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Abstract

The method of generalized parity relations is one of the techniques that can be used
to detect sensor and actuator failures on a large space structure. In this thesis, a
model of a grid'structure is used to evaluate the performance of these relations. It
shows their relative sensitivity to modeling errors.

As no accurate model will be available before the structure is built in space, a
method using sensor outputs and actuator inputs is required for the design of these
relations. Three different estimators are studied. The second is the most
interesting when computer memory is limited, while the third is the most accurate.

With a few modifications, the last estimator can also generate relations optimized
for the detection of a particular failure. They are especially interesting when the
level of sensor noise is high.

Thesis Supervisor: Wallace E. Vander Velde
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Space Structures and Generalized Parity Relations

Future space activities include many missions which will require the use of

large space structures. Such structures will be lightweight and have small

structural damping. This will allow small disturbances, in time, to produce large

structural vibrations. For antennas and solar arrays, shape is critical, and will

have to be controlled. Structural stress itself might be such that active shape

control of the whole structure is required.

Shape control will require the use of many sensors and actuators. A large

space structure will have hundreds of these components. As they will not be 100%

reliable, many failures can be expected during the lifetime of the structure or even

in between periodic repairs. For example, with 200 components, each having a

mean time between failures of 100 000 hours, we expect 17 failures in a year [3].

To still be able to control the vibrations, redundancy, that is more components

than are minimally required, will be introduced.

It is clear that the controller would have better performance if it knew which

components have failed and stopped using them. A redundancy management

system is designed to provide this information. It is generally made of two parts.

First the failure detection system decides which component has failed. Then the

reconfiguration system designs a new closed-loop configuration based on the

remaining components. Figure 1-1 is a block diagram of the controlled structure
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Figure 1-1; Redundancy management system of a controlled space structure

with its redundancy management system.

Generally, failures are made detectable with the aid of a model representing

structural vibrations. The method of generalized parity relations is one of such

techniques. In [3] these relations were used to detect component failures on a free-

free beam. They proved to be relatively insensitive to disturbances and sensor

noise, but very sensitive to modeling errors.

As these space structures are designed for a zero gee environment they need

not support their own weight. Thus they cannot be built and tested on earth. The

model of the vibrations will have to be based only on theoretical knowledge. This

can give errors as high as 2Q% and the resulting parity relations will certainly be

useless. This is why a technique is required that can design relations once the

structure is in space.
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1.2 Thesis Goal

In this thesis, parity relations are designed to detect failures of components

on a grid of aluminum beams. Chapter 2 presents the modeling of the grid and the

performance of parity relations when sensor noise or modeling errors are

introduced. Chapter 3 presents three different techniques that can build a parity

relation using only actuator inputs and sensor outputs. In chapter 4, based on the

same data we try to build relations with a better detection effectiveness for a

particular failure than parity relations.
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Chapter 2

Parity Relations and the Space Structure

2.1 The Parity Relation Method

A parity relation is some linear combination of the present and passed inputs

and outputs of a system which should be small (ideally zero) when the system is

operating normally.

Consider a system of L sensors and M actuators. Its linear discretized model

based on an N dimensional state vector is

[ Y(i) = CX(0

where i and i+l represent consecutive sampling times.
# is a N X N matrix
/"is a NxM matrix
C is a L X N matrix

The relations between the inputs and outputs over consecutive time steps and the

state at time i are

Y(0 = CX(0

...and so on.

Combining these relations over S time steps into a matrix equation, we get
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Y(0 C
C£
C*2

0
cr
c$r

0
o
cr

0
0
0

cr

u(o

U(»+S-2)

which will be noted

Y (0 = C X(«] + D U (0

where C* is a (L S) X N matrix
D* is a (L S)X(M (S-l)) matrix

(2.2)

To form a parity relation we want to eliminate the unknown state X . This is done

by multiplying the above relation by a vector W satisfying WT C = 0 . In other

words, WT is an element of the left null space of C . Such a vector will exist only if

S is greater than the rank of C .

The resulting equation is

= WTY*(0 - WTD*U*(0

r(i) is called the parity residual

WTC*X(0 = 0 (2.3)

W
(WTD*)T

-u(o

is the parity vector

will be called the parity information vector at time i

Equation (2.3) will hold as long as the system operates according to the linear

model (2.1). If a sensor or an actuator fails, the relations between inputs and

outputs are modified. Consequently the residuals based on the failed component

will be non zero. With an appropriate set of residuals the identity of the failed

component can be found. Of course any other perturbation such as unmodeled
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modes, uncertan parameters or noise will also produce a non zero value. The

effectiveness of the relation will depend on the magnitudes of these different values.

2.2 Single Sensor and Single Actuator Relations

The possible sets of parity relations that can be used to detect and isolate

failures have been studied in [3]. One of particular interest is the set made of single

sensor and single actuator parity relations. A single sensor parity relation is based

on all actuator inputs but only on one sensor output. Similarily a single actuator

parity relation will depend on all sensors but on only one actuator. A sensor failure

will then have an effect on all the single actuator residuals but on only one single

sensor residual. And an actuator failure will affect all sensor residuals but only one

actuator residual.

Let us consider here a system of 6 sensors and 6 actuators. Let Rl through

R6 denote the single sensor residuals and R7 to Rl'2 the single actuator residuals.

The effect of a sensor or actuator failure on the residuals is represented in figure

2-0, where 0 denotes a zero value and 1 a non zero value.

Such relations can be generated as suggested in [3] by performing linear

combinations on all the possible parity relations. If we assume C has full rank N,

then taking S=N+1 in equation (2.2) will give us a L(N+1)-N dimensional null

space of C . The W vectors spanning this null space generate a corresponding

number of independent parity relations, each made of L(N+1) sensor coefficients

and MN actuator coefficients. By combination of these relations we can eliminate

the (L-1)(N+1) sensor coefficients for the single sensor relations and if M is equal or

less than N the (M-l)N actuator coefficients for the single actuator relations.

The main drawback of this technique is the amount of computation required.
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Figure 2-1: Value of the residuals when a failure is present

The number of operations needed to generate one set of relations is of the order of

L4N . For the small space structure that will be studied later in this thesis, where

we have 6 sensors , 6 actuators and 20 states, this gives about 10 million

operations.

In fact, single sensor parity relations can be generated very easily. Starting

with equation (2.2) we can select the N+l lines involving the sensor 1 output to get

the following :

0 0
0

c,r

o
0
0

U(»+S-2)

where C is the first row of matrix C
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which will be noted

* _.*,Y! (0 = G! X(0 + D! U (,)

If we assume Cj has full rank, then taking S=N+1 will give us one null space

vector W.. The single sensor 1 relation will then be

The same can be done for the other sensors.

It would be interesting to be able to use the same technique to generate single

actuator relations. In fact this can be done after performing a few operations on

equation (2.2).

Let D be D without the first row of null matrices. The relation involving
* . •

Dr .is then

Y(t+2)

Y(*+S-1)

= C*2

c**~\

Y/ "\ i
~^\ / **

cr o ... o
c&r cr ... o

c**-2r c*s-*r ::. cr

u(o
U(i+l)

U(«+S-2)

which will be noted

= cr x(0 + Dr u (0 (2.4)

If we have L=M, that is if we consider only the outputs of as many sensors as

actuators, then Df is a square L(S-l)xL(S-l) matrix. Provided that det(Df ) 5^ 0,

D^1 exists. Multiplying relation (2.4) by D"^ gives

(2.5)

Equation (2.5) is the equivalent of (2.2) with Ur taking the place of Y and Yf of
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U . We can then select the S-l lines involving actuator 1 input, and by taking

S=N+2 generate a single actuator 1 parity relation.

The problem then reduces to the computation of D^1 and D^1 C*. This

would require an important amount of computation if D were just any ordinary

matrix. However its pseudo triangular 'form will be helpful here.

First lets find when Dr can be inverted. Using the relation

[AB]
det [C DJ = det(A).det(D - C A'1 B)

gives det(Df*) = ( det(C F) )Sml. Then D/1 exists if det(C F) ̂  0 .

Now find an expression for D^1. Assuming it is pseudo triangular like Dr we

have

xo
xi

Xs-2

0 0

Solving Dj"1 Dr = I^g.!) gives us the relations

( c r ) + x 1 ( c<? r ) + x 0 ( c^ r ) = o
... and so on.

Which leads to the solution
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= - ( Xj c * r + XQ c *2 r ) ( c r r l

x3 = - ( x2 c # r + xx c #2 r + XQ c

... and so on

For implementation on a computer, the generation of the matrices X can be

programmed recursively. Starting with

r1 C $ and G= T ( C T)']

we get from step n-1 to step n with the relations

=• X

1This also gives us the result of D^ Cr as we have

Xj C $ + X C

XX0

The number of operations required by this technique is approximately

4M N +2MN . Consequently this represents a dramatic improvement for a large

space structure where M and N are large. In the case of our small structure the

number of operations required to generate a set of actuator relations now reduces

to about 150000 from 10 million.

Another advantage is that now the single sensor and actuator relations are

generated from an identical matrix relation. In each case the W vector is made of
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the coefficients of the single element. As we will see this is very useful when we

want a relation to be more sensitive to a particular failure.

2.3 Modeling of the Space Structure

A model representing a space structure was created to study the effectiveness

of parity relations. This model represents an experimental apparatus used at

NASA Langley Research Center to demonstrate control techniques for large space

structures. The structure is a grid of aluminium beams controlled by 6 inertia

wheel actuators. Position sensors and rate gyros measure the vibrations of the

structure in the direction perpendicular to the grid.

The model is a state space representation based on the 10 lowest frequency

modes "and coresponding mode shapes and damping coefficients.

Freq. u in rd/s

Damping coef. f

2.33

0.01

4.05

0.01

9.04

0.01

13.9

0.01

19.5

0.01

30.0

0.01

36.0

0.01

37.2,

0.01

46.7

0.01

65.1

0.01

Table 2-1: Frequencies and damping coefficients of the model

The state vector is made of the 10 modal amplitudes and 10 modal velocities.

XT =

The input vector is made of the torques of the 6 actuators.

UT = [ Uj u2 u3 u4 us u6

The model takes into account the output of 3 position sensors and 3 rate gyros.

=[y! y2
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The matrices relating X,U and Y in the continuous case will be noted

= AX(0
{Y(0 = CX(0

Let u>j be the frequency of mode i and fj its damping coefficient. Let p-, gik and ajj

be the modal coefficients of mode i at position sensor location j, gyro location k and

actuator location 1. Then as shown in [3] we have

A =

B =

And

C =

0
fy

™C^ *

0
0

0
0

1
-2^1w1

0
0

0
0

0
0
0

-"22

0
0

0
0
1 ' ...

-2£o"2 -

0
0

0
0
0
0

0

-"2io

0
0
0
0

1
-2*io"io_

a
0

1.1
0

12.1

a10.1

a

a

0

1.2
0

2.2

a

a,

0

1.6
0

'2.6

L10.2 110.6

»

Pl.l
Pl.2
Pl.3
0
0
0

0
0
0

Sl.l
S1.2

81.3

P2.l
P2.2
P2.3
0
0
0

0
0
0

S2.1
S2.2
^2.3

- PIO.I
- PlO.2
- PlO.3

0
0
0

0
0
0

S10.1
S10.2
SlO.3

The use of parity relations requires that a discrete model of the structure be

obtained. Let T be the sampling time, then our model becomes
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Y(t) = CX(0

with <P = eAT = I + AT + A2 T2/2 + ...

and T= [ $(t) dt ] B = I T + A T2/2 + A2 T3/3! +

2.4 Parameters for the Simulations

The results of simulations involving parity relations will be highly dependent

on the level of input and output signals and sensor noise. The ranges allowed on

the experimental apparatus are 20 ounce-feet for the actuators and 1 inch for the

position sensors. To simulate the constant movement of the structure we want to

apply a random input to our model. But has the structure as very small damping,

the level of torques we can apply without exceeding the range of 1 inch is very

small. To be able to apply torques of higher level a state feedback controller- was

introduced. The input signal was then the response of the controlled system plus a>

small random signal.

Sensor noise can be expected to produce an error of 10~4 to 10"3 feet on the

position sensors and 10~4 to 10~3 rd/s on the rate gyros. The two extremes were

simulated by adding uniformly distributed errors between 10~4 feet and 10~4 rd/s or

10'3 feet and 10'3 rd/s.

Finally, we want to have a constant level of output in the simulations. To do

this, state vectors were generated over 1000 time steps starting from X=0 . The

last vector was then stored and used as the initial state of the simulation.
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2.5 Simulation of Parity Relations and the Effect of Noise

Single sensor and single actuator parity relations were generated for the

model of the grid using the techniques described previously. They are composed

respectively of 146 and 147 coefficients. The sampling time was taken to be 0.10

sec.

But we still have one degree of freedom in the choice of our relations which

corresponds to the magnitude of the null space vector W. In order to get

comparable relations we will require that the norm of W be such that the effect of

sensor noise on the residuals is the same for all relations. This effect is measured

through the covariance of the residuals when ho failure is present. Let n{ be the

noise signal of sensor i and N the noise vector coresponding to Y .

.[ nj(*) ... n6(0 n^'+l) ... n^l) ... n^'+S-l) ....n6(»

Our relation (2.3) becomes with noise

r(,) = WT(Y*(t) + N(t)) - WTD*U*(i) = WTN(i) (2.6)

Then the covariance of the residuals is

£(r2(0) = WTE( N(i) NT(«) ) W = £. Wj
2 £(Dj

2(0)

Here w. and n.(t) are the j components of W and N(i).

Let ||W||N = [ £ . £fa.2(i)) Wj2 j1/2 be the N norm of W. Then choosing ||W||N= 1

or any other constant will give us the same level of residuals in the no-fail case.

As in our case all the E(n?(ty have the same value q, || ||N is the euclidian

norm. Then choosing ||W|| = 1 for all the relations will give
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£(r2(0) = ||W||2 q = q (2.7)

Simulations involving these relations with the model of the structure were

carried out over 150 time steps. Two failures were introduced :

A "zero" failure of sensor 1 (y1(t)=0) from time step 40 to 80
A "zero" failure of actuator 1 (u1(»)=0) from time step 110 to 150

The first simulation is the ideal case where the sensor outputs are not

affected by noise. Thus the residuals are zero when no failure is present or if the

failure does not affect the residual, as is indicated in figure 2-0. Four of the

residuals are presented in figure 2-2 to 2-5. Rl and R7 are the two residuals

affected by both failures. R2 is one of the single sensor residuals that should not be

affected by sensor 1 failure and R8 is its equivalent for actuator 1 failure. The two

important failure signatures are the effect of sensor 1 failure on Rl and actuator 1

failure on R7. These are the ones that enable us to isolate the-failed component.

We can already see that sensor failures are easier to detect as their signature is

much larger than the actuator one. The residuals tend to grow at the end of the

simulation because the system response level grows after failure of actuator 1 due

to poorer performance of the control system.

In the second simulation, sensor noise of 10"4 feet and 10~4 rd/s was

introduced. The effect on residual Rl and R7 is shown in figures 2-6 and 2-7. The

perturbation due to this level of noise is small.

Finally sensor noise of 10"3 feet and 10"3 rd/s was introduced. This

corresponds to figure 2-8 and 2-9. Rl still allows us to detect the sensor failure.

However for R7 the noise on the residuals covers the actuator failure signature and

detection is impossible.
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Sensor 1 failure Actuator 1 failure

Figure 2-2: Residual Rl without sensor noise
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Figure 2-3: Residual R2 without sensor noise
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Figure 2-4: Residual R7 without sensor noise
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Figure 2-5: Residual R8 -without sensor noise
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Sensor 1 failure Actuator 1 failure

Figure 2-6: Residual Rl with sensor noise of 10'4 ft and 10"4 rd/s
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Figure 2-7: Residual R7 with sensor noise of 10'4 ft and 10'4 rd/s
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Sensor 1 failure Actuator 1 failure

' Figure 2-8:' Residual Rl with sensor noise of 10~3 ft and 10"3 rd/s
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Figure 2-9: Residual R7 with sensor noise of 10"3 ft and 10"3 rd/s
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2.6 Simulation with Parameter Mismatch

Having seen the performance of parity relations generated using the accurate

parameters of the structure, it is now interesting to see how uncertainties in the

knowledge of these parameters can affect the residuals.

Uncertainties were created using one model to generate the relations and

another slighty different for the simulation. The mismatches were created using

the law

A
Pm = P ( 1 + 100 r )

where pm is the mismatched parameter
p is the original parameter
A is the percentage of mismatch
r is a random number uniformely distributed between -1 and +1

This law was applied to the frequencies and mode shape coefficients in the

continuous case. The model was then discretized.

The easiest way to carry out these simulations would have been to use the

mismatched models with the original set of parity relations. However the result

would biased by the fact that the mismatch also affects the controller. To avoid

this a set of relations was generated for each mismatched model and used with the

true model of the structure.

Four models were generated. Two corresponding to a 5% mismatch and two

for 10% . The worst case for 5% is presented in figures 2-10 to 2-13. We can see

that with Rl the sensor 1 failure can be detected. The actuator failure however

cannot be detected as its effect on R7 is covered by the effect of the mismatch. As

for the worst 10% case presented in figures 2-14 to 2-17, no failure can be detected.
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Figure 2-10: Residual Rl with 5% parameter mismatch

Sensor 1 failure Actuator 1 failure

Figure 2-11: Residual R2 with 5% parameter mismatch
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Figure 2-15: Residual R2 with 10% parameter mismatch
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Sensor 1 failure Actuator 1 failure

Figure 2-16: Residual R7 with 10% parameter mismatch
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Figure 2-17: Residual R8 with 10% parameter mismatch
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Chapter 3

Estimation of Parity Relations

3.1 Discussion of the Estimation Algorithm

We have seen that an error of 5% in the knowledge of the parameters of the

structure will give us useless parity relations for the detection and isolation of

actuator failures. Much greater uncertainties can be expected in the a priori

knowledge of the parameters. Consequently a reestimation of the coefficients of

each relation will have to be performed once the structure is built in space.

This could be done by running an on line identification of the parameters of

the structure and using this data to generate parity relations. Another solution is

to directly reestimate the coefficients of the relations through an on line

identification. Assuming that the structure will not suffer any failure at the

beginning of its life, we will then have available the inputs and outputs in the no-

fail case. Based on this data the estimation algorithm will try to find the relation

that gives us the smallest residual.

As R7, and more generally, the single actuator residuals are thetmost affected

by mismatch and noise, only the estimation of the single actuator 1 parity relation

will be considered in this chapter. The algorithms are however valid for any parity

relation.
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3.2 Kalman Filter Estimation

A parity relation can be estimated using the Kalman filter algorithm. Let the

coefficients of the desired parity relation Pf be the state of the noise free stationary

process

= Pr(0 (3-1)

» being the time step of the estimation.

Under the no-failure hypothesis this relation should give us a zero residual in the

noise-free case, and a noisy residual if some sensor noise is considered. This

residual can be considered as a measurement of the process (3.1). Let n be the

noise on the residual, n = W N according to (2.6). A measurement equation can be

written as

y(0 = P]>i(0-n = r r ( 0 - n

where y is equal to 0 and n has covariance q as shown in (2.7).

Let Pe be our estimate of the desired parity relation Pf. The Kalman filter

equations are

= p-(op i(0[p[(onop i(o + qr1

L p+(o = no - K(O pjo no
Measurement
incorporation

Time
update

where P is the estimation error covariance and K the Kalman filter gain.
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However these equations could lead to the trivial solution Pe = 0. To avoid

this we will require that the norm of the sensor coefficients of P be kept equal to 1

as in (2.7). This will be done by changing our process equation to a norm taking

equation

Pr(.'+l) = Pr(i) / norm(0

which gives the corresponding time update equations

Time ( Pe'(»4-l) = Pe
+(0 / norm(f)

update
n0rm

2(0

where norm(i) is the norm of the sensor coefficients of P (t).

An estimation using this algorithm was carried out over 200 time steps. The

initial parity coefficients are those of the 5% missmatch case presented in figure

2-12. No sensor noise was introduced. However q was set to .33 10"8 which

corresponds to sensor noise of the 10"4 case. Figure 3-1 shows the estimated

residual re=Pe(«) PJ(I) over the estimation sequence. Figure 3-2 shows the residuals

given by the initial coefficients and the same information vector. The comparison

of both allows us to visualize the effect of the filter. In fact it shows that the filter

reduces the residual due to model mismatch, but makes no more progress after 50

time steps.

The last estimated relation was then used in a simulation identical to the

ones performed in chapter 2. The result is given in figure 3-3. As far as the

Kalman filter is concerned the results are what we expected. The residuals in the

no-fail case were reduced to a level slightly higher than the .33 10"8 level given by

the parameter q. The problem is that the resulting parity relation is useless as the

actuator failure signature has almost disappeared. To get a relation that will still
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show th* effect of the actuator failure we»must estimate the coefficients more

accurately. But this can only be done if the sensor noise level is smaller than that

considered here.
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Figure 3-3: Relation estimated with the Kalman filter

Two other drawbacks of this technique are the computation time and amount

of memory required by this algorithm. The number of operations per time step is

3R2 where R is the number of coefficients of the parity relation. In our case with

147 coefficient this gives around 65000 operations. This is very likely to be above

the capacity of a space based computer. Hopefully we need not use consecutive

time steps in our estimation. We could for example take only one parity

information vector every 10 time step thus reducing by 10 the computation power

required. The algorithm also requires the storage of 1/2N
2 numbers for the

covariance matrix P. This might be a major problem as parity relations for large

space structures will be made of hundreds of coefficients.
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3.3 Estimation through Minimization of a Structural Distance

We have seen that the Kalman filter algorithm requires an important amount

of memory which might not be available on a space based computer. This is why

developing an algorithm requiring less storage capacity would be of some interest.

The minimization of a structural distance is one such algorithm. This technique is

described in [4]. The basic points will be presented here.

Let Pe be our estimated parity relation and re the resulting residual. Let P

and r be the desired relation and residual. We have

re(0 = PjO PrfO

*,(••) = P>) PjM

where rr(i) = 0 in the no-fail case.

We want to minimize the distance D(t)

D(0 = [Pe(0-P r(OfP[Pe(0-P r(')]

where P is a symmetric weighing matrix.

Let A(0 = Pe(0 - Pr(i). We have

D(t+l) - D(t) = [A(t+l) - A(OfP [A(i+l) - A(0] + 2 Ar(i) P [A(i+l) - A(0]

As A(i) is unknown, we impose that it follows

A(t+l)-A(0 = hP^PjCO

where h is a scalar.

Then we have
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D(«+l) - D(i) = h [ h PT(0 P1 Pj(0 + 2 PjO P.(i)

Let

Pl(0 P-1 Pj(0

our distance will be decreasing for 0 < X < 2 , the optimum being X=l . The

identification algorithm will be

X re(0 P'1 Pf(0
Pe(«+l) = P.(0 ' —

Pj(0 P-1 Pi(0

X is used to reduce the effect of noise on the estimation. For 0 < X < 1, reducing

the value of X will reduce the effect of noise but will also increase the time required

for the estimation. The P matrix is used to modify the importance of the different

coefficients of Pe in the distance. The more importance the coefficient has, the

more quickly it will be identified.

As in the case of the Kalman filter this estimation process would ultimately

give us the trivial solution Pg = 0. To avoid this we will restore the norm of the

sensor coefficients to 1 after each identification step.

P (f+1) = P,(i+l) / norm(i+l)

The algorithm was first tried with X=l and P the identity matrix. In this

case a geometric interpretation of the algorithm can be given. Consider a parity

relation made of 3 coefficients [0,0,1], and the corresponding information vectors

[a,b,0] where a and b can take any value. Lets assume that the first 2 coefficients

correspond to the X and Y directions of figure 3-4 and the third to the Z direction
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orthogonal to the figure. If our initial estimate of the relation is P£(0)=[l,l,l] and

we have the information vectors P[(l)=[0,l,0] and P](2)=[l,l,0] then our two

successive estimates of Pe will be Pjl)=(lfOfl] and Pj2)=[l/2,-l/2,lj. The x,y

component of these vectors are represented on figure 3-4. As shown by the figure,

the algorithm is equivalent to an orthogonal projection of P (j) in the direction

Figure 3-4: Successive estimates given by the structural distance

The estimation with X=l and P=I was carried out over 3050 time steps

without introducing any sensor noise. The initial relation is the 5% case of figure

2-12. Figure 3-5 shows the estimated residual over periods of 50 time steps

covering the estimation time. Figure 3-6 shows the residuals given by the initial

relation. The algorithm is not too succesful in reducing the covariance of the

residuals. This can be blamed on the bad weighting of the gains. Actuator

coefficients are much larger than their sensor counterparts and the algorithm puts

all the weight on them. Consequently the sensor coefficients are almost kept
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constant and the possible reduction of covariance is limited.

We have to introduce some weighting P in the structural distance. One idea

is to find P such that the distance is equivalent to the covariance of the residuals of

the estimated relation Pe(0- Lets suppose that P = E(P-i P^). Then

As Pft and Pr are not random

D(0 = E[ (Pe(0 - Pr)
T(Pi Pj) (Pe(0 - Pr)

= E[ re
2(0 - 2 re(,>r - r,

2 j

But as rr=0 by definition of Pf

E[ re
2(«) ]

The problem is that such a weighing would require the storage of l/^'2 coefficients

as in the Kalman filter case. To avoid this only the diagonal terms of E(P[ Pj) were

taken to create a diagonal matrix.

Diagonal (P) = [ y1 , ... , yl , y2 , ... , y2 , ... , y6 , ... , y6 , Uj , ... , ut ]
S times S times S times S times

The result of the new algorithm is shown in figure 3-7. The residuals are now

comparable to those achieved with the Kalman filter. The algorithm is not able to

give a better estimate even though no noise is simulated. The usual simulation

using the last estimated relation is presented in figure 3-8.

Using the same weighting matrix but X=0.1, sensor noise at the 10~4 level

was introduced. The result of the estimation is shown in figure 3-9 compared with

the 5% mismatch residual in figure 3-10. The simulation involving the estimated
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Figure 3-8: Relation estimated without noise using the structural distance

relation is shown in figure 3-11. This shows that the algorithm still performs
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Figure 3-11: Relation estimated with noise using the structural distance

correctly with sensor noise as long as X is reduced sufficiently.

3.4 Eigenvalue Decomposition of a Parity Information Matrix

The parity vector made of the R coefficients of a parity-relation and the

corresponding parity information vectors Pj are elements of the same R dimensional

vector space. The definition of a parity relation states that when no noise is

considered we have

The vector space interpretation of this definition is that the parity vector is the

vector orthogonal to all parity information vectors. This property was used in the

last section when we estimated the parity relation by performing successive
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orthogonal projections of our estimate in the direction of the information vector P-.

Now instead of performing an estimation at each step we build a matrix A

made of different information vectors.

A =

According to the definition the corresponding parity relation is in the left null space

of this matrix. Consequently, without noise, a null space algorithm based on a

matrix containing at least R-l information vectors gives us the corresponding

parity relation.

If some noise is introduced the exact null space vector no longer exists.

Instead we have .to find the vector "as orthogonal as possible" to A as it is called in

[1]. This is the vector that minimizes the covariance of the residuals E(r~).

This vector can be found by performing an eigenvalue decomposition of A A .

First we note that

AA' = Pi(n)

= E [ p i ( J )P i ( J ) l

Then if our estimation is based on n parity information vectors, the covariance of

the residual rf corresponding to the relation Pr is
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T.
Now if the decomposition of A A is

' AA' =

we have

'R

where Xfc > 0 and the Vfc are orthonormal
and the Xk are ordered by magnitude

R

= E Xk

If we impose that the norm of Pr be one, then

IIPJI =
R

And consequently E(TZ) is minimized if Pf is the eigenvector V^ corresponding to

the smallest eigenvalue \r This vector is "as orthogonal as possible" to A.

In our case imposing the norm of Pr to be one is almost the equivalent of

having the norm of the sensor coefficients to be one as they are much larger than

the actuator coefficients. However if this approximation is not valid, for example if

the sensors have different noise levels, then the algorithm can be modified as
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follows. Let || ||N represent the N norm that takes into account the different noise

levels. Then £Tr.2) can be written

But as the eigenvectors V. are an orthogonal basis of our vector space, P can be

written

Pr = £

and we have
•

R
lip || — v"< f PTV I2 IIV II 2 -- 1
llrr"N — L, l r r V k J i l V k l l N ~ L

J=l • .

The best relation is given by the eigenvector V"k corresponding to the smallest ratio

VllvkllN
2

In [1] a singular value decomposition of A is used. The parity relation is

given by the left singular vector corresponding to the smallest singular value. This

technique might be more accurate for small eigenvalues [2]. The eigenvalue

technique, however is more interesting when memory capacity is limited. Storing A

requires keeping R by n numbers. As A A is symmetric and can be built by adding

up the PJ(I) P](I) matrices it only requires the storage of V0R2 numbers.

Our single actuator relation is made of 147 coefficients. The estimation

would then in theory require 146 time steps. But if the system is slow compared to

the sampling rate these vectors might not be representative of the information

vector population. To be sure to get an accurate estimation some redundancy was
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iatroduced by taking 200 time steps.

In the first run, no sensor noise was introduced. The relation obtained was

used in the two failures simulation and the result is shown in figure 3-12. We have

here a true parity relation as the residuals are zero in the no fail case. The

interesting point is that the failure signatures are quite different from what we had

in figure 2-4, even though the inputs and outputs used in both cases are the same.

According to section 2.2 the null space vector with S=N+2 is of dimension 1.

Consequently the normalized parity relation is unique. In practice we find that

normalized relations with very different coefficients can have almost zero residuals

in the no fail case.
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Figure 3-12: Relation estimated without noise using the eigenvalue method

In the second run, sensor noise at the 10"4 level was introduced in the

estimation and simulation. The result is shown in figure 3-13. The residuals in the
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no fail case are comparable with what we had with the two other estimators. But

here the failure signature is larger so the effectiveness of the relation is improved.

But as usual the introduction of noise resulted in a reduction of the failure

signature.
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Figure 3-13: Relation estimated with noise using the eigenvalue method

Finally we note that this algorithm through the eigenvectors generates an

orthogonal basis of all possible parity relations. For each we have a measurement

of the residual in the no-fail case given by the corresponding eigenvalue. For the

estimation with sensor noise the 10 smallest eigenvalues are given in table 3-1.

They are very close to one another which means that the 10 corresponding relations

will have almost the same residuals in the no-fail case. But their respective failure

signatures could be very different. Figure 3-14 shows the behavior of relation

number 5 in the two failures simulation.
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relation number

eigenvalue in 10"7

1

0.97

2

1.23

3

1.54

4

1.76

5

2.21

6

2.24

7

2.42

8

2.59

9

2.66

10

2.70

Table 3-1: 10 smallest eigenvalues of the information matrix

Sensor 1 failure Actuator 1 failure

Figure 3-14: One of the Other relations estimated using the eigenvalue method
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Chapter 4

Optimization of a Covariance Ratio

4.1 The Covariance Ratio and the Failure Signature

In section 3.4 we saw that as sensor noise is introduced many different

relations tend to have equivalent level of residuals in the no fail case. Up to now we

selected the one with the lowest level so as to be as close as possible to a parity

relation. This is not always the best choice. Comparing figures 3-13 and 3-14 we

find that relation 5 corresponding to 3-14 is more suitable for failure detection.

Both relations have a comparable level of residuals in the no-fail case but relation 5

has a much larger actuator 1 failure signature. Estimation algorithms could be

greatly improved if we could measure the performance of the relations they

generate. A good criterion for this would be to compute the ratio of the

covariances of the residuals in the fail and the no-fail case. To select the single

actuator 1 relation, for example, this would be

E[r (i)] with failure of actuator 1

£"[r2(»)] without failure

Any linear relation that can be generated by our estimation algorithm is of

the form
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Wg is the vector of sensor coefficients
Wa is the vector of actuator coefficients
r is the residual

The covariance of this residual can be computed quite accurately in the no-fail case

as the corresponding inputs and outputs are available. On the other hand, the

covariance when a failure is present will have to be estimated. First we must find

how a failure affects the residuals. Lets assume that we want to detect an actuator

1 failure. A failure appears when the input computed by the controller Uj and the

input applied to the system Uls are different. The residual becomes

This can be written

<Y*(0 + wl ulg*(o + w^ iUj*(o - ulg*

As U, and Y are the no-fail inputs and outputs of the system, the residual they

generate, rg, is equivalent to the residual in the no-fail case, rn. Consequently, the

signal U. (i) - Ulg (i) is the one that allows us to detect the failure. It affects the

residual through Wa to give the failure signature Wa[U1 (i) - Ulg (i)j .

If we assume r has the same covariance as r . the covariance ratio becomes
5 u

wa
TE[(u;(0 - ul8*(0) (^'(0 - uls'(0)T] wa

If also the failure is such that Uls (») is known, then the covariance ratio can be

estimated based only on the inputs and outputs in the no-fail case.
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4.2 Model Based Covariance Ratios

To see how this new technique performs we first assume we have available an

accurate model of the structure. We want to find the single actuator 1 relation

with the best covariance ratio for a zero failure of that actuator.

Going back to relation (2.5), after selecting the lines involving the actuator 1

input we have a relation of the form

where C and D represent the selected rows of -D^1 Cf and D~l

This relation can be modified to take into account sensor noise given by relation

(2.6). We get -

U^ij = C* X(0 + D'* [Y*(0 + N(f)j " (4.1)

Previously, to build a parity relation, we multiplied this relation by the vector

W satisfying W C =0. To have such a vector the number S of coefficients in W

had to be at least one greater than the rank N of C . Now we will choose this

vector, renamed Wa, so as to optimize the covariance ratio and get what will be

called an optimized relation. This means that Wa can be of any size. However if the

dimension of Wa is greater than N, as we will show later, we are guaranteed that

our relation will perform better than a parity relation. Multiplying by W . relation
A

(4.1) becomes

WjU^O = W^ C* X(0 + WjD* Y*(i) + WjD* N(i)

and the corresponding residual is
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'n(0 = - W; D* Y*10 + Wj U^i) = W^ C* X(i) + WT
a D* N(i)

Now the unknown state will be an added source of noise. What we hope is that

this will be largely compensated by an increase in the failure signature.

The covariance of this residual is given by

E[rD
2(0] = W^ C* E[X(,) XT(0] C*TWa + Wa D* £[N(0 NT(0] D* X (4.2)

It depends on two covariance matrices. The noise covariance matrix is known. It is

a diagonal matrix with diagonal elements equal to q. The state covariance matrix

on the other hand has to be computed. This was done through simulations of the

system. Equation (4.2) can be regrouped into one matrix equation.

Eh 2(01 = WT M W1 n v '• a n a

As we want to optimize our relation for a zero failure of actuator 1 we have

Uj (0 = 0 and our failure covariance matrix will be

The covariance ratio becomes

W a M f W a (4.3)

Wa
TMn Wa

Without sensor noise M is simply

T i

With W C = 0 the denominator is zero and cf is infinite. Consequently in that

case parity relations are the optimized relations.
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Generally, this is not true and we have to find the vector W that maximizes
a

the ratio

W (4.4)

MB Wa

Seen this way this doesn't seem very easy. The idea is to first find a transformation

for which the image of MQ is the identity matrix. Let the eigenvalue decomposition

of M be

M = P D P' with D a diagonal matrix: D =

As the eigenvalues of D are positive, it can be written as

= D1/2D1/2 with D*/2 =
(X//2

P D1'2 is the transformation changing MQ into I.

Mn = P D1/2 I [P D1/2]1

Using this transformation the ratio can be rewritten as

WjP D1/2 D'1/2 PT Mf P D'1/2 D1/2 PTWaa I a

I D1/2PTW

If we pose Wat = D1/2 PT Wa and Mft = D'1/2 PTMf P D'1/2, the ratio becomes
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Mft Wat

Wat I Wat

Finding the Wat maximizing .this ratio is quite easy. If we impose that ||W t||=l,

then the denominator is one. The Wat maximizing the numerator will be given by

the eigenvector of Mft correspoding to the largest eigenvalue. This technique is

similar to what was done in 3.4. Once the best Wat is found, we get the

corresponding Wa with

Wa = P D'1/2 Wat

Optimized relations that will be generated here have the same number of

coefficients, 147, as previous parity relations. They also have the norm of the

sensor coefficients equal to one. This will enable us to compare the performances of

the two types of relations.

One single actuator 1 relation was generated for each of the two levels of

noise. They were then tried in the two failures simulation. For the 10"4 level the

relation was first tried without simulating any noise to see how the state affects the

residual. The result is presented in figure 4-1. This particular case emphasizes the

fact that letting through a little amount of the state can dramatically improve the

failure signature. Figure 4-2 shows the simulation taking into account noise at the

10"4 level. The equivalent simulations for the 10~3 level are shown without noise in

figure 4-3 and with noise in figure 4-4. In this case much more of the state is visible
*

in the residual. In return we should have a larger failure signature, as this relation

must have a better covariance ratio than the preceding one for a level of noise of

10~3. This cannot be seen in figure 4-3 which means that the increase must be quite

small.
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Sensor 1 failure Actuator 1 failure

Figure 4-1: Noiseless residual of the 1st model based optimized relation

Sensor 1 failure Actuator 1 failure

Figure 4-2: Noisy residual of the 1st model based optimized relation
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Sensor 1 failure Actuator 1 failure

Figure 4-3: Noiseless residual of the 2nd model based optimized relation

Sensor 1 failure Actuator 1 failure

Figure 4-4: Noisy residual of the 2nd model based optimized relation
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4.3 Estimation Using the Optimization

We now want to use the covariance ratio with the eigenvalue decomposition

method. From section 3.4 we already know how to find the covariance in the no-fail

case. The relation is of the form

We also know how to compute the covariance in the fail case. If the failure

signature is Wa Uj (>)

E(rt
2(i)} =

And if our estimation uses n information vectors, we have

- £
n -

The covariance ratio is

To be able to use the transformation technique of the previous section we want to

express cr only as a function of Pf. As P^ = [ Wg ' , Wj], if we define Mf as

Mf =
0
0

0

cr can be rewritten as
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; Mf Pr

c r = l

This equation is equivalent to equation (4.3) except that now we are estimating all

the coefficients of the relation instead of only the actuator ones.

The optimized estimation was performed using 200 parity information

vectors. First noise of 10 was introduced. The resulting relation is shown in

figure 4-5 for a simulation taking into account sensor noise. We somehow expected

to get the same residual as in figure 4-2. Instead we have a totally different relation

with a larger failure signature and a much higher level of residuals in the no fail

case. The covariance ratio given by the estimation is 0.79 103. Obviously, this

number does not correspond to what we really have in the simulation. For the 10"3

level of noise, the estimated relation is shown in figure 4-6. Here we have an even

greater difference between the estimated ratio, 0.57 103, and the simulation. This

bad estimation of the covariance ratio indicates that the covariance matrices

needed for the estimation cannot be reliably computed with 200 information

vectors. Sensor noise is a likely source for the bias in the estimation. In section 3.4

the same amount of information gave good results even when sensor noise was

introduced. But if we compare figures 3-13 and 4-5, it seems that a small amount

of information and sensor noise affects the estimation of optimized relations more

than that of parity relations.

In a second attempt the estimation was carried over 1000 time steps. Figure
*

A 1

4-7 shows the result for the 10 level of noise and figure 4-8 for the 10 level. The
o o

corresponding estimated covariance ratios are 0.18 10 and 0.13 10. These

numbers correspond more to what we actually see in the simulations. The most

interesting point is that these relations have better performances than the ones of
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Figure 4-5: 1s optimized relation estimated using 200 steps
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section 4.2. Previously the optimization was done only with respect to the actuator

coefficients. Once these were chosen the rest of the relation was given by the

matrix D . This means that only 21 independent relations were considered. Now

the optimization is done with respect to all the coefficients and we are comparing

147 independent relations of which 21 are the previous ones. It turns out that the

latter are not the best ones.

Optimized relations are completely different from parity relations as they

have a high level of residual in the no-fail case. As a consequence the effect of the

sensor 1 failure is no longer visible in the residuals. This might also be the case for

any actuator 1 failure other than the "zero" failure.



-62-

o

ô
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Figure 4-7: 1st optimized relation estimated using 1000 steps
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Chapter 5

Conclusion
•

5.1 Summary

In chapter 2, parity relations were generated using a model of a grid

structure. The goal was to investigate the sensitivity of these relations to modeling

errors. 5% error in the model parameters was enough to prevent us from detecting

any actuator failure, and with 10%, no failure could be detected. As no accurate

model can be found before the structure is built, chapter 3 focused on the

estimation of parity relations using the actuator inputs and sensor outputs.

. Three on-line estimators were studied. First a Kalrhan filter was tried. The

resulting estimated relation had a reduced detection efficiency compared to the

relation generated using the model, due mainly to a reduced failure signature. This

trend was observed in all estimators. Also this technique requires an amount of

memory proportional to the square of the number of coefficients in the relation. As

parity relations for large space structures will have many coefficients and memory

on a space based computer is limited this can be a major problem. Consequently, a

second estimator, for which the storage requirement is only proportional to the

number of coefficients, was developed. It was based on the minimization of a

structural distance. The results were comparable to what we had with the Kalman

filter. However, the required estimation time is much longer. But this is not a

problem in our case. This technique is the most interesting for single sensor parity

relations. For a single actuator relation, however, a more accurate estimator is
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required. The third technique used an eigenvalue decomposition of a covariance

matrix. It proved to be slightly more accurate than the others with the same

memory requirement as the Kalman filter.

With a few modifications, the last technique was used to generate linear

relations other than parity relations. Unlike the latter, these relations take into

account the effect of the failure on the input-output relations. As a result they are

optimized for the detection of a particular failure. The main interest of such

relations is their ability to detect failures in very noisy conditions. It is likely that,

in these conditions, they might only detect the failure they are designed for.

However, components can usually fail in only one or a few different ways, so we can

generally run a different relation for each different failure mode of the same

component. If this is computationally too heavy, another solution is to modify the

covariance ratio so as to optimize a relation for two 6r more failures.' For example,

to detect the failure signatures Fl and F2, the covariance ratio would be

1/2 covariance of Fl + 1/2 covariance of F2

covariance of the residual without failure

5.2 Recommendations

The last chapter showed the importance of the failure signature in the design

of failure detection relations. Consequently, further research using this concept

could be performed. In particular, the following points could be investigated.

As a remedy to the complexity of the double eigenvalue decomposition, it

would be interesting to use the covariance ratio concept with a simplified

estimator. For example, we could define a structural distance as the inverse of the
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covariance ratio and try to decrease it. But as this gives a nonlinear expression, the

general framework of section 3.3 is not applicable and a new approach must be

found.

We have seen that estimated optimized relations have better performance

than model based ones. But, whenever possible, it is more convienient to build

relations with a model of the system rather than estimate them. Thus, further work

could be done on the improvement of model based optimized relations.

Finally, we can use the failure signature idea with parity relations. If we take

the number S of time steps to be greater than the minimum, N+l, we can choose

between different independent relations. We can then choose the one with the best

covariance ratio. For a parity relation, as the state is no longer present, this ratio is

cr =

covariance of the failure signature

covariance of the residual due to noise
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Appendix
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PHI.QAMA.C AND FEEDBACK MATRICES OF THE DISCRETIZED SYSTEM

PHI MATRIX

0.973O40+OO 0.98868D-01 O.OOOOOO+OO O.OOOOOD+OO O.OOOOCC:C2
O.OOOOOD-t-OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO 0.OOOOOD+OO 0.OOOOOO+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO

-.53636D+OO O.973O9D+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO

O.OOOOOD+OO O.OOOOOO+OO O.91926D+OO O.96894D-O1 O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO -.159040+01 0.91952D+OO O.OOOOOO+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.62O95D+OO
O.86153D-01 O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO --70361D+O1
O.62345D+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO 0.18313D+OO O.69639D-O1 O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO -.135340+02 0.19159D+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO p.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO
O.OOOOOD+Ob O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO -.35318D+OO 0.467540-01
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO -.17765D+O2 -.33242D+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
-.958840+00 O.46922D-O2 O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
-.421280+01 --9O172D+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO -.86791D+OO -.11925D-O1 O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO

O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.15485D+O2 -.78724D+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO -.81O23D+OO

-.14219D-O1 O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO
O.OOOOOO+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO O.19715D+O2

-.72517D+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
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o.oooooo+oo o.oooooo+oo 0.000000*00 o.oooooo+oo 0.000000*00
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO
o.000000*00 o.oooooo+oo o.oooooo+oo o.oooooo+oo o.oooooo+oo
O.OOOOOO+OO -.5O7OOO-O1 --2O421D-O1 O.OOOOOO+OO O.OOOOOO+OO

O.OOOOOD+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO
O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO
O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO
O.OOOOOO+OO O.44525D+O2 O.61761D-O1 O.OOOOOD+OO O.OOOOOD+OO

O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOO+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOO+OO O.91579D+OO O.319O6D-02

O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO O.OOOOOO+OO
O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOO+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO O.OOOOOD+OO
O.OOOOOD+OO O.OOOOOO+OO O.OOOOOD+OO -.135O9D+O2 0.1O418D+O1

o.
o.

GAMA MATRIX

-.7469OO-O6
-. 14859D-O4
O.2927OD-O3
O.57658D-O2
-.46849D-O5
-.86962D-O4
.2O925D-O5
.3467OD-O4
.272180-03
.35734D-O2
.169O3D-O4
.363540-64
.49485D-O5
.41O23D-O4
.16931D-O3
. 1844OD-O2
.458O6D-O4
19411D-O2
.41732D-O5

O.
O.
O.66948D-O3

C MATRIX

O.1O471D
O.2O831D
O.17438D
O.34351D-
-.235670
-.437460-
-.396230-
-.656490
O.16225D
O.213O1D
O.2O369D
O.438070-
-.75O41D-
0.62209D
O.621370-
-.676720-
O.73897D-
-.313150-
-.'238470-
-.382550-

O3 -.
02 -.
03 O.
02 O.
03 O.
02 O.
03 O.
02 O.
03 O.
02 O.
03 -.
03 -.
04 O.
03 -.
04 O.
03 -.
04 O.
02 -.
05 -.
03 -.

1O559D-
21O06D
179580
35375D
22932D
425670-
3979OD
659250
168O1D-
22O57D-
186770-
4O168D-
718160-
59536D
88369D-
96242D-
72432D-
30694D-
22677D-
363790-

03 -.
02 -.
03 0.
02 O.
03 O.
02 O.
03 O.
02 O.
03 -.
02 -.
03 O.
03 O.
04 O.
03 -.
04 -.
03 0.
04 O.
02 -.
05 O.
03 0.

14759D-
2936 ID
36252D-
71412D-
299550-
556O4D-
365790
606060-
22238D
291950-
13753D-
29578D-
631410-
52344D-
189380-
2O625D-
251560-
1066OD-
248890-
399270-

03 O
02 O
04 0
03 O
03 -
02 -
04 -
03 -
O3 -
02 -
03 -
03 -
04 -
03 O
04 -
03 0
04 O
02 -
05 0
03 O

14743D-
293300-
292210-
57562D-
3O134D-
559350-
34719D-
57523D-
21857D-
286950-
14224D-
3059OO-
621950-
5156OD-
21604D-
235290-
234760-
994830
254460-
408200-

03 -.
02 -.
04 0.
03 0.
03 -.
02 -.
04 -.
03 -.
O3 O.
02 O.
03 -.
03 -.
04 O.
03 -.
05 -.
04 O.
04 -.
O3 O.
05 -.
03 -.

616150-06
12258D-O4
23339D-O3
45976D-02
25229D-O5
46832D-O4
7O175D-O6
11627D-O4
19189D-O3
25192D-O2
21490D-O4
462180-04
243O7D-O5
2O150D-O4
21O26D-O3
22899D-02
13264D-O4
5621OD-O3
32142D-05
515630-03

-.29744D+O1 O.OOOOOD+OO O.36352D+O1 O.OOOOOD+OO 0.264480+01
O.OOOOOO+OO -.306310+01 O.OOOOOD+OO -.439700+01 O.OOOOOD+OO

-.251550+01 O.OOOOOD+OO -.53252D+O1 O.OOOOOD+OO 0.448740+01
O.OOOOOD+OO -.351850+01 O.OOOOOD+OO -.551O9D+O1 O.OOOOOD+OO

-.15329D+O1 O.OOOOOD+OO O.319720+01 O.OOOOOD+OO -.10910D+O1
O.OOOOOD+OO -.374940+01 O.OOOOOD+OO 0.146O6D+O1 O.OOOOOD+OO
0.1929OD+O1 O.OOOOOO+OO O.97648D+OO O.OOOOOD+OO 0.24219D+O1
O.OOOOOD+OO 0.38126D+O1 O.OOOOOD+OO 0.57296D+OO O.OOOOOD+OO

-.45793D+OO O.OOOOOD+OO -.19O7OD-O1 O.OOOOOD+OO -.34954D+O1
O.OOOOOD+OO O.16891D+O1 O.OOOOOD+OO O.71773D-O1 O.OOOOOO+OO

-.414990+01 O.OOOOOD+OO -.33471D+O1 O.OOOOOD+OO 0.18233D+OO
O.OOOOOD+OO -.15536D-O1 O.OOOOOD+OO -.11965D+OO O.OOOOOD+OO

O.OOOOOD+OO 0.21070D-01 O.OOOOOD+OO 0.35452D-O1 O.OOOOOO+OO
-.5O777D-O1 O.OOOOOD+OO -.9427OD-01 O.OOOOOD+OO 0.45560D-O1
O.OOOOOD+OO O.93361D-O1 O.OOOOOD+OO -.521660-01 O.OOOOOD+OO
O.47592D-O1 O.OOOOOD+OO 0.15335D+OO O.OOOOOD+OO -.1199OD+OO

O.OOOOOD+OO O.29666D-O1 O.OOOOOD+OO O.59407D-02 O.OOOOOD+OO
-.649260-01 O.OOOOOD+OO -.826020-02 O.OOOOOD+OO -.61374D-O1
O.OOOOOD+OO -.651930-01 O.OOOOOD+OO -.43236D-01 O.OOOOOO+OO

-.16547D-O2 O.OOOOOD+OO O.487170-01 O.OOOOOD+OO 0.12794D+OO
O.OOOOOD+OO -.12398D-O3 O.OOOOOD+OO O.4745OD-01 O.OOOOOD+OO

-.54359D-O3 O.OOOOOD+OO -.166960-03 O.OOOOOD+OO 0.53881D-O1
O.OOOOOD+OO -.984980-02 O.OOOOOD+OO O.16897D-02 O.OOOOOD+OO

-.16104D+OO O.OOOOOD+OO -.275260-01 O.OOOOOD+OO -.16161D+OO
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FEEDBACK MATRIX

O.1495OD+O3 O.13786D+O2 -.726200+02 -.222250+02 -.20548D+O3
-.22394D+O2 -.178270+03 0.377390+01 0.190740+03 0.282130+02

-.258O6D+O3 O.15741D+O2 -.36949D+O3 -.994980+01 O.122440+O4
-.25387D+O2 -.137040+04 -.23778D+O2 -.546010+03 O.1158OD+03

O.5O29OD+O2 O.43523D+O1 -.849O9D+O2 -.11459D+O2 -.14638D+O2
O.57319D+OO O.24451D+O2 0.784550+01 0. 13988D+O2 -.19359D+OO

O.34932D+O2 -.28341D+O1 O.19625D+O2 -.61247D+OO 0.45736D+O3
-.95877D+O1 O.77O38D+O2 O.29286D+O1 -.636170+02 0.755710+01

O.11623D+O3 O.15O96D+O2 -.1O4810+03 -.13465D+O2 0.59882D+O2
-.267820+01 -.62854D+O1 0.23O82D+O1 0.131510+03 O.119160+02

-.212460+03 O.964740+O1 -.35754D+O3 -.6O771D+OO O.519460+O3
-.471520+01 O.35546D+O3 -.61223D+O1 -.286550+03 O.54749D+O2

O.1462OO+O3 O.233740+O2 -.312850+03 -.61244D+O1 O.338970+03
O.165420+O2 O.23268D+O3 O.16369D+O2 -.206O4D+03 -.14725D+O2

O.266660+02 O.422900+O1 -.23755D+O3 0.1091OD+02 -.19795D+O4
0.9199OD+O2 O.16O74D+O4 O.2OO36D+O2 O.12976D+O4 -.116550+03

O.1438OD+O3 O.21557D+O2 -.29216D+O3 -.472200+01 O.42863D+O3
O.34292D+O2 O.22286D+O3 O.1051OD+O2 -.24284D+O3 -.184680+02

-.126860+03 O.53227D+OO -.276470+03 0.836690+01 -.19O63D+04
O.87O11D+O2 O.152430+04 O.22254D+O2 O.13626D+O4 -.12981D+O3

O.26148D+O3 0.41327D+O2 -.42751D+O3 -.136640+02 0.59954D+O3
O.32157D+O2 O.1O517D+O3 O.157660+02 O.52898D+O2 -.67932D+O1

-.21183D+O3 0.346O4D+O2 -.66617D+O3 0.110610+02 -.289970+04
O.1382OD+O3 O.869760+03 O.184810+O2 0.72096D+O3 -.55849D+O2




