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Abstract

A unique set of micromechanics equations is presented for high temperature

~metal matrix composites. The set includes expressions to predict mechanical

properties, therma] properties, and constituent microstresses for the
un1d1rect1ona1_f1ber reinforced ply. The equations are derived based on a
mechanics of materials formulation assuming a square array unit cell model of
a single fiber, surrounding matr1x and an interphase to account for the
chemical reaction which commonly occurS‘between fiber and matrix. A
preliminary validation of the equations was performed us1ng_three—d1mens1oha1

finite element analysis. The results demonstrate excellent agreement between

~ properties predicted using the micromechanics equations and properties.

simulated by the finite element analyses. Implementation of the micromechanics
equations as part of an integrated computational capability for nonlinear
structural analysis of high temperature multilayered fiber composites is

i1lustrated.

Key Words: Metal matrix composites; Composite micromechanics; Mechanical

properties; Thermal properties; Uniaxial strengths; Microstresses
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Introduction

The mechanical performance and structural integrity of fiber reinforced
metal matrix composites are ultimately governed by the behavior of the
constituent materials at a micromechanistic level. 1In general, the individual
constituents behave quite differently relative to one another. Moreover,
behavior of the constituents is dynamic, particularly in high temperature
applications, due to the various nonlinearities associated with, for example:
(1) large local stress excursions, (2) témperature-dependent material
properties, (3) time-dependent effects, and (4) constituent chemical reaction.

In the structural analysis of metal matrix composites, then, 1t is
important to be able to describe and track this m1cromechan1sf1c constituent
behavior. Available methods for this purpose are limited. For example,
techniques such as finite element analysis can, in principle, be applied
directly w1tﬁ the constituents modeled discretely. It becomes obvious,
however, that for complex structures the resources (manpower and computer)
necessary to define, conduct and interpret such an analysis are prohibitive.
Another approach is to employ composite micromechanics theory and derive
simplified relationships which describe the three-dimensional anisotropic
behavior of the simple composite (e.g., unidirectional ply). The latter
approach has been taken as part of a comprehensive research program to develop
effective computational mechanics methodologies for high temperature
multilayered fiber composite structures.

As an essential part of the above-mentioned program, a unique set of
micromechanics equations has been derived for high temperature metal matrix
composites. The set comprises closed-form expressions to predict equivalent
"pseudo homogeneous" properties for the unidirectional fiber reinforced ply,

fnc1ud1ng: (1) mechanical properties - moduli, Poisson's ratios, and uniaxial



strengths; (2) thermal properties - conductivities, coefficients of expansion,-
and heat capacity; and (3) constituent microstresses.

The micromechanics equations presented here are derived bésed on a
mechanics of materials formulation assuming a square array unit cell model of
a single fiber, surrounding matfix and an interphase to account for the
chemical reaction which commonly occurs between fiber and matrix. The basis
of the formulation 1is shmmarized as part of the discussion below.

Concurrent with the‘derivat1on of equations, a study was conducted using
three-d)méﬁs1ona1 finite element ana]ys1§. The purpose of the study was to |
assess the validity of. the mechanics of materials formu]at16n, in general, and
to investigate the éccuraéy of the micromechanics equations for a sbec1f1c‘
composite material system. Results ffom this study are presented also as part
of the discussion below. |

F1na1]y,<a demonstration of the utility of th1§ unique set of
micromechanics equations is provided by i1lustrating their use as part of an
integrated computational capability for‘the noniinear structural analysis of .
high temperature mu1£11ayered fiber composites. A few typical results are
presented from the stress analysis of'a hypothet1ca1 tungsten fiber reinforced
superallioy turbine airfoil.

| Composite Micromechanics Theory

Composite micromechanics theory refers to the collection of physical
principles, mathematical mbde]s, assumptions and approx1mat1dns employed to
relate the behavior of a simp]e composite unit (e.g., lamina or ply) to the
behavior of its individual constituents. ?or examp]e; a varjety'of approaches
have beenvused in the past to predict equivalent thermoelastic material
properties of unidirectional fiber composites [1-6]. More.recently, simple
'equat1ons have been derived [7,8] to predict mechanical, thermal, and strength
properties for resin matrix composites using a mechanics of matéria]s
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formulation. A similar approach was taken to derive the set of micromechanics
equations presented here for high temperature metal matrix composites.

The formal procedure of composite micromechanics theory relies on the
principles of so11d'mechan1cs, thermodynamics, etc., at different levels of
mathematical sophistication, together with certain assumptions (consistent
with the physical situation) and approximations. In the approach taken here,
application is made of the principles of displacement compatibility and force
equilibrium as defined in elementary mechanics-of-materials theory and
Fourier's law for heat conduction from thermodynamics. In addition, the
assumptions are made that: (1) fibers are continuous and parallel; (2)
properties of all fibers are identical; and (3) complete bonding exists between
constituents. No restrictions need be placed on the constitutive behavior or
isotropy of the individual constituent materials. For generality, constituent
material behavior can be taken as thermoviscoplastic, anisotropic, and ‘
three-dimensional. It is implied by this that the individual constituent
material histories can-be tracked 1ndependent1y as a function of time and
represented as an instantaneous stress/strain state.

The periodic structure of a unidirectional metal matrix composite (ply)
is approximated here by a square array unit cell model. The geometry of the
model is i11lustrated in Fig. 1. It should be noted that the interphase growth
is assumed to result from the degradation of fiber material and thus propagates
inward causing a continuous decrease of the current (intact) fiber diameter (D)
from the original (virgin) fiber diameter (Do). With the existence of the
interphase, three subregions (A,B,C) are distinguished to characterize the
intralaminar (through-the-thickness) nonuniformity of the constituent (matrix
and interphase) microstresses and material properties.

The definition of ply properties is with respect to the ply material
coordinate system which is depicted in Fig. 2. The common terminology
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associated with each of the coordinate axis directions is also il1lustrated on
the ply schematic. The micromechanics equations presented here are derived for
the special case of a transversely isotropic (isotropic in the 2-3 plane) ply
allowing for transversely isotropic constituents.
cOmpo§1te Micromechanics Equations

The micromechanics equations to predict ply equivalent mechanical
properties are summarized in Fig. 3" Included are expressions for normal
(extensional) moduliy (E

5122). shear moduli (G 6223),'and Poisson's

L1 L2’

ratios (v In the expressions k represents constituent original

012* V23l
volume fraction (va]ues prior to any 1nterbhase growth) and the subscripts f,
m, d, and % denote fiber, matrix, interphase, and ply quantity, respectively.
The volume fraction of interphase is expressed in terms of the fiber original
volume fraction and the virgin and intact (in situ) fiber djameters.

The equations for moduli are derived with modulus taken in the general
context as simply the derivative of stress with respect to strain. As such,
the expressions are applicable to the prediction of instantaneous or tangent
moduli as well as elastic moduli. It should be noted that the expressions for
transverse moduli do not account for the longitudinal Poisson restraining
effect that the fiber imparts on the matrix. The restrained matrix effect is
considered here to be negligible for metal matrix composites.

The effect 1is generaily more significant in resin matrix composites, for
example, where the fiber/mafr1x relative stiffness ratio i1s much greater.

The ply equivalent thérma] properties are predicted by the micromechanics
equations summarized in Fig. 4. Iﬁc]uded are expressions for heat capacity

(Cg), thermal conductivities (K ngz), and thermal expansion coefficients

L1’

(ag1], °£22)‘ In the expression for heat capacity the symbol. p represents

density.



The ply in-plane uniaxial strengths are predicted by the micromechanics
equations summarized in Figs. 5 and 6. Included are expressions for tensile

strength (S T), compressive strength (52110’ SQZZC)’ and

a1 Se22
intralaminar shear strength (52]25). Each of the ply strengths fis
associated with a specific fallure mode, as i1lustrated by the schematics in
Fig. 7. 1In the case of longitudinal compressive strength, four different
fajlure modes are considered. The four expressions in Fig. 5 for S!]]C
correspond, respectively, to the four fajlure modes as follows; fiber
compression mode, matrix compression mode, delamination/splitting mode, and
fiber microbuckling mode. A more comprehensive treatment of micromechanics
strength theories is given by Chamis [9].

The expressions to predict the thermomechanical microstress distribution
in the ply con§t1tuents are summarized in Figs. 8 to 10. Included are
expressions for fiber microstresses (of]1. Seonr %F12 of23) interphase

B,c 8, 8,C
microstresses (°d11’ 9422 %412 ad23) and matrix microstresses (°m11'

c:ég'c, °£ig,c’ ogég’c). In the expressions AT represents an incremental
change in temperature and the superscripts A, B, and C denote the
intralaminar subregions 11lustrated in the accompanying schematics. It should
be noted that these expressions for constituent microstresses are based on
uniaxial behavior, i.e., they do not incorporate any Poisson contributions.

The systematic procedure for deriving the micromechanics equations
summarized above is explicitly demonstrated in the Appendix with the
derivations for normal moduli (E2]1 and E222). Derivations -of the other
equations are omitted here solely for the sake of brev1ty. The selection of E11]
and E122 for demonstration purposes was based on the authors' judgment that

their derivations are sufficiently representative to adequately demonstrate the

formal procedure.



Micromechanics/Finite Element Validation
In order to investigate the Qa11d1ty of the mechanics of materials
formulation and assess the accuracy of the equations derived therefrom, a
preliminary study was conducted using three-dimensional finite element
analysis. The objective of the study was to compare the equivalent ply
E G G

properties (E 2) pred1tted

R11° “e22° “p12® 7923 12’ Vp23’ %11t %2
by the micromechanics equations with the average "pseudo homogeneous" ply
properties s1mu1ated in the finite element analyses. |

To conduct the analyses, a discrete model of the square array unit cell
was constructed, as shown fn Fig. 11, from isoparametric solid finite elements.
The composite material system assumed for this study involved a fhor1ated
tungsten (W-1.5Th0,) fiber embedded 1n an iron-base superalloy (Fe-25Cr-4A1-1Y)
matrix. Properties fpr the interphase were taken to be a simple average of the
fiber and matrix properties.

The analyses entaiiled simu]at1ons of ideaiized modes of deformation such
as simple elongation, pure sheaf, and unconstrained thermal expansion. These
were_ach1eved through the judicious appiication of the Joad1ng/boundary
conditions on the model. The appropriate simple expressions from elementary
mechanics of materials theory (see Fig. 11) were then applied in conjunction
with the nodal displacement/force results of the finite element analyses to
compute the simulated average properties of the discrete model as a "pseudo
homogeneous" unit.

Results of the study are summarized in Table 1 which gives the ratios of

property values determined from the micromechanics equations and by

(Pygg)
finite element simulation (PFEM)' As can be seen, excellent agreement was
achieved overall. These results indicate that the mechanics of materials

formu]at1on is an effective approach to the micromechanical modeling of metal



matrix composites. It is recognized, however, that additional investigation,

both analytical and experimental, would be prudent before any final .conclusions

are made regarding the specific accuracy of these micromechanics equations.
Application of Micromechanics Equations

The primary impetus in deriving the set of micromechanics equations
presented here was for implementation as part of an integrated computational
capability for the non11nearvana1ys1s of high temperature multilayered fiber
composites [10]}. This particular utilization of the equations is demonstrated
here with a few typical results taken from the nonlinear (quasi-static) stress
analysis of a hypothetical turbine blade (airfoil only) model. The
incremental/iterative analysis was conducted to investigate the thermally
induced residual stresses developed during the cool-down transient of a typical
fabrication process.

The airfoil is a hollow thin shell sfructure of constant thickness with
walls comprising a four-ply [t45]S laminate based on w-'I.SThO2 fiber
reinforced Fe-25Cr-4A1-1Y at a fiber volume fraction of 0.50. Since the
purpose here 1s merely to il1lustrate the types of information provided by the
micromechanics equations in this particular implementation, further details of
the airfoil model and analysis are omitted.

Two examples of ply mechanical property predictions are given in Figs. 12
and 13 which show the variation dur1n§ the cool-down transient of constituent
and ply longitudinal and transverse moduli, respectively. The ply moduli are
computed from the corresponding micromechanics equations. The results in
Fig. 12 reflect the rule-of-mixtures relationship expressed by the equation for

E while the results in Fig. 13 illustrate the dominance of the matrix

211
'modulus on the value for E122’



The development of residual stresses during the cool-down transient is
11lustrated in Figs. 14 and 15. The results are for the longitudinal and
transverse normal components, respectively, of ply stress and constituent
microstresses. The microstresses are computed from the corresponding
micromechanics equations. The points to be noted from these results are the
relative magnithdes and sense (tensile or compressive) of the const1tuént
microstresses. In Fig. 14, for example, the opposite sense of the fiber and
matrix microstresses results from the difference in thermal eipansion
coefficients between the two materials. The results in Fig. 15 llustrate the
significant through-the-thickness nonuniformity of the matrix and interphase
microstresses, as characterized in the different intralaminar subregions
(A,B,C). |

From just the few examples given, the utility of the micromechanics
equations becomes more apparent. Considering the results of microstress
distribution, for example, i1t becomes 1ntu1t1ve1y more clear how material
failures might occur at a local level and prompt the initiation of a flaw.
This type of information provides an insight into the behavior of composites
at a micromechanistic level which undoubtedly influences their performance and
_1ntegr1ty in a structural application. |

Summary

The set of micromechanics equations presented here for high temperature
metal matrix composites includes expressions to predict the mechanical
properties, thermal properties, and constituent microstress distribution for a
unidirectional fiber reinforced ply. The equations incorporate an interphase
region at the fiber/matrix boundary in order to account for the chemical
reaction which commonly occurs in high temperature applications of these
éompos1tes. The 5as1s of the mechanics of materials formu1at1on from which the
equations are derived is described. The formulation i1s shown to be a valid
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and effective approach to micromechanical modeling of metal matrix composites,
supported by the favorable results achieved in a comparison with
three-dimensional finite element analysis. The utility of the micromechanics
equations as part of an integrated composite structural analysis capability is
11lustrated with examples taken from the nonlinear stress analysis of a turbine
airfoil. The results demonstrate the ability to describe and track behavior

at a micromechanistic level which impacts the performance and integrity of

these composites in structural applications.
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Appénd1x
In order to demonstrate the formal procedure involved in the application
of composite micromechanics theory, derivations of the equations for ply normal

moduli (E and E222) are explicitly developed below. The particular approach

211
taken here relies on the principles of force equilibrium and displacement
compatibility as defined from elementary mechanics-of-materials theory.
Longitudinal Normal Modulus
Consider the square array unit cell model (see Fig. 1) subjected to a
uniaxial load in the 1ong1tqd1na1 direction (see Fig. 2). The equivalent
composite (ply) load is defined from force equilibrium to be the sum of the
constituent loads as follows:
Py = Pe # Py + P (1)
In the integrated average sense, Eq. (1) is rewritten as
9hy = %A * 9hd * onfn . (2
where A represents cross-sectional area. Dividing through by Ag and
noting that because of a common longitudinal dimension the resulting area
ratios are equivalent to actual volume fractions, Eq. (2) reduces to
9 = afk; + odk; + omk; (3)
Because compatibility of longitudinal displacement requires equal strains for

the composite and constituents (cl =€ = €4 = cm), Eq. (3) can be

differentiated with respect to strain to give

do do [do do

2y £} )t my

(dc)'(dc‘) "f"(d:)kd*(de)km | (4)
The quantities (do/dc) represent the slopes of the corresponding stress-

strain curves for the composite and constituents and in this context define

instantaneous or "tangent" modulj. Hence, Eq. (4) becomes

1 1 ' '
El = Efkf + Edkd + Emkm | (5)
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Expressing actual volume fractions in terms of original fiber and matrix volume

fractions (before interphase growth) and original and intact fiber diameters,

Eq. (5) is rewritten as

S RN EGIE

Equation (6) is the desired form and is the same as that given in Fig. 3.

+ kmEm (6)

Transverse Normal Modulus
Consider the square array unit cell model again except that the fiber and
interphase are of equivalent square cross-section such that 1inear dimensions

(in the plane of cross-section) can be defined as follows:

o o« 172 . 1/2
a = (3) D, a,-= (I) Dyr 3y = (%E;) Dy (7)

and

= ad - af, sm = a! - ad, sg = al ‘ (8)

S¢ = 3 3y
Assume a uniaxial load in the transverse direction and neglect Poisson effects.

For subregion C displacement compatibility yields

Se€e = S¢f¢ * S4€q t Sptm (9)
and force equilibrium results in equal stresses for the composite and
constituents (cg =0 =0y = oh). Hence, eq. (9) can be differentiated

with respect to stress to give

dcl dcf dcd dcm

do %2 “\do | °F "\do /% *\do | °m (10)
The quantities (de/do) represent reciprocals of the slopes of the
corresponding stress-stratin curves for the composite and constituents and in

the same context as before define reciprocals of instantaneous or “tangent®

moduli. Hence, with some rearranging Eq. (10) becomes
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Substituting the definitions in Eqs. (7) and (8) into Eq. (11) and rearranging

gives

£

BT (RERATE .

which defines an equivalent modulus for subregion C. The equivalent modulus

for subregion B is deduced from Eq. (12) by letting D/Do equal unity. The
result is

E

ol ]

The equivalent modulus for subregion A is simply the matrix modulus or

) :
0 = En (14)

The ply transverse modulus (5222)’ then, is defined by assuming that

B
Ey

E

subregions A, B, and C act as parallel elements when subjected to a transverse

load. This is analogous to the case for E!l] where the constituents are

assumed to act in parallel. Hence, from Eq. (5) 1t is deduced that

C B A
| gSq = Eisf + Egsd + Egsm | (15)

Dividing through by sy, substituting the definitions from Eqs. (7) and (8)

E

and the results from Eqs. (13) through (15), and rearranging gives

b v (&)
N R (N R S SR

(16)

Equation (16) 1s the desired form‘and is the same as that given in Fig. 3.
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TABLE 1. - MICROMECHANICS/
FINITE ELEMENT VALIDATION;
COMPARISON OF PROPERTY

PREDICTIONS/
SIMULATIONS
Property PMEQ/PFEM

Eg11 1.00
Ep22 1.01
Gg12 .96
Gg 23 .98
V912 1.00
vg23 1.08
a1 .99
@922 1.15
Pmgg - Property
pregicted by
micromechanics

equation.

Prgm - Property
simulated by finite
element analysis.
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ERRATA

NASA Technical Memorandum 87154

A UNIQUE SET OF MICROMECHANICS EQUATIONS FOR HIGH TEMPERATURE METAL
MATRIX COMPOSITES

Dale A. Hopkins and Christos C. Chamis
November 1985

The following corrections apply to the appendix and occur on page 13:

1. The denominator of Equation (12) should read as follows:

e [-6-2) (@) ) @)

2. The first full sentence after Equation (12) should read as follows:

"The equivalent modulus for subregion B is deduced from Eq. (12) by
letting D/D, equal zero."

3. The denominatd}76¥_iquation (13) should read as follows:

ol G

4. The sentence after Equation (15) should read as follows:

"Dividing through by Sg, substituting the definitions from
Eqs. (7) and (8) and the results from Eqs. (12) through (14), and
rearranging gives"

5. The denominator of the second term inside the braces on the right-hand
side of Equation (16) should read as follows:

(2]
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