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Abstract 

A unique set of micromechanics equations is presented for high temperature 

metal matrix composites. The set includes expressions to predict mechanical 

properties, thermal properties, and constituent microstresses for the 

unidirectional fiber reinforced ply. The equations are derived based on a 

mechanics of materials formulation assuming a square array unit cell model of 

a single fiber, surrounding matrix and an interphase to account for the 

chemical reaction ~hich commonly occurs, between fiber and matrix. A 

preliminary validation of the equations was performed using three-dimensional 

finite element analysis. The results demonstrate excellent agreement between 

properties predicted using the micromechanics equations and properties 

simulated by the finite element analyses. Implementation of the micromechanics 

equations as part of an integrated computational capability for nonlinear 

structural analysis of high temperature multilayered fiber composites is 

ill ustrated. 

Key Words:, Metal matrix composites; Composite micromechanics; Mechanical 

properties; Thermal properties; Uniaxial strengths; Microstresses 



Introduction 

. The mechanical performance and structural integrity of fiber reinforced 

metal matrix composites are ultimately governed by the behavior of the 

constituent materials at a micromechanistic level. In general, the individual 

constituents behave quite differently relative to one another. Moreover, 

behavior of the constituents is dynamic, particularly in high temperature 

applications, due to the various nonlinearities associated with, for example: 

(1) large local stress excursions, (2) temperature-dependent material 

properties, (3) time-dependent effects, and (4) constituent chemical react'on. 

In the structural analysis of metal matrix composites, then, it is 

important to be able to describe and track this micromechanistic constituent 

behavior. Available methods for this purpose are limited. For example, 

techn'ques such as finite element analysis can, in principle, be applied 

directly with the constituents modeled discretely. It becomes obvious, 

however, that for complex structures the resources (manpower and computer) 

necessary to define, conduct and interpret such an analysis are prohibitive. 

Another approach is to employ composite micromechanics theory and derive 

simplified relationships which describe the three-dimensional anisotropic 

behavior of the simple composite (e.g., unidirectional ply). The latter 

approach has been taken as part of a comprehensive research program to develop 

effective computational mechanics methodologies for high temperature 

multilayered fiber composite structures. 

As an essential part of the above-mentioned program, a unique set of 

micromechanics equations has been derived for high temperature metal matrix 

composites. The set comprises closed-form expressions to predict equivalent 

"pseudo homogeneous" properties for the unidirectional fiber reinforced ply, 

including: (1) mechanical properties - moduli, Poisson's ratios, and uniaxial 
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strengths; (2) thermal properties - conduc~ivities, coefficients of expansion,' 

and heat capacity; and (3) constituent microstresses. 

The micromechanics equations presented here are derived based on a 

mechanics of materials formulation assuming a square array unit cell model of 

a single fiber, surrounding matrix and an interphase to account for the 

chemical reaction which commonly occurs between fiber and matrix. The basis 

of the formulation is summarized as part of the discussion below. 

Concurrent with the ~erivation of equations, a study was conducted using 

three-dlmensiona1 finite element analysis. The purpose of the study was to 

assess the validity of the mechanics of materials formulation, in general, and 

to investigate the accuracy of the micromechanics equations for a specific 

composite material system. Results from this study are presented also as part 

of the discussion below. 

Finally, a demonstrati~n of the utility of this unique set of 

micromechanics equations is provided by illustrating their use as part of an 

integrated computational capability for the nonlinear structural analysis of . 

high temperature multilayered fiber composites. A few typical results are 

presented from the stress analysis of a hypothetical tungsten fiber reinforced 

superal10y turbine airfoil. 

Composite Micromechanics Theory 

Composite micromechanics theory refers to the collection of physical 

principles, mathematical models, assumptions and approximations employed to 

relate the behavior of a simple composite unit (e.g., lamina' or ply) to the 

behavior of its individual constituents. For example, a variety of approaches 

have been used in the past to predict equivalent thermoelastic material 

properties of unidirectional fiber composites [1-6]. More recently, simple 

equations have been derived [7,8] to predict mechanical, thermal, and strength 

properties for resin matrix composites using a mechanics of materials 
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formulation. A similar approach was taken to derive the set of m1cromechan1cs 

equations presented here for high temperature metal matrix composites. 

The formal procedure of composite m1cromechan1cs theory relies on the 

principles of solid mechanics, thermodynamics, etc., at different levels of 

mathematical sophistication, together with certain assumptions (consistent 

with the physical situation) and approximations. In the approach taken here, 

application is made of the principles of displacement compatibility and force 

equilibrium as defined in elementary mechanics-of-mater1als theory and 

Fourier's law for heat conduction from thermodynamics. In addition, the 

assumptions are made that: (1) fibers are continuous and parallel; (2) 

properties of all fibers are identical; and (3) complete bonding exists between 

constituents. No restrictions need be placed on the constitutive behavior or 

isotropy of the individual constituent materials. For generality, constituent 

material behavior can be taken as thermov1scoplast1c, anisotropic, and 

three-dimensional. It is implied by this that the individual constituent 

material histories can be tracked independently as a function of time and 

represented as an instantaneous stress/strain state. 

The periodic structure of a unidirectional metal matrix composite (ply) 

is approximated here by a square array unit cell model. The geometry of the 

model is illustrated in Fig. 1. It should be noted that the interphase growth 

is assumed to result from the degradation of fiber material and thus propagates 

inward causing a continuous decrease of the current (intact) fiber diameter (D) 

from the original (virgin) fiber diameter (Do). With the existence of the 

interphase, three subregions (A,B,C) are distinguished to characterize the 

intralam1nar (through-the-thickness) nonuniform1ty of the constituent (matrix 

and interphase) microstresses and material properties. 

The definition of ply properties is with respect to the ply material 

coordinate system which is depicted in Fig. 2. The common terminology 
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associated with each of the coordinate ax1s d1rect10ns 1s also 1llustrated on 

the ply schematic. The m1cromechan1cs equations presented here are der1ved for 

the spec1al case of a transversely 1sotrop1c (1sotrop1c 1n the 2-3 plane) ply 

allow1ng for transversely 1sotrop1c const1tuents. 

Compos1te M1cromechan1cs Equat10ns 

The m1cromechan1cs equat10ns to pred1ct ply equ1valent mechan1cal 

propert1es are sumrnar1zed 1n F1g. 3. Included are express10ns for normal 

(extens10nal) modu11 (Elll , E122 ), shear modu11 (6112 , 6123), and P01sson's 

rat10s (ul12 , ul23 ). In the express10ns k represents c~nst1tuent or1g1nal 

volume fract10n (values pr10r to any 1nterphase growth) and the subscr1pts f, 

m, d, and 1 denote f1ber, matr1x, 1nterphase, and ply quant1ty, respect1vely. 

The volume fract10n of 1nterphase 1s expressed in terms of the f1ber or1g1nal 

volume fract10n and the virgin and 1ntact (1n s1tu) fiber d1ameters. 

The equations for modu11 are der1ved w1th modulus taken 1n the gener~l 

context as s1mply the der1vat1ve of stress w1th respect to stra1n. As such, 

the express10ns are app11cable to the pred1ct10n of 1nstantaneous or tangent 

moduli as well as elast1c modu11. It should be noted that the expressions for 

transverse modu11 do not account for the long1tud1nal Po1sson restra1n1ng 

effect that the f1ber 1mparts on the matr1x. The restrained matr1x effect is 

considered here to be negl1g1ble for metal matrix composites. 

The effect is generally more s1gn1f1cant in res1n matrix composites, for 

example, where the f1ber/matr1x relat1ve stiffness rat10 is much greater. 

The ply equ1valent thermal properties are predicted by the m1cromechan1cs 

equations summarized in Fig. 4. Included are expressions for heat capacity 

(Cl ), thermal conduct1v1t1es (Klll , K122), and thermal expansion coeff1c1ents 

(alll , a l22 ). In the express10n for heat capac1ty the symbol p represents 

density. 
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The ply in-plane uniaxial strengths are predicted by the m1cromechan1cs 

equations summarized in Figs. 5 and 6. Included are expressions for tensile 

strength (SlllT' Sl22T)' compressive strength (SlllC' Sl22C)' and 

1ntralam1nar shear strength (Sl12S). Each of the ply strengths is 

associated with a specific failure mode, as illustrated by the schematics 1n 

Fig. 7. In the case of longitudinal compressive strength, four different 

failure modes are considered. The four expressions in Fig. 5 for SlllC 

correspond, respectively, to the four failure modes as follows; fiber 

compression mode, matrix compression mode, delamination/splitting mode, and 

fiber m1crobuckling mode. A more comprehensive treatment of m1cromechan1cs 

strength theories is given by Cham1s [9]. 

The expressions to predict the thermomechan1cal m1crostress distribution 

in the ply constituents are summarized in Figs. 8 to 10. Included are 

expressions for fiber m1crostresses (ofll' 0f22' 0f12' 0f23) interphase 

1 t ( B,C B,C B,C) d t 1 1 t ( m cros resses adll , ad22 , ad12 , 0d23 an ma r x m cros resses amll , 

A,B,C A,B,C A,B,C) In the expressions AT represents an incremental am22 ,am12 ,am23 . 

change in temperature and the superscripts A, B, and C denote the 

1ntralam1nar subregions illustrated in the accompanying schematics. It should 

be noted that these expressions for constituent m1crostresses are based on 

uniaxial behavior, i.e., they do not incorporate any Poisson contributions. 

The systematic procedure for deriving the micromechan1cs equations 

summarized above is explicitly demonstrated in the Appendix with the 

derivations for normal moduli (Elll and El22 ). Derivations of the other 

equations are omitted here solely for the sake of brevity. The selection of Elll 

and El22 for demonstration purposes was based on the authors' judgment that 

their derivations are sufficiently representative to adequately demonstrate the 

formal procedure. 
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Hicromechanics/Finite Element Validation 

In order to 1nvestigate the validity of the mechanics of materials 

formulation and assess the accuracy of the equations derived therefrom, a 

preliminary study was conducted using three-dimensional finite element 

analys1s. The objective of the study was to compare the equivalent ply 

properties (Elll , El22 , Gl12 , Gl23 , vl12' vl23 , a lll , a l22 ) predicted 

by the micromechanics equations with the average "pseudo homogeneous" ply 

properties simulated in the finite element analyses. 

To conduct the analyses, a discrete model of the square array unit cell 

was constructed, as shown in Fig. 11, from isoparametric solid finite elements. 

The composite material system assumed for this study involved a thor1ated 

tungsten (W-l.5Th02) f1ber embedded 1n an iron-base superalloy (Fe-25Cr-4Al-1Y) 

matr1x. Propert1es for the 1nterphase were taken to be a simple average of the 

f1ber and matrix properties. 

The analyses entailed simulations of 1dealized modes of deformation such 

as simple elongat10n, pure shear, and unconstrained thermal expansion. These 

were ach1eved through the judic10us app11cation of the .loading/boundary 

conditions on the model. The appropriate s1mple expressions from elementary 

mechan1cs of mater1als theory (see F1g. 11) were then applied in conjunction 

with the nodal d1splacement/force results of the f1nite element analyses to 

compute the s1mulated average propert1es of the d1screte model as a "pseudo 

homogeneous" un1t. 

Results of the study are summar1zed 1n Table 1 which gives the ratios of 

property values determined from the micromechanics eQuat10ns (PHEQ ) and by 

fin1te element simulation (PFEH ). As can be seen, excellent agreement was 

achieved overall. These results ind1cate that the mechanics of mater1als 

formulat1on is an effect1ve approach to the micromechanical mode11ng of metal 
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matrix composites. It is recognized, however, that additional investigation, 

both analytical and experimental, would be prudent before any final ·conclus1ons 

are made regarding the specific accuracy of these m1cromechan1cs equations. 

Application of H1cromechan1cs Equations 

The primary impetus in deriving the set of micromechanics equations 

presented here was for implementation as part of an integrated computational 

capability for the nonlinear analysis of high temperature multilayered fiber 

composites [10]. This particular utilization of the equations is demonstrated 

here with a few typical results taken from the nonlinear (quasi-static) stress 

analysis of a hypothetical turbine blade (airfoil only) model. The 

incremental/iterative analysis was conducted to investigate the thermally 

induced residual stresses developed during the cool-down transient of a typical 

fabrication process. 

The airfoil is a hollow thin shell structure of constant thickness with 

walls comprising a four-ply [±45]s laminate based on W-l.5Th02 fiber 

reinforced Fe-25Cr-4Al-1Y at a fiber volume fraction of 0.50. Since the 

purpose here is merely to illustrate the types of information provided by the 

m1cromechan1cs equations in this particular implementation, further details of 

the airfoil model and analysis are omitted. 

Two examples of ply mechanical property predictions are given in Figs. 12 

and 13 which show the variation during the cool-down transient of constituent 

and ply longitudinal and transverse moduli, respectively. The ply moduli are 

computed from the corresponding micromechanics equations. The results in 

Fig. 12 reflect the rule-of-m1xtures relationship expressed by the equation for 

Elll while the results in Fig. 13 illustrate the dominance of the matrix 

modulus on the value for E122 . 
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The development of res1dual stresses dur1ng the cool-down trans1ent 1s 

illustrated in F1gs. 14 and 15. The results are for the long1tud1nal and 

transverse normal components, respect1vely, of ply stress and constituent 

m1crostresses. The m1crostresses are computed from the correspond1ng 

m1cromechan1cs equat1ons. The po1nts to be noted from these.results are the 

relative magn1tudes and sense (tensile or compress1ve) of the constituent 

m1crostresses. In Fig. 14, for example, the oppos1te sense of the f1ber and 

matrix m1crostresses results from the d1fference in thermal expans10n 

coefficients between the two mater1als. The results 1n Fig. 15 illustrate the 

significant through-the-th1ckness nonun1form1ty of the matrix and interphase 

m1crostresses, as characterized in the different 1ntralam1nar subreg10ns 

(A,B,C). 

From just the few examples given, the ut1l1ty of the m1cromechan1cs 

equations becomes more apparent. Cons1der1ng the results of m1crostress 

distribution, for example, it becomes intuitively more clear how material 

failures might occur at a local level and prompt the 1n1t1at1on of a flaw. 

This type of 1nformat1on provides an insight into the behavior of compOSites 

at a m1cromechan1st1c level wh1ch undoubtedly influences their performance and 

1ntegr1ty in a structural app11cat1on. 

Summary 

The set of m1cromechan1cs equations presented here for h1gh temperature 

metal matrix composites 1ncludes expressions to predict the mechanical 

properties, thermal properties, and constituent microstress distribution for a 

unidirectional fiber reinforced ply. The equations incorporate an interphase 

region at the fiber/matrix boundary 1n order to account for.the chemical 

reaction which commonly occurs in high temperature appl1cat1ons of these 

composites. The basis of the mechanics of materials formulation from which the 

equat10ns are derived is described. The formulat1on is shown to be a va11d 
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and effective approach to m1cromechan1cal modeling of metal matrix composites, 

supported by the favorable results achieved in a comparison with 

three-dimensional finite element analysis. The utility of the m1cromechan1cs 

equations as part of an integrated composite structural analysis capability is 

illustrated with examples taken from the nonlinear stress analysis of a turbine 

airfoil. The results demonstrate the ability to describe and track behavior 

at a m1cromechan1st1c level which impacts the performance and integrity of 

these composites in structural applications. 
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Appendix 

In order to demonstrate the formal procedure involved in the application 

of composite m1cromechanics theory, derivations of the equations for ply normal 

moduli (E~ll and E~22) are explicitly developed below. The particular approach 

taken here relies on the principles of force equilibrium and displacement 

compatibility as defined from elementary mechan1cs-of-mater1als theory. 

Longitudinal Normal Modulus 

Consider the square array unit cell model (see Fig. 1) subjected to a 

uniaxial load in the longitudinal direction (see Fig. 2). The equivalent 

composite (ply) load is defined from force equilibrium to be the sum of the 

constituent loads as follows: 

P~ = Pf + Pd + Pm 

In the integrated average sense, Eq. (1) is rewritten as 

c~A~ = cfAf + cdAd + cmAm 

where A represents cross-sectional area. Dividing through by A~ and 

noting that because of a common longitudinal dimension the resulting area 

ratios are equivalent to actual volume fractions, Eq. (2) reduces to 
I I I 

( 1 ) 

( 2) 

c~ = cfkf + cdkd + cmkm (3) 

Because compatibility of longitudinal displacement requires equal strains for 

the composite and constituents (c~ = cf = cd = cm), Eq. (3) can be 

differentiated with respect to strain to give 

(dC~) _ (dCf) I ·(dOd) I (dCm) I 

dc - dc kf + dc kd + dc km 

The quantities (dc/dc) represent the slopes of the corresponding stress­

strain curves for the composite and constituents and in this context define 

instantaneous or "tangent" moduli. Hence, Eq. (4) becomes 

I I I 

E~ = Efkf + Edkd + Emkm 
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Expressing actual volume fractions in terms of original fiber and matrix volume 

fractions (before interphase growth) and original and intact fiber diameters, 

Eq. (5) is rewritten as 

( 6) 

Equation (6) is the desired form and is the same as that given in Fig. 3. 

Transverse Normal Modulus 

Consider the square array unit cell model again except that the fiber and 

interphase are of equivalent square cross-section such that linear dimensions 

(in the plane of cross-section) can be defined as follows: 

(7) 

and 

( 8) 

Assume a uniaxial load in the transverse direction and neglect Poisson effects. 

For subregion C displacement compatibility yields 

SiCi = sfc f + sdcd + smcm 

and force equilibrium results in equal stresses for the composite and 

constituents (oi = of = 0d = om)' Hence, eq. (9) can be differentiated 

with respect to stress to give 

The Quantities (dc/do) represent reciprocals of the slopes of the 

(9) 

(10) 

corresponding stress-strain curves for the composite and constituents and in 

the same context as before define reciprocals of instantaneous or "tangent" 

moduli. Hence, with some rearranging Eq. (10) becomes 
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EC Em 

i = [(:~) + G:) (!;) + c:) (!;)] ( 11) 

Subst1tut1ng the def1n1t10ns 1n Eqs. (7) and (8) 1nto Eq. (11) and rearrang1ng 

g1ves 

(12) 

wh1ch def1nes an equ1valent modulus for subreg10n C. The equ1valent modulus 

for subreg10n B 1s deduced from Eq. (12) by lett1ng DIDo equal unHy., The 

result 1s 

(13 ) 

The equ1valent modulus for subreg10n A 1s s1mply the matr1x modulus or 
A 

E2, = Em (14 ) 

The ply transverse modulus (E2,22)' then, 1s def1ned by assum1ng that 

subreg10ns A, B, and C act as parallel elements when subjected to a transverse 

load. Th1s 1s analogous to the case for E2,ll where the const1tuents are 

assumed to act 1n parallel. Hence, from Eq. (5)'1t 1s deduced that 

C B A 
E2,S2, = E2, sf + E2,sd + E2, sm (15) 

D1v1d1ng through by s2" subst1tut1ng the def1n1t10ns from Eqs. (7) and (8) 

and the results from Eqs. (13) through (15), and rearrang1ng g1ves 

Vk; "1 - I ~I Vkf (~) 
Ei= Em (1 - kfl + 1 -Vk; "1 - (!;'~ + 1 -Vk; [1 - 0 -~J(!:) -(~i!;)] 

(1 &) 

Equat10n (1&) 1s the des1red form and 1s the same as that g1ven 1n F1g. 3. 
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TABLE 1. - MICROMECHANICSI 
FINITE ELEMENT VALIDATION; 

COMPARISON OF PROPERTY 
PREDICTIONSI 

SIMULATIONS 

Property PMEQ/PFEM 

E2.11 1.00 

Ep22 1.01 

G2.12 .96 

G2.23 .98 

"2.12 1.00 

"2.23 1.08 

~2.11 .99 

~2.22 1.15 

PMEO - Property 
pred1cted by 
m1cromechan1cs 
equat1on. 

PFEM - Property 
s1mu1ated by f1n1te 
element analys1s. 
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Figure 4. - Microrr,echanics equations; ply thermal properties. 
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Figure 5. - Micromechanics equations; ply uniaxial strengths, longitudinal. 
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Figure 7. - In-plane failure modes for unidirectional ply. 
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Figure 12. - Fabrication cool-down transient; 
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The following corrections apply to the append1x and occur on page 13: 

1. The denominator of Equation (12) should read as follows: 

2. The first full sentence after Equation (12) should read as follows: 

"The equivalent modulus for subregion B is deduced from Eq. (12) by 
letting DIDo equal zero." 

--- --~----------- -----:--~~------

3. The denominator of Equation (13) should read as follows: 

4. The sentence after Equation (15) should read as follows: 

"Dividing through by St. substituting the definitions from 
Eqs. (7) and (8) and the results from Eqs. (12) through (14). and 
rearranging gives" 

5. The denominator of the second term inside the braces on the right-hand 
side of Equation (16) should read as follows: 
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