NASA Contractor Report 175017

Satellite Voice Broadcast
Final Report
Technical Volume

E. E. Bachtell, S. S. Bettadapur, J. V. Coyner, and C. E. Farrell

Martin Marietta Denver Aerospace
Denver, CO 80201

Contract NAS3-24233

November 1985
SATELLITE VOICE BROADCAST SYSTEM STUDY

Designs are synthesized for direct sound broadcast satellite systems for HF-, VHF-, L-, and Ku-bands. Methods are developed and used to predict satellite weight, volume, and RF performance for the various concepts considered. Cost and schedule risk assessments are performed to predict time and cost required to implement selected concepts. Technology assessments and tradeoffs are made to identify critical enabling technologies that require development to bring technical risk to acceptable levels for full scale development.

Key Words (Suggested by Author(s))
Sound broadcast satellites
Large space systems
Life cycle cost estimating
Risk assessment
FOREWORD

This report was prepared by Martin Marietta Denver Aerospace under Contract NAS3-24233. The contract was administered by the Lewis Research Center (LeRC) of the National Aeronautics and Space Administration (NASA). The study was performed from April 1984 to June 1985 and the NASA-LeRC project manager was Mr. Grady Stevens.

The authors want to acknowledge the contributions of the following individuals to this program: Mr. T.A. Milligan and Dr. L.K. Desize for their radio frequency analysis; Mr. B.C. Swanson and his team for their excellent orbit and coverage analysis; Mr. E. Linkbald and Mr. E.R. Zercher for their design and analysis of the power subsystems; and Mr. T. Buna for his design and analysis of the thermal radiation subsystem.
CONTENTS

<table>
<thead>
<tr>
<th>GLOSSARY</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Program Objectives</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Program Requirements</td>
<td>3</td>
</tr>
<tr>
<td>2.0 SURVEY OF NONTERRESTRIAL BROADCAST TECHNIQUES</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Techniques and Coverage</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 Nonorbital Methods of Coverage</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Orbital Methods of Coverage</td>
<td>13</td>
</tr>
<tr>
<td>2.1.3 Satellite State of the Art</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Cost and Schedule</td>
<td>19</td>
</tr>
<tr>
<td>3.0 SATELLITE SYSTEM MISSION ANALYSIS</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Orbital and Coverage Analysis</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1 Orbital Constraints</td>
<td>22</td>
</tr>
<tr>
<td>3.1.2 Elliptical Orbits</td>
<td>23</td>
</tr>
<tr>
<td>3.1.3 Circular Orbits</td>
<td>27</td>
</tr>
<tr>
<td>3.1.4 Coverage Analysis</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Propagation Analysis</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1 Signal Strength Requirements</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2 Propagation Parameters</td>
<td>49</td>
</tr>
<tr>
<td>3.3 Payload Capability Analysis</td>
<td>51</td>
</tr>
<tr>
<td>3.3.1 STS Capabilities</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2 OTV Capabilities</td>
<td>52</td>
</tr>
<tr>
<td>3.3.3 Determination of Payload Capability</td>
<td>52</td>
</tr>
<tr>
<td>3.4 Technology Survey</td>
<td>56</td>
</tr>
<tr>
<td>3.4.1 Antenna Technology</td>
<td>58</td>
</tr>
<tr>
<td>3.4.2 Satellite Feed Link Technology</td>
<td>71</td>
</tr>
<tr>
<td>3.4.3 Satellite Signal Processing Technology</td>
<td>73</td>
</tr>
<tr>
<td>3.4.4 Transmitter Technology</td>
<td>73</td>
</tr>
<tr>
<td>3.4.5 Power Generation System Technology</td>
<td>75</td>
</tr>
<tr>
<td>3.4.6 Power Distribution Technology</td>
<td>80</td>
</tr>
<tr>
<td>3.4.7 Energy Storage Technology</td>
<td>81</td>
</tr>
<tr>
<td>3.4.8 Power Control Technology</td>
<td>82</td>
</tr>
<tr>
<td>3.4.9 Attitude Control, Stationkeeping, and Maneuvering Technology</td>
<td>82</td>
</tr>
<tr>
<td>3.4.10 Telemetry, Tracking, and Command Technology</td>
<td>85</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>3.4.11</td>
<td>Thermal Control Technology</td>
</tr>
<tr>
<td>3.4.12</td>
<td>Equipment Bay and Mechanisms Technology</td>
</tr>
<tr>
<td>3.5</td>
<td>Recommended Satellite Concepts</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Ku-Band System</td>
</tr>
<tr>
<td>3.5.2</td>
<td>L-Band System</td>
</tr>
<tr>
<td>3.5.3</td>
<td>VHF-band System</td>
</tr>
<tr>
<td>3.5.4</td>
<td>HF-Band System</td>
</tr>
<tr>
<td>4.0</td>
<td>SATELLITE CONCEPTS SUBSYSTEM REQUIREMENTS DEFINITION AND ANALYSIS</td>
</tr>
<tr>
<td>4.1</td>
<td>Subsystem Weight and Volume Estimating Method</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Communication Subsystem Weight and Volume Estimating</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Electrical Power Subsystem Weight and Volume Estimating</td>
</tr>
<tr>
<td>4.1.3</td>
<td>ACS, Stationkeeping, and Maneuvering Weight and Volume Estimating</td>
</tr>
<tr>
<td>4.1.4</td>
<td>TT&C Weight and Volume Estimating</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Thermal Control Weight Estimating</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Equipment Bay and Mechanisms Weight Estimating</td>
</tr>
<tr>
<td>4.2</td>
<td>Technology Tradeoffs</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Communications Subsystem Technology Tradeoffs</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Electrical Power Subsystem Tradeoffs</td>
</tr>
<tr>
<td>4.2.3</td>
<td>AGS/APS Technology Tradeoffs</td>
</tr>
<tr>
<td>4.3</td>
<td>Cost Estimating Procedure</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Communications Subsystem Cost Estimates</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Electrical Power Subsystem Cost Estimates</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Attitude Control Subsystem Cost Estimates</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Auxiliary Propulsion Subsystem Cost Estimates</td>
</tr>
<tr>
<td>4.3.5</td>
<td>TT&C Subsystem Cost Estimates</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Thermal Control Subsystem Cost Estimates</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Equipment Bay and Mechanisms Cost Estimates</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Other Program Costs</td>
</tr>
<tr>
<td>5.0</td>
<td>SATELLITE SYSTEM DESIGN AND ANALYSIS</td>
</tr>
<tr>
<td>5.1</td>
<td>Ku-Band System</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Ku-Band Weight and Volume Estimates</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Ku-Band Coverage Analysis</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Ku-Band RF Performance Analysis</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Ku-Band LCC Estimates</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Ku-Band Summary of Results</td>
</tr>
<tr>
<td>5.2</td>
<td>L-Band Systems</td>
</tr>
<tr>
<td>5.2.1</td>
<td>L-Band Weight and Volume Estimates</td>
</tr>
<tr>
<td>5.2.2</td>
<td>L-Band Coverage Analysis</td>
</tr>
<tr>
<td>5.2.3</td>
<td>L-Band RF Performance Analysis</td>
</tr>
<tr>
<td>5.2.4</td>
<td>L-Band LCC Estimates</td>
</tr>
<tr>
<td>5.2.5</td>
<td>L-Band Summary of Results</td>
</tr>
</tbody>
</table>
Table

1. Program Outputs ... 3
2. Program Requirements—Ku-Band: 11.7 GHz 5
3. Program Requirements—L-Band: 1.5 GHz + 25 MHz 6
4. Program Requirements—VHF-band: 47 - 68 MHz 6
5. Program Requirements—HF-Band: 15.1 - 26.1 MHz 6
6. VOA Power Requirement Range (per Voice Channel) 8
7. Examples of Satellites in Circular, Subsynchronous, Sun-Synchronous Orbits ... 16
8. Orbital and Nonorbital Concepts—Single Unit Cost and Schedule 19
9. Number of Vehicles Required for Zone 20
10. Orbital and Nonorbital Concepts—Total LCC and Schedule $B 20
11. Elliptical Orbits ... 23
12. Circular Orbits ... 27
13. Performance of the Satellite System 36
14. Orbit Position Configurations and Requirements 38
15. Effects of Satellite Eclipse on Coverage Efficiency 43
16. Effect of Sidereal Shift on Coverage Efficiency 45
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Low RF Power L-Band Antenna Design Summary—Option III</td>
</tr>
<tr>
<td>67</td>
<td>L-Band Systems' LCC Estimates, 1984$</td>
</tr>
<tr>
<td>68</td>
<td>Low RF Power L-Band Summary of Results</td>
</tr>
<tr>
<td>69</td>
<td>High RF Power L-Band Summary of Results</td>
</tr>
<tr>
<td>70</td>
<td>VHF Systems' Design Approach</td>
</tr>
<tr>
<td>71</td>
<td>VHF Matrix of Design and Analysis Cases</td>
</tr>
<tr>
<td>72</td>
<td>VHF Systems' Satellite Weight and Volume Estimates</td>
</tr>
<tr>
<td>73</td>
<td>VHF Satellite Sizing Example</td>
</tr>
<tr>
<td>74</td>
<td>VHF-Band Rf Performance Single-Satellite Capabilities</td>
</tr>
<tr>
<td>75</td>
<td>VHF Systems' LCC Estimates, 1984$</td>
</tr>
<tr>
<td>76</td>
<td>Satellite Fabrication Learning Factors for VHF Systems</td>
</tr>
<tr>
<td>77</td>
<td>VHF Systems' Design Summary</td>
</tr>
<tr>
<td>78</td>
<td>VHF Summary of Results</td>
</tr>
<tr>
<td>79</td>
<td>HF (26 MHz) System Design Approach</td>
</tr>
<tr>
<td>80</td>
<td>HF Weight and Volume Estimates—6-Hour Orbit</td>
</tr>
<tr>
<td>81</td>
<td>HF Weight and Volume Estimates—8-Hour Orbit</td>
</tr>
<tr>
<td>82</td>
<td>HF Weight and Volume Estimates—12-Hour Orbit</td>
</tr>
<tr>
<td>83</td>
<td>HF Inflatable Concept Weight and Volume Estimates</td>
</tr>
<tr>
<td>84</td>
<td>HF System Maximum RF Performance Capabilities Summary for A Single Satellite</td>
</tr>
<tr>
<td>85</td>
<td>HF Fabrication Cost Learning Factors</td>
</tr>
<tr>
<td>86</td>
<td>HF Systems' LCC Estimates</td>
</tr>
<tr>
<td>87</td>
<td>HF System Design Summary</td>
</tr>
<tr>
<td>88</td>
<td>HF-Matrix of Design and Analysis Cases (8 Hours)</td>
</tr>
<tr>
<td>89</td>
<td>HF-Matrix of Design and Analysis Cases (6 Hours)</td>
</tr>
<tr>
<td>90</td>
<td>DVBS Planning Support—Performance Risk Analysis</td>
</tr>
<tr>
<td>91</td>
<td>Critical Technology Development Costs</td>
</tr>
<tr>
<td>92</td>
<td>HF Small Satellite NRC Estimates</td>
</tr>
<tr>
<td>93</td>
<td>DVBS Planning Support—Cost Risk Analysis Approach</td>
</tr>
<tr>
<td>94</td>
<td>DVBS Planning Support—Schedule Risk Analysis Approach</td>
</tr>
<tr>
<td>95</td>
<td>Tabular Output for HF Small GEO Case Antenna Technology and EPS Cost Risk</td>
</tr>
<tr>
<td>96</td>
<td>Critical Subsystem Technology Cost Risk</td>
</tr>
<tr>
<td>97</td>
<td>Antenna Technology and Solid-State Transmitter Development Schedule Risks</td>
</tr>
<tr>
<td>98</td>
<td>Component and Subsystem Development Time Estimates from SDCM</td>
</tr>
<tr>
<td>99</td>
<td>Ku-Band System Cost Risk Assessment Results</td>
</tr>
<tr>
<td>100</td>
<td>L-Band Systems Cost Risk Assessment Results, 1984$</td>
</tr>
<tr>
<td>101</td>
<td>VHF System Single Satellite Cost Risk Assessment Results, 1984$</td>
</tr>
<tr>
<td>102</td>
<td>HF-Band Systems Single Satellite Cost Risk Assessment</td>
</tr>
<tr>
<td>103</td>
<td>Ku-, L-, HF-, and VHF-Band Project Function 3-Point Schedule Estimates</td>
</tr>
<tr>
<td>104</td>
<td>Summary of Program Results for Nonterrestrial Broadcast Techniques</td>
</tr>
<tr>
<td>105</td>
<td>Summary of Program Results for Ku-Band System</td>
</tr>
<tr>
<td>106</td>
<td>Summary of Program Results for L-Band System</td>
</tr>
<tr>
<td>107</td>
<td>Summary of Program Results for VHF System</td>
</tr>
<tr>
<td>108</td>
<td>Summary of Program Results for HF System</td>
</tr>
<tr>
<td>109</td>
<td>Summary of Program Results for Ku-, L-, VHF-, and HF-Bands</td>
</tr>
<tr>
<td>110</td>
<td>LCCOST CER Input Parameters</td>
</tr>
</tbody>
</table>
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Antenna Array Area</td>
</tr>
<tr>
<td>ACS</td>
<td>Attitude Control Subsystem</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitude Modulation</td>
</tr>
<tr>
<td>APS</td>
<td>Auxiliary Propulsion Subsystem</td>
</tr>
<tr>
<td>ASSA</td>
<td>Advanced Space Systems Analysis</td>
</tr>
<tr>
<td>ATS-6</td>
<td>Applications Technology Satellite-6</td>
</tr>
<tr>
<td>Ap</td>
<td>Panel Area</td>
</tr>
<tr>
<td>Asa</td>
<td>Solar Array Area</td>
</tr>
<tr>
<td>BOL</td>
<td>Beginning of Life</td>
</tr>
<tr>
<td>BS</td>
<td>Broadcast Satellite</td>
</tr>
<tr>
<td>BW</td>
<td>Beam Width</td>
</tr>
<tr>
<td>C</td>
<td>Average Unit Cost</td>
</tr>
<tr>
<td>C/N</td>
<td>Carrier-to-Noise Ratio</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CER</td>
<td>Cost Estimating Relationship</td>
</tr>
<tr>
<td>CMG</td>
<td>Control Moment Gyro</td>
</tr>
<tr>
<td>CP</td>
<td>Circular Polarization</td>
</tr>
<tr>
<td>CPL</td>
<td>Capillary Pumped Loop</td>
</tr>
<tr>
<td>Cave</td>
<td>Average Cost of Units</td>
</tr>
<tr>
<td>Cul</td>
<td>First Unit Fabrication Cost</td>
</tr>
<tr>
<td>Ct</td>
<td>Total Fabrication Cost</td>
</tr>
<tr>
<td>D/A</td>
<td>Digital to Analog</td>
</tr>
<tr>
<td>A/D</td>
<td>Analog to Digital</td>
</tr>
<tr>
<td>D</td>
<td>Antenna Diameter</td>
</tr>
<tr>
<td>deg</td>
<td>Degree(s)</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DSB</td>
<td>Double Sideband</td>
</tr>
<tr>
<td>DVBS</td>
<td>Direct Voice Broadcast System</td>
</tr>
<tr>
<td>EOC</td>
<td>Edge of Coverage</td>
</tr>
<tr>
<td>EOL</td>
<td>End of Life</td>
</tr>
<tr>
<td>EPS</td>
<td>Electrical Power Subsystem</td>
</tr>
<tr>
<td>ESH</td>
<td>Equivalent Solar Hour</td>
</tr>
<tr>
<td>ETR</td>
<td>Eastern Test Range</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation</td>
</tr>
<tr>
<td>Bv</td>
<td>Battery Volume Factor</td>
</tr>
<tr>
<td>Bw</td>
<td>Battery Weight Factor</td>
</tr>
<tr>
<td>Fc</td>
<td>Solar Cell Cover Glass Thickness Weight Factor</td>
</tr>
<tr>
<td>Fd</td>
<td>Battery Depth of Discharge</td>
</tr>
<tr>
<td>Fr</td>
<td>Radiation Degradation Factor</td>
</tr>
<tr>
<td>Ft</td>
<td>Temperature Adjustment Factor</td>
</tr>
<tr>
<td>GEO</td>
<td>Geostationary Earth Orbit</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>IF</td>
<td>Interface (Intermediate) Frequency</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IUS</td>
<td>Inertial Upper Stage</td>
</tr>
<tr>
<td>I_{sp}</td>
<td>Specific Impulse</td>
</tr>
<tr>
<td>K</td>
<td>Solar Array Sizing Constant (1123 W/m2)</td>
</tr>
<tr>
<td>K_d</td>
<td>Solar Array Density Coefficient</td>
</tr>
<tr>
<td>L/D</td>
<td>Length-to-Diameter (Ratio)</td>
</tr>
<tr>
<td>L</td>
<td>Structural Dimension Ratio</td>
</tr>
<tr>
<td>L_{LR}</td>
<td>Length of Radiating Dipole</td>
</tr>
<tr>
<td>LEO</td>
<td>Low-Earth Orbit</td>
</tr>
<tr>
<td>LCC</td>
<td>Life-Cycle Cost</td>
</tr>
<tr>
<td>LSS</td>
<td>Large Space System</td>
</tr>
<tr>
<td>L_s</td>
<td>Spreading Loss</td>
</tr>
<tr>
<td>L_{SSL}</td>
<td>Spacecraft Stowed Launch Length</td>
</tr>
<tr>
<td>m</td>
<td>Slope of Learning Curve</td>
</tr>
<tr>
<td>m</td>
<td>Meter(s)</td>
</tr>
<tr>
<td>MCC</td>
<td>Miniature Cassegrainian Concentrator</td>
</tr>
<tr>
<td>MeV</td>
<td>Megaelectron Volt(s)</td>
</tr>
<tr>
<td>MBG</td>
<td>Multiband Gap</td>
</tr>
<tr>
<td>MSFC</td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td>N</td>
<td>Number of Radiating Elements</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NR</td>
<td>Nonrecurring</td>
</tr>
<tr>
<td>NRC</td>
<td>Nonrecurring Cost</td>
</tr>
<tr>
<td>N_C</td>
<td>Charger Efficiency</td>
</tr>
<tr>
<td>N_d</td>
<td>Diode Efficiency</td>
</tr>
<tr>
<td>N_e</td>
<td>Battery Efficiency</td>
</tr>
<tr>
<td>N_i</td>
<td>Solar Cell Efficiency</td>
</tr>
<tr>
<td>N_r</td>
<td>Distribution Efficiency</td>
</tr>
<tr>
<td>N_u</td>
<td>Total Number of Units Produced</td>
</tr>
<tr>
<td>N_{wr}</td>
<td>Wire Efficiency (Source to Bus)</td>
</tr>
<tr>
<td>N_{ws}</td>
<td>Wire Efficiency (Bus to Load)</td>
</tr>
<tr>
<td>O&S</td>
<td>Operation and Support</td>
</tr>
<tr>
<td>OPD</td>
<td>Orbital Plane Day</td>
</tr>
<tr>
<td>OTS</td>
<td>Off the Shelf</td>
</tr>
<tr>
<td>OTV</td>
<td>Orbital Transfer Vehicle</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>PFD</td>
<td>Power Flux Density</td>
</tr>
<tr>
<td>PPT</td>
<td>Pulsed Plasma Thruster</td>
</tr>
<tr>
<td>ps</td>
<td>Pound(s) per Square Inch</td>
</tr>
<tr>
<td>P_{es}</td>
<td>Eclipse Load Power</td>
</tr>
<tr>
<td>P_l</td>
<td>Load Power</td>
</tr>
<tr>
<td>P_{ls}</td>
<td>Sun Load Power</td>
</tr>
<tr>
<td>P_s</td>
<td>Power from Source</td>
</tr>
<tr>
<td>P_t</td>
<td>Transmitter Power</td>
</tr>
</tbody>
</table>
Q Radiative Heat
R Distance from Satellite to Receiver
RAMP Risk Assessment and Management Program
RC Recurring Cost
RCD Rigid Body Control
RCS Reaction Control System
RFC Regenerative Fuel Cell
RTG Radioisotope Thermoelectric Generator
s Second(s)
S/C Spacecraft
S/N Signal-to-Noise (Ratio)
SAFE Solar Array Flight Experiment
SAR Synthetic Aperture Radar
SCIAP Spacecraft Integrated Analysis Program
SDCM System Design and Cost Model
SDR System Design Review
SEMP Systems Engineering Management Plan
SEP Solar Electric Propulsion
Si Silicon
SOA State of the Art
SOD Sidereal Orbital Day
SOW Statement of Work
SRR System Requirements Review
SSB Single Sideband
SSPA Solid State Power Amplifier
STS Space Transportation System

TCOM Tethered Communications Corporation
TOS/AMS Transfer Orbit Stage/Apogee Maneuvering Stage
TT&C Telemetry, Tracking, and Command
TWT Traveling-Wave Tube
TWTA Traveling-Wave Tube Amplifier
Tc Temperature Collector
Tcd Component Development Time
Tcq Component Qualification Time
Te Time of Eclipse
Tem Temperature Emitter
Tsd Subsystem Development Time
Tsq Subsystem Qualification Time
Tsysq System Qualification Time
Ts Time in Sun
UHF Ultrahigh Frequency
USAF United States Air Force
USIA United States Information Agency
UTC Universal Time Coordinated

VHF Very High Frequency
VOA Voice of America
Vol Volume
\[V_b \] Battery Volume
\[V_e \] Equipment Bay Volume
\[V_s \] Subsystem Hardware Volume
\[V_{sa} \] Solar Array Volume

\[W \] Watts
\[W_a \] Antenna Weight
\[W_b \] Battery Weight
\[W_{bc} \] Battery Charger Weight
\[W_d \] Power Distribution Weight
\[W_e \] Equipment Bay Weight
\[W_s \] Subsystem Weight
\[W_{sa} \] Solar Array Weight
\[W_{sr} \] Shunt Regulator Weight
\[W_{sw} \] Power Switching Weight
\[W_t \] Transmitter Weight
\[\text{WTR} \] Western Test Range
\[\alpha \] absorptivity
\[\varepsilon \] Emmissivity
\[\sigma \] Stefan-Boltzmann Constant
\[\lambda \] Wavelength
The primary goal of this study was to develop technical, schedule, and cost data that can be used by the U.S. Information Agency to evaluate use of sound broadcast satellite systems to meet future international sound broadcast needs. Satellite systems launchable by the space shuttle were synthesized and analyzed for broadcast at four frequencies: 26 MHz (HF-band); 47 MHz (VHF-band); 1.5 GHz (L-band); and 12.2 GHz (Ku-band). Broadcast requirements for the study specified time of day, duration of broadcast, and ranges of ground signal strength. Results showed that satellite systems can meet Ku-band requirements. L-band systems were designed that can meet lower signal strength requirements. Neither VHF nor HF-band requirements can be met by realistic satellite systems. For these latter bands, the study results identified the maximum possible broadcast capabilities for each concept. Also, for HF-band systems, parametric relationships were derived to identify available signal strength and satellite mass vs satellite output power. Time and cost to implement each system were estimated, and risk assessments performed to identify 90 and 10% risk values of time and cost.
1.0 INTRODUCTION

The Satellite Voice Broadcast System Study was commissioned by NASA to investigate the feasibility of a Direct Voice Broadcast System (DVBS) in space. The study evaluated potential operating systems in four frequency bands: 26 MHz, 47 MHz, 1.5 GHz, and 12.2 GHz. Potential operational system concepts were defined to a depth sufficient to determine the relative technical characteristics, performance, and costs (development, construction, and operating), and to develop schedules of selected system concepts. In addition, an assessment of the impact of and need for advanced technology for these system concepts was performed.

1.1 BACKGROUND

The use of satellites to provide sound broadcasting was examined by NASA as early as 1967 (ref. 1 and 2). More recently, this service has received increasing attention for both national and international broadcasting interests. CCIR Report 955 (ref. 3) deals with the feasibility of sound broadcasting satellite systems operating in the range of 500 MHz to 2 GHz. The primary application in Report 955 is broadcasting to automotive or portable receivers having relatively low gain antennas; in this case rather large satellites are required due to large multipath fade margins.

An extension of this work by Chaplin, et al. considered only the rural broadcasting case and an improved receiver noise performance. Their analyses for this special case (ref. 4) indicates that national broadcasting at 1 GHz is feasible with rather conventional size spacecraft. Phillips and Knight (ref. 5) explored the same subject at 26 MHz. None of these studies considered the operational difficulties of worldwide sound broadcasting but confined themselves to restricted coverage, single satellite concepts.

The U.S. Information Agency (USIA)/Voice of America (VOA) is considering sound broadcasting by satellite as part of a program to renovate, modernize, and expand the existing worldwide USIA/VOA broadcasting network. With such comprehensive coverage, new difficulties are introduced to satellite broadcasting. Therefore, it is appropriate to examine worldwide conceptual and operational satellite sound broadcast systems to delineate these difficulties and to continue to examine the practicality of worldwide sound broadcasting by satellite. This will clarify the more subtle operational difficulties of satellite sound broadcasting and provide guidance to the more favorable broadcast bands and technologies to use.

1.2 PROGRAM OBJECTIVE

The objective of this study was to provide the data necessary to develop technical, schedule, and cost data to aid in evaluating alternatives for satisfying future international sound broadcasting needs of the U.S. Government.
Conventional terrestrial broadcasting techniques were excluded from this study. Satellite system concepts were synthesized and optimized for operation in each of four bands: 15.1-26.1 MHz, 47-68 MHz, 1.5 GHz, and 11.7-12.5 GHz. The technical and operating characteristics of the space segment were studied in sufficient detail to demonstrate technologically feasible and cost-effective launch, deployment, and operational capabilities; critical technologies were identified; project plans were prepared defining tasks and providing estimates of schedules and costs to construct and operate such systems. Project plans were separately addressed for the technical, schedule, and cost elements of development efforts required in each of the critical technology areas. Alternative approaches were developed that reduce risk and schedule associated with the development of these critical technologies. Systems costs (development, construction, implementation, and operation) and their associated funding profiles were delineated in sufficient detail to separately facilitate life-cycle and cost-effectiveness comparisons.

Also, the technical and operating characteristics of the telemetry, tracking, and control station and the associated feeder link were defined in sufficient detail to develop estimates of technical, schedule, and cost data for this segment. Global service coverage combined with centralized system control and program feed from the U.S. or its territories is a desirable system feature.

Program outputs are summarized in Table 1.

1.3 PROGRAM REQUIREMENTS

The VOA requirements include specification of zones to be covered, universal time coordinated (UTC) times and number of channels, frequency of operation, and power flux density (PFD). A variety of options were also studied to provide a broad data base to not only study system designs but also to provide insight into optional system requirements.

Figure 1 pictorially describes the 15 zones of interest. The broadcast requirements for the zones are presented in Figure 2. Times are presented in 15-minute increments (UTC times) for a 24-hour day. For Ku-band, L-band, and HF-band, all zones were to be covered. As a baseline for VHF-band, only Zones 9, 10, 12, and 14 were to be covered.
Figure 1. - VOA coverage zones.
Table 2 presents the program requirements for Ku-band including frequency of operation, zones, maximum simultaneous channels and signal strength. No options were evaluated for the Ku-band system.

Table 3 presents the program requirements for L-band. Three signal levels were initially specified, however, due to high power requirements on the satellite for power levels P_1 and P_3, emphasis was placed on the P_2 level with a high and low power requirement.

TABLE 2. PROGRAM REQUIREMENTS—KU-BAND: 11.7 GHZ

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of channels</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Signal level: -128 dBW/m²/4 kHz (maximum)
Table 3 presents the program requirements for L-band. 1.5 GHz ± 25 MHz. Zonal allocation is shown.

Table 4 presents the program requirements for VHF-band. Only Zones 9, 10, 12, and 14 were specified for coverage. Three power levels were initially specified (250, 1000, and 5000 μV/m). The 1000 and 5000 μV/m signal levels were not achievable so program emphasis was placed on 250 μV/m with a 150 μV/m option and reduced channel options. A single orbiter was specified as the baseline but an option using a satellite in one orbiter and a large Centaur-type stage in a second orbiter was also considered.

Table 5 presents the program requirements for HF-band. Three power levels were initially specified: 300, 500, and 1000 μV/m. The 500 and 1000 μV/m signal levels were not achievable so program emphasis was placed on 200 μV/m with a 150 μV/m option. Reduced channel requirements and two reduced zone coverages were also to be evaluated. Single spacecraft in six different orbits were also evaluated at three signal levels for both double sideband (DSB) and single sideband (SSB). A full orbiter spacecraft was also investigated to provide greater capability on a single satellite.
2.0 SURVEY OF NONTERRRESTRIAL BROADCAST TECHNIQUES

This survey identified and described existing and planned nonterrestrial broadcast techniques. Top-level analyses were performed on each technique to determine its feasibility for use as a sound broadcasting system.

In this introduction, it is useful to say a few words about why nonterrestrial transmission methods are superior to terrestrial methods. Radio signals in general propagate via a direct space wave out to a distance within the radio horizon, and via a surface wave considerably beyond this horizon. For terrestrially located transmitters, however, the horizon is only on the order of 65 km (40 miles) for tower or terrain elevations of up to 305 m (1000 ft). Although a reflected space wave can propagate over considerably greater distances via reflection or "skip" conditions, coverage is not continuous over the land, and varies considerably with time of day and sunspot activity. On the other hand the surface wave (also known as the ground wave) experiences a loss resulting from ground absorption in addition to its spreading loss of space wave propagation. This ground absorption loss increases with frequency, and therefore is not very useful for frequencies above 10 MHz. For example, over rich agricultural land with low hills, the absorption loss at 10 MHz and range of 100 km (62 miles) is about 70 dB. At 20 km (12 miles) the loss is about 90 dB (ref. 6).

If the antenna is elevated to heights available from balloons and powered heavier-than-air aircraft, or even more so to heights available from satellites, the radio horizon distance is considerably increased, and propagation over substantial distances via the space wave is possible.

The studies for nonterrestrial techniques have shown that while various nonorbital techniques can provide coverage, they suffer from some severe drawbacks. Most notably, they can only cover the edges of unfriendly territory, and many are required to cover an entire friendly zone. The number of individual signal sources raises the concern that there will be areas of interference where individual coverages overlap. Even in friendly territory, the need for logistics support for each platform can make the system nonviable.

Existing orbital communication systems operate at geostationary altitude. Equivalent coverage at HF and VHF would require very large antenna apertures. Also, the high-power requirements for these HF and VHF systems would be larger than any existing system. In the L-band, a DBSC satellite design could provide adequate power for the low-end power requirement and would provide beam sizes of the correct order of magnitude. In the Ku-band, several satellites designed for TV direct broadcast applications, (e.g, the Japan-Broadcasting satellite, the Hughes HS394, and the DBSC satellites, could be used; however, some modifications to the spacecraft antenna would be required. Also, an SBS-type satellite could provide adequate power levels and the proper size beams for Ku-band operation.
2.1 TECHNIQUES AND COVERAGE

To obtain some idea of the power that will be required for the VOA application, the VOA specified edge of coverage signal level was converted into an equivalent power required, per voice channel, for each band, for the largest and smallest areas to be covered. These areas were, respectively, South America (Zone 3) and the Eastern Europe region (Zone 9). This was done for various ground receive antenna, elevation angle of 20°. The approximate range of values for each band is summarized in Table 6.

The data contained in Table 6 assumes straight line propagation with no allowance for atmospheric or ionospheric losses. By the nature of the problem, these power requirements are, except for atmospheric or ionospheric considerations, independent of transmitter altitude, and thus apply to both nonorbital and orbital methods of coverage. It is obvious that with the exception of the power requirement for the Ku-band, and the lower range of L-band, no existing satellites can satisfy these power requirements. Discussion on what levels of power could be supplied by various techniques is in subsequent sections of this report.

TABLE 6. - VOA POWER REQUIREMENT RANGE (PER VOICE CHANNEL)

<table>
<thead>
<tr>
<th>Band designation</th>
<th>Frequency range</th>
<th>Specified EOC signal level</th>
<th>Required power range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>150 - 260 MHz</td>
<td>300 µV/m</td>
<td>5.9 kW - 29.5 kW</td>
</tr>
<tr>
<td>VHF</td>
<td>470 - 580 MHz</td>
<td>250 µV/m</td>
<td>4.2 kW - 29.0 kW</td>
</tr>
<tr>
<td>L</td>
<td>1.5 GHz</td>
<td>P2</td>
<td>450.0 W - 2.2 kW</td>
</tr>
<tr>
<td>Ku</td>
<td>11.7 - 12.7 GHz*</td>
<td>.131 dBW/m²</td>
<td>2.0 W - 10.0 W</td>
</tr>
</tbody>
</table>

*Maximum range per single transponder is 11.7 to 12.5 GHz.

2.1.1 Nonorbital Methods of Coverage

This section examines three nonorbital methods of providing nonterrestrial originated coverage. The three methods are:

1) Tethered lighter-than-air platforms,
2) Powered lighter-than-air platforms,
3) Powered heavier-than-air platforms.

2.1.1.1 Tethered Lighter-Than-Air Platforms

Low altitude (nonorbital) vehicles have an advantage over satellites in that they are retrievable, and can thus be repaired, or have their payloads changed. However, since they are susceptible to destruction in unfriendly territory, they are useful only in friendly territory. In addition, nonorbital vehicles also have a much lesser broadcasting range than satellites, so that many such vehicles must be used to cover one broadcast zone. The resulting segmentation of coverage results in a potential for undesirable interference in the regions where signal strengths from two or more sources of the same frequency are roughly equivalent. This could be a serious drawback to a highly segmented system, and should be studied further if such a system is to be considered.
The geometric line-of-sight coverage of low altitude platforms is, to a first order approximation, a function of the square root of altitude or elevation above the surrounding terrain. For radio frequencies in the approximate range of 100 MHz to 20 GHz, however, the radio propagation range is about 15% further than the geometric line of sight because of atmospheric refraction effects. These geometric line of sight and radio propagation distances (as a function of altitude) are shown in Figure 3.

![Figure 3. - Geometric and radio horizons versus altitude above terrain.](image)
The tethered aerostat is a developed product, having already been used in broadcasting applications. Tethered aerostats can operate to altitudes of about 6000 m where they can carry payloads of 200 kg. At lower altitudes they can carry significantly heavier payloads. At 4500 m, line-of-sight distance is about 240 km (149 statute miles), as shown in Figure 3. To obtain reasonably full coverage of a region, tethered aerostats at this altitude would have to be placed in a grid with separations on the order of 500 km. For example, to cover a region such as Region 4 (Western Africa) which is roughly 4300 by 2700 km, an array of aerostats roughly 8x6 (on the order of 50 aerostats) would be required. (Tethered aerostats range in size from about 1400 m³, 35 m long to about 17,000 m³, 85 m long.)

The principal systems designer of tethered communications balloons is Tethered Communications Corporation, (TCOM) a subsidiary of Westinghouse Electric Company. Their product line generally falls into two categories:

1) A small, trailer-based transportable system capable of lifting 100 kg to an altitude of about 760 m (2500 ft) above sea level (ref. 8).

2) A permanent, installation-type system capable of lifting about 100 kg to 1830 m (6000 ft), or about 1000 kg to 1525 m (5000 ft) (ref. 8).

The payload for a tethered aerostat is suspended beneath the aerostat in a separate compartment. Systems built about ten years ago (refs. 9, 10, 11, 12) carried their own communications system power source, typically with the use of Sachs-Wankel rotary engines with a generating capacity of up to 5 kW. Under full-time use, fuel for the engines would typically last up to one week. More recently, power has been provided via the tether cable. This is accomplished by carrying high voltage, so as to minimize resistance losses, and stepping it down at the aerostat.

For a communication system, the problem of antenna orientation stabilization can be solved basically in one of two ways. The first way is to eliminate the problem by having an antenna pattern that is symmetrical about the vertical axis. In this case, rotations of the aerostat, with changing wind conditions, will not affect the coverage. The second method is to use an airborne mechanical system consisting of a two-axis gimbal, an azimuth drive, and a slip ring assembly package. The gimbal assembly acts as a pivot at the bottom of the aerostat hull from which the entire airborne payload is suspended in a pendulum fashion. Each axis is damped by a rotary viscous damper. The upper linkage on the gimbal assembly is mounted to the aerostat through a lightweight truss structure that distributes the airborne package weight and inertial loads throughout the balloon skin. The fixed shaft of the azimuth drive (with respect to the aerostat) is attached below the lower gimbal linkage. The azimuth drive is the mechanical portion of the azimuth heading servo loop. The drive system receives an electrical signal from the servo electronics and converts it into mechanical rotation of the payload package to maintain proper heading with respect to north, as the aerostat moves. The slip ring assembly incorporated into the airborne package allows unrestricted azimuth motion between the payload and the aerostat. The ring is located at the upper end of the azimuth drive where it is attached to the lower linkage of the gimbal. An azimuth positioning of $\pm 0.5^\circ$ pointing accuracy, controllable in 0.1° increments, is achieved. The gimbal assembly isolates payload motion with respect to aerostat motion by a factor of 10 to 1.
A number of methods are available for antenna mounting on an aerostat. One method is to use the gyro-stabilized platform beneath the aerostat. An alternate method is to suspend the antenna inside the balloon, a method particularly applicable to long wire antennas such as might be required in HF- and VHF-bands. A third and as yet unproven idea is to create an antenna from a section of the balloon's surface allowing for the widest possible antenna dimensions.

Several means exist for transmitting the programming material to the aerostat:

1) It may be uplinked from a transmitter at or near the aerostat mooring site, via RF,

2) A microwave link may be used to carry the signal to the aerostat from some distance away. TCOM Corporation did this with an installation in Iran, using a microwave link 193 km (120 miles) long to its Mark VII balloon,

3) A fiber optic link inside the cable can be used. TCOM has used this method on smaller (700 m³) STARS aerostats.

In summary, although tethered lighter-than-air balloons have advantages in that they are retrievable, are a developed product, require no fuel to remain aloft, and can be powered through the tether, they also have an obvious disadvantage in that they are extremely vulnerable to attack and must be organized in a grid pattern with the potential for radio interference in the intersecting regions.

2.1.1.2 Powered Lighter-Than-Air Platforms

Powered lighter-than-air vehicles (e.g., blimps, dirigibles, and airships) are possible, but not likely candidates for consideration as broadcasting platforms. They do however have a feature not realized with tethered aerostats, namely their ability to maneuver. However, this feature is probably not required for a VOA broadcasting system. On the negative side, conventional blimps do not have a tether, which, in aerostat systems, in addition to providing station keeping, also provides a means to transmit power to the broadcasting equipment. Without a tether, power must now be carried for both the broadcasting equipment and the station keeping engines of the aircraft. This severely limits the duration of continuous flights to the order of hours rather than the many days that are possible with tethered vehicles.

An alternate concept for the provision of power is to install a rectenna on the underside of the airship to beam energy to it from the ground. No working systems of this kind are now known.

The weight capacity of a dirigible is similar to that of a tethered aerostat, except that the means to generate power must now be counted as part of the payload.

For transmission of program material to powered lighter-than-air vehicles, the first two methods mentioned for tethered aerostats are applicable, leaving out the possibility of a fiber optic link.
In conclusion, powered lighter-than-air vehicles share many advantages with tethered balloons, (e.g., retrievability and buoyancy) and have an added advantage in that they are maneuverable. Unfortunately, they also have all the disadvantages found in tethered balloons (e.g. vulnerability to attack and interference between broadcast platforms, as well as having to generate required power on board). Also important to consider is that although the technology required to build dirigibles is available, only a limited number of designs have been developed, designs that may not suit payload capacity and service ceiling requirements.

2.1.1.3 Powered Heavier-Than-Air Platforms

The usefulness of powered heavier-than-air vehicles, including fixed-wing aircraft and helicopters have been investigated. The results are not promising.

In this category, the helicopter has the advantage over fixed-wing aircraft in that it can operate without a landing strip, and can take off vertically and reach its desired position directly. This could be advantageous in remote mountainous coverage zones.

The largest helicopter on the market and also one of the most expensive is the Boeing UT234. Starting at approximately $17M for the basic aircraft, the UT234 (ref. 13) will also cost an estimated $3800 per flight hour to run. This vehicle sports a fairly impressive range of payload and service ceiling capabilities—from 7710 kg (17,000 lb) at 4570 m (15,000 ft) to 12250 kg (27,000 lb) at 2130 m (7,000 ft) as illustrated in Figure 4.

Another factor to keep in mind when considering helicopters is the close relationship between helicopter performance and air temperature. During periods of warmer weather, there is a notable decline in the service ceiling due to variation in air density. Figure 4 indicates that for a specified service ceiling, a 20° variation in air temperature can cause up to a 16% decrease in payload capacity.

Fixed-wing aircraft generally have much higher load and altitude capability than helicopters. A wide variety of mid-sized airplanes, from executive jets to propeller driven transport planes, are easily capable of doing the same job as the UT234 with power to spare. The greatest drawback with airplanes is not payload weight capacities, but limits on the size and shape of the broadcast antenna. The drag created by a 10-m dish, for example, would cripple all but the largest of these aircraft. This problem has
given rise to creative antenna designs that reconcile aerodynamics and broadcast efficiency. Examples of these are the disk-shaped antennas like those mounted on the Boeing 707 AWACS planes, and long trailing antennas developed by Lockheed.

The Lockheed C-130, a 4-engine turboprop, can be ordered with a 457-m (1500 ft) trailing antenna designed for broadcasting an AM signal. Used extensively in the past for broadcasting, this aircraft can carry up to 19500 kg (43,000 lb) at well above 3050 m (10,000 ft) for six or seven hours (specification provided courtesy of Wallace Robby, Lockheed Corp.). No existing helicopter can boast such impressive capabilities.

Helicopters and airplanes alike share one considerable limitation in that they can be flown only over friendly territory. Being easy targets for missile or other anti-aircraft attack, a very large percentage of the proposed coverage areas would be off limits to these vehicles. On the other hand, friendly territories can be serviced by radio towers (for years, the method preferred over airborne broadcast platforms).

Unlike lighter-than-air platforms, heavier-than-air platforms must continuously burn fuel to remain aloft. Fuel reserves set aside for this task would add considerably to a payload already made heavy by power generating fuel and equipment.

It is difficult to escape the conclusion that although heavier-than-air broadcast platforms are technically feasible, they do not represent an attractive alternate to the satellite or other conventional systems. Their two apparent assets, retrievability and maneuverability, seem far overshadowed by their numerous shortcomings:

1) Vulnerability to attack,
2) Must expend fuel to remain airborne,
3) Must generate all power onboard,
4) Limited weight and hovering capabilities,
5) Can remain airborne for only short periods of time,
6) Can use only specialized broadcast antennas.

2.1.2 Orbital Methods of Coverage

Various classes of satellite orbits are useful as broadcast platforms. Among these, equatorial satellite orbits (e.g., geostationary, geosynchronous, nonsynchronous, circular, or elliptical) form a special class in that they have no specific equator crossing, and hence no right ascension of their ascending node. This means that systems using circular equatorial orbits need not be concerned with precession of ascending node, as it does not exist. Elliptical equatorial orbits, however, would be concerned with the longitudinal location of the argument of perigee. All other satellite orbits are inclined, and must consider ascending node right ascension and its drift.

We will consider the various classes of satellite orbits and the characteristics that apply to VOA broadcasts, and give examples of existing or close-to-existing technology that are applicable.
2.1.2.1 Equatorial Orbit Characteristics

The simplest and most common equatorial orbit is the geostationary Earth orbit (GEO) with a period of one sidereal day, i.e., 23 hours, 56 minutes, 45 seconds. This orbit can provide uninterrupted coverage for a given region of the Earth up to ± 70° latitude. Almost all communication satellites are in geostationary orbit.

For lower altitude equatorial orbits, the orbital period is shorter, so that the satellite advances or creeps to the east. Thus, its coverage area also advances to the east. At submultiples of the day, the satellite will be over the same longitude.

Satellites below geostationary altitude have an applicable characteristic for VOA broadcasts in that they can cover different areas at different times of the day. Such orbits will be discussed later in this report.

2.1.2.2 Inclined Orbit Characteristics

The category of inclined orbits encompasses a number of different subcategories of orbits, for such orbits can be circular vs elliptical, geosynchronous vs nongeosynchronous, subsynchronous vs non subsynchronous, Sun synchronous vs non Sun synchronous, and of any angle of inclination (0 to 180°).

Satellites in circular orbits circle the Earth at a uniform rate sweeping the ground at the same uniform ground rate. Such orbits can be useful when a uniform rate of procession measured along the ground track is desired.

Elliptical orbits in the vicinity of the apogee have relatively low lineal and angular velocities, making them useful in applications where coverage is desired in one region for a longer period of time than that required for other regions, and that which is possible with a circular orbit of the same energy. To maintain the longer coverage time over the same geographical area on successive orbital revolutions, the line of apsides (the line from the Earth's center to the argument of perigee) must be restrained from rotating.

In a conventional sense, subsynchronous orbits map out the same ground track on the Earth every day. To do this, the orbital period must be an integral submultiple of a sidereal day corrected for orbital procession. The total time of orbits in one day is defined as the orbital plane day (OPD). Thus, for a satellite that loops twice around in a nominal 24-h period, and whose orbit precesses 0.9856° per day west, the OPD is 23 hours and 52 minutes, and the orbital period of the satellite is one half this value. In a more general sense, a subsynchronous orbit is any orbit whose ground track repeats with a predictable regularity. The orbit period of a satellite in such an orbit is the associated OPD multiplied by a rational number. The numerator of the rational number is the number of OPDs that occur before the ground track repeats, and the denominator of the rational number is the number of revolutions of the satellite in its orbit that occur before the ground track repeats. If, for example, the satellite period is OPD x 2/9 (4.5 revolutions per OPD), the ground track will repeat on every two OPDs, coincident with every nine orbital revolutions. On alternate days, the ground track will lie halfway between the components of the tracks made the previous day, and the two-day successive adjacent ascending nodes of right ascension of the orbit will be out of time phase by one-half an OPD. This more general type of subsynchronous orbit is mentioned here because such orbits may indeed be useful for VOA coverage.
A geostationary orbit is a special case of a subsynchronous orbit, in which the satellite period and the OPD are one sidereal day, the orbit is circular, and the inclination is zero.

It is important to note that although subsynchronous orbits repeat their ground tracks, they do not, in general, repeat at the same time on corresponding revolutions. Sun-synchronous orbits (but more precisely, Sun stationary orbits) are those that precess one revolution to the east per year. This maintains the plane of the orbit at a constant average angle relative to a line between the centers of the Earth and Sun, and the OPD when referred to a Sun-synchronous orbit is exactly 24 hours. The term average allows for the nonuniform motion of the Earth about the Sun, described by the equation of time. Sun-synchronous orbits, in themselves, do not require that their synchronous orbital period be a rational number multiple of the 24-h sidereal orbital day (SOD). They may be of any period which, in combination with the other orbital parameters, results in an eastward precession of the ascending node of one revolution per year. Orbits that are both subsynchronous and Sun synchronous may be useful for VOA applications.

Posigrade orbits are those whose satellite motion is to the east, the same as the direction of the rotation of the Earth. The inclination angle of such satellites is between 0 and 90°. Because of Earth's motion, satellites in such orbits require less energy for launch than do satellites in retrograde orbits whose satellite motion is to the west, with the Earth in motion hindering launch. Retrograde orbits have inclination angles between 90 and 180°. Orbits near 90° inclination are known as polar orbits. Their ground track extends to the polar regions. Since VOA does not require polar coverage, and further, since coverage to high latitudes can be provided by satellites of only moderate inclination, they appear to be inefficient orbits. They do, however, have a unique characteristic in that they can satisfy the conditions for circular, subsynchronous orbits. This is discussed further in the next section.

2.1.2.3 Some Special Orbits

1) An elliptical, subsynchronous orbit,

2) A class of circular, subsynchronous, Sun-synchronous orbits,

3) An elliptical, synchronous, Sun-synchronous orbit.

An elliptical, subsynchronous orbit. - An example of an elliptical, subsynchronous orbit is provided by the Molniya series of Russian satellites. These satellites are in highly elliptical orbits that precess to the west, and have a period of one-half of 23 hours, 56 minutes minus an allowance for precession (one half an OPD). The satellites are in an inclined orbit of 63.4°. The main characteristic of this angle and its complement of 116.6°, is that the line of apsides does not rotate. Thus, the irregular orbital pattern that results from the high eccentricity is held stationary in position, although not in time, so that the relatively long dwelltime at apogee is maintained over the same area of Earth. Figure 5 shows the ground track of a typical Molniya type trajectory.
Circular, subsynchronous, Sun-synchronous orbits. An interesting class of orbits is the Sun synchronous, subsynchronous circular type. This class differs from mere subsynchronous orbits in that the ground track is repeated at the same clocktime, making them geosynchronous. The class differs from elliptical orbits in that there are no restraints on inclination angle, allowing rotation of the line of apsides. Without this restraint, there are a number of orbits of interest.

Table 7 lists characteristics of various satellites that have been launched.

TABLE 7. EXAMPLES OF SATELLITES IN CIRCULAR, SUBSYNCHRONOUS, SUN-SYNCHRONOUS ORBITS

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Revolutions per solar day</th>
<th>Orbital altitudes</th>
<th>Inclination angle</th>
<th>Launch date</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOAA weather satellite</td>
<td>12.39</td>
<td>1510.0 km</td>
<td>101.9 deg</td>
<td>1976</td>
<td>340.0 kg</td>
</tr>
<tr>
<td>NOAA weather satellite</td>
<td>12.59</td>
<td>1450.0</td>
<td>101.4</td>
<td>1974</td>
<td>340.0 kg</td>
</tr>
<tr>
<td>NIMBUS 6 weather technology</td>
<td>13.41</td>
<td>1106.0</td>
<td>99.8</td>
<td>1975</td>
<td>829.0 kg</td>
</tr>
<tr>
<td>LANDSAT</td>
<td>13.97</td>
<td>905.0</td>
<td>98.8</td>
<td>1972</td>
<td>816.4 kg</td>
</tr>
<tr>
<td>NOAA-7</td>
<td>14.13</td>
<td>848.0</td>
<td>98.9</td>
<td>1981</td>
<td>1405.0 kg</td>
</tr>
<tr>
<td>DMSP-F3</td>
<td>14.24</td>
<td>811.0</td>
<td>98.6</td>
<td>1978</td>
<td>513.0 kg</td>
</tr>
<tr>
<td>HCMN</td>
<td>14.83</td>
<td>623.0</td>
<td>97.6</td>
<td>1978</td>
<td>134.0 kg</td>
</tr>
<tr>
<td>METEOR 1-29</td>
<td>14.91</td>
<td>595.0</td>
<td>97.9</td>
<td>1979</td>
<td>3800.0 kg</td>
</tr>
<tr>
<td>SOLWIND P78-1</td>
<td>15.06</td>
<td>545.0</td>
<td>97.5</td>
<td>1979</td>
<td>1331.0 kg</td>
</tr>
<tr>
<td>UOSTAT</td>
<td>15.08</td>
<td>539.5</td>
<td>97.8</td>
<td>1981</td>
<td>52.0 kg</td>
</tr>
</tbody>
</table>
Elliptical, subsynchronous, Sun-synchronous orbit. - The next class of satellite trajectories contains a number of potential subclasses that are similar to the Molniya subsynchronized class, but, in addition, are in Sun-synchronous trajectories. To accomplish this, the inclination angle is 116.6°, and the other orbital parameters are defined such that the orbit drifts to the east one revolution per year, and the subsynchronous also becomes Sun synchronous. It turns out, however, that of all the potential subclasses of such orbits, only one is realizable.

2.1.3 Satellite State of the Art

This section looks at designs of some existing satellites, and some that are presently in a design phase, to determine to what extent such technology could reasonably satisfy VOA requirements. Before considering specific examples, it is well to note a general limitation in terms of satellite mass required per unit of primary power available. A survey of some satellites (other than experimental) shows a range of roughly 250 to 1400 grams per watt. The broadcast type satellites tend to cluster in the range of 350 to 475 grams per watt, while the fixed service satellites tend to cluster in the range of 600 to 1250 grams per watt.

2.1.3.1 The Applications Technology Satellite-6 (ATS-6)

The ATS-6 was launched in May 1974 to perform a number of experiments. One primary objective was to demonstrate the feasibility of deploying a 9.1 m (30 ft) parabolic reflector antenna. Its initial orbital mass in geostationary orbit was 1350 kg, and had 645 W of solar power for a relatively inefficient mass to primary power ratio of 2093 grams per watt. Several transmitters at frequencies ranging from 860 MHz to 315 GHz (including a 40 W transmitter at 1.55 GHz) with RF powers of up to 80 W were employed with the large parabolic reflector.

If the full resources of an ATS-6-type satellite were converted to VOA applications, the large parabolic reflector could provide the following beamwidths:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Beamwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0 MHz</td>
<td>154.80°</td>
</tr>
<tr>
<td>26.0 MHz</td>
<td>88.80</td>
</tr>
<tr>
<td>47.0 MHz</td>
<td>49.10</td>
</tr>
<tr>
<td>68.0 MHz</td>
<td>33.90</td>
</tr>
<tr>
<td>1.5 GHz</td>
<td>4.0 (1/4 illumination of dish)</td>
</tr>
<tr>
<td>1.5 GHz</td>
<td>1.54 (full illumination of dish)</td>
</tr>
<tr>
<td>12.0 GHz</td>
<td>0.19</td>
</tr>
</tbody>
</table>

The beamwidths from 154.8° down through 33.9° clearly would not be efficient from geostationary altitudes, as the Earth extends only about 17° from this altitude.

If, in addition, the full primary resources were devoted to a single transponder voice channel, it is estimated that about a quarter of the 645 W available, or 160 W, could be available for transponder output. This would
not be sufficient to produce the power needed in HF-, VHF-, and L-bands regardless of satellite altitude. In Ku-band, the available power would be sufficient but the beam size would be too small at geostationary altitude, and the antenna size would have to be reduced to meet coverage requirements. For HF- and VHF-bands, the antenna size from geostationary orbit provides whole Earth coverage. However, unless it is coupled with much higher power, the PFD on the ground would not meet the VOA requirements. Such higher power might then be able to power several channels simultaneously.

2.1.3.2 Japan Broadcasting Satellite

In April 1978, NASA launched for Japan a TV broadcast satellite (BS). This satellite has a mass of 678 kg, and a primary power of 1000 W (678 kg/kW). It has two 100 W transponders to handle two simultaneous TV broadcasts. A more recent BS-2 has increased the primary power to 1780 W, for a somewhat more efficient mass-to-power ratio. The antennas on the BS were 1 by 1.6 m, and produced a beam of approximately 2 by 1.4° at 12 GHz with 40.3 dB peak gain.

Satellites with the above parameters, as in the case of the ATS-6 technology, do not have sufficient power to be of use in HF- and VHF-bands. With a larger antenna, the stated power would be sufficient for two L-band voice broadcasts. However, the satellite would require significant redesign to be compatible with such an antenna. At Ku-band the antenna change could easily be accomplished and the resulting satellite could broadcast 12 channels or more.

2.1.3.3 Hughes DBS Satellites

Hughes Aircraft has introduced a high power DBS satellite (HS 394) capable of providing eight channels, each of 160 W output, with a total RF output in the 1200 to 1500 W range. Primary power is 3-4 kW, with about 1050 kW in-orbit, for a mass-to-primary power ratio in the neighborhood of 300 kg/kW. Unlike conventional Hughes spin-stabilized satellites, the solar array is Sun stabilized, although the propulsion and attitude control section is spun. The antenna is sized to cover one half of the Continental U.S. at 12 GHz, resulting in a beam of about 3° in diameter, covering about three times the ground area of the Japanese BS.

As in the case of the Japan BS, power is insufficient for HF- and VHF-bands. This satellite is large enough to accommodate a significantly sized L-band-deployable antenna. This coupled with the large power source could provide several voice channels at L-band. In Ku-band, the 3° beam might be satisfactory from geostationary orbit for coverage of an area about half the size of Zone 8, (e.g, Saudi Arabia-Turkey). Therefore, a different antenna would be needed at Ku-band and this could be easily accommodated.
This section addresses the costs and schedules of the orbital and nonorbital systems described in Section 2.1. These systems have all been developed using existing technology, with all costs reported in fiscal 1984 dollars.

Costs were broken down into three sections: (1) nonrecurring (N/R) engineering cost; (2) production cost; and (3) operation and support (O&S) cost.

The N/R engineering cost includes direct engineering, overhead, general, and administrative costs, quality control, program management, and other technical services.

Production cost was derived assuming a minimal amount of time for startup and retooling of machinery. Since only the first unit was priced, no learning benefits were applied.

O&S cost was derived using a worst case operational life of seven years and an operation time of 12 hours per day. O&S for nonsatellites include fuel, repair labor, spares, technical publications, training, consumables, inventory control, and operations labor. O&S for satellites include launch and tracking costs. Insurance, and interest were not included in any costs.

Table 8 shows the cost breakdown and development and production time per unit of five nonorbital and three orbital platforms.

For each coverage zone, the number of vehicles required to give full coverage is shown in Table 9. For nonorbital techniques, this number is independent of the operating band, assuming each vehicle would carry the appropriate antenna required. For orbital techniques, the number of vehicles is shown for a specific operating band.

<table>
<thead>
<tr>
<th>Concept</th>
<th>N/R engr</th>
<th>Unit cost</th>
<th>O&S</th>
<th>Dev</th>
<th>Prod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodyear B-type blimp</td>
<td>$1M</td>
<td>$10M</td>
<td>$5M</td>
<td>0.5 yr</td>
<td>1.0 yr</td>
</tr>
<tr>
<td>TCOM Aerostat</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Boeing UT-234</td>
<td>2</td>
<td>15</td>
<td>45</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Lockheed C-130</td>
<td>2</td>
<td>15</td>
<td>55</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Boeing 707 (AWACS)</td>
<td>3</td>
<td>25</td>
<td>80</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Fairchild ATS-6</td>
<td>10</td>
<td>65</td>
<td>135</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>DBSC</td>
<td>15</td>
<td>90</td>
<td>135</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>SBS</td>
<td>10</td>
<td>75</td>
<td>125</td>
<td>2.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
TABLE 9 - NUMBER OF VEHICLES REQUIRED PER ZONE

<table>
<thead>
<tr>
<th>Zone</th>
<th>Blimp</th>
<th>Tethered balloon</th>
<th>UT-234</th>
<th>C-130</th>
<th>707</th>
<th>ATS-6 (L-band)</th>
<th>DBSC (L-band)</th>
<th>SBS (Ku-band)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>219</td>
<td>73</td>
<td>72</td>
<td>36</td>
<td>25</td>
<td>8</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>213</td>
<td>71</td>
<td>70</td>
<td>35</td>
<td>24</td>
<td>7</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>719</td>
<td>240</td>
<td>236</td>
<td>119</td>
<td>83</td>
<td>25</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>375</td>
<td>125</td>
<td>123</td>
<td>61</td>
<td>43</td>
<td>13</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>489</td>
<td>156</td>
<td>154</td>
<td>77</td>
<td>53</td>
<td>16</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>188</td>
<td>63</td>
<td>61</td>
<td>31</td>
<td>21</td>
<td>7</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>333</td>
<td>328</td>
<td>164</td>
<td>114</td>
<td>35</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>157</td>
<td>53</td>
<td>52</td>
<td>27</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>163</td>
<td>54</td>
<td>53</td>
<td>27</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>284</td>
<td>95</td>
<td>93</td>
<td>47</td>
<td>32</td>
<td>10</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>344</td>
<td>115</td>
<td>113</td>
<td>56</td>
<td>39</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>222</td>
<td>74</td>
<td>73</td>
<td>36</td>
<td>25</td>
<td>8</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>844</td>
<td>281</td>
<td>276</td>
<td>138</td>
<td>96</td>
<td>29</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>159</td>
<td>53</td>
<td>52</td>
<td>26</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>406</td>
<td>135</td>
<td>133</td>
<td>67</td>
<td>46</td>
<td>14</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5762</td>
<td>1921</td>
<td>1889</td>
<td>947</td>
<td>650</td>
<td>201x0.5</td>
<td>16</td>
<td>100*</td>
</tr>
</tbody>
</table>

*Assumes 50% reduction for a single satellite covering multiple zones

Table 10 represents the total life cycle cost and schedule for each of the specific concepts. The total cost includes nonrecurring engineering, unit, and operations and support costs. Total schedule includes development and production schedules. Schedules were based on the assumptions of production rates of 14 aircraft per month for the winged aircraft and 20 aircraft per month for the other two nonorbital aircraft. A production rate of two spacecraft per month was assumed for orbital platforms.

TABLE 10 - ORBITAL AND NONORBITAL CONCEPTS—TOTAL LCC AND SCHEDULE, $B

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Quantity</th>
<th>Total cost</th>
<th>Total schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodyear B-type blimp</td>
<td>5762</td>
<td>$86</td>
<td>25.5 yr</td>
</tr>
<tr>
<td>TCOM Aerostat</td>
<td>1921</td>
<td>21</td>
<td>9.5</td>
</tr>
<tr>
<td>Boeing UT-234</td>
<td>1889</td>
<td>113</td>
<td>13.5</td>
</tr>
<tr>
<td>Lockheed C-130</td>
<td>947</td>
<td>66</td>
<td>8.1</td>
</tr>
<tr>
<td>Boeing 707</td>
<td>650</td>
<td>68</td>
<td>8.4</td>
</tr>
<tr>
<td>Fairchild ATS-6</td>
<td>100</td>
<td>20</td>
<td>9.5</td>
</tr>
<tr>
<td>DBSC</td>
<td>16</td>
<td>4</td>
<td>6.8</td>
</tr>
<tr>
<td>SBS</td>
<td>6</td>
<td>1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Approx total cost and schedule for each concept.
Mission analysis was performed to characterize various satellite concepts, performance parameters, and hardware implementation options applicable to the DVBS satellite service requirements. The final results were a set of candidate satellite system concepts that satisfy the service requirements and are compatible with STS payload weight and volume restrictions and the requirements of an orbital transfer vehicle (OTV).

The analysis included an orbit and coverage analysis, a propagation analysis, a payload capability analysis, and a technology survey of subsystems for DVBS. The orbit and coverage analysis encompassed a wide range of orbits from low to high altitude for both elliptical and circular orbits. The propagation analysis reviewed data available on propagation parameters and used the parameter effects to yield the losses associated with transmission at each band. The payload analysis used projected STS payload capabilities and near-term OTV's to determine satellite limitations as to the total weight and volume that could be delivered to each orbit. The technology survey of applicable subsystems considered communication, power, ACS, stationkeeping and maneuvering, TT&C, thermal control, and the equipment bay (e.g., spacecraft body and subsystems).
3.1 ORBIT AND COVERAGE ANALYSIS

The full range of possible orbits was examined systematically. Both elliptical and circular orbits were considered. In recommending orbits for DVBS, the payload that can be placed into each orbit was considered along with the orbital constraints (e.g., eclipse time, Van Allen belt radiation, and orbit perturbations).

Additionally, orbits that provide repeatable ground tracks, repeatable time schedules, and long coverage time over a particular area were desirable to meet the VOA coverage requirements. These requirements could be met by a large number of satellites surrounding the globe. However, the number was reduced by choosing orbits with repeatable ground tracks over the required coverage area. Also, the number was reduced further by assuring either the same satellite or multiple satellites repeat the time schedule (e.g., the same schedule to the same area everyday). Coverage time was increased by using constellations of trailing satellites or by using an elliptical orbit with a high apogee occurring over the target area.

In order to provide a measure of the degree at which each recommended orbit met the VOA coverage requirements, a coverage analysis was performed using representative orbital positions. Each orbital position was assumed to have a capability to view the Earth to a 20° elevation angle for HF- and VHF-bands and a 11.5° elevation angle for L- and Ku-bands. Depending on the required number of voice channels and signal strength, the orbital position consisted of either a single satellite or a cluster of satellites.

3.1.1 Orbital Constraints

The orbital constraints that provided a basis to measure which orbits were possible candidates for DVBS included eclipse time, Van Allen belt radiation, and orbital perturbations.

Power requirements for the HF-, VHF-, and L-band satellites were such that the satellite operating during eclipse would need large battery packs or the satellite could not operate at all. In either case, minimizing eclipse time was desirable. In general, the eclipse time decreases as the satellite altitude increases. As it turned out, having to operate during eclipse was such a severe requirement for battery power that satellites recommended for HF-, VHF-, and L-band do not operate during eclipse. Figure 6 shows the percent of sunlight for a satellite vs the orbital altitude as orbit inclination is varied.

In addition to eclipse time, the charged particles in the Van Allen belts can cause serious deterioration of satellite solar panels and electronics. Providing the satellite operating in the Van Allen belts with enough end-of-life (EOL) solar power requires larger and heavier solar arrays than on a satellite outside of the Van Allen belts, and the weight of shielding needed for the satellite electronics increases. It was therefore desirable to minimize or avoid the Van Allen belt regions as much as possible.

Orbital perturbations include effects due to oblateness of the Earth, drag of atmosphere, solar and lunar gravity, solar radiation pressure, and electromagnetic drag. For the most part, all but the oblateness of the Earth are effects that the satellite can easily compensate for by using the stationkeeping system on the satellite.
The Earth’s oblateness causes both periodic and steady (secular) changes in the orbital elements. The effects of Earth’s oblateness were considered for each orbit and are included in the coverage analysis discussed later.

3.1.2 Elliptical Orbits

The orbital analysis conducted under this study looked at three types of elliptical orbits: Molniya, geosynchronous, and a Sun-synchronous subgeosynchronous orbit called a triply-synchronous orbit.

Elliptical orbits are used to maximize the dwelltime over a coverage zone. However, elliptical orbits usually require higher delta-v capabilities than circular orbits of the same orbital period. Consequently, there will be a reduction of the payload capability to the orbit.

Table 11 shows the four elliptical orbits studied under this contract. Two of the elliptical orbits are geosynchronous with different eccentricities and inclinations.

TABLE 11. - ELLIPTICAL ORBITS

<table>
<thead>
<tr>
<th>Type</th>
<th>Period</th>
<th>Eccentricity</th>
<th>Inclination</th>
<th>Altitude</th>
<th>Payload capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triply-synch</td>
<td>3.000 h</td>
<td>0.3467</td>
<td>116 deg</td>
<td>7,843 km</td>
<td>3134 kg</td>
</tr>
<tr>
<td>Molniya</td>
<td>11 967</td>
<td>0.7720</td>
<td>63.4</td>
<td>39,375</td>
<td>9575</td>
</tr>
<tr>
<td>Geosynch</td>
<td>23 934</td>
<td>0.6000</td>
<td>60.0</td>
<td>61,085</td>
<td>8007</td>
</tr>
<tr>
<td>Geosynch</td>
<td>23 934</td>
<td>0.3000</td>
<td>30.0</td>
<td>48,435</td>
<td>6544</td>
</tr>
</tbody>
</table>
The triply-synchronous elliptical orbit is retrograde and thus the orbital plane drifts to the east at the rate of +0.9856 deg/day. This equals the average rate of motion of the Earth around the Sun. Therefore, the orbital plane maintains a fixed orientation with respect to the Earth-Sun line. This allows the satellite to have nongimbaled solar arrays thereby reducing the weight and cost of the electrical power subsystem. Also, at the inclination of 116.57 deg, the orientation of the orbit in its plane does not change and thus the position of the perigee relative to the orbit remains fixed. Therefore, the orbit has a fixed time schedule and a fixed ground track. At the 3-hour period, the ground track repeats itself after eight revolutions in one day. Figure 7 shows the ground tracks of the triply-synchronous orbit.

The main drawback of this orbit is the large delta-v required to obtain high inclination. Therefore, satellites that could be placed in this orbit would be restricted to 3134 kg using a Centaur G as the orbital transfer vehicle.

The Molniya elliptical orbit (named after a class of Russian satellites) is characterized by a highly eccentric elliptical 12-hour orbit whose line of apsides does not precess. Satellites in this orbit would have long dwelltimes at apogee and short dwelltimes at perigee. For example, Figure 8 shows the ground track of a typical Molniya orbit. It can be seen that on each 12-hour revolution, 11 hours are spent in the northern hemisphere and only one hour in the southern hemisphere. The ground track is constant because the orbital period is adjusted to be exactly half a sidereal day corrected for the drift of right ascension. At an inclination of 63.4 deg, forces that produce the rotation of the line of apsides are balanced, therefore the location of the apogee remains constant.

The one item that is not fixed in this orbit is the time schedule. The satellite arrives above a given point on Earth about four minutes earlier each day.

The final elliptical orbit considered in this study was the elliptical geosynchronous orbit. The eccentricity used for the geosynchronous orbit designs were 0.6 and 0.3 for inclinations of 60 and 30°, respectively. This resulted in the ground trace becoming egg-shaped and provided an extensive period of time that a satellite would remain above a given coverage area. Figures 9 and 10 show the ground trace resulting from these two orbits. Both orbits allow the line of apsides to drift thereby the apogee will progress with time, however, it is possible to compensate for this effect through use of multiple satellites. The 60° inclination and 0.6 eccentricity orbit passes through the Van Allen radiation belt due to the low perigee altitude and therefore the 30° inclination and 0.3 eccentricity orbit is better suited for VOA applications.
Figure 7. - Triply-synchronous elliptical orbit.

Figure 8. - Typical molniya elliptical orbit.
Figure 9. - Elliptical geosynchronous orbit.
3.1.3 Circular Orbits

The circular orbits studied under this contract consisted of three types: triply synchronous, geostationary, and subgeosynchronous (Table 12). For the subgeosynchronous orbits both 30° and 45° inclination orbits were examined to assess the impact on inclination vs coverage requirements.

The triply-synchronous circular orbit has characteristics similar to the triply-synchronous elliptical, i.e., a fixed ground track, a fixed time schedule and, a fixed orientation to the Sun. However, dwelltime over a particular spot is drastically reduced and therefore, would require more satellites to meet the same coverage requirements than the triply-synchronous elliptical orbit. Also, the inclination required is increased to 125.3° thereby requiring additional delta-v to achieve this orbit and restricting the payload to orbit from 3134 kg for the elliptical case to 2127 kg. Due to these reduced capabilities, the triply-synchronous circular orbit was not considered for full capability VOA applications.

TABLE 12. - CIRCULAR ORBITS

<table>
<thead>
<tr>
<th>Type</th>
<th>Period</th>
<th>Inclination</th>
<th>Altitude</th>
<th>Payload capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triply synch</td>
<td>3.000 h</td>
<td>125.3 deg</td>
<td>4,182 km</td>
<td>2127 kg</td>
</tr>
<tr>
<td>Geostationary</td>
<td>23.934</td>
<td>0.0</td>
<td>35,786</td>
<td>4387</td>
</tr>
<tr>
<td>Subgeosynch</td>
<td>11.967</td>
<td>30.0, 45.0</td>
<td>20,194</td>
<td>7236</td>
</tr>
<tr>
<td></td>
<td>7.978</td>
<td>30.0, 45.0</td>
<td>13,892</td>
<td>8910</td>
</tr>
<tr>
<td></td>
<td>5.984</td>
<td>30.0, 45.0</td>
<td>10,355</td>
<td>9993</td>
</tr>
</tbody>
</table>
The geostationary orbit is a standard for existing communication satellites. Satellites in geostationary orbits provide service to a wide coverage area. Dwelltime is constant since the satellite in geostationary orbit appears to be stationary to observers on Earth. However, the elevation angle from high altitude areas to a geostationary satellite will be low. Because of the high altitude, eclipse time is minimal.

The subgeosynchronous circular orbits studied ranged from approximately 12 to 6-hour periods. The inclinations of 30 and 45° were chosen since coverage requirements did not warrant higher inclinations and lower inclinations would produce low elevation angles when covering high latitude zones. All of the circular orbits studied had periods that were submultiples of one sidereal day. This assured the ground tracks of the orbits remain fixed. However, the time schedule was not fixed since the satellite will arrive over a given point 4 minutes earlier each day after completing one ground track cycle. Because of this time shift, multiple satellites in different orbital planes that generate the same ground track and follow one another were necessary to provide continuous service.

As the circular orbits were reduced in period and thus altitude, the following occurred: (1) the dwelltime of an individual satellite over a target shortened, (2) the eclipse time increased, and (3) the payload capability increased. As discussed later, the low altitude circular orbits, i.e. the 6- and 8-hour orbit, proved advantageous for use at the HF frequency due to this increased payload capability. Figures 11, 12, and 13 show the ground tracks for the 12-, 8-, and 6-hour orbits at 30° inclination respectively.
Figure 12. - Circular 8-hour orbit.
3.1.4 Coverage Analysis

After completing the orbital analysis, a coverage analysis was performed using the orbits best suited for VOA applications in order to provide some measure of the utility of proposed VOA satellite systems. The goal of the analysis was to measure the ability of alternative satellite systems to meet the VOA requirements. Figure 14 diagrams the method and logic flow of this analysis.

The VOA requirements for satellite broadcast to the zones of interest were described in matrix form in the statement of work (SOW). A graphical representation of the overall requirements (time vs zone) is shown in Figure 15. Note that this example is for the full HF broadcast requirements.

A time-step simulation of satellite access to the zones of interest was conducted using computer routines developed by the Martin Marietta Denver Aerospace Operations Analysis Department. Since the requirements were stated in 15-min increments throughout the day, the simulations were run at that interval as well. The simulations were conducted for 24 hours, since the requirements repeated daily and since the orbital positions chosen for analysis were reconfigured (that is, at their original positions relative to the Earth's surface) after 24 hours. (Exceptions to this 24-hour reconfiguration are discussed later in this section.)
The simulation routines look for access from the orbital position to geographic points on the Earth's surface within grazing angle limits. (Grazing angle and elevation angle are synonymous in this context, depending only on the point of reference; i.e., from the satellite or from the ground observer, respectively.) HF and VHF analyses assumed a minimum 20° elevation angle limit. For L- and Ku-band an 11.5° elevation angle was used. Figure 16 depicts access from two satellites. Each geographic zone of interest was simulated by multiple latitude/longitude ground points. Figure 17 shows the set of points that were used. Depending on the zone size, anywhere from three to six ground points were used to define each zone.

These access matrices were then compared, one orbital position at a time, to the requirements matrix. If a requirement to cover a zone existed and an orbital position had access to that zone, an assignment of orbital position to zone was made. Two possible transmit schemes were investigated. First, each orbital position was allowed to cover only one zone at a time, even if it had access to multiple zones. In the second scheme, each orbital position was considered to consist of a cluster of spacecraft all with the same ascending node, which has the capability to cover all zones in access at that time. These two schemes provided lower and upper bounds respectively on the performance capabilities of the systems examined.

Figure 18 shows an example of an orbital position's access overlaid on the requirements diagram from Figure 15. The scheme depicted here is that multiple zones can be covered at one time.

Figure 14. - Summary of utility analysis methodology.
Figure 15. - VOA broadcast requirements.
Critical grazing/elevation
20° angle for broadcast reception for HF & VHF

Figure 16. - Earth access from orbital position.
Figure 17. - Ground points used to define zones.
The procedure for assigning orbital positions to zones was repeated for each orbital position in the constellation. A resulting matrix was then formed to show the results of the simulation. Figure 19 is an example of an output matrix showing information about orbital position assignments over time and when, where, and why requirements were not met during the 24-hour period.

Once a broadcast assignment matrix was completed, system efficiency was calculated. For cases with multiple orbital positions, the ratio of coverage provided to the coverage required was calculated. That is, the denominator was the number of time period-to-zone combinations in the requirements matrix and the numerator was the number of time/zone assignments made. For single orbit position concepts, very few of the requirements could be met. Consequently, coverage efficiency would not be meaningful. However, the fraction of time that a single satellite would be transmitting is useful. This parameter can be obtained from charts like Figure 18 and has been provided in Table 13.
During the process of determining the coverage efficiency, it was found that many of the orbit positions covered all but a single ground point defining a zone, i.e., effectively covering 80% of the required zone. Since this was the case, two different efficiencies were calculated. First, all points of the zone were required to be in view for an access to be generated in the matrix. In the second calculation, one point in the zone could be out of view. Obviously, allowing one point in the zone to be out of access increases

Figure 19 - Results of the assignment process.

TABLE 13. - PERFORMANCE OF THE SATELLITE SYSTEM

<table>
<thead>
<tr>
<th>Case</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>*Coverage efficiency criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45</td>
<td>0.59</td>
<td>0.67</td>
<td>0.84</td>
<td>1) Fraction of total requirements met</td>
</tr>
<tr>
<td>2</td>
<td>0.40</td>
<td>0.55</td>
<td>0.65</td>
<td>0.81</td>
<td>— One zone per satellite</td>
</tr>
<tr>
<td>3</td>
<td>0.62</td>
<td>0.85</td>
<td>0.83</td>
<td>0.97</td>
<td>2) Fraction of total requirements met</td>
</tr>
<tr>
<td>4</td>
<td>0.43</td>
<td>0.58</td>
<td>0.50</td>
<td>0.67</td>
<td>— Zone per satellite</td>
</tr>
<tr>
<td>5</td>
<td>0.63</td>
<td>0.71</td>
<td>0.73</td>
<td>0.80</td>
<td>— All of zone covered</td>
</tr>
<tr>
<td>6</td>
<td>0.52</td>
<td>0.68</td>
<td>0.91</td>
<td>1.00</td>
<td>— Most of zone covered</td>
</tr>
<tr>
<td>7</td>
<td>0.54</td>
<td>0.67</td>
<td>0.88</td>
<td>0.95</td>
<td>— All of zone covered</td>
</tr>
<tr>
<td>8</td>
<td>0.62</td>
<td>0.68</td>
<td>0.91</td>
<td>1.00</td>
<td>3) Fraction of total requirements met</td>
</tr>
<tr>
<td>9</td>
<td>0.72</td>
<td>0.84</td>
<td>0.92</td>
<td>1.00</td>
<td>— Multizones per satellite</td>
</tr>
<tr>
<td>10</td>
<td>0.33</td>
<td>0.45</td>
<td>0.38</td>
<td>0.49</td>
<td>— Most of zone covered</td>
</tr>
<tr>
<td>11</td>
<td>0.56</td>
<td>0.65</td>
<td>0.72</td>
<td>0.76</td>
<td>— All of zone covered</td>
</tr>
<tr>
<td>12</td>
<td>0.69</td>
<td>0.91</td>
<td>0.84</td>
<td>1.00</td>
<td>4) Fraction of total requirements met</td>
</tr>
<tr>
<td>13</td>
<td>0.93</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>— Multizones per satellite</td>
</tr>
<tr>
<td>14**</td>
<td>0.50</td>
<td>0.56</td>
<td>0.74</td>
<td>0.81</td>
<td>1.00 — Most of zone covered</td>
</tr>
<tr>
<td>15**</td>
<td>0.50</td>
<td>0.58</td>
<td>0.76</td>
<td>0.82</td>
<td>1.00 — All of zone covered</td>
</tr>
<tr>
<td>16**</td>
<td>0.72</td>
<td>0.76</td>
<td>0.96</td>
<td>1.00</td>
<td>1.00 — Multizones per satellite</td>
</tr>
<tr>
<td>17**</td>
<td>0.66</td>
<td>0.72</td>
<td>0.96</td>
<td>1.00</td>
<td>1.00 — Most of zone covered</td>
</tr>
</tbody>
</table>

**Hybrid constellations (geostationary/elliptical) Combined performance calculated

<table>
<thead>
<tr>
<th>Utilization factor for single satellites</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.54</td>
<td>0.69</td>
<td>0.75</td>
<td>0.67</td>
<td>0.96</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Note:
L-band & Ku-band at three geostationary positions (20W, 15E, 110E) provided 100% coverage using 11.5° elevation.
the measured performance. The operational significance of this depends on the impact of broadcasting to less than an entire zone. Figure 20 displays one satellite access to one zone and demonstrates the effect of this modification.

The analyses were completed by taking into account orbital effects, i.e., satellite eclipse time and Earth's oblateness.

![Figure 20. - Effect of one point in zone out of view.](image)

3.1.4.1 Orbital Positions

Determining the optimum orbit to provide space-to-Earth communications is a nontrivial problem. While high orbit altitudes provide wide area access, lower altitudes are generally cheaper because of lower transmitter power and orbital insertion energy requirements. For this analysis, 23 orbital configurations were investigated under various zone coverage requirements. Although these configurations do not begin to exhaust the possible solutions, they do provide a range of capabilities for comparisons. Table 14 lists the orbital position configurations and zone requirements analyzed.
TABLE 14. - ORBIT POSITION CONFIGURATIONS AND REQUIREMENTS

<table>
<thead>
<tr>
<th>Case</th>
<th>Orbit parameters</th>
<th>Zones of access</th>
<th>Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-h circular, 30-deg, eight orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>2</td>
<td>6-h circular, 45-deg, eight orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>3</td>
<td>6-h circular, 30-deg, eight orbital positions</td>
<td>1-15, 9-8, 11, 13, 15</td>
<td>HF</td>
</tr>
<tr>
<td>4</td>
<td>6-h circular, 45-deg, eight orbital positions</td>
<td>3, 5, 9, 10, 12, 14</td>
<td>HF</td>
</tr>
<tr>
<td>5</td>
<td>8-h circular, 45-deg, eight orbital positions</td>
<td>3, 5, 9, 10, 12, 14</td>
<td>HF</td>
</tr>
<tr>
<td>6</td>
<td>12-h circular, 30-deg, eight orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>7</td>
<td>12-h circular, 45-deg, eight orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>8</td>
<td>12-h circular, 30-deg, eight orbital positions</td>
<td>3, 5, 9, 10, 12, 14</td>
<td>HF</td>
</tr>
<tr>
<td>9</td>
<td>3-h elliptical, 117-deg, 0.347 eccen, eight orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>10</td>
<td>12-h circular, 30-deg, eight orbital positions</td>
<td>9, 10, 12, 14</td>
<td>VHF</td>
</tr>
<tr>
<td>11</td>
<td>12-h circular, 45-deg, three orbital positions</td>
<td>9, 10, 12, 14</td>
<td>VHF</td>
</tr>
<tr>
<td>12</td>
<td>24-h elliptical, 30-deg, 0.3 eccen, four orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>13</td>
<td>24-h geostationary, three orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>14</td>
<td>24-h elliptical, 30-deg, 0.3 eccen, three orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>15</td>
<td>24-h geostationary, three orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>16</td>
<td>24-h elliptical, 30-deg, 0.3 eccen, six orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>17</td>
<td>24-h geostationary, three orbital positions</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>18</td>
<td>3-h elliptical, 117-deg, 0.347 eccen, one orbital position</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>19</td>
<td>6-h circular, 45-deg, one orbital position</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>20</td>
<td>8-h circular, 45-deg, one orbital position</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>21</td>
<td>12-h circular, 30-deg, one orbital position</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>22</td>
<td>24-h geostationary, one orbital position</td>
<td>1-15</td>
<td>HF</td>
</tr>
<tr>
<td>23</td>
<td>24-h elliptical, 30-deg, 0.3 eccen, one orbital position</td>
<td>1-15</td>
<td>HF</td>
</tr>
</tbody>
</table>

*Subsequent to this analysis, L and Ku-band orbits were changed to geostationary with a 115° minimum elevation.

Instantaneous access of eight orbital positions in circular orbit is shown in Figure 21 and represents Case 1. These eight orbital positions were configured in an eight-plane set in which all satellites pass the equator (and then reach maximum latitudes) at the same time. The circles shown around each nadir point represent a 20° grazing angle limit assumed in the analyses. At the 6-hour orbit period altitude of 10,350 km, Earth access is provided out to 5450 km from the satellite nadir points. As seen in Figure 21, all of the areas of interest are in access 1 1/2 hours after the satellites cross the equator. If the one-zone-per-orbit position transmit scheme is being considered however, only eight of the required zones may be covered at that time.

Figure 22 shows the satellite nadir traces for Case 1 and 2 constellations. The period and number of orbit positions chosen provides reconfigurations of the form of the constellation at 3-hour intervals. Every 24 hours each orbit position is at its original position relative to the Earth's surface.

24-hour elliptical orbits (Cases 13-17 and 23) provide a different type of access pattern. As shown in Figure 23, the combination of orbit position and Earth rotation results in a nadir point trace on the planet's surface in the shape of an oval. Note that the hourly interval marks in Figure 23 are closer together in the northern regions; this is due to the placement of apogee at the highest north latitude of the orbit. The resultant slower satellite velocity at the higher altitude maximizes the time viewing the higher latitudes.
Figure 21. - Eight satellite constellation access.
Figure 22. - Satellite nadir trace for 6-hour, circular orbits.
The size of the access area for elliptical orbits varies throughout the satellites' passage from perigee to apogee, again because of the difference in altitude. Figure 24 shows the size of 20° grazing angle access areas at apogee and perigee for one of the satellites of Case 14.

The third type of satellite orbit considered was the geostationary configuration. These are placed in equatorial orbit at an altitude (35,800 km) that matches satellite motion with Earth rotation, thus providing a stationary nadir point and continuous access to the same area of the Earth. While these orbits are ideal for many communication applications, their disadvantages (that of vehicle payload limitations, high transmit power requirements and size of antenna) are significant.
3.1.4.2 Results of Analyses

A 24-hour simulation of the performance of the 23 combinations of satellite constellations and requirements listed in Table 14 provided the results shown in Table 13. The values shown are the coverage efficiencies described in the methodology section.

3.1.4.3 Temporal Effects on Satellite System Performance

Four physical phenomena that affect Earth satellites were analyzed to measure the potential degradation of system efficiency over periods of time:

1) Eclipse - the period when the satellite is in Earth shadow. This is important in considering systems powered by solar arrays.

2) Sidereal shift - the phenomena relating to the difference between a solar and a sidereal day.

3) Regression of nodes - a shift of an orbit's longitude of ascending node.
4) Rotation of line of apsides - a change in the apogee and perigee positions of an elliptical orbit.

Eclipse effects are dependent upon satellite altitude, inclination, and longitude of ascending node. Another factor is the time of year, with fall and winter eclipse periods being similar to spring and summer periods, respectively, because of the similarity in relative Earth/Sun/orbit-plane orientations.

Eclipse effects were examined for the cases listed in Table 14. It was assumed in this analysis that the VOA L-, VHF-, and HF-band satellite systems would not be able to transmit during a period of eclipse. For the relatively low altitude satellite systems considered (such as the 6-hour circular orbits), the performance efficiency was generally degraded by only a small amount. Table 15 provides an example of this. Higher altitude (geostationary and high elliptical) orbits are affected even less.

Sidereal shift is caused by the fact that the Earth rotates 360° in 23.934 hours, approximately 4 minutes less than a solar (24-hour) day. This minor difference has the effect of causing a satellite in a repeating ground trace orbit to arrive over the same geographical spot 4 minutes earlier each day when measured on a local (solar) clock. Because the VOA broadcast requirements are based on solar time, the sidereal time shift must be taken into account.

The greatest impact of the phenomenon occurs in the single satellite case, such as Cases 19-23 from Table 14. The Day 1 coverage pattern for the 8-hour circular orbit (Case 20) is shown in Figure 25. After 90 days, the access pattern has shifted to an entirely new set of zones requiring coverage (Fig. 26). After half a year, the trend begins to reverse itself and the satellite returns to its original time/position relationship with the Earth a year later.

<table>
<thead>
<tr>
<th>Case</th>
<th>Orbit parameters</th>
<th>W/O eclipse</th>
<th>Eclipse (spring)</th>
<th>Eclipse (summer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-hr circular, 30°</td>
<td>0.45</td>
<td>0.44</td>
<td>0.43</td>
</tr>
<tr>
<td>8</td>
<td>12-hr circular, 45°</td>
<td>0.52</td>
<td>0.52</td>
<td>0.51</td>
</tr>
</tbody>
</table>

43
Figure 25. - One satellite access during Day 1.
This effect is significantly reduced in the multisatellite constellations. In an eight satellite constellation, for example, satellite tasking can be changed over periods of time so that requirements met by one satellite at one time are met by another after the sidereal shift begins to degrade performance. In constellations in which satellites repeat ground traces, after a time the relative satellite-Earth access patterns reconfigure. Table 16 gives an example of the effect of sidereal shift on the Case 1 configuration.

Regression of nodes is a shift of the orbit plane because of Earth's oblateness. This shift is westerly for posigrade orbits (inclination less than 90°) and easterly for retrograde orbits. The rate of regression of the ascending and descending nodes is dependent on orbital inclination and period. For example, a 6-hour orbit at a 30° inclination will regress west approximately 0.3° per day.

TABLE 16 - EFFECT OF SIDEREAL SHIFT ON COVERAGE EFFICIENCY

<table>
<thead>
<tr>
<th>Case</th>
<th>Orbit parameters</th>
<th>Day 0</th>
<th>Day 15</th>
<th>Day 30</th>
<th>Day 45*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-hr circular, 30°</td>
<td>0.45</td>
<td>0.44</td>
<td>0.43</td>
<td>0.45</td>
</tr>
</tbody>
</table>

*Reconfiguration of satellite occurs
For the applications considered in this study, nodal regression does not pose a serious problem. The reason for this is that a change in orbital period causes a change in ground trace that can be used to compensate for nodal regression. The west regression of 0.3° per day cited above, for instance, may be cancelled out by a slight decrease in orbital period. It should be noted however, that a decrease in orbital period in this case would increase the time shift discussed in the preceding section on sidereal shift.

Rotation of the line of apsides, the line joining the apogee and perigee in an elliptical orbital plane, is another effect caused by the Earth's oblateness. The rate of rotation is also dependent on orbital inclination and period (or altitude.) Rotation is in the direction of satellite motion if inclination is less than 63.4° or greater than 116.6°, and opposite between those values. For the elliptical orbits considered in this study (Cases 13-17 and 23), the rotation of the line of apsides is approximately 8° per year in the direction of satellite motion.

Three methods of eliminating or compensating for this effect are suggested. First, no apsidal rotation is incurred at exactly 63.4° or 116.6° inclination. If these inclinations are suitable from other considerations, the problem can be eliminated. Second, choice of initial placement of the line of apsides can be made so that efficiency is maximized at satellite midlife with lower performance accepted at beginning and end of life. Lastly, satellite stationkeeping with onboard thrusters or orbit maneuvering vehicles could be done occasionally to return the orbital plane to its optimum orientation.

The triply-synchronous satellite orbit (Cases 10 and 18) is an interesting solution to the effects discussed above. This orbit's inclination, period, and eccentricity are chosen such that:

1) The orbital plane retains the same fixed orientation with respect to the Earth-Sun line by matching its retrograde orbit drift to the rate of motion of the Earth around the Sun (approximately 1° per day). This Sun-synchronous orbit can be positioned to eliminate or minimize eclipse, thus maximizing operation time of solar powered transmitters;

2) The satellite repeats its ground trace pattern daily;

3) The satellite repeats its time schedule each solar (24 hour) day; and

4) The apogee/perigee points (line of apsides) remain fixed.
3.2 PROPAGATION ANALYSIS

The propagation analysis consisted of determining the signal strength requirements and appropriate losses associated with transmission at each band of operation. Except for L-band, the exact signal strength requirements were specified in the SOW. For L-band, an analysis was performed to determine an appropriate signal strength to meet the SOW requirements. The propagation parameters were determined by reviewing literature on operating direct broadcasting satellites. The propagation parameters included the following:

1) Path loss,
2) Ionosphere attenuation and refraction,
3) Atmospheric and ionospheric scintillation,
4) Atmospheric refraction,
5) Atmospheric attenuation due to rain.
6) Spacecraft elevation,
7) Shadowing and/or attenuation due to buildings, trees and foliage.

3.2.1 Signal Strength Requirements

The four radio bands in the SOW and their specified signal or carrier levels on the ground are shown in Table 17. For the HF-band, the three lower required levels are shown for each modulation method; i.e., double sideband/amplitude modulation (DSB/AM) and single sideband/amplitude modulation (SSB/AM). The DSB/AM-required levels represent the carrier strength on the ground. The SSB/AM-required levels represent the signal strength on the ground. For the HF- and VHF-bands, the two upper-level signal requirements proved too severe for realistic DVBS applications, therefore a program decision was made to study only the lower levels. The L-band requirements were developed from a signal to noise requirement of 40dB for the P1 power level and 49dB for the remaining signal levels. The P1 signal level represents the signal required for portable or mobile re-

<table>
<thead>
<tr>
<th>Band</th>
<th>Specified EOC signal strength*</th>
<th>Modulation</th>
<th>Power density</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF (26 MHz)</td>
<td>50 µV/m</td>
<td>DSB/AM</td>
<td>-111.8 dBW/m²</td>
</tr>
<tr>
<td></td>
<td>150 µV/m</td>
<td>DSB/AM</td>
<td>-102.2</td>
</tr>
<tr>
<td></td>
<td>300 µV/m</td>
<td>DSB/AM</td>
<td>-96.3</td>
</tr>
<tr>
<td></td>
<td>500 µV/m</td>
<td>DSB/AM</td>
<td>-91.8</td>
</tr>
<tr>
<td></td>
<td>1000 µV/m</td>
<td>DSB/AM</td>
<td>-90.8</td>
</tr>
<tr>
<td></td>
<td>35.4 µV/m</td>
<td>SSB/AM</td>
<td>-114.8</td>
</tr>
<tr>
<td></td>
<td>106.1 µV/m</td>
<td>SSB/AM</td>
<td>-105.3</td>
</tr>
<tr>
<td></td>
<td>212.1 µV/m</td>
<td>SSB/AM</td>
<td>-99.2</td>
</tr>
<tr>
<td>VHF (47 MHz)</td>
<td>150 µV/m</td>
<td>WBFM</td>
<td>-102.2</td>
</tr>
<tr>
<td></td>
<td>250 µV/m</td>
<td>WBFM</td>
<td>-97.8</td>
</tr>
<tr>
<td></td>
<td>1000 µV/m</td>
<td>WBFM</td>
<td>-85.8</td>
</tr>
<tr>
<td></td>
<td>5000 µV/m</td>
<td>WBFM</td>
<td>-71.8</td>
</tr>
<tr>
<td>L (1.5 GHz)</td>
<td>P1 **</td>
<td>WBFM</td>
<td>-91.2</td>
</tr>
<tr>
<td></td>
<td>P2—High</td>
<td>WBFM</td>
<td>-103.6</td>
</tr>
<tr>
<td></td>
<td>P2—Low</td>
<td>WBFM</td>
<td>-116.1</td>
</tr>
<tr>
<td></td>
<td>P3 **</td>
<td>WBFM</td>
<td>-100.1</td>
</tr>
<tr>
<td>Ku (12.2 GHz)</td>
<td>5.5 µV/m</td>
<td>WBFM</td>
<td>-131.0</td>
</tr>
</tbody>
</table>

*Assuming that EOC signal level is 3 dB less than center or maximum beam
**Power densities that were not studied due to severity of power requirement
ceivers using a whip receive antenna. The P2-low signal level requirement represents an average estimate as to the ground receiver and outside ground antenna used to receive the signal. The P2-high signal level requirement represents a conservative estimate as to the ground receiver and outside ground antenna used to receive the signal. Finally, the P3 signal level represents an average receiver and inside receive antenna. The P1 and P3 signal levels were again too severe and were not studied. P1 signal requirements were derived from the CCIR Study Group 10/11, Report 955 (ref. 14). Detailed analysis of the P2 and P3 requirements is discussed below. The Ku-band specified power on the ground is in terms of power per 4 kHz, and is specified as a maximum in order to minimize interference with ordinary licensed services. Also shown in Table 17 are the corresponding power flux densities (PFD) on the ground. For all cases, the signal levels and PFD requirements are shown for edge of coverage.

3.2.1.1 L-band Analysis

The analysis performed for L-band system to determine the required PFD for each of the three signal levels, used the following requirements:

1) The signal to noise (S/N) ratio must be better than 49 dB,
2) Top modulation, frequency (FM) is 15 kHz,
3) Peak deviation, D, is 75 kHz,
4) Preemphasis is 75 μs.

For the first signal level, the receiver carrier to noise ratio, C/N, required to obtain a weighted S/N ratio of slightly better than 49 dB was estimated to be 19 dB in 250 kHz. This was conservatively estimated for a S/N ratio value of 40 dB corresponding to a C/N of 10 dB determined in CCIR Report 955. However, the preemphasis used in the CCIR Report was 50 μs. For the second and third signal level requirements, the change in preemphasis from 50 μs to 75 μs was also considered, which reduces the required C/N value to 10dB.

Additionally, the receiving antenna for each level was assumed to be 9 dBi, 14 dBi and 6 dBi respectively, and for the inside antenna case, signal level 3, an 11 dB building absorption loss was assumed.

To determine the flux density requirements, the first level assumed nominal RF receiver characteristics and the second and third levels accounted for recent improvements in receiver technology. A summary of results is shown in Table 18.
TABLE 18. - DETERMINATION OF POWER DENSITIES FOR L-BAND SYSTEM

<table>
<thead>
<tr>
<th>Signal Level</th>
<th>P2-High</th>
<th>P2-Low</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Outside antenna</td>
<td>Outside antenna</td>
<td>Inside antenna</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>9 dBi</td>
<td>14 dBi</td>
<td>6 dBi</td>
</tr>
<tr>
<td>Transmission line loss</td>
<td>3 dB</td>
<td>3 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>Building absorption</td>
<td>0 dB</td>
<td>0 dB</td>
<td>11 dB</td>
</tr>
<tr>
<td>Equivalent system gain</td>
<td>+6 dBi</td>
<td>+11 dBi</td>
<td>-5 dBi</td>
</tr>
<tr>
<td>Equivalent antenna effective area</td>
<td>0.013 m²</td>
<td>0.04 m²</td>
<td>0.001 m²</td>
</tr>
<tr>
<td>Effective area</td>
<td>-18.97 dB-m²</td>
<td>-13.97 dB-m²</td>
<td>-29.97 dB-m²</td>
</tr>
<tr>
<td>Receiver system temp</td>
<td>2000 K</td>
<td>700 K</td>
<td>700 K</td>
</tr>
<tr>
<td>Receiver noise in 250 kHz</td>
<td>-141.6 dBW</td>
<td>-146.1 dBW</td>
<td>-146.1 dBW</td>
</tr>
<tr>
<td>Equivalent G/T</td>
<td>-30 dB/K</td>
<td>-20.5 dB/K</td>
<td>-36.5 dB/K</td>
</tr>
<tr>
<td>Required C/N</td>
<td>19 dB</td>
<td>16 dB</td>
<td>16 dB</td>
</tr>
<tr>
<td>Required flux density*</td>
<td>-103.6 dBW/m²</td>
<td>-116.1 dBW/m²</td>
<td>-100.1 dBW/m²</td>
</tr>
</tbody>
</table>

*Required flux density is for linear polarized signal. A 3-dB polarization loss is included in the communications subsystem, assuming circularly polarized transmission and linear reception.

3.2.2 Propagation Parameters

For each radio band, propagation parameters that cause transmission losses were determined using available literature. Table 19 summarizes the resulting losses per band for each propagation parameter considered.

Ionospheric refraction was neglected in this study since this effect is usually small. Even if it has a significant effect, neglecting refraction is conservative since the area served by the satellite will increase due to refraction rather than decrease.

Atmospheric attenuation due to rain was also neglected since this loss is also small. Figure 27 shows atmospheric attenuation due to rain as a function of frequency and availability at a constant 30° elevation angle (ref. 15). The availability of 90% represents the percent of time the satellite will be able to penetrate the rain if the loss associated with the availability curve is used in the link analysis. For the frequency range of interest in this study, 26 MHz to 12.2 GHz, it can be seen that rain attenuation has virtually no effect until the upper frequency of 12.2 GHz. For the Ku-band, assuming a 90% availability, the rain attenuation results in a loss of less than 0.5 dB (Fig. 27).

TABLE 19. - PROPAGATION LOSSES

<table>
<thead>
<tr>
<th>Loss</th>
<th>Band</th>
<th>HF</th>
<th>VHF</th>
<th>L</th>
<th>Ku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionospheric & atmospheric refraction</td>
<td>-- Neglected</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ionospheric attenuation</td>
<td>2 dB</td>
<td>1 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>Polarization</td>
<td>3 dB</td>
<td>3 dB</td>
<td>3 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
<tr>
<td>Atmospheric attenuation due to rain</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td><0.5 dB</td>
<td><0.5 dB</td>
</tr>
<tr>
<td>Spacecraft elevation</td>
<td>20°</td>
<td>20°</td>
<td>11.5°</td>
<td>11.5°</td>
<td>11.5°</td>
</tr>
<tr>
<td>Atmospheric & ionospheric scintillation*</td>
<td>Not considered</td>
<td>0 dB</td>
<td>0 dB</td>
<td>0 dB</td>
<td></td>
</tr>
<tr>
<td>Total loss</td>
<td>5 dB</td>
<td>4 dB</td>
<td>3 dB</td>
<td>0 dB</td>
<td>0 dB</td>
</tr>
</tbody>
</table>

*Scintillation margin not included due to high power requirement.
Ionospheric attenuation for the HF- and VHF-bands was determined by using the results from the 1984 NTIA technical memorandum on HF/VHF direct broadcasting satellites (ref. 15). For L- and Ku-bands the ionosphere produces no loss of signal.

Atmospheric and ionospheric scintillation has not been included in the loss margin for HF- and VHF-bands due to the severity of the loss that can occur. It is known that scintillation is essentially a nighttime phenomenon and maximum losses up to 20 dB occur during maximum sunspot activity. The irregularities in the ionospheric electron density can cause rapid fading of the signal of such magnitude to render the signal useless. Adding scintillation into the link margin would have caused the power requirements to become excessive. L- and Ku-band frequencies are not affected by scintillation.

An additional loss not shown in the above table was path loss or spreading loss. Since spreading loss is dependant on the orbit and the satellite elevation angle, the spreading loss was calculated during the RF performance analysis for each band. The equation describing spreading loss is:

\[L_s = \frac{G_p}{4\pi R^2} \]

where \(L_s \) = spreading loss in per square meters
\(G_p = 1.0 \) for free-space
\(R \) = Distance from satellite to receiver station

The distance from the satellite to the ground station, \(R \), is always maximum at the minimum elevation angle of, for example 20 or 11.5° depending on the operating frequency. The minimum elevation angle of 20° for HF and VHF frequencies was chosen to assure signal penetration through the ionosphere 90% of the time.
3.3 PAYLOAD CAPABILITY ANALYSIS

In order to provide some measure as to which orbits were better candidates for VOA missions and to provide a basis for sizing the recommended satellite system concepts, a payload capability analysis was performed. Both the eastern test range (ETR) and the western test range (WTR) as well as a variety of OTVs were considered in the analysis.

3.3.1 STS Capabilities

As defined in the SOW, the STS shuttle was examined to determine the projected lift capability for the 1990's. Although the lift capability of 29483 kg (65000 lb) has yet to be achieved, it is anticipated that by the mid 1990's such a capability will exist.

The 29483 kg capability is not a lift-off limit but rather an abort condition limitation. Figure 28 shows the lift-off capability for the shuttle as a function of orbiter inclination and altitude. For ETR launch, the reduction in lift-off capability due to increased inclination can be offset by reducing the orbiter altitude. As an example, launching into a 45 deg, 370.4 km orbit the STS has a lift capability of approximately 27000 kg. However, by reducing the orbit altitude to 255 km allows the full STS capability of 29483 kg to be used.

For the VOA study, the STS was placed to assure the full 29483 kg capability would be achieved. For WTR launches, a reduction in lift capability occurs after 60° of inclination. The orbit altitude of 185.2 km is generally considered the minimum altitude the STS must achieve.

An ETR launch was considered for any final payload orbit less than 57° inclination. Additionally, the STS inclination matched the final orbital inclination when possible, e.g., for the 45°, 6-hour circular orbit, the STS was placed in a 45° inclination, 255-km orbit. This assured both maximum lift capability for the STS and a minimum plane change delta-v requirement for the OTV, thereby maximizing the payload capability to final orbit.

WTR launches were considered for any final payload orbit above 57° inclination (e.g., the triply-synchronous elliptical orbit). Unlike ETR launches, matching the final orbital inclination with the STS inclination reduces the lift capability of the STS. Even though this would minimize the plane change delta-v requirements on the OTV, it was not readily obvious that this was the best solution. Therefore, for each WTR launch, a number of STS inclinations were looked at to optimize the payload capability.

Figure 28. - Projected STS payload lift capability.
3.3.2 OTV Capabilities

In general, the present day OTVs, (PAM-D and IUS) do not have the payload capability from low-Earth orbit (LEO) that would be necessary for transferring proposed DVBS to final orbit. Therefore, this study looked at near-term vehicles that would provide such a capability, [e.g., the Transfer Orbit Stage/ Apogee Maneuvering Stage (TOS/AMS) and the Centaur G]. In addition, a Centaur derivative, Centaur B, was also examined that could be used for multiple STS launches. The Centaur B uses the entire STS lift capability by carrying additional fuel to provide a maximum capability to orbit. The satellite and Centaur B would be mated in orbit, thereby requiring a separate STS launch for the satellite. Both the TOS/AMS and Centaur G are expected to be operational transfer stages by 1986. The Centaur G is a single-stage system that uses a cyro-high energy thrust system while the TOS/AMS is a two-stage system with the first stage using a solid rocket and the second stage a storable bipropellant thrust system. Table 20 summarizes the parameters of each of the above OTVs.

<table>
<thead>
<tr>
<th>OTV</th>
<th>TOS/AMS</th>
<th>Centaur G</th>
<th>Centaur B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage length, m</td>
<td>4 6</td>
<td>6.1</td>
<td>9 1</td>
</tr>
<tr>
<td>Stage loaded wt, kg</td>
<td>15,665</td>
<td>17,015</td>
<td>25,064</td>
</tr>
<tr>
<td>Max main propellant wt, kg</td>
<td>9,705/4,007</td>
<td>13,808</td>
<td>22,426</td>
</tr>
<tr>
<td>Effective I<sub>sp</sub>, s</td>
<td>293/315</td>
<td>440.4</td>
<td>446.4</td>
</tr>
<tr>
<td>Average thrust, N</td>
<td>11,787/195,712</td>
<td>133,440</td>
<td>146,784</td>
</tr>
<tr>
<td>Shuttle ASE wt, kg</td>
<td>1,893</td>
<td>4,139.0</td>
<td>4,415.0</td>
</tr>
<tr>
<td>Typ P/L to Synch-Equatorial, kg</td>
<td>2,900</td>
<td>4,390</td>
<td>9,570</td>
</tr>
</tbody>
</table>

3.3.3 Determination of Payload Capability

To determine the final payload capability, three Martin Marietta computer programs were used. The first program determined the delta-v requirements to place a payload into a circular orbit from an STS park orbit, using a two burn transfer. Burn 1 was a perigee burn to transfer to the final altitude and includes a small plane change burn to minimize the total delta-v required. Burn 2 was the apogee burn used to circularize the orbit and complete any plane change. The amount of delta-v required for both burns was determined using a modified classical minimum energy technique, i.e., Hohman transfer. The modification was in a Newton-Raphson iteration technique that was used to compute the optimum amount of plane change that should occur during the first burn.

The second program was used to determine the delta-v requirements to place a payload into an elliptical orbit from an STS park orbit, again using a two burn transfer. Burn 1 was a perigee burn used to put the spacecraft into the transfer orbit. Burn 2 was an apogee burn to produce the final orbit and any plane change and adjustment for the argument of perigee. The minimum delta-v required from both burns was determined by iterating on the latitude at which the second burn occurred, then back solving for the minimum energy cotangential first burn.
The final program took the delta-v requirements from the previous programs and computed the payload-to-final-orbit capability using a specified OTV. This program automatically offloads fuel on the OTV to achieve the final orbit and meet shuttle lift capability.

Tables 21 and 22 show example outputs of the three programs. Table 21 is an example of the payload capability to the 6-hour, 30° inclination circular orbit. Table 22 is an example of the payload capability to the triply-synchronous elliptical orbit.

TABLE 21. - ORBIT TRANSFER ANALYSIS FOR 6-HOUR, 30° INCLINATION ORBIT

PROGRAM--/ORBITC/

RUN DATE WAS: 02-05-1985 AT TIME: 16:01:36

FOLLOWING IS A SUMMARY OF THE INPUT PARAMETERS:

*** ORBIT TYPE - CIRCULAR ***

INITIAL STS ORBIT INCLINATION = 30 degrees
STS PARK ORBIT = 407.44 km
FINAL P/L ORBIT INCLINATION = 30 degrees
FINAL P/L ORBIT PERIOD = 6 hours

RESULTING CALCULATIONS:

FINAL P/L ORBITAL ALTITUDE = 5607.594 n.miles
1ST BURN DELTA V = 1480.685 m/sec (4857.891 ft/sec)
2ND BURN DELTA V = 1174.493 m/sec (3853.325 ft/sec)
TOTAL REQUIRED DELTA V = 2655.178 m/sec (8711.216 ft/sec)

PROGRAM--/PAYLOAD/

RUN DATE WAS: 02-05-1985 AT TIME: 16:02:01

*** DELTA V REQUIREMENTS ***

Req. Delta-v Burn 1 = 4857.9 ft/sec

Req. Delta-v Burn 2 = 3853.3 ft/sec

*** Launch Site ETR ***

*** STS/ACC/OTV DATA ***

OTV NAME: CENTAURG

ASE (ACC) Weight: 0.0 Kg
Service Support Weight: 0.0 Kg

A STS Lift Capability: 29484.0 Kg

*** STAGE 2 DATA ***

Max Propellant Weight: 13810.8 Kg
Misc Fluid (Res, He) Weight: 109.8 Kg
Trapped (Unusable) Prop: 198.7 Kg
Misc. Fluid Use Before Burn 2: 48.1 Kg
Main Propellant Losses Burn 1: 9.1 Kg
Main Propellant Losses Burn 2: 132.5 Kg

Effective ISP (Sec): 440.4

Average Thrust: 133440 N

*** STS CAPABILITIES ***

STS Cargo Capability (STS Lift Wt - All ASE & Adaptor): 25344.45 Kg
Vehicle Total Weight (Stages + P/L): 25344.4 Kg
Stage 1 Loaded Weight: 0.0 Kg
Stage 2 Loaded Weight: 15351.6 Kg
Payload Weight Delivered to Final Orbit: 9992.9 Kg

Delta-v (ft/sec) 0 4857.891 3853.325 8711.217
Burn time (sec) 0 236.7428 136.0825 372.8253

TABLE 22. - ORBIT TRANSFER ANALYSIS FOR TRIPLY-SYNCHRONOUS ELLIPTICAL ORBIT

PROGRAM--/ORBITE/

RUN DATE WAS: 02-05-1985 AT TIME: 15:56:31

FOLLOWING IS A SUMMARY OF THE INPUT PARAMETERS:

*** ORBIT TYPE - ELLIPTICAL ***
INITIAL STS ORBIT INCLINATION = 82 degrees
STS PARK ORBIT = 185.2 km
FINAL P/L ORBIT INCLINATION = 116.6 degrees
FINAL P/L ORBIT PERIOD = 3 hours
FINAL P/L ORBIT PERIGEE ALTITUDE = 521 km
FINAL P/L ORBIT ARGUMENT OF PERIGEE = 240 degrees

RESULTING CALCULATIONS:
FINAL P/L ORBIT APOGEE ALTITUDE = 7843.271 km

TRANSFER ORBIT PARAMETERS:
ARGUMENT AT PERIGEE = 221.1899 degrees
INCLINATION = 82 degrees
TRANSITION ALTITUDE AT PERIGEE = 185.2 km
TRANSITION ALTITUDE AT APOGEE = 6671.446 km

TRANSFER ORBIT INTERSECTION CONDITIONS:
TRANSITION ALTITUDE = 6036.122 km
LATITUDE = 14.73438 degree

VELOCITY VECTORS in ft/sec
(Before Burn) VT2= 15928.12 PHI2= 11.76798 BETA2= 8.273877 NU2= 153.6926
(After Burn) VT0= 16880.03 PHI0= 17.67792 BETA0=-27.57984 NU0= 136.5257

DELTA V REQUIREMENTS:
PERIGEE BURN DELTA V = 1196.739 m/sec (3926.308 ft/sec)
INTERSECTION BURN DELTA V = 3029.734 m/sec (9940.071 ft/sec)
TOTAL REQUIRED DELTA V = 4226.472 m/sec (13866.38 ft/sec)

PROGRAM--/PAYLOAD/

RUN DATE WAS: 02-05-1985 AT TIME: 15:57:23

*** DELTA V REQUIREMENTS ***
Req. Delta-v Burn 1 = 3926.3 ft/sec Req. Delta-v Burn 2 = 9940.1 ft/sec

*** Launch Site WTR ***

*** STS/ACC/OTV DATA ***
OTV NAME: CENTAURG
ASE (ACC) Weight: 0.0 Kg
Service Support Weight: 0.0 Kg
STS Lift Capability: 22130.7 Kg

*** STAGE 2 DATA ***
Max Propellant Weight: 13810.8 Kg Structural (Dry) Weight: 3097.2 Kg
Misc Fluid (Res,He) Weight: 109.8 Kg Propellant Margin: 113.4 Kg
Trapped (Unusable) Prop: 198.7 Kg Misc. Fluid Use Before Burn 1: 9.1 Kg
Misc. Fluid Use Before Burn 2: 48.1 Kg Main Propellant Losses Burn 1: 132.5 Kg
Main Propellant Losses Burn 2: 180.1 Kg Effective ISP (Sec): 440.4
Average Thrust: 133440 N

*** STS CAPABILITIES ***
STS Cargo Capability (STS Lift Wt - All ASE & Adaptor): 17991.12 Kg
Vehicle Total Weight (Stages + P/L): 17991.1 Kg
Stage 1 Loaded Weight: 0.0 Kg Stage 1 Main Propellant Weight: 0.0 Kg
Stage 2 Loaded Weight: 14857.7 Kg Stage 2 Main Propellant Weight: 11650.7 Kg
Payload Weight Delivered to Final Orbit: 3133.5 Kg

Delta-V (ft/sec) 0 3926.308 9940.071 13866.38
Burntime (sec) 0 139.8077 217.0339 356.8416

Figure 3.3-3. - Orbit transfer analysis for triply-synchronous elliptical orbit.
For each orbit studied in section 3.1, a payload capability was performed. A summary of results is shown in Table 23. Table 23 shows the launch site, shuttle orbit and OTV assumed for each orbital case along with the delta-v requirements for each orbit. The table shows that the payload capability increases as the orbital altitude decreases. Also, the payload capability increased as the inclination decreased for the same orbital period. This is attributed to the fact that the STS park orbital altitude is higher for the lower inclination. As an example, 7130 kg can be delivered to the 12-hour, 45° inclination orbit using the Centaur G. For the 12-hour, 30° inclination orbit, the payload capability is increased to 7236 kg. This is due to the fact that the orbiter park altitude was increased from 287.1 km to 407.4 km, thus reducing the delta-v requirements for the Centaur G.

TABLE 23. - ORBIT TRANSFER RESULTS

<table>
<thead>
<tr>
<th>STS park orbit</th>
<th>Delta-V</th>
<th>OTV</th>
<th>Payload capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>Inclination</td>
<td>Launch-site</td>
<td>Burn 1</td>
</tr>
<tr>
<td>Triply-synch, Elliptical, 116.6°</td>
<td>185.2, km</td>
<td>86.0°</td>
<td>WTR</td>
</tr>
<tr>
<td>Molniya, 63.4°</td>
<td>186.2</td>
<td>82.0</td>
<td>WTR</td>
</tr>
<tr>
<td>Geosynch elliptical</td>
<td>185.2</td>
<td>60.0</td>
<td>WTR</td>
</tr>
<tr>
<td>0 6/80°</td>
<td>185.2</td>
<td>59.0</td>
<td>WTR</td>
</tr>
<tr>
<td>0.3/30°</td>
<td>370.4</td>
<td>30.0</td>
<td>ETR</td>
</tr>
<tr>
<td>Triply-synch circular</td>
<td>185.2</td>
<td>85.0</td>
<td>WTR</td>
</tr>
<tr>
<td>Geostationary</td>
<td>444.5</td>
<td>28.5</td>
<td>ETR</td>
</tr>
<tr>
<td>Sub-geosynch 12 h/45°</td>
<td>287</td>
<td>45.0</td>
<td>ETR</td>
</tr>
<tr>
<td>12 h/30°</td>
<td>407</td>
<td>30.0</td>
<td>ETR</td>
</tr>
<tr>
<td>8 h/45°</td>
<td>287</td>
<td>45.0</td>
<td>ETR</td>
</tr>
<tr>
<td>8 h/30°</td>
<td>407</td>
<td>30.0</td>
<td>ETR</td>
</tr>
<tr>
<td>6 h/45°</td>
<td>287</td>
<td>45.0</td>
<td>ETR</td>
</tr>
<tr>
<td>6 h/30°</td>
<td>407</td>
<td>30.0</td>
<td>ETR</td>
</tr>
</tbody>
</table>

*Payload capability assumes separate STS launches for OTV & satellite.
A survey was performed to assess the state-of-the-art (SOA) of subsystem technologies applicable to direct broadcast satellite systems. The survey sources included discussions with vendors in specific technology areas, data contained in the NASA Space Systems Technology Model, the NASA Systems Cost and Design Model, and information contained in the literature.

The objective of the survey was to identify applicable hardware that is space-qualified hardware that is being built for space use, and hardware that is or was intended for space application, but has not reached the qualification phase. The results of the technology survey were used to help identify critical technology areas, to identify and define system and subsystem requirements, and to enhance the ability to estimate size and cost of systems and subsystems. Figure 29 shows the scope of the technology survey and the information flow to other program tasks.

The technology survey was categorized by VOA satellite subsystem. Simplified block diagrams of some of these subsystems appear in Figures 30 through 32.
Figure 30. - Communications subsystem functional block diagram.

Figure 31. - Electrical power subsystem functional block diagram.
3.4.1 Antenna Technology

The antenna types considered in the VOA study fall into two classes: reflectors and arrays. Each class had advantages and disadvantages for DVBS applications, with the frequency of operation and aperture size of major importance. Reflectors had a distinct advantage from a simplicity standpoint. However, when large amounts of RF power were required, e.g., for HF-, VHF-, and L-band systems, an array had the advantage of allowing a distribution of the power over a number of element/transmitter pairs thus reducing the possibility of any arcing and multipacting effects from the generation of high RF power in space. This also proved to alleviate heat dissipation problems, and will provide graceful degradation if a transmitter should fail. Arrays also proved to have another advantage in that the pattern characteristics could be changed to scan the main beam and match the required coverage for the various zones. For this study, the aperture efficiency for any reflector system was considered to be 50% while an array system had an aperture efficiency of 80% for nonscanned array and 75% times the cosine of the scan angle for a scanned array. The 50% efficiency factor is generally used for reflector systems to account for the feed mismatch and circular polarization (CP) conversion losses, spillover loss and the losses due to reflector surface accuracy. The 80% array efficiency accounted for the losses associated with array mismatch, amplitude and phase control of the elements and CP conversion. For scanned arrays, an additional 5% reduction in the maximum aperture efficiency was used to account for the additional losses from phasors used to provide the scanning ability.

3.4.1.1 Parabolic Reflector Antennas

Parabolic reflector antennas in the 1-to 4-meter range are the most widely used on existing broadcast systems and proved to be acceptable candidates for the Ku-band system design. Antennas of this size are generally constructed of
a single rigid dish and either a single feed horn or a small feed array. To increase structural and thermal stability, the most recent systems have used graphite composites in the reflectors and antenna support structures. An example of this technology is Intelsat VI (Fig. 33) which uses four graphite rigid dish parabolic reflectors. The smaller reflectors are fed with conventional horn feeds, while the larger 2- to 3-meter reflectors are fed using a honeycomb array feed.

For parabolic reflector antennas in the 4- to 20-meter size, two types of antenna systems, wrap-rib antennas and radial rib antennas, are most widely used. Because of aperture size, these reflectors are generally required to be stowed for STS launch.

Wrap-rib antenna. - The first system, the wrap-rib design, has been developed by Lockheed. The best known application is on the ATS-6 spacecraft, which uses a 9.1-meter parabolic, wrap-rib reflector antenna operating up to and above 8 GHz (Fig. 34). The ATS-6 antenna, made with aluminum ribs and conventional thermal blankets, represents a technology about 10 years old. Recent developments using this concept have resulted in a manufacturing capability for wrap ribs using structural composite materials with low coefficients of thermal expansion. New materials and manufacturing processes for reflector mesh have been developed recently, and the analytical capability for the detail design of the structure has been improved recently. These developments have made it possible to design, build, and predict antenna performance for lighter and more stable wrap-rib structures.
Radial rib antenna. — The radial rib antenna has been used by both Harris Corporation and TRW on recent satellite systems. TDRSS uses two 6-meter diameter radial-rib antennas built by Harris (Fig. 35). Harris has also developed the radial-rib concept to the point of demonstrating that this technology qualifies for flight applications of antennas up to 18.3 meters in diameter and operation up to K-band. TRW's radial-rib antenna has been used on the FLTSATCOM satellite. The FLTSATCOM antenna is 4.9 meters in diameter and operates at 300 MHz. The reflector consists of a 2-meter diameter solid center dish and a deployable outer ring of rib-supported mesh (Fig. 36).
For parabolic reflector antennas greater than 20 meters in diameter, no flight hardware subsystems exist; however, antenna systems of this size have been analyzed and prototype hardware is being built and tested that demonstrates the feasibility of these systems up to the 300-m diameter range. To meet the requirements of the HF and VHF-bands, antenna systems that use parabolic reflectors will require these large aperture reflectors. Because large aperture reflectors are orders of magnitude greater in size than the STS payload bay, the reflector support structures are required to fold and stow compactly for launch and then deploy with a high degree of reliability when in orbit with a typical stowed diameter-to-deployed diameter ratio of 0.04. Also, due to the focal lengths of large aperture reflectors, most large aperture reflector concepts attach the feed support onto the reflector support structure. The reflector support structures generally dictate the surface quality and make up the largest portion of the weight and deployed volume of the antenna system. For this reason, the stiffness, packaging efficiency, and weight of the various reflector support structure concepts is the major factor in the overall antenna system's weight, volume, and surface quality. The following candidate large reflector concepts were considered for the VOA study.

Lockheed wrap-rib reflector. - In addition to the smaller versions of the wrap-rib antenna reflector used on antenna systems such as ATS-6, Lockheed has been developing structural concepts for the wrap-rib design for reflectors up to 250 meters in diameter. This concept has the most efficient stowage density of all the radial-rib configurations, is the most mature in design development of large rib antennas, is capable of diameters to 250 meters, and is relatively light compared to other radial-rib systems. The concept can have a ring added at its circumference for increased stiffness. The wrap-rib antenna consists of a hollow, doughnut-shaped hub to which a series of radial ribs, formed to the shape of a parabola, are attached. A lightweight reflective
mesh is stretched between these ribs to form the paraboloidal reflecting surface. Figure 37 shows four ribs of the 55 meter proof-of-concept hardware being built by Lockheed.

![Figure 37. Lockheed's proof-of-concept wrap rib reflector.](image)

Articulated radial-rib reflector. - This concept (Fig. 38) is a logical extension of Harris' smaller radial-rib design, but has the flexibility to accommodate larger diameters and retain the same packaging efficiency. It consists of a central mast that supports the feed and to which rigid radial ribs are attached by pivots at the base. Because of the antenna diameters under consideration and the constraint of the limited stowed volume available, it is necessary to put an articulation at the midspan of each rib. The ribs approximate a parabolic contour and have adjustable standoffs to which the reflective mesh is attached. The surface is shaped between the ribs by the secondary drawing surface technique. The concept is attractive from an experience standpoint, but there are serious packaging size limitations. The shortest stowed length with a single articulation in the ribs is one-quarter of the antenna diameter. For a 100-meter diameter antenna, this length would become prohibitive. Another articulation for each rib is possible, but the added mechanical complexity and probable mesh handling problems negate any potential advantages.
Hoop and column reflector. - Both Martin Marietta and Harris have hoop and column reflector design concepts. The fundamental elements of the two concepts are similar but the mechanical design approaches are different. The Harris Corporation hoop and column reflector concept for self-erectable structures is intended for reflector design up to 250-meter diameter (Fig. 39). This concept has been developed to the point of a preliminary design for sizes up to 100-meter diameter; a 15-meter diameter conceptual demonstration model has been built. The fundamental elements of the support structure include the hoop and upper, lower, and center control stringers. The reflector consists of the mesh, mesh shaping ties, secondary drawing surface, and mesh tensioning stringers. The basic antenna configuration is a type of may pole with a unique technique for contouring the RF reflective mesh.
Contiguous truss reflector. - Two basic truss configurations, the Martin Marietta box truss, and the General Dynamics tetrahedral truss are the most widely used for designing contiguous truss reflectors. Components of the reflector structure use the basic bay design regardless of the number of bays. The selection of the number of bays for a given antenna size and application is a function of cost, reliability, weight, and surface tolerance.

The tetrahedral concept is a basic building block used in numerous combinations to achieve the desired shape and size of an antenna structure (Fig. 40). The basic element is a deployable tetrahedron hinged by spider links at each corner. Each tetrahedron forms one truss bay, and the number of bays can vary in number from four to 10 more across the major diameter of the reflector structure. This configuration forms the support structure for the reflective mesh. With tetrahedral trusses, the reflector outline is hexagonal rather than circular so the equivalent reflector diameter is about 10% less than the maximum point-to-point width.

Martin Marietta is developing a deployable box truss structural system applicable to parabolic antennas. Originally proposed for the Air Force's On-orbit Assembly program, we are currently developing the system with prototype beam and truss segments. The system features compact stowage, step-by-step deployment, high deployed precision and reliability, and adaptability to a wide variety of reflector sizes up 200-meter diameter. Figure 41 shows a recent concept of a 120x60-meter antenna system designed for NASA LaRC on the Advanced Earth Observation Spacecraft contract.

Truss ring antenna reflector. - The Martin Marietta box truss has also been used in box truss ring design. This box truss ring consists of box truss trapezoids forming a circular or racetrack ring. Figure 42 shows a box truss ring supporting an electrostatically controlled membrane mirror reflector. The application shown in the figure is a 100-meter diameter ring designed by Martin Marietta for the NASA LaRC Advanced Space Systems Analysis (ASSA) program. The box truss ring is a ultra-lightweight structure that has excellent stiffness. Stowed packaging is very efficient and allows packaging of subsystems in the center of the stowed truss.
Figure 41. - Advanced Earth observation spacecraft using Denver Aerospace's deployable box truss structure.
Inflatable reflectors. - Inflatable reflectors can offer low weight, compact stowage, reliable deployment, and adequate shape accuracy. L'Garde Incorporated and others are developing advanced antenna concepts using inflatable, thin-film bodies. These bodies incorporate surfaces of revolution such as a paraboloidal reflector capped by a cone (Fig. 43). Shape accuracies for
HF- and VHF-bands with 100-meter diameter apertures appear to be easily achievable. By operating at very low pressures (e.g., 10^-6 psi), the weight of inflatant gas lost through micrometeoroid holes can be kept within practical bounds. A metallized surface forms the reflector and, to achieve adequate thermal control, the cone can be more than 90% metallized in a patchwork fashion; each patch being very small relative to the broadcast wavelength. In geostationary orbits, such reflectors could depressurize thermally and have degraded shape accuracy only during two periods per year (equinoxes) and, during those periods, only for short period (less than 3 hours) bracketing local midnight. It is also interesting to note that the feeds, with their high heat dissipation, can be located outside the inflatable body.

![Figure 43
Typical inflatable reflector configuration.](Image)

3.4.1.2 Array Antennas

Similar to large reflector antenna concepts, array concepts require an exterior support structure. Unlike the lightweight reflective surface, the most mature array antenna technology uses large rigid panels containing array elements. For these systems, array panels dictate the weight and volume of the antenna system with the support structure accounting for only 10% of the total system weight and volume. Due to the fact that the rigid arrays must stow by folding, the array size is limited to moderate size apertures. Also, since the back surface of the panel is generally used as the ground plane, the panel thickness is dictated by the operating frequency of the array, i.e., generally λ/4 in thickness. This type of array proved acceptable for the L-band system. The HF and VHF systems, because of their long wavelengths, required a more advanced, yet unproven array systems using lightweight film material with thin array elements. For these systems, the support structure again dominates the total antenna system's weight and volume. The following are the various array system concepts studied under this contract. The first two concepts, the synthetic aperture radar (SAR) antenna and the gate frame truss phased...
array, are examples of technology that exist for the rigid panel type array systems. The remaining concepts show examples of membrane type array systems, capable of sufficiently separating the ground plane from the radiating surface allowing these concepts to be used for HF and VHF-band applications.

SAR antenna. - One of the key science instruments and a unique feature of the Seasat-I Spacecraft (launched during spring 1978) is the SAR antenna (Fig. 44). This antenna is a planar-phased array that measures 10.7 by 2.2 meters in the deployed configuration and operates at 1.275 GHz. The planar array consists of eight 1.3 by 2.16-meter rigid and structurally identical fiber-glass honeycomb panels. The panels are hinged together in series, but are individually mounted to a deployable truss structure that provides support and alignment for the panels. The deployable truss, in turn, is supported by a deployable tripod structure whose function is to support and govern deployment of the truss and panels (Fig. 45). The tripod was attached to a biaxial actuator mounted directly on the Agena spacecraft.

The SAR antenna subsystem was developed by Ball Brothers Research Corporation. Lockheed Missiles and Space Company, was responsible for development of the flight hardware and integration of the SAR antenna with the Agena spacecraft. The weight of the antenna system is about 113.4 kg (250 lb).

Gate frame truss phased array antenna. - Figure 46 shows the gate frame truss structural system under development at Martin Marietta. It is specifically designed for compact stowage and high precision and stiffness when deployed with integral, rigid array panels. The support structure makes up about 5% of the total system weight and about 15% of the stowed volume.

Figure 44. - Seasat-I spacecraft—cruise configuration.
Figure 45. - Astro Research Corporation's deployable support truss for the panels of the Seasat-I SAR antenna.

Figure 46. - ITSS using Denver Aerospace's gate frame truss.
Hoop and column phased-array antenna. - The Grumman space-fed, phased-array concept for self-deployable antennas is intended for designs up to 300-meter diameter and operation at L-band or lower (Fig. 47). Grumman developed this concept to the point of a preliminary design for a 60-meter diameter antenna and a 1.3-meter diameter mechanical model. The mechanical model was used to demonstrate and evaluate the basic mechanical conceptual design. The primary limitation of this concept is the complicated deployment and the low structural vibration frequency of the deployed membrane.

The Grumman antenna concept is a planar array whose basic support structure is a wire-wheel configuration. This concept development was centered around the design of 61-meter diameter and 300-meter diameter space-fed, phased-array antennas for operation at L-band. The phased array is composed of 32- to 72-gore panel assemblies and their tensioning devices.

Box truss ring phased array. - Similar to the Martin Marietta box truss ring reflector (see Fig. 42) a box truss ring phase array consists of box truss trapezoids forming a circular or racetrack ring. Instead of a membrane mirror reflector, the radiating surface is stretched flat across the ring with flexible bow-tie radiating elements attached on the surface. The ground plane is a second stretched membrane on the back surface, with the box truss depth being adjusted to provide the correct spacing between surfaces. The back surface also acts as a support structure for the antenna transmitters. Figure 48 illustrates this concept for an 80-meter array. This concept provides a lightweight and efficient method for producing a phased array in which the ground plane is required to be at a relatively large distance from the radiating plane. Also, since stowage of the system does not require the box truss
to stow in depth, rigid coax can be used between the transmitters and radiating elements. (Rigid coax is desirable when high power is to be transmitted.) Another desirable feature of this system is the distribution of the transmitters over the back surface, providing a method to allow each transmitter to carry its own radiators to dissipate waste heat. This feature eliminates the need for a central radiator and a large and heavy system of heat pipes.

Figure 48. - Box truss ring-phased array.

3.4.2 Satellite Feeder Link Technology

The satellite uplink frequency bands allocated for the United States by the 1979 World Administration are summarized in Table 24. Also shown are intersatellite frequency allocations and unallocated bands. Technology for uplink, either for realtime or delayed retransmission, is SOA. The LANDSAT-D Ku-band technology will be adequate for VOA DVBS concepts. Figure 49 shows the basic concept and components required for the satellite feeder link.

Earth station transmission is typically provided by high powered amplifiers such as traveling wave tubes (TWT) or Klystrons, again representing SOA technology. The specific Earth station design will depend on the spacing of satellites and whether or not intersatellite links are used. A later discussion presents a tradeoff of use of multiple Earth stations vs intersatellite links.
TABLE 24. - ALLOCATED SATELLITE BANDS FOR THE U.S.

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Uplink</th>
<th>Downlink</th>
<th>Major uses in U.S.</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-band</td>
<td>5 9-6.4 GHz</td>
<td>3 7-4 2 GHz</td>
<td>Fixed, point-to-point ground stations; nonmilitary</td>
<td>500 MHz</td>
</tr>
<tr>
<td>X-band</td>
<td>7 9-8 4</td>
<td>7 25-7 75</td>
<td>Mobile (ships, aircraft), radio relay, military only</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Ku-band</td>
<td>14 0-14 5</td>
<td>11 7-12 2</td>
<td>Broadcast & fixed-point service; nonmilitary</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Ka-band</td>
<td>27-30</td>
<td>17-20</td>
<td>(unassigned)</td>
<td>-</td>
</tr>
<tr>
<td>V-band</td>
<td>50-51</td>
<td>40-41</td>
<td>Fixed-point, nonmilitary</td>
<td>1 GHz</td>
</tr>
<tr>
<td>Q-band</td>
<td>30-31</td>
<td>20-21</td>
<td>Broadcast, nonmilitary</td>
<td>2 GHz</td>
</tr>
<tr>
<td>V-band</td>
<td>54-58</td>
<td>41-43</td>
<td>Intersatellite</td>
<td>3.9 GHz</td>
</tr>
<tr>
<td></td>
<td>59-64</td>
<td></td>
<td>Intersatellite</td>
<td>5 GHz</td>
</tr>
</tbody>
</table>

Figure 49. - Ku RF module block diagram.
3.4.3 Satellite Signal Processing Technology

The onboard signal processing generates the carriers for the downlink. Figure 50 shows options for satellite signal processing. All are existing SOA technologies. The method to be used will depend on the specific DVBS, considering band and number of carriers to be processed.

Figure 50. - Satellite processing models.

3.4.4 Transmitter Technology

The transmitter technology for Ku-band will use SOA TWTs. Figure 51 summarizes existing TWT technology. Power output levels on existing satellites are found between 5 and 250 watts. Higher power levels are considered easily attainable for use in space. Efficiencies of TWTs are typically about 35 to 50%.

For the L-band, TWTs are applicable for output power levels below 250 watts. Above these levels, solid state power amplifiers (SSPA) are an alternative. When used in phased array systems, multiple SSPAs can be used. 6-watt space qualified SSPAs exist in the L-band range. Terrestrial and airborne SSPAs are available up to 1000 watts.
HF- and VHF-bands SSPAs will require new design approaches. Double-sided printed circuit boards are projected to provide packaging densities of 700 kg/m³ or greater. To meet a 7-yr lifetime requirement, designs will include internal redundancy and modularity. Current technology bipolar transistors are suitable for powers up to a 500 watts. A bipolar NPN transistor rated at 200-watts at 300 MHz has been developed. A 600 watt SSPA for low UHF-band is currently under development for space use. The same design is projected for growth to 1000 watts with minimal redesign. A 400 watt SSPA for operation from 100 to 500 MHz has also been developed for airborne military applications.

Use of power MOSFETs will make power levels of up to 20 kW possible in the 1990's. SSPAs using MOSFET technology will operate in a class-D mode and use dual single-ended, push-pull stages for powers greater than 1000 watts. A 200 Vdc power bus will be sufficient for powers up to 1.5 kW, but for higher powers (up to 20 kW) a higher bus (400 Vdc) will be required.

Predicted weights and volumes for SSPAs (including bipolar and MOSFET technologies) are summarized in Table 25. These weights and volumes assume a dc voltage bus on a satellite that results in limited required power conditioning. By using a regulated bus and with projected advances, efficiencies of 65% are predicted for SSPAs for DVBS in the HF-, VHF-, or L-bands.

TABLE 25. - TRANSMITTER PARAMETRICS

<table>
<thead>
<tr>
<th>Transmitter power</th>
<th>Mass</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 W</td>
<td>5.10 kg</td>
<td>0.0105 m³</td>
</tr>
<tr>
<td>100</td>
<td>9.94</td>
<td>0.0177</td>
</tr>
<tr>
<td>200</td>
<td>12.81</td>
<td>0.0182</td>
</tr>
<tr>
<td>500</td>
<td>16.21</td>
<td>0.0219</td>
</tr>
<tr>
<td>750</td>
<td>19.61</td>
<td>0.0255</td>
</tr>
<tr>
<td>1000</td>
<td>23.02</td>
<td>0.0292</td>
</tr>
<tr>
<td>2000</td>
<td>36.62</td>
<td>0.0439</td>
</tr>
</tbody>
</table>
3.4.5 Power Generation System Technology

Some VQA mission configurations considered require the energy source be capable of delivering power greater than 100 kW. The load power is a function of antenna array size and orbit altitude and optimum power levels will be determined through detailed parametric analysis. To qualify as a viable energy source, it was assumed that the source must be capable of supplying at least 100 kW, since the optimum power level will be near this value. All possible energy generation sources are diagrammed in Figure 52.

Several choices may be eliminated immediately. All stored sources are secondary energy sources and thus are not applicable since they require periodic energy input to replenish their capacity. Radioisotope sources, such as radioisotope thermal generators (RTG) or radioisotope dynamic sources such as organic rankine cycles and brayton isotope power systems, have not been developed to produce the high power levels required. Dynamic systems of the type mentioned are promising sources (in the near term) in the 1 to 25 kW range only. Solar concentrator/thermoelectric and solar dynamic sources are under early stages of development and although theoretically capable of high power output, the technological risk is high in the near term. These sources will be discussed further in Section 4.2, Technology Tradeoffs. Another source that presents difficult design challenges is nuclear reactor. This may be the only feasible source at some orbital altitudes (e.g., in the Van Allen belt). The most viable energy sources are solar photovoltaic. These latter two sources are discussed in Section 3.4.5.1.

3.4.5.1 Solar Photovoltaic Sources

Many advances have occurred in the photovoltaic field over the last 15 years and consequently a wide variety of choices now exist in the design of a solar array. Figure 53 graphically summarizes these improvements in terms of cost and efficiency. The types of solar cells currently available and under development are single crystal silicon cells, advanced vertical junction cells, gallium arsenide cells in a planar or concentrator array, multiband gap (MBG) cells, and three junction cascade cells. Advanced concepts under study to improve solar cell performance are the high concentration (100 suns) ratio miniature cassegrainian concentrator (MCC) concept, metal interconnects between cells, and the surface plasmon concept. The cell types together with the advanced concepts will be discussed here and in Section 4.2 with the aim of selecting optimum energy sources for use in the power system parametric equations.
Beginning with the FRUSA flight experiment in 1971 and the NASA developed solar electric propulsion (SEP) array in the early 1970s, significant improvements have been made in single crystal silicon solar cell technology. In the SEP, a 66W/kg flexible foldout design capable of supplying 25 kW beginning of life (BOL) was developed. A second generation SEP is currently under development and specific powers as high as 300 W/kg will likely be realized. Tantalum to achieving higher specific powers is the increase of the silicon cell conversion efficiency. Presently, state of the art efficiencies are near 14% for planar silicon arrays. It is not reasonable to expect efficiencies to increase much above this in the near future. Therefore, the use of higher efficient (up to 18%) gallium arsenide cells or concentrator arrays will be required to demonstrate very high specific powers of 400 W/kg or more. Although specific powers in the 300–400 W/kg range are not necessary to construct a 100 kW array, they result in lower array area which reduces spacecraft drag and decreases the propellant mass necessary for altitude maintenance.

Silicon solar cells have many advantages. They are flight proven, and relatively lightweight; advances in the ultrathin (50 μm) cells using advanced cell processing techniques such as back surface fields and reflectors, plus front surface texturing and multiple layer antireflection coatings, promise to push efficiencies to 15% by the mid-1990s. Silicon cells have the lowest cost; the use of larger cell sizes (6x6 cm and 8x8 cm) will reduce cost even more. Additionally, space station will probably use a planar nonconcentrated silicon array and thus incur much of the developmental cost for a high power (> 50 kW) system. The ultrathin cells and large cells have experienced problems with bowing but the use of a gridded pattern for the back contact configuration appears to have eliminated this with the added benefit of reducing cell weight. Silicon cells have the disadvantage of possessing the lowest efficiency of the new cell types, which means an array comprised of silicon cells will have the largest area. This translates into high inertias and highest effect from drag or solar pressures, which gives the highest orbit maintenance subsystem mass. Table 26 summarizes the advantages and disadvantages of silicon cell technology.

Gallium arsenide solar cells have been demonstrated to operate at efficiencies as high at 18% (20% with concentrators). This equates to a reduction of solar array area up to 30% of a silicon array. Also, gallium arsenide cells have a lower temperature coefficient than silicon cells and are more radiation resistant. The lower temperature coefficient makes gallium arsenide cells ideal for operating with a concentrator and the cassegrainian concept.
should demonstrate this. However, gallium arsenide cells are approximately two to three times the weight of an equivalently sized silicon cell and are presently expensive to manufacture. Reductions in cost and blanket weight are likely to occur in the future and with projected efficiencies of 20%, gallium arsenide will become very attractive. However, considering that a gallium arsenide array has yet to be flown, the technological risk and initial cost would be high to develop a gallium arsenide array for a mid-1990 launch. Table 27 summarizes the advantages and disadvantages of gallium arsenide cell technology.

TABLE 26. - SILICON SOLAR CELL TRADEOFF

<table>
<thead>
<tr>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight proven</td>
<td>Large array area – highest orbit</td>
</tr>
<tr>
<td>15% Efficiencies possible</td>
<td>Subsystem mass</td>
</tr>
<tr>
<td>Lightweight</td>
<td>Array stiffness may be an issue</td>
</tr>
<tr>
<td>Low cell cost</td>
<td></td>
</tr>
<tr>
<td>Large cell size possible</td>
<td></td>
</tr>
<tr>
<td>Small development cost</td>
<td></td>
</tr>
</tbody>
</table>

The most promising of the advanced cells are the three junction cascade cells with possible efficiencies of 30%. MBG cells, which use two materials with different bandgaps to convert more of the solar spectrum into electricity, show signs of full development in the near future. Vertical junction cells possess high radiation resistance but this is offset by a high solar absorptance that results in a higher operating temperature. Reaching higher specific powers by reducing the blanket weight through using thinner cover glasses and thinner cells (2 mil) should reach maturity in the near term. Although these technologies will not be available without high risk by the mid-1990s, they promise a bright future in solar array development. Table 28 gives a comparison of various solar cell designs.

TABLE 28. - BLANKET WEIGHT COMPARISONS FOR VARIOUS SOLAR CELL DESIGNS

<table>
<thead>
<tr>
<th>Cell description</th>
<th>Present</th>
<th>Near Term</th>
<th>Far Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si 2 mil</td>
<td>Si 8 mil</td>
<td>Si 2 mil</td>
</tr>
<tr>
<td>Cell efficiency, (% at 25°C)</td>
<td>10.2</td>
<td>14.9</td>
<td>14</td>
</tr>
<tr>
<td>Operating temp, °C</td>
<td>78</td>
<td>73</td>
<td>75</td>
</tr>
<tr>
<td>kg/m², BOL</td>
<td>0.303</td>
<td>0.738</td>
<td>0.303</td>
</tr>
<tr>
<td>W/m², BOL</td>
<td>86</td>
<td>131</td>
<td>117</td>
</tr>
<tr>
<td>W/kg, BOL</td>
<td>284</td>
<td>116</td>
<td>385</td>
</tr>
<tr>
<td>Radiation degradation 1x10¹⁵ equiv, 1 MeV e/cm²</td>
<td>29%</td>
<td>27%</td>
<td>22%</td>
</tr>
</tbody>
</table>

3.4.5.2 Solar Array System Considerations

Some key issues that must be considered in designing a power generation system are mission duration, the existing and near-term technology, weight or system mass, radiation tolerance, size and interaction with spacecraft control, and orbital altitude. For solar photovoltaics, altitude is a key system
driver. Altitude affects radiation level and thus the degradation of the solar cell performance. Altitude also determines the length of eclipse periods and thus determines the amount of power expended during occultation which must be made up during sunlight. As a point of departure, transmitter operation was constrained to be off during eclipse periods to avoid the large battery and solar array size increases. The seven year life requirement will be difficult to meet at some altitudes because high radiation levels will require large amounts of shielding weight to be added.

Several solar array configurations are possible. The solar cells may be arranged on panels either in a rigid foldout planar configuration or in a flexible rollout blanket configuration. The blanket configuration uses kapton as the flexible substrate and in addition to achieving high packaging densities, it is relatively lightweight. The cells may also be mounted to the spacecraft body. For gallium arsenide cells a concentrator system may be used, although development of this system is still required and concentrator reflector life is questionable for a seven year mission. The effect of orbital altitude on system weight for a silicon blanket array is shown in Figure 54. Because the transmitter was constrained to be off during eclipse, the effects of increased solar array size to account for power lost during eclipse was not included in the figure. As can be seen a severe weight penalty will be incurred with operation in the Van Allen belt.

![Figure 54 - Solar array weight versus altitude.](image)

To fully use the power generation capability of the array, it must be Sun pointing. The technology now exists for solar arrays to track the Sun and maintain the array plane normal to the solar flux within +2°. For a large power system it is impractical to design an array that does not track the Sun because the array size is proportional to the cosine of the solar incidence angle. A concentrator system also requires Sun tracking to direct the solar energy into the reflector. The disadvantage to a Sun-pointing system is that power transfer from solar array to the distribution bus is more difficult, especially at high voltage.
The technology with the lowest risk is the photovoltaic blanket planner array, utilizing silicon solar cells. If space station uses this technology as planned, then much of the engineering development effort for a 100 kW power system will be complete, making this system even more attractive.

3.4.5.3 Nuclear Reactor Source

The only space nuclear reactor power sources being developed is the SP-100 100 kW power plant. Table 29 highlights the features of one design concept. The power system described is a spacecraft power system that converts the thermal output of a nuclear reactor into electrical power for use by a spacecraft system. The normal output of the power system is 100 kW.

The power system is compatible with launch in the STS. The power system consists of a reactor-converter subsystem, a heat transport subsystem, a power conditioning and control subsystem, and a structure subsystem. The nuclear-converter subsystem converts the fuel to heat energy by means of nuclear fission. The heat is converted directly to electrical power using in-core thermionic converters. Heat is removed from the reactor by the heat transport subsystem and transported to the radiator which rejects it to space. The raw electrical output of the nuclear-converter subsystem is regulated by the power conditioning and control subsystem and distributed to the spacecraft interface.

Thermionic conversion refers to a physical mechanism for the direct conversion of heat into electricity. A thermionic heat-to-electricity converter is an engine in which electrons are the thermodynamic working field. Electrons are emitted from a hot metallic surface (the emitter) maintained by nuclear or other heat sources at a temperature T_{em}, and absorbed on a second, parallel surface (the collector). The voltage developed between the two surfaces causes electrons to flow through an intervening electrical impedance, delivering electrical power to a load. The electrons also transport heat from one surface to the other. The collecting surface is held at the desired temperature, T_{em}, by thermal contact with a coolant. The temperatures, T_{em} and T_{c}, are approximately 1700 K and 1000 K respectively. Currently, there is widespread debate about whether the thermionic converter can meet a seven year mission at these high temperatures. The collector cylinder is contained within an electrical insulating sheath, which in turn contains within a metallic sheath in contact with the liquid-metal coolant.

<table>
<thead>
<tr>
<th>TABLE 29. - SP-100 DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
<tr>
<td>Specific energy</td>
</tr>
<tr>
<td>Growth</td>
</tr>
</tbody>
</table>

*Exclusive of mounting boom and distribution cabling
The SP-100 power system is projected for a demonstration flight by early 1990. For power levels above 100 kW and for orbits in high radiation belts the SP-100 system may be the only viable candidate for a mid-1990 mission. The advantages and disadvantages of this system are summarized in Table 30. There is still high development risk for this technology, making this system at present less attractive than solar photovoltaics. If development proceeds as planned however, this system may become a high power generation source of the future.

TABLE 30. - SP-100 POWER GENERATION TRADEOFF

<table>
<thead>
<tr>
<th>Plus</th>
<th>Minus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produces power continuously</td>
<td>Nonproven technology-high development risk</td>
</tr>
<tr>
<td>Not as susceptible to Van Allen belt</td>
<td>Nuclear thermal source</td>
</tr>
<tr>
<td>Scales up readily</td>
<td>Does not scale down below 100 kW</td>
</tr>
<tr>
<td>Low area and drag</td>
<td>Safety considerations—places lower limit</td>
</tr>
<tr>
<td>Potential first flight 1990-1992</td>
<td>On-orbit altitude</td>
</tr>
</tbody>
</table>

3.4.6 Power Distribution Technology

Power distribution involves the transfer of power from the power source to the user loads. This entails selecting the type of cabling, the voltage level and the voltage frequency (ac vs dc), and the type of regulation and switching required. The voltage regulation or power conditioning is highly dependent on the user loads and their requirements and should be defined later in a detailed system design. The power conditioning technology exists now to be compatible with the power system selected. The issues that need to be addressed are cabling weight and type, voltage level, voltage frequency, and power transfer from solar array to bus.

3.4.6.1 Cabling

The cabling weight is a significant portion of the power system weight. For constant power loss, cabling weight increases with the square of the length and decreases with the square of the voltage. This relationship is not necessarily valid however, for shorter cable runs where the cable weight may be limited by the current carrying capabilities of the conductor. As can be seen, higher voltage levels can significantly reduce the cabling weight.

Several conductor types should be available in the near and far term. Besides the traditional copper conductors, aluminum conductors should be ready for near-term applications and in the far term, intercalated carbon fibers and sodium conductors should be available. These conductor types will be discussed further in Section 4.2.

3.4.6.2 Voltage Level

It was mentioned previously that high voltage levels can significantly reduce cabling weight. For large space power systems it is impractical to use low voltage levels. For example, a 100 kW system operating at 28 Vdc would produce currents in excess of 3500 amps. With these large currents, switch and semiconductor losses and the resultant heat increase, the efficiency of the system goes down, and a larger and more expensive energy source is required. Conversely, serious problems arise such as plasma charging and corona
discharge if the voltage is too high. Another factor requiring careful consideration is the Paschen breakdown voltage of various gaseous elements that may surround the spacecraft cabling and electrical components. The potential for breakdown exists as gaseous pressures are reduced during the spacecraft launch and ascent phase. Outgassing from various spacecraft materials may cause the potential breakdown conditions to exist long after the spacecraft has been placed in its orbit. Minimum breakdown voltages can occur at 300 V. In consideration of this, a safe upper limit of 250 Vdc should be selected. This is also below the voltage threshold where plasma arc discharging and power losses due to plasma charging are a factor. The plasma effects are primarily seen in low-Earth orbit, where the electron densities are relatively high. Figure 55 depicts the array cabling mass as a percent of total power system mass vs array voltage. This figure shows that for a 100 kW system, small weight savings is realized in increasing array voltage from 200 to 250 Vdc. Thus, to provide an added margin of safety between the Paschen breakdown voltage, a buss voltage of 200 Vdc would be optimum.

![Figure 55. - Cabling mass versus array voltage for three buss power levels.](image)

3.4.7 Energy Storage Technology

Because the transmitters will be off during eclipse for L-, VHF-, and HF-bands, the function of the energy storage portion of the power system will be to maintain only critical power on the spacecraft during deployment operations and during eclipse or occultation. The critical power load (primarily housekeeping loads) during eclipse has been assumed to be 500 W. This greatly simplifies the selection of an energy storage system.
Options available for energy storage devices include the traditional methods of nickel cadmium and nickel hydrogen batteries, and more creative methods such as regenerative fuel cells (RFC). To support housekeeping loads only, batteries are most effective. Regenerative fuel cells may be the only effective system if transmission is required during eclipse periods and power levels greater than 10 kW are needed. Nickel hydrogen batteries have performed very successfully on missions in GEO orbit and development programs are underway to qualify them for LEO applications. Nickel hydrogen batteries should be available at low risk for all applications by the early 1990's.

3.4.8 Power Control Technology

The objective of power control is to regulate voltage variations caused by source and load changes, and to dissipate excess power to prevent damage to the loads and electronic parts. The system must be capable of dissipating all but critical load power. Conventional designs use a shunt regulator or shunt resistor bank to dissipate the excess power. Figure 56 displays shunt regulator weight vs solar array power. The relationship is not linear because as the array power increases, increasingly large portions of the solar array can be controlled by single shunt regulator elements. The type of shunt regulator considered is an electronic regulator that shorts out solar array strings so that the power is never generated. Shorting the array strings will not harm the solar cells because short circuit current for a solar cell is typically only 5% above operating current. A resistor bank would be used in conjunction with the regulator to dissipate small amounts of power or fine tune the regulation. The design challenge is developing switching devices capable of handling large currents at high voltage. This system should be scaleable to 100 kW power systems at low risk.

3.4.9 Attitude Control, Stationkeeping and Maneuvering Technology

The attitude control subsystem (ACS) and auxiliary propulsion subsystem (APS) are considered together throughout the study, primarily because attitude control is performed by the APS system for most satellite concepts of interest. The requirement for multiple satellite and antenna beam steering in HF-, VHF-, and L-bands leads to a requirement for some degree of autonomous attitude control and orbit maintenance. Since adequate electrical power will be available during periods of no or lower RF transmission, electric propulsion can be considered as a viable alternative to chemical propulsion.

The basic elements of the ACS for HF- and VHF-bands were shown previously. Sun sensors, star trackers, and rate gyro units are all in use and space qualified. The onboard control electronics represents a new design for each satellite application, but the technology is well understood and the required
components available. To meet the lifetime requirement for VOA DVBS, the designs should use high levels of redundancy and cross-strapping to enhance reliability, fault-tolerant operation modes, and distributed ACS data processing.

Control moment gyros (CMG) are used for attitude control on most satellite systems. Their technology is well understood, but for large antenna systems such as required for HF- and VHF-bands, they may not be desirable. Instead, electric thrusters can provide sufficient torque to counteract environmentally-induced torques. The use of small electric thrusters is possible because of the large moment arms with the large antenna structure.

The size of thrusters that can be used with the HF and VHF antennas is limited by the small allowable loads for these large deployable antennas. Thus, small thruster technology was surveyed to identify candidates for VOA DVBS. Table 31 contains a summary of small thrusters that might be applicable. Also shown is the status of each. Table 32 contains data for a pulsed plasma thruster (PPT) that might be used. Table 33 summarizes a mercury-ion thruster that has operating characteristics similar to the PPT. For geostationary orbits, chemical systems for APS and CMGs or reaction wheels for ACS have been used for some time. For VOA satellites in geostationary orbit, the ACS and APS technology is almost off the shelf (OTS). Figure 57 shows a block diagram representing a typical chemical APS.

TABLE 31. - MICROTHRUSTER CANDIDATES

<table>
<thead>
<tr>
<th>System</th>
<th>Chemical</th>
<th>I_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inert gas</td>
<td>10^{-4} to 1.0 N</td>
<td>35 to 275 s</td>
</tr>
<tr>
<td>Vaporizing liquid</td>
<td>10^{-3} to 0.05</td>
<td>50 to 100</td>
</tr>
<tr>
<td>Subliming solids</td>
<td>10^{-4} to 10^{-2}</td>
<td>40 to 80</td>
</tr>
<tr>
<td>Hydrazine direct catalyst</td>
<td>0.05 to 1000</td>
<td>100 to 225</td>
</tr>
<tr>
<td>Bipropellant (storable)</td>
<td>0.05 to 10^{2}</td>
<td>170 to 320</td>
</tr>
<tr>
<td>Electric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistojet</td>
<td>0.01 to 5.0</td>
<td>175 to 860</td>
</tr>
<tr>
<td>Electrolysis</td>
<td>10^{-3} to 5.0</td>
<td>100 to 350</td>
</tr>
<tr>
<td>Pulsed plasma</td>
<td>10^{-3} to 10^{-1}</td>
<td>1000 to 5000</td>
</tr>
<tr>
<td>Ion (mercury)*</td>
<td>10^{-2} to 0.5</td>
<td>2000 to 9000</td>
</tr>
<tr>
<td>Ion (noble gas)*</td>
<td>2.1×10^{-2} to 3.2×10^{-2}</td>
<td>5500 to 6400</td>
</tr>
<tr>
<td>MPD*</td>
<td>10^{-3} to 10</td>
<td>2000 to 9000</td>
</tr>
<tr>
<td>Mass driver*</td>
<td></td>
<td>10^{4} to 5×10^{4}</td>
</tr>
</tbody>
</table>

*Not flight qualified.
TABLE 32 - PULSED PLASMA THRUSTER DATA

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Fairchild Republic Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Qualified</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Life</td>
<td>LES 6, 8, 9, TIP 2 & 3, NOVA</td>
</tr>
<tr>
<td>Life</td>
<td>320 000 Ns</td>
</tr>
<tr>
<td>Life</td>
<td>15 kg</td>
</tr>
<tr>
<td>Steady-state vacuum-specific impulse</td>
<td>2200 s</td>
</tr>
<tr>
<td>Propellant</td>
<td>Teflon</td>
</tr>
<tr>
<td>Power</td>
<td>170 W/mili-lb</td>
</tr>
<tr>
<td>Weight</td>
<td>23 kg</td>
</tr>
</tbody>
</table>

TABLE 33 - THRUSTER, GIMBAL, AND BEAM SHIELD UNIT

- Thruster converts electrical power & propellant into thrust
- Thrust level: 4.98×10^{-3} N
- Specific impulse: 2700 s
- Weight: 3.88 kg
- Size:
 - Beam diameter: 8 cm
 - Gimbal adapter diameter: 7.6 cm
 - External diameter: 17 cm
 - Length: 22.6 cm
- Power to thruster: 125 W
- Electrical efficiency: 72%
- Propellant efficiency: 77%
- Total efficiency: 55%
- Beam current: 72 mA
- Net acceleration voltage: 1208 V
- Thermal dissipation: 35 W
- Propellant flow rate: 0.7 g/h
- Temperature range: -20 to 80°C
- Design life: 20,000 h
- 10,000 off/on cycles
- Gimbal unit:
 - Deflection in any azimuth: 10°
 - Motor steps per degree deflection: 2421
 - Time from 10 to -10-deg deflection: 120 s
 - Motor drive power (max): 7 W
 - Mass*: 15.0 kg
 - Size:
 - Base: 14.41 x 15.15 cm
 - Height: 13.48 cm

*Includes mass of internal propellant feedline and manifold.

Figure 57. - Chemical APS block diagram.
3.4.10 Telemetry, Tracking, and Command (TT&C) Technology

The TT&C subsystem must provide the information to permit continual monitoring of satellite position and attitude. A turnaround ranging system is a common approach. This approach has the satellite instantly return an uplink ranging waveform to the transmitting Earth station. A functional block diagram of such a system is shown in Figure 58. The satellite range from the Earth station is computed as a function of the time delay between transmission and reception of the reflected waveform. The range computation is periodically repeated and the position compared to the desired orbit position to determine corrective maneuvers to maintain the orbit. This technology is in use and applicable to VOA satellite.

The other functions of the TT&C subsystem are to receive commands and the program information from the Earth station, decode the information for use onboard, encode satellite subsystem data, and transmit satellite data to the Earth station. The allocated frequency bands shown previously include downlink bands. For VOA satellite, the Ku-band link will include the frequency allocations shown in Figure 59. LANDSAT-D Ku-band hardware can be used for the frequency bands. As shown, an uplink can contain information for up to 6-HF or VHF satellites for clustered systems. Each satellite is assigned a bandwidth of 80 MHz. Within the 80 MHz a 36-MHz bandwidth could be used for command data on the uplink. Program data could use a 40-MHz bandwidth with additional separation for multiple channels. Each channel requires 450 KHz for high quality music. The 80-MHz bandwidth with 36 MHz for command is currently used on Intelsat systems.

For nonclustered systems, each satellite can make use of the entire uplink or downlink. Thus, up to 11 channels, each with 40 MHz bandwidth, can be supported per satellite. More channels could be provided by decreasing the bandwidth of each.

![Figure 58. - Turnaround ranging system block diagram.](image)

![Figure 59. - Uplink/downlink frequency allocation](image)
3.4.11 Thermal Control Technology

Thermal control of onboard components typically requires use of insulation, some means to transfer heat to and from components, and a heat dissipation method. Insulation may be a single, homogeneous material such as a low thermal conductivity foam or an evacuated, multilayer, insulation system in which each layer acts as a low conductance radiation shield and is separated by low conductance spacers. Electric resistance heaters are commonly used to maintain components above some minimum allowable temperature. Phase change material, such as electric salts, is used where components cycle on and off, storing heat when the component is on and providing heat when it is off. The result can be a relatively constant component temperature. Heat pipes have been used as a heat transfer method. Special radiative coatings have been developed with high emissivity and low absorptivity to enhance heat dissipation in space while decreasing heat absorbed from solar flux. Typical values of emissivity and absorptivity that can be expected are 0.8 and 0.2 respectively at satellite end of life. These technologies represent space-qualified and in-use methods and components.

Another heat transfer approach that may be useful for VOA HF and VHF satellites is a CPL that is in the development stage. The CPL differs from the heat pipe in that it is a continuous loop in which both the vapor and liquid flow in the same direction and that the condenser section can be made of smooth wall tubing. In a heat pipe, vapor and liquid flow in opposite directions, and the entire length of the pipe must be provided with a wick. Because of its smooth-walled condenser section, the CPL can have a distinct weight and volume advantage. Also, with a CPL system, a single evaporator (requiring a wick) can feed several condenser tubes configured in parallel.

A simplified schematic of the CPL is shown in Figure 60. The capillary pumping head is provided by the evaporator, which is an integral part of the cold plate. The high velocity vapor leaving the evaporator is at slightly higher pressure than the subcooled liquid entering the evaporator. The vapor head feeds the parallel condenser loops that correspond to an equal number of radiative surfaces.

In the condenser, the liquid moves in three successive flow regimes: as an annular film covering the wall of the tube near the entrance to the condenser; then, as a succession of slugs separated by condensing vapor bubbles, and finally, as an all-liquid phase. As indicated earlier, the fluid in the accumulator will be in a subcooled state during normal operation. Details not shown in Figure 60 may include provisions for trapping noncondensible gas in the system; and for priming the capillary in the evaporator by controlled flooding from the accumulator.
Top-level requirements established for the conceptual design of the SSPA thermal control subsystem are listed in Table 34. The similarity in their respective power levels indicates that a single basic thermal design can satisfy the requirements of both HF and VHF applications. The dual power levels imply the need for a large turndown ratio for the thermal control subsystem. The functional temperature limits of the transmitters were assumed on the basis of available data on similar equipment. Because of their effect on sizing and turndown ratio requirements, consideration must be given to the nominal as well as the limiting values of orbital environmental parameters (Earth IR, albedo, and solar radiation). The radiant interaction among transmitters and other elements of the system was evaluated on a preliminary basis. Although relatively small, these effects vary significantly with the location of the individual transmitters.

The 7-yr orbital life when translated into equivalent solar hours (ESH) can result in significant degradation of some thermal coatings at the end of the mission. The solar absorptivity of silvered teflon, for example, could increase from 0.07 BOL to 0.23 EOL. A more stable coating, although with somewhat higher beginning solar absorptivity would be preferred for this application. The 7-yr life also imposes constraints on the selection of thermal control equipment, e.g., components with no moving parts are preferred. It is

Table 34 - Thermal Control Requirements

<table>
<thead>
<tr>
<th>Heat dissipation, W</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 237 or 457 (HF-band)</td>
</tr>
<tr>
<td>- 253 or 421 (VHF-band)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment temperature limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30 to +55°C (functional)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Orbital environments per NASA SP-8067 & TMX-64627</td>
</tr>
<tr>
<td>- Induced environments to include:</td>
</tr>
<tr>
<td>- Mutual radiation blockage by transmitters</td>
</tr>
<tr>
<td>- Transmissivity of tretol mesh</td>
</tr>
<tr>
<td>- Radiation from solar panels</td>
</tr>
</tbody>
</table>

| Orbital life: seven years |

<table>
<thead>
<tr>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Weight-limited S/C</td>
</tr>
<tr>
<td>- Prescribed stowed dimensions</td>
</tr>
<tr>
<td>- No power during occultations</td>
</tr>
</tbody>
</table>
assumed at the present that there will be no power available for thermal control purposes during occultation. This represents a significant challenge for the thermal designer, considering the high heat dissipation requirements during Sun-on operational modes, and the relatively long occultation periods of some of the proposed orbits.

3.4.12 Equipment Bay and Mechanisms Technology

The equipment bay is the structure that houses the electronics equipment for the various subsystems. The mechanisms for deployment, unstowing, and stowing of hardware other than the self-deployable antenna structure are also included in this subsystem.

The structure will use conventional aerospace materials and standard manufacturing processes. The mechanisms include those for radiator panel deployment, solar array stowage, uplink antenna boom stowage, and uplink antenna stowage. Any other gimbaled mechanisms should also be included here. Remote operation of all mechanisms is required. The technology for structure and mechanisms is state of the art, and no problems are anticipated to develop.
Upon completion of the orbit and coverage analysis, propagation analysis, payload capability analysis, and the technology survey, the preliminary results were evaluated to determine the most promising VOA systems that met or had the highest probability of meeting the VOA requirements. These candidates were then studied in depth to assess their performance, cost, schedule, risk, and technology development needs to achieve an operational system. Table 35 summarizes the parameters that were considered in the selection process. For HF and VHF systems, coverage, antenna diameter, and PFD were the critical parameters. For Ku- and L-band systems, coverage was the critical parameter since antenna size, power, and PDF did not drive the system design as they did for the HF and VHF systems.

Table 35 - Recommended Satellite Concepts

<table>
<thead>
<tr>
<th>Parameters considered in the selection process</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatable ground track</td>
<td>Occlusion</td>
</tr>
<tr>
<td>Coverage</td>
<td>Radiation environment</td>
</tr>
<tr>
<td>Dwelltimes</td>
<td>Number satellites required</td>
</tr>
<tr>
<td>Power flux density</td>
<td>Antenna size</td>
</tr>
</tbody>
</table>

HF
- Steerable array antenna
- 6-h, 8-h, or 12-h orbits
- Constellation of eight satellite clusters

VHF
- Steerable array antenna
- 12-h or 24-h elliptical orbits
- Constellation of eight satellite clusters (12 h) or four satellite clusters (24-h e)

L-band
- Nonsteerable array antennas
- Geostationary orbits (three orbital positions)
- Eight satellites for -103.6 dBW/m² & three or five satellites for -116.1 dBW/m²

Ku-band
- Rigid graphite/epoxy dishes or horns
- Geostationary orbits (three orbital positions)
- Three satellites—multiple antennas on each satellite

3.5.1 Ku-Band System

The Ku-band system design is summarized in Table 35. Three satellites were placed in three geostationary slots to achieve the desired coverage of the 15 zones. Since each satellite covers multiple zones, multiple antennas (three or six) are placed on each satellite (see Fig. 124). Geostationary orbit was selected to insure 100% coverage. The low payload to geostationary orbit was not a factor since the Ku-band satellites are small with low power requirements.

3.5.2 L-Band System

The L-band system design is summarized in Table 35. Two power levels were evaluated, a higher -103.6 dBW/m² requiring eight satellites and a lower -116.1 dBW/m² requiring either three or five satellites. Geostationary orbit was selected because of the 100% coverage capability and the satellite
masses did not exceed payload capabilities to geostationary orbit. Also, anten-
na sizes were not excessive in order to achieve the desired spot sizes. The L-band satellites (see Fig. 125) were placed in three orbital slots.

3.5.3 VHF-Band System

The VHF-band system design is summarized in Table 35. A constellation of
eight satellites in a 12-hour circular orbit and a constellation of four
satellites in a 24-hour elliptical orbit were selected. These two systems
were selected for further study because both have their advantages and disad-
vantages. The 12-hour orbit produces higher PFD and smaller antenna diame-
ters, but has lower coverage efficiency and requires more satellites (Fig.
61). The 24-hour orbit has higher coverage efficiency and fewer required
satellites, but has lower PFD and requires a larger antenna (Fig. 61). The
VHF-band satellite concept (see Fig. 126).

![Figure 61. Comparison of orbits for HF and VHF systems.](image)

3.5.4 HF-Band System

The HF-band system design is summarized in Table 35. A constellation of
eight orbital positions in the 6-, 8-, and 12-hour circular orbits were se-
lected. Triply-synchronous elliptical and geostationary were eliminated be-
because of their low PFD capability. The 8-hour orbit (see Fig. 61) was the
most promising candidate. The 8-hour orbit had the same high coverage efficiency of the 12-hour orbit (higher than the 6-hour orbit). The 8-hour orbit also had the same high PFD as the 6-hour orbit (higher than the 12-hour orbit). Although the 8-hour orbit did look to be the best system, the 6- and 12-hour orbits were also evaluated to ensure completeness of the study. The HF-band satellite concept is shown in Figure 126.
Each selected satellite system was evaluated to derive its specific system and subsystem requirements. The system requirements were derived from the mission (communications payload) requirements. A Martin Marietta Denver Aerospace computer program, Spacecraft Integrated Analysis Program (SCIAp) was used to model satellites and analyze their requirements. The SCIAp subsystems properties module (ref. the Appendix) was used to size and trade off candidate subsystem configurations. Methods were then developed to estimate weight and the cost of the satellites, ground control stations cost, and launch cost. Weight and cost estimates were made for each subsystem broken down by the following:

1) Communications subsystem:
 a) antenna system,
 b) transmitters,
 c) feeder link,
 d) signal processing,

2) Electrical power subsystem:
 a) power generation,
 b) power control,
 c) power distribution,
 d) energy storage,

3) Attitude control,

4) Auxiliary propulsion,

5) Telemetry, tracking and command,

6) Thermal control,

7) Equipment bay and mechanisms.

Following are discussions of the assumptions and methods used to estimate weight, volume, and cost of each of the subsystems. Also included are the assumptions and method used to estimate total program cost including satellite nonrecurring costs, recurring costs, launch costs, and ground control costs.
4.1 SUBSYSTEM WEIGHT AND VOLUME ESTIMATING METHOD

The first step in estimating subsystem weight and volume was to identify each subsystem's configuration and components. Then, an evaluation was made to determine if sufficient data was available to size components or subsystems as a function of a specific performance parameter (e.g., power, diameter, or orbit altitude). The TT&C subsystem and electronics associated with attitude control, communications uplink, and signal processing were felt to be relatively constant across the range of satellites to be analyzed. Thus, representative weights were obtained from components described in the NASA LaRC System Design and Cost Model (SDCM) data base. For all other subsystems and components, parametric relationships were used for weight and volume estimates.

4.1.1 Communications Subsystem Weight and Volume Estimating

The communications subsystem weight and volume estimates were made for four sets of components:

1) Antenna structure with reflector or array surfaces,
2) Transmitters,
3) Uplink/crosslink,
4) Signal processing.

The antenna structure and transmitters account for the majority of the weight and volume of the communication subsystem. Parametric sizing relationships were available or were developed to size the structures and solid state transmitters. Uplink/crosslink and signal processing estimates were based on state-of-the-art components described by the SDCM data base. Following are descriptions of the method used to estimate weight and volume of communication subsystem components. The overall flow of the method is shown in Figure 62.
Figure 62. - Communications subsystem weight and volume estimating method.
4.1.1.1 Antenna Structure Weight and Volume Estimates

The antenna weight and volume estimates for HF and VHF satellites assumes a Martin Marietta box truss ring structure that has been studied previously (ref. 16). The transmitters and radiating elements are supported by a Kapton web and a tricot weave, gold plated molybdenum mesh ground plane as shown in Figure 63. The weight estimating relationship for this type of antenna structure is:

\[W_a = 1.26D + 0.02A + 0.266 \times L \times N \]

(4-1)

where

- \(W_a \) = antenna weight (kg)
- \(D \) = antenna diameter (m)
- \(A \) = antenna array area (m\(^2\))
- \(L \) = length of radiating dipole element (m)
- \(N \) = number of radiating elements
- 0.02 = area density of mesh ground plane (kg/m\(^2\))
- 0.266 = combined area density of Kapton support and elements (kg/m\(^2\)/element)

The first term in the weight equation estimates the weight of the ring structure. The second term gives the weight of the groundplane. The last term gives the weight of the two supporting surfaces of Kapton webs and the radiating elements, assuming a \(\lambda/2 \) spacing between radiating elements.
The volume of this antenna structure is given by:

\[\text{VOL} = 14.19 \times \frac{\lambda}{4} \]

where

- \(\text{VOL} \) = stowed structure volume (m\(^3\))
- \(\frac{\lambda}{4} \) = distance between ground plane and radiating surface (m)
- 14.19 = STS payload allowable cross-sectional area (m\(^2\))

The \(\frac{\lambda}{4} \) term results from the design requirement for spacing between the ground plane and radiating surface for a front-fire array. A back-fire array would require \(\frac{\lambda}{2} \) spacing, requiring a box truss depth of up to 6 meters for HF-band antennas. By using the front-fire design the maximum truss depth is kept at 3 meters, a value that provides good structural stiffness combined with effective packaging density.

For L-band antenna structures, fiberglass honeycomb panels were selected. The thickness of the panels is determined by launch constraints. The weight algorithm is:

\[W_a = 48A_p + 2(0.000381 A_p)(1937.59) + 25 \]

where

- \(A_p \) = panel area (m\(^2\))
- 48 = panel area mass density (kg/m\(^2\))
- 0.000381 = thickness of support and ground plane panels (m)
- 1937.59 = fiberglass density (kg/m\(^3\))
- 25 = deployment mechanism and launch restraint (kg)

The L-band antenna volume algorithm is:

\[\text{VOL} = A_p \times \frac{\lambda}{4} \]

where

- \(\frac{\lambda}{4} \) = distance between ground plane and radiating surface (m)
Ku-band antennas are assumed to be graphite epoxy parabolic reflectors similar to those used for LANDSAT-D. Each antenna has an estimated weight of 12.7 kg, including the feed electronics.

4.1.1.2 Transmitters Weight and Volume Estimating

As discussed in Section 3.4.4, data points were identified relating the weight and volume of solid state power amplifiers to their output power levels. Upon performing a regression analysis on the data points, two relationships were established, one for power levels less than 100 watts, and one for power greater than or equal to 100 watts. These relationships are:

\[
W_t = 0.0136P_t + 9.41 \text{ (for } P_t \leq 100 \text{ watts)} \tag{4-4}
\]

\[
W_t = 0.097P_t + 0.253 \text{ (for } P_t > 100 \text{ watts)}
\]

where

\[
W_t = \text{transmitter weight (kg)}
\]

\[
P_t = \text{transmitter output power (watts)}
\]

The expressions used to estimate solid state transmitter volume is:

\[
\text{VOL} = 1.47 \times 10^{-5}P_t + 0.0145 \text{ (for } P_t \leq 100 \text{ watts)} \tag{4-5}
\]

\[
\text{VOL} = 1.441 \times 10^{-4}P_t + 0.003304 \text{ (for } P_t > 100 \text{ watts)}
\]

where

\[
\text{VOL} = \text{transmitter volume (m}^3)\]

For HF-, VHF-, and L-band satellites, many of the designs incorporate more than one size (power output) of transmitter. The use of different sizes permits beam steering and shaping to optimize PFD to each zone that might be served at different times by the satellite. This results in part-time operation of transmitters in a backed-off mode that has the added advantages of increased lifetime and reliability. The weight and volume estimates for these cases are based on the total number of transmitters required at each size.
For HF and VHF satellites, a nominal power per transmitter was identified assuming all transmitters operating simultaneously at the maximum available power consistent with power generator capability. Then, each required transmitter power level was used to determine a weight and volume per transmitter. Each weight and volume was then multiplied by the number of transmitters of each size to determine the total of transmitters' weight and volume. The power levels and percent of transmitters for HF and VHF satellites were 1.5 times the nominal power, 45%; 2.5 times the nominal power, 15%; 4.0 times the nominal power, 40%.

For L-band satellites, different transmitter sizes correspond to different array antennas. Thus, separate transmitter weight and volume estimates were made for each array antenna.

For the Ku-band, travelling wave tube amplifiers (TWTA) were assumed to have an average weight of 5.2 kg each. This value was obtained from the SDCM data base. Two TWTA's are assumed for each channel, resulting in a total transmitter weight of 10.4 kg times the number of satellite antennas. A volume of 0.05 m\(^3\) was assumed for each pair of TWTA's.

4.1.1.3 Uplink/Crosslink Weight and Volume Estimating

The uplink/crosslink hardware weight was approximated by assuming the same weight as a LANDSAT-D Ku-band RF module (78 kg per ref. 17). The crosslink hardware estimated weight was 43 kg, since smaller TWTA's would be required and some of the original electronics would be used through switching and up/down conversion. Thus, the estimated weight for HF and VHF systems was 121 kg per satellite. The volume of the uplink/crosslink hardware was estimated at 0.5 m\(^3\), much of which is from the reflectors, gimbal drives, and antenna booms.

For the Ku- and L-band satellites, the crosslink hardware would not be required. Also, the gimbaling hardware would not be required for the uplink system. The total weight estimate for these system's link hardware is reduced to 24 kg per satellite. The volume estimate is reduced by the same percentage to 0.2 m\(^3\).

4.1.1.4 Signal Processing Weight Estimating

For HF and VHF satellites, the LANDSAT-D Ku-band wideband module weight and volume from ref. 18 are used (58 kg and 0.02 m\(^3\) respectively). For Ku- and L-band, the signal processing weight is assumed at 9.5 kg per downlink antenna. The volume estimate is 0.01 m\(^3\) per antenna.

4.1.2 Electrical Power Subsystem Weight and Volume Estimating

This section describes the space electrical power system from which power system sizing equations were derived. From load requirements for Sun and eclipse periods and distribution losses, required source power can be calculated. Knowing source power, the size of the solar array can be calculated. Then, the weights and volumes of the power system components can be calculated. Figure 64 summarizes the calculation flow of the power generation and distribution model. The various calculations are supported by a data base of performance factors, weight densities, and specific densities. The calculated power system weights and volumes reflect the state of technology expected by the early 1990 time period.
4.1.2.1 Energy Balance Equation

One simplification made in the power generation model is the assumption of a direct energy transfer system. This is a realistic assumption since the majority of spacecraft power systems use this form of energy transfer. This system implies a dc distribution network (accurate ac distribution models have yet to be developed) with an unregulated (+10%) bus and no conversion losses. Figure 65 illustrates a simplified direct energy transfer power system and also depicts the data base for the energy balance equation. Note that the distribution loss, N_d, is the sum of the wire (N_{ws} and N_{wr}) and diode (N_d) losses from source to bus and bus to load. Other energy transfer system approaches are possible; specifically, peak power tracking, a regulated bus, distributed power switching, and distributed inverters with ac distribution. These systems may have advantages over the system shown, however, the direct transfer system is viewed as optimum for modeling purposes.

Figure 65. - Direct energy transfer system for unregulated (\pm 10%) bus.
The energy balance equation converts power required at the load into power required from the source. Because eclipse periods affect the size of solar-derived sources, the equation reflects the additional source power required to replenish any power taken from an energy storage device. If the load power, \(P_l \) is the same during Sun and eclipse periods then the energy balance equation takes the form:

\[
\frac{P_s}{N_r} = \frac{P_l}{N_r} \left[1 + \frac{T_e}{T_s} \left(\frac{1}{N_c N_e} \right) \right] \tag{4-6}
\]

where

- \(P_s \) = power from source
- \(P_l \) = load power
- \(T_e \) = time of eclipse
- \(T_s \) = time in Sun
- \(N_r, N_c, \) and \(N_e \) are as defined in Figure 4.1-4

For non-Sun power generation (e.g., SP-100), \(T_e = 0 \). For those systems whose transmitters are assumed to be off during eclipse, the Sun and eclipse power levels will be different. In this case the appropriate balance equation is:

\[
P_l = \frac{P_{ls}}{N_r} + \frac{P_{le}}{N_r} \frac{T_e}{T_s} \frac{1}{N_c N_e} \tag{4-7}
\]

where

- \(P_{ls} \) = Sun load power
- \(P_{le} \) = eclipse load power

Once \(P_s \) is known the solar array may be sized.

4.1.2.2 Solar Array Sizing Equation

The solar array sizing equation takes into account the major variables that affect solar array area. The variables dependent on altitude are solar cell radiation degradation \((F_r) \), the effects of temperature on cell performance \((F_t) \), and cover slide thickness weight factor \((F_c) \). Figure 66 is a graph of these variables vs altitude. The figure shows how the radiation factor includes the benefits of increased cover slide thickness as the array passes through the Van Allen belt (centered about 4000 km). The weight of this increased shielding is reflected by \(F_c \).
The variables (except solar cell efficiency) which are independent of altitude are multiplied together to give a solar array sizing constant, K. These variables are:

Array Orientation Factor98
Solar Cell Packaging Factor90
Cover Slide Transmissivity Loss97
Array Fabrication Loss98
Miscellaneous Loss Factor99
Solar Intensity ... 1353 W/m²

Figure 66. - Solar cell radiation, temperature, and cover slide factors, versus altitude.
The resulting value of K used to estimate area is 1123 W/m^2. Solar cell efficiency is the remaining variable. The efficiencies assumed in the model are 14% for 8-mil silicon and 18% for gallium arsenide. The array area sizing equation is:

$$A_{sa} = \frac{P_s}{(F_r)(F_t)(K)(N_i)} \quad (4-8)$$

where

- P_s = power required from source (W)
- A_{sa} = area of solar array (m^2)
- F_r = radiation degradation factor
- F_t = temperature adjustment factor
- N_i = cell efficiency (14% or 18%)
- K = sizing constant = 1123 W/m^2

4.1.2.3 Solar Array Weight and Volume Equations

Solar array weight and volume calculations rely heavily on the array panel weight and volume factors and the array structure factors shown in Table 36. Because the solar array can be such a large percentage of spacecraft weight, many studies and development programs have addressed means of reducing panel weight and volume. Table 36 reflects the results of these studies. Although the weight factors shown have not been proven by direct flight experience and attaining the factors may present design challenges, the factors are seen as being achievable in the early to mid-1990s. The weight and volume of the SP-100 reactor system is provided for comparison.

TABLE 36.- SOLAR ARRAY WEIGHT AND VOLUME ESTIMATING FACTORS

<table>
<thead>
<tr>
<th>Source type</th>
<th>Panel wt factor</th>
<th>Structure wt factor</th>
<th>Panel volume factor</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si blanket (8 Mil)</td>
<td>0.75 kg/m2</td>
<td>0.85 kg/m2</td>
<td>0.008 m3/m2</td>
<td>SAFE Marshall's 25-kW array GE's 10-kW array Frusa DORA (frusa type) Space Station TRW FLTSATCOM TRW LRSA OTS Lewis Martin Marietta</td>
</tr>
<tr>
<td>Si panel</td>
<td>2.6</td>
<td>1.0</td>
<td>0.03</td>
<td>Lewis Martin Marietta</td>
</tr>
<tr>
<td>Gallium arsenide panel</td>
<td>4.4</td>
<td>1.0</td>
<td>0.05</td>
<td>Lewis Martin Marietta</td>
</tr>
<tr>
<td>Body-mounted Si cells</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>Lewis Martin Marietta</td>
</tr>
<tr>
<td>SP-100 in-core thermionic generator</td>
<td>3000 kg</td>
<td>58.2 m3</td>
<td>100 kW net output EOL</td>
<td>Lewis Martin Marietta</td>
</tr>
</tbody>
</table>
The solar array weight and volume estimating equations are given below.

\[W_{sa} = A_{sa} \left[\text{panel wt factor} + \text{structure wt factor} + \text{cover slide factor} \left(F_c \right) \right] \]
\[V_{sa} = A_{sa} \left(\text{panel volume factor} \right) \]

where

- \(W_{sa} \) = array weight
- \(V_{sa} \) = array volume
- \(A_{sa} \) = array area
- \(F_c \) = determined from Fig. 66

4.1.2.4 Battery Charger and Shunt Regulator Weight Equations

The battery charger and shunt regulator reflect state-of-the-art electrical design approaches. A battery charger weight factor was derived from current and near-term electronic power densities. Present power densities for low power are 61-122 W/kg and near-term power densities for high-power devices that employ active cooling are 244-305 W/kg. From these values, a realistic near-term power density of 175 W/kg was selected. This yields a charger weight factor of \(5.7 \times 10^{-3} \) kg/W.

The shunt regulator weight factor is shown in Figure 67. This factor reflects the material densities used in the construction of a shunt regulator. The weight factor is not linear because a sequential shunt regulator was assumed where increasingly large steps of array area can be shunted by a simple switch. The design challenge would be in the switching of large currents. The weight equations are:

\[W_{bc} = \frac{P_l T_e / T_s}{F_{sr}} \left(5.7 \times 10^{-3} \right) \]
\[W_{sr} = P_l \times F_{sr} \]

where

- \(W_{bc} \) = battery charger weight (kg)
- \(P_l \) = load power (W)
- \(T_e \) = eclipse time (hr)
- \(T_s \) = time in Sun (hr)
- \(W_{sr} \) = shunt regulator weight (kg)
- \(F_{sr} \) is determined from Figure 4.1-6
Figure 67. - Shunt regulator weight factor versus array power.

4.1.2.5 Battery Sizing Equations

Battery size is primarily dependent upon eclipse load power and orbital parameters. Orbital parameters affect the size in two ways. First, altitude and inclination affect the length (time) of eclipse (T_e) which determines battery discharge time. Second, the orbit period determines the number of discharge cycles per year. Battery allowable depth of discharge is also an important factor and depends upon the type of battery selected. Figure 68 displays the allowable depth of discharge (F_D) vs battery charge/discharge cycles for Nickel Cadmium and Nickel Hydrogen batteries.
Figure 68. - Allowable depth of discharge versus charge/discharge cycles.

The remaining variables requiring definition to estimate battery weight and volume are energy densities and specific energies. Energy densities or battery weight factors that are achievable with low risk for nickel cadmium and nickel hydrogen batteries are 35 Wh/kg and 33 Wh/kg, respectively. Similarly, specific energies or battery volume factors achievable at low risk are 70 kWh/m3 for nickel cadmium and 25 kWh/m3 for nickel hydrogen. The battery sizing equations are given below.

$$W_b = \frac{(P_i)(T_e)}{(F_d)(F_{bw})}$$

$$V_b = \frac{(P_i)(T_e)}{(F_d)(F_{bv})}$$

where

- W_b = battery weight (kg)
- F_d = allowable depth of discharge (from Figure 4.1.5)
- F_{bw} = weight factor (35 Wh/kg for nickel cadmium or 33 Wh/kg for nickel hydrogen)
- V_b = battery volume (m3)
- F_{bv} = volume factor (70 kWh/m3 for nickel cadmium or 25 kWh/m3 for nickel hydrogen)
4.1.2.6 Switching and Distribution Weight Equations

The equations for distribution weight are based on aluminum wire for power bus feeders. Handbook current ratings (70°C temperature rise) were used. These equations assume that cable weight is limited by the current rating of the wire rather than the allowable power loss. This is a valid assumption for shorter cable runs and may or may not be valid for longer cable runs, depending on the cost (in weight) of generating the additional power lost in the cable. Other assumptions made are 200 Vdc bus, hybrid electromechanical switches, and distribution losses of 3% from both source to bus and bus to load. The switching and distribution sizing equations are defined below.

Solar array to bus distribution weight:

\[W_d = (0.0243 \text{ kg/m}^2 - w)(A_{sa})(P_s) \] \hspace{1cm} (4-12)

where

\[A_{sa} = \text{solar array area (m}^2) \]
\[P_s = \text{power from source (W)} \]

Bus to transmitters distribution weight:

\[W_d = (0.0243 \text{ kg/W-m})(L_1 + L_2/2)(P_l) \] \hspace{1cm} (4-13)

where

\[L_1, L_2 = \text{antenna dimensions (m)} \]
\[P_l = \text{power to load (W)} \]

Power switching equipment weight and volume:

\[W_{sw} = 2.18 \text{ kg} + (0.23 \text{ kg/kW})(P_l) \] \hspace{1cm} (4-14)

\[\text{VOL} = \frac{W_{sw}}{1200 \text{ kg/m}^3} \]
For nongeostationary orbits, the assumed onboard equipment for attitude determination is summarized in Table 37. For geostationary orbits, the rate gyros could be eliminated as could most of the control electronics. Thus the ACS weight would be significantly reduced (13.1 kg).

The weight and volume of the APS was determined by running the SCIAP program. The inputs and outputs are summarized in Figure 69. When using SCIAP, the first step is to create a satellite mass and geometry model using an interactive model generator module. This data is then transferred automatically through the SCIAP data base to the mass properties module and then to the rigid body controls (RCD) Module. The RCD module computes forces and torques on the satellite as it travels around its orbit. The forces and torques are integrated to compute the total linear and rotational impulse per orbit. Allowable locations for thrusters are entered along with a nominal thrust per thruster. The RCD module then determines the optimum number of thrusters, thrusters' firing strategy, and the required propellant mass per orbit. The propellant per orbit is then extrapolated to the specified satellite lifetime. The RCD module permits definition of solar array orientation through the orbit, feathering of arrays in the occulted region of the orbit if so desired, specifying satellite orientation, and selecting from different density atmospheres. Effect of ACS limit cycle and maneuvers on propellant mass requirement are also included. The required propellant can be computed by assuming attitude control by either the APS thrusters or by momentum storage devices. In the latter case, the number of orbits between desaturation is an input and the propellant mass compilation includes propellant required for desaturation.

Following is an example of SCIAP run results for the HF-band triply-synchronous orbit. The RCD module inputs are summarized in Table 38. The altitude shown is the altitude at the start of the orbit. The orbit is actually defined later by interactive input of the orbit periapsis and apoapsis. Table 39 shows the satellite mass properties created by the model generator that were fed in through the data base. The results of the analysis are summarized in Table 40. Figures 70 and 71 show the total forces and torques on the satellite as a function of orbit anomaly angle.

Figure 69. - Reaction control weight estimate.
TABLE 38. - RCD MODULE INPUT VARIABLES

<table>
<thead>
<tr>
<th>HF SMALL S/C—TRIPLY SYNC ORBIT RUN NO. 2</th>
<th>RIGID BODY CONTROL DYNAMICS (RCD) INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 21000E+5</td>
<td>1 H — ORBIT ALTITUDE, m</td>
</tr>
<tr>
<td>2.00000</td>
<td>2 Inclin — ORBIT INCLINATION, rad</td>
</tr>
<tr>
<td>0</td>
<td>3 PSIN — ORBIT ASCENDING NODE, rad</td>
</tr>
<tr>
<td>0</td>
<td>4 SDAY — NUMBER OF DAYS SINCE EQUINOX</td>
</tr>
<tr>
<td>7 00000</td>
<td>5 TFUEL — TIME BETWEEN REFUEILING, yr</td>
</tr>
<tr>
<td>21560 00000</td>
<td>6 ISP — SPECIFIC IMPULSE, N s/kg</td>
</tr>
<tr>
<td>2.30000</td>
<td>7 CD — AEROodynamic DRAG COEFFICIENT</td>
</tr>
<tr>
<td>2.00000</td>
<td>8 IE — ORIENTATION FLAG (= 1 FOR INERTIAL OR = 2 FOR EARTH)</td>
</tr>
<tr>
<td>0</td>
<td>9 O PSI — EULER ANGLES (3) DEFINING ORIENTATION OF SPACECRAFT FOR BOTH INERTIAL AND EARTH, O PSI IS ROTATION ABOUT THE Z AXIS,</td>
</tr>
<tr>
<td>0</td>
<td>10 OTHETA — OTHETA ABOUT THE NEW Y AXIS, OPHI ABOUT X, rad</td>
</tr>
<tr>
<td>0</td>
<td>11 OPHI — OTHETA ABOUT THE NEW Y AXIS, OPHI ABOUT X, rad</td>
</tr>
<tr>
<td>1 00000E-05</td>
<td>12 WM3 (1) — SPACECRAFT MANEUVER RATE REQUIREMENT X, Y, Z COMPONENTS</td>
</tr>
<tr>
<td>1 00000E-05</td>
<td>13 WM3 (2) — RESPECTIVELY, rad/s</td>
</tr>
<tr>
<td>1 00000E-05</td>
<td>14 WM3 (3) —</td>
</tr>
<tr>
<td>1,00000E-04</td>
<td>15 ALFAM3 —</td>
</tr>
<tr>
<td>1,00000E-04</td>
<td>16 (2) —</td>
</tr>
<tr>
<td>1,00000E-04</td>
<td>17 (3) —</td>
</tr>
<tr>
<td>0</td>
<td>18 NM — NUMBER OF MANEUVERS PER ORBIT</td>
</tr>
<tr>
<td>2,00000E-04</td>
<td>19 E3 (1) — INERTIAL ATTITUDE ACCURACY REQUIREMENT X, Y, Z COMPONENTS RESPECTIVELY, rad</td>
</tr>
<tr>
<td>2,00000E-04</td>
<td>20 E3 (2) —</td>
</tr>
<tr>
<td>2,00000E-04</td>
<td>21 E3 (3) —</td>
</tr>
<tr>
<td>0</td>
<td>22 UAS3 (1) — CONTROL FLAG FOR ROLL CONTROL</td>
</tr>
<tr>
<td>0</td>
<td>23 UAS3 (2) — CONTROL FLAG FOR PITCH</td>
</tr>
<tr>
<td>0</td>
<td>24 UAS3 (3) — CONTROL FLAG FOR YAW</td>
</tr>
<tr>
<td>10,00000</td>
<td>25 BLANK —</td>
</tr>
<tr>
<td>10,00000</td>
<td>26 BLANK —</td>
</tr>
<tr>
<td>10,00000</td>
<td>27 BLANK —</td>
</tr>
<tr>
<td>0</td>
<td>28 KU — CONTROL FLAG FOR TRANSIENT (1) OR STEADY STATE (0) ANALYSIS</td>
</tr>
<tr>
<td>10,00000</td>
<td>29 NORDES — NUMBER OF ORBITS BETWEEN DESATURATIONS</td>
</tr>
<tr>
<td>10,00000</td>
<td>30 BLANK —</td>
</tr>
<tr>
<td>0</td>
<td>31 LACS — POWER REQUIREMENTS OF ACS EXCLUDING AMCD SPIN AXIS, W</td>
</tr>
<tr>
<td>5,00000E-04</td>
<td>32 LM (1) — MINIMUM LINEAR IMPULSE BIT WHEN CONTROLLING TORQUE, X, Y, Z AXES RESPECTIVELY, N</td>
</tr>
<tr>
<td>5,00000E-04</td>
<td>33 LM (2) —</td>
</tr>
<tr>
<td>5,00000E-04</td>
<td>34 LM (3) —</td>
</tr>
<tr>
<td>16,00000</td>
<td>35 NRCSGP — NUMBER OF THRUSTER GRIDPOINTS (= NUMBER OF ROWS IN RCSMAT)</td>
</tr>
</tbody>
</table>

TABLE 39. - SATELLITE MODEL MASS PROPERTIES

<table>
<thead>
<tr>
<th>HF small S/C—triply-sync orbit run no. 2</th>
<th>RCD category 2 input items</th>
</tr>
</thead>
<tbody>
<tr>
<td>4280.00000</td>
<td>1 TWRM — Total weight of the spacecraft excluding RCD, kg</td>
</tr>
<tr>
<td>-214.49000</td>
<td>2 BXm — Spacecraft center of mass for TWRM X, Y, Z coordinates Respectively, cm</td>
</tr>
<tr>
<td>15.88800</td>
<td>3 BYM —</td>
</tr>
<tr>
<td>15.42100</td>
<td>4 BZM —</td>
</tr>
<tr>
<td>7.01640E+05</td>
<td>5 XXM — Moment of inertia XX for TWRM, kg-m²</td>
</tr>
<tr>
<td>1.65308E+05</td>
<td>6 YYM — Moment of inertia YY for TWRM, kg-m²</td>
</tr>
<tr>
<td>8.65812E+05</td>
<td>7 ZZM — Moment of inertia ZZ for TWRM, kg-m²</td>
</tr>
<tr>
<td>7721.50000</td>
<td>8 PXYM — Product of inertia XY for TWRM, kg-m²</td>
</tr>
<tr>
<td>-6005.60000</td>
<td>9 PXZM — Product of inertia XZ for TWRM, kg-m²</td>
</tr>
<tr>
<td>444.86000</td>
<td>10 PYZM — Product of inertia YZ for TWRM, kg-m²</td>
</tr>
<tr>
<td>1.00000</td>
<td>11 KALKTK — Prop tank M & A flag (>0 user def, = 0 prop, <0 auto)</td>
</tr>
<tr>
<td>0</td>
<td>12 NOPROP — Number of propellant masses</td>
</tr>
<tr>
<td>0</td>
<td>13 NMAMCD — Number of AMDC masses</td>
</tr>
<tr>
<td>0</td>
<td>14 ANBAYS — Analysis, number of bays</td>
</tr>
<tr>
<td>0</td>
<td>15 NOGPAR — Number of gridpoints in analysis (= no of rows in GP area)</td>
</tr>
</tbody>
</table>
TABLE 40. - RCD MODULE OUTPUT SUMMARY

<table>
<thead>
<tr>
<th>HF small S/C—triplly-synchronous orbit, run no. 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear impulse per orbit to orbit keep, Newton-s =</td>
<td>2.115E+02</td>
</tr>
<tr>
<td>- X component in spacecraft coordinates =</td>
<td>-2.071E+02</td>
</tr>
<tr>
<td>- Y component in spacecraft coordinates =</td>
<td>-9.519E-12</td>
</tr>
<tr>
<td>- Z component in spacecraft coordinates =</td>
<td>-4.381E00</td>
</tr>
<tr>
<td>Linear impulse needed per orbit for desaturation, N-s =</td>
<td>-</td>
</tr>
<tr>
<td>- X component in spacecraft coordinates =*</td>
<td>.432E+07</td>
</tr>
<tr>
<td>- Y component in spacecraft coordinates =</td>
<td>-.423E+07</td>
</tr>
<tr>
<td>- Z component in spacecraft coordinates =</td>
<td>-.896E05</td>
</tr>
<tr>
<td>Linear impulse needed per orbit for desaturation, N-s =</td>
<td>-</td>
</tr>
<tr>
<td>Linear impulse for life for attitude control, N-s =</td>
<td>-</td>
</tr>
<tr>
<td>Linear impulse per orbit for attitude control, RCS only, N-s =</td>
<td>1.418E+01</td>
</tr>
<tr>
<td>Linear impulse per orbit for limit cycle, RCS only, N-s =</td>
<td>2.995E-04</td>
</tr>
<tr>
<td>Linear impulse per orbit for maneuvering, RCS only, N-s =</td>
<td>-</td>
</tr>
<tr>
<td>Total linear impulse per orbit for RCS only, N-s =</td>
<td>1.418E+01</td>
</tr>
<tr>
<td>Orbit radius, m =</td>
<td>6.899E+06</td>
</tr>
<tr>
<td>Orbit velocity, m/s =</td>
<td>8.821E+03</td>
</tr>
<tr>
<td>Orbit period, s =</td>
<td>1.080E+04</td>
</tr>
<tr>
<td>Propellant mass fix ratio =</td>
<td>1.000E+00</td>
</tr>
<tr>
<td>Propellant mass, kg =</td>
<td>2.141E+02</td>
</tr>
<tr>
<td>Spacecraft mass less propellant, kg =</td>
<td>4.280E+03</td>
</tr>
<tr>
<td>- X distance to center of mass in frame 4, m =</td>
<td>-2.145E+00</td>
</tr>
<tr>
<td>- Y distance to center of mass in frame 4, m =</td>
<td>1.588E-01</td>
</tr>
<tr>
<td>- Z distance to center of mass in frame 4, m =</td>
<td>1.542E-01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass moment of inertia, kg-m²</th>
<th>Distance from center of gravity to center of pressure, m</th>
<th>Torque resulting from RCSMAT assuming all thrusters fire at nominal value</th>
<th>Eff radii for application of torque</th>
<th>Spacecraft projected areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.016E+05</td>
<td>-7.721E+03</td>
<td>6.006E+06</td>
<td>2.288E-01</td>
<td>6.356E+00</td>
</tr>
<tr>
<td>-7.721E+03</td>
<td>1.653E+05</td>
<td>-4.449E+02</td>
<td>1.807E+00</td>
<td>1.075E+01</td>
</tr>
<tr>
<td>6.006E+03</td>
<td>-4.449E+02</td>
<td>8.668E+05</td>
<td>2.130E+00</td>
<td>1.271E+01</td>
</tr>
</tbody>
</table>

Inverse matrix

Eff radii for application of torque

Spacecraft projected areas

109
Figure 70. Total force components versus anomaly angle.

Note
Y-Axis scale factor is 1/10
Y range is ±0.0500

Figure 71. Total torque components versus anomaly angle.
Table 41 summarizes the required propellant mass for each satellite system studied during the program. The number and orientation of each required thruster was also determined for each case from the RCD module outputs. From the number of thrusters, the dry APS weight was then determined. For HF-, VHF-, and L-band systems, PPTs were assumed with a dry weight of 23 kg each and a volume of 0.275 m\(^3\). A minimum of eight thruster modules was assumed for full 3-axis control and redundancy.

Ku-band satellites can use existing chemical thruster technology (e.g., hydrazine). The assumed dry weight of the chemical system is 91 kg. The higher propellant mass compared to electric propulsion makes the total weight comparable to the total weight of a PPT system.

TABLE 41. - VOA DVBS AUXILIARY PROPULSION SYSTEM REQUIREMENTS

<table>
<thead>
<tr>
<th>System</th>
<th>Propellant mass</th>
<th>Reposition allowable</th>
<th>Dry mass*</th>
<th>Total APS mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF, 6-h orbit</td>
<td>12 kg</td>
<td>70 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>HF, 8-h orbit</td>
<td>43 kg</td>
<td>62 kg</td>
<td>184 kg</td>
<td>238 kg</td>
</tr>
<tr>
<td>HF, 12-h orbit</td>
<td>44 kg</td>
<td>50 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>HF, multi-launch, 6-h orbit</td>
<td>46 kg</td>
<td>142 kg</td>
<td>236 kg</td>
<td>374 kg</td>
</tr>
<tr>
<td>HF, multi-launch, 8-h orbit</td>
<td>102 kg</td>
<td>86 kg</td>
<td>184 kg</td>
<td>347 kg</td>
</tr>
<tr>
<td>HF, multi-launch, 12-h orbit</td>
<td>104 kg</td>
<td>86 kg</td>
<td>184 kg</td>
<td>347 kg</td>
</tr>
<tr>
<td>HF, inflatable reflector, array feed</td>
<td>1073 kg</td>
<td>86 kg</td>
<td>368 kg</td>
<td>1527 kg</td>
</tr>
<tr>
<td>HF, Molnyia orbit</td>
<td>146 kg</td>
<td>82 kg</td>
<td>184 kg</td>
<td>412 kg</td>
</tr>
<tr>
<td>HF, small antenna, 6-h orbit</td>
<td>12 kg</td>
<td>70 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>HF, small antenna, 8-h orbit</td>
<td>44 kg</td>
<td>62 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>HF, small antenna, 12-h orbit</td>
<td>12 kg</td>
<td>50 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>HF, small antenna, GEO</td>
<td>65 kg</td>
<td>31 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>HF, small antenna, triply-synch</td>
<td>210 kg</td>
<td>22 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>HF, small antenna, 24-h ellip</td>
<td>18 kg</td>
<td>26 kg</td>
<td>184 kg</td>
<td>266 kg</td>
</tr>
<tr>
<td>VHF, 12-h orbit</td>
<td>57 kg</td>
<td>50 kg</td>
<td>184 kg</td>
<td>291 kg</td>
</tr>
<tr>
<td>VHF, 24-h ellip orbit</td>
<td>160 kg</td>
<td>46 kg</td>
<td>236 kg</td>
<td>442 kg</td>
</tr>
<tr>
<td>VHF, multi-launch, 24-h ellip</td>
<td>180 kg</td>
<td>80 kg</td>
<td>276 kg</td>
<td>570 kg</td>
</tr>
<tr>
<td>VHF, inflatable reflector, 24-h ellip</td>
<td>1200 kg</td>
<td>46 kg</td>
<td>368 kg</td>
<td>1614 kg</td>
</tr>
<tr>
<td>L, GEO</td>
<td>32 kg</td>
<td>16 kg</td>
<td>184 kg</td>
<td>232 kg</td>
</tr>
<tr>
<td>Ku, GEO</td>
<td>318 kg</td>
<td>152 kg</td>
<td>91 kg</td>
<td>561 kg</td>
</tr>
</tbody>
</table>

*Mass of propulsion components only.

4.1.4 TT&C Weight and Volume Estimating

The TT&C subsystem includes the hardware required to sense and communicate satellite status and position information to a ground control station and to receive commands from a ground station. For this study, real-time access is assumed for all systems. Thus, no onboard data storage is required. The hardware assumed for HF- and VHF-bands TT&C subsystems is summarized in Table 42. The weight estimate used for HF and VHF systems was 32.1 kg. A mass density of 1000 kg/m\(^3\) was assumed to compute TT&C volume. For L- and Ku-bands, the autotrack module would be eliminated, resulting in a weight of 26.4 kg.

TABLE 42. - TT&C EQUIPMENT LIST

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
<th>Number</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onboard computer</td>
<td>SOA/NEW</td>
<td>(2)</td>
<td>6.3</td>
</tr>
<tr>
<td>Command receiver</td>
<td>SOA</td>
<td>(2)</td>
<td>6.6</td>
</tr>
<tr>
<td>Remote interface unit</td>
<td>SOA</td>
<td>(2)</td>
<td>2.1</td>
</tr>
<tr>
<td>Computer interface</td>
<td>SOA</td>
<td>(2)</td>
<td>1.0</td>
</tr>
<tr>
<td>Redundancy manager</td>
<td>SOA</td>
<td>(2)</td>
<td>2.7</td>
</tr>
<tr>
<td>Autotrack module</td>
<td>SOA</td>
<td>(2)</td>
<td>5.7</td>
</tr>
<tr>
<td>Cabling/harness</td>
<td>SOA</td>
<td>(1)</td>
<td>5.7</td>
</tr>
</tbody>
</table>
4.1.5 Thermal Control Subsystem Weight Estimating

The thermal control weight estimates are based on algorithms contained in the SCIAP subsystems properties module. Thermal control subsystem weight is computed as a function of radiative surface area using an assumed area mass density of 4.88 kg/m\(^2\) (1 lb/ft\(^2\)). The required area is computed as a function of the BTUs of heat to be radiated (Q), maximum allowable temperature (\(T_{\text{max}}^\circ\text{R}\)), end-of-life radiators emissivity (\(\varepsilon\)), end-of-life radiators absorptivity (\(\alpha\)), and orbit altitude. The equations used to compute the required area are:

1) Altitudes below GEO:

\[
\text{Area} = \frac{Q_{\text{max}}}{\sigma \varepsilon T_{\text{max}}^4 - \alpha Q_S K}
\]

where

- \(K\) is factor to account for orientation of radiators to Sun (0.707 for 45°)
- \(\sigma\) is Stefan-Boltzman constant \(-0.1714 \times 10^{-8}\) Btu/h ft\(^2\) R\(^4\)
- \(Q\) is solar constant 1353 w/m\(^2\) (442 Btu/hr-ft\(^2\))

2) Altitudes at GEO or above:

\[
\text{Area} = \frac{2Q_{\text{max}}}{\sigma \varepsilon T_{\text{max}}^4}
\]

The volume is computed by assuming a radiator equivalent thickness of 0.05 meters (2 in.).

Usually, the heat to be rejected is computed automatically as the difference between the power into the load and the useful power out. However, HF and VHF satellites' thermal control subsystems could not be sized automatically because of the different sized transmitters and the requirement of some transmitters to be operated at different power levels depending on the zone to be covered (as discussed previously in Section 4.1.1.2). The power levels of the transmitters were estimated to fall into three categories: 45\% at 1.5 times a nominal power, 15\% at 2.5 times the nominal power, and 40\% at 4 times nominal power. Thus, the radiative surface area for each transmitter must be increased appropriately. The weighted average of these transmitter size factors is 2.65 requiring an effective radiative surface area 2.65 times that required for the simple difference between maximum power available to the load and maximum power out.
Weight of other thermal control components such as insulation, cold plates, and heaters are included in the weight estimate of individual subsystems or components.

4.1.6 Equipment Bay and Mechanisms Weight Estimating

The relationships to estimate weight and volume of the equipment bay were taken from the SDCM. The equipment bay was assumed to be a conventional satellite structure applicable to a 3-axis stabilized spacecraft. The SDCM empirically derived weight estimate is:

\[W_e = K_d W_s^{0.99} (L/D)^{0.24} + 0.1 W_s \] \hspace{1cm} (4-17)

where

- \(W_e \) = equipment bay weight (kg)
- \(W_s \) = subsystem components weight (kg)
- \((L/D) \) = structural dimension ratio (1.0)
- \(K_d \) = density coefficient (.129 for non-body-mounted solar arrays)

The equipment bay volume estimated is computed from the relationship:

\[V_e = 4.95 V_s \] \hspace{1cm} (4-18)

where

- 4.95 = average volume sizing factor for satellites with solar arrays
- \(V_s \) = volume of subsystem hardware to be contained in equipment bay

The mechanisms weight was estimated from data contained in the SDCM database. For HF-, VHF-, and L-bands, the mechanisms weight was estimated at 102 kg. This includes the weight of all stowage and deployment mechanisms except for the deployable antennas (e.g., box truss ring structure, honeycomb panels). For Ku-band satellites, the mechanism weight was assumed to be 51 kg, primarily to account for the deployment mechanisms for the solar arrays.
4.2 TECHNOLOGY TRADEOFFS

The objective of the subsystem technology tradeoffs was to identify subsystem technologies that might enhance VOA DVBS missions, even though these technologies might be in an early development phase. This section will discuss why subsystem configurations were selected. The goals of the tradeoffs were to identify ways to minimize satellite weight, maximize reliability, increase lifetime, minimize cost, and reduce implementation time.

4.2.1 Antenna Structure Tradeoffs

The communications subsystem is the payload for VOA satellites and represents a significant part of the total cost, time to develop, and weight. Thus, the selection of the configuration and components will be critical to VOA satellite program success. Presented here are alternatives for the communications subsystem mode of operation and for subsystem components.

4.2.1.1 Antenna Technology Tradeoffs

Present antenna systems for Ku-band applications use solid parabolic reflectors in the order of 1- to 4-meter diameter. This technology is well established state of the art. However, larger antenna systems, particularly at the RF power levels needed for HF-, VHF- and L-band applications are relatively new technologies. The antenna types that make up the larger antenna systems fall into two types: reflectors and arrays. To use a reflector in such an application has the advantage of simplicity in the sense that the RF subsystem is not very complex. By comparison, an array requires a rather complex RF subsystem to assure that each element in the array is properly fed and phased.

Structurally, both large arrays and large reflectors are quite similar. Both must be stowable for STS launch and deploy reliably and accurately. Table 43 presents a comparison of maximum PFD available from an array and reflector for the same orbit and aperture. As shown, the PFD for the reflector is higher than for the array. In reality, the beamwidth of the reflector would be larger for the same diameter. Thus, for the same ground spot coverage, the PFD from the reflector would be still greater since a smaller reflector diameter would result in less weight for the structure. The reduced weight could be allocated to the EPS, increasing the available electrical power and thereby increasing PFD to the ground.

The advantages of an array system, especially at the RF power levels and for the coverage requirements for VOA applications, is that power can be distributed over a number of element/transmitter pairs and the antenna pattern can be adjusted to meet coverage requirements. Distributing the power over a number of element/transmitter pairs helps to alleviate any arcing and multipacting effects from the generation of high RF powers in space. Also, heat dissipation problems and the risk of a single point failure are reduced. Unlike reflectors that require mechanical actuators to scan the antenna beam, an

| TABLE 43 - ARRAY VERSUS REFLECTOR PFD COMPARISON |
|-----------------|-----------------|-----------------|
| **Antenna** | **Aperture diameter** | **PFD** |
| 12 h-inflatable | 168 m | 290 μV/m |
| 12 h-array | 168 m | 244 μV/m |
array has the capability to scan electronically by adding phasors at each radiating element. In addition, by selectively turning transmitters off and on, the antenna beam pattern of an array can be broadened or narrowed to meet zone coverage requirements. Combining phase control and selective activation allows an array to maximize power flux density on the ground and also provides extended coverage time for a given zone.

The above rationale was used in choosing an array over a reflector for the HF-, VHF- and L-band antenna systems. In the VHF-band system design that proposed a reflector (an inflatable reflector) an array was still used for the feed. The inflatable reflector concept resulted in a feed array of 26 x 26 meters and an inflatable aperture structure with extremely low mass. However, the large inflatable proved to have significant controllability problems and increased APS propellant requirements. For the array antenna concepts for HF- and VHF-bands, the box truss ring array was used because it provided lower weight and stowed volume than contiguous truss structures and provided a capability to attach both the radiating surface and ground plane surface onto the structure without adding additional structural elements. For the array antenna systems for the L-band, honeycomb panel arrays were used. These arrays are similar to existing technology which has been used in satellites such as the synthetic aperture radar antenna.

4.2.1.2 Transmitter Technology Tradeoff

For the HF-band, the requirements for DSB-AM require linear amplification if the carrier is modulated prior to uplinking and merely amplified in the satellite. Solid state power amplifiers (SSPA) typically are designed as linear devices while TWTAs have a nonlinear operating region. TWTAs require higher dc operating voltages than do SSPAs. While SSPAs can operate almost directly off a dc photovoltaic power bus, TWTAs require DC to DC conversion for power, thus increasing weight and complexity of the electrical power sub-system. Also, TWTAs have lower lifetime reliability than SSPAs, particularly when operated in a cyclic mode as is anticipated for VOA satellites.

As discussed in Section 3.3.4, powers above 1000 watts will require SSPAs using MOSFETS. Use of multiple SSPAs with array antennas will result in a weight penalty, but use of a transmitter per element provides high system reliability since failure of a small percent of transmitters should not seriously degrade performance. Also, use of SSPAs results in simpler packaging and permits distributed thermal control. Finally, since TWTA gain is proportional to wavelength, a TWTA at HF or VHF frequencies would be orders of magnitude larger than TWTA's for L- or Ku-bands if the same gains are required.

For Ku-band, TWTAs are in use and are selected for VOA satellites, based on their minimal required development cost and time and the availability of power levels needed for VOA satellites.

As an alternative to conventional space technology for the provision of single very high-power devices, we look to the technology that has provided the broadcast industry with high powered transmitters. This is the classical technology of triodes and tetrodes. Varian, for example, has developed a new tube called a klystrode, that combines the features of a klystron and a tetrode. It operates as a class-B linear amplifier in the manner of a tetrode, but with the reliability and high-power handling capability of the klystron. Such tubes have been operated in the 400 to 800 MHz region, and there are
plans to extend operation to L-band. Powers available are up to 28 kW, with 30 kV beam voltage. The efficiency of this device when operating at full power can be 50%, and it has the unique feature that the dc power drawn is decreased as the input level is decreased. This feature could be particularly desirable for VOA operation, where power is at a premium. Peak power requirements from the primary power source could be reduced by the use of energy storage devices that can be charged during periods of low modulation, and by exploiting the average statistics of several channels aboard the same satellite. The average power requirements could also be reduced, since the power drawn would be low during periods of low modulation percentage. Use of this device would, of course, require a space qualification program, but might prove useful for L- or Ku-band satellites.

4.2.1.3 Array Antenna Phase Control

Signal processing for array phase control for steerable beams can be accomplished by splitting the signal from a common interface/intermediate frequency (IF) output through equal length and impedance cables to each transmitter. A separate phase shift circuit and command would then be used at each transmitter to perform shifting for steerable beams.

An alternative is to use minimum cable length to each transmitter, performing shifting in a separate IF stage for each transmitter. The shift for each would then be commanded as a function of desired beam steering with a built-in compensator relating the length of cable to the associated transmitter.

The common IF source approach has fewer electronics piece parts that should result in higher reliability and lower design and production complexity. The separate IF source approach requires less cable and therefore has lower weight (60 kg for largest satellite). However, for this approach, each IF stage must be shifted differently to compensate for the different cable lengths to each transmitter, making each stage design different.

Cost comparison is difficult to address, since the common source approach IF stage(s) must have higher gain to provide the same input power to the transmitters as the separate stage approach. This should result in higher cost per stage, but with significantly fewer stages, overall cost will probably be lower. Thus, the common IF source is recommended since it should be less complex, have higher reliability, and have lower cost.
4.2.1.4 Feeder Link Tradeoffs

The principal choice to be made in the feeder link system design is whether real-time uplink capability is required at all times. If so, then for low orbit satellites, up to perhaps seven or eight ground stations are required, spaced fairly evenly about the Earth. Higher orbits have greater visibility, and only two or three Earth stations are required. If real-time operation is not required, fewer Earth stations may be used, since low-orbit satellites will eventually pass over the United States and the programming may be uplinked during that pass. If jamming is a consideration, burst and store from the U.S. or nonhostile territory will provide protection. Finally, an intersatellite link can help to reduce the number of uplink stations, as well as provide protection against jamming. Although the relay satellite option shown is based on dedicated satellites, it may be possible to use the sound broadcast satellites themselves as intersatellite links to one another.

Table 44 summarizes the number of required ground stations vs orbit altitude. The recommended mode for HF- and VHF-bands systems is onboard crosslinks. Since there will typically be clusters of satellites spaced around an orbit, there will always be a real-time window from a ground station to any specific satellite. Since up to five ground stations would be required for some systems, the overall cost would be comparable to that for an intersatellite link. There would be an advantage with the intersatellite link option in that only two stations would be required, simplifying site acquisition and security.

As an example, Table 44 shows that four ground stations would be required for the 8-hour orbit (altitude of 13892 km). The estimated cost of each ground station is $56,500,000 for a 24-satellite system and a 20-yr operational lifetime. The estimated cost to develop the crosslink system is $9,000,000. The additional estimated first unit recurring cost per spacecraft for the crosslink system is $3,360,000. The two additional ground stations without intersatellite capability would cost $113,000,000. The estimated cost of the crosslink capability for a 20-yr lifetime (72 satellites) would be $112,000,000. Thus, there is no significant difference in cost between the two approaches.

A significant goal of VOA should be the transmission of maximum intelligibility in speech broadcasts, within the confines of power and energy available from the satellite. Techniques available can be used either to increase intelligibility for the power and energy available, to decrease the power and energy requirements for a fixed level of intelligibility, or to arrive at an intermediate compromise.

Table 44: Number of Feeder Link Stations Required Versus Satellite Height

<table>
<thead>
<tr>
<th>Satellite Height</th>
<th>Great Circle Degrees of Coverage, diam</th>
<th>No. of Earth Stations for Full Coverage (assuming no overlap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,163 km</td>
<td>86.9</td>
<td>7.30</td>
</tr>
<tr>
<td>4,182</td>
<td>87.0</td>
<td>7.28</td>
</tr>
<tr>
<td>6,392</td>
<td>101.0</td>
<td>5.50</td>
</tr>
<tr>
<td>7,843</td>
<td>107.6</td>
<td>4.89</td>
</tr>
<tr>
<td>10,355</td>
<td>115.9</td>
<td>4.26</td>
</tr>
<tr>
<td>13,892</td>
<td>123.9</td>
<td>3.78</td>
</tr>
<tr>
<td>20,184</td>
<td>132.6</td>
<td>3.34</td>
</tr>
<tr>
<td>35,786</td>
<td>142.9</td>
<td>2.93</td>
</tr>
<tr>
<td>39,581</td>
<td>144.3</td>
<td>2.88</td>
</tr>
<tr>
<td>61,085</td>
<td>149.3</td>
<td>2.72</td>
</tr>
</tbody>
</table>
Intelligibility is increased with increased S/N ratio. One technique long used to increase the S/N ratio of voice transmission over the transmission channel is the use of compression and expanding, which may be applicable to the HF-band DSB-AM VOA system. Companding reduces the dynamic range of the signal carried over the transmission channel, so that high amplitude signals are transmitted at a relatively higher level. There is an accompanying reduction in quiet level noise and a notable increase in subjective or apparent S/N ratio. At the receiving end, the original dynamic range is restored, so that the listener receives a relatively faithful reproduction of the original. This restoration (as opposed to the compression alone) is particularly desirable in broadcasts of classical music and other programs that have a wide dynamic range, but even for voice it aids in maintaining natural sounding speech.

A disadvantage of conventional companding is that it requires a cooperative receiver with built-in expansion circuitry. Since the VOA system cannot depend on the presence of a population of such receivers, it is useful to ask whether there is an advantage in a system with compression only, without expansion at the receiver.

It turns out that there is such an advantage. By the amplitude compression of the voice signal, a higher average S/N ratio can be achieved. This in turn may allow usable reception using a reduced carrier power, and in fact, with reduced total power. This could be a significant factor for VOA systems that have such large power requirements. In effect, more of the primary power is diverted to the sidebands rather than to the carrier, which conveys no information, but is just an artifact of the classical AM system. However, the compression may also give the listener a feeling that what is heard is uninteresting and unrealistic. If the compression is applied only to that range of frequencies that influences intelligibility most, the natural variation to the lower and higher frequencies might convey the dynamics of a conventional transmission without defeating the objectives of compression.

The above technique increases not only the channel S/N ratio, but also the environmental or acoustic S/N ratio. This technique is somewhat similar to that used in Dolby B audio systems intended for a cooperative receiver. Listeners to these systems have in fact noted increases in intelligibility with the cooperative features of the receiver turned off.

Exploitation of the above and other power conservation methods demand that the system take all possible steps to maximize intelligibility. For example, attention must be given to ensuring an appropriate frequency response in the speech channel and properly equalizing to match microphone response. Consideration should also be given to differing equalization curves for different speaker's voices.

In addition, scrupulous attention must be given to the avoidance of nonlinear distortion in the speech channel, since this can seriously eat into the intelligibility budget. Random noise and unplanned level shifts must also be minimized. Level lineup must be maintained over a range of sources, including microphones, remote input channels, and prerecorded media. Operationally, this may call for more complete audition (medium preview) procedures than would ordinarily be required.
4.2.2 Electrical Power Subsystem Tradeoffs

4.2.2.1 Power Generation

Energy sources currently under development that possess the greatest potential for use in the spacecraft's power generation system are photovoltaic concentrator arrays, nuclear (SP-100), and solar thermal dynamic (using Stirling, Brayton, or Rankine cycles). Section 3.4.2 discussed the solar concentrator and nuclear sources. The solar dynamic source has many advantages, as can be seen in Figure 72 which compares specific mass and area of potential power systems. Note that a system with a relatively low specific mass may have a relatively high specific area, such as the silicon flexible blanket array and regenerative fuel cells (RFC) system. The solar dynamic Stirling system has the advantage of possessing both the lowest specific mass and area of the systems considered. The solar dynamic systems also have the potential for lower cost and higher reliability vs a photovoltaic system, and, with efficiencies of 23-25%, the solar dynamic collector area would be 35% of a silicon solar array. Table 45 summarizes the advantages and disadvantages of the power generation systems described here. If development continues at the present rate then a solar dynamic system should prove a viable candidate for high power applications in the far term. To ready this system for an early 1990 flight however, would require substantial engineering effort and would be high risk.

Development of 2-mil silicon cell technology would also result in improved performance of photovoltaic blankets. Table 46 shows the comparison of satellite subsystem weights, total power, and RF power for the maximum payload, 8-hour, HF baseline system. The increase in power (0.87dB) results in a 10.5% increase in PFD with the 2-mil technology as shown for a sample of zones.

Figure 72. - Representative specific mass and area of potential power systems.
TABLE 45. - POWER GENERATION TECHNOLOGY TRADEOFFS

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaic planar solar array</td>
<td>- Low risk</td>
<td>- Large area/drag</td>
</tr>
<tr>
<td></td>
<td>- Possible development by space station</td>
<td>- Low stiffness</td>
</tr>
<tr>
<td></td>
<td>- Low cost</td>
<td>- Cell degradation high at some altitudes</td>
</tr>
<tr>
<td>Photovoltaic concentrator solar array</td>
<td>- Lower area/drag</td>
<td>- Development required</td>
</tr>
<tr>
<td></td>
<td>- Better performance</td>
<td>- Reflector life questionable</td>
</tr>
<tr>
<td>Nuclear</td>
<td>- No sun tracking</td>
<td>- Need gallium arsenide cells (high cost)</td>
</tr>
<tr>
<td></td>
<td>- No energy storage required</td>
<td>- Safety implications</td>
</tr>
<tr>
<td></td>
<td>- Lowest area/drag</td>
<td>- High development cost/risk</td>
</tr>
<tr>
<td></td>
<td>- Continuous operation</td>
<td>- High-temperature concerns</td>
</tr>
<tr>
<td></td>
<td>- Direct ac generation possible</td>
<td>- Dynamic interaction concerns</td>
</tr>
<tr>
<td>Solar thermal dynamic</td>
<td>- Low area/drag</td>
<td>- Reentry considerations</td>
</tr>
<tr>
<td></td>
<td>- No chemical storage</td>
<td>- Thermal storage concerns</td>
</tr>
<tr>
<td></td>
<td>- Direct ac generation possible</td>
<td>- High development cost/risk</td>
</tr>
</tbody>
</table>

TABLE 46. - COMPARISON OF HF 8-HOUR BASELINE WITH 8- AND 2-MIL SI CELLS

<table>
<thead>
<tr>
<th>Type of Solar Cell</th>
<th>Total EPS Power</th>
<th>RF power</th>
<th>PFD zone (one channel)</th>
<th>Zone 1</th>
<th>Zone 7</th>
<th>Zone 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-mil Si</td>
<td>93.1 kW</td>
<td>58 kW</td>
<td>320 µV/m</td>
<td>354</td>
<td>228</td>
<td>282</td>
</tr>
<tr>
<td>2-mil Si</td>
<td>108.9</td>
<td>70.8</td>
<td>252 µV/m</td>
<td>352</td>
<td>282</td>
<td>312</td>
</tr>
</tbody>
</table>
Of the energy source technologies, a gallium arsenide concentrator array should be the first to be space qualified. Section 3.4.5 discussed the relative merits of this system and Figure 72 displays the savings in specific area vs silicon when paired with an RFC. Full development is not likely to occur by 1990 unless space station uses this technology, which is doubtful. Because the specific mass of a gallium arsenide concentrator is greater than a silicon flexible blanket array, this system may only be desirable for missions in orbits that experience the greatest effect from solar pressures and atmospheric drag. Table 45 compares this system to the other power systems.

In conclusion, the most viable near term (1990) energy source option is the photovoltaic flexible blanket array using the advanced silicon solar cell. While a solar dynamic system will have lower specific mass and area, for an unmanned satellite it will not be practical from the standpoint of maintainability. A nuclear source becomes attractive for very large power systems (200 kW) or for operation in areas of high radiation. If reductions in cost and blanket weight can occur for gallium arsenide arrays then that cell will be preferable to silicon for most applications.

4.2.2.2 Power Distribution

Areas in power distribution that will require optimization are cabling type, voltage type (ac or dc), power transfer mechanism (from solar array to conductors), voltage level, and voltage regulation for a dc system. A voltage level of 200 Vdc was previously selected as optimum (ref. Sect. 3.4.6). Considerations for selecting cabling type, voltage type, and power transfer devices are presented here.

4.2.2.3 Cabling

For cabling material, the product of electrical resistivity and density is the appropriate figure of merit for conductor lightness. For aluminum, the product is half that of copper (a 50% weight savings over copper can be realized). Some drawbacks of aluminum are its low tensile strength, poor flexibility, and poor crimp terminability. Poor crimp terminability can result in creep, causing looseness in the connector, eventual arcing, and an open circuit. Alloying aluminum with some other conductor such as copper should solve these problems and make aluminum available for large power systems in the 1990s.

Figure 73 illustrates the effects of increasing distribution voltage and type of conductor wire (aluminum or copper) on the combined distribution and power generation system weight. A 100 kW power level and 122 meter one-way length were assumed. The graphs are representative of system weight variance for a photovoltaic source. Also shown are the points for aluminum and copper wire at which the current in the wire exceeds its 70°C temperature rise limit. To further reduce conductor weight and thus increase distribution loss would drive the conductor to higher temperatures. The 70°C limit was used to provide a benchmark, the actual temperature limit being a function of the insulator material. It should be noted that the weight difference between copper and aluminum decreases as distribution voltage increases.
Far-term options for conductor material are intercalated carbon fibers and sodium. A sodium conductor would be extremely lightweight, with a resistivity-density product 45% less than aluminum. The tensile strength of the conductor will depend upon the type of sheath used. The use of such a cable would be best suited for high current or extremely long distributors. The technological risk of sodium is high for the mid-1990s and it should not be considered as a viable option.

The application of intercalated carbon fibers is a possibility. Carbon fibers alone have a high resistivity (20 times that of copper), but doped with the proper elements, carbon can become a good conductor. The projected resistivity-density product of intercalated carbon is comparable to that of copper, so the advantage of using carbon is strictly cost. This technology is still experimental and should not be available by mid-1990.
4.2.2.4 Voltage Type (ac versus dc)

The advantage of high frequency ac to dc voltage is primarily the weight reduction with increasing frequency of energy storage devices such as transformers, capacitors, and other magnetic components. Also, filter sizes in power conditioning components decrease and voltage conversion is simpler and completed with fewer losses. With the development of high power switching and magnetic devices for use in high frequency ac systems, large spacecraft power systems will have the option of selecting an ac or hybrid ac/dc distribution and control network by 1990. Because cabling is not significantly affected by an ac system, the amount of weight savings realized may not be great enough when compared to the total system mass to justify the risk of developing an ac system. The type of voltage used, ac or dc is not seen as design critical to the power system.

4.2.2.5 Power Transfer

Power transfer assemblies currently in use have been designed for low voltage, low power satellite applications. They possess many design limitations that could prevent their use in high power, high voltage systems. Some of these limitations are a 200 V voltage limit due to critical pressure, a life limited by the brush wear in a vacuum environment, a current limited to the power dissipation in the interfacing elements of the electrical transfer mechanism, and a short circuit failure mode at wearout conditions. Alternatives to the conventional slip ring designs are roll rings, twist flex cables, and pressurized slip rings.

The roll ring is a new approach that incorporates a complex structure of mechanical parts. The device has a significant reduction in friction that may lead to instability if not damped properly. The roll ring is still susceptible to corona discharges at critical pressure, that could be significant considering that the broad array of elements between adjacent channels would increase the electric field strength in the gas media between rings. A roll ring would be an advantage in a high velocity control system that could benefit from the low friction.

The twist flex assembly has many attractive advantages. It is extremely simple and lightweight. The assembly permits power transfer through insulated wire bundles from one rotating disc to a second rotating disc, having a limited rotating angle of +205°. The voltage carrying capability may be increased by increasing the dielectric strength of the wire and improved insulation can prevent corona discharge. Other advantages are minimal power loss, long lifetime and high reliability open circuit failure mode, and zero noise for signal handling. The major disadvantage is the residual torque generated by the twisted cables, which require additional power to overcome the loss. This is the preferred system assuming the Sun tracking requirement can be satisfied by the limited rotation.

For power systems with operating voltages greater than 250 Vdc, a pressurized slip ring assembly would be needed. A pressurized system can eliminate the corona discharge problem at high voltage in addition to allowing an increase in power density with improved heat transfer. The disadvantage is its complex design and early development stage.
Because transmitters are assumed to be off during eclipse, the energy storage options are narrowed to nickel cadmium and nickel hydrogen batteries. Nickel hydrogen batteries have an advantage over nickel cadmium batteries in energy density and maximum allowable depth of discharge. Nickel hydrogen batteries may also prove to have a greater cycle life than nickel cadmium. The disadvantage of nickel hydrogen is that they are unproven in space at LEO, although this should not be the case by 1990. Figure 74 depicts the allowable depth of discharge vs charge cycles for nickel hydrogen and nickel cadmium batteries. The figure indicates that for maximum depth of discharge, a nickel cadmium battery could not meet a seven year mission at LEO, unless a spare battery was carried to assume operation near the five year point. Also, at GEO the weight advantage of nickel hydrogen becomes small because of the relatively deep depth of discharge allowed for nickel cadmium. Figure 75 shows this, with its display of the power system weight needed to supply 500 watt average load vs altitude for nickel hydrogen and nickel cadmium batteries. Because the battery weight is only a small fraction of the total power system weight, the selection of a battery type is not seen as critical. If nickel hydrogen proves to have a greater cycle life than nickel cadmium then that battery should be chosen, especially for a mission at LEO. In conclusion, the energy storage technology will exist by 1990 to support the mission requirements with no adverse effects on system weight assuming transmitters are off during eclipse.

Figure 74. - Allowable depth of discharge versus battery discharge/charge cycles.
4.2.3 ACS/APS Technology Tradeoff

Table 47 summarizes advantages and disadvantages of candidate ACS/APS actuators. Table 48 shows the results of a tradeoff between APSs using chemical blowdown, chemical bipropellant, and PPT. The results shown are representative of the propellant mass and APS weight required for an HF multiple launch case and are about one-half of what would be required for the small HF design in the triply-synchronous orbit. Except for the Ku-band satellites, electric propulsion will result in a weight advantage, although for some L-band concepts there is little difference. For these L-band systems, a small added weight for a chemical system might be offset by lower cost for the chemical system.
TABLE 47. CONTROL TORQUE ACTUATOR SUMMARY

<table>
<thead>
<tr>
<th>Torque Actuator</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrusters</td>
<td>No cross-coupling with the vehicle motion to produce undesirable torques for which compensation must be made</td>
</tr>
<tr>
<td>- Electric</td>
<td>High specific impulse, applicable to missions with a long lifetime</td>
</tr>
<tr>
<td>- Chemical</td>
<td>High thrust, low risk, lower dry weight</td>
</tr>
<tr>
<td>Momentum exchange devices reaction wheels & CMSs</td>
<td>Ideal when disturbances are cyclic with respect to an inertial reference frame & the secular component (bias torque) is small; could reduce the size & number of thrusters required for the mission</td>
</tr>
<tr>
<td>Magnetic torquers</td>
<td>Used in conjunction with momentum exchange devices for desaturation or momentum management purposes</td>
</tr>
</tbody>
</table>

Thrusters

- **Electric**
 - High specific impulse, applicable to missions with a long lifetime
 - Low-thrust, high-power requirements; power already available for most VOA satellite concepts; well-suited for distributed system

- **Chemical**
 - High thrust, low risk, lower dry weight
 - Low specific impulse, no applicable to missions with a long lifetime; tankage volume & weight can be high; not well suited for distributed system, more complex thermal control

- **Momentum exchange devices reaction wheels & CMSs**
 - Cross-coupling with the vehicle motion to produce undesirable torques that require compensation; requires a desaturation control law scheme; number required could be prohibitive in terms of size, weight, & power required for large VOA antenna concepts

- **Magnetic torquers**
 - Magnetic field of Earth is time variant & strongly altitude dependent, at any instant torque can be produced only along components normal to the local magnetic field vector; practical limitations in power supply & coil size make the generation of large torques impractical for VOA orbits

TABLE 48. APS CANDIDATES WEIGHT TRADEOFF RESULTS

<table>
<thead>
<tr>
<th>System</th>
<th>(I_p)</th>
<th>Dry weight</th>
<th>Propellant for 7 yr</th>
<th>Total APS weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blowdown</td>
<td>230 s</td>
<td>220 kg</td>
<td>1033 kg</td>
<td>1253 kg</td>
</tr>
<tr>
<td>Bipropellant</td>
<td>400</td>
<td>220</td>
<td>594</td>
<td>814</td>
</tr>
<tr>
<td>PPT</td>
<td>2200</td>
<td>184</td>
<td>108</td>
<td>292</td>
</tr>
</tbody>
</table>

126
4.3 COST ESTIMATING PROCEDURE

The cost estimating procedure developed and used identifies the costs of each subsystem, total satellite recurring and nonrecurring costs, launch costs and ground operations costs. The end results of the cost estimating procedure are satellite system and program life-cycle cost (LCC) which can be used to estimate LCC per channel hour.

The first step was to select or derive cost estimating relationships (CER) that are applicable to VOA DVBS. The Denver Aerospace documented LCC methodology and cost analysis data base served as a starting point. We used the multiple independent cost estimating approach. This approach evaluates LCC estimates from several models, qualifying each by relation of hardware configuration assumed by the model to configuration defined for the satellite. The LCC estimating sources that were used included:

1) The Denver Aerospace 15-volume cost analysis data base;
2) the USAF Space Division model;
3) the NASA MSFC LSS model;
4) the NASA LeRC SDCM;

In some cases, existing CERs were adjusted to reflect judgement as to applicability to VOA satellite concepts. Finally, new CERs were developed from information contained in recent literature, specifically for costs associated with electrical power subsystems that produce more than 20 kW, electric propulsion, and high power solid state power amplifiers. The CERs identified as candidates for estimating LCC of VOA satellite concepts were included in a computer program developed during this program. This program is documented in the Appendix and is delivered as part of the contract.

The second step was to estimate the performance parameters required by each CER. These estimates were obtained using the methods described in Section 4.1. Finally, a quantitative risk assessment method, including the risk assessment and management program (RAMP), was used to further qualify the LCC estimates obtained from the various CERs. The point LCC estimates presented in Section 5 are defined as the 50/50 values obtained by running RAMP. A further discussion of the risk analysis method is presented in Section 6.

Following is a discussion of the approach that was taken to derive the base cost estimates for each subsystem and the overall DVBS.

4.3.1 Communication Subsystem Cost Estimates

The communications subsystem is broken up into: (1) the antenna structure, including array or reflector surface and ground plane; (2) the feeder link electronics and antenna(s); (3) the onboard signal processing; and (4) the payload transmitters. Since no prior data existed for LCC of antennas greater than 20 meters in diameter or for space qualified amplifiers (transmitters) in the HF- and VHF-bands, new CERs had to be developed. The CERs used for the communications subsystem are listed in Table 49.
TABLE 49. - COST ESTIMATING PROCEDURES FOR COMMUNICATIONS SUBSYSTEM

<table>
<thead>
<tr>
<th>Component</th>
<th>Band</th>
<th>NRC CER</th>
<th>RC CER</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box-ring truss planar array</td>
<td>HF, VHF</td>
<td>NRC = 0.013 (W_t)</td>
<td>RC = 0.002 (W_t)</td>
<td>MSFC, U.S. Navy model, judgement</td>
</tr>
<tr>
<td>Honeycomb fiberglass array</td>
<td>L</td>
<td>NRC = 0.013 (W_t)</td>
<td>RC = 0.002 (W_t)</td>
<td>Same</td>
</tr>
<tr>
<td>Graphite/epoxy reflector</td>
<td>Ku</td>
<td>NRC = 0.722 (W_t) (0.263)</td>
<td>RC = 0.0361 (W_t) (0.65)</td>
<td>SDCM model</td>
</tr>
<tr>
<td>Solid-state transmitters</td>
<td>HF, VHF</td>
<td>NRC = 0.746 (W_t) (0.7)</td>
<td>RC = 0.06Nt</td>
<td>Space Division model</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>NRC = 0.746 (W_t) (0.7)</td>
<td>RC = 0.06Nt</td>
<td>Vendor survey</td>
</tr>
<tr>
<td>Uplink</td>
<td>All</td>
<td>NRC = 0.373 (W_t) (0.7)</td>
<td>RC = 0.051 (W_t)</td>
<td>Space Division model</td>
</tr>
<tr>
<td>Signal processing</td>
<td>All</td>
<td>NRC = 0.373 (W_t) (0.7)</td>
<td>RC = 0.057 (W_t)</td>
<td>Space Division model</td>
</tr>
</tbody>
</table>

Legend:

- \(N_t\) Number of transmitters

4.3.1.1 Antenna Cost Estimates

For planar array antennas, the U.S Navy LCC handbook recurring cost estimate includes the structure, dipole elements, elevation network, and ground plane. In 1984 dollars the CER for recurring cost is $4,900 to $9,800/m². The MSFC model CER for graphite epoxy structures is $2,205/kg ($1,000/lb). For a 60-meter diameter, 1,000 kg box truss ring structure, the Navy CER predicts a recurring cost of from $13.9 to $27.7M dollars while the MSFC CER predicts $2.2M. Since the Navy CER assumes a continuous structure and the MSFC model is for graphite structures only, a compromise value of $4,410/kg ($2,000/lb) was selected for array antenna recurring cost. For nonrecurring cost, the MSFC CER at $28,665/kg ($13,000/lb) was considered adequate. These CERs were also selected for the L-band honeycomb fiberglass panel array antennas.

The Ku-band reflector antenna costs were best fit by the SDCM model. However, the SDCM data base also contains specific costs for graphite epoxy Ku-band reflectors used for the LANDSAT-D program. These costs were used for the VOA Ku-band systems. The total recurring cost from the SDCM data base is $790,000 while the nonrecurring cost is estimated at $1,700,000 for one antenna or $850,000 per antenna for multiple antennas. There are up to eight reflectors (two uplink and six downlink) for a single Ku-band satellite concept.

4.3.1.2 Feeder Link Electronics and Antennas

A Ku-band feed link is assumed for all systems, augmented by a V-band crosslink capability for HF and VHF concepts. The Space Division model CER for communications electronics was used to estimate costs for all satellites based on the weight estimates described in Section 4.1. The costs for the L- and Ku-band satellites is considerably less than the HF- and VHF-satellites since no gimbaling, autotrack, or crosslink are required.
4.3.1.3 Signal Processing Cost Estimates

For all systems, the Space Division model communications electronics CERs were selected to estimate cost of onboard signal processing electronics. The weights used for the CERs were obtained using the estimating procedure of Section 4.1.

4.3.1.4 Transmitters Cost Estimates

The nonrecurring cost estimate for HF- and VHF-bands transmitters uses the Space Division Model CER for communications electronics. For HF and VHF satellites with different sized transmitters, the average transmitter weight was used as the input to obtain nonrecurring cost. For each of the four L-band systems, the largest transmitter size from all satellites in a system was used for the input to the CER.

The nonrecurring cost for the Ku-band system is based on a TWTA cost from the SDCM. TWTA's for Ku-band should require little development. A value of $37,500 was used for the development cost.

Recurring cost estimates for HF- and VHF-bands were obtained from a CER developed after conversations with vendors. Estimated cost to produce solid state amplifiers up to 1 kW was $60,000 per unit. For L-band, the Space Division model CER for communication electronics was selected. A learning factor included in the LCC estimating computer program reduces the overall average unit cost based on the number of transmitters. To estimate the transmitter's total recurring cost for each L-band system, the computer program was run for each complement of transmitter size and number. The total recurring cost for each set of transmitters (corresponding to each unique array antenna) was obtained and summed to get the total recurring transmitter cost for the system.

The Ku-band recurring cost estimates use an average cost for a 20 watt TWTA of $790,000 as obtained from the SDCM data base. This value is reduced by an 80% learning factor for multiple TWTA's required on each of the Ku-band system satellites. Thus the average unit cost is $632,000 per TWTA.

4.3.2 Electrical Power Subsystem (EPS) Cost Estimates

The EPS will provide power far in excess of that required for any existing satellite system. For this reason, the CERs in existing LCC models were considered inadequate for estimating EPS costs for HF-, VHF- and L-band satellites. A brief literature search was conducted to identify cost estimates of high power EPS. From information in ref. 17, 19, and 20, data points of cost vs power were identified as shown in Table 50. From the MSFC model, typical EPS components cost fractions were identified as shown in Table 51.

<table>
<thead>
<tr>
<th>Source</th>
<th>Power</th>
<th>Nonrecurring cost</th>
<th>Recurring cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockheed MSFC Study (NAS8-32981)</td>
<td>206 kW</td>
<td>$21M</td>
<td>$67.2M</td>
</tr>
<tr>
<td>TRW LaRC Study (NAS1-17568)</td>
<td>311</td>
<td>21</td>
<td>85.5</td>
</tr>
<tr>
<td>JSC space station study</td>
<td>12.5</td>
<td>12</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Nonrecurring cost fraction</th>
<th>Recurring cost fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar arrays</td>
<td>0.257</td>
<td>[0.38]</td>
</tr>
<tr>
<td>Batteries</td>
<td>0.126</td>
<td>[0.50]</td>
</tr>
<tr>
<td>Distribution</td>
<td>0.168</td>
<td>[0.17]</td>
</tr>
<tr>
<td>Control</td>
<td>0.451</td>
<td>[0.46]</td>
</tr>
</tbody>
</table>

129
From the data of Table 50, expressions for nonrecurring \((NRC_{sa})\) and recurring \((RC_{sa})\) cost of large solar arrays were developed as:

\[
\begin{align*}
RC_{sa} &= 0.3P + 20 \\
NRC_{sa} &= 0.094P + 16
\end{align*}
\] (4-19)

As indicated in Table 51, the solar arrays account for a fraction of the EPS cost. For conventional systems the fractions shown under the MSFC column would be used. However, for VOA high power satellites, the batteries will represent a very small part of the total EPS cost. For this reason, the new set of component cost fractions were identified for VOA high power satellites. Since the solar arrays are now assumed to account for 70% of EPS recurring cost, a new EPS recurring CER is obtained by dividing the cost for solar arrays by 0.7 resulting in:

\[
R_{C_{eps}} = 0.43P + 28.5
\] (4-20)

Likewise, a new EPS nonrecurring CER is obtained by dividing the solar arrays development cost relationship by 0.38 resulting in:

\[
NRC_{eps} = 0.247P + 42.1
\] (4-21)

where

- \(R_{C_{eps}}\) = EPS recurring cost \((\$M 1984)\)
- \(NRC_{eps}\) = EPS nonrecurring cost \((\$M 1984)\)
- \(P\) = Required EPS power (kW)

A comparison of the MSFC and new VOA CERs at 20 kW shows good comparison for recurring costs \((\$35M \text{ and } \$37M \text{ respectively})\). However, the estimated non-recurring costs from the MSFC model is \$102M\) while the corresponding VOA EPS CER results in \$47M\). The VOA CER is considered better since it takes into account an economy of scale and, the MSFC model may include the multiplicative factor of 2.5 to 3.0 used by MSFC to reflect increased development cost for manned vs unmanned spacecraft. The EPS CERs are summarized in Table 52.
TABLE 52. - COST ESTIMATING RELATIONSHIPS FOR OTHER SUBSYSTEMS

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>NCR CER</th>
<th>RC CER</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical power >20 kW</td>
<td>NCR = 42 1 + 0.247P</td>
<td>RC = 28 5 + 0.043P</td>
<td>Lockheed multi-kW study, NASA space station, Boeing electric prop.</td>
</tr>
<tr>
<td><20 kW</td>
<td>NCR = 14 3P^0.656</td>
<td>RC = 3.62P^0.757</td>
<td>NASA MSFC.</td>
</tr>
<tr>
<td>Attitude control</td>
<td>NRC = 2.923 + 0.2241W_T</td>
<td>RC = 0.0577W_T</td>
<td>Space Division Model</td>
</tr>
<tr>
<td>Auxiliary propulsion</td>
<td>NRC = 0.661 + 0.049W_T</td>
<td>RC = 0.0085W_T</td>
<td>Space Division model & Boeing electric propulsion study</td>
</tr>
<tr>
<td>Chemical blowdown</td>
<td>NRC = 0.36W_T^0.6242</td>
<td>RC = 0.0809W_T^0.722</td>
<td>JPL (JPLD-972, 12/83)</td>
</tr>
<tr>
<td>- N_2H_4 pressurant</td>
<td>NRC = 0.65W_T^0.545</td>
<td>RC = 0.14W_T^0.65</td>
<td>Same</td>
</tr>
<tr>
<td>- N_2O_4/MMH</td>
<td>NCR = 1.04W_T^0.545</td>
<td>RC = 0.211W_T^0.65</td>
<td>Same</td>
</tr>
<tr>
<td>- LO_2/LH_2</td>
<td>NCR = 3.2W_T^0.545</td>
<td>RC = 0.63W_T^0.65</td>
<td>Same</td>
</tr>
<tr>
<td>- H_2 resistojet</td>
<td>NCR = 1.64W_T^0.545</td>
<td>RC = 0.27W_T^0.206</td>
<td>Same</td>
</tr>
<tr>
<td>- Cold gas</td>
<td>NCR = 0.144W_T^0.226</td>
<td>RC = 0.36W_T^0.226</td>
<td>Same</td>
</tr>
</tbody>
</table>

4.3.3 Attitude Control Subsystem (ACS) Cost Estimates

The satellite designs all use the reaction control system (RCS) for attitude control. Therefore, the attitude control subsystem consists of electronics alone. For this reason, the Space Division LCC Model CER for attitude determination was considered the best choice for both recurring and nonrecurring satellite costs. The ACS CERs are shown in Table 52.

4.3.4 Auxiliary Propulsion Subsystem (APS) Cost Estimates

The existing CERs are based on use of chemical APS, generally hydrazine blowdown or pressurized designs. For HF-, VHF-, and L-band satellites, electric propulsion was considered a better design because of the higher specific impulse and resulting lower propellant and subsystem mass. Proposed use of electric propulsion required development of a CER for electric propulsion. From ref. 21, a cost relationship was identified for recurring cost of an electric propulsion subsystem. For nonrecurring cost, an assumption was made that development costs would be about the same as for a chemical subsystem. As a result, the Space Division CER for nonrecurring cost was considered adequate. The CERs are shown in Table 53.
4.3.5 TT&C Subsystem Cost Estimates

The CERs contained in most LCC models should be adequate for estimating TT&C subsystem costs. For consistency, the CERs from the Space Division model were selected. These CERs are shown in Table 53.

4.3.6 Thermal Control Subsystem Cost Estimates

The Space Division CERs were selected, again for consistency. The CERs are also shown in Table 53.

4.3.7 Equipment Bay and Mechanisms Cost Estimates

The equipment bay structure and the mechanisms for stowage and deployment will be similar to designs used on previous unmanned satellites. Thus, the Space Division model CERs should be adequate. The CERs are also shown in Table 53.

4.3.8 Other Program Costs

The nonrecurring and recurring costs estimated by the subsystem CERs do not include other generic program costs. The other costs that were included in the cost estimating approach follow:

1) Aerospace ground equipment costs;
2) Systems engineering, integration, and program costs;
3) Launch costs;
4) Ground operations costs.

4.3.8.1 Aerospace Ground Equipment Costs

These costs include tooling and investment costs for development, test, and production facilities. These costs are estimated by the Space Division Model at 11.3% of platform costs. Nonrecurring platform cost is the sum of the subsystem nonrecurring costs and likewise, recurring platform cost is the sum of subsystem recurring costs.

4.3.8.2 Systems Engineering, Integration, and Program Level Costs

Systems engineering and integration costs are expressed differently by different LCC models. The SDCM model uses the following factors:

1) 32% of design cost,
2) 27% of development and test cost,
3) 32% of production engineering cost,
4) 22% of first unit fabrication cost.
The MSFC LCC model assumes integration costs to be 15% of the nonrecurring platform cost and 10% of first unit production cost. Other program support costs (e.g., management, quality control) are estimated as a percent of total costs including integration. The SDCM model estimates these costs at 18% of costs before integration. Our approach is the sum of the subsystem's recurring and nonrecurring costs to obtain base recurring and nonrecurring costs. These base costs are then multiplied by 10 and 15% respectively to include integration cost and then by 23% to include program level costs.

4.3.8.3 Launch Costs

The launch costs for each satellite include the cost of the upper stage and the cost for STS launch computed as a percent of STS payload used times cost for a dedicated launch. The percent of payload used is the maximum of the total of satellite plus upper stage weight divided by 65,000 lb, or upper stage plus satellite length divided by 60 ft. This percent is then multiplied by the assumed dedicated STS launch cost. For point estimates, a subsidized total launch was assumed at a cost of $100M for full payload in $1984. The upper stage costs assumed follow:

1) TOS/AMS - $15M,
2) Centaur G - $25M,
3) Centaur B - $50M,

The basic launch cost vs weight equations are then:

\[STS/TOS/AMS - \text{Cost} = 15M + 100M \left(\frac{34,541 + W_s}{65,000} \right), \quad (4-22) \]
\[STS/Centaur - \text{Cost} = 25M + 100M \left(\frac{37,518 + W_s}{65,000} \right), \quad (4-23) \]
\[STS/STS/Centaur B - \text{Cost} = 150M + 100M \left(\frac{W_g}{65,000} \right), \quad (4-24) \]

where

\[W_s = \text{Spacecraft weight (lb)} \]

The equivalent launch cost as a function of length equations are:

\[STS/TOS/AMS - \text{Cost} = 15M + 100M \left(\frac{20 + L_{ssl}}{60} \right), \quad (4-25) \]
\[STS/Centaur - \text{Cost} = 25M + 100M \left(\frac{23 + L_{ssl}}{60} \right), \quad (4-26) \]
\[STS/STS/Centaur B - \text{Cost} = 150M + 100M \left(\frac{L_{ssl}}{60} \right), \quad (4-27) \]

where

\[L_{ssl} = \text{Spacecraft stowed length (ft)} \]
The maximum launch costs were limited to the following:

- STS/TOS/AMS - $115M,
- STS/Centaur - $125M,
- STS/STS/Centaur B - $250M.

4.3.8.4 Ground Operations Costs

The ground control costs include the costs to maintain the operational orbit, to maintain the required satellite attitude, and to perform satellite on-orbit operations through the TT&C subsystem. The costs of a station include facility fabrication, ground equipment, procurement, and manpower costs. Although manpower cost is spread over the station lifetime, it is lumped into the total cost of each station. An eight person crew providing three shifts of coverage is assumed for each station with tracking capability as required for nongeostationary orbits. The eight persons include a working manager, two maintenance personnel, and five mission operators/analysts. The rate assumed for personnel was $75,000 per year. Total station cost for a 7-yr operation is $24,000,000, including manpower costs, equipment replacement, and spares. A further assumption is that the basic 8-person station can monitor and control up to eight satellites using satellite cross links for both spacecraft control and program feed. Each additional set of eight satellites will increase ground operations cost by $3.5M for each 7 years for three additional personnel and additional tracking equipment. The total 7-yr ground operations cost for two stations for nongeostationary orbit systems is then expressed as:

\[
\text{Cost} = 24\text{M} + 7.0\text{M} \times (n) \quad (4-28)
\]

where

\[\begin{align*}
n &= \text{number of additional sets or partial sets of eight satellites}
\end{align*}\]

The cost of geostationary ground stations is estimated at $18,000,000 for each seven years of operation. The reduced cost results from requirement for fewer personnel and no tracking equipment. Also, none of the VOA geostationary systems have more than eight satellites; additional crews and equipment will not be required.
4.3.8.5 Learning Factor for Satellite Fabrication

To derive the total system life-cycle cost for multisatellite systems, a learning factor is assumed for satellite fabrication. The basic learning curve equations are:

\[C_{\text{ave}} = C_{ul} N^{-b} \] \hspace{1cm} (4-29)

where

\[b = \frac{\log(m)}{\log(2)} \]

\[C_{\text{ave}} = \text{average cost of } N \text{ units} \]

\[C_{ul} = \text{first unit fabrication cost} \]

\[N = \text{number of units to be fabricated} \]

\[m = \text{slope of learning curve (0.9 assumed)} \]

The total fabrication cost \(C_t \) is then:

\[C_t = C_{\text{ave}} N = C_{ul} N(1-b) \] \hspace{1cm} (4-30)

The total system recurring cost, including launch cost, excluding inflation factors for phase acquisition, is then:

\[R C_t = C_t + N C_1 \] \hspace{1cm} (4-31)

where

\[R C_t = \text{total recurring cost} \]

\[C_1 = \text{cost per launch} \]
The system concepts and satellite design options for the four bands are presented in this section. Satellite designs were generated and analysis performed to determine the key performance parameters of weight, volume, cost, and RF power flux density on the ground. These satellite designs were then compared to the payload capability of the launch vehicle (Centaur G, TOS/AMS, and a hypothetical large Centaur) to ensure they were launch compatible.

For HF and VHF satellite designs, the channel requirements and PFD requirements were quite severe. Where these requirements could not be met using a launch compatible satellite, the maximum capability satellite was determined and its reduced capability was calculated. These reduced capabilities were then compared to the VOA requirements to develop a system within reasonable cost parameters. Because the capabilities of satellites launched on a Centaur could not achieve VOA requirements, a larger satellite design was developed that would use a full orbiter bay and a hypothetical Centaur-type stage that would fill a second orbiter and produce a much greater capability on a single satellite.

The design and analysis flow used for the satellite system design and analysis is presented in Figure 76. Subsystem selection was based on the desire to use as much off-the-shelf hardware as possible, but still achieve the VOA requirements. This was feasible for the Ku-band and L-band systems. For the VHF and HF systems, both the antenna and electric power subsystem would require advanced technology. The power subsystem technology could be derived from space station development available in the early to mid 1990's.

Analysis was performed for all satellite system options to determine the ability of a constellation of the proposed satellites to cover the 15 zones at the VOA specified times.
For Ku-band operation, the satellite system design resulted in a single point design to meet all VOA requirements. The system uses existing technology at reasonable power levels. The Ku-band system consists of three geostationary satellites in three orbit slots. Each satellite consists of a farm of offset fed parabolic dish antennas attached to a central spacecraft bus. The number of antennas per satellite varies depending on the number of zones covered.

The parabolic dishes use graphite composite technology to provide enhanced structural and thermal characteristics. Figure 77 illustrates the proposed satellite design. The following sections describe the results of the various design and analysis processes used to determine the satellite characteristics.

![Ku-band satellite design](image)

5.1.1 Ku-Band Systems Weight and Volume Estimates

The Ku-band satellites weight and volume are summarized in Table 54. The electric power subsystem requirements are based on a transmitter efficiency of 35% and housekeeping power of 500 watts. Also, unlike systems designed for the other bands, the Ku-band satellites are sized for operation during occultation. Table 55 shows the results of the sizing run for the first satellite of the system. This satellite has three payload antennas while the other two satellites each have six.
SYSTEM CONFIGURATION SUMMARY

<table>
<thead>
<tr>
<th>System</th>
<th>Mass (kg)</th>
<th>Volume (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ku Band S/C #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rf Payload</td>
<td>228</td>
<td>2.05</td>
</tr>
<tr>
<td>Auxiliary Propulsion Subsystem</td>
<td>203.1</td>
<td>7.22</td>
</tr>
<tr>
<td>Telemetry, Tracking and Command</td>
<td>26.4</td>
<td>0.02</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>79.08425</td>
<td>3.179924</td>
</tr>
<tr>
<td>Thermal Control Subsystem</td>
<td>4.69708</td>
<td>4.736863E-02</td>
</tr>
<tr>
<td>Equipment Bay Structure</td>
<td>80.5863</td>
<td>11.19756</td>
</tr>
<tr>
<td>TOTAL SYSTEM SUMMARY</td>
<td>617.7463</td>
<td>15.84884</td>
</tr>
<tr>
<td>Ku Band S/C #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rf Payload</td>
<td>599</td>
<td>3.1</td>
</tr>
<tr>
<td>Auxiliary Propulsion Subsystem</td>
<td>203.1</td>
<td>7.21</td>
</tr>
<tr>
<td>Telemetry, Tracking and Command</td>
<td>26.4</td>
<td>0.02</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>78.04573</td>
<td>3.632764</td>
</tr>
<tr>
<td>Thermal Control Subsystem</td>
<td>5.59086</td>
<td>5.684232E-02</td>
</tr>
<tr>
<td>Equipment Bay Structure</td>
<td>104.6118</td>
<td>14.1773</td>
</tr>
<tr>
<td>TOTAL SYSTEM SUMMARY</td>
<td>915.7081</td>
<td>16.8473</td>
</tr>
<tr>
<td>Ku Band S/C #3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rf Payload</td>
<td>405</td>
<td>3.1</td>
</tr>
<tr>
<td>Auxiliary Propulsion Subsystem</td>
<td>203.1</td>
<td>2.21</td>
</tr>
<tr>
<td>Telemetry, Tracking and Command</td>
<td>26.4</td>
<td>0.02</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>75.46564</td>
<td>3.436316</td>
</tr>
<tr>
<td>Thermal Control Subsystem</td>
<td>4.910735</td>
<td>4.926337E-02</td>
</tr>
<tr>
<td>Equipment Bay Structure</td>
<td>104.2808</td>
<td></td>
</tr>
<tr>
<td>TOTAL SYSTEM SUMMARY</td>
<td>817.0571</td>
<td>16.86876</td>
</tr>
</tbody>
</table>

Original page is of poor quality

138
TABLE 55. - KU-BAND SIZING EXAMPLE

Ku-band Sizing Example

EPS SUMMARY

- Power required from source = 1.320852 KW
- Power at load, average = .76 KW
- Orbital altitude = 35786 Km
- Orbital period = 23.93445 hrs
- Spacecraft lifetime requirement = 7 yrs
- Total eclipse time per orbit= 1.156897 hrs
- Solar array degradation factor due to radiation = .9538934
- Solar array thermal adjustment factor = .8943101
- Solar array cover slide weight factor = 0
- Antenna Size = 1 m by 1 m

***** Power Generation Sizing *****

For Si Blanket Array
- Area required = 9.847787 m²
- Weight = 15.75646 Kg Volume = .0787823 m³

***** Shunt Regulator Sizing *****

- Shunt Regulator Weight = 4.034412 Kg
- Shunt Regulator Volume = 4.576431E-03 m³

***** Power Switching/Distribution Sizing *****

- Power Switching Equip Wt. = 2.479833 Kg
- Power Switching Equip Vol. = 2.811602E-03 m³

- Distribution Weight; Source to Bus = .100516 Kg
- Distribution Weight; Bus to Load = 3.203065E-02 Kg
- Total Distribution Weight = .1325466 Kg
- Total Switching and Distribution Weight = 2.61238

****** TOTAL SI SYSTEM WEIGHT W/O BATTERIES(kg) = 22.40525
****** TOTAL SI SYSTEM VOLUME W/O BATTERIES(M^3) = 8.617033E-02

***** Battery Sizing *****

For NiCd Batteries
- Battery Capacity Required = 1051.725 Wh
- Battery Weight = 29.81588 Kg Battery Volume = 1.489074E-02 m³

***** Battery Charger Sizing *****

For NiCd Batteries
- Battery Charger Weight = .1675525 Kg Battery Charger Volume = 1.899688E-04 m³

TOTAL EPS MASS(kg) = 52.38868
TOTAL EPS VOLUME(M^3) = .101251
TABLE 55. - CONTINUED

Ku-band Sizing Example

THERMAL CONTROL SUBSYSTEM SIZING SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature (°C)</td>
<td>55</td>
</tr>
<tr>
<td>Maximum heat radiated (W)</td>
<td>250</td>
</tr>
<tr>
<td>Radiative surface emissivity factor</td>
<td>0.0</td>
</tr>
<tr>
<td>Radiative surface absorptivity factor</td>
<td>0.2</td>
</tr>
<tr>
<td>Required radiator surface area (M²)</td>
<td>0.9473726</td>
</tr>
</tbody>
</table>

Thermal Control Subsystem mass (Kg) 4.62508 Lbs 10.19969
Thermal Control Subsystem area (M²) 0.9473726
Thermal Control Subsystem Volume (M³) 4.736863E-02

Ku-band Sizing Example

EQUIPMENT BAY SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass of equipment bay (kg)</td>
<td>58.58634</td>
</tr>
<tr>
<td>Mass of deployment/stowage mechanisms (kg)</td>
<td>25</td>
</tr>
<tr>
<td>Total mass (kg)</td>
<td>83.58633 (Lbs) 184.3079</td>
</tr>
<tr>
<td>Total volume of structure and mechanisms (m³)</td>
<td>16.79034</td>
</tr>
</tbody>
</table>

SYSTEM CONFIGURATION SUMMARY

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Payload</td>
<td>228</td>
<td>2.05</td>
</tr>
<tr>
<td>Auxiliary Propulsion Subsystem</td>
<td>203.1</td>
<td>7.22</td>
</tr>
<tr>
<td>Telemetry, Tracking and Command</td>
<td>26.4</td>
<td>0.02</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>52.38868</td>
<td>1.01251</td>
</tr>
<tr>
<td>Thermal Control Subsystem</td>
<td>4.625708</td>
<td>4.736863E-02</td>
</tr>
<tr>
<td>Equipment Bay Structure</td>
<td>83.58633</td>
<td>11.19306</td>
</tr>
</tbody>
</table>

TOTAL SYSTEM SUMMARY

<table>
<thead>
<tr>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL SYSTEM SUMMARY</td>
<td>598.1007</td>
</tr>
<tr>
<td></td>
<td>15.63218</td>
</tr>
<tr>
<td></td>
<td>1318.812 (lbs)</td>
</tr>
</tbody>
</table>

**
TABLE 55. - CONCLUDED

Ku-band Sizing Example

RF SUBSYSTEM SIZING SUMMARY
Data for Honeycomb Panel Array (Non-phased)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna Aperture Area (m²)</td>
<td>0</td>
</tr>
<tr>
<td>Total Antenna Structure Mass (kg)</td>
<td>0</td>
</tr>
<tr>
<td>Total Antenna Structure Volume (m³)</td>
<td>0</td>
</tr>
<tr>
<td>Weight of Uplink Components (kg)</td>
<td>119</td>
</tr>
<tr>
<td>Volume of Uplink Components (m³)</td>
<td>2</td>
</tr>
<tr>
<td>Weight of Signal Proc. Components (kg)</td>
<td>109</td>
</tr>
<tr>
<td>Volume of Signal Proc. Components (m³)</td>
<td>0.05</td>
</tr>
<tr>
<td>Total RF Subsystem Mass (kg)</td>
<td>228</td>
</tr>
<tr>
<td>Total RF Subsystem Volume (m³)</td>
<td>2.05</td>
</tr>
</tbody>
</table>

Ku-band Sizing Example

ATTITUDE CONTROL, STATIONKEEPING AND MANEUVERING SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ACS subsystem mass (kg)</td>
<td>13.1</td>
</tr>
<tr>
<td>Total ACS subsystem volume (m³)</td>
<td>0.02</td>
</tr>
<tr>
<td>Total RCS subsystem mass (kg)</td>
<td>190</td>
</tr>
<tr>
<td>Total RCS subsystem volume (m³)</td>
<td>2.2</td>
</tr>
<tr>
<td>Total RCS/ACS subsystem mass (kg)</td>
<td>203.1</td>
</tr>
<tr>
<td>Total RCS/ACS subsystem volume (m³)</td>
<td>2.22</td>
</tr>
</tbody>
</table>

Ku-band Sizing Example

TT&C SUBSYSTEM SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total TT&C subsystem mass (kg)</td>
<td>26.4</td>
</tr>
<tr>
<td>Total TT&C subsystem volume (m³)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

5.1.2 Ku-Band Coverage Analysis

To meet the coverage requirements in the SOW, the three satellites were placed in unique geostationary orbit slots. Figure 78 shows the location of each satellite. It was assumed that each satellite would carry multiple antennas targeted to the center of each zone to be covered. The first satellite was placed at 70° W. longitude and provided coverage for Zones 1, 2, and 3. The next satellite was placed at 15° E. longitude and provided coverage for Zones 4 through 9. The final satellite was placed at 110° E. longitude and provided coverage for Zones 10 through 15. To assure coverage up to 70° latitude, (to cover Zones 9, 10, 12 and 14) a minimum satellite elevation angle of 11.5° was required. The three geostationary satellites can provide 24 hour continuous service to each zone. Eclipse effects at geostationary orbit will
be maximum at spring and fall equinox resulting in slightly more than one hour of eclipse time when the satellites could not transmit if battery storage had not been provided.

Figure 78. - Constellation for Ku-band—geostationary, three satellites.

5.1.3 Ku-Band System RF Performance Analysis

For each zone covered, an RF performance analysis was performed to determine the antenna size and power requirements needed to provide a PFD of -131 dBW/m² at edge of coverage. The RF analysis took the servicing satellite location and zone size into account when determining antenna aperture size. In addition, Ku-band reflector antennas were assumed to have a beamwidth equal to:

\[BW = \frac{70\lambda}{D} \]

(5-1)

where

\(BW \) = beamwidth, degree
\(\lambda \) = wavelength, m
\(D \) = reflector diameter, m
To determine the PFD on the ground, a 3-dB polarization loss was assumed for circular polarization transmission and a linear polarized receiver. Spreading loss was calculated using the maximum slant range required for covering the zone (the slant range being the distance from the satellite to the ground). The maximum slant range occurs at the same point on the ground as the minimum spacecraft elevation angle.

A computer program (RFANAL—ref. the Appendix) was written to perform these calculations quickly and efficiently. Table 56 shows an example of the program output for Zone 9. The propagation loss of 0 dB used in this analysis is discussed in Section 3.2. The aperture efficiency of 0.5 was used to account for feed mismatch and circular polarization conversion loss, spillover loss, and losses due to reflector surface accuracy. The power is shown in watts required per channel for an EOC PFD of -131 dBW/m².

After each zones' aperture and power requirement were determined, the zones common to a single satellite were combined to determine the satellite's peak power requirement by combining the service requirements (showing how many channels for each zone are at any given UTC time were required to be transmitted) with the RF power required per zone per channel.

The results are shown in Table 57. Of the three geostationary satellites, the highest power requirement is 159 watts occurring at UTC 415. This was the result of simultaneously requiring 10 channels to operate in Zone 5, two channels in Zone 6, four channels in Zone 7, one channel in Zone 8 and six channels in Zone 9.

TABLE 56. RF ANALYSIS FOR KU-BAND, ZONE 9

<table>
<thead>
<tr>
<th>Zone covered</th>
<th>Zone 9 GEO Ku-band at 35786</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital altitude</td>
<td>35786 km</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>12200 MHz</td>
</tr>
<tr>
<td>Satellite location</td>
<td>0 Lat, 15 Long</td>
</tr>
<tr>
<td>Zone size</td>
<td>37x70 Lat, 20x53 Long</td>
</tr>
<tr>
<td>Aperture size</td>
<td>.659 m x .334 m using Tapered illumination</td>
</tr>
<tr>
<td>Antenna EOC gain</td>
<td>29.5 dBi</td>
</tr>
<tr>
<td>Antenna aperture efficiency</td>
<td>50%</td>
</tr>
<tr>
<td>Antenna beamwidth</td>
<td>2.613 x 5.146°</td>
</tr>
<tr>
<td>Ground coverage</td>
<td>3673.46 x 3673.46 km, 33 x 33°</td>
</tr>
<tr>
<td>Antenna scan angle</td>
<td>0</td>
</tr>
<tr>
<td>Polarization margin</td>
<td>3 dB</td>
</tr>
<tr>
<td>Propagation loss</td>
<td>0 dB</td>
</tr>
<tr>
<td>Min elevation angle</td>
<td>11.475</td>
</tr>
<tr>
<td>Spreading loss</td>
<td>163.13 dB</td>
</tr>
<tr>
<td>Slant range</td>
<td>40429.3 km</td>
</tr>
<tr>
<td>Power read/channel for EOC PFD of -131 dBW/m²</td>
<td>3.61 W</td>
</tr>
<tr>
<td>EOC EIRP at EOC PFD of -131 dBW/m²</td>
<td>35.13 dBW</td>
</tr>
</tbody>
</table>
TABLE 57 - KU-BAND ANTENNA DESIGN SUMMARY

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Zones</th>
<th>Aperture size (m)</th>
<th>No. of channels</th>
<th>Max power per aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.49 x 0.32</td>
<td>2</td>
<td>9.7 W</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.42 x 0.26</td>
<td>2</td>
<td>12.2 W</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.17 x 0.17</td>
<td>2</td>
<td>56.0 W</td>
</tr>
</tbody>
</table>

Satellite worst case design power at UTC 45 = 78 W

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Zones</th>
<th>Aperture size (m)</th>
<th>No. of channels</th>
<th>Max power per aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>0.37 x 0.25</td>
<td>2</td>
<td>15.9 W</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.55 x 0.24</td>
<td>11</td>
<td>66.4 W</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.66 x 0.23</td>
<td>3</td>
<td>13.5 W</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.18 x 0.24</td>
<td>4</td>
<td>62.6 W</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.35 x 0.36</td>
<td>2</td>
<td>11.1 W</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.66 x 0.33</td>
<td>6</td>
<td>21.7 W</td>
</tr>
</tbody>
</table>

Satellite worst case design power at UTC 415 = 159 W

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Zones</th>
<th>Aperture size (m)</th>
<th>No. of channels</th>
<th>Max power per aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>0.43 x 0.37</td>
<td>3</td>
<td>14.8 W</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.33 x 0.30</td>
<td>4</td>
<td>20.7 W</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.85 x 0.23</td>
<td>2</td>
<td>8.2 W</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.18 x 0.22</td>
<td>6</td>
<td>103.5 W</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0.77 x 0.34</td>
<td>2</td>
<td>6.1 W</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.18 x 0.33</td>
<td>1</td>
<td>12.7 W</td>
</tr>
</tbody>
</table>

Satellite worst case design power at UTC 1100 = 129 W

The Ku-band three-satellite system LCCs are summarized in Table 58. Figure 79 shows the total cumulative cost as a linear function, and yearly cost, as a bar graph, for a 24-yr life cycle. Assuming four launches per year combined with a 7-yr satellite lifetime, three sets of launches are required starting after a 3-yr development program. This approach provides a 21-yr, full coverage Ku-band capability. The costs shown during the periods between launches include only the ground stations operating cost ($18M per seven years). The different recurring cost for each satellite results from different sized apertures, different power requirements, and different numbers of downlink apertures for satellite number one (three, vs six for satellites one and two). The launch costs, determined from payload weight, are similar since most of the STS payload is due to the TOS/AMS upper stage. Two ground stations are assumed for the system, although an intersatellite link using the middle satellite would permit real-time communication from a single ground station. The reduced cost for the ground stations would be offset by increased nonrecurring and recurring costs for the middle satellite. No learning factor was assumed in deriving the total cost.

Since the Ku-band satellites are capable of operation even during the occulted period of the orbit, the LCC per channel hour is easily computed from total LCC divided by total channel hours.

TABLE 58. - KU-BAND SATELLITES LCC ESTIMATES, 1984 $

<table>
<thead>
<tr>
<th>System Satellite</th>
<th>S/C NRC</th>
<th>Recurring cost</th>
<th>Launch cost</th>
<th>Ground* cost</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>174</td>
<td>213</td>
<td>17</td>
<td>403</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>165</td>
<td>213</td>
<td>17</td>
<td>357</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>120</td>
<td>210</td>
<td>17</td>
<td>357</td>
</tr>
</tbody>
</table>

*20 years operational lifetime
5.1.5 Ku-Band Summary of Results

The Ku-band system designed for VOA applications consisted of three satellites in geostationary orbit. Each satellite carried multiple parabolic dish antennas targeted to specific zones. This resulted in a 100% match in coverage with the VOA requirements. The frequency of operation for the Ku-band system was 12.2 GHz with sufficient RF power in each satellite to provide a power flux density of -131 dBW/m2 at the edge of coverage. The orbit transfer stage used to deliver each satellite into orbit was the TOS/AMS, resulting in a payload capability to orbit of 3113 kg. This provided sufficient growth margin for satellites mass ranging from 618 to 819 kg.

Including a 3-yr development schedule, three sets of launches result in a 24-yr life cycle for satellite lifetimes of seven years. Total estimated cost for three sets of satellites is $1,189M$. Ground operations cost for 20 years would be $51M$. Thus, a 20-yr operational capability would cost $1,240M$. Twenty years of operation would provide 2,184,523 channel hours resulting in a cost of $568 per channel hour. Since the system life is 21 years, one year of productive service is left after the 20-yr program.
5.2 L-BAND SYSTEM

For L-band operation, the satellite system design and analysis resulted in a single point design at the high RF power requirement and three system options at the low RF power requirement. Each system design meets all VOA requirements with the high RF power system designed to meet the PFD requirement of -103.6 dBW/m² and the low RF power systems designed to meet the PFD requirement of -116.1 dBW/m². All designs use existing state-of-the-art technologies for communications, ACS, stationkeeping, TT&C, thermal control, and spacecraft structure.

Although the electrical power subsystem uses existing technology, the size of the system is larger than present day satellites and will require projected improvements in the state of the art, e.g., those demonstrated in the solar array flight experiment (SAFE). The communication subsystem is made up of rigid honeycomb panel nonscanning arrays and solid state transmitters. This technology is similar to the communication subsystem found on the Seasat-I Spacecraft, Section 3.4.1.2.

The high RF power L-band system consists of eight satellites. Each satellite consists of a farm of rigid panel arrays attached to a central spacecraft bus. The number of arrays per satellite varies depending on the number of zones covered, with each array illuminating a single zone. Figure 80 illustrates the proposed satellite design for the high RF power system.

The first option, Option I, for the low RF power L-band system consists of five satellites. Again each satellite consists of a farm of rigid panel arrays and each array illuminates a single zone. The next two low RF power options consist of three satellites each. The first, Option II, has individual arrays per zone, while the second, Option III, has a single array for multiple zones. Option II of the three satellite systems has a lower power requirement than Option III but is heavier due to the number of arrays on each satellite.

5.2.1 L-Band Systems Weight and Volume Estimates

Weights and volumes for the four L-band systems are summarized in Table 59. For sizing the electrical distribution weight from the bus to the load, the total area of all array antennas was computed and an equivalent area defined for the antenna diameter input to the EPS sizing program. Table 60 shows the sizing program results for satellite two of the high power system.
TABLE 59. - L-BAND SATELLITES WEIGHTS AND VOLUMES

<table>
<thead>
<tr>
<th>System</th>
<th>Satellite number</th>
<th>Weight</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-power requirement design (-103.6 dBW/m²) (eight satellites required)</td>
<td>1</td>
<td>3914 kg</td>
<td>26.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2444</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3710</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2981</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2821</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3373</td>
<td>23.2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4249</td>
<td>28.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2651</td>
<td>9.4</td>
</tr>
<tr>
<td>Low-power requirement option I (-116.1 dBW/m²) (five satellites required)</td>
<td>1</td>
<td>1323</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1472</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1460</td>
<td>19.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1707</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1176</td>
<td>5.2</td>
</tr>
<tr>
<td>Option II (-116.1 dBW/m²) (three satellites required)</td>
<td>1</td>
<td>1252</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2150</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2150</td>
<td>24.2</td>
</tr>
<tr>
<td>Option III (-116.1 dBW/m²) (three satellites required)</td>
<td>1</td>
<td>1065</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1893</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1835</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Note:
Satellite locations by satellite number are shown in Figures 81, 82 & 83.
TABLE 60. - L-BAND SIZING EXAMPLE

L-band Sizing Example

S/L #2 @ -103.6 dBH

RF SUBSYSTEM SIZING SUMMARY

Data for Honeycomb Panel Array (Non-phased)

Data for antenna no. 1

Antenna aperture (M)

<table>
<thead>
<tr>
<th>Power per transmitter (w)</th>
<th>Number of transmitters</th>
<th>Output power (kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.16667</td>
<td>216</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Antenna aperture area (M^2)

5.32

Total antenna structure mass (kg)

63.6227

Total antenna structure volume (m^3)

.266

Total RF transmitter mass (kg)

672.4055

Total RF transmitter volume (m^3)

1.621494

Data for Honeycomb Panel Array (Non-phased)

Data for antenna no. 2

Antenna aperture (M)

<table>
<thead>
<tr>
<th>Power per transmitter (w)</th>
<th>Number of transmitters</th>
<th>Output power (kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.03704</td>
<td>324</td>
<td>12</td>
</tr>
</tbody>
</table>

Antenna aperture area (M^2)

7.38

Total antenna structure mass (kg)

84.60817

Total antenna structure volume (m^3)

.369

Total RF transmitter mass (kg)

1258.432

Total RF transmitter volume (m^3)

2.799696

Weight of uplink components (kg)

78

Volume of uplink components (m^3)

.5

Weight of signal proc. components (kg)

87

Volume of signal proc. components (m^3)

.03

Total RF subsystem mass (kg)

2244.068

Total RF subsystem volume (m^3)

5.58619
TABLE 60. - CONTINUED

L-band Sizing Example
S/C #2 @ -103.6 dB

EPS SUMMARY

- Power required from source = 30,0774 KW
- Power at load, average = 28.65385 KW
- Orbital altitude = 35786 Km
- Orbital period = 23.93445 hrs
- Spacecraft lifetime requirement = 7 yrs
- Total eclipse time per orbit = 1.15697 hrs
- Solar array degradation factor due to radiation = .9538934
- Solar array thermal adjustment factor = .8943101
- Solar array cover slide weight factor = 0
- Antenna Size = 3.065372 m by 3.065372 m

***** Power Generation Sizing *****

For Si Blanket Array
- Area required = 224.2461 m²
- Weight = 358.7937 Kg
- Volume = 1.799369 m³

***** Shunt Regulator Sizing *****

- Shunt Regulator Weight = 51.63594 Kg
- Shunt Regulator Volume = 5.054415E-02 m³

***** Power Switching/Distribution Sizing *****

- Power Switching Equip Wt. = 9.007568 Kg
- Power Switching Equip Vol. = 1.021266E-02 m³

- Distribution Weight; Source to Bus = 10.92231 Kg
- Distribution Weight; Bus to Load = 2.235811 Kg
- Total Distribution Weight = 13.15812 Kg
- Total Switching and Distribution Weight = 22.16568

- TOTAL SI SYSTEM WEIGHT W/O BATTERIES(kg) = 432.5953
- TOTAL SI SYSTEM VOLUME W/O BATTERIES(m³) = 1.862725

***** Battery Sizing *****

For NiCd Batteries
- Battery Capacity Required = 1051.725 Wh
- Battery Weight = 29.81588 Kg
- Battery Volume = 1.489074E-02 m³

***** Battery Charger Sizing *****

For NiCd Batteries
- Battery Charger Weight = .1675525 Kg
- Battery Charger Volume = 1.899688E-04 m³

- TOTAL EPS MASS(kg) = 462.5787
- TOTAL EPS VOLUME(M³) = 1.877806
ATTITUDE CONTROL, STATIONKEEPING AND MANEUVERING SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ACS subsystem mass (Kg)</td>
<td>57.7</td>
<td>Lbs 127.2285</td>
</tr>
<tr>
<td>Total ACS subsystem volume (M³)</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Total RCS subsystem mass (Kg)</td>
<td>304</td>
<td>Lbs 670.3201</td>
</tr>
<tr>
<td>Total RCS subsystem volume (M³)</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Total RCS/ACS subsystem mass (Kg)</td>
<td>361.7</td>
<td></td>
</tr>
<tr>
<td>Total RCS/ACS subsystem volume (M³)</td>
<td>2.25</td>
<td></td>
</tr>
</tbody>
</table>

TT&C SUBSYSTEM SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total TT&C subsystem mass (kg)</td>
<td>32.1</td>
</tr>
<tr>
<td>Total TT&C subsystem volume (M³)</td>
<td>.03</td>
</tr>
</tbody>
</table>

THERMAL CONTROL SUBSYSTEM SIZING SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature (C)</td>
<td>55</td>
</tr>
<tr>
<td>Maximum heat radiated (W)</td>
<td>9855.269</td>
</tr>
<tr>
<td>Radiative surface emissivity factor</td>
<td>.8</td>
</tr>
<tr>
<td>Radiative surface absorptivity factor</td>
<td>.2</td>
</tr>
<tr>
<td>Required radiator surface area (M²)</td>
<td>37.34631</td>
</tr>
<tr>
<td>Thermal Control Subsystem mass (Kg)</td>
<td>182.3497</td>
</tr>
<tr>
<td>Thermal Control Subsystem area (M²)</td>
<td>37.34631</td>
</tr>
<tr>
<td>Thermal Control Subsystem Volume (M³)</td>
<td>1.867315</td>
</tr>
</tbody>
</table>

EQUIPMENT BAY SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass of equipment bay (kg)</td>
<td>78.24596</td>
<td>Lbs 172.5324</td>
</tr>
<tr>
<td>Mass of deployment/stowage mechanisms (kg)</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Total mass (kg)</td>
<td>180.246</td>
<td>(Lbs) 397.4424</td>
</tr>
<tr>
<td>Total volume of structure and mechanisms (M³)</td>
<td>17.49899</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 60. - CONCLUDED

SYSTEM CONFIGURATION SUMMARY

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Mass (kg)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Payload</td>
<td>2244.068</td>
<td>5.58619</td>
</tr>
<tr>
<td>Auxiliary Propulsion Subsystem</td>
<td>361.7</td>
<td>2.25</td>
</tr>
<tr>
<td>Telemetry, Tracking and Command</td>
<td>32.1</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>462.5787</td>
<td>1.877806</td>
</tr>
<tr>
<td>Thermal Control Subsystem</td>
<td>182.3497</td>
<td>1.867315</td>
</tr>
<tr>
<td>Equipment Bay Structure</td>
<td>180.246</td>
<td>11.66599</td>
</tr>
</tbody>
</table>

TOTAL SYSTEM SUMMARY

<table>
<thead>
<tr>
<th></th>
<th>Mass (kg)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3463.042</td>
<td>23.27731</td>
</tr>
<tr>
<td></td>
<td>7636.009</td>
<td>(Lbs)</td>
</tr>
</tbody>
</table>

5.2.2 L-Band System Coverage Analysis

To meet the VOA coverage requirements, satellites for each L-band system were placed in three geostationary orbit slots. Depending on the system, the number of satellites in any one slot varied from four for the high RF power system to one for the low RF power system. Figures 81, 82, and 83 show the satellites locations for each system. The system designs call for each satellite to carry several array antennas with each antenna targeted to the center of a specific area to be covered. In the Option III design, the covered area consisted of multiple zones.

The first constellation of satellites was placed at 70° W. longitude and provided coverage for Zones 1, 2 and 3. The next satellite constellation was placed at 15° E. longitude and provided coverage for Zones 4 through 9. The final satellite constellation was placed at 110° E. longitude and provided coverage for Zones 10 through 15. To assure coverage up to 70° latitude for Zones 9, 10, 12 and 14, a minimum satellite elevation angle of 11.5° was required. The VOA coverage requirements were matched 100%.
Figure 81. - Constellation for high RF power L-band system—geostationary, eight satellites.
Figure 82. - Constellation for low RF power option 1 L-band system—geostationary, five satellites.
5.2.3 L-Band System RF Performance Analysis

For each L-band system, an RF performance analysis was performed to determine the antenna size and RF power requirements needed to provide the required PFD at edge of coverage. The RF analysis took the servicing satellite location and ground area to be covered into account when determining antenna aperture size. In addition, L-band nonscanning arrays were assumed to have a beamwidth equal to:

\[
\text{BW} = \frac{65\lambda}{D} \quad (5-2)
\]

where

\(\text{BW} = \text{beamwidth, degree}\)
\(\lambda = \text{wavelength, m}\)
\(D = \text{reflector diameter, m}\)

To determine the PFD on the ground, a 3-dB polarization loss was assumed for circular polarization transmission and linear polarized reception. Also, the spreading loss was calculated using the maximum slant range required for
ground coverage. The coverage area on the ground was equal to the zone covered for all but the last system, in which multiple zones were covered with a single aperture. A computer program was written to allow these calculations to be done quickly and efficiently. Table 61 shows an example of the program results for the high RF power system at Zone 9. Table 62 shows an example of the program results for Option III, the multiple zone per aperture case. The propagation loss of 0.0 dB used in the analysis is discussed in Section 3.2. The aperture efficiency of 0.8 was used to account for losses associated with array mismatch, amplitude and phase control of array elements and circular polarization conversion. The power per channel for the required PFD level is shown in watts.

TABLE 61. RF ANALYSIS FOR HIGH POWER L-BAND, ZONE 9

<table>
<thead>
<tr>
<th>Zone covered</th>
<th>Zone 9 GEO L-Band at 35786</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit altitude</td>
<td>35786 km</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>1500 MHz</td>
</tr>
<tr>
<td>Satellite location</td>
<td>0 Lat 15 Long.</td>
</tr>
<tr>
<td>Zone size</td>
<td>37x70 Lat, 20x53 Long.</td>
</tr>
<tr>
<td>Polarization</td>
<td>Circular</td>
</tr>
<tr>
<td>Aperture size</td>
<td>4.974 x 2.53 m using UNIFORM illumination</td>
</tr>
<tr>
<td>Antenna EOC gain</td>
<td>30.94 dBi</td>
</tr>
<tr>
<td>Antenna aperture efficiency</td>
<td>80%</td>
</tr>
<tr>
<td>Antenna beamwidth</td>
<td>2 613 x 5.146°</td>
</tr>
<tr>
<td>Antenna scan angle</td>
<td>0</td>
</tr>
<tr>
<td>Polarization margin</td>
<td>3 dB</td>
</tr>
<tr>
<td>Propagation loss</td>
<td>0 dB</td>
</tr>
<tr>
<td>Min elevation angle</td>
<td>0</td>
</tr>
<tr>
<td>Spreading loss</td>
<td>163.126 dB</td>
</tr>
<tr>
<td>Slant range</td>
<td>40429.3 km</td>
</tr>
<tr>
<td>Power reqd/channel for EOC PFD of -103.6 dBW/m²</td>
<td>1439.191 W</td>
</tr>
<tr>
<td>EOC EIRP at EOC PFD of -103.6 dBW/m²</td>
<td>62.53 dBW</td>
</tr>
<tr>
<td>EOC EIRP at EOC PFD of -116.1 dBW/m²</td>
<td>50.03 dBW</td>
</tr>
</tbody>
</table>

TABLE 62. RF ANALYSIS FOR LOW RF POWER L-BAND, OPTION III ZONES 4, 6, 7, AND 8 COMBINED

<table>
<thead>
<tr>
<th>Zone covered</th>
<th>Zone 4, 6, 7, & 8 GEO L-Band at 35786</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit altitude</td>
<td>35786 km</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>1500 MHz</td>
</tr>
<tr>
<td>Satellite location</td>
<td>0 Lat 15 Long. 40x60 Longitude</td>
</tr>
<tr>
<td>Zone size</td>
<td>35x44 Latitude, 33x 33°</td>
</tr>
<tr>
<td>Polarization</td>
<td>Circular</td>
</tr>
<tr>
<td>Aperture size</td>
<td>1.05 m x .893 m using UNIFORM illumination</td>
</tr>
<tr>
<td>Antenna EOC gain</td>
<td>19.67 dBi</td>
</tr>
<tr>
<td>Antenna aperture efficiency</td>
<td>80%</td>
</tr>
<tr>
<td>Antenna beamwidth</td>
<td>12.38 x 14 556°</td>
</tr>
<tr>
<td>Ground coverage</td>
<td>8794.05 x 11131.71 km, 79 x 100°</td>
</tr>
<tr>
<td>Antenna scan angle</td>
<td>0</td>
</tr>
<tr>
<td>Polarization margin</td>
<td>3 dB</td>
</tr>
<tr>
<td>Propagation loss</td>
<td>0 dB</td>
</tr>
<tr>
<td>Min elevation angle</td>
<td>79.27</td>
</tr>
<tr>
<td>Spreading loss</td>
<td>17814.22 W</td>
</tr>
<tr>
<td>Slant range</td>
<td>38658.56 km</td>
</tr>
<tr>
<td>Power reqd/channel for EOC PFD of -103.6 dBW/m²</td>
<td>10001.767 W</td>
</tr>
<tr>
<td>EOC EIRP at EOC PFD of -103.6 dBW/m²</td>
<td>62.18 dBW</td>
</tr>
<tr>
<td>EOC EIRP at EOC PFD of -116.1 dBW/m²</td>
<td>46.88 dBW</td>
</tr>
</tbody>
</table>

After each zones' aperture and power requirement were determined, the zones common to a single satellite were combined to determine the satellites peak power requirement. This was accomplished by combining the service requirements (showing how many channels for each zone at any given UTC time were
required to be transmitted) with the RF power required per zone per channel. The results are shown in Tables 63 through 66. Table 63 gives the results of the high RF power L-band system made up of eight satellites. Table 64 gives the results of the five satellite low RF power L-band system, Option I. Tables 65 and 66 are the results of the three satellite low RF power L-band systems, Options II and III.

TABLE 63 - HIGH RF POWER L-BAND ANTENNA DESIGN SUMMARY

<table>
<thead>
<tr>
<th>S/C*</th>
<th>Zone</th>
<th>Aperture size</th>
<th>No. of channels</th>
<th>RF output power/zone</th>
<th>Maximum S/C RF power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.7x2.4 m</td>
<td>2</td>
<td>3.8 kW</td>
<td>31.0 kW-UTC 45</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.2x1.9</td>
<td></td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.25x1.24</td>
<td></td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2.8x1.9</td>
<td>2</td>
<td>6.3</td>
<td>18.3-UTC 530</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.1x1.8</td>
<td>5</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4.1x1.8</td>
<td>6</td>
<td>14.4</td>
<td>19.8-UTC 530</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.0x1.7</td>
<td>3</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1.4x1.8</td>
<td>4</td>
<td>24.9</td>
<td>24.9-UTC 415</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2.8x1.7</td>
<td>2</td>
<td>4.4</td>
<td>11.8-UTC 430</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.1x1.8</td>
<td>6</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>3.3x2.8</td>
<td>3</td>
<td>5.9</td>
<td>16.2-UTC 300</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.5x2.3</td>
<td>4</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>6.4x1.7</td>
<td>2</td>
<td>3.3</td>
<td>25.7-UTC 1100</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.8x2.6</td>
<td>2</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.4x2.5</td>
<td>1</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.4x1.7</td>
<td>3</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>1.4x1.7</td>
<td>3</td>
<td>20.6</td>
<td>20.6-UTC 1100</td>
</tr>
</tbody>
</table>

*Satellite mass range—2651 to 4349 kg

TABLE 64 - LOW RF POWER L-BAND ANTENNA DESIGN SUMMARY—OPTION I

<table>
<thead>
<tr>
<th>S/C*</th>
<th>Zone</th>
<th>Aperture size</th>
<th>No. of channels</th>
<th>RF output power/zone</th>
<th>Maximum S/C RF power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.7x2.4 m</td>
<td>2</td>
<td>0.22 kW</td>
<td>1.75 kW-UTC 45</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.2x1.9</td>
<td>2</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.25x1.24</td>
<td>2</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2.8x1.9</td>
<td>2</td>
<td>0.36</td>
<td>2.14-UTC530</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.1x1.8</td>
<td>11</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.0x1.7</td>
<td>3</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1.4x1.8</td>
<td>4</td>
<td>1.40</td>
<td>2.0-UTC 415</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.6x2.7</td>
<td>2</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.0x2.5</td>
<td>6</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>3.3x2.8</td>
<td>3</td>
<td>0.33</td>
<td>0.9-UTC 300</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.5x2.3</td>
<td>4</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.4x1.7</td>
<td>2</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.8x2.5</td>
<td>2</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>1.4x1.7</td>
<td>6</td>
<td>2.3</td>
<td>2.6-UTC 1100</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.4x2.5</td>
<td>1</td>
<td>0.28</td>
<td></td>
</tr>
</tbody>
</table>

*Satellite mass range—1176 to 1707 kg
TABLE 65. HIGH RF POWER L-BAND ANTENNA DESIGN SUMMARY—OPTION II

<table>
<thead>
<tr>
<th>S/C*</th>
<th>Zone</th>
<th>Aperture size</th>
<th>No of channels</th>
<th>RF output power/zone</th>
<th>Maximum S/C RF power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.7x2.4 m</td>
<td>2</td>
<td>0.22 kW</td>
<td>1.75 kW-UTC 45</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.2x1.9</td>
<td>2</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.25x1.24</td>
<td>2</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2.8x1.9</td>
<td>2</td>
<td>0.36</td>
<td>3.4-UTC 430</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.1x1.8</td>
<td>11</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.0x1.7</td>
<td>3</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.4x1.8</td>
<td>4</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.6x2.7</td>
<td>2</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.0x2.5</td>
<td>6</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>3.2x2.8</td>
<td>3</td>
<td>0.33</td>
<td>2.9-UTC 1100</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2.5x2.3</td>
<td>4</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6.4x1.7</td>
<td>2</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1.4x1.7</td>
<td>6</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.8x2.5</td>
<td>2</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.4x2.5</td>
<td>1</td>
<td>0.28</td>
<td></td>
</tr>
</tbody>
</table>

*Satellite mass range—1251 to 2150 kg

TABLE 66. LOW RF POWER L-BAND ANTENNA DESIGN SUMMARY—OPTION III

<table>
<thead>
<tr>
<th>S/C*</th>
<th>Zone</th>
<th>Aperture size</th>
<th>RF output power/aperture</th>
<th>Maximum S/C RF power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.2</td>
<td>3.75x1.2 m</td>
<td>0.84 kW</td>
<td>2.1 kW-UTC 45</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.25x1.24</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58.9</td>
<td>4.15x1.23</td>
<td>3.2</td>
<td>10.2-UTC 430</td>
</tr>
<tr>
<td></td>
<td>48.68.78.8</td>
<td>1.05x0.89</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10&11</td>
<td>1.7x2.3</td>
<td>1.67</td>
<td>7.5-UTC 1100</td>
</tr>
<tr>
<td></td>
<td>12&13&14&15</td>
<td>1.2x1.1</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>

*Satellite mass range—1066 to 1893 kg

5.2.4 L-Band Systems LCC Estimates

Each satellite of the L-band systems is generically the same. However, the unique coverage required from each results in different aperture sizes and different subsystem sizes. To estimate system LCC, each satellite's nonrecurring and recurring costs were estimated first. The system nonrecurring development cost was then obtained by comparing the subsystem development costs for each satellite, selecting the maximum for each subsystem and summing the maximums. The individual satellites' recurring costs were summed to estimate total system recurring cost. Because the satellites within each system have different antenna designs, different electrical power requirements, and different thermal control requirements, no learning factor adjustment for cost of fabrication was assumed. The LCC estimates for the L-band systems are summarized in Table 67.
TABLE 67. - L-BAND SYSTEMS’ LCC ESTIMATES, 1984 $

<table>
<thead>
<tr>
<th>System*</th>
<th>NRC</th>
<th>Ground costs*</th>
<th>RC</th>
<th>Launch costs</th>
<th>Total LCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>High power (-103.6 dBW/m²)</td>
<td>130</td>
<td>$51M</td>
<td>1968</td>
<td>$3,000M</td>
<td>$5,149M</td>
</tr>
<tr>
<td>Option I (116.1 dBW/m²)</td>
<td>98</td>
<td>51</td>
<td>645</td>
<td>1,095</td>
<td>1,889</td>
</tr>
<tr>
<td>Option II (116.1 dBW/m²)</td>
<td>113</td>
<td>51</td>
<td>441</td>
<td>666</td>
<td>1,273</td>
</tr>
<tr>
<td>Option III (116.1 dBW/m²)</td>
<td>135</td>
<td>51</td>
<td>504</td>
<td>663</td>
<td>1,353</td>
</tr>
</tbody>
</table>

*20-yr operational lifetime

Figures 84 through 87 contain linear plots of total L-band system cost as a function of time, and bar graphs showing phased yearly costs for the four L-band concepts. The high-power option (Fig. 84) uses eight satellites, requiring six years for a full capability system (eight satellites), assuming four STS launches per year starting after a 4-yr development phase. This would provide full capability for 21 years, assuming 7-yr satellite lifetime. The other L-band options would also provide full capability for 21 years as shown on the graphs. The total L-band program length would be 25 years.

Figure 84. - L-band high power system program cumulative and yearly costs.
Figure 85. - L-band option I system program cumulative and yearly costs.
Figure 86. - L-band option II system program cumulative and yearly costs.
Figure 87. L-band option III system program cumulative and yearly costs.

5.2.5 L-Band Summary of Results

The L-band systems designed for VOA applications consisted of four different system designs ranging from three to eight satellites in geostationary orbit. The first system design was for a high RF power level and required eight satellites in three geostationary orbit slots to achieve the required power and channel requirements. The next three system designs were for a low RF power level and require 5, 3, and 3 satellites. For the high RF power system and the first two low power systems, each satellite carried multiple non-scanning rigid panel array antennas targeted at each zone required to be covered. The last system design carried array antennas that could cover multiple zones. The frequency of operation for all the L-band systems was 1.5 GHz.

For the high RF power system, the orbit transfer stage used to deliver each satellite into orbit was the Centaur G, resulting in a payload capability to orbit of 4390 kg. The resulting satellite mass ranged from 2651 to 4349 kg. For the low RF power systems, the orbit transfer stage used was the TOS/AMS, resulting in a payload capability to orbit of 3113 kg. This provided a sufficient growth margin for the satellites mass which ranged from 1176 to 1707 kg, 1251 to 2150 kg and 1066 to 1893 kg for Option I, II, and III system designs respectively. The satellite power requirements range from 20 to 50 kW for the high RF power system and 2.5 to 17.2 kW for the low RF power systems.
For a 20-yr operational lifetime, ground operations would cost $51M. At the end of the 20-yr period, one year of full operating capability would be available with reduced capability available for up to three years depending on the system concept.

Total life-cycle cost for 20 years operation, including launch and maintenance costs, ranged from a high of $5149M for the high RF power system to a low of $1353M for the low RF power system, Option II. Tables 68 and 69 summarize the results for each L-band system design.

TABLE 68. LOW RF POWER L-BAND SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>L-band summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geostationary orbit—three slots (70W, 15E, 110E)</td>
</tr>
<tr>
<td>Three and five satellite options</td>
</tr>
<tr>
<td>TOS/AMS orbit transfer vehicle (payload—3113 kg)</td>
</tr>
<tr>
<td>Array technology selected but reflectors could be considered due to lower power requirements,</td>
</tr>
<tr>
<td>Zones/channels—all/full VOA</td>
</tr>
<tr>
<td>Coverage efficiency—100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Five-satellite design—option I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual arrays per zone</td>
</tr>
<tr>
<td>Two, three, or four arrays on each satellite</td>
</tr>
<tr>
<td>Satellite mass range—1176 to 1707 kg</td>
</tr>
<tr>
<td>Satellite power range—2 to 5.2 kW</td>
</tr>
<tr>
<td>Total LCC—$1889M (20-yr operational lifetime)*</td>
</tr>
<tr>
<td>Cost per channel hour—$865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three-satellite design—individual arrays per zone, option II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three, six and, six arrays on three satellites</td>
</tr>
<tr>
<td>System has lower power but more array weight than other three-satellite designs.</td>
</tr>
<tr>
<td>Satellite mass range—1251 to 2150 kg</td>
</tr>
<tr>
<td>Satellite power range—3.8 to 6.5 kW</td>
</tr>
<tr>
<td>Total LCC—$1273M (20 years)*</td>
</tr>
<tr>
<td>Cost per channel hour—$583</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three-satellite design—multiple zones per array, option III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to four zones covered by one large array spot</td>
</tr>
<tr>
<td>System has only two arrays per satellite</td>
</tr>
<tr>
<td>System has lower array mass & overall mass but slightly higher power than other three satellite designs.</td>
</tr>
<tr>
<td>Satellite mass range—1066 to 1893 kg</td>
</tr>
<tr>
<td>Satellite power range—4.4 to 17.2 kW</td>
</tr>
<tr>
<td>Total LCC—$1353M (20 years)*</td>
</tr>
<tr>
<td>Cost per channel hour—$619</td>
</tr>
</tbody>
</table>

*1-yr full operational capability still available (total program life 20 years plus 4 years development = 24 years)

TABLE 69. HIGH RF POWER L-BAND SUMMARY OF RESULTS

| Geostationary orbit—three slots (70W, 15E, 110E) |
| Eight satellites are required to achieve power channel requirements. |
| Each zone is illuminated by its own aperture. |
| Array technology was selected due to high power requirements. |
| Zones/channels—all/full VOA |
| Coverage efficiency—100% |
| Centaur orbit transfer vehicle (payload—4390 kg) |
| Satellite mass range—2651 to 4349 kg |
| Satellite power range—20 to 50 kW |
| Total LCC—$5149M (20 years)* |
| Cost per channel hour—$2357 |

*1-year full operational capability still available (total program life 20 years plus 4 years development = 24 years).
For VHF-band operation, two candidate orbits were selected, the 12-hour circular orbit and the 24-hour elliptical orbit described in Section 3.2. As an option, a 24-hour orbit design was also evaluated that would use one STS launch for the satellite and another launch for the upper stage (an expanded capability Centaur design).

The basic design uses a deployable phased array configuration as illustrated in Figure 88. State of the art technologies are used for attitude control electronics, TT&C, signal processing, and communication uplink. The electric power system is state of the art with the exception of the solar arrays which must be larger than any flown experimentally or on operating satellites. However, space station requirements for large solar arrays will result in development of arrays that will be directly applicable to VHF satellites. The VHF-band design approach is summarized in Table 70.

The areas requiring further development for VHF-band systems are solid state power amplifiers using MOS-FET technology, thermal control for the amplifiers, V-band crosslink electronics, and the deployable antenna structure.

Table 71 presents a summary of VHF-based full and reduced system designs that meet VOA signal strength and channel capability requirements. As shown, the total number of satellite ranges from 4 to 16 for the various concepts considered.

Figure 88. - Typical VHF and HF satellite.
TABLE 70. - VHF SYSTEMS’ DESIGN APPROACH

- Antenna is deployable phased array.
- Power generation is by gimbaled SI blanket solar array.
- Power distribution bus is at 200 Vdc.
- Power storage is provided by nickel cadmium batteries.
- Transmitters' thermal rejection is by integral radiator panels.
- Attitude control is by three-axis stabilization.
- Stationkeeping and maneuvering are by electric propulsion (high ISP).
- Orbit transfer is by Centaur G.
- TT&C uses Ku-band uplink/downlink & V-band intersatellite link.
- Orbits are 12-h period, 45-deg inclination, circular, & 24-h period, 30-deg inclination, elliptical.

TABLE 71. - VHF-MATRIX OF DESIGN AND ANALYSIS CASES

<table>
<thead>
<tr>
<th>Case</th>
<th>Orbit</th>
<th>µV/m</th>
<th>Channel required</th>
<th>Zones</th>
<th>No of S/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 h, 45 deg, circ</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>12 h, 45 deg, circ</td>
<td>150</td>
<td>6, 3, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>12 h, 45 deg, circ</td>
<td>250</td>
<td>3, 2, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>12 h, 45 deg, circ</td>
<td>200</td>
<td>3, 2, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>12 h, 45 deg, circ</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>12 h, 45 deg, circ</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>24 h, 30 deg, ellip</td>
<td>250</td>
<td>2, 1, 1, 1</td>
<td>9, 10, 12, 14</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>24 h, 30 deg, ellip</td>
<td>(140 - 150)</td>
<td>6, 3, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>4*</td>
</tr>
<tr>
<td>7</td>
<td>24 h, 30 deg, ellip</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>24 h, 30 deg, ellip</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>9, 10, 12, 14</td>
<td>4</td>
</tr>
</tbody>
</table>

*Full shuttle satellite—large Centaur-type stage brought up in second shuttle & mated to satellite.

5.3.1 VHF Band System Weight and Volume Estimates

Weight and volume estimates for the three VHF systems are summarized in Table 72. The output of the sizing program for the 24-hour orbit, single STS launch is shown in Table 73. Note in the RF subsystem sizing summary the three different sizes of transmitters, the number of transmitters, and the total power for each set of transmitters. These total powers are for reference only since the satellite design never has all transmitters operating simultaneously. The three transmitter powers are 1.5, 2.5, and 4.0 times a nominal power level. This nominal power level times the total number of transmitters is the load power used to determine EPS size. For this VHF case the nominal transmitter power level was 180 watts.
TABLE 72. VHF SYSTEMS' SATELLITE
WEIGHT AND VOLUME ESTIMATES

VHF stretched design-180 W/transmitter

<table>
<thead>
<tr>
<th>Configuration summary</th>
<th>Mass, kg</th>
<th>Volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF payload</td>
<td>4825.6</td>
<td>25.41</td>
</tr>
<tr>
<td>Auxiliary propulsion subsystem</td>
<td>507.7</td>
<td>3.34</td>
</tr>
<tr>
<td>Telemetry, tracking & command</td>
<td>32.1</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical power subsystem</td>
<td>598.2</td>
<td>1.90</td>
</tr>
<tr>
<td>Thermal control subsystem</td>
<td>336.1</td>
<td>3.43</td>
</tr>
<tr>
<td>Equipment bay structure</td>
<td>213.8</td>
<td>17.12</td>
</tr>
<tr>
<td>Total system summary</td>
<td>6510.6</td>
<td>51.25</td>
</tr>
</tbody>
</table>

VHF baseline cast at 370 w/transmitter

<table>
<thead>
<tr>
<th>Configuration summary</th>
<th>Mass, kg</th>
<th>Volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF payload</td>
<td>4204.1</td>
<td>26.94</td>
</tr>
<tr>
<td>Auxiliary propulsion subsystem</td>
<td>361.7</td>
<td>2.25</td>
</tr>
<tr>
<td>Telemetry, tracking & command</td>
<td>32.1</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical power subsystem</td>
<td>1374.6</td>
<td>5.43</td>
</tr>
<tr>
<td>Thermal control subsystem</td>
<td>857.7</td>
<td>8.78</td>
</tr>
<tr>
<td>Equipment bay structure</td>
<td>206.7</td>
<td>12.00</td>
</tr>
<tr>
<td>Total system summary</td>
<td>7037.1</td>
<td>56.45</td>
</tr>
</tbody>
</table>

VHF stretched design for full STS & max Centaur—75.26 kW RF output

<table>
<thead>
<tr>
<th>Configuration summary</th>
<th>Mass, kg</th>
<th>Volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF payload</td>
<td>6851.</td>
<td>27.58</td>
</tr>
<tr>
<td>Auxiliary propulsion subsystem</td>
<td>627.7</td>
<td>3.35</td>
</tr>
<tr>
<td>Telemetry, tracking & command</td>
<td>32.1</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical power subsystem</td>
<td>2170.</td>
<td>7.18</td>
</tr>
<tr>
<td>Thermal control subsystem</td>
<td>1321.</td>
<td>13.53</td>
</tr>
<tr>
<td>Equipment bay structure</td>
<td>290.</td>
<td>17.69</td>
</tr>
<tr>
<td>Total system summary</td>
<td>11293.</td>
<td>69.38</td>
</tr>
</tbody>
</table>
TABLE 73. - VHF SATELLITE SIZING EXAMPLE

VHF Satellite Sizing Example

Stretched Design -- 180 w/transmitter

EPS SUMMARY

- **Power required from source**: 31,311 KW
- **Power at load, average**: 29,854 KW
- **Orbital altitude**: 40000 Km
- **Orbital period**: 27.6108 hrs
- **Spacecraft lifetime requirement**: 7 yrs
- **Total eclipse time per orbit**: 1.212519 hrs
- **Solar array degradation factor due to radiation**: .077701
- **Solar array thermal adjustment factor**: .896
- **Solar array cover slide weight factor**: 0
- **Antenna Size**: 168 m by 168 m

Power Generation Sizing

For Si Blanket Array

- **Area required**: 227.0803 m²
- **Weight**: 363.3284 Kg
- **Volume**: 1.81642 m³

Shunt Regulator Sizing

- **Shunt Regulator Weight**: 53,214.4 Kg
- **Shunt Regulator Volume**: 6.033406E-02 m³

Power Switching/Distribution Sizing

- **Power Switching Equip Wt.**: 9.287619 Kg
- **Power Switching Equip Vol.**: 1.053018E-02 m³
- **Distribution Weight; Source to Bus**: 11.44194 Kg
- **Distribution Weight; Bus to Load**: 127.5614 Kg
- **Total Distribution Weight**: 139.0033 Kg
- **Total Switching and Distribution Weight**: 148.291

Battery Sizing

For NiCd Batteries

- **Battery Capacity Required**: 1107.29 Wh
- **Battery Weight**: 31.24937 Kg
- **Battery Volume**: 1.560666E-02 m³

For NiCd Batteries

- **Battery Weight**: 151.2893 Kg
- **Battery Charger Volume**: 1.717918E-04 m³

TOTAL EPS MA35 (kg): 596.235
TOTAL EPS VOLUME (m³): 1.903285
RF SUBSYSTEM SIZING SUMMARY
Data for Box Truss Ring Array (limit on diameter of 200 meters)

<table>
<thead>
<tr>
<th>Power per transmitter (w)</th>
<th>Number of transmitters</th>
<th>Output power (kw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>720</td>
<td>42</td>
<td>30.24</td>
</tr>
<tr>
<td>450</td>
<td>16</td>
<td>7.2</td>
</tr>
<tr>
<td>270</td>
<td>48</td>
<td>12.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANTENNA APERTURE AREA (M^2)</th>
<th>22167.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL ANTENNA STRUCTURE MASS (KG)</td>
<td>2964.033</td>
</tr>
<tr>
<td>TOTAL ANTENNA STRUCTURE VOLUME (M^3)</td>
<td>22.63755</td>
</tr>
<tr>
<td>TOTAL RF TRANSMITTER MASS (KG)</td>
<td>1701.954</td>
</tr>
<tr>
<td>TOTAL RF TRANSMITTER VOLUME (M^3)</td>
<td>2.281131</td>
</tr>
<tr>
<td>WEIGHT OF UPLINK COMPONENTS (Kg)</td>
<td>121</td>
</tr>
<tr>
<td>VOLUME OF UPLINK COMPONENTS (M^3)</td>
<td>.5</td>
</tr>
<tr>
<td>WEIGHT OF SIGNAL PROC. COMPONENTS (Kg)</td>
<td>58</td>
</tr>
<tr>
<td>VOLUME OF SIGNAL PROC. COMPONENTS (M^3)</td>
<td>.02</td>
</tr>
</tbody>
</table>

| TOTAL RF SUBSYSTEM MASS (KG) | 4844.987 |
| TOTAL RF SUBSYSTEM VOLUME (M^3) | 25.43868 |

VHF Satellite Sizing Example
Stretched Design -- 180 w/transmitter

ATTITUDE CONTROL, STATIONKEEPING AND MANEUVERING SUMMARY

<table>
<thead>
<tr>
<th>Total ACS subsystem mass (Kg)</th>
<th>57.7</th>
<th>Lbs 127.2285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ACS subsystem volume (M^3)</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Total RCS subsystem mass (Kg)</td>
<td>450</td>
<td>Lbs 992.2501</td>
</tr>
<tr>
<td>Total RCS subsystem volume (M^3)</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>

| Total RCS/ACS subsystem mass (Kg) | 507.7 |
| Total RCS/ACS subsystem volume (M^3) | 3.35 |

VHF Satellite Sizing Example
Stretched Design -- 180 w/transmitter

TT&C SUBSYSTEM SUMMARY

<table>
<thead>
<tr>
<th>Total TT&C subsystem mass (Kg)</th>
<th>32.1</th>
<th>Lbs 70.7805</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total TT&C subsystem volume (M^3)</td>
<td>.03</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 73 - CONCLUDED

VHF Satellite Sizing Example
Stretched Design -- 180 w/transmitter

THERMAL CONTROL SUBSYSTEM SIZING SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature (°C)</td>
<td>55</td>
</tr>
<tr>
<td>Maximum heat radiated (W)</td>
<td>27726</td>
</tr>
<tr>
<td>Radiative surface emissivity factor</td>
<td>0.8</td>
</tr>
<tr>
<td>Radiative surface absorptivity factor</td>
<td>0.7</td>
</tr>
<tr>
<td>Required radiator surface area (M²)</td>
<td>68.82595</td>
</tr>
</tbody>
</table>

Thermal Control Subsystem mass (Kg) | 336.0544 | Lbs 740.9799
Thermal Control Subsystem area (M²) | 68.82595 |
Thermal Control Subsystem Volume (M³) | 3.441297 |

VHF Satellite Sizing Example
Stretched Design -- 180 w/transmitter

EQUIPMENT BAY SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass of equipment bay (kg)</td>
<td>111.8368</td>
</tr>
<tr>
<td>Mass of deployment/stowage mechanisms (kg)</td>
<td>102</td>
</tr>
<tr>
<td>Total mass (kg)</td>
<td>213.8369 (Lbs) 471.5103</td>
</tr>
<tr>
<td>Total volume of structure and mechanisms (m³)</td>
<td>25.68732</td>
</tr>
</tbody>
</table>

SYSTEM CONFIGURATION SUMMARY

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Mass (kg)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Payload</td>
<td>4844.987</td>
<td>25.43868</td>
</tr>
<tr>
<td>Auxiliary Propulsion Subsystem</td>
<td>507.7</td>
<td>3.35</td>
</tr>
<tr>
<td>Telemetry, Tracking and Command</td>
<td>32.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>596.235</td>
<td>1.903285</td>
</tr>
<tr>
<td>Thermal Control Subsystem</td>
<td>336.0544</td>
<td>3.441297</td>
</tr>
<tr>
<td>Equipment Bay Structure</td>
<td>213.8369</td>
<td>17.12488</td>
</tr>
</tbody>
</table>

TOTAL SYSTEM SUMMARY

<table>
<thead>
<tr>
<th>Mass (kg)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6530.914</td>
<td>51.28815</td>
</tr>
<tr>
<td>14400.67</td>
<td>(Lbs)</td>
</tr>
</tbody>
</table>
The VHF-band coverage analysis considered both 12-hour circular and 24-hour elliptical orbits. Figure 89 shows the satellite constellation and resulting ground trace for the 12-hour case. Eight satellite positions are shown, each position representing a satellite or satellites in one of eight unique orbital planes. For the 250 V/m requirement, each position shown must have two satellites to provide the required ground coverage and signal strength for full channel requirements. For reduced channels or signal strength, only one satellite is required for each orbital plane.

The 24-hour elliptical system ground trace is shown in Figure 90. Here, there are four orbital planes using three satellites each to meet full coverage requirements or one satellite each to provide reduced channel capability or signal strength.

Figure 89. - Constellation for VHF system—12-hour, 45° inclination, circular, eight satellite clusters.
5.3.3 VHF-Band Systems RF Performance Analysis

For each VHF-band system, RF performance was analyzed to determine required antenna size and RF output power necessary to provide the required signal strength at edge of coverage. The RF analysis considered both satellite location and ground surface area to be covered to determine antenna aperture size. The VHF-band arrays can produce different beam shapes and sizes by selectively activating different sets of transmitters or by controlling phase. The beamwidth for VHF-band arrays was computed from:

\[
BW = \frac{65\lambda}{D}
\]

(5-3)

where

\(\lambda \) = wavelength (6.383 m)

\(D \) = antenna diameter (m)

The array spacing selected is between \(\lambda/4 \) and \(\lambda/3 \) to provide a compromise between adequate performance, number of transmitters, and transmitter size. A ground station antenna oriented for maximum gain was assumed for the analysis. In the ground PFD computation, a 3-dB polarization loss was assumed for
circular polarization, along with a 1-dB propagation loss. For the 12-hour orbit, the antenna aperture size and beamwidth were calculated from nadir pointing to a 20° elevation angle. For the elliptical orbit, the size and beamwidth were computed using specific satellite locations. In both cases, the antenna aperture efficiency was computed from:

\[
\text{efficiency} = 0.75 \cos (\alpha)
\]

where

\[
\alpha = \text{scan angle}
\]

The resulting maximum single satellite performance capabilities of the VHF-band satellites are summarized in Table 74. The table shows how many channels can be transmitted with the corresponding signal strength. For example, the first case shows that three channels at 254 µV/m can be transmitted to Zone 9, two channels at 256 µV/m to Zone 10, two channels at 298 µV/m to Zone 11, and two channels at 275 µV/m to Zone 12. Since the full capability calls for six channels at 250 µV/m to Zone 9, two satellites, transmitting simultaneously, would be required to provide the six channels. This leads to the requirement for 16 satellites, two in each of the eight orbital planes discussed in Section 5.3.2. The second case shows that each satellite can provide maximum signal strengths of 185 and 202 µV/m to Zone 9 and 10 respectively when transmitting the required number of channels.

For the 24-hour, elliptical orbit and single STS launch, only two channels can be broadcast to Zone 9 at 243 µV/m (slightly below the desired 250 µV/m). Thus, three satellites are required per orbital plane, or 12 satellites total for the system. The performance for full channel capability cannot provide 250 µV/m in any zone and can provide the required number of channels at 150 µV/m in Zones 11 and 12 only. As shown, the only satellite that can provide full channel and signal strength capability is the 24-hour system using two STS launches. To meet the ground coverage profile, four satellites would still be required, one for each of the four orbital planes shown previously.

5.3.4 VHF Band Systems LCC Estimates

The first step in estimating LCC for the VHF systems was to estimate the total nonrecurring and recurring costs for each satellite configuration. Based on the use of a single design for all satellites within a system, learning factors were then computed to derive an average recurring cost per satellite. Table 75 summarizes the costs for the VHF systems, using appropriate learning factors for a slope of 0.9. Table 76 shows the factors as a function of number of spacecraft for the VHF systems.

A further analysis of LCC could take into account the time required to launch all satellites for a system and the percent of coverage provided during the phased launches. However, this level of analysis was considered beyond
the scope of the study. The basic objective was met: providing cost and performance data that would permit comparison between DVBS concepts and between DVBS and terrestrial broadcast methods.

TABLE 75. - VHF SYSTEMS' LCC ESTIMATES, 1984$

<table>
<thead>
<tr>
<th>System*</th>
<th>1st Unit cost</th>
<th>No of S/C</th>
<th>Average unit cost</th>
<th>Average with launch</th>
<th>Total RC</th>
<th>S/C NRC</th>
<th>Ground cost</th>
<th>Total NRC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF, case 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 12-h orbit, 8 S/C</td>
<td>$156M</td>
<td>24</td>
<td>$ 97M</td>
<td>$222M</td>
<td>$5328M</td>
<td>$252M</td>
<td>$71M</td>
<td>$323M</td>
<td>$5651M</td>
</tr>
<tr>
<td>- 12-h, orbit, 12 S/C</td>
<td>156</td>
<td>36</td>
<td>90</td>
<td>215</td>
<td>7740</td>
<td>252</td>
<td>92</td>
<td>344</td>
<td>8084</td>
</tr>
<tr>
<td>VHF, case 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 24-h orbit, 4 S/C</td>
<td>136</td>
<td>12</td>
<td>94</td>
<td>219</td>
<td>2628</td>
<td>256</td>
<td>71</td>
<td>317</td>
<td>2945</td>
</tr>
<tr>
<td>- 24-h orbit, 6 S/C</td>
<td>136</td>
<td>18</td>
<td>87</td>
<td>212</td>
<td>3816</td>
<td>256</td>
<td>71</td>
<td>348</td>
<td>4133</td>
</tr>
<tr>
<td>- 24-h orbit, 12 S/C</td>
<td>136</td>
<td>36</td>
<td>79</td>
<td>204</td>
<td>7344</td>
<td>256</td>
<td>92</td>
<td>348</td>
<td>7692</td>
</tr>
<tr>
<td>VHF, case 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 24-h orbit, 4 S/C (multiple launch)</td>
<td>178</td>
<td>12</td>
<td>123</td>
<td>373</td>
<td>4476</td>
<td>304</td>
<td>71</td>
<td>375</td>
<td>4851</td>
</tr>
</tbody>
</table>

*20-yr operational lifetime (total program length is 20 years plus 6 years development = 26 years); 1-yr full capability remains

TABLE 76. - SATELLITE FABRICATION LEARNING FACTORS FOR VHF SYSTEMS

<table>
<thead>
<tr>
<th>Number of satellites</th>
<th>Learning factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.69</td>
</tr>
<tr>
<td>18</td>
<td>0.64</td>
</tr>
<tr>
<td>24</td>
<td>0.62</td>
</tr>
<tr>
<td>24</td>
<td>0.58</td>
</tr>
</tbody>
</table>

5.3.5 VHF-Band Summary of Results

The VHF-band systems designed for VOA applications consisted of three system designs using from four to 16 satellites to meet VOA broadcast requirements. Each design uses a phased array and is capable of beam shaping and steering through combined phase control and selectively turning transmitters on and off. The characteristics of the three systems are summarized in Table 77.

Total estimated life cycle cost for a 20-yr operational lifetime plus a 5-yr development cycle, and VHF system capability summaries are presented in Table 78. As shown, the LCC per channel hour for VHF-band systems that were studied varies from a low value of $8,584 per hour to a high of $28,050 per hour.
TABLE 77. - VHF SYSTEMS' DESIGN SUMMARY

<table>
<thead>
<tr>
<th>Number of satellites</th>
<th>12-h circular orbit</th>
<th>24-h elliptical orbit</th>
<th>Two STS launches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna diameter, m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna mass, kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter number/power, W</td>
<td>53/1480, 20/925, 59/556</td>
<td>43/720, 16/450, 47/270</td>
<td></td>
</tr>
<tr>
<td>Total RF power, kW</td>
<td>49.8</td>
<td>19.1</td>
<td></td>
</tr>
<tr>
<td>Required EPS power (EOL), kW</td>
<td>78.5</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>Upper stage</td>
<td>Centaur</td>
<td>Centaur</td>
<td>Large Centaur derivative</td>
</tr>
</tbody>
</table>

TABLE 78. - VHF SUMMARY OF RESULTS

<table>
<thead>
<tr>
<th>Case</th>
<th>Orbit</th>
<th>µN/m</th>
<th>Channels required</th>
<th>No. of S/C</th>
<th>Coverage efficiency</th>
<th>LCC</th>
<th>Total channel hours</th>
<th>Cost per channel hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12 h</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>16</td>
<td>84%</td>
<td>$8084M</td>
<td>343,100 h</td>
<td>$23,562*</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>150</td>
<td>6, 3, 2, 2</td>
<td>8</td>
<td>84</td>
<td>5651</td>
<td>343,100</td>
<td>16,470*</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>250</td>
<td>3, 3, 2, 2</td>
<td>8</td>
<td>84</td>
<td>5651</td>
<td>308,426</td>
<td>18,322*</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>200</td>
<td>5, 3, 2, 2</td>
<td>8</td>
<td>84</td>
<td>5651</td>
<td>337,626</td>
<td>16,737*</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>12</td>
<td>100</td>
<td>7692</td>
<td>343,100</td>
<td>22,419</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>140 - 150</td>
<td>6, 3, 2, 2</td>
<td>4</td>
<td>100</td>
<td>2945</td>
<td>343,100</td>
<td>8,584</td>
</tr>
<tr>
<td>7**</td>
<td>24</td>
<td>250</td>
<td>2, 1, 1, 1</td>
<td>4</td>
<td>100</td>
<td>2945</td>
<td>251,851</td>
<td>11,693</td>
</tr>
<tr>
<td>8**</td>
<td>24</td>
<td>250</td>
<td>6, 3, 2, 2</td>
<td>4</td>
<td>100</td>
<td>4851</td>
<td>343,100</td>
<td>14,139</td>
</tr>
</tbody>
</table>

*Does not include coverage efficiency factor
**Multiple launch—hypothetical Centaur
5.4 HF-BAND SYSTEMS

For HF-band operation, two design approaches were followed. The first, similar to the VHF-band approach, identified designs required to meet full VOA requirements. The second approach identified and analyzed capabilities and LCC that would result with smaller apertures and lower powers. The basic satellite design for all HF-band concepts is similar to that shown previously for VHF satellites (ref. Fig. 88). In addition, an offset-fed inflatable reflector design was developed to be compared with array designs.

The inflatable reflector design uses a small deployable array antenna that serves as the feed for the reflector. All satellite subsystems would be mounted on the feed array antenna. The HF-band box truss ring array antenna design approach is summarized in Table 79. For the larger satellites, those with a goal to meet full VOA requirements, three orbits were selected for consideration. These orbits are defined in Table 79. For the small HF satellites, these orbits were considered along with a 24-hour elliptical orbit, a GEO, and a triply-synchronous orbit.

5.4.1 HF Band Systems Weight and Volume Estimates

The full capability of HF systems uses large aperture (60-115.5 m) antennas with multiple sized transmitters for beam shaping. The weight and volume estimating method for these systems is the same as for VHF systems described in Section 5.3.1. The weight and volume estimates for these satellites are summarized by the computer outputs shown in Tables 80 through 82.
TABLE 80. - HF WEIGHT AND VOLUME ESTIMATES—6-HOUR ORBIT

<table>
<thead>
<tr>
<th>System Configuration Summary</th>
<th>Mass, kg</th>
<th>Volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF payload</td>
<td>4890</td>
<td>46.18</td>
</tr>
<tr>
<td>Auxiliary propulsion subsystem</td>
<td>323</td>
<td>2.25</td>
</tr>
<tr>
<td>Telemetry, tracking, & command</td>
<td>32</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical power subsystem</td>
<td>3405</td>
<td>7.78</td>
</tr>
<tr>
<td>Thermal control subsystem</td>
<td>984</td>
<td>10.08</td>
</tr>
<tr>
<td>Equipment bay structure</td>
<td>208</td>
<td>12.10</td>
</tr>
<tr>
<td>Total system summary</td>
<td>9845</td>
<td>78.44</td>
</tr>
</tbody>
</table>

HF DSB 60-m antenna, 6-h orbit—single launch
- DSB carrier output power—38.1 kW
- DSB or SSB total RF output power—57.2 kW

HF 80-m antenna, 8-h orbit—single launch
- DSB carrier output power—38.7 kW
- DSB or SSB total RF output power—58 kW

TABLE 81. - HF WEIGHT AND VOLUME ESTIMATES—8-HOUR ORBIT

<table>
<thead>
<tr>
<th>System Configuration Summary</th>
<th>Mass, kg</th>
<th>Volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF payload</td>
<td>5329</td>
<td>46.26</td>
</tr>
<tr>
<td>Auxiliary propulsion subsystem</td>
<td>355</td>
<td>2.25</td>
</tr>
<tr>
<td>Telemetry, tracking, & command</td>
<td>32</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical power subsystem</td>
<td>1787</td>
<td>7.03</td>
</tr>
<tr>
<td>Thermal control subsystem</td>
<td>1021</td>
<td>10.46</td>
</tr>
<tr>
<td>Equipment bay structure</td>
<td>217</td>
<td>12.10</td>
</tr>
<tr>
<td>Total system summary</td>
<td>8743</td>
<td>78.14</td>
</tr>
</tbody>
</table>

HF DSB 60-m antenna, 6-h orbit—multiple launch
- DSB carrier output power—97.5 kW
- DSB or SSB total RF signal power—146.3 kW

HF 80-m antenna 8-h orbit—multiple launch
- DSB carrier power—88.9 kW
- DSB or SSB total RF output power—133.3 kW

TABLE 82. - HF WEIGHT AND VOLUME ESTIMATES—12-HOUR ORBIT

<table>
<thead>
<tr>
<th>System Configuration Summary</th>
<th>Mass, kg</th>
<th>Volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF payload</td>
<td>8052</td>
<td>49.56</td>
</tr>
<tr>
<td>Auxiliary propulsion subsystem</td>
<td>631</td>
<td>4.45</td>
</tr>
<tr>
<td>Telemetry, tracking, & command</td>
<td>32</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical power subsystem</td>
<td>8697</td>
<td>19.62</td>
</tr>
<tr>
<td>Thermal control subsystem</td>
<td>2518</td>
<td>25.78</td>
</tr>
<tr>
<td>Equipment bay structure</td>
<td>305</td>
<td>23.63</td>
</tr>
<tr>
<td>Total system summary</td>
<td>20137</td>
<td>123.09</td>
</tr>
</tbody>
</table>

HF DSB 60-m antenna, 6-h orbit—multiple launch
- DSB carrier output power—20.3 kW
- DSB or SSB total RF output power—30.5 kW

HF 12-h orbit 115.5 m antenna—single launch
- DSB carrier output power—59.8 kW
- DSB or SSB total RF output power—89.7 kW

HF 12-h orbit 115.5 m antenna—multiple launch
- DSB carrier output power—59.8 kW
- DSB or SSB total RF output power—89.7 kW
The next set of HF systems are the small satellite reduced size and power concepts. These systems assume a single size of transmitter as opposed to three sizes assumed for the previous HF cases. For each of the applicable HF reduced size concepts, analyses were performed from 10 kW to the maximum power attainable with a fully dedicated STS launch. Figures 91 through 96 show the estimated weight and field strength as a function of total RF output power for each of the six orbits considered for small HF concepts. The field strength shown is for Zone 1 only.

The last type of HF system studied was the inflatable reflector concept with an array antenna feed. The weight and volume of the inflatable structure were obtained first, then the inflatable's mass was subtracted from the maximum payload limit and the weights and volumes for the small feed array and the rest of the subsystems were estimated. The total satellite weight is the sum of the two summaries shown in Table 83.
Figure 91. - Small HF 6-hour satellite weight and signal strength.

Figure 92. - Small HF 8-hour satellite weight and signal strength.

Figure 93. - Small HF 12-hour satellite weight and signal strength.

Figure 94. - Small HF 24-hour elliptical orbit satellite weight and signal strength.

Figure 95. - Small HF GEO satellite weight and signal strength.

Figure 96. - Small HF triply-synchronous orbit satellite weight and signal strength.
TABLE 83. - HF INFLATABLE CONCEPT WEIGHT AND VOLUME ESTIMATES

<table>
<thead>
<tr>
<th>HF inflatable structure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Subsystem sizing summary</td>
<td></td>
</tr>
<tr>
<td>Data for inflatable (limit on dia from 10 to 200 m)</td>
<td></td>
</tr>
<tr>
<td>Antenna aperture area, m²</td>
<td>22167</td>
</tr>
<tr>
<td>Total antenna structure mass, kg</td>
<td>1663</td>
</tr>
<tr>
<td>Total antenna structure volume, m³</td>
<td>6.69</td>
</tr>
<tr>
<td>Weight of uplink components, kg</td>
<td></td>
</tr>
<tr>
<td>Volume of uplink components, m³</td>
<td></td>
</tr>
<tr>
<td>Weight of signal proc components, m³</td>
<td></td>
</tr>
<tr>
<td>Volume of signal proc components, m³</td>
<td></td>
</tr>
<tr>
<td>Total RF subsystem mass, kg</td>
<td>1663</td>
</tr>
<tr>
<td>Total RF subsystem volume, m³</td>
<td>6.69</td>
</tr>
<tr>
<td>HF inflatable design 12-h orbit</td>
<td></td>
</tr>
<tr>
<td>DSB carrier output power—38.9 kW</td>
<td></td>
</tr>
<tr>
<td>DSB or SSB total RF output power—58.4 kW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System configuration summary</th>
<th>Mass, kg</th>
<th>Volume, m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF payload</td>
<td>1697</td>
<td>42.82</td>
</tr>
<tr>
<td>Auxiliary propulsion subsystem</td>
<td>1498</td>
<td>6.65</td>
</tr>
<tr>
<td>Telemetry, tracking & command</td>
<td>32</td>
<td>.03</td>
</tr>
<tr>
<td>Electrical power subsystem</td>
<td>1549</td>
<td>6.47</td>
</tr>
<tr>
<td>Thermal control subsystem</td>
<td>464</td>
<td>4.75</td>
</tr>
<tr>
<td>Equipment bay structure</td>
<td>161</td>
<td>.98</td>
</tr>
<tr>
<td>Total system summary</td>
<td>5404</td>
<td>61.69</td>
</tr>
</tbody>
</table>

5.4.2 HF-Band Coverage Analysis

The coverage analysis for the large HF satellite concepts was similar to that described for the VHF-band systems. Figures 97, 98, and 99 show the respective ground traces for the 6-, 8-, and 12-hour orbits. As shown in Figure 97, the three solid line paths represent the coverage trace for 30° inclined orbits while the dashed lines represent the trace for 45° inclined orbits. The complete system includes eight orbital planes with the number of satellites in each orbit dependent on the signal strength and channel capabilities of a satellite. The dots on the ground trace represent the relative satellite positions resulting from the eight orbital planes. Figures 98 and 99 show the ground traces and satellite positions for the 8- and 12-hour orbits. Again, eight orbital planes are used.

The five nongeostationary orbits for the small HF satellites were analyzed to determine the ground coverage that could be obtained from a single satellite. Figures 100 through 106 show typical coverages that could be obtained in each zone as a function of universal time. Figure 106 compared to Figure 105 shows the effect on ground coverage of the 4-minute daily sidereal shift over three months for the 8-hour orbit. Similar time shifts would result for the other nongeostationary orbits.
Figure 97.

Constellation for HF system—6-hour, 30° and 45° inclination, circular, eight satellite clusters.
Figure 98. - Constellation for HF system—8-hour, 45° inclination, circular, eight satellite clusters.
Figure 99. - Constellation for HF system—12-hour, 45° inclination, circular, eight satellite clusters.
Figure 100. 6-hour orbital satellite coverage.
Figure 101. - Small HF satellite—12-hour orbital satellite coverage.
Figure 102. Small HF—24-hour elliptical orbital satellite coverage.
Figure 103. - Small HF-triply-synchronous satellite coverage.
Figure 104. - Small HF—geostationary satellite coverage.
Figure 105. - Small HF—8-hour orbital satellite coverage.
5.4.3 HF-Band Systems RF Performance Analysis

The approach taken to analyze HF-band satellites RF performance was similar to that described for VHF-band satellites. The only differences were a 2-dB propagation loss for HF instead of the 1 dB used for VHF, and element spacing from \(\lambda/3 \) to \(3/4 \lambda \) for HF arrays. Table 84 shows for a single satellite the maximum number of channels and signal strength available in each zone for the large HF systems. Signal strength for the small HF satellites was previously shown as a function of RF power (Figs. 91 through 96) along with satellite estimated weight.
TABLE 84. - HF SYSTEM MAXIMUM RF PERFORMANCE CAPABILITIES SUMMARY FOR A SINGLE SATELLITE

| System | 1 | 2 | 3U | 3L | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-------------------------|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| 8-h orbit | | | | | | | | | | | | | | | | |
| single launch | 1-320 | 1-345 | 1-230 | 1-259 | 1-301 | 1-298 | 1-325 | 1-228 | 1-351 | 1-357 | 1-282 | 1-282 | 1-237 | 1-221 | 1-301 | 1-223 |
| | 4-160 | 5-154 | 2-162 | 2-183 | 6-152 | 4-145 | 6-163 | 3-161 | 7-157 | 5-159 | 3-157 | 5-158 | 2-163 | 5-156 | 4-151 | 5-158 |
| 8-h orbit | | | | | | | | | | | | | | | | |
| Multiple launch | 2-346 | 3-291 | 1-348 | 1-393 | 2-327 | 2-320 | 2-352 | 1-344 | 2-297 | 3-301 | 2-302 | 2-303 | 3-350 | 2-335 | 2-323 | 3-338 |
| | 1-308 | 1-324 | 1-218 | 1-257 | 1-294 | 1-293 | 1-308 | 1-317 | 1-314 | 1-350 | 1-272 | 1-270 | 1-311 | 1-295 | 1-213 | 1-113 |
| 6-h orbit | | | | | | | | | | | | | | | | |
| single launch | 1-162 | 4-159 | 2-154 | 2-182 | 3-165 | 3-167 | 4-154 | 4-153 | 5-155 | 5-158 | 3-152 | 3-151 | 5-156 | 2-149 | 3-165 | 3-150 |
| | 4-399 | 3-292 | 1-350 | 2-291 | 2-334 | 2-332 | 2-350 | 3-347 | 3-304 | 3-314 | 2-308 | 3-306 | 2-350 | 1-337 | 1-335 | 1-341 |
| 6-h orbit | | | | | | | | | | | | | | | | |
| Multiple launch | | | | | | | | | | | | | | | | |

5.4.4 HF-Band Systems LCC Estimates

The approach taken to estimate LCC for the HF-band systems was similar to that taken for VHF-band systems. A 20-yr operational lifetime was assumed after a 5-yr development cycle. A launch frequency was assumed that would result in a fully operational system in two years after completion of development. Obviously, this assumption may be unrealistic for those systems using a large number of satellites. Table 85 shows the LCC breakdown for the 6- and 8-hour HF systems. The number of satellites shown is for three launch sets. The average unit cost includes the learning factor for the number of satellites shown. The launch cost was $125M for the single STS launch cases and $250M for the multiple launch cases. The increase in ground costs as a function of number of satellites was described previously in Section 4.3.8.4.

Figures 107 through 112 show satellite nonrecurring cost (NRC), recurring cost (RC), and total costs as a function of RF output power for each of the small HF concepts. Using a Centaur for the upper stage results in a dedicated launch for each satellite. Use of a different upper stage might be possible for a low-power satellite.

Estimated launch cost and ground operations cost should be added to the satellite costs shown in the figures to estimate a total system cost for the small satellite concepts. Also, use of multiple satellites would reduce recurring cost by the factors shown in Table 86.
Figure 107. - Small HF 6-hour satellite costs

Figure 108. - Small HF 8-hour satellite costs.

Figure 109. - Small HF 12-hour satellite costs.

Figure 110. - Small HF 24-hour elliptical orbit satellite costs.

Figure 111. - Small HF GEO satellite costs.

Figure 112. - Small HF triply-synchronous orbit satellite costs.
TABLE 86. - HF SYSTEMS' LCC ESTIMATES

<table>
<thead>
<tr>
<th>System*</th>
<th>1st unit cost</th>
<th>No of S/C</th>
<th>Average unit cost</th>
<th>Average launch</th>
<th>Total R</th>
<th>S/C NRC</th>
<th>Ground cost</th>
<th>Total NRC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-h orbit (single launch)</td>
<td>$161M</td>
<td>24</td>
<td>$100M</td>
<td>$225M</td>
<td>$5,400M</td>
<td>$247M</td>
<td>$71M</td>
<td>$318M</td>
<td>$5,718M</td>
</tr>
<tr>
<td>6-h orbit (multiple launch)</td>
<td>161</td>
<td>48</td>
<td>90</td>
<td>215</td>
<td>10,320</td>
<td>247</td>
<td>92</td>
<td>339</td>
<td>10,659</td>
</tr>
<tr>
<td>8-h orbit (single launch)</td>
<td>161</td>
<td>72</td>
<td>84</td>
<td>209</td>
<td>15,048</td>
<td>247</td>
<td>113</td>
<td>360</td>
<td>15,408</td>
</tr>
<tr>
<td>8-h orbit (multiple launch)</td>
<td>161</td>
<td>144</td>
<td>76</td>
<td>201</td>
<td>28,944</td>
<td>247</td>
<td>176</td>
<td>423</td>
<td>29,367</td>
</tr>
<tr>
<td>12-h orbit (single launch)</td>
<td>161</td>
<td>264</td>
<td>69</td>
<td>194</td>
<td>51,216</td>
<td>247</td>
<td>281</td>
<td>528</td>
<td>51,744</td>
</tr>
<tr>
<td>12-h orbit (multiple launch)</td>
<td>235</td>
<td>24</td>
<td>146</td>
<td>396</td>
<td>9,504</td>
<td>297</td>
<td>71</td>
<td>368</td>
<td>9,872</td>
</tr>
<tr>
<td>8-h orbit (single launch)</td>
<td>170</td>
<td>24</td>
<td>105</td>
<td>230</td>
<td>5,520</td>
<td>271</td>
<td>71</td>
<td>342</td>
<td>5,862</td>
</tr>
<tr>
<td>8-h orbit (multiple launch)</td>
<td>170</td>
<td>48</td>
<td>95</td>
<td>220</td>
<td>10,560</td>
<td>271</td>
<td>92</td>
<td>363</td>
<td>10,923</td>
</tr>
<tr>
<td>8-h orbit (single launch)</td>
<td>170</td>
<td>72</td>
<td>88</td>
<td>213</td>
<td>15,536</td>
<td>271</td>
<td>113</td>
<td>384</td>
<td>15,720</td>
</tr>
<tr>
<td>8-h orbit (multiple launch)</td>
<td>170</td>
<td>144</td>
<td>80</td>
<td>205</td>
<td>29,520</td>
<td>271</td>
<td>176</td>
<td>447</td>
<td>29,967</td>
</tr>
<tr>
<td>8-h orbit (multiple launch)</td>
<td>230</td>
<td>24</td>
<td>143</td>
<td>393</td>
<td>9,432</td>
<td>306</td>
<td>71</td>
<td>376</td>
<td>9,808</td>
</tr>
</tbody>
</table>

*20-yr operational life

5.4.5 HF-Band Summary of Results

The HF-band systems designed and analyzed for VOA applications included multiple satellite systems aimed at meeting all VQA requirements, and single small lower-cost satellites. The selected baseline system used an 8-hour circular orbit. The other full capability systems used 6- and 12-hour circular orbits. The 12-hour system was rejected due to its low power flux density on the ground. Table 87 summarizes the satellite designs for the 8- and 6-hour orbits. Tables 88 and 89 contain summaries of the 8- and 6-hour systems, showing required number of satellites and estimated system LCCs for a matrix of RF performance capabilities. As with the VHF systems, there would still be one year of full operational capability remaining after 20 years. The costs per channel hour and ground costs are each based on 20 years of operation. As shown, the LCC per channel hour for HF-band systems that were studied varied from a low value of $3,145 per hour to a high of $51,835 per hour.

TABLE 87. - HF SYSTEM DESIGN SUMMARY

<table>
<thead>
<tr>
<th>Antenna diameter, m</th>
<th>8-h Orbit, single launch</th>
<th>8-h Orbit, multiple launch</th>
<th>6-h Orbit, single launch</th>
<th>6-h Orbit, multiple launch</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>8,743</td>
<td>15,456</td>
<td>9,846</td>
<td>20,138</td>
</tr>
<tr>
<td>58</td>
<td>93</td>
<td>213</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>177</td>
<td>177</td>
<td>213</td>
<td>177</td>
<td>233</td>
</tr>
<tr>
<td>Transmitters, No.</td>
<td>177</td>
<td>213</td>
<td>177</td>
<td>233</td>
</tr>
<tr>
<td>Transmitter powers, W</td>
<td>452,819,1311</td>
<td>1130,1892,3012</td>
<td>485,808,1293</td>
<td>1240,2066,3306</td>
</tr>
</tbody>
</table>

191
TABLE 88. - HF-MATRIX OF DESIGN AND ANALYSIS CASES (8 HOURS)

<table>
<thead>
<tr>
<th>Case</th>
<th>Required µV/m</th>
<th>No. of channels</th>
<th>Zones</th>
<th>No. of S/C</th>
<th>LCC</th>
<th>Cost/channel hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-8</td>
<td>300*</td>
<td>Full VOA</td>
<td>All</td>
<td>88</td>
<td>$52,924M</td>
<td>$24,181/h</td>
</tr>
<tr>
<td>2-8</td>
<td>300*</td>
<td>Six ch max</td>
<td>All</td>
<td>48</td>
<td>29,967</td>
<td>14,440</td>
</tr>
<tr>
<td>3-8</td>
<td>300*</td>
<td>One ch max</td>
<td>All</td>
<td>8</td>
<td>5,082</td>
<td>6,082</td>
</tr>
<tr>
<td>4-8</td>
<td>300*</td>
<td>Two S/C per</td>
<td>All</td>
<td>16</td>
<td>10,923</td>
<td>5,168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-8</td>
<td>150</td>
<td>Full VOA</td>
<td>All</td>
<td>24</td>
<td>15,720</td>
<td>7,195</td>
</tr>
<tr>
<td>6-8</td>
<td>150</td>
<td>Two S/C per</td>
<td>All</td>
<td>16</td>
<td>10,923</td>
<td>5,168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>150</td>
<td>One S/C per</td>
<td>All</td>
<td>8</td>
<td>5,082</td>
<td>3,225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-8</td>
<td>300</td>
<td>Two S/C per</td>
<td>All</td>
<td>16**</td>
<td>18,589</td>
<td>9,451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-8</td>
<td>300</td>
<td>One S/C per</td>
<td>All</td>
<td>8**</td>
<td>9,808</td>
<td>6,086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Cannot achieve 300 µV/m for single channel Zones 3U, 3L, 7, 10, 11, 13, 15

**Full shuttle satellite—large Centaur-type stage in second orbiter

TABLE 89. - HF-MATRIX OF DESIGN AND ANALYSIS CASES (6 HOURS)

<table>
<thead>
<tr>
<th>Case</th>
<th>Required µV/m</th>
<th>No. of channels</th>
<th>Zones</th>
<th>No. of S/C</th>
<th>LCC</th>
<th>Cost/channel hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-6</td>
<td>300*</td>
<td>Full VOA</td>
<td>All</td>
<td>88</td>
<td>$51,744M</td>
<td>$23,686/h</td>
</tr>
<tr>
<td>2-6</td>
<td>300*</td>
<td>Six ch max</td>
<td>All</td>
<td>48</td>
<td>29,367</td>
<td>14,140</td>
</tr>
<tr>
<td>3-6</td>
<td>300*</td>
<td>One ch max</td>
<td>All</td>
<td>8</td>
<td>5,718</td>
<td>4,957</td>
</tr>
<tr>
<td>4-6</td>
<td>300*</td>
<td>Two S/C per</td>
<td>All</td>
<td>16</td>
<td>10,659</td>
<td>6,116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>300*</td>
<td>Six ch max</td>
<td>1, 2, 3U, 4, 6, 7, 8, 11, 13, 15</td>
<td>48</td>
<td>29,367</td>
<td>15,835</td>
</tr>
<tr>
<td>6-6</td>
<td>300*</td>
<td>Full VOA</td>
<td>3L, 5, 9, 10, 12, 14</td>
<td>48</td>
<td>29,367</td>
<td>34,831</td>
</tr>
<tr>
<td>7-6</td>
<td>150</td>
<td>Two S/C per</td>
<td>All</td>
<td>16</td>
<td>10,659</td>
<td>5,044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-6</td>
<td>150</td>
<td>One S/C per</td>
<td>All</td>
<td>8</td>
<td>5,718</td>
<td>3,145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-6</td>
<td>150</td>
<td>Two S/C per</td>
<td>All</td>
<td>16**</td>
<td>18,725</td>
<td>9,942</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-6</td>
<td>150</td>
<td>One S/C per</td>
<td>All</td>
<td>8**</td>
<td>9,872</td>
<td>6,127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Cannot achieve 300 µV/m for single-channel Zones 3U, 3L, 7, 10, 11, 13, 15

**Full shuttle satellite—large Centaur-type stage in second orbiter
The objectives of this part of the study were to provide information for the selected satellite concepts that will identify the following:

1) What needs to be done to implement a DVBS satellite system,

2) What technologies need to be advanced to reduce technical risks or enhance DVBS satellite performance,

3) The cost and schedule risks that would be encountered in critical technology development plans,

4) The cost and schedule risks that would be encountered for complete DVBS satellite programs.

Following are discussions detailing the approach taken to meet these objectives and the results of analyses.
The first step taken was to analyze performance risks for the four frequency bands of interest. The set of generic risks shown in Table 90 were selected and the risk level assessed for satellite systems, using the results of the technology survey described in Section 3.4, the technology tradeoffs described in Section 4.2, and analyses performed during the study. The risk assessment was expressed in qualitative terms as shown in the table. Using this risk assessment as a baseline, specific technologies were identified that must be addressed to reduce risk for VOA satellite systems.

TABLE 90. - DVBS PLANNING SUPPORT–PERFORMANCE RISK ANALYSIS

<table>
<thead>
<tr>
<th>Risk</th>
<th>Ku</th>
<th>L</th>
<th>VHF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-art advance</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Physical properties</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Material properties</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Radiation properties</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Material availability</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Testing/modeling validity</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Integration/interface (utilities)</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Program personnel</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Software design</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Safety</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Critical failure modes</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Energy/environmental impacts</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

6.1.1 Critical Technology Identification

The HF and VHF satellite concepts require large deployable structures to provide the required aperture sizes for optimum performance. Since there are no deployable antennas developed or under development in the size ranges required for HF or VHF systems, a development program must be established to reduce uncertainty surrounding use of these types of structures. The objectives of this program follow:

1) To demonstrate the capability of the structure to deploy itself and the communication subsystem payload;

2) To demonstrate the capability of the deployed structure to withstand environmentally and internally induced stresses, forces, and torques;

3) To demonstrate the capability of the undeployed structure to tolerate ground handling, system integration, packaging, STS, and upper-stage launch loads;

4) To satisfactorily demonstrate structural element and overall structural fabrication methods;

5) To demonstrate applicability and validity of modeling, simulation, and analysis techniques to analyze large deployable structures.
Space qualified SSPAs are not presently available at the power levels required from the results of this study. Thus a transmitter development program is recommended to:

1) Demonstrate the capability of SSPAs to operate efficiently at powers of at least one kW at the HF- and VHF-bands, and up to 300 watts in L-band;

2) Demonstrate the ability of SSPAs to operate over the desired 7-yr lifetime for the duty cycles and operating environment projected for L, HF, and VHF systems;

3) Demonstrate capability of designing SSPAs to meet packaging and stowage requirements;

4) Demonstrate capability to manufacture SSPAs in the quantities that would be required for L, HF, and VHF satellites.

Another aspect of the HF-, VHF-, and to a lesser degree, L-band systems that involves uncertainty is the array antenna RF performance. A program is recommended to perform the following:

1) Demonstrate the capability to shape and steer beams using phase control at the high powers and over the long distances associated with HF and VHF satellites;

2) Demonstrate satisfactory performance of an array antenna with high-power radiating elements, both with respect to signal at the ground and noninterference with TT&C functions for HF-, VHF-, and L-bands;

3) Evaluate the potential of multipacting in the vacuum of space.

Thermal control for HF-, VHF-, and high-power L-band concepts requires a distributed approach such as the CPL described previously. A program parallel to SSPA development is recommended to:

1) Develop and qualify the CPL technology;

2) Demonstrate the capability to integrate a CPL thermal control system (or other thermal control technique) with the SSPAs and antenna support system, meeting thermal dissipation, packaging, and deployment requirements.

The last critical technology area is solar array technology. The high powers required for HF-, VHF-, and L-band concepts exceed any of current satellites. However, development under the space station program should be applicable to VOA satellite systems. If not, some development will be required to demonstrate the capability to package and deploy solar arrays capable of generating powers of 100 kW and greater; demonstrate the capability to efficiently fabricate the large solar arrays; and to demonstrate the capability of an EPS to regulate and control large powers in cyclic operating modes.
A final technology that is applicable to Ku-band satellites is the development of TWTA technology that decreases operating degradation when operated in a cyclic mode. Work is under way in this area and should be monitored for applicability to VOA Ku-band satellites that will probably operate in a cyclic rather than steady state output mode.

6.1.2 Critical Technology Plans

To meet the technology development goals and reduce uncertainty for antennas, SSPAs, thermal control, and electric power generation, the activities shown in Figure 113A & B should be started early in a VOA program. A flight test of deployable large structures has been proposed by other studies to verify deployment, test flexible body control approaches, and validate analysis techniques. The times shown in these two figures are considered reasonable estimates although they are subjective. As will be shown later, they are consistent with estimates obtained from the NASA SDCM data base. The estimated costs for critical technology development shown in Table 91 are based on CERs discussed in Section 4.3, with the cost range due to the range of CER input parameter values for the various satellite concepts.

Table 91 - Critical Technology Development Costs

<table>
<thead>
<tr>
<th>Technology Description</th>
<th>Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deployable antenna technology</td>
<td>HF-band: 6 - $10M (+$25M for flight test)</td>
</tr>
<tr>
<td></td>
<td>VHF-band: $10M$ - $13M$ (+$25M for flight test)</td>
</tr>
<tr>
<td>Transmitters development</td>
<td>HF- & VHF-bands: 12 - $20M$</td>
</tr>
<tr>
<td>Transmitter thermal control development</td>
<td>HF- & VHF-bands: 4 - $10M$</td>
</tr>
<tr>
<td>Electrical power subsystem technology</td>
<td>HF-, VHF-, & L-bands: 3 - $35M$</td>
</tr>
</tbody>
</table>
6.2 SATELLITE SYSTEMS PROJECT PLANS

The set of top-level functions shown in Figure 114 were identified for a generic DVBS program. Also, the existence of a functional breakdown is required to facilitate a cost and schedule risk analysis using the Martin Marietta risk analysis methodology.

![Figure 114. - DVBS planning support—satellite systems project plan.](image)

6.2.1 Functional Decomposition

As an aid to developing estimates of cost and time required to perform the top-level functions, each was decomposed to identify the scope of activities or subfunctions under it. These subfunctions are shown in Figure 115. Program milestones, indicated where applicable, are: (1) System requirements review (SRR), (2) System design review (SDR), (3) Preliminary design review (PDR), (4) Critical design review (CDR).
Figure 115. DVBS project plan—top-level functions
1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 & 8.0.

6.2.2 Risk Assessment Procedure

The risk assessment procedure uses a quantitative risk assessment methodology developed at Martin Marietta in an IR&D project during 1982 and 1983. The method has been used on several programs to predict and monitor technical, schedule, and cost risks. The basic approach is not unique, using a Monte Carlo simulation approach. However, the method of implementation represents
an advantage over approaches used by others within the industry and the government. The advantage lies in an easily used computer program, RAMP developed to facilitate management of risk data and to simplify access to the Monte Carlo simulation software. The steps involved in the RAMP-augmented risk analysis procedure follow:

1) Obtain risk data estimates (for VOA, low, most likely, and high values) that are used as values of a probability density function;

2) Document the rationale for the estimates;

3) Document the source of the estimates;

4) Enter the estimates and program identifiers into a RAMP data base unique to the program being evaluated;

5) Compute a cumulative probability function for the risk parameter of interest (e.g., cost, months).

Figure 116 shows a risk assessment form containing the three point antenna structure development cost estimate for the small HF design for geostationary orbit. The nonrecurring cost estimates for this satellite, as obtained from the LCC program are shown in Table 92. As indicated on the assessment form, the cost predicted by the LCC model is taken as the highest cost that might occur. Since this is a relatively small satellite (26-meter diameter) work currently in process or planned for deployable box truss structures should result in less required development. Based on past experience with this type of structure, estimates of the most likely cost are predicted to be $2,000 per pound and could conceivably be as low as $1,000 per pound.

Risk assessment can be performed assuming that program functions are independent of or dependent on each other. In the context of quantitative risk analysis, dependence between functions means that if one function occurs at a worst-case value then all dependent functions will also occur at their worst-case values. When functions are independent, the level of one function has no influence on the expected level of others. Since the objective of breaking up a program into a set of functions is to establish a set of relatively independent activities, this independence should be considered when estimating total cost or time to complete. Unfortunately, the practice of summing estimates is frequently used, resulting in over-conservative estimates of cost or time required.

The difference between risks resulting from the two methods is illustrated in Figure 117. For a given parameter value, the risk will be higher for an analysis that assumes dependence. The cost and schedule risk assessments presented here were performed assuming independence. However, a degree of dependence is automatically built in by summing values of recurring, nonrecurring, launch, and ground operations at the fixed risk values of interest (90, 50, and 10%). The steps for the cost risks performed in the study are outlined in Table 93. The steps for schedule risk assessment are listed in Table 94.
RISK ASSESSMENT LOG

Program: VOA small HF, GEO

Risk Analyst:

WBS/Function No: 411

WBS/Function Title: Communications antenna development

Risk Type: Cost

Risk Description: The cost predicted by the MSFC planar array antenna and Navy graphite structure derived CER is considered the highest that might occur. It is assumed that DDTE programs for deployable graphite structures will precede VOA satellite programs. Thus, the most likely cost is predicted to be $2000 per lb with the lowest at $1000 per lb.

Risk Parameter: $M-Nonrec (nonrecurring cost)

<table>
<thead>
<tr>
<th>Most Likely Value/Level</th>
<th>Risk Weighting Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.65</td>
</tr>
<tr>
<td>Highest Possible</td>
<td>10.7</td>
</tr>
<tr>
<td>Lowest Possible</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Distribution Type: Triangular

Data Source: MSFC CER, Navy LCC handbook CER, engineering judgement

Mitigation Approach:

Figure 116. - Example of risk assessment log.

TABLE 92. HF SMALL SATELLITE
NRC ESTIMATES

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Cost, 1984 $</th>
<th>Cost source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure (equipment bay)</td>
<td>10.04 $M</td>
<td>Space Division CER</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>22.21</td>
<td>Space Division CER</td>
</tr>
<tr>
<td>Electrical power</td>
<td>66.18</td>
<td>VOA CER</td>
</tr>
<tr>
<td>Communications antenna</td>
<td>10.74</td>
<td>Planar array antenna CER</td>
</tr>
<tr>
<td>Communications uplink</td>
<td>13.69</td>
<td>Space Division CER</td>
</tr>
<tr>
<td>Signal processor</td>
<td>11.13</td>
<td>Space Division CER</td>
</tr>
<tr>
<td>Communications transmitter</td>
<td>15.19</td>
<td>Solid state transmitter CER</td>
</tr>
<tr>
<td>Attitude determination</td>
<td>3.55</td>
<td>Space Division CER</td>
</tr>
<tr>
<td>Attitude reaction</td>
<td>20.54</td>
<td>Elect propulsion CER</td>
</tr>
<tr>
<td>Propulsion</td>
<td>0.00</td>
<td>Throughput</td>
</tr>
<tr>
<td>TT&C</td>
<td>5.05</td>
<td>Space Division CER</td>
</tr>
<tr>
<td>Aerospace ground equipment</td>
<td>6.58</td>
<td>Space Division CER</td>
</tr>
<tr>
<td>Total nonrecurring</td>
<td>184.91</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 93. - DVBS PLANNING SUPPORT—COST RISK ANALYSIS APPROACH

<table>
<thead>
<tr>
<th>LCC estimating program for point estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three point estimates using values from LCC model as starting point</td>
</tr>
<tr>
<td>- Most likely cost</td>
</tr>
<tr>
<td>- Highest potential cost</td>
</tr>
<tr>
<td>- Lowest potential cost</td>
</tr>
<tr>
<td>Obtain cumulative functions</td>
</tr>
<tr>
<td>- Nonrecurring spacecraft cost</td>
</tr>
<tr>
<td>- Recurring spacecraft cost (with learning factor)</td>
</tr>
<tr>
<td>- Aerospace ground equipment, integration, system engineering, & program cost factors</td>
</tr>
<tr>
<td>- Launch costs</td>
</tr>
<tr>
<td>- Ground operations cost</td>
</tr>
<tr>
<td>Compute total cost risk</td>
</tr>
<tr>
<td>- Sum four cumulative function results</td>
</tr>
</tbody>
</table>

TABLE 94. - DVBS PLANNING SUPPORT—SCHEDULE RISK ANALYSIS APPROACH

| Identify program critical path |
| - Estimates of components/subsystem design + test + qualification times |
| - Select longest time for critical path |
| Estimate program top function times including decision lags between phases |
| Compute quantitative schedule risk |

Figure 117. - Quantitative risk assessment interpretation.
The cost risk assessment cumulative probability functions shown in Figures 118 and 119 are for the HF small design for geostationary orbit. The data estimates used for the antenna development include the estimate for antenna (ref. Fig. 116) and the 3-point estimate for transmitters development described in the risk assessment form of Figure 120. The output plots of Figures 116 and 117 are accompanied by a tabular risk printout (Table 95A & B). These tables identify the cost values corresponding to probability of success. For antenna technology development for this satellite design, there would be a 10% probability that the development would cost $10.8M or less, corresponding to a 90% risk if only $10.8M were allocated for development. The 90, 50, and 10% cost risks for antenna and EPS development, for this satellite, are shown in Table 96, along with the similar costs for the concepts selected as best for the HF-, VHF-, and L-bands. The Ku-band system is not included since it uses existing technology.

The corresponding schedule risk for antenna structure and transmitter technologies is summarized in Figures 121 and 122 and Table 97A & B. The times shown are considered reasonable across the range of satellite concepts studied. The list of component, subsystem, and system development times shown in Table 98 is presented for reference. These times were taken from SDCM documentation, and represent times required on previous satellite development programs.

![Figure 118. - HF small GEO case antenna technology development cost risk assessment.](image-url)
Figure 119. - HF small GEO case EPS technology development cost risk assessment.

RISK ASSESSMENT LOG

Program: VOA small HF, GEO

Risk Analyst: ________________________________ Date: _________________

WBS/Function No. 41.4

WBS/Function Title: Transmitter development

Risk Type: Cost

Risk Description: The value predicted by the Space Division LCC model is used as the most likely value. Because higher powers are typically required than for other systems, the highest possible is assumed at 100% over the most likely value. The lowest value is taken to be 10% below the most likely value.

Risk Parameter: $M-Nonrec (nonrecurring cost)

<table>
<thead>
<tr>
<th>Most Likely Value/Level</th>
<th>Highest Possible</th>
<th>Lowest Possible</th>
<th>Risk Weighting Factor</th>
<th>Secondary Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>15.2</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distribution Type: Triangular

Data Source: Space division LCC model, judgement

Mitigation Approach

Figure 120. - HF small GEO case transmitters cost risk log.
TABLE 95. - TABULAR OUTPUT FOR HF SMALL GEO CASE ANTENNA TECHNOLOGY AND EPS COST RISK

<table>
<thead>
<tr>
<th>Probability</th>
<th>Parameter</th>
<th>Probability</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.630000</td>
<td>0</td>
<td>6.600000</td>
</tr>
<tr>
<td>0.05</td>
<td>9.973318</td>
<td>0.05</td>
<td>8.199104</td>
</tr>
<tr>
<td>0.10</td>
<td>10.78711</td>
<td>0.10</td>
<td>9.658474</td>
</tr>
<tr>
<td>0.15</td>
<td>11.18905</td>
<td>0.15</td>
<td>11.25151</td>
</tr>
<tr>
<td>0.20</td>
<td>11.81886</td>
<td>0.20</td>
<td>12.89214</td>
</tr>
<tr>
<td>0.25</td>
<td>12.08865</td>
<td>0.25</td>
<td>14.58488</td>
</tr>
<tr>
<td>0.30</td>
<td>12.69831</td>
<td>0.30</td>
<td>16.35366</td>
</tr>
<tr>
<td>0.35</td>
<td>13.01544</td>
<td>0.35</td>
<td>18.14984</td>
</tr>
<tr>
<td>0.40</td>
<td>13.26913</td>
<td>0.40</td>
<td>20.03403</td>
</tr>
<tr>
<td>0.45</td>
<td>13.77533</td>
<td>0.45</td>
<td>21.99945</td>
</tr>
<tr>
<td>0.50</td>
<td>14.04413</td>
<td>0.50</td>
<td>24.05643</td>
</tr>
<tr>
<td>0.55</td>
<td>14.50329</td>
<td>0.55</td>
<td>26.21910</td>
</tr>
<tr>
<td>0.60</td>
<td>14.88284</td>
<td>0.60</td>
<td>28.50565</td>
</tr>
<tr>
<td>0.65</td>
<td>15.15558</td>
<td>0.65</td>
<td>30.94016</td>
</tr>
<tr>
<td>0.70</td>
<td>15.57181</td>
<td>0.70</td>
<td>33.55573</td>
</tr>
<tr>
<td>0.75</td>
<td>16.12199</td>
<td>0.75</td>
<td>36.39999</td>
</tr>
<tr>
<td>0.80</td>
<td>16.76693</td>
<td>0.80</td>
<td>39.54607</td>
</tr>
<tr>
<td>0.85</td>
<td>17.56044</td>
<td>0.85</td>
<td>43.11792</td>
</tr>
<tr>
<td>0.90</td>
<td>18.36511</td>
<td>0.90</td>
<td>47.35381</td>
</tr>
<tr>
<td>0.95</td>
<td>20.13933</td>
<td>0.95</td>
<td>52.87302</td>
</tr>
<tr>
<td>1.00</td>
<td>25.90000</td>
<td>1.00</td>
<td>66.20000</td>
</tr>
</tbody>
</table>

A) ANTENNA TECHNOLOGY COST RISK

- Antenna technology development cost, 1984, $M
- Risk parameter, $M—antenna development
- Independent risks
- Number of passes, 200
- Number of intervals, 20

B) EPS COST RISK

- EPS technology development cost, 1984 $M
- Risk parameter, $M—EPS development
- Dependent risks
- Number of passes, 200
- Number of intervals, 20

TABLE 96. - CRITICAL SUBSYSTEM TECHNOLOGY COST RISK

<table>
<thead>
<tr>
<th>System</th>
<th>Antenna technology cost risk</th>
<th>EPS technology cost risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90%</td>
<td>50%</td>
</tr>
<tr>
<td>HF small GEO</td>
<td>10.8</td>
<td>14.0</td>
</tr>
<tr>
<td>HF, 8 h</td>
<td>18.8</td>
<td>28.2</td>
</tr>
<tr>
<td>VHF, 24 h</td>
<td>25.2</td>
<td>45.2</td>
</tr>
<tr>
<td>L-band, option II</td>
<td>7.0</td>
<td>17.5</td>
</tr>
<tr>
<td>L-band, option III</td>
<td>10.8</td>
<td>12.1</td>
</tr>
</tbody>
</table>
Figure 121. - Antenna technology development schedule risk assessment.

Figure 122. - Solid state transmitter technology development schedule risk assessment.
TABLE 97. - ANTENNA TECHNOLOGY AND SOLID-STATE TRANSMITTER DEVELOPMENT SCHEDULE RISKS

<table>
<thead>
<tr>
<th>Probability</th>
<th>Parameter</th>
<th>Probability</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17.00000</td>
<td>0</td>
<td>16.00000</td>
</tr>
<tr>
<td>0.05</td>
<td>21.48229</td>
<td>0.05</td>
<td>23.0931</td>
</tr>
<tr>
<td>0.10</td>
<td>21.90552</td>
<td>0.10</td>
<td>23.9356</td>
</tr>
<tr>
<td>0.15</td>
<td>22.03702</td>
<td>0.15</td>
<td>25.04383</td>
</tr>
<tr>
<td>0.20</td>
<td>22.43647</td>
<td>0.20</td>
<td>25.7176</td>
</tr>
<tr>
<td>0.25</td>
<td>22.74920</td>
<td>0.25</td>
<td>26.1316</td>
</tr>
<tr>
<td>0.30</td>
<td>22.97231</td>
<td>0.30</td>
<td>26.8143</td>
</tr>
<tr>
<td>0.35</td>
<td>23.3256</td>
<td>0.35</td>
<td>27.4317</td>
</tr>
<tr>
<td>0.40</td>
<td>23.5677</td>
<td>0.40</td>
<td>27.6512</td>
</tr>
<tr>
<td>0.45</td>
<td>23.9957</td>
<td>0.45</td>
<td>28.0893</td>
</tr>
<tr>
<td>0.50</td>
<td>24.0734</td>
<td>0.50</td>
<td>28.4956</td>
</tr>
<tr>
<td>0.55</td>
<td>24.4129</td>
<td>0.55</td>
<td>29.0067</td>
</tr>
<tr>
<td>0.60</td>
<td>24.64095</td>
<td>0.60</td>
<td>29.5064</td>
</tr>
<tr>
<td>0.65</td>
<td>24.7996</td>
<td>0.65</td>
<td>29.8471</td>
</tr>
<tr>
<td>0.70</td>
<td>25.0282</td>
<td>0.70</td>
<td>30.8662</td>
</tr>
<tr>
<td>0.75</td>
<td>25.3134</td>
<td>0.75</td>
<td>30.7952</td>
</tr>
<tr>
<td>0.80</td>
<td>25.6826</td>
<td>0.80</td>
<td>31.6291</td>
</tr>
<tr>
<td>0.85</td>
<td>26.0019</td>
<td>0.85</td>
<td>32.1907</td>
</tr>
<tr>
<td>0.90</td>
<td>26.3419</td>
<td>0.90</td>
<td>32.7216</td>
</tr>
<tr>
<td>0.95</td>
<td>27.1457</td>
<td>0.95</td>
<td>33.4420</td>
</tr>
<tr>
<td>1.00</td>
<td>32.0000</td>
<td>1.00</td>
<td>40.0000</td>
</tr>
</tbody>
</table>

A ANTENNA TECHNOLOGY

Deployable array antenna schedule time, months
- Risk parameter, antenna months
- Independent risks
 - Number of passes, 200
 - Number of intervals, 20

B SOLID-STATE TRANSMITTER

Solid-state transmitter development time, months
- Risk parameter, SSPA months
- Independent risks
 - Number of passes, 200
 - Number of intervals, 20

TABLE 98.- COMPONENT AND SUBSYSTEM DEVELOPMENT TIME ESTIMATES FROM SDCM

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>T_cd</th>
<th>T_cq</th>
<th>T_sd</th>
<th>T_sq</th>
<th>T_sysq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td></td>
<td></td>
<td>2.8</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>- Antenna</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Transmitters</td>
<td>9.2</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Feed link</td>
<td>9.4</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Signal proc</td>
<td>8.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical power</td>
<td>14.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Thermal control</td>
<td>10.0</td>
<td>3.0</td>
<td>1.4</td>
<td>2.9</td>
<td>10.9</td>
</tr>
<tr>
<td>- Attitude control</td>
<td>11.9</td>
<td>3.0</td>
<td>8.3</td>
<td>3.0</td>
<td>19.4</td>
</tr>
<tr>
<td>Auxiliary propulsion</td>
<td>5.7</td>
<td>2.5</td>
<td>8.2</td>
<td>3.0</td>
<td>10.3</td>
</tr>
<tr>
<td>TT&C</td>
<td>10.5</td>
<td>2.0</td>
<td>3.0</td>
<td>1.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>

*T_cd - Component development time
*T_cq - Component qualification time
*T_sd - Subsystem development time
*T_sq - Subsystem qualification time
*T_sysq - System qualification time
6.4 SATELLITE SYSTEMS COMPOSITE RISK ANALYSIS

The final set of analyses are the cost and schedule risk assessments for the satellite systems studied over the course of the contract. Tables 99 through 102 summarize the cost risks for each systems' satellites (L-band uses an average cost per satellite as described in Section 4.3). In the tables, the 10/90 heading is a 90% risk level, while the 90/10 heading is a 10% risk level. All costs are in millions of 1984 dollars.

Table 103A, B & C, along with the corresponding Figures 123, 124, and 125 summarize the schedule risk assessment from phase B onward for the various systems. The 3-point time estimates shown in the tables are identified by the top-level function numbers described earlier. The similarities between the HF and VHF systems make it reasonable to use the same assessment for each. To summarize from the figures, the schedule risk values in months, starting with function 3.0 (Phase B) follow:

<table>
<thead>
<tr>
<th>System</th>
<th>10/90</th>
<th>50/50</th>
<th>90/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ku-band system</td>
<td>37.0</td>
<td>39.9</td>
<td>43.3</td>
</tr>
<tr>
<td>L-band system</td>
<td>50.5</td>
<td>54.6</td>
<td>61.4</td>
</tr>
<tr>
<td>HF/VHF-band system</td>
<td>59.4</td>
<td>63.5</td>
<td>69.1</td>
</tr>
</tbody>
</table>

TABLE 99. - KU-BAND SYSTEM COST RISK ASSESSMENT RESULTS

<table>
<thead>
<tr>
<th>System</th>
<th>Nonrecurring costs</th>
<th>Recurring costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/90</td>
<td>50/50</td>
</tr>
<tr>
<td>Satellite No. 3</td>
<td>$64 M</td>
<td>$76 M</td>
</tr>
<tr>
<td>Launch No. 3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Ground operations</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>Totals No. 3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Launch No. 2</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Ground operations</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Totals No. 2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Satellite No. 1</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Launch No 1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Totals No. 1</td>
<td>90</td>
<td>112</td>
</tr>
<tr>
<td>System totals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 100. - L-BAND SYSTEMS COST RISK ASSESSMENT RESULTS, 1984 $

<table>
<thead>
<tr>
<th>System</th>
<th>Nonrecurring costs</th>
<th>Recurring costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/90</td>
<td>50/50</td>
</tr>
<tr>
<td>Eight S/C at -103.6 dBW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>— Launches</td>
<td>$107M</td>
<td>$130M</td>
</tr>
<tr>
<td>— Ground operations</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>— Totals</td>
<td>119</td>
<td>148</td>
</tr>
<tr>
<td>Option I (5 S/C)</td>
<td>82</td>
<td>98</td>
</tr>
<tr>
<td>— Launches</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>— Ground operations</td>
<td>94</td>
<td>116</td>
</tr>
<tr>
<td>— Totals</td>
<td>100</td>
<td>133</td>
</tr>
<tr>
<td>Option II (3 S/C)</td>
<td>90</td>
<td>113</td>
</tr>
<tr>
<td>— Launches</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>— Ground operations</td>
<td>102</td>
<td>131</td>
</tr>
<tr>
<td>— Totals</td>
<td>104</td>
<td>135</td>
</tr>
<tr>
<td>Option III (3 S/C)</td>
<td>104</td>
<td>135</td>
</tr>
<tr>
<td>— Launches</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>— Ground operations</td>
<td>116</td>
<td>153</td>
</tr>
</tbody>
</table>

TABLE 101. - VHF SYSTEM SINGLE SATELLITE COST RISK ASSESSMENT RESULTS, 1984 $

<table>
<thead>
<tr>
<th>System</th>
<th>Nonrecurring costs</th>
<th>Recurring costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/90</td>
<td>50/50</td>
</tr>
<tr>
<td>12-h orbit Launch</td>
<td>$218M</td>
<td>$252M</td>
</tr>
<tr>
<td>24-h orbit Launch</td>
<td>217</td>
<td>258</td>
</tr>
<tr>
<td>24-h orbit, multiple launch Launch</td>
<td>242</td>
<td>304</td>
</tr>
</tbody>
</table>

208
<table>
<thead>
<tr>
<th>System</th>
<th>Nonrecurring costs</th>
<th>Recurring costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10/90</td>
<td>50/50</td>
</tr>
<tr>
<td>6-h orbit</td>
<td>$207 M</td>
<td>$247 M</td>
</tr>
<tr>
<td>6-h orbit, mult launch</td>
<td>237</td>
<td>297</td>
</tr>
<tr>
<td>8-h orbit</td>
<td>228</td>
<td>271</td>
</tr>
<tr>
<td>8-h orbit, mult launch</td>
<td>244</td>
<td>305</td>
</tr>
<tr>
<td>12-h orbit, mult launch</td>
<td>234</td>
<td>265</td>
</tr>
<tr>
<td>6-h small max pyld</td>
<td>220</td>
<td>265</td>
</tr>
<tr>
<td>6-h small 50 kW DSB</td>
<td>206</td>
<td>239</td>
</tr>
<tr>
<td>6-h small 50 kW SSB</td>
<td>197</td>
<td>231</td>
</tr>
<tr>
<td>8-h small max pyld</td>
<td>227</td>
<td>267</td>
</tr>
<tr>
<td>8-h small 50 kW DSB</td>
<td>208</td>
<td>241</td>
</tr>
<tr>
<td>8-h small 50 kW SSB</td>
<td>200</td>
<td>227</td>
</tr>
<tr>
<td>12-h small max payload</td>
<td>206</td>
<td>247</td>
</tr>
<tr>
<td>12-h small, 50 kW DSB</td>
<td>195</td>
<td>225</td>
</tr>
<tr>
<td>12-h small 50 kW SSB</td>
<td>180</td>
<td>210</td>
</tr>
<tr>
<td>Triply synchronous orbit</td>
<td>186</td>
<td>209</td>
</tr>
<tr>
<td>orbit small max payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geostationary orbit</td>
<td>194</td>
<td>222</td>
</tr>
<tr>
<td>orbit small, max payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-h elliptical orb</td>
<td>209</td>
<td>245</td>
</tr>
<tr>
<td>small, max payload</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-h, 50 kW DSB</td>
<td>194</td>
<td>225</td>
</tr>
<tr>
<td>24-h, 50 kW SSB</td>
<td>180</td>
<td>199</td>
</tr>
</tbody>
</table>
TABLE 103 - KU-, L-, HF-, AND VHF-BAND PROJECT FUNCTION 3-POINT SCHEDULE ESTIMATES

A KU-BAND

<table>
<thead>
<tr>
<th>Function/activity</th>
<th>Estimates, months</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Most likely</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>1.0 Allocate mission/system requirements (SRR)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.0 Define DVBS configuration (SDR)</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3.0 Develop subsystem requirements (PDR)</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.0 Develop detailed design (CDR)</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5.0 Integrate & fabricate</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6.0 Deliver & deploy</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

B L-BAND

<table>
<thead>
<tr>
<th>Function/activity</th>
<th>Estimates, months</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Most likely</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>1.0 Allocate mission/system requirements (SRR)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Decision/RFP</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.0 Define DVBS configuration (SDR)</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Decision/RFP</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3.0 Develop subsystem requirements (PDR)</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.0 Develop detailed design (CDR)</td>
<td>15</td>
<td>18</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5.0 Integrate & fabricate</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>6.0 Deliver & deploy</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

C HF- AND VHF-BANDS

<table>
<thead>
<tr>
<th>Function/activity</th>
<th>Estimates, months</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Most likely</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>1.0 Allocate mission/system requirements (SRR)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>decision/RFP</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.0 Define DVBS configuration (SDR)</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>decision/RFP</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.0 Develop subsystem requirements (PDR)</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>decision</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.0 Develop detailed design (CDR)</td>
<td>18</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>decision</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5.0 Integrate & fabricate</td>
<td>15</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>6.0 Deliver & deploy</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Figure 123. - Ku-band program schedule risk assessment results.

Figure 124. - L-band program schedule risk assessment results.
Figure 125. HF and VHF program schedule risk assessment results.
7.0 CONCLUDING SECTION

Section 7.0 summarizes the key results of the Satellite Voice Broadcast System study which investigated the feasibility of direct voice broadcasting from space. Also presented are some conclusions that can be drawn from the results. It is anticipated that in the future as the results are studied further, additional conclusions will be drawn.
Nonorbital, nonterrestrial broadcast techniques are unable to meet the desired coverage even using large numbers of platforms. Both the numbers and resulting cost of the systems are excessive. Also, the nonorbital techniques evaluated are severely power limited and therefore, cannot penetrate into unfriendly territory as well as terrestrial systems.

Orbital techniques using derivatives of existing geostationary satellites can meet Ku-band requirements. L-band systems could be used at the lower power flux density (PFD) requirements of -116.1 dBW/m². VHF and HF do not exist either with aperture or power subsystems to meet even the minimum signal strength requirement. Table 104 summarizes the results of existing nonterrestrial broadcast techniques.

The results of the Ku-band system design are summarized in Table 105. All VOA requirements could be achieved using existing technology and low program cost. Three satellites are required resulting in a total life-cycle cost of $1240M for a 20-yr operational lifetime with a corresponding cost per channel hour of $568. Figure 126 shows the proposed Ku-band satellite.

TABLE 104. - SUMMARY OF PROGRAM RESULTS FOR NONTERRESTRIAL BROADCAST TECHNIQUES

<table>
<thead>
<tr>
<th>Summary of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonorbital techniques</td>
</tr>
<tr>
<td>- Not useful in unfriendly territory</td>
</tr>
<tr>
<td>- Many (19 to 719) platforms needed for a single zone.</td>
</tr>
<tr>
<td>Orbital techniques</td>
</tr>
<tr>
<td>- Practical systems operate only at geostationary orbit</td>
</tr>
<tr>
<td>- Beam size in HF- & VHF-bands larger than Earth, and power is prohibitive.</td>
</tr>
<tr>
<td>- L-band system could work with existing broadcast technique for minimum PFD requirement only</td>
</tr>
<tr>
<td>- Ku-band systems may work with existing SBS type satellite technology.</td>
</tr>
</tbody>
</table>

TABLE 105. - SUMMARY OF PROGRAM RESULTS FOR KU-BAND SYSTEM

| 3 Ku-band satellites in geostationary orbit meet program requirements. |
| - Uses existing technology |
| - LCC = $1,240M |
| - Cost/channel hour = $568/channel hour |
| - TOS/AMS launch vehicle |
| - 100% coverage |
The results of the L-band system design are summarized in Table 106. This design option uses the lower power requirement of -116.1 dBW/m². Each of three satellites has two antenna array apertures that cover multiple zones with one large spot. All VOA requirements could be achieved using existing technology and low program cost. The 17-kW power subsystem would require the use of SAFE array technology that was demonstrated by NASA. The three satellites have a 20-yr operational lifetime cost of $1353M and a cost per channel hour of $619. Two other low-power options and one high-power option were also studied. Figure 127 shows the proposed L-band satellite.

TABLE 106. SUMMARY OF PROGRAM RESULTS FOR L-BAND SYSTEM

3 L-band satellites in geostationary orbit meet program requirements.
- Uses existing technology for -116.1 dBW/m²
- LCC $1,353M
- Cost/channel hour $619
- Requires 17 kW on satellite
- Two array antennas per satellite
- TOS/AMS launch vehicle
- 100% coverage
The results of the VHF-band system design are summarized in Table 107. A four satellite constellation in a 24-hour elliptical orbit provides 140-150 μV/m performance at the minimum cost. The 12-hour orbit had a higher PFD (250 μV/m) but required eight satellites and had lower coverage efficiency. A deployable scanning array is used for the aperture and a deployable 31.3 kW solar array flight experiment (SAFE) type solar array was used. The four satellites have a 20-yr operational lifetime cost of $2945M with cost per channel hour of $8584. Figure 128 shows a proposed VHF-band satellite.

The results of the HF-band system showed that excessively large numbers of satellites are required (88) to meet all zone and channel requirements at 300 μV/m. By reducing requirements to 150 μV/m a constellation of eight satellites can provide the number of channels shown in Table 108. New technology is required for both the array antenna and the power subsystem. It is anticipated that space station will develop the technology for a 100 kW solar power system. The eight satellites have a 20-yr operational lifetime cost of $5862M and a cost per channel hour of $3225M. Although the total program cost for the HF system is the highest, the cost per channel is lower than the VHF system and only four times the cost of the Ku- or L-band systems. Figure 128 shows a proposed HF-band satellite.

Table 109 presents a cost comparison of the four systems. The HF system has the highest LCC, even at the reduced power level and reduced channel capability. The VHF system has the highest cost per channel hour due to the reduced zones being covered. The VHF spacecraft have the lowest satellite utilization factor.
Figure 128.- VHF and HF satellite concepts.

TABLE 108. SUMMARY OF PROGRAM RESULTS FOR HF SYSTEM

<table>
<thead>
<tr>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of channels</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- LCC = $5,862 m
- Cost/channel hour = $3,225/h
- Centaur G launch vehicle
- 68% coverage frequency

TABLE 109. COST COMPARISON FOR KU-, L-, VHF-, & HF-BANDS

<table>
<thead>
<tr>
<th>Band</th>
<th>No. of spacecraft</th>
<th>LCC</th>
<th>Cost/channel hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ku-band</td>
<td>3</td>
<td>$1,240M</td>
<td>$568/h</td>
</tr>
<tr>
<td>L-band (≤ -116.1 dBW/m²)</td>
<td>3</td>
<td>1,353</td>
<td>619</td>
</tr>
<tr>
<td>VHF-band (140 - 150 μV/m)</td>
<td>4</td>
<td>2,945</td>
<td>8,584</td>
</tr>
<tr>
<td>HF-band (150 μV/m, reduced channel capability)</td>
<td>8</td>
<td>5,862</td>
<td>3,225</td>
</tr>
<tr>
<td>HF-band (300 μV/m, full VOA)</td>
<td>88</td>
<td>52,824</td>
<td>24,181</td>
</tr>
</tbody>
</table>
7.2 CONCLUSIONS

The study conclusions are based only on this system study and do not include other significant considerations being evaluated by NASA LeRC and VOA (e.g., receiver population and distribution).

1) Terrestrial systems have the advantage of coverage over nonorbital, nonterrestrial systems because the high power and resulting signal skips for terrestrial systems is more significant in expanding coverage than raising altitude (increasing line of sight) to expand coverage. It is difficult if not impossible to achieve 100-500 kW power levels on either lighter-than-air or heavier-than-air vehicles. The nonorbital, nonterrestrial system does have potential to provide local coverage where existing fixed sights do not exist.

2) Orbital systems can expand coverage for VOA beyond existing terrestrial systems. Orbital systems can be used as an augmentation to the terrestrial system or as a potential replacement. Costs become significant when a full capability orbital replacement system for the HF terrestrial system is considered.

3) Cost of the system increases as the operation frequency decreases.

4) HF is desirable due to high ground receiver population, but antenna size is large and transmit power levels are high. Because of high power requirements at greater than 300 μV/m, future tests are desirable to determine if a reduced level (150 μV/m) could be received on the ground with adequate S/N ratio.

5) Both HF and VHF systems require technology development for both the power subsystem and the array antenna. The Ku-band system uses OTS technology. The L-band system uses OTS technology except for the array antenna and deployable solar array which are SOA.

6) HF and VHF array antennas have many advantages over reflectors including low power per transmitter, simple thermal control, electronic beam steering, higher reliability (graceful degradation if transmitter fails).

7) Parametric performance studies showed that power generation using deployable photovoltaic solar arrays were superior to other systems based on specific weight (kW/kg) packing volume (kW/stowed volume).

8) Optimizing the HF and VHF VOA coverage requirements for the selected orbit coverage characteristics can improve satellite utilization factors and provide more operational hours and thus reduce cost per channel hour. Also reducing the peak multichannel requirements can improve both the satellite utilization factor and cost per channel hour. Tasking of a satellite to cover more than one zone simultaneously with multiple beams (when satellite power and channel capability is available after covering first zone) can improve both coverage and satellite utilization factors producing lower cost per channel hour.
9) For subsynchronous orbits with multiple satellites, the use of two ground stations with satellite cross linking was more cost effective than additional ground stations and no satellite cross linking.

10) Two smaller HF systems: (1) two satellites in an 8-hour, 0° inclination orbit or (2) two satellites in a triply-synchronous orbit can provide VOA programming with reduced signal strengths but with repeating ground coverage times. This system has significantly lower cost than the full capability system and could be used as a low-cost startup system to augment the terrestrial system.
This appendix contains descriptions of and user instructions for computer programs developed and used during the study of direct broadcast satellite systems. The first, life-cycle cost (LCC) estimating program (LCCOST), provides estimates of satellite LCCs. The second, RFANAL, performs calculations to estimate RF performance. A third set of programs is also provided although they were not developed during the study. These programs include SUBSIZ Voice of America (VOA), EPSSIZ VOA, and RFSIZ VOA. Together they provide estimates of weight and volume for satellite subsystems. These estimates and other parametric data can be used to automatically interface with LCCOST to estimate LCC. The three programs are derivatives of Martin Marietta Denver Aerospace programs that have been modified to reflect assumptions made for sizing VOA satellites as discussed in Sections 3 and 4 of the Satellite Voice Broadcast Final Report.

LCCOST

Following is a description of the LCC estimating program developed for use in the VOA satellite study. The LCCOST program was developed to run in a standalone mode or interface with outputs from SUBSIZ. This document discusses the standalone capabilities of LCCOST as provided to NASA.

The objective of the program is to provide an efficient means to estimate and tradeoff LCC of spacecraft concepts. LCC estimates are broken out by subsystem for:

1) Attitude control (attitude determination),
2) Stationkeeping and maneuvering reaction control system (RCS),
3) Primary propulsion,
4) Communication payload,
5) Electrical power subsystem,
6) Thermal control,
7) Telemetry, tracking, and command (TT&C),
8) Structure (equipment bay).

Following are descriptions of the LCC estimating approach for each of the subsystems required for VOA direct broadcast satellite systems. The LCC estimating algorithms and cost estimating relationships (CER) have been coded and tested on an IBM PC. This program provides an efficient tool for trading off different subsystems and for determining sensitivity of LCC to weight, stowed volume, and electric power for different system requirements.
LCC Estimating Procedure Overview

In the standalone mode, LCC estimates for each spacecraft configuration are determined from subsystem-specific input data obtained from some data base source (such as the NASA LaRC system design and cost model (SDCM) or IDEAS programs) and input manually. The input data are applied to user-selected CERs. The CERs contained in the program were described in Section 4. These CERs are used to compute cost at the subsystem level, with subsystem costs summed to provide total spacecraft nonrecurring cost and recurring first unit cost. Additional CERs are included to permit estimation of launch, ground support, and project management costs.

The output of the LCC program is a breakout of nonrecurring, recurring, launch, and ground costs by subsystem, by combinations of subsystems, or for a total system. In the standalone mode, sensitivity of cost to spacecraft design parameters is determined by manual input of new values for CER input parameters.

To estimate LCC for multiple spacecraft, it is necessary to determine an average unit cost \(C \) by using a learning factor. A commonly used approach uses the expression:

\[
C = \frac{C_{ul}}{N^b}
\]

where: \(b = \frac{\log(m)}{\log(2)} \)

\(m \) is a learning factor slope expressed in %;

\(C_{ul} \) is estimated first unit cost;

\(N_u \) is total number of units to be produced

For spacecraft, a conservative value for \(m \) is 0.95, with an optimistic value of 0.8. The total recurring cost can then be obtained by multiplying \(C \) times \(N \).

The CERs used to estimate spacecraft LCC include data obtained and/or refined during the VOA study contract and CERs based on cost data from the NASA SDCM, the NASA MSFC LCC data base, the REDSTAR LCC data base, and the USAF Space Division LCC data base. The CER contained in these models vary at the subsystem level primarily because of different assumed subsystem configurations in the different LCC models. The LCC program therefore includes the capability to select different CERs for different subsystems. Selection of the CER for a subsystem is at the discretion of the user. By using different CERs on subsequent runs, an estimate of cost estimating uncertainty can be obtained by comparing the differences in subsystem and system LCC estimates. If desired, the different results can be averaged to compute an average cost. The results can also be weighted manually to reflect the similarity (or dissimilarity) of each CER's subsystem configuration to the VOA satellite subsystem configuration.
Subsystem LCC Estimating Descriptions

Following are brief discussions of strategies for CER inputs recommended for specific subsystems and program activities.

1) Communication Subsystem—The communication subsystem includes the communications antenna(s), uplink components, signal processing components, and downlink components. For large space system (LSS) antennas, the downlink components are identified as the transmitters. If conventional (non-LSS) spacecraft costs are being estimated, downlink component weight should be distributed into the uplink and signal processing components. This is also the case if a passive LSS antenna (e.g. radiometer) is being considered. The VOA CERs for transmitters' recurring cost were obtained from discussions with potential vendors and are considered better for solid-state electronics than any of the other model CERs included in program LCCOST. A learning factor is built into the program to account for multiple transmitter assemblies for a single planar array antenna.

2) Electric Power Subsystem—For spacecraft requiring more than 10 kW from the source, the VOA CER should be used. For power requirements less than 10 kW, the CER derived from the MSFC LCC model may be better. Also, the VOA CER assumes a much smaller proportion of cost for batteries than is common for current spacecraft.

3) Reaction Control Subsystem (RCS)—The CER derived from the Space Division model should be used if the RCS uses chemical thrusters. If electric propulsion is used, the derived electric propulsion CER is applicable. This CER was obtained from results of electric propulsion studies found in the literature and by studies performed at the Denver Aerospace company.

4) Other Subsystems—For all other spacecraft subsystems, the Space Division model subsystem configuration assumptions are considered to provide the best fit with VOA or most other spacecraft. Thus, if CERs are used to estimate costs, the Space Division CERs are recommended. However, considerable data exists defining costs for the more common subsystem configurations. If costs of subsystem components are known from prior programs, the best approach is to use the throughput option of LCCOST.

5) Launch Costs—Launch costs are separated into STS launch cost and orbit transfer (upper stage) cost. The STS launch cost algorithm assumes non-subsidized costs, and computes cost as a function of required weight or volume fraction of the STS payload. The STS launch cost is computed as follows:
Cost = \((\text{dedicated launch cost} + \text{user fee} + \text{escalated user fee}) \times \text{payload charge factor}\)

where charge factor is smaller of 1.0 or load factor divided by 0.75; Load factor is larger of \([\text{spacecraft (S/C)} + \text{upper stage length}] \div 60 \text{ ft or } (\text{S/C} + \text{upper stage weight}) \div 65000 \text{ lb}; \) dedicated launch cost is $210M; user fee is $4.3M; escalated user fee is $37M

For subsidized STS launch costs, a throughput value can be obtained by assuming $20,000 per pound for a Centaur G upper stage, or $19,000 per pound using a TOS/AMS upper stage.

6) Ground Costs—Aerospace ground cost, a nonrecurring cost, accounts for special tools, facilities, and test equipment necessary to support production and is computed as a function of total spacecraft weight. Ground operations cost includes the ground control station facility cost, a nonrecurring cost, and operations cost, which depends on the number of spacecraft to be monitored. No CER was identified that adequately represents this cost category. Therefore, use of the throughput option is recommended.

7) Other Costs—Program-level costs not directly associated with a specific subsystem must be included to account for such activities as program management, systems engineering, quality control, contract management, finance management, etc. The LCCOST program computes these costs as a user defined percentage of total nonrecurring and recurring costs. The last cost category included in the overall cost estimate is the program fee, again computed as a user defined percentage of total cost.

LCCOST User Instructions

The LCCOST program has two different execution modes. It can be linked to the executive program SUBSIZ and run automatically, or it can be run as a standalone program. When linked to SUBSIZ, all of the input parameters for the spacecraft CERs are input automatically. When run as a standalone program, these parameters must be entered manually in response to a prompt such as:

ENTER COMMUNICATIONS ANTENNA WEIGHT (LB): 2035.5

The required input parameters are summarized in Table 110.
<table>
<thead>
<tr>
<th>CER</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure (equipment bay)</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Thermal control</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Electrical power</td>
<td>power, W</td>
</tr>
<tr>
<td>Communication antenna</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Communication signal processor</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Communication transmitter</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Attitude determination</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Attitude reaction</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Primary propulsion</td>
<td>impulse, lb-s</td>
</tr>
<tr>
<td>TT&C</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Number of transmitters</td>
<td>unitless</td>
</tr>
<tr>
<td>Total S/C</td>
<td>weight, lb</td>
</tr>
<tr>
<td>Ground operations</td>
<td>length, ft</td>
</tr>
<tr>
<td></td>
<td>life, yr</td>
</tr>
</tbody>
</table>

An input of zero for any subsystem parameter will result in skipping cost computation for that subsystem. After parameter input is complete, the program will prompt for the CER source by displaying the available options for the subsystem. For example, the prompt for a communications antenna will be:

COST SOURCE FOR COMMUNICATIONS ANTENNA

0 : THROUGH PUT
1 : USER DEFINED CER
2 : SPACE DIVISION CER
3 : VOA CER
SOURCE SELECTION — ?

COST SOURCE FOR COMMUNICATIONS UPLINK

0 : THROUGH PUT
1 : USER DEFINED CER
2 : SPACE DIVISION CER
SOURCE SELECTION — ?

COST SOURCE FOR SIGNAL PROCESSOR

0 : THROUGH PUT
1 : USER DEFINED CER
2 : SPACE DIVISION CER
SOURCE SELECTION — ?

COST SOURCE FOR COMMUNICATIONS TRANSMITTER

0 : THROUGH PUT
1 : USER DEFINED CER
2 : SOLID STATE CER
SOURCE SELECTION — ?

When a CER is chosen, the parameter value input previously for that element is used to calculate the cost. This process repeats for each subsystem in turn.
The throughput option allows direct input of recurring and nonrecurring cost without requiring an input parameter. The prompts for the throughput option have the form:

How Many Recurring Cost Elements for COMMUNICATIONS UPLINK? 1

Recurring Element Cost (1 of 1) ? 3.1

The user-defined CER option allows the user to define recurring and non-recurring CER having the form:

\[A + B \times (\text{parameter})C \]

The prompts for the user-defined CER mode have the form:

ENTER A : ?
ENTER B : ?
ENTER C : ?

The user-defined CER then uses the previously input value of the CER parameter to calculate costs. The CER is not, however, retained after the module has terminated execution.

Exceptions to the above cost source input format are shuttle launch cost, program level, and fee. Program level and fee are input as decimal percentages. Program level is a percentage of the spacecraft total platform cost, and fee is a percentage of the program subtotal cost. Cost options for shuttle launch are either throughput or the shuttle launch algorithm described in Section 4. The algorithm requires information such as upper-stage weight, length, and cost (in FY 1984 $M).

Prompts for output options appear after calculations are complete. If the model is run as a standalone program a prompt will request an output title. This title is printed on paper printouts only. The next option is for display of the results on the screen or on the printer. After output is complete the user is given the option of printing again. A 'Y' response will return the program to the beginning of the output menu. A 'N' response results in program termination. The following three pages show an example of program LCCOST output.
<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>COST (M)</th>
<th>COST SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure (Equipment Bay)</td>
<td>8.44</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>7.22</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Electrical Power</td>
<td>42.11</td>
<td>VUA CER</td>
</tr>
<tr>
<td>Communications Antenna</td>
<td>48.47</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Communications Uplink</td>
<td>16.82</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Signal Processor</td>
<td>11.13</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Communications Transmitter</td>
<td>7.79</td>
<td>SOLID STATE TRANSMITTER CER</td>
</tr>
<tr>
<td>Attitude Determination</td>
<td>25.59</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Attitude Reaction</td>
<td>33.43</td>
<td>ELECT. PROPULSION CER</td>
</tr>
<tr>
<td>Propulsion (ARM)</td>
<td>0.00</td>
<td>THROUGH PUT</td>
</tr>
<tr>
<td>TT&C</td>
<td>5.83</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Aerospace Ground Equipment</td>
<td>7.99</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>Program Level</td>
<td>113.75</td>
<td></td>
</tr>
<tr>
<td>Fee</td>
<td>33.24</td>
<td></td>
</tr>
<tr>
<td>Total, Nonrecurring</td>
<td>365.64</td>
<td></td>
</tr>
<tr>
<td>SUBSYSTEM</td>
<td>COST($M)</td>
<td>COST SOURCE</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>STRUCTURE (EQUIPMENT HAY)</td>
<td>1.32</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>THERMAL CONTROL</td>
<td>1.46</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>ELECTRICAL POWER</td>
<td>28.51</td>
<td>VOA CER</td>
</tr>
<tr>
<td>COMMUNICATIONS ANTENNA</td>
<td>11.03</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>COMMUNICATIONS UPLINK</td>
<td>15.21</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>SIGNAL PROCESSOR</td>
<td>7.29</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>COMMUNICATIONS TRANSMITTER</td>
<td>3.58</td>
<td>SOLID STATE TRANSMITTER CER</td>
</tr>
<tr>
<td>ATTITUDE DETERMINATION</td>
<td>7.34</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>ATTITUDE REACTION</td>
<td>5.68</td>
<td>ELECT. PROPULSION CER</td>
</tr>
<tr>
<td>PROPULSION (AKM)</td>
<td>0.00</td>
<td>THROUGH PUT</td>
</tr>
<tr>
<td>TT&C</td>
<td>3.00</td>
<td>SPACE DIVISION CER</td>
</tr>
<tr>
<td>PROGRAM LEVEL</td>
<td>45.57</td>
<td></td>
</tr>
<tr>
<td>FFE</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL RECURRING</td>
<td>143.01</td>
<td></td>
</tr>
</tbody>
</table>
VOA Total Life Cycle Cost

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>COST (Million) in 1984 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nonrecurring</td>
<td>365.64</td>
</tr>
<tr>
<td>Total Recurring</td>
<td>143.01</td>
</tr>
<tr>
<td>STS Launch</td>
<td>251.60</td>
</tr>
<tr>
<td>Upper Stage</td>
<td>25.00</td>
</tr>
<tr>
<td>Ground Operations</td>
<td>12.00</td>
</tr>
<tr>
<td>Total Cost</td>
<td>797.25</td>
</tr>
</tbody>
</table>
Following is a description of the RF performance program developed for use in the VOA satellite study (contract NAS3-24233). The program, RFANAL, was designed to prompt the user for all necessary data required to run the program. The following are the program prompts and explanatory comments about each.

1) ENTER ORBITAL ALTITUDE IN km?

2) ENTER OPERATING FREQUENCY IN MHz?

The program was designed to run in three separate bands of operating frequencies.

a) 15 - 68 MHz,
b) 1100 - 1300 MHz,
c) 11000 - 13000 MHz.

The user has the option of choosing any frequency within one of these three bands.

3) IS FEED SYSTEM CIRCULARLY OR LINEARLY POLARIZED (C/L)?

The user should input a "C" for a circular polarized feed or "L" for a linear polarized feed. By inputting a "C" the program will add the appropriate 3 dB loss to the RF analysis.

4) ENTER SPACECRAFT LAT., LONG. POINT—SOUTHERN LAT. AND WESTERN LONG. ARE NEGATIVE?

Enter the starting position of the satellite with respect to the coverage zone of interest. Southern latitudes and Western longitudes are defined as negative numbers. Therefore, latitudes are limited to ±90° and longitudes are limited to ±180°.

5) ENTER INCREMENT FOR LAT. LOCATION OF SPACECRAFT—ENTER 0 TO KEEP SATELLITE STATIONARY?

This is used to allow the user to move the satellite along a constant longitudinal line at the increment specified. For each incremental step, the program will print out the RF analysis results. This will terminate when either the minimum elevation angle of 20° or the spacecraft's latitude limit (orbit inclination) is reached. This process will not be performed if the user inputs 0 for the increment.

6) ENTER INCREMENT FOR LONG. LOCATION OF SPACECRAFT—ENTER 0 TO KEEP SATELLITE STATIONARY?
This is similar to the above input, however the satellite will move along a constant latitude line. The program will again print out the RF analysis results for each incremental step. This will terminate when the minimum elevation angle of 20° is reached. This process will not be performed if the user inputs 0 for the increment.

7) ENTER SPACECRAFT LAT. LIMIT—I.E., THE INCLINATION OF THE ORBIT?

This is used above to determine when the spacecraft has reached the latitude limit. This prompt will not appear if the user has entered 0 for prompt number 5.

8) ENTER NAME OF ZONE (LIMIT 80 CHARACTERS)?

The user can input any combination of letters and numbers that will be used to title the output.

9) ENTER LOWER LAT. AND WESTERN LONG. OF SPOT—SOUTHERN LAT. AND WESTERN LONG. ARE NEGATIVE?

Enter the lower most and left most boundaries of the zone. As with the spacecraft lat., long. point (prompt number 4) Southern latitudes and Western longitudes are defined as negative numbers.

10) ENTER UPPER LAT. AND EASTERN LONG. OF SPOT—SOUTHERN LAT. AND WESTERN LONG. ARE NEGATIVE?

Enter the upper most and right most boundaries of the zone. As with the spacecraft lat., long. point (prompt number 4) Southern latitudes and Western longitudes are defined as negative numbers.

11) ENTER REFLECTOR DIAMETER LIMIT IN METERS?

This is used to let the program know what the maximum size of the reflector can be. If the zone is too small requiring an antenna reflector larger than the user's defined limit, the program will flag the user and determine the actual zone covered by using the reflector diameter limit.

12) ENTER TOTAL TRANSMIT POWER IN WATTS?

This is the end of the program prompts. After each question has been answered the program will calculate and print out the RF analysis results. The following page shows an example of the program outputs.
ZONE COVERED -- EXAMPLE ZONE
TOTAL TRANSMIT POWER = 10000 WATTS 40 dBW
ORBITAL ALTITUDE = 10355 Km
OPERATING FREQUENCY = 26 MHz
SATELLITE LOCATION = 30 LAT 30 LONG
ZONE SIZE = 20 X 50 LATITUDE
-20 X 50 LONGITUDE
POLARIZATION -- CIRCULAR

APERTURE SIZE = 22.9884 m X 22.9884 m using UNIFORM Illumination
ANTENNA EOC GAIN = 11.66537 dBi
ANTENNA APERTURE EFF = .7473356
ANTENNA BEAMWIDTH = 32.625 deg X 32.625 deg
GROUND COVERAGE = 7792.19 Km X 7792.19 Km
-70 deg X 70 deg
ANTENNA SCAN ANGLE = 4.83
EOC EIRP = 51.66537 dBW
POLARIZATION MARGIN = 3 dB
PROPAGATION LOSS = 2 dB
MIN ELEVATION ANGLE = 18.85641
SPREADING LOSS = 153.6278 dB
SLANT RANGE = 13545.17 Km
EOC POWER FLUX DENSITY IN dBW/sq. m.
NO. OF CHANNELS 1 2 3 4 5 6 7
-106.97 -109.97 -111.74 -112.99 -113.96 -114.75 -115.42
EOC SIGNAL STRENGTH IN uV/m.
NO. OF CHANNELS 1 2 3 4 5 6 7
87.100 61.588 48.579 43.550 38.952 35.559 32.921
The program was designed to provide the necessary data for the VOA study. Therefore, the program automatically assumes certain RF parameters. First, for frequency bands 15-68 MHz and 1100-1300 MHz, the program calculates the antenna beamwidth using the following equation:

\[
BW = 65 \times \frac{\lambda}{D}
\]

(2)

where \(BW = \) antenna beamwidth, deg
\(65 = 65^\circ \) uniform illumination factor
\(\lambda = \) wavelength, m
\(D = \) reflector diameter, m.

For the frequency band of 11000-13000 MHz, the program calculates the antenna beamwidth by using:

\[
BW = 70 \times \frac{\lambda}{D}
\]

(3)

where \(BW = \) antenna beamwidth, deg
\(70 = 70^\circ \) tapered illumination factor
\(\lambda = \) wavelength, m
\(D = \) reflector diameter, m.

The difference in the two equations results because the first two frequency bands assume a phased array reflector system with uniform illumination, while the third frequency band uses a reflector dish and feed system with tapered illumination.

The next RF parameter built into the program is the aperture efficiency. For the first band, 15-68 MHz, the program uses:

\[
Eff = 0.75 \times \cos(\theta)
\]

(4)

where \(Eff = \) aperture efficiency
\(\theta = \) antenna scan angle off boresight

This equation assumes that the phased array antenna used for the first band design is an electronically steerable array. For the second band, the aperture efficiency is a constant 0.8, and for the third band, the aperture efficiency is a constant 0.5. These numbers assume a nonsteerable phased array and a dish reflector and feed, respectively.

The final parameter automatically calculated by the program is the propagation loss due to transmission from space. The program assumes a propagation loss of 2 dB if operating at less than 35 MHz, 1 dB if operating between 35 MHz and 68 MHz, and 0 dB for all other frequencies.
The following is the program listing for the rf performance program (RFANAL).

10 DIM PHI(4)
15 T$=STRING$(73,42)
20 CLS;INPUT "ENTER ORBITAL ALTITUDE IN KM";OT
30 INPUT "ENTER OPERATING FREQUENCY IN MHz";OF
40 INPUT "IS FEED SYSTEM CIRCULARLY OR LINEARLY POLARIZED (C/L)";A$
50 IF A$="C" OR A$="c" THEN PM=3:GOTO 80
60 IF A$="L" OR A$="L" THEN PM=0:GOTO 80
70 GOTO 40
80 INPUT "ENTER SPACECRAFT LAT, LONG POINT -- SOUTHERN LAT. AND WESTERN LONG. ARE NEGATIVE";LATSC,LONGSC
90 INPUT "ENTER INCREMENT FOR LAT LOCATION OF SPACECRAFT - ENTER 0 TO KEEP SATELLITE STATIONARY";SCLATINC
100 INPUT "ENTER INCREMENT FOR LONG LOCATION OF SPACECRAFT - ENTER 0 TO KEEP SATELLITE STATIONARY";SCLONGINC
110 LATSCI=LATSC;LOOP=0;LONGSCI=LONGSC;LATLIMIT=90
120 IF SCLATINC<0 THEN INPUT "ENTER SPACECRAFT LAT LIMIT --- I.E., THE INCLINATION OF THE ORBIT";LATLIMIT
130 INPUT "ENTER NAME OF ZONE (LIMIT 80 CHARACTERS)";NAM$
140 INPUT "ENTER LOWER LAT AND WESTERN LONG OF SPOT -- SOUTHERN LAT. AND WESTERN LONG. ARE NEGATIVE";LAT1,LONG1
150 INPUT "ENTER UPPER LAT AND EASTERN LONG OF SPOT -- SOUTHERN LAT. AND WESTERN LONG. ARE NEGATIVE";LAT2,LONG2
160 IF LAT1=LATSC THEN LAT1=LAT1-.0001
170 IF LAT2=LATSC THEN LAT2=LAT2-.0001
180 IF LONG1=LONGSC THEN LONG1=LONG1-.0001
190 IF LONG2=LONGSC THEN LONG2=LONG2-.0001
200 OLAT1=LAT1:OLAT2=LAT2:OLONG1=LONG1:OLONG2=LONG2
211 PHIL=90
220 INPUT "ENTER REFLECTOR DIAMETER LIMIT IN METERS";DIAL
230 INPUT "ENTER TOTAL TRANSMIT POWER IN WATTS";TTP
240 LAT1=OLAT1:LAT2=OLAT2:LONG1=OLONG1:LONG2=OLONG2:FL=0
250 SCAN=0:TAPER=0:ILLUM=65
260 IF OF>11000 AND OF<13000 THEN TAPER=1:ILLUM=70
270 WL=3E+08/(OF*1000000!)
280 AILIM=ILLUM*WL/DIAL
290 TP=10*LOG(TTP)/LOG(10)
300 GC1=TAN((LAT1-LATSC)*3.1415927#/180)*(COS((LAT1-LATSC)*3.1415927#/180)*6378)
310 GC2=TAN((LAT2-LATSC)*3.1415927#/180)*(COS((LAT2-LATSC)*3.1415927#/180)*6378)
320 GC3=TAN((LONG1-LONGSC)*3.1415927#/180)*(COS((LONG1-LONGSC)*3.1415927#/180)*6378)
330 GC4=TAN((LONG2-LONGSC)*3.1415927#/180)*(COS((LONG2-LONGSC)*3.1415927#/180)*6378)
340 ALPHAl=ATN(GC1/(OT+(6378-COS((LAT1-LATSC)*3.1415927#/180)*6378)))
350 ALPHAl=ATN(GC2/(OT+(6378-COS((LAT2-LATSC)*3.1415927#/180)*6378)))
360 ALPHAl=ATN(GC3/(OT+(6378-COS((LONG1-LONGSC)*3.1415927#/180)*6378)))
370 ALPHAl=ATN(GC4/(OT+(6378-COS((LONG2-LONGSC)*3.1415927#/180)*6378)))
370 ALPHA4=ATN((GC4/(OD+6378*COS((LONG2-LONGSC)*3.1415927/180)*6378))
380 IF OF>15 AND OF<68 THEN SCAN1=ABS(ALPHA1+ALPHA2)/2:SCAN2=ABS(ALPHA3+ALPHA4)/2:IF SCAN2>SCAN1 THEN SCAN=SCAN2:EFF=COS(SCAN2)*.75 ELSE SCAN=SCAN1:EFF=COS(SCAN1)*.75
390 IF OF<1100 AND OF<3000 THEN EFF=.8
400 IF OF<11000 AND OF<13000 THEN EFF=.5
410 ABW1=ALPHA2-ALPHA1:ABW1=ABW1*180/3.1415927
420 ABW2=ALPHA4-ALPHA3:ABW2=ABW2*180/3.1415927
430 IF ABW1<ABW2 THEN FL=1:GOSUB 1210
440 IF ABW2<ABW1 THEN FL=1:GOSUB 1350
450 A1=ILLUM*WL/ABW1:A2=ILLUM*WL/ABW2
460 ATG=(10*LOG(EFF9.69605*A1*A2/(WL*WL))/LOG(10))-.3
470 GCD1=LAT2-LAT1
480 GCD2=LONG2-LONG1
490 EFF=COS(SCAN)*.75
500 EIRP=TP+ATG
510 IF OF=35 AND OF<68 THEN PL=1 ELSE PL=0
520 IF OF<35 THEN PL=2
530 PHII=ABS(LAT1-LATSC):PHI(1)=90-PHII-ABS(ALPHA1*180/3.1415927)
540 PHIT=ABS(LAT2-LATSC):PHI(2)=90-PHIT-ABS(ALPHA2*180/3.1415927)
550 PHIB=ABS(LONG1-LONGSC):PHI(3)=90-PHIB-ABS(ALPHA3*180/3.1415927)
560 PHIC=ABS(LONG2-LONGSC):PHI(4)=90-PHIC-ABS(ALPHA4*180/3.1415927)
570 FOR I=1 TO 4
580 IF PHI(I)<PHI(I+1) THEN PHI(I+1)=PHI(I)
590 NEXT I
600 IF PHII<0 THEN PRINT "* ALL OF ZONE CAN NOT BE SEEN FROM SATELLITE *":GOTO 1160
610 IF PHII<20 THEN PRINT "* CAUTION: ELEVATION ANGLE LESS THAN 20 DEGREES *"
620 IF PHII<35 THEN PRINT "* ANALYSIS IS LIMITED BY USER INPUT MAXIMUM REFL. DIAMETER *"
630 PHID=PHII*3.1415927/180
640 SR=SQR(6378*SIN(PHID))*.25+6378*OT+OT*OT)-6378*SIN(PHID)
650 SL=10*LOG(1/(12.566371*SR*SR*1000000))/LOG(10)
660 PFD=(TP+ATG)-(10*LOG(EFF9.69605*A1*A2/(WL*WL))/LOG(10))-.3
670 SS=1000000/SQRT((PFD/10)^2+19.4165^2)
671 SS=INT(SS*100)/100
672 PFD=INT(PFD*100)/100
680 IF FL=1 THEN PRINT "* USER INPUTS ****
685 IF FL=1 THEN PRINT "* * ANALYSIS IS LIMITED BY *
690 IF FL=1 THEN PRINT "* * USER INPUT MAXIMUM REFL. *
695 IF FL=1 THEN PRINT "* * DIAMETER *
700 IF FL=1 THEN PRINT "* * *
705 PRINT "** APERTURE SIZE = ** A1;"m X A2;"m**
710 IF FL=1 THEN PRINT "** USER INPUTS ****
715 IF FL=1 THEN PRINT "** ANALYSIS IS LIMITED BY **
720 IF FL=1 THEN PRINT "** USER INPUT MAXIMUM REFL. **
725 IF FL=1 THEN PRINT "** DIAMETER **
730 IF FL=1 THEN PRINT "**
735 IF FL=1 THEN PRINT "**
740 IF FL=1 THEN PRINT "**
745 IF FL=1 THEN PRINT "**
750 IF FL=1 THEN PRINT "**
755 IF FL=1 THEN PRINT "**
760 IF FL=1 THEN PRINT "**
765 IF FL=1 THEN PRINT "**
770 IF FL=1 THEN PRINT "**
775 IF FL=1 THEN PRINT "**
780 IF FL=1 THEN PRINT "**
785 IF FL=1 THEN PRINT "**
790 IF FL=1 THEN PRINT "**
795 IF FL=1 THEN PRINT "**
800 IF FL=1 THEN PRINT "**
805 IF FL=1 THEN PRINT "**
810 IF FL=1 THEN PRINT "**
815 IF FL=1 THEN PRINT "**
820 IF FL=1 THEN PRINT "**
825 IF FL=1 THEN PRINT "**
830 IF FL=1 THEN PRINT "**
835 IF FL=1 THEN PRINT "**
840 IF FL=1 THEN PRINT "**
845 IF FL=1 THEN PRINT "**
850 IF FL=1 THEN PRINT "**
855 IF FL=1 THEN PRINT "**
860 IF FL=1 THEN PRINT "**
865 IF FL=1 THEN PRINT "**
870 IF FL=1 THEN PRINT "**
875 IF FL=1 THEN PRINT "**
880 IF FL=1 THEN PRINT "**
885 IF FL=1 THEN PRINT "**
890 IF FL=1 THEN PRINT "**
895 IF FL=1 THEN PRINT "**
900 IF FL=1 THEN PRINT "**
905 IF FL=1 THEN PRINT "**
910 IF FL=1 THEN PRINT "**
915 IF FL=1 THEN PRINT "**
920 IF FL=1 THEN PRINT "**
925 IF FL=1 THEN PRINT "**
930 IF FL=1 THEN PRINT "**
935 IF FL=1 THEN PRINT "**
940 IF FL=1 THEN PRINT "**
945 IF FL=1 THEN PRINT "**
950 IF FL=1 THEN PRINT "**
955 IF FL=1 THEN PRINT "**
960 IF FL=1 THEN PRINT "**
965 IF FL=1 THEN PRINT "**
970 IF FL=1 THEN PRINT "**
975 IF FL=1 THEN PRINT "**
980 IF FL=1 THEN PRINT "**
985 IF FL=1 THEN PRINT "**
990 IF FL=1 THEN PRINT "**
995 IF FL=1 THEN PRINT "**
1000 IF FL=1 THEN PRINT "**
LPRINT "LONG1" X "LONG2" LONGITUDE
LPRINT "POLARIZATION -- CIRCULAR" ELSE LPRINT "POLARIZATION -- LINEAR"

LPRINT "*** PROGRAM OUTPUTS ***"
LPRINT "APERTURE SIZE ="A1"m X"A2"m"
IF TAPER=0 THEN LPRINT " using UNIFORM Illumination"
IF TAPER=1 THEN LPRINT " using TAPERED Illumination"
LPRINT "ANTENNA EOC GAIN ="ATG"dB"
LPRINT "ANTENNA APERTURE EFF ="EFF
ABW1=INT(ABW1*1000)/1000
ABW2=INT(ABW2*1000)/1000
LPRINT "ANTENNA BEAMWIDTH ="ABW1"deg X"ABW2"deg"
GCD1=sGCD2"deg"
LPRINT "GROUND COVERAGE ="INT(100*ABS<Lat1-Lat2>*3.1415927/12756/360)/100;"Km X";
INT(100*ABS<Long1-Long2>*3.1415927/12756/360)/100;"Km"
LPRINT "ANTENNA SCAN ANGLE ="INT(100*SCAN*3.1415927/180)/100;"deg"
LPRINT "EIRP ="TP+ATG"dBW"
LPRINT "POLARIZATION MARGIN ="PM"dB"
LPRINT "PROPAGATION LOSS ="PL"dB"
LPRINT "MIN ELEVATION ANGLE ="PHIL
LPRINT "SPREADING LOSS ="SL"dB"
LPRINT "SLANT RANGE ="SR"Km"
LPRINT "EIRP IN dBW/sq. m.
LPRINT "NO. OF CHANNELS 1 2 3 4 5 6 7"
LPRINT USING "###.;PF="PFD;
LPRINT USING "###.;PF="PFD-3;
LPRINT USING "###.;PF="PFD-4.771001;
LPRINT USING "###.;PF="PFD-6.021001;
LPRINT USING "###.;PF="PFD-6.9897;
LPRINT USING "###.;PF="PFD-7.78151;
LPRINT USING "###.;PF="PFD-8.451;
LPRINT "EIRP IN uV/m.
LPRINT "NO. OF CHANNELS 1 2 3 4 5 6 7"
LPRINT USING "###.;SS="SS;
LPRINT USING "###.;SS="SS*.7071;
LPRINT USING "###.;SS="SS*.557735;
LPRINT USING "###.;SS="SS*.5;
LPRINT USING "###.;SS="SS*.477121;
LPRINT USING "###.;SS="SS*.40825;
LPRINT USING "###.;SS="SS*.377964;
LPRINT T$;
IF LOOP=2 THEN GOTO 1140
IF PHIL(20 OR ABS(<LATSC>)=ABS(<LATLIMIT)> LOOP=2;LATSC=LATSC+SLATINC;LONGSC=LONGSC+SLONGINC;PHIL=90;GOTO 240
IF SCLATINC<0 THEN LATSC=LATSC+SCLATINC;SCLATINC=PHIL=90;GOTO 240
IF SCLONGINC=0 THEN GOTO 1151
LOOP=2;LATSC=LATSC+SCLATINC;SCLATINC=PHIL=90;GOTO 240
IF PHIL(20 THEN GOTO 1151
IF SCLONGINC<0 THEN LONGSC=LONGSC+SCLONGINC;SCLONGINC=PHIL=90;GOTO 240 ELSE GOTO 1151
LPRINT T$;LPRINT CHR$(12)
GOTO 20
DELTA=AWLIM-ABW1
\leq 20 \quad \text{DELTA} = \text{DELTA} \times 3.1415927 / 180 \\
1230 \quad \text{IF ABS(LAT1-LATSC) > ABS(LAT2-LATSC) THEN ALPHA2 = ALPHA2 + DELTA}
1240 \quad \text{IF ABS(LAT1-LATSC) > ABS(LAT2-LATSC) THEN ALPHA1 = ALPHA1 - DELTA}
1250 \quad \text{IF ABS(LAT1-LATSC) = ABS(LAT2-LATSC) THEN}
1260 \quad \text{ALPHA1 = ALPHA1 - DELTA/2; ALPHA2 = ALPHA2 + DELTA/2}
1270 \quad \text{K1 = (DT \times \tan(ALPHA1) + 6378 \times \tan(ALPHA1)) / 6378}
1280 \quad \text{K2 = (DT \times \tan(ALPHA2) + 6378 \times \tan(ALPHA2)) / 6378}
1290 \quad \text{C1 = \tan(ALPHA1) \times C2 = \tan(ALPHA2)}
1300 \quad \text{D1P = (2 \times K1 \times C1 \times \sqrt{4 \times K1 \times K1 \times C1 \times C1 - 4 \times (1+C1 \times C1) \times (K1 \times K1 - 1)}) / (2 \times (1+C1 \times C1)}
1310 \quad \text{D2P = (2 \times K2 \times C2 \times \sqrt{4 \times K2 \times K2 \times C2 \times C2 - 4 \times (1+C2 \times C2) \times (K2 \times K2 - 1)}) / (2 \times (1+C2 \times C2)}
1320 \quad \text{LAT1P = (1.570796 - ATN(D1P / \sqrt{1 - D1P \times D1P})) \times 180 / 3.1415927}##
1330 \quad \text{LAT2P = (1.570796 - ATN(D2P / \sqrt{1 - D2P \times D2P})) \times 180 / 3.1415927}##
1340 \quad \text{LAT1 = LAT1P; LAT2 = LAT2P}
1350 \quad \text{ABW1 = AWLIM; RETURN}
1360 \quad \text{DELTA = AWLIM - ABW2}
1370 \quad \text{IF ABS(LONG1-LONGSC) > ABS(LONG2-LONGSC) THEN ALPHA4 = ALPHA4 + DELTA}
1380 \quad \text{IF ABS(LONG1-LONGSC) > ABS(LONG2-LONGSC) THEN ALPHA3 = ALPHA3 - DELTA}
1390 \quad \text{IF ABS(LONG1-LONGSC) = ABS(LONG2-LONGSC) THEN ALPHA3 = ALPHA3 - DELTA/2;}
1400 \quad \text{ALPHA4 = ALPHA4 + DELTA/2}
1410 \quad \text{K1 = (DT \times \tan(ALPHA3) + 6378 \times \tan(ALPHA3)) / 6378}
1420 \quad \text{K2 = (DT \times \tan(ALPHA4) + 6378 \times \tan(ALPHA4)) / 6378}
1430 \quad \text{C1 = \tan(ALPHA3) \times C2 = \tan(ALPHA4)}
1440 \quad \text{D1P = (2 \times K1 \times C1 \times \sqrt{4 \times K1 \times K1 \times C1 \times C1 - 4 \times (1+C1 \times C1) \times (K1 \times K1 - 1)}) / (2 \times (1+C1 \times C1)}
1450 \quad \text{D2P = (2 \times K2 \times C2 \times \sqrt{4 \times K2 \times K2 \times C2 \times C2 - 4 \times (1+C2 \times C2) \times (K2 \times K2 - 1)}) / (2 \times (1+C2 \times C2)}
1460 \quad \text{LONG1P = (1.570796 - ATN(D1P / \sqrt{1 - D1P \times D1P})) \times 180 / 3.1415927}##
1470 \quad \text{LONG2P = (1.570796 - ATN(D2P / \sqrt{1 - D2P \times D2P})) \times 180 / 3.1415927}##
1480 \quad \text{LONG1 = LONG1P; LONG2 = LONG2P}
1490 \quad \text{ABW2 = AWLIM; RETURN}
The algorithms contained in the weight and volume estimating program were described in Section 4.0. The software provided uses these algorithms. Following is a summary of assumptions used to perform sizing for all subsystems, including those that were originally sized using other programs (e.g. SCIAP, SDCM).

1) Antenna sizing (RFSIZ):
 a) transmitter efficiency = 0.65 for frequencies > 3 GHz, where solid state power amplifiers (SSPA) are applicable;
 b) transmitter efficiency = 0.36 for frequencies ≤ 3 GHz, where traveling-wave tube antennas (TWTA) are applicable.

2) Feeder link electronics (RFSIZ):
 a) 121 kg for nongeostationary Earth orbits (GEO), where crosslinks are assumed;
 b) 78 kg for GEOs, where crosslinks are not required.

3) Signal processing electronics (RFSIZ):
 a) 58 kg for all cases.

4) Auxiliary propulsion (SUBSIZ):
 a) dry weight = 184 kg for non-GEOs (electric propulsion);
 b) dry weight = 91 kg for GEOs (chemical propulsion);
 c) fuel weight = 120 kg for both cases.

5) Attitude determination (SUBSIZ):
 a) weight = 57.7 kg for non-GEO cases;
 b) weight = 13.6 kg for GEO cases.

6) TT&C (SUBSIZ):
 a) weight = 32.1 kg for non-GEO cases;
 b) weight = 26.4 kg for GEO cases.

7) Thermal control (SUBSIZ)
 a) maximum temperature = 55°C
 b) minimum temperature = -12°C
 c) end-of-life absorptivity = 0.2
 d) end-of-life emissivity = 0.8

The EPS (program EPSSIZ) and equipment bay structure (SUBSIZ) sizes are computed from user inputs and outputs from the other subsystem sizings. The equipment bay structure sizing must not be performed until sizing is completed for all other subsystems.

Subsystem Sizing Example and User Instructions

The module, SUBSIZ, serves as the executive control, chaining to EPSSIZ, RFSIZ, or LCCOST as necessary in a mode completely transparent to the user. Subsystem sizing is started inserting the program diskette into the default drive and by typing:
BASICA SUBSIZ.VOA

or, if already in BASICA:

 LOAD "SUBSIZ.VOA"
 RUN

The following example shows the user inputs and resulting outputs for sizing an HF concept in an 8-hour circular orbit. First the main menu is displayed, listing the subsystems that can be sized.

 INPUT TITLE FOR THIS ANALYSIS
 HF 8 hour orbit example
 Input 2nd line if needed?
 Input 3rd line if needed?
 SUBSYSTEM 5/1HG, MAIN MENU

 1 - antenna/rf subsystem
 2 - auxiliary propulsion subsystem
 3 - primary propulsion subsystem
 4 - TT&C
 5 - electrical power subsystem
 6 - thermal control subsystem
 7 - equipment bay sizing
 8 - All
 9 - Stop execution

 Your choice? 1

The choice made, 2, results in display of the menu from the antenna and RF sizing module. The choice made here, 12, is for the HF and VHF baseline design concept described in the report. Now the RF frequency, phased array element spacing, modulation mode (prompted only for HF cases), transmitter characteristics, and orbit class are defined by the user as shown.
RF SUBSYSTEM SIZING SUMMARY

Select antenna structural type

1 - Wrap Radial Rib (Lockheed's)
2 - Hoop and Column (Grumman's)
3 - Hoop and Column (Harris')
4 - Box Truss Ring (Martin's)
5 - Inflatable (L'Garde's)
6 - Box Truss Reflector (Martin's)
7 - Cable Catenary Reflector (TRW's)
8 - Tethered Truss Reflector (GD's)
9 - Umbrella Radial Rib (Harris')
10 - Articulated Umbrella Radial Rib (Harris')
11 - Honeycomb Panel Solid Reflector (Ford Aero.)
12 - Box Truss Ring Array (Martin's)
13 - Honeycomb Panel Array (Non-phased)

Your choice? 1
Enter antenna diameter (m)? 80

Data for Box Truss Ring Array (limit on diameter of 200 meters)

For a reflector antenna, enter a 0 for transmit frequency.
For a phased array, enter the transmission frequency in Ghz.

FREQUENCY (OR 0)? .026

Enter the spacing between phased array elements
as a decimal fraction of mission wavelength
Fraction? .75
Calculated transmitter spacing - 8.653847 Is this correct (Y/N)? y

Select modulation mode; DSB(D) or SSB(S)? D
Input number of transmitter power levels? 1

TRANSMITTER TYPE 1
Enter power per transmitter(m)? 250
Input % of transmitters at this power? 1
Input number of channels per transmitter? 1
The element spacing input, 0.75 in the example, is used by the program to compute the number of transmitters as well as the number of radiating elements, assuming one transmitter for each element. However, for many designs it may be desirable to have multiple transmitters feeding a single element. In this case, the spacing must be defined to result in the desired number of transmitters. The required spacing to be input is computed from:

\[
\text{spacing} = \frac{\sqrt{\frac{\pi R^2}{N-1}}}{\lambda}
\]

where \(R \) = antenna diameter (m)
\(N \) = number of transmitters required
\(\lambda \) = wavelength (m)

For example, for 177 transmitters on a 40-meter antenna at 26 MHz, the required spacing (as a fraction of wavelength) would be:

\[
\text{spacing} = \sqrt{\frac{\pi (40)^2}{176}} = \frac{5.344}{11.538} = 0.463
\]

The user prompts and inputs would be:

Enter the spacing between phased array elements as a decimal fraction of mission wavelength.
Fraction? 0.463

Computed spacing from program is xxxxx.xx. Is this correct (Y/N)? Y

The last prompt, "DO YOU WANT TO SIZE ANOTHER ANTENNA SUBSYSTEM(Y/N)?" transfers back to the executive after a "NO" input.

Main menu choices 2 or 4 result in the prompt to select the orbit category, either non-GEO or GEO. Depending on the choice, the appropriate weight and volume values are selected by the program.

SPECIFY ORBIT TYPE: 1 - GEO
2 - NON-GEO

YOUR CHOICE? 2

Main menu choice 5 results in the prompts and interaction necessary to select the EPS configuration and to then compute weights and volumes of EPS components. In the example, the required power is fed in automatically from the RF sizing section. If the EPS were sized first, a prompt would appear to input the required peak load power. The prompt for housekeeping power is for the average power required during occultation. The next inputs define the orbital altitude, lifetime, power generation component, and battery type. The last prompt permits another EPS sizing or transfers control back to the executive as for the antenna and RF sizing.
Input S/C housekeeping electrical power required for subsystems excluding Kf subsystem (Kw)? 5
Input orbit altitude (km)? 13892
Input Spacecraft lifetime requirement in YRS ? 7

SELECT POWER GENERATION TYPE

1. Silicon blanket
2. Silicon panel
3. Existing GaAs panel
4. Near term GaAs panel
5. Future (long term) GaAs panel
6. SF100

YOUR CHOICE? 1

SELECT BATTERY TYPE

1. NiCd
2. NiH

YOUR CHOICE? 1

Main menu choice 6 results in thermal control subsystem sizing. In the example, the difference between the power in and out of the load (transmitters) is shown and the user prompted to use this value or to input another. The user then selects an orbit category as shown, and further defines the thermal control subsystem configuration.

DIFFERENCE BETWEEN POWER TO LOAD AND POWER OUT IS -135254 Kw.

DO YOU WANT TO USE THIS VALUE TO SIZE THE THERMAL CONTROL SYSTEM (Y/N)? Y
Input maximum operating temperature (C)? 55
Input minimum temperature (C)? -12

SELECT S/C OPERATIONAL ALTITUDE CLASS

1. GEO or greater
2. 926 Km (500 Nm) to GEO
3. Less than 926 Km (L50)

YOUR CHOICE? 2

Is phase change material included in the Thermal Control Subsystem (Y/N)? N

Main menu choice 7 does not result in any further user interaction since equipment bay structure sizing is based on the weight of components sized for other subsystems.

Selection of main menu choice 9 results in output of the system weight and volume summary and display of a prompt to estimate life-cycle cost. If LCC estimates are desired, program LCCOST will automatically be executed.

The following three pages contain the sizing program outputs for the example inputs shown here.
RF SUBSYSTEM SIZING SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total DSR Output RF Carrier Power (km)</td>
<td>17</td>
</tr>
<tr>
<td>Total Output RF Signal Power (km)</td>
<td>17</td>
</tr>
<tr>
<td>Power per Antenna (kw)</td>
<td>250</td>
</tr>
<tr>
<td>Number of Transmitters</td>
<td>68</td>
</tr>
</tbody>
</table>

Antenna Structure Area (m²)	5024.44
Total Antenna Structure Mass (kg)	1262.44
Total Antenna Structure Volume (m³)	60.9213
Total RF Transmitter Mass (kg)	8.799908
Total RF Transmitter Volume (m³)	1.236456
Weight of Uplink Components (kg)	1.21
Volume of Uplink Components (m³)	0.5
Weight of Signal Proc. Components (kg)	0.8
Volume of Signal Proc. Components (m³)	0.02
Total RF Subsystem Mass (kg)	2321.229
Total RF Subsystem Volume (m³)	42.62019

ATTITUDE CONTROL, STATIONKEEPING AND MANEUVERING SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ACS Subsystem Mass (kg)</td>
<td>57.1</td>
</tr>
<tr>
<td>Total ACS Subsystem Volume (m³)</td>
<td>0.05</td>
</tr>
<tr>
<td>Total RCS Subsystem Mass (kg)</td>
<td>184</td>
</tr>
<tr>
<td>Total RCS Subsystem Volume (m³)</td>
<td>2.2</td>
</tr>
<tr>
<td>Total RCS/ACS Subsystem Mass (kg)</td>
<td>241.7</td>
</tr>
<tr>
<td>Total RCS/ACS Subsystem Volume (m³)</td>
<td>2.29</td>
</tr>
</tbody>
</table>

TT&C SUBSYSTEM SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total TT&C Subsystem Mass (kg)</td>
<td>59.1</td>
</tr>
<tr>
<td>Total TT&C Subsystem Volume (m³)</td>
<td>0.03</td>
</tr>
</tbody>
</table>
EPS SUMMARY

Power required from source = 26.04161 KW
Power at load, average = 26.65385 KW
Orbital altitude = 13892 Km
Orbital period = 7.977999 hrs
Spacecraft lifetime requirement - 7 yrs
Total eclipse time per orbit = 8.12874 hrs
Solar array degradation factor due to radiation = 0.7647762
Solar array thermal adjustment factor = 0.799453
Solar array cover slide weight factor = 0
Antenna Size = 80 m by 80 m

***** Power Generation Sizing *****

For Si Blanket Array
Area required = 258.4547 m2
Weight = 413.5267 Kg Volume = 2.067634 m3

***** Shunt Regulator Sizing *****

Shunt Regulator Weight = 49.00938 Kg
Shunt Regulator Volume = 5.586614E-03 m3

***** Power Switching/Distribution Sizing *****

Power Switching Equip Wt. = 8.549986 Kg
Power Switching Equip Vol. = 9.693861E-03 m3

Distribution Weight; Source to Bus = 10.93997 Kg
Distribution Weight; Bus to Load = 54.43952 Kg
Total Distribution Weight = 65.37949 Kg
Total Switching and Distribution Weight = 73.92949

***** TOTAL SI SYSTEM WEIGHT W/O BATTERIES (kg) = 536.4454
***** TOTAL SI SYSTEM VOLUME W/O BATTERIES (m^3) = 2.132894

***** Battery Sizing *****

For NiCd Batteries
Battery Capacity Required = 1063.564 Wh
Battery Weight = 30.15152 Kg Battery Volume = 1.505837E-02 m3

***** Battery Charger Sizing *****

For NiCd Batteries
Battery Charger Weight = 0.5386365 Kg Battery Charger Volume = 6.10699E-04 m3

TOTAL EPS MASS (kg) = 567.1657
TOTAL EPS VOLUME (m^3) = 7.148563
HF 8 hour orbit sample case

THERMAL CONTROL SUBSYSTEM SIZING SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature (°C)</td>
<td>55</td>
</tr>
<tr>
<td>Maximum heat radiated (W)</td>
<td>915.755</td>
</tr>
<tr>
<td>Radiative surface emissivity factor</td>
<td>0.8</td>
</tr>
<tr>
<td>Radiative surface absorptivity factor</td>
<td>0.2</td>
</tr>
<tr>
<td>Required radiator surface area (m^2)</td>
<td>27.69341</td>
</tr>
</tbody>
</table>

HF 8 hour orbit sample case

EQUIPMENT BAY SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass of equipment bay (kg)</td>
<td>43.42271</td>
</tr>
<tr>
<td>Lbs</td>
<td>95,74708</td>
</tr>
<tr>
<td>Mass of deployment/stowage mechanisms (kg)</td>
<td>71.4</td>
</tr>
<tr>
<td>Total mass (kg)</td>
<td>114,8277</td>
</tr>
<tr>
<td>Lbs</td>
<td>253,1041</td>
</tr>
<tr>
<td>Total volume of structure and mechanisms (m^3)</td>
<td>2.7711403</td>
</tr>
</tbody>
</table>

HF 8 hour orbit sample case

SYSTEM CONFIGURATION SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Mass (kg)</th>
<th>Volume (m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Payload</td>
<td>2321.229</td>
<td>42.67819</td>
</tr>
<tr>
<td>Auxiliary Propulsion Subsystem</td>
<td>241.7</td>
<td>2.25</td>
</tr>
<tr>
<td>Telemetry, Tracking and Command</td>
<td>32.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Electrical Power Subsystem</td>
<td>547.155</td>
<td>2.148543</td>
</tr>
<tr>
<td>Thermal Control Subsystem</td>
<td>135.2178</td>
<td>1.384671</td>
</tr>
<tr>
<td>Equipment Bay Structure</td>
<td>114.8277</td>
<td>0.5140915</td>
</tr>
</tbody>
</table>

TOTAL SYSTEM SUMMARY

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3417.225</td>
<td></td>
</tr>
<tr>
<td>49.00552</td>
<td></td>
</tr>
<tr>
<td>7523.956 (Lbs)</td>
<td></td>
</tr>
</tbody>
</table>
References

8. TCOM Aerostats Systems Notes, TCOM Corps, Columbia, Maryland.

245

19. NASA LeRC SDCM Data Base.
