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SUMMARY

An Advanced sensor failure Detection, Isolation, and Accommodation (ADIA)
algorithm has been developed for use with an aircraft turbofan engine control

^ system. In a previous paper the authors described the ADIA algorithm and Us
c£ real-time Implementation. This paper discusses subsequent Improvements made
S to the algorithm and Implementation, and presents the results of an
^ evaluation. The evaluation used a real-time, hybrid computer simulation of an

F100 turbofan engine.

INTRODUCTION

The ADIA program (ref. 1) 1s an effort to Improve the overall demonstrated
reliability of digital electronic control systems for aircraft turbine engines
by detecting sensor failures using analytical redundancy. Various redundancy
management techniques have been applied to both the total control system and
to individual components. The least reliable of the control system components
are the engine sensors. Typically, sensor redundancy 1s required to achieve
adequate control system reliability. The AOIA approach uses analytical redun-
dancy to achieve reliability.

Analytical redundancy uses a reference model of the engine and redundant
Information from dissimilar sensors to provide an estimate of a measured vari-
able. How the estimates and measurements are used to detect failures 1s one
way to differentiate the various analytical redundancy approaches. The ADIA
algorithm 1s based upon hypothesis testing of Kalman filter generated residuals.
Considerable work has been accomplished 1n the application of analytical
redundancy to Improve turbine engine control system reliability. These accom-
plishments are surveyed 1n reference 2.

The ADIA program has been organized Into four phases: development,
Implementation, evaluation, and demonstration. Reference 1 describes the
development and Implementation phases. This paper describes additional devel-
opment and Implementation details as well as giving the significant real-time
hybrid computer evaluation results. The ADIA algorithm will be demonstrated on
an FIDO engine at the NASA Lewis Research Center altitude test facility during
the last half of 1986. The paper will briefly describe the ADIA algorithm and
the simplified engine model used 1n the algorithm. Also Included 1s a descrip-
tion of the hardware and software used to Implement the algorithm. Finally,
results are presented. These Include simplified model accuracy and ADIA per-
formance for hard and soft failures.



ALGORITHM DEVELOPMENT

The AOIA algorithm detects, isolates, and accommodates sensor failures 1n
turbofan engine control systems. The ADIA algorithm was originally developed
for Lewis under contract (ref. 3). The algorithm Incorporates advanced filter-
ing and detection logic and 1s general enough to be applied to different
engines or other types of control systems. A specific version of the ADIA
algorithm was designed for the F100 engine and FIDO Mult1var1able Control.
This combination of engine, control, and ADIA algorithm comprises the F100
testbed system shown 1n figure 1.

The ADIA algorithm consists of three elements: (1) hard failure detection
and Isolation logic, (2) soft failure detection and isolation logic, and (3)
an accommodation filter. These are shown as part of the testbed system in
figure 1. The algorithm detects two classes of sensor failures, hard and soft.
Hard failures are out-of-range or large bias errors that occur instantaneously
in the sensed values. Soft failures are small bias errors or drift errors
that accumulate relatively slowly with time.

The algorithm inputs are the measured engine inputs, um(t), (fuel flow,
no//.le area, compressor inlet guide vane angle, rear compressor variable vane
angle, and bleed flow) and the measured engine outputs, zm(t) (fan speed,
compressor speed, burner pressure, augment-or pressure, and fan turbine inlet
temperature). The algorithm outputs, z(t), are optimal estimates of the engine
outputs, z(t).

The hard failure detection logic uses residuals generated by the accom-
modation filter to detect and isolate hard failure. The soft failure logic
uses six hypothesis filters (one normal mode and five failure modes) to detect
and isolate soft failures. Implicit in the soft failure isolation logic and
the accommodation filter is a simplified engine model. The algorithm imple-
mentation and hybrid evaluation phases of the program have resulted in several
improvements to both the structure and operation of the algorithm.

The most significant improvement has been the removal of the sequential
structure of the soft detection and soft isolation logic. Originally, the
philosophy of the algorithm was to detect the presence of a soft failure with
a Weighted Sum of Squared Residuals (WSSR) statistic. Once a failure had been
detected, then an hypothesis-based bank-of-fliters approach was used to isolate
the faulty component. Since soft failures are uncommon events and since the
hypothesis-based logic takes a significant computational capability, the orig-
inal implementation approach was to calculate the WSSR statistic each update
cycle and only calculate the isolation logic when required. This forces a
higher computational load and thus a longer update interval only during soft
isolation. However, the three computer, parallel processing architecture,
with which the ADIA algorithm has been implemented, has sufficient processing
power to calculate the complete algorithm Including the soft isolation logic
during each update Interval. With this Implementation, described in the next
section, the update interval does not change during soft isolation. Also,
since the hypothesis filters are continuously tracking, the effect of sensor
failures begins to accrue from the time of the failure, not.after soft detec-
tion has occurred. Initial studies with this new configuration showed the
isolation logic to be more sensitive to failures than the soft detection logic.
In«effect, failures were being isolated before they were being detected. This
clearly removed the requirement for the WSSR statistic and it was removed from
the algorithm.
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Another Improvement to the algorithm was the Incorporation of Integral
action 1n the Kalman filter to Improve the steady state accuracy of the Fan
Turbine Inlet Temperature (FT1T) estimate. One Important engine control mode
1s the limiting of FT1T at high power operation. Because the FTIT sensor 1s
relatively slow, control action 1s based upon the dynamically faster FTIT
estimate. Because the FTI1 limiting control has Integral action, a high degree
of steady-state accuracy 1n the FT1T estimate 1s required to ensure satis-
factory control. This accuracy 1s accomplished by augmenting the seven algor
1thm filters (one for the accommodation filter and six for the hypothesis
filters) with the following additional state equation.

b = K6*y

Ffll = 2*5 f b

where K& 1s a gain matrix, b 1s the temperature bias, 2$ 1s the unbiased
temperature estimate, and Y 1s the vector of residuals from the accommodation
filter. The addition of these dynamics, while Improving FTIT estimation
accuracy, results 1n a larger minimum detectable FTIT drift failure rate.

Finally, the soft failure detection/Isolation threshold was modified.
Originally, thresholds were determined by noise statistics and then modified to
accommodate modeling error effects. It was soon apparent from Initial evalua
tion studies that transient modeling error was dominant 1n determining the
fixed threshold levels. It was also clear that this threshold was too large
for desirable steady-state operation. Ihus, an adaptive threshold was incor-
porated. The adaptive threshold is triggered by an Internal control system
variable, Mtran, which is Indicative of transient operation. When the engine
experiences a transient Mtran 1s set to 4.5, otherwise 1t 1s 0. This variable
1s used as follows to modify the Isolation threshold Xj, as follows.

M = MSS * (*EXP + l)

Xtxp = Mtran

where \i$s is the steady-state detection/isolation threshold and T = 2 sec.
The values of Xi$S» T and Mtran were found by experimentation to minimize
false alarms during transients. The adaptive threshold expansion logic enabled

*° be reduced to 40 percent of Its original value.

These three Improvements represent the major changes to the A01A algo-
rithm. The next section describes how the modified algorithm was Implemented
Into commercially available, microprocessor based, hardware and software.

ADIA IMPLEMENTATION

The hardware Implementation of the ADIA algorithm requires the Integration
of the algorithm with the FIDO Mult1var1able Control (MVC) (ref. 4). The F100
MVC had been Implemented on an 8086 microcomputer (ref. 5). The AOIA was
merged with this MVC Implementation to give a full microcomputer Implementation
of the control algorithm with sensor analytical redundancy. The F100 engine
system dynamics require a combined MVC and ADIA update Interval of 40 msec or
less.



A microcomputer system for real-time controls research has been designed
and fabricated at Lewis (ref. 6). The controls microcomputer within the system
1s based on the Intel 8086 microprocessor architecture. In order to Implement
the combined MVC/A01A and satisfy the update Interval requirement of 40 msec,
a second 8086 based CPU was added to the controls microcomputer (ref. 1). This
second CPU runs 1n parallel with the first. Data 1s transferred between CPU's
through dual-ported memory and synchronization between CPU's was achieved
through Interrupts. Initially, only the normal-mode accommodation filter and
the hard detect logic from the ADIA were Implemented. This allowed a straight-
forward evaluation of the parallel processing mechanism. It was assumed that
the soft failure detection and Isolation logic could be added to the second
CPU at a later date.

During algorithm development, the soft failure Isolation logic was only
run after a soft failure was detected by the soft failure detect logic. Due to
the complexity of the soft failure Isolation logic and since 1t was felt there
might be some benefit to running the soft isolation logic 1n parallel with the
soft detect logic, a third CPU was added to Implement the soft isolation logic.
Data transfers and synchronization were accomplished 1n the same manner as with
the two-CPU Implementation. Most recently, the 8086 based CPU's were replaced
with 80186 based CPU's. The new CPU's are software compatible with the old
CPUs, but are considerably faster. The relative timing for the three CPU's is
shown 1n figure 2.

As shown in the figure, the different parts of the combined MVC/ADIA algo-
rithm are divided among the three CPU's. The MVC 1s Implemented 1n fixed point
assembly language on CPU number 1. At the time the MVC was originally Imple-
mented on a microcomputer, 1t was felt that assembly language programming using
fixed point arithmetic was necessary to achieve real-time execution of the
algorithm. With the availability of the 8087 floating point coprocessor for
the 8086 came the capability of Implementing real time controls in floating
point arithmetic. The majority of the ADIA algorithm running on CPU's numbers
2 and 3 1s Implemented using floating point arithmetic and the application
oriented language FORTRAN. FOR1RAN was chosen because the ADIA was originally
coded 1n FORTRAN, and because a fairly good compiler was available for the
8086-8087.

The advantages of using an application language rather than assembly lan-
guage Include higher programmer productivity, increased readability, and easier
maintenance. The primary disadvantage 1s that it generally produces less effi-
cient object code than the equivalent assembly language.

Execution efficiency 1s critical for real-time controls. So, for the
ADIA, table lookup routines (ref. 7), which are executed frequently in the
algorithm, and the hardware interface routines which have no FORTRAN equiva-
lents, are implemented 1n assembly language. To allow the remainder of the
algorithm to remain 1n FORTRAN, the source code has been optimized to make it
run more efficiently (ref. 8). As shown 1n figure 2, the entire MVC/ADIA
algorithm now executes 1n less than 40 msec.

The programs for each of the CPU's are downloaded Into the CPU's using a
commercially available disk operating system, CP/M-86. The Microcontroller
Interactive Data System (MINDS) 1s used for data acquisition (ref. 9). This
software package runs on CPU number 1 in the spare time that the CPU is not
executing the MVC algorithm (fig. 2). The package has both steady-state and



transient data-taking capabilities and can access any variable 1n the MVC or
AD1A algorithms. The data taken can be upHnked to a mainframe computer for
off-line processing. In addition, the software has been enhanced to allow
plotting of transient data on-Hne while the control microcomputer 1s operating
(ref. 10). The on-line transient data display of Internal MVC and ADIA vari-
ables was an Indispensable tool 1n the evaluation process.

ALGORITHM EVALUATION

This section describes the test setup used In the evaluation of the algo-
rithm and gives the more significant results. These Include the accuracy of
the estimates generated by the simplified engine model and the simulated
detect1on/1solat1on/accommodat1on performance of the algorithm.

Test Setup

The algorithm was evaluated using a real-time hybrid computer simulation
of the F100 engine. The testbed system consists of the hybrid computer simu-
lation of the engine, the microprocessor based control computer and Us Inter
face and monitor (CIM) unit, the Sensor Failure Simulator (SFS) unit, and a
data handling utility.

The FlOO engine hybrid simulation 1s a nonlinear, real-time, 32nd order
model that Includes sensor and actuator dynamics. Differential equations are
solved on the analog portion of the hybrid. Component performance Information
1s stored 1n the digital computer with Interpolation and table lookup functions
being handled by digital software. A complete description of the simulation
and Its accuracy performance 1s given 1n reference 11.

The Control, Interface, and Monitoring (CIM) unit (ref. 6) contains the
microcomputer described 1n the Implementation section. In addition, 1t con-
tains hardware and cabling to allow the microcomputer to interface to the
engine or simulation of the engine being controlled. Lastly, a monitoring
system 1s contained in the CIM unit which allows the signals between the micro-
computer and controlled engine to be checked for correctness.

The SFS unit consists of a personal computer driving discrete analog hard-
ware. The SFS can simulate any preprogrammed sensor failure consisting of four
basic types: a scale factor change, a bias, a drift, and noise. The SFS
allows complete and repeatable control over the failure size and timing.
Details of the SFS are given in reference 12.

Data handling 1s accomplished through the MINDS utility program. This
program 1s described 1n the implementation section.

Estimate Accuracy

The single most important element 1n determining ADIA algorithm perform-
ance 1s the accuracy of the engine output estimates used in the algorithm.
These estimates are determined using a Kalman filter which Incorporates a



simplified engine model. The accuracy of the output estimates for both steady-
state and transient operation was evaluated at various engine operating points.
An engine operating point 1s defined by the pilot's power request (Power Lever
Angle, PLA), and the altitude (ALT) and Mach number (MN) at which the engine
Is operating.

Steady-state accuracy was obtained 1n a straightforward manner. The simu
latlon was "flown" to the desired operating point and allowed to reach steady-
state. Then control execution was halted (or frozen). MINDS was then used to
sample and store a set of steady-state data. Comparisons of measured and
estimated variables for six operating points are given in table I. Table I
shows the difference (the residual) between sensed and estimated fan speed, Nl,
compressor speed, N2, burner pressure, PT4, exhaust nozzle pressure, PT6, and
fan turbine inlet temperature, FTIT as a percent of nominal value. From these
comparisons it 1s clear that the estimates exhibit excellent steady state
accuracy (except for PT4 at the 55K point).

Transient accuracy data was obtained in the following manner. Again the
simulation was flown to the desired operating point and allowed to reach
steady-state. An idle-to-lntermediate-power PLA pulse transient was then simu-
lated (fig. 3) at three different operating conditions. MINDS was used to
sample and store data throughout the transient. An example plot of sensed and
estimated fan speed and its residual, as well as the hypothesis statistic for
fan speed are presented in figures 4 to 6. The residual is the difference
between the sensed and estimated variables. The hypothesis statistic, H^,
is found from

HI = yJWYo - Y]WYI

and y^ is the residual vector from the ith hypothesis filter and fO 1s from
the accommodation filter, and W is a normalizing matrix. Trajectories in
figures 4 to 6 give the reader a "feel" for the summarized results of tables II
to V. Figure 6 also shows the threshold Xj, as produced by the adaptive
threshold logic. In table II the maximum value of the residuals obtained in
response to the reference transient is given for each output at each of the
three operating points. In table III the average absolute values of the resid-
uals are given. Since detection performance is determined by the hypothesis
statistics, estimate accuracy, interpreted in terms of these statistics, is
critical to understanding algorithm performance. The maximum hypothesis values
and the average hypothesis values are given in tables IV and V, respectively,
to summarize transient accuracy for the reference trajectories. Plots of the
hypothesis statistics became the standard tool used by the authors for evalua-
tion and performance prediction. Overall, transient accuracy was considered
to be quite good although not as good as steady-state accuracy. It was fairly
evident then, that detection performance could be greatly improved if different
thresholds for steady-state and transient detection were allowed. This obser-
vation led immediately to the implementation of the adaptive threshold logic
described previously.



Detection/Accommodation Performance

Two types of failure were considered, hard and soft. Hard failures are
defined to be large magnitude, perhaps out-of-range, failures. Because of
their size, they are easily detected. Thus, hard failure detection performance,
although Important to system reliability, 1s not examined here. The ADIA algo-
rithm exhibits excellent hard detection performance. Soft failures are defined
to be small magnitude, 1n range failures that may accrue over time. Although
small 1n magnitude, these failures, 1f undetected, may result In degraded or
unsafe engine operation. Soft failures are more difficult to detect, and
therefore we concentrate on soft failure performance. Two soft failure modes
were considered, biases and drifts. Failures due to noise changes are not
considered. Performance criteria studied were minimum detectable bias values
and drift rates, detection time, steady-state performance degradation, and
transient response to failure accommodation.

The procedure followed to obtain performance data was Identical to that
used to obtain transient accuracy data. Additionally, the SFS was used to
Inject a sensor failure of the appropriate size and at the desired time. The
results obtained are summarized 1n table VI for minimum detectable biases and
1n table Vll for drifts. In table VI the minimum detectable biases at six
different operating points for each engine output are given. Detection times
for these biases were essentially Instantaneous. In table VII the minimum
detectable drift rates are given. These rates were determined by adjusting the
drift magnitude such that a failure was detected 5 sec after failure Inception.
Typical transient responses are given 1n figures 7 and 8. Since these are
nominally steady-state responses, the hypothesis statistic 1s at Its steady-
state value. These responses show acceptable failure transient performance
with little or no loss 1n steady-state performance.

CONCLUSIONS

An advanced sensor failure detection, isolation, and accommodation algo-
rithm has been developed, Implemented, and evaluated. The development Included
an adaptive failure detection threshold. The algorithm was implemented using
a three-microprocessor, parallel architecture. The evaluation used a real-time
hybrid computer simulation of an advanced turbofan engine. Estimate accuracy
performance was excellent. Minimum detectable levels of bias and drift type
failures were determined at seven operating points for all five sensed outputs.
These minimum failure levels represent excellent algorithm detection and accom-
modation performance. This algorithm performs quite well in the real-time
environment and is ready for a full scale engine demonstration. Such an engine
demonstration is currently planned for July 1986.
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TABLE I. - STEADY-STATE ESTIMATION ACCURACY RESULTS

(PERCENT OF NOMINAL), NO SENSOR FAILURES

Operating point

Altitude,
ft

10K
10K
30K
45K
10K
55K

Mach
number

0.6
.9
.9
.9
1.2
2.2

PLA,
deg

83
50
83
60
83
83

Estimation error, percent of nominal

Nl

0.43
-.06
.42

-.12
.17

-.33

N2

0.11
.16
.28

-.21
.11
.54

PT4

-3.16
-.21
-1.36
-1.87
-1.36
5.64

PT6

-0.53
1.53
-.69

-1.45
.33

-2.48

FTIT

0.11
.11
.04
.04
.11

-.05

TABLE II. - MAXIMUM RESIDUAL VALUE (PERCENT OF

NOMINAL) IN RESPONSE TO PLA PULSE INPUT,

NO SENSOR FAILURES

Operating point

Altitude,
ft

10K
30K
10K

PLA,
deg

0.6
.9
.9

Estimation error, percent of nominal

Nl

3.57
1.47
4.30

N2

0.81
.74

1.13

PT4

6.50
4.48
5.22

PT6

12.55
13.08
14.98

FTIT

5.78
5.49
5.68

TABLE III. - AVERAGE RESIDUAL ABSOLUTE VALUE

(PERCENT OF NOMINAL) IN RESPONSE TO PLA

PULSE INPUT, NO SENSOR FAILURES

Operating point

Altitude,
ft

10K
30K
10K

PLA,
deg

0.6
.9
.9

Estimation error, percent of nominal

Nl

0.77
.63
.60

N2

0.24
.28
.42

PT4

1.67
.92
.78

PT6

2.33
2.94
2.98

FTIT

1.44
1.64
1.39



TABLE IV. - MAXIMUM HYPOTHESIS VALUE IN RESPONSE TO PLA

PULSE INPUT, NO SENSOR FAILURES

Operating point

Altitude,
ft

10K
30K
10K

PLA,
deg

0.6
.9
.9

Maximum hypothesis value

Nl

0.8748
.2413
1.0250

N2

0.3420
.1456
.2361

PT2

0.2862
.0755
.1616

PT6

0.5976
.3050
1.3400

FTIT

0.0797
.0420
.0590

TABLE V. - AVERAGE HYPOTHESIS ABSOLUTE VALUE IN RESPONSE

TO PLA PULSE INPUT, NO SENSOR FAILURES

Operating point

Altitude,
ft

10K
30K
10K

PLA,
deg

0.6
.9
.9

Average hypothesis value

Nl

0.0861
.0603
.0881

N2

0.0566
.0374
.0467

PT2

0.0441
.0060
.0384

PT6

0.0587
.0445
.1240

FTIT

0.0100
.0074
.0103

TABLE VI. - MINIMUM DETECTABLE BIAS FAILURE

(PERCENT OF NOMINAL)

Operating point

Altitude,
ft

10K
10K
3 OK
30K
10K
10K

Mach
number

0.6
.6
.9
.9
.9
.9

PLA,
deg

50
83
50
83
50
83

Minimum bias failure

Nl

3.47
3.41
3.43
3.25
3.54
2.91

N2

2.60
2.67
3.10
2.73
2.60
2.66

PT4

6.39
3.85
10.92
6.99
6.17
2.86

PT6

12.02
7.74
18.10
13.24
9.74
6.40

FTIT

12.00
8.75
12.36
9.41
12.17
8.72

TABLE VII. - MINIMUM DETECTABLE DRIFT FAILURE

(PERCENT OF NOMINAL/SEC)

Operating point

Altitude,
ft

10K
10K
3 OK
30K
10K
10K

Mach
number

0.6
.6
.9
.9
.9
.9

PLA,
deg

50
83
50
83
50
83

Minimum drift failure

Nl

1.16
1.22
1.49
1.50
1.18
1.21

N2

0.87
.95
.89
.97
.87
.95

PT4

1.28
.38

2.02
1.55
1.14
.52

PT6

3.20
1.55
3.95
2.65
2.13
1.28

FTIT

5.60
4.08
5.77
4.39
5.68
4.07
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