at best a research topic; most expert systems have
an extremely limited and shallow knowledge base.
This lack of knowledge of fundamental principles
contributes to the inability of current generation
expert systems to reason about their knowledge in
general and about the limitations of their knowl-
edge in particular. However, many of the fea-
tures listed in this description do exist in what
might be termed the state of the art in applica-
tion systems.

Figure 1 shows a common (although highly
simplified) representation of the basic expert
systems architecture. In this representation,
the main structural features of an expert system
are illustrated: knowledge acquisition facility,
knowledge base, inference mechanism, and input-
output system. The knowledge acquisition facility
is the main interface between the expert system
and the expert. This facility provides a mech-
anism for developing a knowledge base. The knowl-
edge base consists of domain specific knowledge,
generally in the form of conditional (if-then)
rules. The inference mechanism reasons about
specific facts using this knowledge base. In
this simplified representation of an expert

system, the inference mechanism would also pro-
vide explanations of conclusions reached and rules
used to reach those conclusions. The knowledge
acquisition facility, inference mechanism, and
input-output system are part of the expert system
program. After the specific facts that are to be
reasoned about are provided, the knowledge base is
treated as a data source that is used to direct
the inference process.

Perhaps the most significant feature of cur-
rent expert systems is the use of knowledge in
the form of expert rules that represent domain
principles. Encoding the knowledge and problem
solving techniques of a domain expert into rules
provides the real power of expert systems. These
rules are used by an inference mechanism both to
reason about specific facts in a given situation
and to provide explanations of the deductions of
the expert system to its user. Figure 2 shows
what might be typical rules used in avionics
applications. These rules might be used in
flight control systems, guidance systems, and
even more powerful integrated systems such as
those being developed for the pilot's associate
program. Figure 3 shows how these same rules
would be coded in a higher order language (in
this case, FORTRAN). As can be seen by comparing
Figs. 2 and 3, the representation of knowledge is
much clearer and more easily verified in the rules
(Fig. 2) than in the FORTRAN code (Fig. 3).

Expert Systems and Conventional Programs

When comparing an expert system with a con-
ventional program, differences in knowledge rep-
resentation, control structure, and operational
processes are most obvious. Expert systems use
symbolic representations of knowledge and symbolic
inference; conventional programs use numeric and
logical representations. An expert system might
be said to execute a compilation of knowledge
while a conventional program might be character-
ized as a compilation of procedures. The struc-
ture of an expert system in which the knowledge
base and inference mechanism are separated,
differs from a conventional program in which
the knowledge base and inference mechanism are
essentially combined in the program code. The
main operational differences arise from the abil-
ity of an expert system to offer explanations of
its inference process and to have that inference
process modified by the addition, deletion, or
modification of rules. In a conventional pro-
gram, explanation features are lacking and the
modification of the reasoning process involves
rewriting the code. Obviously, the features that
characterize an expert system are intertwined and
cannot be separated.

In addition to the representational, struc-
tural, and operational differences, expert sys-
tems also differ from conventional programs in
their development. In a conventional program,
the possible lines of reasoning must be mapped
out ahead of time and then rigidly encoded into
the program structure. In an expert system,

because the lines of reasoning are embodied in
the knowledge base, the system can be developed
incrementally. The environments in which these
two types of programs are developed also differ
radically. Conventional programs are most often
developed in the target programming language with
few support tools beyond an editor and, perhaps,
a debugger. The environment for expert systems
development is fundamentally far richer than
that for conventional programs. Figure 4 shows
the components of an expert system and illus-
trates the benefit of using an expert systems
shell in the development process. Expert sys-
tems shells are available with inference mech-
anisms, a knowledge acquisition facility, and
explanation capabilities already developed and
in place. The knowledge engineer need only com-
pile the domain specific knowledge of an expert
and enter it into the shell. By using an expert
systems shell, an expert system can be developed
rapidly. Entering only a few key rules into a
shell allows a system to be prototyped quickly
and allows early feasibility demonstration.

It should be noted at this point that, when
discussing expert systems, some distinction is
occasionally made between development and deliv-
ery systems. The distinction is not entirely
clear. A delivery system must at least have a
knowledge base, an inference mechanism, and an
explanation facility. A delivery system is
probably not one with the capability for knowl-
edge base modification, while the capability
for knowledge base modification is an essential
feature of a development system. This distinc-
tion between development and delivery systems
will be avoided in this discussion; it will be
assumed that all expert systems are capable of
knowledge base modification.

Avionics Applications of Expert Systems

The main interest in using expert systems
technology in avionics arises from the complex-
ity of the missions to be performed and the
demanding environments in which these missions
must be performed. Consideration of these fac-
tors have forced requirements for increasingly
more complex systems. The emerging generation
of tactical vehicles (fighters and attack heli-
copters) are near the limit of what can be accom-
plished using a single pilot and conventional
technology. Additionally, these systems require
the pilot to perform at a level that is near (if
not beyond) the limits of human performance.
When all systems are operational, the basic tasks
facing the pilot are data interpretation and sub-
systems integration. When problems arise in the
avionics subsystems of these emerging systems, the
pilot may be unable to cope with the situation
because of the complexity of the subsystems and
their interactions within the vehicle system as a
whole. Expert systems technology offers the pos-
sibility of solving these problems by providing
the pilot with useful knowledge and assistance.
The main interest in using expert systems tech-
nology in avionics applications is that it may be

the only means of providing the next level of sys-
tems integration.

Many avionics applications of expert sys-
tems technology are possible. These applications
include examples of most of the class of expert
systems problems described in Ref. 5: interpre-
tation, prediction, diagnosis, planning, moni-
toring, debugging, repair, and control. Most of
these applications will be embedded in other
systems or will serve to integrate subsystems.
Sensor fusion is an excellent example of inter-
pretation in which multiple sensors provide
diverse pieces of data that must be integrated
into a coherent picture of the world outside the
aircraft. The prediction problem is exemplified
by tactics prediction in which the future tac-
tics of an opponent would be predicted from past
performance. Diagnosis could be applied to the
isolation of a failure within a flight control
system. Planning systems have obvious and
immediate applications in route planning and
target allocation problems. Monitoring systems
could be used to assess the health and status of
any of the various subsystems within the aircraft
or of the effectiveness of the aircraft as a
weapons system. Expert systems that diagnose,
debug, or repair could be employed to provide the
expertise needed in a reconfigurable control sys-
tem. In this application, problems in a flight
control system could be corrected by reconfig-
uration (repair) after specific malfunctions
determined from sensor and aircraft behavior
(diagnosis) had been analyzed and corrective
measures had been identified (debugging).
Finally, control expert systems could be used
to integrate the subfunctions of an avionics
system at the mission level. Obviously, this
list of applications is not exhaustive, and the
problem areas are not disjoint. However, this
list of applications provides some insights
into the problems associated with the use of
expert systems in avionics applications.

All avionics software must execute in a real-
time environment in which the timeframe is deter-
mined by the application; the slowest of these
applications are those that interface with the
pilot or involve long-term planning, and the
fastest are those that involve flight control
systems or weapon sensors. The need for real-
time operation makes speed of execution a criti-
cal consideration in any examination of the
tradeoffs between two competing pieces of soft-
ware. Even with development of newer and more
powerful avionics computers, software efficiency
will continue to be an issue. More capable com-
puters will merely result in greater demands; more
computational power will simply result in greater
expectations. Avionics computers will continue to
be utilized to the maximum that can be obtained
from them. The problems of real-time programming
will continue to be a concern, and it is here
that expert systems become burdensome.

One of the first rules of real-time program-
ming is to develop an efficient code. As illus-

trated in the Transforming Expert Systems Into
Conventional Programs section, expert systems
are iterative in nature and the time required to
converge to an answer varies with the situation
being analyzed. While expert systems are more
efficiently developed than conventional programs,
expert systems are necessarily more inefficient
in execution. Further, this inefficiency has
nothing to do with the speed at which a computer
executes LISP, FORTRAN, or any other computer
language. The inefficiency of expert systems Is
inherent in the separation of the knowledge base
and the control mechanism and in the iterative
nature of the control process. Because the inef-
ficiency of an expert system increases rapidly as
the size of the knowledge base increases, some
consideration has been given to dividing knowledge
bases into smaller partitions. However, this
latter approach does not eliminate the problem of
inefficiency; it merely alleviates it.

Although some of the previously discussed
applications require a direct interface with the
pilot, not all do. In fact, many of these appli-
cations such as sensor fusion and flight control
system reconfiguration will be imbedded in other
systems and isolated from the pilot. The value
of the high-level user interface characteristic
of expert systems is thus unnecessary in many
avionics applications. However, even if it is
assumed that an explanation feature is required
of the man-machine interface, the capability of
knowledge base or program control modification
is almost certainly not a requirement of an
avionics system, whether it is an expert system
or a conventional system. In fact, if any pro-
gram control modifications are to be permitted
in avionics systems, these will almost certainly
be known, well-defined options that are built
into the system.

The least consideration in avionics systems
should be abandoning standard systems qualifica-
tion procedures for the lure of exotic technology
that allows a pilot to modify a system in real
time. The requirement for an explanation in an
avionics application is almost certainly weaker
than the requirement for an explanation in a devel-
opment system. At most, it might be expected that
a first-level explanation would be required. A
first-level explanation is an explanation of the
last rule used to reach a conclusion. This type
of explanation is in contrast to the sort of
detailed backward justification available in
some current expert systems.

Transforming Expert Systems
Into Conventional Programs

This section describes a mechanism for con-
verting expert systems into conventional programs.
The requirements outlined in the previous section
are talcen as the requirements for the conversion
process described here. While the examples that
follow are only for simple forward- and backward-
chaining inference mechanisms, these inference
mechanisms can be and are being utilized for a
wide variety of applications in avionics.

To illustrate how expert systems can be
mapped into conventional programs, two examples
of production rule systems are given: one with
a forward-chaining inference mechanism and one
with a backward-chaining inference mechanism.
These examples, while extremely simple, will
facilitate an understanding of the proposed
approach. Further, these examples will serve
to illustrate the tradeoffs involved in convert-
ing an expert system into a conventional program.
The first two subsections provide a brief intro-
duction to the inference mechanism, present a
sample set of rules, and then show the equivalent
FORTRAN representation. In the final subsection,
expert systems and their transformations into con-
ventional programs are discussed.

In the following examples, FORTRAN is used to
illustrate the use of a higher order language.
FORTRAN was chosen for two reasons: because of
the authors' familiarity with the language and
because FORTRAN is the primary computer language
used in conventional scientific and engineering
applications. This language is also supported on
most machines by fast, efficient optimizing com-
pilers. The perception that FORTRAN is probably
unsuitable for AI applications also influenced the
decision. Although at least one expert systems
shell has been implemented in FORTRAN (the TIMM
expert systems generation tool by General Research
Corporation), FORTRAN is generally considered the
antithesis of a suitable AI language. All examples
of FORTRAN code presented in this paper could as
easily have been shown in LISP, Ada, C, or any
other higher order language.

Forward-Chaining Example

Forward-chaining is often referred to as
"data-driven" inference because the rules are
applied to the established facts to reach whatever
conclusions are consistent with the given facts
and the rules. Forward-chaining inference stops
when a pass (iteration or cycle) through the rules
yields no new facts and the inference process is
complete. A set of example rules in which clauses
have been replaced by symbols is as follows:

Rule
number

1
2
3
4

Rule

If c or f then d
If d then e
If b and a then c
If a then b

Figure 5 shows the results of applying these
rules with a forward-chaining inference mech-
anism in a situation in which only the fact a
is established initially. In this simple example,
five inference cycles are required before the
stopping rule is satisfied.

Figure 6 shows three FORTRAN representations
of a logically equivalent reasoning process. The
three examples of FORTRAN correspond to steps in

the conversion process from the expert system to
conventional code. To achieve the direct repre-
sentation, all clauses would be assigned a vari-
able name and the rules would be translated
directly into code. In the second step of the
conversion process, all clauses that are only
used as antecedents are taken as the basic in-
put symbols (primitives), and then each rule is
expanded until it is expressed entirely in terms
of these primitives. (Here, to simplify the
discussion, these primitives are assumed to rep-
resent the input data to the expert system.) The
final simplified FORTRAN code is established by
applying standard methods for reducing Boolean
expressions, such as the Quine-McCluskey minimi-
zation method [7]. A set of rules to be used by
a forward-chaining inference mechanism is thus
transformed into a single-pass, conventional
set of higher order language expressions.

Backward-Chaining Example

Backward-chaining inference is often referred
to as "goal-driven" inference because the infer-
ence mechanism begins with an ordered list of
goals (hypotheses) and uses the knowledge base to
attempt to find a set of rules that allows these
hypotheses to be concluded. If the first hypothe-
sis cannot be satisfied, using the knowledge base
and established facts, the second hypothesis is
attempted. This process continues until a hypoth-
esis can be asserted or until the list of hypoth-
eses is exhausted. A list of rules and an ordered
set of hypotheses are given below.

Rule
number

1
2
3
4

5
6

Rule Hypothesis

If a and b and c then d d
If e and f then a b
If g or h then b a
If i and j then c
If c and a then b
If e and i then g

To illustrate backward-chaining, the facts e and
f are established initially. Because the hypoth-
eses are ordered, the backward-chaining mechanism
first attempts to conclude d. This is done by
finding a rule with d as the consequent — in this
case, rule 1 above. The backward-chaining mech-
anism then compares the established facts and
attempts to satisfy the rule antecedents from
those facts. If a, b, and c are not established
facts (and, in this case, they are not), the
backward-chaining mechanism must repeat the
process of finding rules with each of the sub-
hypotheses as consequents. In doing so, it must
test those rule antecedents against the estab-
lished facts and continue until either the list
of rules has been exhausted or all antecedents
for some hypothesis can be satisfied. Attempting
to assert d results in the search-tree shown in
Fig. 7. In this example, the hypothesis d would
be abandoned and the backward-chaining mechanism
would test to see if the next hypothesis b could

be asserted. Given the rules and established
facts in this example, a can be asserted using
rule 2. The backward-chaining mechanism would
assert a, after trying to assert d and b in turn,
and stop.

Figure 8 shows how the rules and hypotheses
discussed above could be represented as FORTRAN
code. As in the forward-chaining example, the
conversion from rules to FORTRAN code is a three-
step process. To achieve the direct represen-
tation, all clauses would be assigned variable
names and the hypotheses would be translated
directly into the code. The second step of the
transformation process once again requires that
the clauses that are used only as antecedents be
identified as primitives (and that these primi-
tives are assumed to represent input data). The
representations of the ordered hypotheses are
expressed in terms of the primitives. The final
step of the transformation again requires the
application of a method for reducing Boolean
expressions and results in the FORTRAN code pre-
sented as the "representation after substitution
and reduction" in Fig. 8. The difference between
this single-pass code and the backward-chaining
example is that all hypotheses that can be satis-
fied will be satisfied. To provide an equivalent
mechanism to the backward-chaining example, a test
and return must be inserted after each represen-
tation of a hypothesis (Fig. 8) and a variable
(NULHYP) created to indicate when no hypothesis
could be satisfied.

Comparison of Example Expert Systems and
Their Conventional Code Representations

In the examples of forward- and backward-
chaining, the conversion of rules into a conven-
tional code results in a logically equivalent
representation of the knowledge base and inference
mechanism. However, the flexibility of the expert
systems has been converted into the rigidity of a
conventional code. Yet if this conversion is
automatic, nothing has been lost. Another step
in the development process has been inserted (the
conversion process). However, this is a minor
inconvenience when considered in the context of
a program that would execute faster and could
easily be hosted on any of a number of numeric
processors. Obviously, the conventional code is
less readable and self-documenting than the rules
would be for an expert system. Nevertheless, the
readability and code documentation are critical
only if the code must be maintained and modified
by humans. In the processes described above, mod-
ification and maintenance of the knowledge base
would occur within the context of the expert sys-
tems development environment. When the knowledge
base is modified, a new piece of conventional
source code could be generated and the old code
could be discarded. This process would then be
similar to the use of a standard compiler. In
fact, a knowledge compiler is exactly what is
being proposed in this paper.

It is important to understand what would be
lost in the transformation of expert systems to

conventional code in the examples given. While
the conventional code is logically equivalent to
the knowledge base of the example expert systems,
no provision is made in these examples of a con-
ventional code for an explanation feature. At
the user interface, no provision is made for rule
modification or even for the display of rules. As
discussed in the Avionics Applications of Expert
Systems section, the provision for knowledge base
maintenance in the application system is neither
required nor desirable, but some form of explana-
tion feature is, at times, desirable.

A first-level explanation can easily be gen-
erated using a subroutine (procedure) in addition
to the subroutine that performs the logical infer-
ence. This subroutine would, in essence, contain
formatted representations of the knowledge base
rules. Returning to the example rules in Figs. 2
and 3 and assuming that all rules would be used in
situations requiring explanation, the subroutine
shown in Fig. 9 could be generated from the rules
to provide the needed explanation. In the example
shown in Fig. 9, the explanation in the format
statement would be displayed to the use.r (pilot)
whenever the logical variable (Cl, C2, C3, C4, or
C5) corresponding to the rule consequent of the
formatted rule was true. That is, if the equiva-
lent of the first rule in Fig. 2 could have been
used to conclude that the "longitudinal rate
damping mode is inoperative" and Cl in Fig. 3
would have been true, then the rule encoded in
format statement 101 in Fig. 9 would be displayed
as an explanation.

Concluding Remarks

A brief introduction to expert systems is pre-
sented in this paper. Expert systems are compared
to conventional programs and then discussed within
the context of avionics applications. After des-
cribing the need for expert systems in avionics
applications, the problems posed by this technology
are discussed. Two example inference mechanisms
(forward- and backward-chaining) are described and
used to exemplify the proposed technique of con-
verting expert systems knowledge bases into con-
ventional programs.

This paper presents the concept of using a
knowledge compiler to convert the knowledge base
developed for an expert system into a conventional
program. This concept allows the most desirable
features of expert systems to be retained and also
provides a means for producing fast, efficient
code capable of execution on any processor. While
discussed within the context of avionics applica-
tions, this concept has utility in other applica-
tions where execution speed is not the primary
consideration but where the options available for
target machines are limited.

While the expert systems examples presented
in this paper are extremely simplified, they are
representative of two powerful inference mech-
anisms that are applicable to a wide range of
problems. By demonstrating that the knowledge
bases and inference mechanisms used in these
example expert systems can be converted into
conventional programs, it has been shown how
some of the problems of using expert systems
in avionics applications may be minimized.

In fact, the proposed approach need not be
limited to avionics applications. For any sys-
tem that can be converted using this technique,
the advantages are significant. While the use
of symbolic processors in research and develop-
ment laboratories has many benefits, the costs
associated with these single-user, special-
purpose systems may make them unsuitable for
target applications. The technique described
in this paper provides a means for converting
expert systems from symbolic processors to
numeric processors.

References

[1] J.J. Helly, Jr., "A distributed expert system
for space shuttle flight control," Ph.D.
Thesis, Univ. of California, Los Angeles, 1984.

[2] V.A. Regenie and E.L. Duke, "Design of an
expert-system flight status monitor." NASA
TM-86739, Aug. 1985.

[3] E.L. Duke and V.A. Regenie, "Description of an
experimental expert system flight status
monitor." NASA TM-86791, Oct. 1985.

[4] A. Barr and E.A. Feigenbaum, The Handbook of
Artifical Intelligence, vol. T. Los Altos, CA:
William Kaufmann, Inc., 1981.

[5] R.O. Brachman, S. Amarel, C. Engleman,
R.S. Engelmore, E.A. Feigenbaum and
D.E. Wilkins, "What are expert systems?"
in Building Expert Systems. F. Hayes-Roth,
D.A. Waterman and D.B. Lenat, Ed. Reading, MA:
Addison-Wesley, 1983, pp. 31-57.

[6] F. Hayes-Roth, D.A. Waterman and D.B. Lenat,
"An overview of expert systems," in Building
Expert Systems, F. Hayes-Roth, D.A. Waterman,
and D.B. Lenat, Ed. Reading, MA: Addison-
Wesley, 1983, pp. 3-29.

[7] F.J. H111 and G.R. Peterson, Introduction to
Switching Theory and Logical Design, 2nd ed.
New York:John Wiley & sons, Inc., 1974.

Expert

1
Knowledge acquisition

facility

\

ex
Advice,

explanations
Specific

facts

I Knowledge base U ^Inference mechanism

I—Knowledge engineer 1

Fig. 1, Basic expert systems architecture.

then

the primary pitch rate gyro has failed
and the backup pitch rate gyro has failed

the longitudinal rate damping mode is inoperative

men

then

the pilot has selected the air-to-air gun mode
or the guidance system has selected the air-to-air gun

mode

the flight control system is in the fuselage pointing
mode

and the air-to-air gun mode indicator is on

the mission is interception
and the fuel is not sufficient for a minimum-time

interception with maximum thrust

use the minimum-time to a cruise energy algorithm

then

the ground-based threat data base has been updated
and the risk associated with the new situation is

unacceptably high

the route should be replanned

C1
C2
C3
C4
C5

where
A1
A2
A3
A4

AS
A6

A7

A8

C1

C2

C3
C4

and CS

= (A1 AND A2)
= (A3 .OR. A4)
= (A3 OR A4)
= (A5 AND. A6)
= (A7 AND A8)

= the primary pitch rate gyro has failed
= the backup pitch rate gyro has failed
= the pilot has selected the air-to-air gun mode
= the guidance system has selected the air-to-air

gun mode
= the mission is interception
= the fuel is not sufficient for a minimum-time

interception with maximum thrust
= the ground-based threat data base has been

updated
= the risk associated with the new situation

is unacceptably high
= the longitudinal rate damping mode is

inoperative
= the flight control system is in the fuselage

pointing mode
= the air-to-air gun mode indicator is on
= use the minimum-time to a cruise energy

algorithm
= the route should be replanned

Fig. 3. FORTRAN representation of example rules
for avionics applications.

'Consultation
manager

Fig. 2, Example rules for avionics applications. 'Explanation
facility

Knowledge
base editor

and debugger

Knowledge
base

management
facilities

Inference
mechanism

Domain
specific

knowledge

Expert
system
shell

Fig. 4. Components of an expert system.

Inference
cycle

0
1
2
3
4
5

Facts established

(a)
(ab)

(abc)
(abed)

(abode)
(abode)

Rule
used

-
4
3
1

2
-

Fig. 5. Example of forward-chaining.

Direct representation:
D = C .OR. F
E = D
C =(B AND. A)
B = A

Representation after substitution:
D =((A AND. A) .OR. F)
E =((A AND A) .OR F)
C = (A AND A)
B = A

Representation after substitution and reduction
D =A .OR. F
E =A OR. F
C =A
B =A

Fig. 6. FORTRAN representation of
forward-chaining example.

Fig. 7. Search-tree associated with example hypothesis.

Direct representation:
D =((A.AND BJ.AND. C)
B =((G .OR H).OR. (C AND. A))
A = (E .AND. F)

Representation after substitution:
D =(((E AND F) .AND ((E .OR I) .OR. H» .AND (I AND. J))
B =(((E .AND. I) .OR. H) OR. ((I .AND. J) AND. (E .AND. F)))
A = (E .AND. F)

Representation after substitution and reduction-
D =(((E.AND. F).AND. I) .AND. J)
IF D RETURN
B = ((E .AND. I) OR. H)
IF B RETURN
A = (E .AND. F)
IF A RETURN
NULHYP=. TRUE.

Fig. 8. FORTRAN representation of backward-chaining
example.

SUBROUTINE EXPLAN

COMMON /CFACTS/ C1 ,C2 ,C3 ,C4 ,C5

IF (.NOT EXPLIN) RETURN
IF (C1) WRITE (M01)
IF (C2) WRITE (*,102)
IF (C3) WRITE (*,103)
IF (C4) WRITE (*,104)
IF (C5) WRITE (*,105)
RETURN

101 FORMAT(" The longitudinal rate damping mode Is",
" inoperative",/,
" because the primary pitch rate gyro has failed",/,
" and the backup pitch rate gyro has failed.")

102 FORMATf " The flight control system is In the fuselage",
" pointing mode",/,
" because either the pilot has selected the",
" air-to-air gun mode",/,

> " or the guidance system has selected the",
" air-to-air gun mode.")

103 FORMAT(" The air-to-air gun mode Indicator Is on",/,
" because either the pilot has selected the",
" air-to-air gun mode",/,
" or the guidance system has selected the",
" air-to-air gun mode.")

104 FORMAT(" Use the minimum-time to a cruise energy",
" algorithm",/,
" because the mission Is Interception",/,
" and the fuel Is not sufficient for a",
" minimum-time Interception with maximum thrust.")

105 FORMAT(" The route should be replanned",/,
" because the ground-based threat data base has",
" been updated",/,
" and the risk associated with the new situations",
" Is unacceptably high.")

END

Fag. 9. FORTRAN subroutine to provide first-level
explanation.

1 Report No

NASA TM-88263

2 Government Accession No 3 Recipient's Catalog No

4 Title and Subtitle
AN ENGINEERING APPROACH TO THE USE OF EXPERT SYSTEMS
TECHNOLOGY IN AVIONICS APPLICATIONS

5 Report Date

May 1986

6 Performing Organization Code

7 Author(s)
Eugene L. Duke, Victoria A. Regenie, and Marylouise Brazee (NASA
Ames-Dryden), and Randal W. Brumbaugh (PRC Kentron)

8 Performing Organization Report No
H-1364

9 Performing Organization Name and Address
NASA Ames Research Center
Dryden Flight Research Facility
P.O. Box 273
Edwards, CA 93523-5000

10 Work Unit No

RTOP 505-66-11

11 Contract or Grant No

12 Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

13 Type of Report and Period Covered

Technical Memorandum

14 Sponsoring Agency Code

15 Supplementary Notes

Prepared as an invited IEEE paper for presentation at National Aerospace
and Electronics Conference (NAECON), Dayton, Ohio, May 19-23, 1986.

16 Abstract

> ^

Th i-s--f}d per-prese nt s ihe concept of using a knowledge
compiler to transform the knowledge base and inference
mechanism of an expert system into a conventional program.
•Themiu twataen ~t o t̂W^SB^FseaysTOfTr^r^he need to accom-'
modate real-time systems requirements "rn applications such
js embedded avionics* Tfre—p'a'per-'pr-esen'ts-an over-view -of

systems and brief comparison of expert systems and
Conventional programs^. Avionics applications of expert sys-
tems are tnaef,l.y discussed before the de-taoJwk discussions
of applying the proposed concept to example systems using
forward? and backward-chaining.

^C C «

17 Key Words (Suggested by Author(s))

Avionics
Expert systems
Knowledge compiler

18 Distribution Statement

Unclassified - Unlimited

STAR category 05

19 Security Classif (of this report)

Unclassified

20 Security Classif (of this page)

Unclassified

21 No of Pages

10

22 Price

A02

*for aale by the national Technical Information Service, Springfield, Virginia 22161.

