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L INTRODUCTION

In his article on recent advances in the mechanics of boundary layer flow,
published in Volume I of this series, Dryden (1948) recalls that at the Fifth
International Congress for Applied Mechanics von Karman (1938) pointec\i out the
difficulties in reconciling a scalar mixing length with turbulence measurements done
in a channel by Wattendorf and by Reichardt. In the discussions that followed,
which were not precisely recorded in the 1938 Proceedings, Dryden (1948) pointed out
that both Tollmien and Prandtl suggested that the measured fluctuations include both
random and non-random elements and that the correctness of these ideas are borne
out by later turbulence measurements in the boundary layer at the National Bureau
of Standards discussed by Dryden (1948). It is important to note that Dryden (1948)
emphasized that ".. it is necessary to separate the random processes from the
non-random processes”, but concluded that ".. as yet there 1;s no known procedure
either experimental or theoretical for separating them". In the early fifties,
Liepmann (1952) surveyed aspects of the turbulence problem and pointed out the
importance of the presence of a secondary, large-scale structure superimposed upon
turbulent shear flows, citing as examples .measuremcnts of Corrsin (1943) and
Townsend (1947) in free turbu;ent flows, Pai (1939, 1943) and MacPhail (1941, 1946)
in the flow between rotating cylinders and Roshko (1952; see also 1954, 1961) in the
far...turbulenf wake behind a cylinder. Liepmann (1952) concluded that although the

details of the large-scale structure may be in doubt, but that such structures cannot



be ignored in many of the fechnological problems such as in aerodynamic sound,
combustion and in general, mixing controlled problems.

More quantitative discussions of the largc-écale structure in free turbulent flows
were initiated by Townsend (1956, §6.5) in the first edition of his monograph on the
structure of turbulent shear flows. He considered the total flow to consist of a mean
motion and fluctuations consisting of a large-scale disturbance and the balance of the
motion to be fine-scaled fluctuations. The scales are taken to be nonoverlapping so
that the spatial, volume integral of the products of the disparate-sizéd fluctuations
vanish. The resulting global energy balance of the large-scale structure (Townsend
1956) gave the essence of the physical interpretation that the large-scale structure
gains energy from the mean flow and exchanges energy with the fine-grained
turbulence by the rate of working of the large-scale motion against the excess
Reynolds stress owing to its presence. Townsend (1956) hypothesized certain
kinematical details of the large-scale motion but ruled out motions -of the
hydrodynamical instability type. The splitting of fluctuations into large-scale
structures and fine-grained turbulence was fufthcr underscored by Liepmann (1962) in
his discussion of free turbulent flows. He advanced the idea that the large-scale
motion could be attributable to the hydrodynamic instability of the prevailing .mean
flow. It was still not clear then as to how the large-scale motions could be sorted
out, either experimentally or theoretically, from the total fh-xctuations. Liepmann
(1962) emphasized, however, that the large-scale structures in turbulent shear flows
ought to be studies in a well-controlled manner, similar to the studies of-;he
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Tollmien-Schlichting waves leading to transition in a laminar flow (Schubaﬁer &
Skramsted 1948).

The well-controlled experiments suggested by Liepmann (1962) in terms of
perturbing or enhancing the periodicity in a turbulent shear flow, when the usual
Reynolds (1895) average is accompanied by a form of coqditional averaging
(Kovasznay et al. 1970), now widely known as the phase average geared to the
periodicity, allows fluctuations measured at a point to be split into coherent and
random parts. This, in principle, takes the jittcring out of the phases of otherwise
coherent fluctuations (e.g., Thomas and Brown 1977). This is similar to the
Schubauer and Skramsted (1948) experiments that place the Tollmien-Schlichting wave
where it is desired. The pionecering experiments leading to the recognition of
'cohcrcnf oscillations in turbulent shear flows were associated with Bradshaw (1966),
Bradshaw, et al (1964), Davis, Vet al (1963) and Mollo-Christensen (1967). Experiments
on wecll-controlled coherent oscillations in turbulent free flows began with Crov&;-and
Champagne (1971) and Binder and Favre-Marinet (1973) for the round jet, Hussain
and Reynolds (1970a) for turbulent channel flow and with Kendall (1970) for a wavy
wall perturbation beneath a turbulent boundary. The primary advantage of tl‘le
phase-averaging procedure (Binder and Favre-Marinet 1973, Hussain and Reynolds
1970a), from a theoretical point of view, is that it allows the systematic derivation
of the coupled fundamental equations for the mean flow, the large-scale coherent
fluctﬁations with a dominant periodicity and the fine-grained turbulence. The
presentation of these equations for a homogeneous, incompressible fluid may be found
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in Hussain and Reynolds (1970b), Elswick (1971), Reynolds and Hussain (1972) and
Favre-Marinet (1975). The description of the perturbed turbulent shear flow problem
is entirely similar to the limited-time (or space) averaging procedure for educing
'naturally occurring coherent features in turbulent shear flows (Blackwelder and
Kaplan 1972, 1976) and the fundamental equations from this point of view are given
at the 1970 von Karman Lecture by Mollo-Christensen (1971) who discussed many
facets of interactions between disparate scales of motion in the tqrbulent boundary
layer problem.

Lumley (1967) developed a more formal definition of the large-scale motions and
obtained their dynamical equations, using “"conventional” (as compared to "conditional")
averaging methods. As in Townsend (1956), it is suggested that the effect of the
‘motion .of smaller scales in the denamical equations for the large-scale motion be
represented by a constitutivé relation. In the lowest order approximation the
large-scale’ motion satisfy the Orr-Sommerfeld equation for small disturbéﬁces.
Lumley (1967) further suggested that the mean velocity profile could be neutrally
stable corresponding to the minimum Reynolds number maintained by an
eddy-viscosity. This is reminiscent of the marginal stability ideas for Wall-bound;d
turbulent shear flows put forth by Malkus (1956) in which the turbulent velocity
fluctuations are represented by a collection of neutral wave solutions of the
Orr-Sommc?fcld equation. This idea was extended by Landahl (1967) to the
superﬁosition of wave solutions satisfying ‘-"a non-homogeneous Orr-Sommerfeld
equation; the nonlinearities are assumed weak and prescribed. However, free-wave
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disturbances corresponding to the standard turbulent eddy viscosity in wall-bounded
turbulent shear flows are strongly decaying. Thus the presence of these waves is -
attributed to a continuous driving mechanism arising from variations of the turbulent
Reynolds stresses. In general, this class of theoretical problems are linear and some
are associated with the eddy viscosity representations of the effect of the background
turbulence. Further discussions of the role of wavelike representations in turbulent
shear flows are given by Moffatt (1967, 1969), Lighthill (1969), Phillips (1967, 1969),
and Kovasznay (1970). Hussain and Reynolds’ (1970a) experiments on imposed
monochromatic disturbances in turbulent channel flow indicate that such disturbances
propagate like Tollmein-Schlichting waves but that they decay strongly downstream as
would be expected from theoretical considerations (Reynolds and Tiederman 1967).
As we now appreciate, the coherent large-scale motions in wall-bounded turbulent
shear flows are much more involved than free turbulcnt_shcar flows (see, for
instance, the review by Cantwell 1981). However, some of the theoretical ideas that
evolved in the above discussions are more relevant to the free shear flow problem,
which is the main subject of this article.

For frec turvbulent shear flows it is not necessary to conjecture that the local
fine-grained turbulence rearranges itself to give bursts of white noise in order to
maintain the }'1ydrodynamically "unstable" waves as for wall-bounded shear flows, nor
doc.s‘_there appear to be expcrirr;ental evidence indicating such a xﬁcchanism. It is easily
seen that the existence of large-scale coherent motions in free turbulent shear ‘flows
would be a manifestation of hydrodynamic instability associated with local inflcctidr:l'al
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mean velocity profiles. This would ‘account for the observed pronounced large-scale
and, what appears now, wavelike structures in this class .of flows (Corrsin 1943,
Townsend 1947, Roshko 1954, 1961, Grant 1958, Bradshaw et al 1964,
Mollo-Christensen 1967, Brown and Roshko 1974, Papailiou and Lykoudis 1974). The
present impetus about the existence and importance of large-scale coherent structures
in free turbulent shear flows is essentially brought about by optical observations of
such flows (e.g., Brown and Roshko 1971, 1972, 1974) where such structures having
been almost obscured by previous correlation measurements. Prior to the more recent
recognition of the role of coherent structures in turbulent free shear flows, it was
widely thought that such flows were independcnt of initial and environmental
conditions (Townsend 1956, Laufer 1975). The experiments of Crow and Champagne
(1971) zind Binder and Favre-Marinet (1973) pointed out the distinct possibilities of
controlling the downstream de\}elopment of the jet flow oscillations via the upstream
forcing of the large-scale coherent structure. This has an enormous implication“with
regard to technological applications, such as jet noise supression (Bishop et al 1971,
Liu 1974a, Mankbadi and Liu 1981, 1984), mixing and instabilities in combustion
chambers and chemical lasers (Carrier et al 1975, Marble and Broadwell 1977,

Broadwell and Breindenthal 1982) to mention a few. Thus the study of large-scale

coherent structures in free turbulent shear flows is of technological interest not only

because such structures directly ‘and indirectly affect the local mixing but that they
render the downstream flow controllable.
The present .article is intended to address the physical problem of large-scale
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coherent structures in real, developing free turbulent shear flows from point of view
of 'a broader minded interpretation of the nonlinear aspects of hydrodynamic
stability. This, indeed, has to be the case in view of the presence of fine-grained
turbulence in the problem and, even in its absence, there exists the distinct lack of a
small parameter. We shall present the discussion on the basis of conservation
principles and thus on the dynamics of the problem. It is directed towards
extracting the most physical information with the minimal necessary computations and
thus must necessarily involve approximations. As such, the discussions presented
here are seen to supplement other works using methods such as numerical simulation
or straightforward inviscid linearized stability theory and other kinematical

interpretations.



II. FUNDAMENTAL EQUATIONS AND THEIR INTERPRETATION

A. GENERAL DESCRIPTION AND AVERAGING PROCEDURES

Both visual observations and unconditioned quantitative measurements of turbulent
flows sample the total flow quantities. Flows that occur naturally or in the laboratory do
so without regard to the artificial separation into mean and fluctuating quantities. On
the other hand for purposes of understanding and, particularly, for possible flow control
the Reynolds (1895) type splitting of the flow into mean flow and fluctuations is helpful.
This has been particularly useful in problems of hydrodynamic stability (Lin 1955). Flow
instabilities are efficient extractors of energy from the mean motion under certain
conditions and it is thus not overly simplistic to say that instabilities can thus be
controlled via appropriate alterations of the mean motion. It would be most difficult to
gain insights into the problem if viewed on an overall basis without regard to such
Reynolds splitting. With the present widespread recognition of the important role of
large-scale coherent structures in turbulent shear flows, the usual Reynolds splitting has
become inadequate in that it blends the coherent structures and the "real" fine-grained
turbulence. While the latter is most likely to be "universal" the former definitely is
not. rParticularly if it is argued (Liu 1981) that the large-scale coherent structures in
turbulent shear flows are a manifestation bf hydrodynamical instabilities. Such
instabilities are attributable to different specific mechanisms such as dynamical or
inertial instabilities associated with inflexional mean flows, centrifugal instability in the

»

Taylor vortex problem, viscous instabilities in wall bounded shear flows and so on. Thus
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it is not at all surprising that in Reynolds stress modelling for turbulent shear flows
that include all fluctuations as "turbulence", the closure constants are by» no means
universal but that they are dependent upon the problem concerned. Of course, one
would generally not entertain ideas of using such closure methods for nonlinear
hydrodynamical stability problems. This should also be the case for the coherent
structure problem in turbulent shear flows.

The suggestién' of Liepmann (1962) that perhaps the properties of large-scale
structures could best be studied by well-controlled forcing, similar to the experimental
study of Tollmien-Schlichting waves, leads us . to the natural synthesis of numecrous
theoretical ideas. With the fixing of the phase of the large-scale motions, appropriate
conservation and transport equations could be derived for the large-scale coherent
'motions,' the modulated fine-grained turbulent stresses and the mean motion problem.
The relevant description of tfxe devleopment of the large-scale motion is inherently
nonlinear, for which a broader interpretation of ideas from nonlinear hydrodyﬁ;clmic
stability theory (Stuart 1958, 1960, 1962a, b, 1971a) will naturally follow. This would
be coupled with the fine-grained turbulenceAproblem through the modulated- and
Reynolds-mean stresses for which the large-scale coherent motions have already been
separated out. In this case Reynolds-stress closure (see, for instance Lumley 1978)
ideas applied to the fine-grained turbulence could be judiciously drawn. This was
somewhat anticipated by Lumley earlier (1967, 1970). The formalism leading to the
deriva&ion of the conservation and transpb;‘t equations for the monoch;pmatic
perturbation  problem, originally  intended for the _study of imposed
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Tollmien-Schlichting waves in a turbulent channel flow (Hussain and Reynolds 1970a;
Reynolds and Hussain 1972) is more relevant as the starting point for the study of
large-scale coherent motions in frce—turbulent shear flows (Elswick 1971). In the
subsequent exploration of the consequences of the basic equations, we shall make use
of the richness of ideas from nonlinear hydrodynamic stability, particularly in the
interpretation of observations.

The study of a monochromatic large-scale disturbance in a turbulent shear flow is
of considerable difficulty in itself, since any such study relevant to observations must
necessarily take into account its interaction with the fine-grained turbulence as well
as the mean motion (Liu and Merkine 1976, Alper and Liu 1978, Gatski and Liu
1980, Mankbadi and Liu 1981, Liu 1981). We shall, however, present the derivation
of the fnore general fundamental equations with multiple large-scalg mode interactions
in mind. To this end, the idéa (Stuart 1962a) of splitting the coherent modes into
odd modes and even modes is used. Originally Stuart (1962a) used this framewo.r‘k to
illustrate the energy transfer mechanism between the fundamental disturbance and its
harmonic. For the subharmonic problem one can in turn reinterpret that the previous
first harmonic mode is now the fundamental component and that the previous
fundamental mode as the present subharmonic component. In mixing regions and jets
it is now well known that spatially occurring subharmonics take place (see, for
instance, Freymuth 1966, Miksad 1972, 1973, Winant and Browand 1974, Ho and
Huané 1982, Hussain 1983).

Accordingly, we shall consider that any flow quantity q can »be split into

-10-
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q=Q + @+a) +q', 2.1)

where Q denotes the mean flow quantity obtained by Reynolds avcraginlg,'c"l the odd
modes, a the even modes and q' the fine-grained turbulence. In the usual Reynolds'
framework ('q'+a+q’) would be considered as turbulence.

The form of the Reynolds averaging procedure would be attached to the type of
periodicity assoqia;ed with (a+a). In the hydrodynamic stability sense the spatial
problem, as is usually found in laboratory wind tunnels or water channels, is where the
mean flow develops and spreads spatially and the amplitudes of coherent modes (or wave
envelopes) grow and decay in the streamwise direction; the periodicities are in time.
Consequently, the time average, denoted by an overbar, over at least the longest period T

(of frequency B) would be the appropriate Reynolds average

jT a dt. (22)

In this case we denote the special conditional average, which here is the phase average

geared to the frequency B, by < >

N
1 n
Q> = I E q(xt + E)’ (2.3)

" n=0

where x; is the spatial coordinate, t is the time. A "layman's" interpretation of this can

best be visualized by considering that hot wire signals, taken at a given spatial location,



are recorded as a continuous fﬁnction of time on tape. The average is performed by
adding the signals at N number of the interval T (or B'l) and then dividing by N. This is
somewhat related to the limited-time-averaging procedure used in turbulent boundary
layers where the phase is not fixed by forcing (see, for instance, Blackwelder & Kaplan
1972). The average (2.3) wi.l.l pick up all the coherent mode contributions from
frequencies mB, where m is an integer. The phase average of linearly occurring

fine-grained turbulence signals is zero, {q'> = 0, while <Q> = Q. Thus

Q>=Q +d + q (2.4)

The sum of odd and even modes is obtained from

<q> -3 =3 + a. (2.5)

We denote further a similar phase average tied in with frequency 2B by << >> so

that, with <<{>> = 0, the even modes are obtained from

G+aOd = Q. ' (2.6)

The 2B-phase average picks up all the m(2B) contributions, with m being an integer. The
odd modes are then explicitly obtained by subtracting (2.6) from (2.5). For linearly
occurring flow quantities, (2.6) is equivalent to the procedure in directly performing the
2B-phase average upon the total signal <{q>> - Q = a However, f;)r nonlinear quantities
this latter procedure would give rise to the introduction of the Reynolds average of
partially-rhodulatcd fine-grained turbulence stresses which are to be necessaf;ly
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augmented by their corresponding transport equations, thereby unnecessarily complicating
the issue further. To anticipate the more straightforward procedure indicated by (2.6),
the corresponding modulated turbulent stress, Fij and ?ij are obtained from the products

of fine-grained turbulence velocity fluctuations through

<ulul! - ulu' =71 + 135, 2.7
R bl Bl @7
and, applying the 2-8 phase average to both sides of (2.7), we obtain
(!> u'u) > =155 (2.8)
ij
In this case, only the appropriate Reynolds stresses
{u'u!> = u'u!
1) 1]
would occur in the nonlinear equations. (In the undesirable procedure, <<uj'uj' >

~

1 !
iujs

which is not equivalent to u would be introduced).

The tcmporal problem is illustrated by thc'tilting tube experiment, where a lighter
liquid is placed on top of a heavier one (e.g.,, Thorpe 1971); a slight tilt sets up a
mean shear layer that is homogeneous in the "horizontal" direction which then spreads

verticélly as a function of time. In this case, the coherent modes are spatially

periodic and the amplitudes or wave envelopes develop in time. The appropriate

-13-



Reynolds average would be the horizontal average over the longest spatial wavelength )

The appropriate < >-phase average in this case is

{q> =

l b
N E q(x+n),y,z,t).

n=0
The subharmonic in this case would have wavélength 2). The << >>-phase average in
obtaining the even modes is entirely similar to the spatial problem.

The temporal problem is similar to the prevailing numerical simulation techniques
in that.the Reynolds average is taken with respect to the spatial direction and the
Reynolds mean flow grows or decays in time. In the labora'tory situation, the
Reynolds averaging procedure is with respect to time. The contrasting situations have
been referred to as the "temporal" and “spatial" problems, respectively, in the
hydrodynamic stability literature. The transformations between the two cases are
given significant discussions (Gaster 1962, 1965, 1968) for linearized probliems. For
nonlinear problems the transformation between the two situations is achievable only
on a "mimicking" basis with the use of some convection velocity.  There is, howc\fer,
no suitable velocity available to achieve physical identicalness between the temporal
and spatial problems, particularly for the large scales.

In cases where "three-dimensional" coherent modes are important, such as the



-

spanwise periodicities in the plane shear layer (Huang 1985, Corcos and Lin 1984,
Jimenz 1983) or the helical modes in the round jet (Mankabadi and Liu 1981, 1984),
the averages already discussed would have to be supplemented by those pertaining to
the spatial periodicities of the "three dimensonality" problem. For instance, as part
of the Reynolds average these would introduce spanwise averaging pertaining to the
spanwise periodicities in an otherwise basic two-dimensional flow or circumferential

averaging pertaining to helical coherent modes in an otherwise round jet.

B. EQUATIONS OF MOTION

We begin with the continuity and Navier-Stokes equations for an incompressible

homogeneous fluid

aui :

— = 29
ox; (2.9)
Bu; du; g 8%y,

— U —=-—— 4V , (2.10)
ot J an axi ax2

~

where v is the kinematic viscosity; the density has been absorbed into the pressure p.
If we substitute the splitting of flow quantities (2.1) into (2.9) and (2.10), the

Reynolds average of the total flow produces the mean flow problem

— = (2.11)
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2
Ui ap+V3U, 9 (:+AA+ uh) (2.12)
= - - .u. . . . .
Dt Bxy g2 Bx; hd T ETR
i

where _D/Dt = 3/8t + Uja/axj. If we deal with the spatial problem, the mean flow
is steady then D/Dt = U;8/8x; For the tcmporal problem then D/Dt = 8/dt
according to the d_iscussions of Section ILA. In the subsequent section we will retain
such usage and interpretation of B/Dt. After the < >-phase averaging of the total

flow and subtracting out the mean flow, the overall large-scale motion is given by

a('fii+/l\1i)
— =0. .
axi (2.13)
D aU; e 32(i;+0;)
: D(~ +A)+(__+A) i a(B+p) v i
— (u:+u: u:+u: = - +
Dt 11 17 8x; ax; 8x2

J

3 _ A A _~ A A
-— (ui+ui)(uj+uj) - (“i+“i)(“j+“ :)

an J
a _ A
- a‘ (rij+rij), (2.14)
I .

where the modulated fine-grained turbulent stresses are already defined in (2.7). In

obtaining (2.14) the property that the coherent motions and the turbulent fluctuations
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are uncorrelated is used. Eduations (2.13) and (2.14) for the overall large-scale
motion (ﬁi+f1i) appear in the same form as that for a monochromatic disturbance (e.g.,
Hussain and Reynolds 1970b).

Following the procedure indicated by (2.6) and (2.8), we perform the << >>-phase

average on (2.13) and (2.14) to obtain the conservation equations for the even modes

au;

— =0. (2.15)

axi
B A + A aUl ap + v azﬁi 3 (A A AA ) 8 (__ - _____) arlj (2 16)
- W Uj ) = ) - U1Uj-UIUj — ulu_‘-uluj - ) .
Dt ax'l 3x; ax.?. axJ <'3xJ axJ

We note that the products of odd modes, such as ﬁiﬁj, contribute to the even modes

and thus <<ﬁiﬁj>> reproduces itself, ﬁiﬁj. The nonlinear effects of even-mode
self-interaction, ﬁiﬁj, produces even modes as well, If we subtract (2.15) and (2.16)

from (2.13) and (2.14), respectively, the conservation equations for the odd modes are

obtained
atu;
— = 0. .
axi 2.17)
D o e aU; ap N o°T; d Bty al.’ij 2.18)
Sttt u u - — — - — - u-u- u . .
Dt ! J ax aXi axf ox LI R aXJ

It is noted here that nonlinear effects formed by the products of even modes with
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that of odd modes, ﬁiﬁj and ﬁ'iﬁj, give rise to odd mode contributions. The system
(2.15) through (2.18) forms the starting point for studying nonlinear interactions
between coherent modes themselves and between coherent modes and fine-grained
turbulence. The second term on the left of (2.16) and (2.18) is the advection of
mean flow momentum by the rcohercnt motion and forms the basic mechanism of
shear flow hydrodynamic instabilities (Lin 1955). The mechanism of viscous
diffusion of momentum is augmented by the modulated stresses of the fine-grained
turbulence. The transport equation for these stresses will be obtained in the sections
to follow., The nonlinear effects, which are appropriately split into even—- and
odd-mode contributions in (2.16) and (2.18), respectively, contribute to coherent-mode
amplitude limiting mechanisms as ideas from nonlinear hydrodynamic stability would
indicate (Stuart 1958, 1960, 1971).{The momentum equation for the mean motion (2.12)
indicates that finite-coherent mode disturbances, as would the fine-grained turbulence,
affect the mean motion through their respective Reynolds stresses. We also note that
the effect of the fine-grained turbulence on the mean motion and on the coherent
motion occur in the form of stresses, through the Reynolds average and the phase
average, respectively., The detailed, instantaneous fine-grained turbulence motions are
thus not directly involved.  However, for purposes of obtaining the Reynolds stresses
and modula’tcd stresses, the conservation equations for the instantaneous turbulent
fluctions are stated here, which are obtained from the continuity and Navier-Stokes
equations for the total flow quantity by subtraction of the contvributions from the
mean flovs) and coherent modes,
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—=0. 2.1
o (2.19)
- 2
an A aul' A ap' 9 ui,
—_— ] l—+ ~.+.—+ l_~.+. = — 4V
Dt ui * uj aXJ (u-] u-]) 6xJ uj aXJ (ul ul) axi ax?
J
8
T (u'u! = <u'u!d). (2.20)
Xj 1] 1)

C. KINETIC ENERGY BALANCE

The physical mechanisms underlying the coupling between different scales of
rﬁotion indicated by the momentum equations can be better illustrated. by energy
conside;ations. Although the fluctuation kinetic energy equation can be obtained from
its'Reynolds stress equation by equating indices, we prefer to deal with the Reynolds
stresses and the modulated stresses separately in the subsequent section. Here, we
shall obtain the kinetic energy equations direc;ly for the various scales of motion by
multiplying the relevant ith-component momentum equation by the corresponding
ith-component velocity and summing. ' .

The mean flow energy equation is obtained by multiplying (2.12) by Uj,

5 - 3 — —_— au;
2 == O oy ) == 0.5 1y !
— U#%/2 = - —|PU; +|U;@:+u;us+u'u {U: ] - (-GG -uwsuz-u'u! —

Dt i axj 171 1 axJ
transport exchange
2 2
32Ui/2 an
+ VvV -V . (21
ax2 axj
J
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A comment about the viscous terms in (2.21) is warranted. These are common to
similar terms in the energy equations for the other components of the flow. The
form in (2.21) is written for convenience, the first viscous term being interpretable as
the viscous diffusion of kinetic energy. The second viscous term, though the
negative of positive-definite quantity, is not the actual viscous dissipation rate. The
less convenient but physically meaningful form of the viscous effects is as follows.

The rate of viscous dissipation is of the form

1 au; an
- vi—+—1, 2.22
2 dx. Ox ( )
] 1
and is combined with the "viscous diffusion" term in the form
‘ 2712
3 an an 8 Ui /2 82Uin
V. U: + =V + 2.23
axj J 8Xj axi ax? axi an ( - )
J

where, through the use of continuity

-
3 Uin an an

aXIaXJ 6xJ aXl

(see, for instance, Townsend (1976)). The form appearing in (2.21) will be used
throughout, with the physical interpretation through (2.22) and (2.23) kept in mind.

The first group of terms on the right of (2.21) include the pressure work and the
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transport of mean flow enérgy by the Reynolds stresses of the even- and
odd=-coherent modes and the fine-grained turbulence. The second group of terms is
the energy exchange mechanism between the mean flow and the fluctuations

consisting of the coherent modes and the turbulence. If

au;

i e A e R P

then there is a net energy transfer from the mean flow to the overall fluctuations; the

opposite is true if the sign is negative. Of course, this interpretation holds for the
individual components of the fluctuations as well.

The energy equation for the odd modes is obtained from (2.18) by multiplying by T;

and then performing the Reynolds average,

p— A
D 2. 2ismdaodgr:| + |50 i O L
— Uu = - — u: u u:r:: -u:g: — - r:e —|-u:u; /™
Dt i ax; | PTG Moy T [ g |
transport . exchange
2 2
a2 (e
+ v -V . (2.24)
ax? axj

J

The contributions within the first group  of terms on -the right represent,
respectively, the pressure work, transport of odd-mode energy by the even modes and

by the modulated fine-grained turbulence. The second group of terms include .the
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mechanism of energy cxchaﬁgc between the odd modes and the mean flow,

fine-grained turbulence and the even modes, respectively. If

__ ay;

-ﬁiﬁj _ > 0,
axJ

energy is transferred from the mean flow to the odd modes and this term has the

opposite sign as that occurring in the mean flow energy equation (2.21). If

energy is transferred from the odd modes to the fine-grained turbulence via the work

done by the modulated stresses Fij against the odd-mode rates of strain aﬁi/axj. If

then energy is transferred from the odd modes to the even modes. The viscous terms
are similar to those occurring in the mean flow equations and have the similar

interpretations already discussed.

The energy equation for the-éven modes is similarly obtained from (2.16),

B A_2 . 0 AA A A2 e A AA
—u,/2=- 8_ pu-+ujui/2+ujuiui+u-

ri;| +
. J 1°1)

transport
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e an aui aui azﬁi/z a{\li
PR T MiEy | E ([P Ve | o ®

J

exchange

Again, the first group of terms on the right of (2.25) represent pressure work,
transport of even-mode energy by itself, by the odd modes and by the modulated
fine-grained turbulence. The second group represents energy exchanges between the
even modes and the mean flow, fine-grained turbulence and the odd modes. The first
and third of these have opposite signs to similar terms in (2.21) and (2.24),

respectively. The viscous terms need no further comment.

The kinetic energy equation of the fine-grained turbulence is obtained from (2.20) by

‘multiplying by ui', first < >-phase averaging and then Reynolds averaging,

9o

2/ . 2 2 T TTFee + s Foee
ui' /2 =- axj p'uj’ + uj'ui' /2 + (uj :’.‘ T + U ?"11)/2
transport
—_— an aﬁi " aﬁi
+ |-ufu) — + [T |+ |1y —
is . 1) 3x. 1) 3x.
1] axJ ax_l 8xJ
excha~nge.
82u|2/2 &u’ 2
v — -v| 3 20 (2.26)
9x* Xj B
J
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The first group of terms include the usual pressure work and self-transport and the
tranSport of fine-grained turbulence energy by the coherent fluctuations. The first
term in the second group of terms, commonly known as the turbulence production
mechanism, has the sign opposite that of the similar mechanism in the mean flow
energy equation (2.21), the second and third terms are the energy exchange
mechanisms involving the odd and even modes, respectively. They have opposite
signs to their counterparts in (2.24) and (2.25), respectively. The combined viscous
effects include, again, "diffusion" and rate of viscous dissipation previously
interpreted.

We note here that the advective mechanism in the momentum ecquations provide
in the kinetic energy equations mechanisms ‘of transport and of energy exchanges
among the various scales of motion. From the structure of the latter mechanism
occurring in the same form but of opposite §ign in a "binary" interaction, we have
emphasized energy exchanges rather than "production". The latter perhaps implying
too often the regulation of the directon of energy transfer in terms of a (positive)
eddy-viscosity effect. For instance, from ﬁydrodynamic stability it is well-known
that energy could return from fluctuating motions to the mean flow _(a "dampled"
disturbance in the inviscid sense). In the next section we shall consider the
consequences of vorticity considerations. One would expect vorticity-magnitude
cxchanges among the different scales of motion to arise from advective effects but
that no such exchanges would result from the vorticity-stretching and tilting effects
in threc-dimcﬁsional motions.
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D. YORTICITY CONSIDERATIONS

}Therc is an extensive discussion of the role of mean and fluctuating vorticity,
within the context of the Reynolds splitting procedure in turbulcﬁt flows, in
Tennekes and Lumley (1972). Some aspects of the role of coherent—-mode vorticity in
turbulent shear flows and the resulting interactions between different scales is given
attention in Mollo-Christensen (1971). The vorticity equa'tion, which is obtained by
taking the curl-of the momentum equation (2.10), is in a way simpler in form for
the description of fluid motion in that it is devoid of the presence of the pressure.

Let us define the overall vorticity in the "shorthand" notation,

aum
w-

i = €ikm 3.
axk
where €5, is the alternating tensor. It has the property that €., = 0 if any two of
ikm are the same; if all ikm are different and in cyclic order then €;p ., = 1, but is equal
to -1 if the cyclic order is disrupted by the interchange of any two numbers. The overall*
vorticity equation, obtained by taking the curl of (2.10) is | N

—tu; —=w— +
ot J'an J a{J 8x2

(2.?7)

In addition to the continuity condition auj/axj. = 0, we shall also make use of the

condition awj/axj = 0 in the splitting procedure to follow. The nonlinear advective term
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on the left of (2.27) will anticipate the transport of vorticity and vorticity exchanges
among the different scales of motion, similar to ther interpretations of the kinetic
energy balances. However, the vorticity stretching (i = j) and tilting (G # j)
mechanism on the right of (2.27) will anticipate net intensification of vorticity:
while the mechanism of vorticity exchanges are present even for plane (coherent)

motions, the net intensification mechanism is necessarily a three-dimensional

phenomenon.

Similar to the overall velocity splitting, we let
wi=0i+wi+ui+wi,

A ] . e . »
i (R w; and w; are the mean vorticity, odd~ and even-mode vorticity and
turbulent vorticity, respectively. The procedure in obtaining the individual vorticity
equations is similar to that for the momentum equations. At this stage it is helpful

to introduce the symmetrical, rate of strain tensor

1 aui an ' .
55 (o * )

specifically for use in the vorticity stretching/tilting mechanism. Thus

aui
EETIER

to which the antisymmetrical, rotational part of _8ui/8xj , make no contribution. The
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occurrence of 5ij in the present context then readily identifies the stretching/tilting

identifies the advective role of the fluid

mechanism, whereas the occurrence of u-l

velocity. In what follows the stretching/tilting mechanism will be referred as "stretching"

for simplicity. The splitting of 8ij into appropriate flow components read'ily follows.

The mean flow vorticity equation is then

35 _ a0, :
2 Q. = i = Tey! S T SUTIASA 1o 1 228
bt % s qu1+qul+uj wi + 8 + Jle+stl.i+wj sij +vV " . (2.28)
i
stretching

transport

intensification of mean

.The first group of terms on the right of (2.28) is the transport of vorticity by the
the net

second group includes

fluctuating motions, the
vorticity by the rates of strain of the mean flow and that of the fluctuations.

Equation (2.28) differs from the vorticity equation in a laminar viscous flow, which

would have the same form as (2.27), through the fluctuation contributions to vorticity

transport and stretching in the mean.
The vorticity equations for the odd- and even-modes are, respectively,

2 O oo+ o4 OF; 408 +B35 P 2.29
Dt Wy = - axj uJ i+iji+ujh)i+mjl + jsij+ g ij+szij+wj ij+ il +Vv ax2 ’ (2.29)
j
transport stretching
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2 A - a A A A AA
bt w; = —8 uJ (qu -u ;) +( qui-ujwi) + my;
transport
—_ 27
Q ~ (x) S A A 3 (.\)1
+ 95855 + W5 +(J1JJIJ)+(JIJJIJ)+° +vax2 (2.30)
j

stretching

Similar to the introduction of the modulated fine-grained turbulence stresses Fi; and ?ij’

we have defined and used the modulated fine-grained turbulence-produced transport and

stretching effects, respectively

The vorticity transport effects, reflected by the first group of terms on the right of
(2.29) and (2.30), are due to interactions with the mean flow, mode interactions and
that due to the fine-grained turbulence. The second group of terms in (2.29) and
(2.30) are due to vorticity stretching and tilting. In the odd-mode vorticity equation
(2.29), the effects of (Qj+a)j)§’ij is due to ;he stretching of thc mean and the

even-mode vorticity by the odd-mode rates of strain, while &; (S +s J) is the strctchmg
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of odd-mode vorticity by the rates of strain of the mean flow and of the odd
modes; T; is contribution from modulated-stretching effects due to the fine-grained
turbulence. Similar interpretations hold for Q-gi- and C’jsij found in (2.30). However,

J1)

the. nonlinear effects of odd-mode vorticity stretching by the odd-mode rates of strain

.

(®;5; -0 gij) give rise to even-mode contributions, similar to the nonlinear effects
present in the even-mode momentum equation (2.16). The vorticity stretching due

A A

self-straining effects of the even-mode (uw;s ":’jgij) give rise to even contributions.

ij
Similar odd-mode and even-mode self-interactions give rise to the nonlinear transport
effects in (2.30). These two nonlinear self-interaction effects are peculiar to the
even-mode vorticity only, whereas similar stretching and transport effects for the
odd- mode vorticity come from even-odd mode interactions only. In (2.30), Si is
again the even part of the modulated fine-grained turbulence vorticity stretching
effects. Finally, the diffusion of vorticity by viscosity are the last terms (2.29) and
(2.30).

In the description of the evolution of the vorticies of the mean flow and of the

odd and even modes, the fine-grained turbulence enters into the problem through

J"’i' and w'si'- in (2.28) and through the modulated

Reynolds averaged quantities, u j

quantities ”mji,é‘i and Amji,si in (2.29) and (2.30), respectively. The transport equations

for such quantities could be readily obtained, if desired, through the instantaneous

equation for wi' in conjunction with that of “i' given by (2.20). The equation for w;

will be stated here, which will subsequently be used to obtain the magnitude wilz/z.

The fine-grained turbulence vorticity equation is obtained in a similar way as that
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1]
for uj,

2 w'=- 2 [u'(ni+6-+a)-) + (T:+0;)w +u'w! - <u'w'>]
Dt i 8x; L 1 R A T ji

transport

32!
i
+ [(Q4T40:)s!, + W' (S;:45; 1452 + w!'s!, - <w!s! | + v (2.31)
Ix“
stretching ]

The transport effects are immediately obvious,.that due to turbulent transport of the
total coherent vorticity present, the transport of turbulent vortiéity by the coherent
fluctuations (transport by the mean flow is already accounted in the left side of (2.31)),
and effects of self-transport. The turbulent vorticity stretching is contributed by the
prc-sence of total coherent vorticity in the rate of strain field of the- turbulence, and the
pfcsence of turbulent vorticity in the total coherent rate of strain field and the

self-stretching effects indicated by w; SJ!.j - <wi' si'j>. The viscous diffusion of turbulent

vorticity being obvious.

“

While the physical understanding of the interactions among the various scales of
motion was provided by the energy considerations in Section IIL.C, similarly,
understanding of interactions between the mean and the various scales of fluctuating

. . s oY) ]
vorticities would be provided by the "magnitude" of vorticities le,wlz,wlz and wiz,

known as the enstrophy (e.g., Pedlosky 1979). ““The derivation of transport equations

for such quantities is similar to that of the energy equations. The mean flow
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problem is obtained from (2.28) by multiplying by 0, with some rearrangements,

D 02/2 9 o] [""+Aﬁ)+ 'w'] + [""+AQ+ 'w']anl
—_— = . — u:0:+u:w:+u U:0:+u:0:+u —_—
Dt i aXJ 1 JlJlji Jl-]ljian
transport exchange
2
0. [55; 4055 +0's! | + 0:0.8 il 02/2 i 2.32
+ i“’jsij"‘“’jsij“"jsij + 3081 + o i/ Y rwd K (2.32)
. i J
(shared) (self)
stretching

The transport of Q12/2 by the fluctuations, indicated by the first group of terms on the
right, is entirely analogous to that for the xﬁean kinetic energy. The exchange of
vorticity with the fluctuations is indicated by the second group of terms on the right and
these are analogous to the similar exchange mechanisms for the kinetic energy. As we
have emphasized already, the mechanisms of transport and exchange of the sqﬁare of
vorticity is affected by the advection mechanism in the momentum equation. The third
group of terms on the right of (2.32) is the intensification of 012/2 due to the effect of
stretching of fluctuation vorticity by the rates of strain of the fluctuations and the
stretching of mean vorticity by the mean rates of strain. The viscosity effects, indicated
by the sum of the fourth and fifth terms on the right include the viscous diffusion of
012/'2' and its rate of viscous dissipation. If the mean flow is two-dimensional then the

self-stretching mechanism ninjsij vanishes. If the coherent modes are also



two-dimensional the intensification of Q12/2 due to stretching of the coherent-mode

vorticity Qi(6j§’ij+€)i§ij) by the coherent mode rates of strain would also vanish,

. . . [}
leaving the only stretching mechanism due to the turbulent fluctuations ni“’jsij

(where 1 = 3 and the motion is in the [-2 plane, say).

The equations for the square of the odd~ and even-mode vorticities are,

respectively
D—twl/2=-T uw /2+wimji 0; i;*’ ijiT- it 3¢
J J J
transport exchange

2
— — A A ) = 82 2 &
+ Q.jb)is ijPOiC; [ + | 005110505835 + wiszij + Vv ——2" b)i /2 -V a . (2.33)
3x< j
J
(shared) (self) (other)
stretching
-— r A A.
Dsz a AA22 A e o A A AAani —~ aﬂi A ale
bt i7" 5k U0/2 + W0 wmy ) - Uy o - B0 5 My
J J J J
transport exchange
2
A A A A A A A A A A 2 ~n &?)i
+ [Qj‘**xsij“" ici]+ [w ic’jgij‘”*" jsij] + W jSi_] + Vv ax_2 w2/2 -V Z (2.34)
j
‘(shared) (self) (other)

stretching



In the above two equations, (2.33) and (2.34), the first group on terms in the right
represents the transport of the mean square coherent=-vorticity fluctuations by the
coherent-mode fluctuations and by the modulated turbulent fluctuations.” The latter

is associated . with the modulated turbulent vorticity transport th;:- and m:

ji ji- These

transport effects are similar to those for the transport of coherent-mode Kkinetic
energies. The second group of terms on the right side include the exchange of
coherent-mode mean square vorticities with the square of the mean flow vorticity
associated with ani/axj. The signs of these effects in (2.33) and (2.34) are opposite
to those in (2.32). Similar exchanges exist between odd- and even-mode mean square
vorti;ies as indicated by the opposite signs of ﬁjﬁiaa)i/axj in (2.33) and (2.34). The
exchange mechanisms with the fine-grained turbulence, as will be anticipated in the
transport equation for ?2/2 to follow, are given by W and ﬁ_1ji6(:)i/8xj.
The form of these exchange mechanisms have in common the product between thc
vorticity flux of one component of flow and the vorticity gradient of another.
| These are analogous to the kinetic energy exchange mechanisms due to the product of
a stress and a velocity gradient or rate of stfain. The third group of terms on the
right side of (2.33) and (2.34) is the effect of intensification of -6?/2 and @/2,
respectively, due to vorticity stretching. The effect due to interaction between the

mean vorticity and fluctuating rates of strain of the coherent mode, anG)ié'ij and

A A .- . 3 3 3 - ’ ~ » .
Qj“’iSij’ give rise to an overall intensification rate of w12/2 and (/:)12/2, respectively, that

is the same as that for 912/2 in (2.32), which 1is Qi(c’jgij*“c’jls\ij)- Both ®;c; and &iei

are due to the modulated turbulent vorticity and rates of strain fluctuations. As
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will be apparent subsequently, the sum of these rates of intensification are the same

a——

as - that for wi'z/z. The stretching effects due to the mean flow rates of strain,

‘T’ic’jsij and C)ia)jsij, are not "shqred". " Finally, the middle group of terms in

stretching group are due to coherent-mode rates of strain fluctuations  themselves.

Except for Giajgij, the other three self-stretching effects are due to odd-even mode

interactions. The sum of the last two terms in (2.33) and (2.34) are again due to

the viscous diffusion and dissipation.

Finally, the evolution equation for wi' 2/2 is

l22 i_ ' 12 ) \.:E“' AEA 2 ' 'ani ~ aml A a_?)_l
Dt wy /2 = - P ujw;i© /2 + (uJi li+u_]i 8;1)/2) - ujwi B + Wy o + mj; Py
J J J J
transport exchange
+ [n-w's' +’5::-+6-3-] +w'w's! +ww'S, +( §~s~+£ ;)
Jiij 1¥1° 7171 ijij l.ll.l 1J71) " *1)71)
(shared) (self) (other)
stretching
82u.2/2 (2] 2 |
1 1
+v— - vl ) (2.35)
axj [ X3



<w_’w!>=w_jw—}+zij+g
1)

1] iy

Both terms describing the transport of w;z/z on the right side of (2.35)-arc analogous
to that for the turbulent Kkinetic energy (2.26); they are‘due to the turbulent
fluctuations and the coherent-mode fluctuations. The first term in the vorticity
energy exchange mechanism reflects an exchange of —u?i/z with Qi2/2, with the same
term having opposite signs in (2.35) and (2.32); the second and third terms in this

group are the vorticity exchange mechanisms between wi'z/z and that of the odd and
even modes, 6;2/2 and 612/2, respectively. Again, these terms have opposite signs

terms in (2.33) and (2.34). The intensification of wi'2/2 due to vorticity stretching is
again grouped into three effects. The first is that the total rate of intensification

which is shared by other components of flow and are due to fluctuations of the

. " . .. . .
turbulent rates of strain Qj‘*’isij’ which is in common with that for 912/2; and to the

modulated fluctuations of the turbulent rates of strain (G—ié'—i;?)i—c'\i) whicﬁ is in
common with the same stretching mechanism for the overall coherent~mode vorticity
intensities. The second effect in this group in the stretching mechanism is due to
self-stretching, The last effect in this group consist of the stretching mechanism
of rates of strain of the mean-flow and of the coherent modes. The last two terms
are the familiar viscous effects. If the coherent fluctuations are predominantly

two-dimensional in a two-dimensional mean flow, the only coherent-mode vorticity

intensification from stretching effects are due to the modulated-stretching effects .of
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the turbulence, ®;¢; and C)iei.' Such two-dimensional coherent motions, however, fully
participates in the transport of vorticity and, particularly, in the exchanges of

vorticity with other scales of motions as is evident in (2.33) and (2.34).

E. THE PRESSURE FIELD

Mollo-Christensen (1973) emphasized that the pressure fluctuations associated with
one scale of velocity fluctuations may in fact have scales larger than the scale of such
velocities. The pressure depends on the entire flow field since it is given by an equation
of Poisson’s type (Townsend 1956) in terms of thé double spatial derivatives of the "stress

tensor", uju; (a special case of Lighthill’s stress tensor Tij for the sound pressure

gencratqd by fluid motions, (Lighthill 1952; 1962)). The question that naturally arises is

what is the role of the pressure field in the light of the splitting procedure for flow

quantities that we already used. We begin with the momentum and continuity

equations. Taking the divergence of (2.10) and using (2.9), the equation satisfied by the

pressure is

82p azuin 2.36)
axz h axlaxJ ) ( )
~1 ‘

Following similar splitting and averaging procedures in obtaining the momentum
eqﬁétions, we obtain the components of the . pressure corresponding to that qf the

mean flow, coherent and turbulent fluctuations. The mean flow pressure field-is
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given by
32p 82 N
= - [U U +U: ﬁ'J u;u J+u_'u!] (2.37)
ax2 axiax ij
i
that of the odd-coherent modes by
8%p a2 A A o 533
2 = % Ok [(Ui"'ui)“j + (Uj+llj)ui + rij] (2.38)
X 194
i
and that of the even modes by
626 82 A A —~ : A A -I\-_ 2
2 = - axiaxj Ui“j + Ujui +(uin-uiuj) "'(“1“] u; J) + r ij |- (2.39)

1

The instantaneous turbulent pressure fluctuations are given by

axiz axi ax _l

U, +1; +ul)u + (Uytiy +u1)u' +(u! uJ -u'u )] (2.40)

The above individual "Poisson’s equation" could also have been obtained from their
respective original momentum equations by taking the divergence and then using the

continuity relation. The individual Poisson’s equation has solution of the form

1 82
4n | ox!ox!
1

1
p(.).(.) = - [t 1_]] dR(.’S )1 (2°4l)

j

where p represent any of the pressures above in (2.37) - (2.40) and [t is the

l_]]

-37-



corresponding "stress tensor" on the right side of the appropriate Poisson’s equation,
the pressure takes the field coordinates at x whereas [Tij] takes the same ;oordinatcs
at x' and dR(x') is a volume element occupied by the "sources". This illustrates that
the pressure, though could be consistently split into mean, coherent and turbulent
contributions, is a field quantity that depends on the appropriate overall flow field.
In the present context one is tempted to argue that even if Uj#; and ﬁj flow fields
were absent, p and 6 will be different frbm zero because of, respectively, the
modulated fine-grained turbulence stresses ’r'ij and ?ij' However, the modulated
stresses are set up by the flow fields of the coherent modes, §; and ﬁi. The
contributions of large-scale structures to the far pressure field, or aerodynamic sound

(Lighthill 1952, 1962), was recently addressed by Mankbadi and Liu (1984),

supplcrhcnting earlier works on contributions from eddies of relatively low correlation

radius.

F. THE REYNOLDS AND MODULATED STRESSES

The importance of Reynolds stresses is illustrated in Section IL.B thfough the
transport of mean flow momentum by the sum of all the Reynolds stresses of the
fluctuations, much in the same way as the modulated stresses transport the
coherent-mode momentum. In tl-1e energy considerations of Section II.C, the Reynolds
stresses of all the fluctuations do _work againsff:~'_the rates of strain of the mean flow,

thereby effecting energy exchanges between the mean flow and the fluctuations. In a
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similar manner, the modulated stresses do work against the rates of strain of the
coherent modes, resulting in the energy exchange between coherent motions and the
turbulence. The interactions between the coherent modes and the mean flow and
between the coherent modes themselves involve coherent-mode stresses and these are
taken into account in principle by the explicit consideration of the coherent-mode
motions.

In this section we shall obtain and interpret the transport equations of the Reynolds
stresses and the modulated stresses of the fine-grained turbulence. We begin with the
momentum equation for the instantaneous turbullent fluctuations “i' given by (2.20) and
multiply by uj' then add to a similar equation through exchanging indicies i and j, first

< >-phase averaging and then Reynolds averaging, we obtain

—u'u'=- 2 wulu! + (U Fytiry;)
Dt ij Oxg | kij KTk
transport
A A T = A
== an = an - aui . ; aui _ aﬁj +? an
- R — . — - . — . — - r: — . —
i kox, i k 9xg Ik axy T K axy ik axy 7K gy
"Production” from mean "Production” from coherent modes N
8%u'u’ Su! ou!
dp' dp' ij i
-jul — +u! — |+ v - 2v . (2.42)
j 0x; i axj x2 Bxy Oxy
k
action of pressure viscous effects
gradients

The kinetic energy equation (2.26), which is a contraction of (2.42), yield ‘similar
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interpretations for (2.42). Thus the development of Reynolds stresses is dictated by the

"balance on the right side of (2.42) between transport, "production" from the mean flow

and from the coherent motions, the action of pressure gradients and viscous effects.

The transport equation of the total modulated stresses (t; +rU) is obtained from that

of <ui'uj'> by subtracting out the Reynolds mean ui'uj'. It has the same form as that

obtained by Hussain and Reynolds (1970b) for their monochromatic modulated stresses,

D

(rlJ+rU)

9 VS AL
) a [<uku1 ujl> uku uj] + [(ﬁk“?k)(?ij*'?ij) - (T‘k*'“k)(?ij'*'rij)] + (Tik+uk)ui'uj'

(nonlinear) (linear)
Transport
an au. 3 3
.- (‘ka+er) k + (rlk+r ) ak - ujul'( 6_ (u; +u1) + ulul'( a (u +u )

"Production” from mean flow Work done by mean stresses

against coherent rates of strain

3 3 _ A
- [(r k+er) (u +; Pt ('lk+r k) a (Uj-HIj)]

a a A
- (T k“)k) (u +U; P+ (~xk+" K ﬁ (ﬁi+uj)

(nonlinear) Work done by modulated stress against

coherent rates of strain



ap! op!
ul — -ju)l—+u ] +
<Jax><1ax [Jax 18x
Action of pressure gradients

Ou! du!’ au au

- -2 - — — . 243
Vo2 axk (rl-]+r v <an an> axk axk ( )

Viscous effects

The physical interpretation of (2.43) is similar to that of (2.42). The right side of (2.43)
indicate that the transport of the modulated stresses is due to that by the turbulent
fluctuations in terms of the triple correlations and that by the coherent velocity
fluctuations comprising the nonlinear coﬁtributions. The linear contribution to t.ransport
is_duc.to the advection of the mean stresses by the coherent velocity fluctuations. The
"p.roduction" of the modulated stresses is due to the work done by the modulated stresses
against the mean flow rates of strain and that by the mean stresses against the coherent
rates of strain; these two mechanisms are linear effects. The third "produétion"
mechanism is the nonlinear effect of work done by the modulated stresses against tjw
coherent rates of strain. The remainder in the balance include the action of the pressure
gradients and viscous effects.

Upon << >>-phase avcraging-,v the transport equation for (Fij'*?ij) would vyield Ehat
for ?ij- Upon subtraction of the latter from the former the transport equation for

Fij would be obtained. Before stating the individual transport equations for Fij and



?ij’ we shall define certain symbols for ease of presentation. Following similar

, 3 3 - - -
splitting of <ui'uj' - ujuj' into Fij and ?ij' we define the simplifying symbolic

representations for the triple correlations

<ul'<ui'uj' >- ul;ui'l_lj' = akij + akij’ (2.44)

for the action of-the pressure gradients

-ul — =P+t (2.45)
i _

P A :
P:: + D;; 2.46
i ox; iox; Vi Pij (2.46)
and for the viscous "dissipation"
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<8xk axk> axy Oxy %ij * $’J (2.47)

A . .
The transport equations for the odd-mode F--Aand the even-mode ry;j are, respectively
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"Production” from mean Work done by mean stresses

against coherent rates of strain
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Work done by modulated stress
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(2.48)
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Work done by modulated stresses
against coherent rates of strain
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- [pij+pji] + VvV a—xE rij - 2V¢ij. . (2.49)
k

actions of viscous effects
pressure gradients

Their interpretations are similar to that for (2.43). We note again that the products

between even modes and between odd modes give rise to odd modes whereas the

product between even and odd modes give risé to odd modes. This accounts for the

nonlinear transport effects as well as the nonlinear production effects in (2.48) and
(2.49). The self-interaction of odd modes produce effects upon the even modes and
the mixed products of odd/even modes produce effects upon the odd modes. These

mode-interaction mechanisms are already noticed in the energy considcrations.



III. SOME ASPECTS OF QUANTITATIVE OBSERVATIONS

In order to set the stage for using certain of the lconscrvation principles of
Section II to describe the large-scale structures in sections following Section IV we
shall discuss some of the features of quantitative results from experiments that would
be susceptible to interpretation, either qualitative or quantitative, from a dynamical
point of view. _This would certainly supplement, if not preferable to, the purely
kinetic interpretations and artistic descriptions of the observations. The present
section is not intended to be a complete survey of experimental results.
Complimentary to this incompléteness would be the more recent surveys of
observations by Roshko (1976), Browand (1980), Cantwell (1981), Hussain (1983) and
Wygnanski and Petersen (1985).

" We shall place emphasis on the development of the large-scale coherent structures
in" free turbulent flows as they cvolve- through interactioné with the mean flow,
among themselves and with fine-grained turbulence. The coherent-mode amplitudes
would evolve in the streamwise direction for the spatial problem, such as in the
mixing region established in a wind tunnel or water .channel. In this case, the
coherent-mode periodicities are in terms of ffequcncies and the mean flow spreads
alonrg in the streamwise di£eqtion. This would correspond to that of most
technolog;cal applications. Mimicking this situation is the temporal problem, such as
thé"tilting-tﬁbe experiment or numerical simulations, where the periodicities are in the

streamwise direction, the mean flow spreading rate is time dependent as is the
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evolution of the cohérent-mode amplitudes. The nonlinear temporal problem vyield
theoretical and computational conveniences but we have already emphasized‘ that there
is no one-to-one transformation to the spatial problem.

The emphasis on develoment and evolution is mainly because of the strong initial
condition dependence on part of the coherent modes in turbulent shear flows,
recognized theoretically sometime ago (Liu 1971b, 1974a) and for which experimental
evidence is now omni present. In the spatial problexﬁ, the coherent-mode amplitudes
have spectrally-dependent fixed streamwise distributions. The amplitudes (or wave
envelopes) grow and decay, with the lower-frequency components peaking further
downstream and higher-frequency modes peaking closer to the initiation of the free
turbulent flow for a given initial energy level (e.g.,, Liu 1974a). Under the spatially
fixgd a.mplitude or wave envelope, the propagating coherent modcs enter from its
region of initiation and cxitsAdownstream, if at all. The nat_ure of such modes and
the spatial distribution of their envelope dcpchd on a number of factors in adéllltion
to their own spectral content and initial amplitudes, such as the fine-grained
turbulence level and the initial mean flo§v distribution and the length scale in
forming the initial St;ouhal number. As such, the description of the local structure
of coherent motions would bcjmcaningful only if it is placed in an overall context
in order to fix the identity of their otherwise apparent nonuniversalities.

In order to illustrate the coherent-mode amplitude dcveiopment, we show in
Figur;: 1 the results from Favre-Marinet and B&hder (1979). They forced a tuf_bulent
jet at rather large initial coherent-mode amplitudes. The open circles indicate'}'hc
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root mean square of measured streamwise velocity of the coherent-mode, obtained via
phase averaging, at the Strouhal number St = fd/U, of 0.18, where f is the forcing
frequency, d the jet diameter and U_ the mean velocity at the nozzle exit centerline.
The signals were measured on the jet axis. The evolution in terms of x/d, where x
i1s the streamwise distance from the nozzl¢ exit, show that the signal, which is
indicative of the coherent mode amplitude behavior, amplifies and then decays. The
turbulence signal, again on the jet axis, is characterized by the root mean square of
the turbulent streamwise velocity is shown as blackend circles for the case without
forcing, and as open triangles with forcing. There is an indication that the
turbulence i1s enhanced, the jet spreading rate and centerline mean flow decay are
also enhanced. On the basis of the theoretical discussions in Section II, the questions
that na'furally arise is what is the role of the coherent mode in the enhancement of
the turbulence and mean flo“} sprcading_ratc, what are the meachanisms leading to
the amplification and decay of the coherent mode.

To illustrate the coherent mode energy production (and destruction) mechanism
through its interaction with the mean flow, Qe show in Figure 2 the measurements
of Fiedler, et al (1981) of this mechanism along the line of most intense mc;n
velocity gradient in a controlled, one-sided furbulent mixing layer. Here w is the
vertical velocity and z the vertical coordinate, U, is the free stream velocity.
However, the coherent signal was obtained by filtering at the controlled frequency
rathcf than via phase averaging. One can ai-gile that if the monchromatic coherent
signal is as energetic as the overall broadband turbulence, then the energy content of
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the turbulence at the coherent signal frequency could conceivably be relatively weak.
Filtering would then produce the similar result as that from phase averaging.

Fiedler et al (1981) compared the measured coherent structure production
mechanism, as shown in Figure 2, with that of the total fluctuation production
mechanism along the line of maximum mean shear. While the random fluctuation
production remained positive, that of the coherent structure increased, reflecting the
energy extraction- process, and then decreased below the axis indicating the negative
production or return of kinetic energy to the mean shear flow. This typifies similar
negative production mechanism observed by Hussain and Zaman (1980), Oster and
Wygnanski (1982), Weisbrot (1984) (see also Hussain 1983). Such observations are
not entirely surpriéing from the perspective of ideas from hydrodynamic stability for
develobing shear flows. The development of this energy exchange mechanism between
the mean flow and coherent S‘fructure is very similar to that in a laminar free shear
fiow (Ko, Kubota and Lces 1970, Liu 1971b) except that the rate of this dcvelogrhent
is significantly modified in the more rapidl)" spreading turbulent shear flow. Not
only the "negative production" mechanism itself, but the observed ecvolution of the
coherent mode as in Figure 2, is entirely explected from theoretical considcratio:ls
(e.g., Liu 1971b, Gatski and Liu 1980, Mankbadi and Liu 1981). This negative
production mechanism is.only partially responsible for the decay of the coherent
mode.

Fiedler, et al (1981) also showed that the;i;car layer spreading rate is alte.rcd by
the enhagccd coherent mode. However, we shall ilustrate the similar observed effect
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of coherent-mode development through the use of results from Ho gnd Huang (1982).
Although the shear layer in Ho and Huang (1982) is one undergoing transition, it is
used here to illustrate the role of fluctuations on the mean flow spreading rate. (A
collection of spreading rates from various laboratories, though not exhaustive, appear
in Ho and Huerre 1984, Figure 24). Ho and Huang’s (1982) measured mean shear
flow thickness developing as a function of the streamwise distance is shown in
Figure 3; the conditions correspond to their "Mode II', in which the subharmonic
component (2.15 Hz) is forced at a streamwise velocity (route mean square) of about
0.10% of the averaged upper and lower free streams and at an R parameter (ratio of
the upper and lower stream velocity difference to the sum) value of 0.31. - The
steplike structure of the mean flow thickness is fairly obvious. The thickness of
disturbe.d turbulent shear layers also exhibit such steplike behaviors (Fiedler, et al
1981, Weisbrot 1984, Fiedler and Mensing 1985; see also Wygnanski and Petersen
1985). The coresponding coherent-mode energy measured by Ho and Huang (192-3-2) is
shown in Figure 4, where E(f) is the kinetic energy due to the streamwise velocity
fluctuation associated with each of the frcqﬁcncies, integrated across the shear layer.
As we shall see later, such a quantity, but including all the contributions to tl;e
coherent-mode kinetic energy .i‘ntcgral, is related to the amplitude or wave cnvvclopc
of each mode. Figure 4 indicates that the peak of the fundamental component (4.30
Hz) energy is associated with the first plateau of the shear lay;:r thickness in Figure
3, the peak -of the subharmonic energy is assbﬂc':.iatcd with the second plateau m the
shear layer thickness further downstream. The linear growth far downstream :.is
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attributable to turbulence dominating the rate of sptcad. As will be shown more
formally -in the next section, it is not difficult to show that the shear layer
spreading rate d6/dx can be obtained from the mean flow kinetic energy equation,
integrated across the shear layer (see, for instance, Liu and Merkine 1976, Alper and

Liu 1978), with a change in sign and retaining only the dominant energy exchange

mechanisms,

ds > au auy2
_— - [-uw-uw-u'w']— dz + v [—-] dz. 3.1)

In a purely laminar viscous flow, the shear layer will spread as long as kinetic energy is
removed from the mean flow via viscous dissipation. In a transitional shear flow, this
viscous'sprcadiﬁg rate would be augmented by the emergence of finite amplitude
cohérent disturbances. In a turbulent shear flow, a highly enhaﬁccd coherent mode
wbuld similarly augment the turbulent spreading rates. If we denote the fundaméntal
disturbance-mode Reynolds stress contribution by -?v-v_, the magnitude of the energy
exchange mechanism E dU/3Z very nearly follows the development of the wave
envelope as appearing in Figure 4. Its value along the line of most intense mean shez;r,
illustrated by Fiedler, et al’s (1981) measurement, very nearly represent the entire
sectional integral of this quanti‘fy. Thus the first peak of d&/dx is associated with the
vigorous transfer of energy from the mean flow to the fundamental. The shear layer

thickness itéclf, which is a running streamwise integral of the energy exchange

mechanism, reaches a plateau after the streamwise peak of of the fundamental

-50-



component. The second, distinct plateau follows similar reasoning for the
subharmonic-mode energy transfer mechanism -Uw OU3Z. It seems that after the
coherent modes have subsided relative to the turbulence, the linear growth is attributable
to -u'w' 8UJZ. The development of the negative production mechanism on part of the
coherent mode discussed earlier, which corresponds to "damped disturbances" in the
hydrodynamic stability sense for dynamically unstable flows, would make a negative
contribution to d&/dx, thus contributing to a decrease in 6. This decrease in & would be
obviously observable if the negative production rate were the dominant energy exchange
mechanism within a streamwise region (see Weisbrot 1984, Fiedler and Mensing 1985).
Although not decoupled from the direct interactions between coherent modes and
fine-grained turbulence, the production of the fine-grained turbulence by the mean
motion appear both experimentally (e.g., Fiedler, et al 1.981) and theoretically (e.g.,
Li'u and Merkine 1976, Alper and Liu 1978, Mankbadi and Liu 1981) to be devoid of
tixc large-scale amplification and negative production as was found for the co.hrcrcnt
modes. Consequently, the turbulence energy, excluding the coherent-mode
contributions, appears to be developing, if at all, monotonically even in the
nonequilibrium region of coherent mode/turbulence/mean flow interactions. 'I:hc
contribution of -uw'w' 8U/dZ to the shear layer spreading rate eventually becomes
very nearly constant along the streamwise direction rendering the linear spread of:the
she‘aur layer due to this mechanism. For the transition problem. (e.g., Ho and Huang
1982). or the forced turbulent shear layer (cv.é:, Weisbrot 1984, Fiedler and Mensing
1985), the initial steep step-like development of the shear layer is thus conclusiifé.ly
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reasoned from the above discussion to be due to vigorous energy transfer to the coherent
modes. “The arrest of this steep development is due to the decay of the coherent
disturbance in the downstream region where production becomes small or negative. The
existence of the plateau region between steep increases of 8(x) indicate that the
production mechanism of the first mode has subsided prior to the rise in production of
the subsequent mode (or fine-grained turbulence). The downstream persistent linear
growth of the shear layer, again from our present discussions, indicate that the coherent
mode activities have subsided and that fine-grained turbulence is now responsible for the
shear layer spreading rate.  This spreading rate is not necessarily universal in that it
has an upstrecam dependence on what nonlinear coherent mode interactions have taken
place (e.g., Alper and Liu 1978, Mankbadi and Liu 1981). This lack of universality in
the measured turbulent shear layer spreading rate, summarized, for instance, by Brown
and Roshko (1974) and by Ho and Huerre 1984, is thus not surpri;ing but expected.

The basic two-dimensional free shear flow appears to support domiriéntly
two-dimensional coherent modes, with its vorticity axis perpendicular to the mean
motion. In the following sections, our theoretical discussions will interpret the role
of such observed dominant modes as well as the three-dimensional coherent modes ;n
terms of observed spanwise _standing waves (e.g., Konrad 1977, Bernal 1981,
Breidenthal 1982, Jimenez 1983,  Browand and Troutt 1980, 1984). An issue to: be
add;gssed with the three-dimensional modes is that the spanwisé wavelengths appear
to in.crcasc downstream, somewhat similar to the formation of longer, streamwise
wavclengt_h of frequency subharmonics.
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IV. VARIATIONS ON THE AMSDEN AND HARLOW
PROBLEM - THE TEMPORAL MIXING LAYER

A. INTRODUCTORY COMMENTS

Amsden and Harlow (1964) considered the "temporal" mixing layer formed by
parallel opposite streams. The disturbance is two-dimensional and 1is periodic
horizontally. The growth in amplitude and the spreading of the Reynolds mean
motion is in time. However, they considered the entire flow velocity as a single
dependent variable, encompassing the Rcynolds: mean and the disturbance, and solved
the unsteady Navier Stokes equations with horizontal periodic boundary conditions.
The study of mean flow and disturbance interactions can always be obtained from
the numerical result by performing the Reynolds average, which is the horizontal
average in this case. The utility of the idea in using the total flow quantity as the
dependent-dynamical variable is particularly suitable for the simple temporal mixing
layer problem. This has been fully exploited by Patnaik, et al (1976) in the case of
stratified flow. The two-dimensional problem (Amsden and Harlow 1964) for a
homogeneous fluid, including the consideration of passive scalar advection and
diffusion, was given greater detailed consideration by Corcos and Sherman (1984).
The secondary instabilities in the form of spanwise periodicities, solved on the basis
of lincarizing about the two-dimensional motion, was considered by Corcos and Lin
(1984) and L_in and Corcos (1984). These are still\rclativcly low Reynolds number

problems and the participation of fine-grained turbulence was not intendcd.
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The dominant two-dimensional coherent mode problems in turbulent shear layers
have been studied by Knight (1979) and Gatski and Liu (1977, 1980) using different
closure models for the fine-grained turbulence; the coherent mode agglomeration
‘problem was studied by Murrary (1980) and Knight and Murray (1981) with an
eddy-vsicosity model. The basiq aim of the present section, through Reynolds
averaged diagnostics obtained from results rccbvcrcd from the numerical solutions, is
to motivate the subsequent approximate considerations directed towards spatially
developing turbulent free shear flows. This will naturally lead to the discussion of
the role of linear theory in the Section V, bridging that of the Section VI on the

spatially devleoping free shear flows.

B. THE "TURBULENT" AMSDEN-HARLOW PROBLEM

The problem of presence of a cohcrcnt structure in a turbulent mixing layer
considered by Gatski and Liu (1980), in the "spirit" of Amsden and Harlov}. (1964),
shall be given some attention because of the physical information that can be
extracted out ofv the results. In the present context the coherent flow variable to be

solved would be

!
n

i Ui + (ﬁi+ui),
R (4.1)
P= P + (p+p).

Their govcrhing equations are obtainable from the continuity and Navier .Stokes

equations, (2.9) and (2.10), by substituting
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. =1 '
“1‘U1+“i

(42)
p=~P+p'

and taking only the phase average < >; the Reynolds average is not performed at the

outset. The resulting equation for U; would be coupled to the phase-averaged, total

stresses

= tuls = 1! y! = ..
Rl_] <uiuj> uiuj+(r”+ru). 4.3)

The system U;, P, Rij’ which involves no explicit Reynolds stresses, ujul!, is identical

in form to those obtained by Reynolds (1985), UpP and (Fj+ij+u; )(@j+d;+u;) with the
phase dvcragc here replacing the Reynolds average as was pointed out and stated
earlier (Gatski and Liu 1980; Liu‘ 1981). AThe AUi,P,Rij system thus has the large-scale
cc;hcrent structure taken out and considered cxhlicitly, as suggésted by Dryden .(1.948).
The stresses Rij = <ul’uJ’> involves only the '"real turbulence", thus second=-order
closure models, when suitably found, would imost likely be more universal than the

~

prevailing closure models for the Reynolds stresses (ﬁi+ﬁi+ui')(ﬁj+ﬁj+ﬁj’) that include

the contributions from the large-scale coherent structures. The latter are now well
recognized as being non-universal because of the non-universality of hydrodynamic
inst'ability mechanisms (Liu 1981). As was shown in Sccfion II, conservation
cquations can always be obtained for U,u; an'c-i'. ﬁi, and transport equations for W
‘?ij and .?ij' Within the Ui,P,Rij framework, however, the study of mean flo';v,
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cohcrent mode and finc-grained turbulence intcractions can always be obtained by
pcrforming the Rcynolds average after the results arc found. As wc  have
cmphasized alrecady, this procedure is really only practicable for the simplest problem,
that is, the tim.e dependent, mixing layer between two oppositec parallel streams.

This problem was considered by Gatski and Liu (1980). The problem consists of the
interaction of a monochromatic component of fhe large-scale coherent structure (so that
u; + ﬁi reduces on.ly-to U;, say) with the fine-grained turbulence in a temporal mixing
layer of horizontally homogeneous and oppositely directed streams. The coherent mode is
horizontally periodic and deveclops in time. The physical significance of this class of
problems is that it strongly resembles, but does not exactly correspond to, the spatially
developing free shear layer in observations. The coherence enters into the periodic
horizontal boundary conditions and the numerical problem is thus well-defined. fI‘h‘is is
in contrast to the numerical problem for the-spatially developing mixing la)_'cr which is
not as well-defined because of the unknown but necessary downstream boundary
conditions. In this problem the vorticity axis of the large-scale structure lies in fhc
spanwise, y-dircction, with the velocities U,2W in the streamwise and 'vcrtical‘
-dircctions, X,y, respectively. The spanwise velocity V is taken to be zero. (Relaxation
of the monochromatic two-dimensional coherent structure to accommodate
subharmonics, the coherent streamwise vortical coherent structures and the rcsultinhg
gencration of ¥ and spanwise variations of U and W are certainly possible.) Here, all
spanwisc gradicnts of the phase-averaged quantitics arc also zcro. Because of the
t\vo-dinlcpsional cdhcrcnt_rnotions,it is possible to definc the-strcam function
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ay aY

U=—, W= -—. 44
dz ox (44
The vorticity is then related to the stream function via Q = -VZ‘Y, where

v2 = 82/0x2 + 8%/9822 (4.5)

is the Laplacian in the x,z plane. The nonlinear, total coherent vorticity equation

then gives
Vz‘i’t + ‘i’zvz‘i’x - ‘YXVZ‘PZ =<u'w'> y -<u'w'>,, + (<w'2> - <u'2>)xz . (4.6)
where subscripts indicate the appropriate partial differentiation. If we were to

study the transition problem, (4.6) will then be augmented by the viscous diffusion
mechanism V4‘¥/Rc on the right éidc. Here all velocities and coordinates are made
dimensionless by the free stream velocity and the initial shear layer thicchss (the
pressure is made dimensionless by the free stream dynamic pressure). Viscosity
effects have been neglected in the large-scale structure vorticity equation (4.6). Thus

the phase-averaged stresses on the right of (4.6) take the place of viscous diffusion in

the turbulent shear layer problem.

The two-dimensional vorticity equation (4.6) for Q = Ry s merely the
y-component of the total coherent vorticity (Qi+G')i+C)i) given by equations (2.28) -
(2.30) in the absence of the vorticity stretching/tilting mechanism and with the

viscosity effects neglected. The net phase-averaged vorticity transport contributidns
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from the turbulence on the right sides of (2.28) - (2.30) would give

- <U '.w.'>o
an

Its two-dimensional form, through the use of the continuity condition, reduces to the

form on the right side of (4.6), in terms of the phase-averaged stresses <ufuj’ > Their

transport cquations are identical in form to the Reynolds system for ulJuJ’ (Gatski and

Liu 1980; Liu 1981),

3 ) aU1 an au; auj'

— + Up-m——l<cu'u!> = -[<u'u'> — + <u'u'> — | + '[— +—]>
[at k axk] lu_] < j k> Ix < ik 8xg <P axj 3x;

production redistribution
d<u'u!'> du! du!
-a—<u'u'u'>+<p'(u'8- +u’8-k)>-l— 21—<—J--—J> 4.7
dx ijk i K401 R Ox Re 0xy Oxy =

k k k Y%k

transport ) dissipation

where the Reynolds number Re is based on the free stream velocity and initial shear

layer thickness, 8i; is the usual Kronecker delta. In the present problem (4.7) is

cquivalent to the sum of (242) and (243) for <uj,uj> = ujuj + (Fjj+f;). In Gatski

and Liu (1980)’s framework the dominant large-scale coherent structure is sorted out
distinctly from the fine-grained turbulence through phase averaging at the outset.
This. is in contrast to the prevalent numerical simulation methods where the entire

flow is decomposed into succeeding, neighboring Fouricr modes corresponding to the
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horizontal periodic boundary condition. For lower Reynolds numbers the simulation
is "exact", whereas for high Reynolds numbers an eddy viscosity subgrid closure is
invoked (Reynolds 1976; Riley, et al 1981). In order to discover coherent structures
additional limited spatial averaging is needed, as was done for the turbulent
boundary layer problem by Kim (1983, 1984) and Moin (1984). In the simpler,
explicit calculation of the dominant coherent structure in the mixing region (Gatski
and Liu 1980) the phase-averaged, fine-grai.ned turbulent stresses appear in the
coherent structure vorticity equation as would be the Reynolds-averaged stresses in
the Reynolds (1895) system. In this case, some form of the Reynolds stress closure
arguments (ec.g., Lumley 1978) could conceivably be adapted to the closure problem
for (4.7). The eddy viscosity models were purposely avoided primarily because the
consequences of such a model implies the a priori regulation of the direction of
energy trﬁnsfcr to the smaller scales. Gatski and Liu (1980) used the formalism of

Launder, et al (1975). This enabled them to obtain of the energy transfer mechanism

between the coherent mode and turbulence, Fij(aﬁi/axj + aﬁj/axi), on the basis that
the coherent mode dynamics are obtained fréﬁ conservation equations, coupled to the
turbulenct stresées via their transport equations. The functional forms of the
Reynolds stress closure should_gpply, though the detailed closure constants might not.
However, the behavior of the fine-grained turbulence, with the non-universal coherent
strgqturcsubtracted out, would be much more universal than‘-thc treatment of all
oscillations, including the coherent structures, as "turbulence". In Gatski and Liu
(1980), the transport equations fpr phase-averaged stresses include those for the si.r;:éle
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shear stress <u'w'>, three normal stresses <u'2>, <u'2> and <w'?> and a modeled
transport equation for’ the rate of viscous dissipation <e>. The fine-grained
turbulence is three-dimensional, but the spanwise derivatives 8<u;uj’>/8y, vanish.

The vertical boundary conditions require all flow quantities vanish far away
from the shear layer. Horizontal periodic boundary conditions are applied to all
phase-averaged quantities, with the periodicity dictated by the wavelength of the
initial coherent’ mode chosen. The initial conditions are arrived at through an
initialization process described in Gatski and Liu (1980). In the absence of the
coherent structure, the Reynolds-mean problem, consisting of the hyperbolic type mean
shear flow and the Reynolds-averaged stresscs.and dissipation rate, is solved from "t
= -=" to t = ty when self-prescrvation is very nearly achieved. This is to ensure
self-consistency among the Reynolds-mean flow quantities when the initial conditions
are to be imposed. The coherent disturbance imposed initially is obtained from the
Rayleigh ("inviscid") equation corresponding to the initialized mean vclocity.p'r‘ofilc
and at an initial wave number corresponding to the most amplified mode for this

~s

profile (« = 0.275); the initial kinetic energy content of the turbulence used in the

computations was E¢(0) = 1.2 x 102 obtained from the initialization process and that

of the coherent mode E (0) = .1,0-4’ where E; and E, are defined by (4.8) and (4.9),

respectfully. The disturbance is considered to be suddenly imposed, with -the

corresponding phase-averaged stresses and dissipation rate, which requirc finite time
to respond, set equal to zero. The interaction between the Reynolds mean motion U,
coherent structure U; and the structurc Reynolds-averaged fine-grained turbulence
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uju; can be studied after the numerical results are obtained as already emphasized.

The "strength" of the fluctuations and the mean flow are characterized by their

kinetic energy content.

C. DIAGNOSTICS OF NUMERICAL RESULTS VIA REYNOLDS AVERAGING

The two-dimensional large-scale structure energy content is

E, = J @2+72)dz, (4.8)

where the overbar is the Reynolds-average and is here the horizontal average over one
wave length. Similarly, the fine-grained turbulence energy content is

J (u '2+v'2+w'2)dz. 4.9)

- -

The mean flow kinetic energy defect is defined as

0 -
E, = I (U2-U2)dz + I (U2-U2)dz. (4.10)
- 0 ® “

{

where the dimensionless outerstream velocities are U, = %l in the present notation.
The development of E,E, and Ep with time provides the insight into .the
nonequilibrium interactions among the three "components" of the energy. To this end,

the diagnostics of the exact energy integral” equations and the energy exchange

mechanisms are obtained from the computational results via Reynolds averaging. The
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energy integral equations, which follows from (2.21), (2.24) + (2.25)

are:

dE, .

— . - 1

dt - Ip Ip

dE, .

ac ol

dE, _
_—T 1oL
& ptln?

and (2.26),

(4.11)

(4.12)

(4.13)

We note that (4.11) - (4.13) were the starting point for an approximate consideration of

the problem discussed in Liu and Merkine (1976). The energy exchanges

mean flow and the fluctuations are given by the integrals

dz

=l

-u 5;

~ J"”—aU

the energy exchange between the large-scale coherent structure and

turbulence is given by the integral

1. &
Ly = ”' rxxa_x'

The integrands in (4.14) - (4.16) have in common the product of stresses
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(4.15)

fine-grained

(4.16)
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appropriate rates of strain. The rate of viscous dissipation of the fine-grained

turbulence 1is

o I e dz. (4.17)

Consistent with (4.6), viscosity effects on the large-scales are not included. The sum

— E E E f— !

that the overall kinetic energy decays according to> the rate of viscous dissipation of the
fine-grained turbulence.

In spite of the local regions where energy is transferred from the fine-grained
turbqlcncc to the large-scale coherent structures indicated by structural results (see
Figures 9 and 11-13 in Gatski and Liu 1980), the integral I, > 0 indicates that the global
energy transfer is from the large to the fine scales of fluctuations. The time
development of this integral is shown in Figure 5, Which indicates that I, peaks in the
vicinity when the global energy transfer from the mean motion to the coherent mode
changes sign. This latter mechanism, which is the integral of the energy exchange
mechanism between the mean flow and the large-scale coherent structure is also shown in
Figure S;TDV_first increases, with energy feeding from the mean flow into the coherent

mode, and then dcreases to below the axis as time increases, indicating an energy

-63-



transfer back to the mean flow. The evolution of such features is a familiar one in
hydrodynamic stability problems of developing shear flows whether fine-grained
turbulence is present or not. In laminar flows the development of positive and then
negative disturbance production mechanism was first uncovered by Ko, Kubota and Lees
(1970) in their approximate consideration of spatial, finite-disturbances in the laminar
wake problem. Similar features were also recovered in the extensions of the Amdsen
and Harlow (1964) computational problem by Patnaik et al (1976). It was also
anticipated and shown that the devleopment of the positive and then negative coherent
structure production mechanism would also exist in free turbulent shear flows (Liu 1971,
Mankbadi and Liu 1981). This is essentially an "inviscid" or "dynamical" instability
phenomenon in the hydrodynamic stability sense and can be anticipated when the
kinematics of the growth rates from linear hydrodynamic stability theory are applied to
the developing free shear flow'through scaling by the local shear flow thickness. In the
temporal problem for a fixed wave number disturbance, as the shear grows in tir.n-c the
rescaled local wave number increases, rendering the growth rates to eventually become
negative. Similar interpretations also hold for the spatial problem where the local
rescaled frequency increases with the downstream distance, the disturbance is eventua‘lly
advected intp the damped region. Experimentally, these features are not surprising either.
As an example, the results of Fieédler, et al (1981) reproduced in Figure 2, taken along
thc._l_ine of most intense mean shear, very nearly approximates th-c integral ?p (see also
Weisbrot 1984). The theoretical results from th'e'ﬂdynamics of the problem (see al;'o Liu
1971, Ma_nkbadi_ and Liu 1981) and experimental observed ecvolution of this cnéréy
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exchange mechanism is strikingly similar. There is no mistake that this "damped
disturbance" phenomenon is one derived from ideas in hydrodynamic stability theory.
The kinematical interpretation in terms of possible eddy orientations (Browand 1980) are
summarized in Hussain (1983).

The time evolution of the coherent-mode energy dE,/dt is thus the difference Tp -
Ig¢ according to (4.12) and is also shown in Figure 5. It is clear from this numerical
example that the fine-grained turbulence produces a global "turbulent dissipation" and
augments the "damped disturbance” mechanism in causing the demise of coherent energy
with time shown in Figure 6. The earlier vigorous amplification is due to extraction of
energy from the Reynolds mean motion. The péak in the coherent-mode energy E /E
correspond to the vicinity when Tp changes sign and Ip¢ is maximum.

The fine-grained turbulence production rate I;) starts out slightly larger than the
dissipation rate qb_' as shown in Figure 7.7_ This accounts for the initial small rate of
growth of the turbulent kinetic energy E{/E.q shown in Figure 8. The producti.dn of
turbulence from the mean flow is made more efficient by the presence of_ the coherent
mode in the initial development stage although the direct energy transfer to the
turbulence from the coherent mode is relatively small. But the net difference betwe;n
production and destruction give rise to the evolution of a nonequilibrium development of
the turbulence energy that evolves from an initial sc‘lf-similar behavior to a new, higher

level of self-similar behavior as shown in Figure 8. In terms of time development, the

"burst" of fine-grained turbulence has taken plzi'c.e at the expense of the coherent mode.



The physical pictures derived here strongly suggest similar physical mechanisms, except
for details, hold for the turbulent jet experiments of Favre-Marinet and Binder (1979)
depicted in Figure 1, where the observed coherent mode grows and decays while the
turbulence is enhanced.

As far as the coherent mode is concerned, the production and "dissipation" are in
general not in balance during the time evolution in free shear flow problems. Thus
marginal stability ideas would not be as useful here as would be for confined flow

problems (e.g., Barcilon, et al 1979).

D. EVOLUTION OF LENGTH SCALES

The following definition of the shear layer thickness (which is not unique) is used

172
5(t) = I 22 aﬁ/az dz/ Iaﬁ/az dz

It is normalized by its initial value and is shown in Figure 9. Initially, the growth is
self-similar in that & ~ t. Its subsequent modification is due to the nonlinear,

nonequilibrium interactions that the Reynolds mean flow engages directly with the

coherent mode and the finc-gfaincd turbulence. Eventually, after subsidence of the
coherent mode, the spreading is self-similar again 6 ~ t. From the structural results, the
height of the closed streamline H, normalized by its initial value Hg, is also shown in

Figure 9; it reaches a2 maximum at about t ¥ 2 and subsequently decreases and is similar
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to the development of the coherent-mode energy with time.

There is another "detail” of observations that can be qualitatively understood from
Gatski and Liu (1980). That is, in the optical observations of Brown and Roshko (1974)
the graininess of the fine-grained turbulence appears to enlarge as the shear layer
spreads downstream. The size L, of the fine-grained turbulence from Gatski and Liu
(1980) can be estimated by using a local equilibrium argument such that the eddy energy
transfer rate down to the size L. just balances the viscous dissipation rate. This leads
to L, ¥ Eg’/z/dJ_'. Shown in Figure 9 is L, normaliiing by its initial value L. as it
evolves in time. Although L rapidly decreases initially, as the coherent mode energy
E, passes its maximum at about t ¥ 2 (Figure 6), the scale of the fine-grained turbulence
begins to increase with time at a rate similar to that for the shear layer thickness 6. In
fact, L /6 remains very nearly constant after t % 1.50. The coarsing of the graininess of
the fine-grained turbulence derived here gccompanics the spregding of the shear layer
(Gatski and Liu 1980). This appears to be entirely consistent with observations of Brown
and Roshko (1974) that as the observed "strength" of the coherent mode weakens the

spreading of the shear layer is maintained via the coarsing of the graininess of the

fine-grained turbulence.

E. SOME STRUCTURAL DETAILS

~We shall refer to Gatski and Liu (1980) for the details of the time evolution of

structural results in terms of the phase-averaged stream function and vortici.ty
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contours. We will illustrate here the instantaneous ¥ and Q contours in Figures 10 and 11,
respectively, for t = 1.50 when the coherent-mode energy is at its maximum and dEg/dt
= 0. There are strong vorticity nonuniformities within the "cat's eye" as would be
expected for the t = O(1) nonequilibrium stages of development. A similar nonlinear
critical-layer theory (Benny and Bergeron 1969) for the present class of problems would
require the vorticity within the cat’s eye region to be uniform. This might be achieved
as t =~ « for the idealized single event of the monochromatic problem as the fine-grained
turbulence smooths out the inner coherent vorticity distribution. The coherent structure
at the t - = neutral stage would have been significantly weakened that its participation
in the shear layer dynamics would be of questionable interest.

Other structural details of the phase-averaged quantities that are of interest are
those pertaining to the energy conversion mechanisms, the consequences of their
Réynolds’ average have alreddy been d_iscussed. At the phase-averaged level, the
conversion of overall coherent mode energy to the horizontal fine-grained turb.urlencc
energy <u'2>/2 is achieved primarily through the work done by the modulated
turbulent shear stress against the coherent rate of strain, -<u'w'>3U/0z. The

~

contours of both of these quantities are shown in Figure 12a,b for the instant t =
1.50. The conversion mechianism due to the normal stress -<u'2>6U/8x is
significantly weaker in this case and is not shown (see Gatski and Liu 1980). The
ratt;:.of energy transfer in Figure 12a shows that there arc. local regions where
turbuAlcnce eﬁcrgy is converted back to the coherent mode. The coptributions to the

' , .
vertical part of‘the turbulence energy <w 2>/2 come from the dominant normal stress
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conversion mechanism -<w'2>8W/8x, These are similar to the patterns for <u'2>/2 and
we refer, again, to Gatski and Liu (1980) for details. These are the direct energy
transfer mechanisms between the fine-grained turbulence and the two-dimensional overall
coherent mode, The three-dimensional turbulence include also the spanwise contribution
to its energy <v'2>/2. This is produced and maintained via the isotropizing mechanism
of the pressure-velocity strain correlation <p'dv'!/8y>. The contours of these quantities
are shown in Figure 13 for t = 1.50. The quantity <p'dv'/3dy>, however, was not an
explicitly calc.ulatcd quantity but was approximated via closure arguments, including the
effects attributable to local rapid distortion due to the large-scale coherent structure
(Gatski and Liu 1980; Launder et al 1975). Although this mechanism converts energy to

<v'2>/2 on an overall basis, there are nevertheless local regions in which this energy

conversion mechanism reverses sign.
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V. THE ROLE OF LINEAR THEORY IN NONLINEAR PROBLEMS

A. INTRODUCTORY COMMENTS

The role of linearized theory in finite-amplitude, weakly nonlinear hydrodynamic
stability problems is well known (Stuart 1958, 1960, 1962a,b, 1967, 1971a, 1972);
particularly the parallel flow problem there serves as a valuable guide to the class of
problems of interest here. In ofdcr to gain the necessary perspective as to how the
linear hydrodynamic stability problems fit into and be made use of .in nonlinear
problems involving in devcloping flows, we purposely preceded this section by the
discussion of a simple nonlinear problem in Section IV. The temporal mixing layer
discussed in that section contains a vast richness in physical processes which could
still be explored further. However, numerical extensions of the problem, though
readily possible, are nevertheless tedious and it would be most worthwhile in
exploring certain ideas and concepts derivable from the problem of Gatski and Liu
(1980) in order to make progress, via simplification, towards the ambitious
possibilities of describing the class of problems involving real, spatially developing

flows found in the laboratory and in practical devices involving mixing-controlled

situations. For purposes of introducing ideas, we shall mingle in our discussions ideas

derived from the temporal problem with observable quantities in the laboratory

without further qualifications.
The energy content of the coherent mode E; introduced in Section IV, equation

(4.8), is a quantity measurable in the laboratory (Ho and Huang 1982) for different
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modes. For a given initial ene'r'gy level and shear layer thickness it is a quantity that
depends on the mode content in its nonequilibrium evolution. Thus in the laboratory,
high frequency modes’ energy content peak further upstream then lower frequency
modes (or the longer wavelength disturbances peak later in time). As such, E; is
essentially related to an amplitude of the disturbance. It is the "slowly varying"
wave envelope bounding the "fast" oscillations of the wave motion. There is strong
observational evidence that for nonlinear problems while the wave envelope has to be
ob‘taincd from a nonlinear theory with the physics of the problem participating fully,
the wave characteristics are obtainable from the kinematics of a locally linearized
theory (Michalke 1971). However, considerable confusion concerning the role of the
linear theory would still result from the nonuniqueness of the "amplitude" associated
with linear solution, the lack of distinguishability of the "wave envelope" from the
"wave function" and the relative sensitivity of the wave-envcl_opc to the real physical
mechanisms in the shear flow evolution. Thus an extended discussion along these
lines might help unravel some of the possible confusion that might result from

reading the current literature (Wygnanski and Petersen 1985).

B. NORMALIZATION OF THE WAVE AMPLITUDE

In order to bring in the role of the linear theory it is thus essential that we
provide the distinguishable roles of the wave envelope or amplitude, the

hydrodynamical instability wave functions and the physically sensible manner m
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which such functions are to be normalized. If we introduce a coherent-mode energy
density as E,/% = |A|2, where 1A12 would be a function of the mode number and
mean motion evolutionary variable (wave number and time for the temporal problem,

frequency and the streamwise distance for the spatial problem). Thus, according to

our definition, (4.8) gives

Ep

AR = = =;—J (€Z+¥)d(§). ‘ (5.1)

We are using the two-dimensional coherent mode for simplified illustration, these
ideas are easily extendable to include three-dimensional coherent modes. If we
further assume that the velocities U,Ww are representable by the linear hydrodynamic
stability theory, then the linear eigenfunctions are represented by the disturbance
stream function ¢ in terms of local variables § = x/8, [ = z/6 with the local wave

number « referred to 5. Then, in terms of the temporal mixing layer notation, for

instance,

[=1]

¢'(L) | . )
= A(t) exp(ixt) + c.c., (5.2)
-iog(§; o)

€l

where ¢' is the C-derivative of ¢, the local %-derivative of ¢ is given by -ixd, c.c.
denotes the complex conjugate. In this case, the physical wavenumber is fixed but

the local wavenumber changes as the shear layer thickness, 5, grows.
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If we substitute (5.2) into (5.1), then

@

1A() 12 = 1A(t)12 ;— I (10" 12 + 1ap12)dg !, (5.3)

Thus, in order that we consistently attribute 1A12 = E,/6 indeed as the energy

density, the local eigenfunctions must be normalized locally by the condition

L

J' (16" 12 + 1ap12)dl = 1. (5.4)

N | =

This addresses an appropriate normalization for the wave functions of the local
linear -theory for which the wave envelope would be given consistent physical
meaning; this would not be the case with the "equal area" normalization (e.g.,

Wygnanski and Petersen 1985).

C. GLOBAL ENERGY EVOLUTION EQUATIONS

The above discussions follow those ideas. put forth by Ko, Kubota and Lees
(1970) in their generalizaiton of the shape assumption ideas of Stuart (1958) to real,
developing free laminar shear fiows with strongly amplified disturbances. While zthe
cross-stream shapc' of the coherent mode would be given by the (properly normalized)

linear theory, the overall evolution via the wave envelope, |A(t)|2, must be solved by
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the nonlinear theory with the proper physics involved. In Ko, Kubota and Lees
(1970), the evolution of 1A12 follows naturally from the disturbance energy integral
equation. This is solved jointly with 8 which follows from the mean flow kinetic
energy equation following a similar shape assumption for the mean velocity profile.
The problem is relatively much simpler in the absence of the participation of
fine-grained turbulence in the dynamics.

From the diagnosis of the numerical results of Gatski and Liu (1980) for the
turbulent shear layer, we sce that if we were to obtain the evolution of 1A12 = E,/s,

then the "exact" envelope equations (4.11) - (4.13 ) tell us that

dE;, - ,

T = -Ip - Ip (5.5)
L siAi2oT o1 | 5.6
dt 51A1 = p - tat - _ (5.6)
dE; \ _

?=IP+I“- o' . | (5.7)

From the diagnosed numerical results (Gatski and Liu 1980) discussed in Section IV,

any approximate calculation for the wave envelope 1A12 must necessarily involve the
participation of the turbulenct kinetic energy -content E; and the mean flow kinetic
energy defect Ep,. Thus, strong nonlinear interactions occur among the "envelopes”

|A|2, E; and E, independently of whatever version of the linear hydrodynamieal
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stability equations that might have been used to generate the eigenfunctions ¢ in a
possible assumption such as (5.2). We emphasize here that for nonlinear problems, the
wave envelope must necessarily be obtained with the simultaneous nonlinear
interactions between the mean motion, fine-grained turbulence and large-scale coherent

structure properly (though approximately) taken into account.

D. SUBSIDIARY PROBLEMS. THE ROLE OF THE LINEARIZED THEORY

To further interpret (5.5) - (5.7) in terms of approximate considerations and in order
to make practical the modelling of the "envelope" evolution problem we further postulate

that, again using the temporal mixing layer as illustration (Liu and Merkine 1976), the

mean flow behaves like

U -
—— =F@) (58)
T (UsUL o) N

2 -
where F({) could conveniently be tanh § or other function of {. From observations, the
similarity behavior is almost established with the establishment of the mixing region
profile. We introduce a similar energy density for the fine-grained turbulence as E =
E,/6, where E; was defined by (4.9). Similar to the shape assumption for the

coherent mode, we postulate (Liu and Merkine 1976) that the Reynolds stresses of the

fine-grained turbulence be represented by
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u'u! = E(OR;(0) | (5.9)
1]

such that the energy density E(t), like |A(t)|2, bears the burden of the history of the
nonequilibrium interactions, while the local shape functions Rij(g) behaves according
to observations cij exp(-§2). The constants Cij would reflect the proper ratio between
the turbulent kinetic energy and Reynolds shear stress as well as the necessary-
normalization to render indeed that E = E(/8 i‘s the turbulence energy density.

The rate of energy transfer between the large-scale coherent structure and
fine-grained turbulence is provided by the integral Iy in (5.6), which is defined by
(4.16). As the numerical results of Gatski and Liu (1980) illustrate, I,; contributes
significantly towards the energy balances dcterminihg the cv_olution of the wave
envelope 1A12 or §1A12 in competition with the "inviscid" mechanism of energy
exchanges bct§veen the coherent mode and the mean flow, 'I“p. Thus the partipipation
of modulated fine-grained stresses, f‘ij, which occur in the integrand of Ig,, must be
taken into account. accounted.

From the general considerations discussed in Section II, illustrated by (2.14), the

problem of U; and Fij are coupled through the action of the modulated stresses on

the momentum problem of the large-scale coherent structure. Concurrently, T::

ij 18

given by its own transport equations, illustrated by (2.43). ~Thus, following the
manner in which the coherent mode velocities were represented by the _shape

assumption such as (5.2), with the cross-stream shape given by the linear theory, 'Fij
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would necessarily take the following form (Liu and Merkine 1976):

fij = A(t)E(t)rij(g,oz)cxp(iaE) + c.C., (5.10)

with rij(g,oz) given by the local linear thec\)ry, jointly with ¢(L,«).

Prior to discussing the nonlinear"'cnvelope" problem, we shall briefly discuss the
subsidiary, app-ropriatc linear prqblcm for ¢ and T that has to be solved. The
nonlinear problem that we have discussed thus far places the auxiliary linear problem
in the proper perspective. The linear problem for a monochromatic large-scale
disturbance follows directly from the linearized form of (2.13), (2.14) and (2.43). It
was considered by Elswick (1971), Reynolds and Hussain (1972), and Legner and
Figson. (1980) in various forms._. Liu and Merkine (1976), Alper and’ Liu (1978),
Mankbadi and Liu (1981) con.sidered the linear theory as an ._implcment in nonlinear
problems involving coherent mode-turbulence interactions. The local linear theory is

obtained through the substitution of (5.2), (5.9) and (5.10) into the linearized vorticity

and transport equations for Fij as already discussed. In terms of local variables, we

~

obtain

io(U-c)(9"-29)- $U"] = E[-ozzrxz-r;;ioz(rzz-rxx)’] (5.11)
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- P N 1"
Tyx Rxx 21y, Ryx2iad! - Ry, 20
]
Tyy R 0 0
ia(U-c) = -(iap) | YV | - U+ -
)
WY
T,z R_ 0 R,,2iad’ - Ry ,2e%9
I
Txz sz Txz Rz 0" - Rxx°‘2¢
L - I J L J L J
Advection by Transport "Production” Work done by mean stresses
mean flow - (vertical advection from against wave rates of strain
of mean stresses mean
by wave)
2 ' 512
- (pji*piy - Re ¢i; » (5.12)

where ‘¢ is the wave speed, Re is a local Reynolds number, primes denote
diffcrentiation with respect to the local vertical variable §, the Ioéal t-differentiation
is replaced by ie. The subscrip_ts X,y,z are associated with tfxe streamwise, s_pa'nwisc
and vertical coordinates, respectively. The effect of viscous diffusion, which could
be included, has been omitted from (5.11) and (5.12). The form of linear problem
given by (5.11) and (5.12) holds for either the temporal problem (c complex, « rez;l)
or the spatial problem (ac = frequency, real) or for the "wave packet" problem
(Gaster 1981). The linearized ‘vorticity equation in terms of the stream function,
(5.11), immediately bear resemblence tb the nonlinear vorticity equation (4.6). If we

subtract the Reynolds average of (4.6) from -(4.6) itself and linearize, the resulting

linear equation then forms the basis for (5.11). The right side of (5.11) in terms ‘of
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differentiation with respect to local variables, has the same interpretation as the right
side of (4.6).

The linearized version of the transport equations for the modulated stresses (5.12)
are written in a form with the right side resembling that of (2.43), (see also (2.44)
and (2.45)). Comparing the forms of (2.43) and (5.12), the linearization circumvented
the triple correlations as well as the transport of Fij by the fluctuations ﬁk in the
transport mechanisms, so that for local parallel flow the sole surviving transport
effect is the advection of the mean stresses by the coherent vertical velocity. In the
mechanism of "production" from the mean the only effect comes from the shear rate
of strain of the mean flow, U’'. The third group of terms on the right of (5.12) is
the work done by the mean stresses against the coherent (wave) rates of strain.
Absent in (5.12) is the work done by the modulated stresses against the coherent rates
of strain in (2.43) which is a nonlinear effect. No empiricisms were present in these
first three groups of effects. The action of the pressure gradients is represented by
(pji+pij), defined (prior to the wave amplitude/wave function assumption) by (2.45)
and (2.46). Similarly, the viscous dissipatibn rate qbij in (5.12) is related to the
definition in (2.47). These two mechanisms, if included, would require closure
arguments. Even without the E_ffects of the action of pressure grétdicnts and viscous
dissipation, it is obvious from only the first three mechanisms on the right 6f (5.12)
(a if.orm ‘of "rapid distortion" theory, free from empiricisms .-(Hunt 1973) that rij
would not néccssarily be in phase with rates of strain of the coherent mode. " Thus

any eddy-viscosity assumption in relating rj; to the rates of strain of the coherent
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mode might, according to (5.12), render such eddy viscosities to be complex with
magnitudes changing sign depending on the location across the shear layer and the
local coherent-mode number. The implications of the relative phases between the
coherent mode velocity gradients and the modulated stresses in energy transfer will
be discussed subsequently.

In order to make practical usage of the system (5.11) and (5.12), statements about
the viscous dissipaton rate and pressure-gradient action must be made. Since the
linear theory here is thought of as a valuable implement in the approximate
consideration of the nonlinear "wave envelope" problem, the simplest form of such
closur¢ statements would suffice. We have, however, for good reasons already
discussed, precluded an overall eddy viscosity treatment of rj; as was done by
Reynolds (1972) and Reynolds and Hussain (1972) for the linear problem. Elswick
(1971) considered the wave modulated stresses as a perturbation upon the mean stress.
In so doing, Elswick (1971) also considercd the closure of the linear problem as a
perturbation of the closure statements upon the mean motion problem. However,
Elswick (1971) neglected Viscous effects ‘z.lltogether in (5.12), including viscous
dissipation. He also neglected the "transport” effect that constitute partially the
sources or sinks fbr the wave modulated stresses. The perturbed form for the
common assumption (e.g., Lumley 1970, 1978) about (5ji+5ij) appear for (5.12) in the

form
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where E denotes Fhe sum of the three normal stresses, 1 = sU' is the time scale
for return to isotropy where the constant of proportionality is of order unity (s %
1.445). Elswick (1971) also partially perturbed this time scale. In the linearized form
of the transport equations for T presented by' Reynolds and Hussain (1972), prior to
their eddy. viscosity assumption, the pressure-gradient action and the viscous
dissipation were neglected; but the viscous diffusion, (Re'l)azrij/axﬁ, was retained for

the wall-bounded shear flow problem. The perturbed form of the viscous dissipation

rate in (5.12) would be of the form

-] | Q.
[ye ]
-

where th_c constant is of the order d ¥ 0.1 (see, for instance Liu and Merkine (f976),

Alper and Liu (1978)).

For turbulent free shear flows, the presence of a mean inflectional profile strongly
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suggests the consideration of the coherent oscillations U; in terms of "dynamical" or
"inertial" .instabilities (Liepmann 1962; Liu 1971b, 1974a). That is, arguments in this
respect (Liu and Merkine 1976) leads to the "inviscid" or Rayleigh equation in place
of (5.11). To this end, Elswick (1971) discussed an expansion procedure in inverse
powers of én appropriately defined turbulent Reynolds number, which comes from
"proper" scaling. The scale in our case here is set from the normalizations. In (5.11)
all quantities were made dimensionless by the velocities associated with the free

stream and the initial shear layer thickness. That the modulated stresses, Fij’ scale

according to IA12E comes from an examination of the "sources" or "sinks" for Fij-
For instance, this is naturally suggested by the transport mechanism in terms of the
vertical advection of the mean stresses (~E) by the coherent motion (~A)‘. The
presence; of the local value of the mean turbulence energy density_ E = E/8, defined
by (4.9), on the right side of. (5.11) suggests a similar scaling discussed by Elswick
(1971). The energy density E is essentially estimated by the ratio of sum o'f- the
mean normal stresses to a mean velocity squared. This, therefore, has the
interpretation of an inverse (local) turbulentv Reynolds nur;1ber, E ~ R:rl. From the
numerical example of Gatski and Liu (1980), R ~ 30 when E is maximum and R‘T
~ 1.00 at the ‘"initialized" initial condition. However, these are not necessgrily

representative of the actual turbulent Reynolds numbers. Nevertheless, if we expand

’,

6= ¢0) 4 R:I}¢(1) + oo, (5.13)
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.= 0 4 R (D) 4 5.14
Tij rij +RTrij_+ . ( )

then ¢(0) satisfies the Rayleigh equation and immediately becomes uncoupled from rij
The first approximation for the shape of the rﬁodulatcd stresses rg?) satisfies (5.12) but
with the coherent wave streamfunction there replaced by dJ(O).

In this approximation, the outer boundary conditions for ¢(0) follows those of
the Rayleigh equation and one seeks the outgoing wave solution. However, because
of the presence of turbulent-nonturbulent interface associated with the outer
"boundary”, Reynolds (1972) formulated the necessary interfacial conditions for the
more general problem. However, because the mean velocity is essentially continuous
across - the turbulent-nonturbulent flow interface according to measurements, this
coﬁtinuity is to order R:rl. The interface is actually "transparenf'; as far as the ¢(0)
eiécnvalue problem is concerned and the coherent mode velocities and pressure are
continuous to order RII-I. The "instability" properties are primarily attributed to
dynamical instabilities associated with the inflectional mean velocity profile that
occur well within the turbulent fluid, and thus the outer boundary conditions z;re
indeed those for the Rayleigh problem of decaying outgoing waves. The interface, if
of interc‘st, would be the subject of study at the higher order, d>(l) and rgjl? level of
description. This 1s expected from a physical view point also since the interface

region is of much less importance energetically” because of (1) the absence of sharpe

gradients in the mean velociiy in that region and (2) the fluctuations are much less
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energetic there than in the vicinity of the mean velocity inflection point in the
interior of the shear layer.

The role of the linear theory, (5.11) and (5.12) or its approximate, "dynamical
instability" form, is now clear. The local eigenfunction ¢' generate the local shape
of the large-scale coherent velocity distributions across the shear layer. Michalke
(1971) was the first to find that the local linear theory was able to generate the
coherent velocity fluctuations that compare favorably with observations. However, in
using the linear theory as a "curve fit", the local mean flow characteristic velocity
and length scale are considered given (from measurements, say). As such, it does not,
nor could it, address the wave envelope or amplitude cvolution problem. Recent
improvements on the linear theory to account for slight flow divergence (Crighton
‘and Gziétcr 1976) has been applied, in the same spirit as that of Michalke (1971), to
thc;, turbulent mixing layer prbblem (VWeisbrot 1984, Gaéter, Kit and Wygnanski 1985,
“&gnanski and Petersen 1985). Similar good fits were found ‘bctwccr.x--- the
eigenfunctions and experiments with those generated by the Rayleigh equation.
However, in their normalization of such eigenfunctions the local "area" under the root
mean square of the streamwise fluctuation velocity was set equal to that fr(;m
measurements. This precludes the possibilirty of giving the wave envelope the
physical interpretation discussed earlier. The wave amplitude problem follows: a
higher order correction due to slight flow divergence but excluded the essential
physiés of the turbulent shear flow problcn—i'.w‘that we have discu;sed. In regions
where thg coherent mode has grown to significant amplitudes so as to change the
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mean flow spreading rate, such a "weak disturbance" procedure would not suffice. We
shall soon-see role of the linear theory, particularly the physical implications of

the role of the modulated stresses, in the nonlinear problem.

E. NONLINEAR WAVE-ENVELOPE DYNAMICS

We continue to use the temporal mixing layer as a simple example. The
nonlinear problem concerns the "wave envelope" development. From the coupled

system (5.5) - (5.7), with the substitution of (5.2) and (5.8) - (5.10), we obtain

d —~ .

o 9 = -1A12 [ (a) - E Ifg (5.15)
9 osia2 = AR T AREI 5.16
It 1A1- = | rs(® - 1A wt(®) . (5.16)
4 6E = 1A2E I EI'. - ¢' 5.17
it = 1Al wt(® + EIL - ¢'. 5.17)

We will discuss the form of the dissipation integral $ subsequently. The initial
conditions are 8&(0) = 1, IA(O.)MIZ. = IAI(Z) and E(0) = E,. The mean flow Kkinetic
energy defect integral (4.10) became simply (-8). The energy exchange mechanism
bet.\;/eén the mean flow and the coherent mode ‘given by the integral defined in (4.14)

has now become I, = 1A12 I,(«), where the integral Trs(a) involves integration
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over the eigenfunctions of the linear theory and the mean velocity gradient (Liu and
Merkine 1976) and thus depends on the local wavenumber (in spatial problcms, it
would be the local frequency). See the Appendix for definitions of such integrals.
The turbulence energy production integral, defined by (4.15), now becomes I;) = E I;s,
where I;s involves the integral over the shape distribution of the Reynolds shear
stress Ry, and the mean velocity gradient and is a constant (Liu and Merkine 1976).
The fine-grained turbulence, viscous dissipation integral was defined in (4.17). If we
follow the standard Ilocal equilibrium argument for large Reynolds numbers
(Townsend 1956), then qb—' = E3/2Ié,, were Ié, is a constant. For simplicity, Liu and
Merkine (1976) argued about the Reynolds-average shape function (5.9) on the basis
of a locally homogeneous-shear problem (Champagne, Harris and Corrsin 1970) so that
F = ‘E.Ié> and that Ir'S = I(;L, In this case, the nonlinear interaction problem is
somewhat simplified in that thc only mechanism causing the _change of 8E would be
its interaction with the coherent structurc through 1A12E Iyi(e). In the conte.xit of
the numerical work of Gatski and Liu (1980), only at the later stages of development
would I:b = I;). In the present discussion of the approximate considerations of the
wave-envelop evolution, the simplified version of Liu and Merkine (1976) Ié = I;) will
be continued for purposes of _illustrating ideas, leaving to subsequent discussions of
application to real, spatially developing flows for a fuller account of II" # Ié,. The

~r
I

integrals rs’Ir's’ and Ié, as well as I, introduced subsequently are defined in the

Appendix and discussed in detail in Liu and'-l\./[crkine (1976).
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F. THE MECHANISMS OF ENERGY EXCHANGE BETWEEN COHERENT
MODE AND FINE-GRAINED TURBULENCE

The energy exchange between the large-scale coherent structure and fine-grained
turbulence is given by the integral Iy, defined in (4.16), wﬁich now becomes Ip =
|A|2E Iy¢(e), where the integral I, (Liu and Merkine 1976) involves the shape
functions of the modulated stresses and those of the rate of strain of the coherent
mode. The imﬁ(l)rtﬁnce of the relative phases between the modulated stresses and the
coherent mode rates of strain comes from the energy exchange mechanism discussed

in Section III and IV,

which comprise the integrand of Iy, In the present context of using linearized
theory to study the nonlinear "wave envelope" development, the integrand of Iwt

consists of (Liu and Merkine 1976)

ou
Fxx 3o [ 1A 2E = 2airy 1 19" 15in(8; _-841) (5.182)
sz a—z / |A|2E = 2|rle |¢|IICOS(erxz-e¢||) (5.18b)
Tyz P / 1A12E = 2a2|rxz| |¢|cos(9rxz-e¢) _ (5.18¢)
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22 3 1A12E = 2air,, | 1¢"1sin(841-0; ). - (5.18d)

The form above implies that we have represented complex shape functions of the
modulated stresses, ri; and the coherent mode eigenfunctions from the linear theory
in the vector form in terms of magnitude and direction. Here 8, with the
appropriate subscript, is the phase angle. In this representation the energy transfer
then consists of the scalar products between modulated stresses and the appropriate
coherent mode rates of strain. It is clear that the relative phases determine the
directions of energy transfer. To illustrate this, the vector representation of the
modulated stresses and coherent rates of strain is presented in Figure 14 for a wave
number « = 0.4446 which correspond to the most amplified mode for the hyperbolic
tax‘lvgent mean velocity profile.” The qualitativc'bchavior is similar“for other values of
ct'.' The appropriate scalar products of the vectors in Figure 14, given by (5.18a) -
(5.18d), are shown in Figure 15. In Figure 14 the curve§ represent the locus of
vectors at different vertical positions across the shear layer. For instance,ﬂshown in
Figure 14a are the vectors 2ryy and «f’. At § = 0, efxx = 0 and 9¢| = /2, t};;xs

giving a negative ©,,9U/0x, indicating a local transfer of energy from the coherent

mode to the fine-grained turbulence. At [ = 0.23, erx

and 64,; are out of phase
by 7m so that 'r"xxafi/ax - 0. For §{ > 0.23, 9¢: lags behind B xx SO that locally

energy is tranferred from the fined-grained turbulence to the coherent mode with a

maximum at bout { = 1. Shown in Figure 14b are the vectors 2ry,, ¢" and o2 ¢,
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Because U"(0) = 0, then ¢" = oz2¢ at { = 0 according to the Rayleigh equation. Thus
Ty,0W/8x are equal there (as shown in Figure 15). While the former of these remain
positive, the latter becomes negative after §{ = 0.15. The vectors 2r

]
77 and «¢' are

shown in Figure l4c. Their scalar product, W, shown in Figure 15, this being
very nearly equal and opposite in sign to %:8"\»//_8;( In Figure 15, it is shown that
the mechanism of horizontal modulated normal stress - normal rate of strain
dominates the energy transfer near the center of the shear layer ({ = 0), while the
mechanism of modulated shear stress - shear rate of strain dominates the energy .
transfer away from the center of the shear layer. The net result of these four
contributions is shown by the dot-dash line in Figure 15, which is positive over most
of the shear layer indicating that for this case energy transfer is from the coherent
mode td the fine-grained turbulence. The dot-dash line would fall slightly below the
axis in the outer regions of tﬁe sheaf layer but the magnitudc is not distinguishable
within the width of the curve itself. We emphasize that from this considerﬁﬁon,
there is significant energy transfer, within local vertical regions of the shear layer,
from the turbulence to the coherent motion contributed by the individual mechanisms.
The integral I, is then twice the area under the dot-dash curve, the { distributic;n
being symmetrical about = 0. In principle, th(oz) depends on the local wave
number, which, in turn, is scaled by the local developing shear layer thickness 6.

It is: clear that, in general, the wave envelope devclopmcn-t (5.16) is coupled to
the spreadiné of the mean flow and the devéi‘(;pment of the fine-grained turbulence

energy as indicated by (5.15) and (5.17), respectively. These approximate form of the
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nonlinear interaction could be said to have been motivated by and bear strong
resemblence to the diagnostics of the numerical problem (Gatski and Liu 1980) given
by (4.11) - (4.13). The mean flow energy defect evolution (4.11) now reduces to the
statement (5.15) that as long as energy is transferred to the fluctuating motions, d&/dt
> 0. When ’I‘rs(c:) becomes negative, such as in the "damped disturbance" regime
discussed in Section 4 ('va < 0), the contribution to d&/dt would be to arrest the
growth of the shear layer or even decrease its growth (Weisbroth 1984, Fiedler and
Mensing 1985) depending on the relative magnitude between the coherent mode and
turbulence contributions. The steplike behavior of & would come from peaking of
IAIZ?,I.S, as has been anticipated in Section III. These would account for the
observed steplike shear layer thickness development discussed in Ho and Huang
(1982),'i=icd1er and Mensing (1985) and Wygnanski and Petersen (1985). The observed
mémentary depression (Wcisbrat 1984, Fiedler and Mensing 1985) in the shear layer
th.ickness is attributed to the dominance of the "damped disturbance" mech.z.l;xism
relative to others (such as turbulence and viscosity) affecting the spreading rate. Some

of these aspects will be quantitively addressed in the next section.

G. WAVE ENVELOPE AND TURBULENCE ENERGY TRAIJECTORIES.
A SIMPLE ILLUSTRATION

Another feather of the wave-envelope problem exhibited by the observations
depicted in Figure 1, could be qualitatively deduced from the much simplified

framework here. If we assume that the right side of (5.15) is in some sense "small"



so that the shear layer growth rate is correspondingly small d8/dt - 0, the change in
& is then ignored entirely. Thus & remains at the initial value & = 1 and the

fad 3
interaction integrals Il are fixed by the initial wave number « In this case,

(5.15 - 5.17) reduce to

d -
U 1A12T ¢ - 1A1%E T, (5.19)

dE
- ACE L. (5.20)

We have retained the approximation (Liu and Merkine 1976) that locally E Ir'S = ?
‘The simple essentials here state that the energy transfer from the coherent structure
to the fine-grained turbulence. is the only mechanism causing E to change from its
original value. The evolution of the coﬁerent structure ampiitude is determined by
the local balances between energy extraction from the mean flow and energy transfer

to the fine-grained turbulence. In the 1A12 - E plane the system (5.19), (5.20) admits

the solution

1A 12 l+. ! on E -1— E 1 (5i1)
|A|(2) LoMy  Eg My [Eg : '

where Ly = EOth/f;s and My = IAI%/E(). The dimensonless time t is obtained fr'om
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1 dx'
EOIWt (1+M0) + X'/LO - exp x!
0

t

(5.22)

where X = fn E/E;. In this special example the equilibrium values, denoted by the
subscript e, for IAIZ,E are such that IAI% = 0 deduced from setting the right sides

of (5.19) and (5.20) to zero and that for E. directly from (5.21)

Le exp(-Le) = Ly cxp[-L0(1+_M0)],

where L, = Eeth/Trs' We expect that L, > Lo because we found Iy > 0 and‘.thc
fine-grained turbulence energy would be increased, E. > E(, due to the presence of
thc. coherent structure. For a fixed ratio of initial amplitudes‘ My, as Ly = E
th/’frS increases the'turbulence equilibrium aplitude ratio E./E; decrease. Thié can
be interpreted as follows. If we fix the wave number thus th/ﬁfrs is fixed, so that
as Eqy is increased more energy is transferred to the turbulencg from thg coherent
motion, thereby limiting the coherent mode amplitude. This in turn decreases t};e
the efficiency of the coherent mode as an intermediary in taking energy from the
mean flow and transferring it.to- the turbulenc.e. On the other hand, if Ej is fixed
and th/frs is increased then the energy transfer from the coherent mode to the

turbul'cnce becomes more efficient than that from the mean motion to the coherent

mode. This again gives a lower E.. If Ly and Ej are fixed and M is increased
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through increasing IAI%, E. is increased because the coherent mode is made more
efficient in drawing energy from the mean flow and transferring it to the
turbulence. In this special consideration, the equilibrium amplitude of the coherent
mode |A|(2) = 0 as long as Ey > 0, and is independent of initial conditions. From the
physical considerations discussed, E, is not independent of initial conditions. From
(5.21) it is seen that Ly and Mj fix the trajectory in the |A|2/|A|%, E/Ey plane.
The wave envelope or amplitude |A|2/|A|(2) reaches a maxiﬁum when E/EO = l/LO
for Ly < 1 whereas IAI2/IAI% decays at the outset for Ly > 1. The latter situation
is because energy transfer to the turbulence overwhelms that extracted from the mean
flow. The trajectories in the |A|2/|A|8 - E/Eqp plane are shown in Figure 16 for
My = 1 and various values of Ly < 1. The time development begins at (L1), and
follows’.the trajectory. Not shown are the decaying |A|2/|A|(2) trajectories starting at
(1,1) for the st.rong initial turbulence (LO > 1) situation. The interesting physical
picture that emerges from this consideration is that under conditions wherlc;. the
coherent mode amplitifes, its amplitude first grows "exponentially" due to extraction
of energy from the mean motion and subsequently decays due to energy transfer to
the fine-grained turbulence. The fine-grained turbulence energy relaxes from ;n
original equilibrium level to a final, highcf level due to energy supplied by the
coherent mode. This recovers some of the physical mechanisms derived more
laborously from the numerical work of by Gatski and Liu (1980) and could, in part,
explain the observations depciting large-scalé'%cohercnt structures interacting with
turbulcnc; reported, for instance, by Favre-Marinet and Binder (1979) and shown in
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Figure 1. Other, semi-analytical models of this equilibration picture are given in Liu

and Merkine (1976) for the temporal mixing layer.

r

We have already appreciated the shortcomings of the temporal mixing layer

relative to the real, laboratory situations of the spatially developing free turbulent

shear flows. The expected lack of a legitimate one-to-one transformation (rather than

mimicking) coincide with the similar situation in hydrodynamic stability theory

(Gaster 1962, 1965, 1968). However, the physical similarities between the relatively

simple approximate considerations of “"wave envelopes" and the numerical

computational results thus strongly encourage the further development of the former,

principally directed at the realistic spatially- developing free shear flows.

RN
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VL SPATIALLY DEVELOPING FREE SHEAR FLOWS

A. GENERAL COMMENTS

Some aspects of the quantitative observations of turbulent free shear flows
discussed in Section IIT pertain to laboratory, spatially developing flows. Although
certain qualitative explanations of physical features are possible from the
considerations of Sections IV and V, we shall address directly the spatial problem in
this section. No attempt will be made here for a complete survey of the literature,
but that aspects of the literature will again b;_drawn to put forth a consistent "point
of view" for the problem of large-scale coherent structures in free turbulent shear
flows. Because many of the symptoms of such structures in turbulent flows share
those of hydrodynamically unstable disturbances in an otherwise laminar flow, many
of- the physical features of 'the> former can be inferred from “the latter. In the
c.o.ntext of Sections IV and V, such inferences must necessarily be made with
considerable care rather than with unaffcctc.d simplicity. For instance, one must
differentiate carefully between (1) the dynamical instability mechanism fo; the "fast
oscillations” that could generate local coherent mode velocity profiles from linc;r
wave functions and (2) the slowly varying wave envelope or amplitude distribution
that necessarily require the participation of the real physics of the problem, including
turbulence, nonlinearities and mean flow development.

In the case of finite amplitude disturbanées, J. T. Stuart (1958) advanced the

idea that the kinematics and shape of the disturbances in shear flow instability could
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be approximated by the linear theory but that the amplitude or wave envelope is to
be obtained by the nonlinear theory. Its observational basis and applicaﬁon to the
turbulent free shear layer problem has been discussed in Section V in connection
with the work of Liu and Merkine (1976). The generalization of Stuart (1958) to the
finite disturbance problem in a spatially developing free (wake) laminar shear flow
was given by Ko, Kubota and Lees (1970). Some of thei; results are worth
emphasizing since they anticipated many of the obvious aspects of the coherent
structure problem in turbulent shear layers. Although only a single (fundamental)
physical frequency was considered, they have shown how the nonlinear disturbance
and the coupled mean flow would respond to several parameters. A simplified
version of the wave envelope problem of Ko, et al (1970) (in the absence of

fine-grained turbulence), in the context of the mixing region problem appears in the

form
I d—x = 1A1° 1 ((8) + R_c I¢/8 (6.1)

'i(s);—x(snmz) = 1A12 1 (8) - I%frb(s) 1A 12/ (6.2)

where x is the dimensionless streamwise distance; I_I,IR(S) are the mean flow and
fluctuation advection integrals; I_¢ and I¢(8) are the mean flow and fluctuation
viscous dissipation integrals. Integrals involving instability modes are dependent on

the shear layer thickness 8(x) through the dependence of local instability propeffics.--

—
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on the local frequency parameter B, whereas mean flow integrals I and I—¢ are
constant for the similar mean flow shape distrjbution. Since T(S) >0 and is slowly
varying, it is replaced by a mean value indicated in (6.2). We refer to the Appendix
for further details regarding the integrals. Here, the Reynolds number is Re =
flso/v, where U is the average over the upper and lower free stream velocities. In
the incipient instability region 1A12 = 0 so that the second term on the right of (6.1)
initially dominzifcs and provides the basic viscous shear layer spreading & ~ vXx . The
deviation from this parabolic spreading would indicate the onset of finite disturbance
levels as the first term on the right of (6.1) competes .with the second. This is indeed
the case found theoretically by Ko, et al (1970) and experimentally by Sato and
Kuriki (1961) for the wake problem. Thus a dominating peak in the energy
cxt_ract.i.on from the mean flow would bring about a steplike d»gvelopment of 8(x).
The observed steplike growth .of transitional shear layers (e.g.,, Ho and Huang 1982),
a.nd forced turbulent shear layers (Fiedler, et al 1981; see also Wyngansk.iwand
Petersen 1985) is attributed to this mechanism. However, in the turbulent shear layer
problem the basic spreading of the shear layer is due to the fine-grained turbulence
with the mechanism depicted by E I;s discussed in Section IV which tends to give a
linear growth in the absence of other "nonequilibrium" energy loss from the mean
flow.

Ko, et al (1970) found that for a fixed Reynolds number and initial - wake
thickincss, the peak in the fluctuation energy &;nsity, |A|2, moves closer to thc start
of the wake as the initial fluctuation level is increased. For the same initial

97 =



fluctuation energy level, the growth, peak and decay process is hastened in the

streamwise direction as the Reynolds number is increased. Accompanying these

properties of 1A 12 would be the moving upstream of the steplike growth of the shear

layer.

B. THE SINGLE COHERENT MODE IN FREE
TURBULENT SHEAR FLOWS

The observed growth and decay of a single dominant coherent mode in turbulent
free flows, the coherent mode "negative" prgduction mechanism and the eventual
increase in the fine-grained turbulence level, illustrated in Figures 1 and 2, were
explanable by the single mode considerations of Sections V. There are several more
detailed features of experimental observations that could be explained within the
coﬁsidcrations of this section. Following the forced plane turbulent mixing layer
eiperiments of Oster and Wygnanski (1982), Weisbrot (1984) con.tinucd " with
quantitative measurements of the coherent mode energy exchange with the mean
motion in addition to the mean flow spreading rate, at high amplitudes o”f forcing.
Subsequent subharmonic formation was however, not detected further downstrea:n.
Although higher homonics of‘ the forcing frequency were present, these decayed
rapidly with distance downstream. A significant rise in the level of the background
broadband turbulence occurred with increasing downstream distance. The coherent

mode at the forcing frequency appeared to " be functioning as a monochromatic

disturbance in the turbulent mixing layer. As anticipated in the discussions in
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Section V, even if the comparison of measured disturbance velocity distributions
across the shear layer with those obtained from a local inviscid linear stability
theory appeared good, the same "theory" is not capable in describing the amplitude or
wave-envelope evolution in the streamwise direction.

The nonlinear wave-envelope problem for a single coherent mode in a spatially

developing turbulent shear layer, in the spirit of Section V, is in the form (Alper

and Liu 1978)

ds - :
I~ - 1A12 T((5) + E.I;_-s (6.3)
= ds ~
I o = 1A12 T (8) - 1A12 I,(5) (6.4)
dsE '
I' —==E Iys + 1A12E Iy,(5) - E3/214 (6.5)

where I_,I' and Id>' are the mean flow energy advection and turbulence energy
advection and dissipation integrals, respectively and are constants for a nominally
similar mean velocity and Reynolds stress profiles; the local shear-layer thickness
dependent, coherent mode integrals were previously defined. We again refer to the
Appendix for details of the integrals. Mean motion and coherent mode viscous
dissj_pation have not been included for the turbulent shear layer Aproblem.

The observed (Weisbrot 1984) behavié; of the spreading rate of the V'I'highly

excited" t'ixrbuler_xt mixing layer can be diagnosed directly by (6.3), which is obtained
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from Kkinetic energy considerations. The sum (lAl2 'IrS%E I;s) is the integral of the

total energy exchange mechanism between the mean flow and the coherent plus
turbulent fluctuaitons, across the shear layer. It has been evaluated from

measurements by Weisbrot (1984) as a function of the streamwise distance. In terms

of his notation

3
2= 8u 1 (U-Uy)
[1A1° T +E I (] = -u'v! 3 dy 3 3 (6.6)
- Yo WU (U402

where Uy = Uy, U = Up, 2z =y, w = v. ~ We have assumed, for simplicity, that
the mean flow develops similarly so that I = constant = 2R2(3/2 - in 2) for a
hyperbolic tangent profile, where for U_y > U R = (U.oUg)/(U.0+Us). Thus, the

shear layer thickness obtained from (6.3) becomes

1 ~ - -
8 -8 = — [|A|2 Ig + E Ir's]dx. : - (6.7
I X0

If nonsimilarities of the mean velocity profilé were to be included, then f(x) would
appear in (6.3) within the differential d(fs)/dx. In the eﬁpcrimcnts, the mean
velocity profiles were indeed not entirely similar. In order to make use of the idea
developed from energy consider’at_ions that the mean flow will spread as long as
energy is taken away and would contract if energy were suppli-cd to it by "damped"
distufbances, we integrate the "raw" experimedial data (Weisbrot 1984, Figure 573.1) to

obtain the features of shear layer growth (and contraction) via
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—— 38U
8- 8% ——— WV = dy ———|  dx}. (68)

The multiplication of the velocity ratio factovr is to make (6.8) consistent with the
way in which I was originally made dimensionless. The subscript exp denotes the
experimental data mentioned. Here both 8 and x are considered dimensional. We
show the integral (6.8) in Figure 18. It amazingly resembles that of the measured
shear layer momentum thickness given i1‘1 Figure 5.1.1 of Weisbrot (1984). We have
deliberately avoided "matching constants" leading to direct comparisons. Weisbrot
(1984) also obtained the "phase locked" contribution to the shear stress "production”
mechanism. From this consideration it is thus shown conclusively that the excited

coherent fluctuation causes the shear layer to spread rapidly and that even in the
"damped" region it dominated the overall energy extraction/supply rate to tﬁ.c mean
motion and causes the shczir layer to contract. The eventual linear spreading rate is
due to the broad-band turbulence. The features of the evolution of coherent mode.
energy "production" mechanism is similar to that of Fiédlcr, et al (1982) shown in
Figure 2 and anticipated by "the calculations of Gatski and Liu (1980) shown in
Figure 5. In the formulation (6.3) - (6.5) only the domir_x_a-nt energy cxchange
mechanism between the mean flow and the fluctuations were retained. Because the

mean flow is rapidly expanding and changing in the streamwise direciton in the
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experiments, the remaining energy exchange mechanisms for a two-dimensional mean
flow (in the present notation)
(u—z-;) Z—y + hT'\TvZTW

would need to be assesed in the diagnosis of the observed spreading rate in Figure
18. The dominant energy exchange mechanism included in (6.3) - (6.5), as well as
that having been measured (Weisbrot 1984), was sufficient tol uncover the basic effect
but not intended for an "accurate prediction". Of the mechanisms responsible for the
coherent mode wave-envelope evolution depicted in (6.4), only 1A12 Trs is relatively
easily measured. The measurement of the wave-turbulence energy transfer mechanism,
depicted by 1A 12E Iyt in (6.4) or Iy in (4.12) and (4.16), is difficult (see, for
instance, Hussain 1983). It  would involv_e taking spatial derivatives of
phase-averaged quantities and the subtraction between large numbers. Nevertl}.eless', it
is an important mechanism in the turbulent shear flow problem. In this situation we
must rely on the insights developed from theoretical considerations, such as in
Sections IV and V, to help towards the understanding of the coherent mode

wave-envelope cvolution problem (Alper and Liu 1978).

The shear layer growth, which is explained here from dynamical considerations,
is the result of the overall energy drain or resupply to the mean kinetic energy. The
spectrum of Weisbrot’s (1984) observation indicate that several higher frequency

harmonics undergo growth and decay process earlier in the streamwise distance than
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the component at the forced frequency. A ‘"phase-locked" subharmonic was not
observed over the length of the streamwise distance measured. We shall delay to the
following section to discuss the theoretical aspect of multiple-coherent mode
interactions. The growth and decay of higher frequency coherent modes occurring in
regions closer to the start of the mixing layer and lower frequency components
further downstream from such observations have been borne out by theoretical
considerations (e.g., Liu 1974a, Merkine and Liu 1975, Alper and Liu 1978, Mankbadi
and Liu 1981, 1984) on the basis of single, independent modes interacting with
fine-grained turbulence.

The effect of initial conditions on single, independent cohecrent mode
development in terms of the initial Strouhal frequency, coherent mode amplitude and
turbulence level were discussed by Alper and Liu (1978). For the same initial energy
levels, the higher frequency' coherent components which have shorter streamwise
lifetimes and attain higher wave-envelope peaks than lower frequency compéﬁents.
However, the higher frequency modes may not necessarily enhance the fine-grained
turbulence energy as vigorously as the lowef frequency modes. This is because the
mode-turbulence energy transfer depends not only on the magnitude of 1A12 but a;so
on the lifetime of the coherent mode as well. For the same frequency, increasing the
coherent mode amplitude moves the peak of |A|2 upstream. Aside from controlling
thg_}arge-scale coherent structure and the finc-grained turbﬁlcnce through direct
pertu.rbation at definite frequencies and céﬂcrcnt mode amplitudes, the wuse of
fine-grair_xe'd turbulence to control its development can also be achieved (Alper and
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Liu 1978). For the same coherent mode frequency but different initial turbulence
energy levels, the higher turbulence Ievel case supresses the coherent mode
downstream devleopment. Consequently, the fine-grained turbulence would achieve a
relative lower enhancement downstream. The very-large initial coherent mode
amplitude forcing would effect a subsequent decay of the coherent mode. This
limiting-forcing amplitude threshold effect has been found cxperimcntally' by Fiedler
and Mensing (1985). Although the calculations were performed for coherent modes in
a round turbulent jet, Mankbadi and Liu (1l981) theoretically found that such an
initial-amplitude threshold effect does indeed exist. We shall refer to Mankbadi and

Liu (1981) for the élucidati_on of initial condition effects and the possible control of

the free turbulent shear flow.

C. COHERENT MODE INTERACTIONS

To begin the discussion of mode interactions it would be most helpful .to first
recall the streakline patterns obtained calculationally by Williams and Hama (1980)
from the superposition of kinematically obtained wavy disturbances of the
fundamental mode and its subharmonic upon a hyperbolic tangent mean velocity
profile.  Such streaklines are also obtained from the local eignefunctions of inviscid
linear theory by Weisbrot (l984)>(sce also Wygnanski and Petersen 1985), rcsolving.‘ in
»sorn'c’_sense the usefulness of the local linear {heory in mimicking flow visualization

(the quantitative wave-envelope problem was not resolvable from this considcratiqn,
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however). We shall discuss Williams and‘Hama (1980) for illustrative purposes. They
obtained streakline patterns from the superposition of subharmonic to fundamental
with certain constant-amplitude ratios. These patterns bear striking resemblance to
the visual observation of dye streak behavior in a mixing layer (e.g., Freymuth 1966;
Winant and Browand 1974; Ho and Huang 1982). However, the streakline calculations
of William and Hama (1980) come from a linear superposition of two constant
amplitude wave disturbances, the pairing and roll up are the consequence of wave
interference. The simulated wave amplitudes of the fundamental and subharmonic
are both constant and the abrupt switching of modal structure, as the visual
appearance of streaklines would suggest, is entirely absent. We are thus cautioned by
this illustration, that dye streak behavior are not necessarily indicative of unique
physical circumstances without the guidance from simultaneous quantitative
measurements. Quantitative measurement;_suggcsting modc-que interactions between
the fundamental disturbance wave and its subharmonic in a shear layer are reported
by Ho and Huang (1982). Their shear laylfer is essentially one undergoing transition
and the presence of such distinct modcs..is brought about by forcing at the
subharmonic frequency. The significance of Ho and Huang’s (1982) work lies in the
identification of the visuallyl observed location of "pairing", indicated by the
accumulation of dye streaks, with the occurrence of the measured cross-sectional
cnc‘rgy maximum of the subharmonic (actually, they measureAc.i the kinetic energy
associated with the streamwise velocity fluctuation, integrated across the shear layer).
There was no abrupt switching from the fundamental frequchcy and wavclcngtl{'.!‘to
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those of the subharmonic. Reproduced in Figure 4, corresponding to Mode II of Ho
and Huang (1982), is the evolution of the measured secitonal-energy associated with
the streamwise velocity fluctuation. The 2.15 Hz curve corresponds to the forced,
subharmonic component, the 4.30 Hz curve is the fundamental. Although the peak
amplitudes of the two modes are distinct, the fading in of the subharmonic occurs in
regions of active fundamental devleopment and, in turn, the fading out of the
fundamental takes place in regions where the subharmonic 1is active. The
measurements suggest a natural occurrence of the switch-on and switch-off processes,
in contrast to the suggestive, abrupt switch in the modal content from visual
observations of dye streaks alone.

The theoretical formulation of mode-mode interactions in a spatially devleoping
shear layer was undertaken for a laminar viscous shear flow, without the involvement
of the fine-grained turbulence at the outset, by Nikitopoulos (1982), Liu and
Nikitopoulos (1982). The measureable scctiopal energy content of each mode is
essentially 8|A|2, related to the square of the amplitude of the coherent structure.

The cross-sectional energy content (Ho and Huang 1982) thus reconciles measurements

with the theoretical ideas about wave-envelope evolution. For each frequency and the

same initial conditions, the amplitude is a fixed streamwise envelope under which the

propagating wavy disturbance enters from its initiation upstream and exits
downstream. The aim here is to understand the direction of energy transfer between
the modes, its effect on establishing the spatial distribution of wave envelopes and

the consequential rate of spread of the shear flow.
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In order to bring out the role of coherent-mode interactions in a dvelaping
shear flow, we shall delay considering the simultaneous presence of fine-grained
turbulence. In this case, the rate of viscous dissipation is included for the "low"
Reynolds number incipient transitional problem. Following the general discussions of
Section II, we first consider that an essemble of disturbances exist in a shear flow
and split the modes into "odd" (denoted by @) and "even" (denoted by a), then the

rate of energy transfer from the even to the odd modes is given by (Stuart 1962a;

see also Section II.C)

A
du;

uiuj ’ax—j> 0

where the average is taken over the largest periodicity of the disturbances. The
mechanism js the work done (by the stresses of the odd 'modes) against the
appropriate rate of strain (of the even--modcs). It is clear that the phasc relation
between the stresses and the rafc of strain determines the direction of energy transfer

and that the amplitudes determine the strength of this transfer (the "Kelly

mcchanism®, Kelly 1967; Liu 1981). : )

For a spatially developing shear layer, Liu and Nikitopoulos (1982) considered
the interaction between the subharmonic mode (a single "odd" mode) and  its
fundamental (a single "even" mode), If the energy content of the fundamental mode

across the shear layer is denoted by E, = S'r‘Azlz and that of the subharmonic by

E| = 8|A1|2, then the overall energy transfer mechanism between the modes is
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proportional to 1A, 12

1Ag 1. In contrast, the respective fluctuation energy production
rate from the mean flow 1is proportional to: IA1I2 and to |A2|2. The rate of
viscous dissipation scales like |A|2/8. The dimensionless energy density 1A12 s
much less than unity according to observations. In this case, the estimate here shows
that the individual energy production from the mean motion would seem to dominate
over that of the mode-mode energy transfer except in regions where the former
changes sign at a later stage of development. In the early stages of development, the
mode interactions are dominated by implicit nonlinear interactions via the mean
motion rather than by the more explicit direct energy transfer mechanism. At the
later stages mode interactions are most certainly important towards affecting the
details of the amplitude distribution in the streamwise direction. In the experiments
of Ho and Huang (1982) there are modes other than the fundamental and the
subharmonic present, including initially wreak fine-grained turbulence disturbances and
these are not included in this initial analysis.

To begin, use is made of the kinetic energy equations (2.21), (2.24) and (2.25) in
Section II.C with the fine-grained turbulenéc omitted (Nikitopoulos 1982, Liu and
Nikitopoulos 1982), with the spatial interpretaiton of the advective derivative B/Dt.
We _again address the wave-egvclope problem and specialize the odd modes to a
single-plane subharmonic mode and the even modes to the plane fundamental. The
apprppriate kinetic energy equaitons integrated“across the plane”shear layer then take

the form
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mean flow:

0 (- I
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subharmonic:
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au s o aw -
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-9, (6.9)

(6.10)

6.11)

all quantities are made dimensionless in the manner previously discussed. We recall

that x is the streamwise coordinate measured from the start of the mixing layer, z is

the vertical coordinate measured from the center of the mixing layer,
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fluctuation velocities, U is the mean velocity with t» denoting the upper and lower
streams, respectively. Here 3 is integral of mean flow viscous dissipation rate, the
lower case ¢ represents the corresponding integral of the fluctuation dissipation rates.
Equations (6.9) - (6.11) are stated here for completeness and also form the basis for
subsequent discussions of the mode interaciton problem in the brcsencc of
fine-grained turbulence. ’ Here, they form the basis for obtaining the evolution
equations for the cross-sectional energies or energy densities of the disturbances.
Following earlier work (see, for instance, Liu 1981 and Section V), the disturbances
are assumed to take the separable form of the product of an unknown amplitude
A;(x) with a vertical distribution function given by the local linear stability theory
(which has found experimental justification, e.g. Michalke 1971, Weisbrot 1984) as was

done for the single mode in (5.2),

u <1>1'e'iBt c.C.
= Al (X) . + Py (6- l 2)
W “iey d>lc"Bt c.c.
ﬁ ¢:e-2iBt-i9 c.C.
N 2
= Ay(x) + . (6.13)
& ' ity e 21Bt-10 c.c. "

We again recall the definition that ¢; denotes the cigenfunction of the local linc_gr
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theory and is a function of the rescaled vertical variable { = z/6(x), where &(x) is a
length scale of the mean flow, to be identified as the half-vorticity thickness, ( )’
denotes differentiation with respect to g;‘ B = 2nf8(x)/fJ is the dimensionless local
frequency, f is the physical frequency and we again recall that U = (UotU_w)/2, the
local wavenumbers « are also scaled bby 8(x); 8 is the relative phase between the
fundamental component (2B8) and its subharmonic (B) and c.c. denotes the complex
conjugate. We are again reminded that the velocities and lengths are considered to
be made dimensionless by U and 59 (so that 8(0) = 1), and time by So/fJ. The mean
velocity profile is taken to be the hyperbolic tangent profile U =1 - R tanh {. The

sectional-energy content is defined similarly as in (5.1)

L]

E;(x) = (@2+52)dz 1A [(x)128(x) (6.14)

SN Rl

(ﬁz+v32)dz

1A5(x)126(x). (6.15)

N |-

Ez(x) =

This is similar to E(f) measured by Ho and Huang (1982), except that their sectional
energy refers to the contrib}gton by u alone. The normalization of the local
eigenfunctions according to (5.4) is implied, which allow us to r'elatc the energy
con_t_;nt to the amplitude or wave envelope. Alternatively,.- the square of the
amplitude is an "energy density". Equations (6.9) - (6.11) then yield three first-order
nonlinear differential cquations describing the streamwise evolution of 8, 'Al'i and

-111-~



|A2|2 or in the alternative form §,E; and Ej:

mcan flow:

—ds ~ ~ 1 -
I - (I;52(8)Ey  + I51(B)E 1/ + Ec—ld/s (6.16)

vise. dissip.

subharmonic:

—— dE,

- 12, 3 1 = 2

I)(8) — = I;g)(B)E)/5 - Iy (B)E By /83/2 - = Tp1 (9 /8%, (6.17)

production Sub.-Fund. energy vise. dissip.
exchange

fundamecntal:

~  dEy 1/2 1~

Iy(8) == = Ira(8)Ey/6 + Iy (S)E|Ey /852 - = Tgp(8)Ey/62, (6.18)

X . Re
production _ visc. dissip.

The relevant integrals in (6.16) - (6.18) are again defined in the Appendix. The
"slowly varying" advection integrals I(8) and I,(8) are approximated by their "mean"
values. Not previously introduced are the mode-energy exchange integral I¢i(8) and
the viscous dissipaton integrals f¢i(8). The Reynolds number is again Re = f]so/v.
- The subscripts 1 and 2 dei?ote the subharmonic and fundamental, respectively.
Following arguments of inertial or dynamical instability reasoning (Section V), it is
suff"i-cient to use the Rayleigh ecquation in obtaining the characteristics ofﬂ such

integrals (see, for instance, Liu & Merkine 1976) and thus they are not functions of
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the Reynolds number. Equations (6.16) - (6.}8) are subject to the initial conditons
E((0) = Ejg, E2(0) = Epg and 3(0) = 1; with B(0) = BO choosen to correspond to the
physical frequency of the subharmonic (or any other mode), the specified U and the
initial physical length scale of the mean flow 89 This length scale has been
identified with the initial half-maximum slope thickness.

There are many other less dominant disturbarice modes present in the
experiments of Ho & Huang (1982), including weak fine-grained turbulence, to which
the shear layer is sensitive. The relative phase between the fundamental and
subharmonic is left arbitrary in the experiments. Thus, the dctails of the real shear
layer is not expected to be described by the idealized two-mode problem in the
absence of weak fine-grained turbulence and other (not necessarily weak) modes.
However, the problem solved by Nikitopoulos (1982) and Liu and Nikitopoulos (1982)
brings out the dominant physical mechanisms in the growth and decay and the effect
of the relative phases of the overlapping fundamental and subharmonic disturbances
in the absence of other complications. Some of these earlier qualitative results were
discussed by Ho and Huerre (1984). Sﬁbsequcnt calculations and quantitative
comparisons with experiments (Nikitopoulos and Liu 1986) are discussed here. The
initial subharmonic frcquencx_ parameter is taken to be By = 026, giving a
fundamental of 2By = 0.52 which is very nearly at the maximum amplification rate
acgp;ding to the linear theory. In the experiments (fﬂ) and fiuang 1982), only the
u-contribution to the cross-secitonal energy were measured. The calcul'a{i_ons
(Nikitopoulos and Liu 1986) were obtained for the overall energy E but subscqucx;;ly
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partitioned to obtain E; via the local linear theory. The initial conditions were
applied at the streamwise station corresponding to where the mixing layer profile has
been established from a previous wake-like region behind the splitter plate. The
initial values used, in the notation corresponding to» the theoretical formulation,
correspond to those of Ho and Huang (1982) and are Eul(o) = 0.16 x 10’4, E,7(0) =

048 x 10'3, Re = 81 and R = 0.31. Three relative phase angles were used (8 = 0°,

-]

80, l80°) in “the calculations. The development of the cross-sectional energy, ‘

Eyn(*)/Ey(0), where n = 1 (subharmonic) and n = 2 (fundamental), is shown in
Figure 19 as a function of x/8y, where x = 0 correspond to where the initial
condition was applied as already discussed. Because the fundamental component is
(by definition) the most amplified disturbance at the outset, the extraction of energy
from the mean flow is its dominant energy supply and is responsible for the first
peak in E;,. In the strong nonlinear region the subharmonic feeds energy into the
fundamental component for ® = 0°. Thus, the second peak in Eu for 8 = 0° décurs
in the vicinity of the peak in E;;. This mechanism is responsible for the relatively
weaker E,; shown in Figure 19. For 6 = 180°, the fundamental feeds energy into
the subharmonic and this is responsible for the much earlier decay of t;mc
fundamental energy E,s. In tl_1is case, the mode-interaction mechanism augments the
direct energy supply from the mean motion to the subharmonic energy and causes
Eyl to peak ecarlier. In the intermediate case is 6 = 80° thé subharmonic energy
transfer to the fundamental is not as vigorou‘é“' as in the 8 = 0° case and compares

favorably with the measurements of Ho and Huang (1982). The resulting growth of
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the shear layer thickness is shown in Figure 20. The first plateau is due to the
peak in .the fundamental, the second due to the peaking of the subharmonic
according to (6.16). Because the interaction between the mean flow and the
amplified disturbances is strong, the rapid spreading rate is a part of the nonlinear
interaction process and thus ought not be presumed as a known input for the
nonlinear amplitude problem. This significant interaction feature, which is lacking
in the "small divergence theory" (Gaster, Kit: and Wygnanski 1985, Wygnanski and
Petersen 1985, Weisbrot 1984), is an essential feature in for the wave function rather
than be used for the description of the wave-envelope problem. We note tha‘t the
shear layer spreading due to the subharmonic very nearly doubles that due to the
fundamental in Figure 20. That is, the ratio of the two plateaus is nearly two.
However, this is dependent upon the initial conditions and mode numbers and should
not be a general "rule of thumb". Thq plateaus are clearly attributed to the net
energy loss from the mean flow directly to the disturbances according to (6.16). The
interaction between the coherent modes has but an indirect effect. The continued
subscquent spreading of the mean flow (Figuf.e 20) in the experiments are attributable
to other fluctuations which are not accounted here. These simple ideas are extended
to ipclude the presence of fin::-grained turbulence subsequently. In the absence of
any fluctuations, or course, the shear flow spreads because of viscosity alone as is
evific.:nt from (6.16). In Liu (1981), the Kelly mechanism was--discusscd in a much
broz;der contéxt than the weakly nonlinear theory from which it was obtained- as is
illustrated here. In order to show consistency with the pioneering work of Kgllly
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(1567) for parallel flows, Nikitopoulos and Liu (1986) discussed the properties of the
mode interaction integral I, in detail. =~ We shall summarize here that Ij5 < 0 for
small B and 8, covering the range of B when the fundamental is most amplified and
x;vhen 8 =0° (Kelly 1967), indicating that the fundamental energy is transferred to
the subharmonic. As B increases this energy transfer mechanism changes sign for the
same 0, a feature attributable to the developing, spatial problem. For large 8 and
small B, energy is transferred from the subharmonic to the fundamental and again,
this transfer mechanism changes sign as B increases. In the context of strongly
amplified disturbances in a decvcloping mean shear flow, however, the original Kelly
mechanism for parallel flows is largely academic as the integral I;, changes sign as
the flow evolves. However, in the broader sense the Kelly mechanism is intepreted
as haviﬁg pointed out the importance of both the relative phase and amplitudes in
the subharmonic - fundamental mode interactions. Nikitopoulqs and Liu (1984) have
al;o sutdied the three-mode interaction problem. This, and the two-mode .prdblcm

briefly discussed here, shall appear elsewhere in greater detail (Nikitopoulos and Liu
1986).

We have already emphasized that the spreading rate of the mean flow \is
proportional to the rate at wrl‘l.ich energy is removed from the mean flow. For a
purely laminar viscous flow only viscous dissipation contributes to the spreading rate
Id,/(f Re: S)Vas indicated by (6.16), thus & ~ vX as expccted.. For a laminar flow
undergoing fransition, the rate of energy tra'r'i;:fcr to originally small disturbanccs,

reflected by the -0 W Reynolds stress conversion mechanism (including, for simplicity
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in notation, an ‘"essemble" of coherent modes), now competes with the viscous
dissipation. When the disturbances have become sufficiently finite, a marked
deviation from the purely viscous spreading rate would be noticed (see, for instance,
Sato & Kuriki 1961; Ko, Kubota & Lees 1970). In the presence of bc;th a
fundamental disturbance and its subharmonic, such as the case discussed here (Ho
and Huang 1982), where the peak in the finite amplitudes are distinctively separated
in space, the growth of the shear layer undergoes successive plateaus; the vigorous
shear layer growth regions are associated with active energy extraction from the
mean flow for the disturbance amplification and the plateau regions associated with
decaying disturbance amplitudes. In Ho and Huang’s (1982) experiments, the shear
layer continues to spread after the plateau regions (see Figures 3 and 20), it is most
likely tﬂat transition to fine-grained turbulence has taken place i.n that the existing
fine-grained turbulence having.bcen suffipientl'y strained by the coherent structures is
now contributing towards the mean flow spreading rate via their Reynolds 's.trcss
fine-grained turbulence —u'w’'. For large-scale coherent structures in a turbulent shear
flow both -UW and -u'w', but depending on. their relative strength, contribute to the
growth of the mean shear flow. In the downstream rcgioxi where a particular mode
of choherent structure has rf._arrangcd its velocity distribution such that -Gw is
opposite the sign of 8U/8z, then energy is returned to the mean motion from this
particular mode and this contributes to the decrease of the spr;:ading rate. We have

already seen this using Weisbrot’s (1984) observation as example.
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Kaptanoglu (1984) and Liu and Kaptanoglu (1984) studied the dominant
two-dimensional coherent-mode interactions in a two-dimensional turbulqnt mixing
layer by extension of the corresponding problem in a laminar, viscous layer
(Nikitopoulos 1982, Liu and Nikitopoulos 1982, Nikitopoulos and Liu 1986) through
the specialization of the basic equations in Section II. The individual
mode-turbulence interations are entirely similar to the single cohcrent mode problem
discussed in Section V and Section VIB. Of partiéular interest is the application of
these ideas to the transition problem (e.g., Ho and Huang 1982) in which the initial
fine-grained turbulence is sufficiently weak so as to render coherent mode-interactions
to develop initially unhindered by the finc-graincd turbulence. Depending on the
initial level of the turbulence and the relative stfcngths of the initial coherent mode
energy llcvels and the initial mode content, the fine-graincd. turbulence would
eventually be amplified to a -fully participating role in the dynamics of the shear
layer through energy transfer from the mean flow and the coherent modcs.“ We
return to the eventual linear spreading of the shear layer in the transition problem
(Ho and Huang 1982) discussed earlier (sec,‘Figures 3 and 20). We emphasize here
that Kaptanoglu’s model still retains the simple two-dimensional coherent modes as
dom_inant without considcring the spanwise standing waves found to exist
observationally as streamwise "streaks". As such, the comparison with observations
(e.g. Huang 1985) is not likely to be meaningful as the tﬁrec-dimcnsional wave
disturbances are starting to play; a significan't* role in the dynamics of the's{xear
layer. We shall address this problem in Section VID. Ne\;crtheless, we shall :-be

-118-



contented here to illustrate the transition problem via the simple two-dimensional
coherent mode-interaciton model in the presence of fine-grained turbulence. .
Kaptanoglu (1984) and Liu and Kaptanoglu (1984) first consider an "experiment"
in which the "fundamental" mode is initiated at a relatively higher energy level A%O
= 17 x 107 at the initial frequency 2B, whereas its "subharmonic” at the initial
frequency BO is initiated at a lower level A%O = 3 x 10'5; with other parameters set
at R = 031, Re =62, 8 = 0°, Eg = 10", The initial Strouhal frequency was chosen
to be By = 0.149 so that 2By = 0.298. The latter is slightly less than the Strouhal
frequency of 0.4426 for the maximum initial amplification rate according to the
linear theory. We shall continue to refer to the initial 2Bj-mode as the fundamental
and the initial Bp-mode as the subharmonic even if 2B, # 0;4426 and By # 0.2213.
The n{x‘merical values of the above parameters are fixed and each variation from
fixed values will be cxplicifiy stated. rThe results from the above fixed set of
parameters are shown in Figure 21. The energy densities in Figure 2la are dc;x;oted

by "2" for A3 (the initial 2Bj-mode), "1" for A% (the initial By-mode) and "0" for E.

The shear layer thickness (normalized by the initial shear layer thickness) is shown

>

in Figure 21b. For this set of parameters, the maximum magnitudes of A% and A%
reaches the same Ievel approximately; in terms of maximum “"amplificaiton",
(A%/A%O)max ¥ 206 and (A‘}/A%O) ¥ 1200. The respective coherent mode amplitudes
grow by extraction of energy from the mean flow and decay by return of energy to
the rhean flow ("negative production"), viscouéﬂdissipation net energy transfer »to the
fine-grained.tur_bulcnce. The relative phase was 8 = 0° so that initially energy is

-119-



is transferred from the 2Bp-mode to the Bp-mode and this reverses sign with
increasing streamwise distance. The mode interaction effect, which is proportional to
amplitude cubed, 1is relatively effective in the vicinity where the mean flow
production of wave-disturbance, proportional to amplitude squared, is nearly zero and
about to reverse in sign. The production of fine-grained turbulence is slightly larger
than its viscous dissipation; the turbulence growth is augmented by the energy
transfer from the ‘coherent modes giving rise to the mild but noticable maximum in
the turbulence energy density in Figure 2la. The noticable two bumps in the shear
layer thickness in Figure 21b is due to the peaking of the energy drain from the
two coherent modes. The eventual linear growth is due to the fine-grained
turbulence. In the far downstream region, the balance between the fine-grained
turbuleﬁcc production, dissipation and the effect of shear laycr.spreading give an
equilibrium fine-grained turbu-iencc energy density E, ¥ 0.18 R2 and an equilibrium
"spreading rate ds/dx ¥ 0.025 R due to the finc-grained turbulence. The cffééf of

mean flow dissipation not being important and was neglected. These are estimated

from the appropriate equation for ds/dx and dSE/dx with the coherent modes having

>

equilibrated to zero in this case. We see that the equilibrium behavior of E and
ds/dx in Figure 21 very nearly follow from the estimates given.

We consider next the effect of initial turbulenqe levels, Egp, on the subsequent
shear layer development. When the turbule_ncc énergy level is exceedingly weak, Eg =
10‘10; we see in Figure 22 that the cohcré'r:;-t modes and the initial shearﬂ layer
development are essentially unaffected by the turbulence. The subsequent linear
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spreading rate far downstream is caused by the rising turbulence energy level. As
the initial turbulence level is increased to. Ey = 108 in Figure 23,. the linear
spreading rate and steep rise in turbulence energy level moves upstream; with the
coherent modes still somewhat unaffected. These are to be comapred to the "standard
experiment" for Eg = 106 in Figure 21 where the coherent modes are already
modified by the fine-grained turbulence. As the turbulence energy level is increased
to Eg = 104 in Figure 24, the Bp-mode maximum-A% level is significantly modified
and its occurrence is moved upstream; the A% maxixﬁum level and location is slightly
modified. As the initial turbulence level is increased to Eg = 10':2 in Figure 25,
corresponding to r.m.s. velocity ratios of about 7% of the averaged mean velocity, the
coherent modes’ energy levels are significantly reduced. The steplike growth of the
shear iziyer thickness is very nearly obliterated by the strong turbulence levels. The
qualitative effects are consistéht with observations of Browand and Latigo (1979). In
the experiments, however, it is difficult to preserve the same BO while changirhx.é. the
initial turbulence levels. In general, as the turbulence level is increased, the coherent
mode peaks tend to move upstream.

With all other parameters fixed as in the "standard experiment” of Figure 21,
the Reynolds number is changed increased Re = 500 in Figure 26. Results for Re >
500 shows only very modest differences. In this case, the viscous dissipation of “the
coherent modes and of the mean flow are not .important. This results in a
significant development of the 2Bp-mode and,v.“gonsequcntly, because 6 = 0°, t_!lcrc is
significan_t energy transfer from the Bp-mode resulting in the s}xprcssion of the latter.
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The "nonequilibrium" peak in the turbulence energy level (Figure 26a) is due to
energy transferred from the coherent modes. The pronounced first step in the shear
layer thickness (Figure 26b) is due to the pronounced peak in the 2Bpy~mode. The
second step, merging immediately into the linear growth region, is attributed to the
combined peaks of the Bp-mode and turbulence. As the Rc&nolds_ number is lowered
to Re = 100 in Figure 27, the A% level is lowgred due to viscous dissipation and the
supression of the A% level from mode-interéction is thus to a lesser extent; the
turbulence level development is milder as shown in Figure 27a. vIn this case, the
pronounced steplike growth (Figure 26b) has become milder (Figure 27b). These are
to be compared, again, to the "standard experiment" of Re = 62 shown in Figure 2I.
As the Reynolds number is lowered to Re = 40, the 2Bp-mode is significantly
surpres's'cd at the outset due to viscous dissipation and the Bo-mode, in the presence
of‘ weak intermode energy drziin, is allowed to develop as shown in Figure 28a. The
pronounced step in the shear layer thickness is due to the peak in A:lz. We noté'.that
as the Reynolds number is increased, the location of the peak of the ZBo-modc moves
upstream, whereas that of the By-mode remains more or less unchanged.

The "standard experiment" (Figure 21) was initiated at the initial dimensionI;ss
frequencies By = 0.149 and 2By = 0.298; both modes are on the lower frequency side
of the most amplified freugency of 0.4426. Shown in Figure 29 is the case when" By
= 0.25 and 2By = 0.50, the latter fal‘ling to the higher frequency side of 0.4426.
Consélquently, the 2B, has little to travel dov;;strcam before it is advected iqto the
“negative production" region and is thus unable to develop to any significant extent
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as shown in i’igure 29a, the second mild peak is due to the energy transfcr from ‘the
Bp-mode. In this case, the Bo-mode develop almost independently of the 2Bp-mode
and it gives rise to the single pronounced steplike shear layer thickness in Figure 29b
prior to the linear growth region. As the initial frequencies are lowered to By = 0.2
and 285 = 04, the A% is able to develop further before being advected into the
"damped" region shown in Figure 30a; but still the steplike structure in the shear
layer thickness is due to the strong levels of A% (Figure 30b). In the "low frequency"
initiation at By = 0.05 and 2Bg = 0.10, the 2By-mode is able to develop significantly
and consequently supressing the Bgp-mode via mode interaction (Figure 31a). The
pronounced step in the shear layer thickness (Figure 31b) and the peak in the
turbulence level (Figure 31a) is attributed to the 2Bp-mode. The initially lower
frequcn.cy modes are stretched out in their strcamwise evolution compared to the
higher frequency modes as wés expected (Liu 1974, Mankbadi and Liu 1981, 19845
from single-mode considerations.

Although not shown, imposing very large initial amplitudes upon one of the
modes causes the maximum of that mode‘ to be precisely the initial amplitude;
whereas the maximum amplification is achieved by imposing very small initial
amplitudes. The amplificatio_r}_ of the remaining other mode is only moderately
affected. Such resulting properties of mode-forcing upon single, independent modes
wer.e already obtained by Mankbadi and Liu (1981) in cénne-ction with the round
turbulent jet problem. The recent cxperimcnts”‘(;f Fiedler and Mensing (1985) in’di;atc
also such interesting properties: of possible control. Similar mode interactions m a
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round turbulent jet between two-frequency, axially symmetric (n = 0) modes were
recently considered by Mankbadi (1985). The interactions between axially' symmetric
and helical modcs (n # 0) in a round jet are §cry much similar to mode interactions
involving two-dimensional and spanwise periodic three-dimensional modes in an
otherwise two-dimensional shear layer. The issues with regard to such

three-dimensional effects is addressed in the next section.

D. THREE-DIMENSIONAL NONLINEAR EFFECTS IN LARGE-SCALE
COHERENT MODE INTERACTIONS

In the previous sections we have discussed the mechanisms of interaction
between plane, large-scale coherent modes with the three-dimensional fine-grained
turbulernice. Although the two-dimensional coherent structures are still the dominant
coherent modes in two-dimen'sior;al shear flows, there is increasing observational
ev.idence that three-dimensional coherent modes, in the form of spanwise peri.odi'c'ities
or standiﬂg waves, persit (Miksad 1972; Bernal, et al 1980; Bernal 1981; Brciécnthal
1981; Browand and Trouttt 1980, 1984; Roshko 1981, Konrad 1977; Jimenez 1983;
Alvarez and Martinez-Val 1984; Huang 1985). The experiments dealt primarily wi;h
transitional shear layers and it is clear that coherent three-dimensionality is most
likely to provide additional sitc?s for the straining and amplification of preexisting
fine-grained tﬁrbulcnce, however initially weak (Huang 1985). This would augument

the direct pioduction of fine-grained turbulence from the mean flow and from the

two-dimensional coherent motions. The three-dimensional coherent motions persist
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well into the region where fine-grained turbulence has become active (Bernal 1981,
Roshko 1981). On the basis of the discussions in the previous sections, it.is entirely
conceivable that such spanwise periodicities, égain appearing as a manifestation of
hydrodynamic instability, would also develop in an initially turbulent shear layer,
depending on the balances between mechanisms of energy supply and "dissipation".
From this discussion, we are lead carefully to distinguish the two very distinct
three-dimensional motions. One is the fine-grained turbulence and the other is the
large-scale coherent motion in the form of spanwise standing waves in a
two-dimensional mean shear flow or helical modes in the round jet (e.g., Mankbadi
and Liu 1981, 1984). It is an experimental fact that the spanwise wavelength of the
three-dimensional coherent modes increases further downstream (Barnel 1981, Jimenez
198‘3, ﬁuang 1985), as if evolving through the emergence of a spgnwise subharmonic
formaiton, much in the samvc spirit as the subharmonic formation in terms of
frequency and streamwise wavelength for two-dimensional coherent modes (Fre);x;nuth
1966, \Vingnt and Browand 1974). Quantitative observations (e.g., Jimenez 1983,
Huang 1985) indicate that the combined spﬁnwisc, three-dimensional modes develop
downstream in a nonequilibrium fashion resembling, though not in detail, that of the
two-dimensional modes. The v_/‘ave-envelopc amplifies and eventually decays. Jimenez
(1983) showed that the three-dimensional disturbances are imposed by upstream
dis_tprban‘ce such as the inherent waviness of the trailing edge (;f the plate séparating
the two streams or the screens placed upstrc;a'-x;l of the trailing edge. As su(:h‘r the
upstream . initial conditions on® the spanwise modes are uncontrolled. Un.like':t.he
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situation with the wavenumber or frequency selection mechanism for the
two-dimensional coherent modes, the spanwise wavenumber selection mechanism is still
unsettled in spite of recent works on the temporal mixing layer from the point of
view of computational-hydrodynamic stability (Pierrehumbert and Widnall 1982, Corcos
and Lin 1984) and numerical simulation (Riley and Metcalfe 1980, Cain, et al 1981,
Couet and Leonard 1980, Metcalfe, et al 1985). Corcos and Lin (1984) suggest that
perhaps the nonlinear interactions between spanwise modes and the role of initial
conditions might uncover the mechanism of the spanwise wavenumber selection. To
this end, we shall return to a brief discussion of the classical nonlinear analyses of
three-dimensional disturbances in shear flows. This would form the basis that
naturally leads to the discussion from our point of view in focusing attention on
real, sbé.tially developing shear flows.

Three-dimensional disttifbance effects in temporal, pgrallel shear flows have
Been studied by Benney and Lin (1960) and Benney (1961). This body of work..is a
second-order theory rather than one of finite amplitude in that the amplitudes are
taken as exponentials. They considered the temporal problem consisting of two
interacting fundamentals, a two-dimension;l wave disturbance of the fo;m
exp(ie(x-cit)) and a three-dimensional disturbance of the form exp(ia(x-coyt))cosyy,
where 7 is the spanwise wavenumber, ¢; and ¢y are the complex phase velocities and
a is the streamwise wavenumber associated with the funddmental two-dimensional
distu.r‘bance. For simpliticity, Benney and Li'r'1¢(l960) assumed that ¢; = ¢y mfor a
given Rc_ynolds_nufnbcr and this leads to harmonics that are.stationary rather than
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periodic in time. Other second-order effects include the formation of harmonics of
the two fundamentals and the distortion of the mean flow. The combination of
nonlinear effects on amplitude and three-dimensional wave disturbance effects were
studied by Stuart (1962b) and presented at the 1960 Second International Congress in
Aeronautical Science in VZurich. Stuart (1962b) found that there are at least eight
physically distinct "modes". This can best be characterized by attaching the subscipts
m and n to the relevant flow quantities, say, the velocity Unnj (Where i is retained
to indicate the components of the velocity). The first subscript m indicates tﬁe
streamwise wavenumber for the temporal problem, whereas n would indicate the
spanwise wavenumber. For instance, m = 1 denotes the fundamental streamwise
wavenumber o, m = 2 its first harmonic 2e¢ n = 1 denotes the cosyy mode and n = 2
dcr}otes.the cos2yy mode. The three streamwise nonpcriodic modgs consist of the 00,
01 and 02 modes. The first -refers to the modification of the temporal mean motion
which is here the combined streamwise- and spanwise-averaged flow. The 01 arld 02
modes are the streamwise-independent but spanwise-periodic harmonics generated by
the three-dimensional wave disturbance.. The 10 and 20 modes are the
two-dimensional fundamental and harmonic components respectively. The 11 mode is
the»three-dimcnsional fundamf:ntal and the 22 and 21 modes are the associated
harmonics. Following earlier work on finite-amplitudc effects for two-dimensional
disFurbanccs (Stuart 1960), Stuart (1962b) obtained amplitude équdtions for the two
complex tw@-amplitudc functions A(t) andﬂ B(t) for the temporal two:' _and
three-dimensional disturbances respectively, in a parallel flow,
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T = A(a0+a(l )|A|2+a(1 ) i1B12+.. )+ a(l ) (6.19)

dB 2 .

o = Blbg+ a2 B2 460 )BA2 (6.20)
In (6.19) and (6.20), the constants aj = -iec; and by = -iacy come from the linear

theory and the remaining constants from the nonlinear theory. Stuart (1962b) showed
how these constants could be evaluated. He -argued that for finite values of the
spanwise wavenumber 7, the constants aﬂ3) and bﬁ3) may be choosen to be zero. In

this case, the "wave envelope" equations then appear in the form

2 .
diA I 2
Idt' = Z'A'2(°‘°li+a(lr)'A'2+a(1r) 1B12+ =) (6.21)
d1B12 ) (2) :
= 21B1 (ozc21+b1r 1Al +bh. 1B12 ) (6.22)

dt

where the subscripts i and r denote imaginary and real parts, respectively. The
amplitude equations from weakly nonlinear theory are stated here for later reference
for purposes of showing the contrast with the wave-envelope equations of
three-dimensional disturbances in spatially developing shear flows for strongly
amplified disturbances.

We have seen in Section VI.C how ideas from weakly nonlinear theory cdt{ld
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be used as a valuable guide for mode interactions in a developing shear flow. There
the single, odd- and even-mode were given their individual amplitudes, as would be
motivated by observations (e.g., Ho and Huang 1982), rather than in terms of an
expansion in terms of ascending powers of a single amplitude function of the weak,
nonlinear theory. The nonlinear effects being of amplitude to the fourth power
reflects such an expansion procedure. This will be contrasted to the anticipated third-
power in amplitude for the present class of problems. In order to study the
interaction between an initial fundamental component and its subharmonic in the
spatial problem, the mode interaction is in terms of frequency and calls for the
reinterpretation of the the single even-mode as the fundamental component and the
single-odd mode as its subharmonic at half the fundamental frequency. The same
intcrpr;tation is used to denote three-dimensional wave disturbance interactions. The
even and odd modes here féfcr to the frequency only and the basic equations
devleoped in Section II appliess. The Reynolds mean motion is, by defi;i‘tion,
obtained via averaging over all periodiciti,cs. In this case, the average is taken with
respect to time and over the spanwise distance for two-dimensional shear flows. For
round jets, the latter average is replaced i)y the circumferential average. The
conditional average used to separate the>cohcrcnt modes and the fine-grained
turbulence is still the phase-averaging procedure geared to the coherent frequencies or
periods for the spatial problem,

In order to study subharmonic/fundzi.r;.ental interactions (in the fre.:-quency
sense) and the downstream evolution of at least two spanwise pcriodic scales for the
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spatially developing shear flow, it is not difficult to confirm that the minimum
number of frequency-periodic modes required is five. Using similar notation as that
of Stua.rt (1962b) we denote the coherent dynamical quantities as qp,, (with up; as
the velocity, i is the component indicator), m refers to the frequency and n the
spanwise periodicity. The even frequency mode is denoted by m = 2 (reinterpreted as
the fundamental mode in frequency) and odd frequency mode by m = 1 (the
reinterpreted subharmonic mode in frequency). The two-dimensional modes are
denoted by n = 0. It is not essential to take the spanwise periodicity indication n #
0 literally as long as we identify modes wit_h n = | to have spanwise wavelengths
twice that of the modes with n = 2. For inétancc, n = 2 and 1 could be taken to
indicate cos2yy and cosyy, respectively or cosyYy and cos(y/2)y, respectively. In both
cases, -t'hc spanwise wavelength (X\y) is such that A\ = 2),. Ip observations (e.g.,
Jir-nenez 1983, Huang 1985), &1 eventually prevails over ), downstream. The five
minimum frequency periodic (m # 0) modes consistant with Stuart (1962b), woui& be:

three modes belonging to the fundamental frequency (even, m

2) 20, 21, 22 and

1) 10, !1. These

an

two modes belonging to the ;ﬁbharmonic frequency (odd, m
modes still belong to the family of binary-frequency interactions (Liu and
Nikitopoulos 1982, Nikitopoulos 1982). Inclusion of other m # 0 modes would
necessitate tertiary-frequency interactions but wﬁich could still be formulated fiom
the basic equations of Section II as was done for triple-frequency mode interactions
for fwo-dimensional wave disturbances (Nikitdg.oulos and Liu 1984). The re@aining
_ frequcncy,-indep_endent modes (00,01 and 02) are modifications to the time-averaged
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mean flow; the 0! and 02 are modifications prior to spanwise averaging.
modifications prior to spanwise averaging. Before we continue with the

three-dimensional wave disturbance problem, we shall insert a brief comment about
accounting only for binary-frequency interactions which shows that it could be more
general than would be anticipated.

The basis for our implicit hypothesis that only binary-frequency mode
interactions suffice for the spatially developing shear flow lies in the earlier
theoretical confirmation (Liu 1974a) of observations that progressively lower
frequency modes develop and peak further downstream relative to higher frequency
modes. For mode-interactions of the sub- and super-harmonic type to take place,
modes of only integral multiples of the frequency participate. As demonstrated by
Ho and' Huang (1982), the peaks of the fundamental and subharmqnic do not overlap.
The first subharmonic, peaking further downstream than t_he fundamental, would
eventually serve as the fundamental to the second subharmonic but in a region \'av.hcrc
the original fundamental has significantly weakened. In this case interactions between
neighboring frequency modes would dominate. Situations where binary-frequency
interactions would not suffice are elucidated by Nikitopoulos and Liu (1984).

The spanwise pcriodici{ies are considered to be standing waves. To help
understand the physical mechanisms of mode interactions within the limited
frq;pcwork described, we bbtain and state the energy cquations.for the five coherent
modes. The energy equations of the cven-freci;.;cncy modes are obtained from '(2725).
~ These modes are considered to be the fundamental-frequency modes and are gii:cn
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The averaging, as already discussed, is with respect to both time and spanwise
distance. The symbol (A) denoting even modes in Section II is identified here with
the first subscript m =2 denoting the fundamental frequency whereas (7) dcnoting
the odd modes is identified here with m = 1 as the frequency-subharmonic. In the
second group of terms on the right side of (6.23), there is direct energy exchanges
between the 20-mode with the mean flow and the fine-grained turbulence as well as
direct energy exchanges with™ the two-dimensional and three-dimensional (n = 1)

subharmonic modes, 10 and 11, respectively. The fundamental frequency, n = 1

three-dimensional 21-mode energy equation is
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Again, direct energy exchanges of the 2l-mode energy with the mean flow and
fine-grained turbulence are obvious in the second group of terms on the right of
(6.24).  The last item in this group refelects, as will be confirmed subsequently, the

energy exchange between the 21-mode with the 10-mode through interference of the

I1-mode -umiu“jaum/axj, and with the 1l-mode through interference of the

10-mode -uy13U0j auzli/axj; the net rate of these energy exchanges are the same.

The fundamental-frequency, n = 2 three-dimensional 22-mode energy equation is

9o

3 .
2 = - . . . . . .o
uzzi/z = - aXJ [13221.122_l + ulllul“u221 + U2211’22U]

duyo;

an auzzi
- ['r221j —a_x_] - ('ulliullj) T
J J

*o[M22i¥22j B,
i
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v 0 /2 i (6.25)
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ax? 22i axj

Again, in addition to energy exchanges with the mean flow and fine-grained
turbulence, the last term in the second group of energy exchange mechanisms on the
right of (6.25) reflects a direct energy exchange between the 22-mode and the

Il-mode. We note that there are no direct energy exchanges between the three

fundamentals 20, 21 and 22.

The energy equation for the two-dimensional subharmonic 10 mode is

D 5 g — _— =
_uz./z_____

2
+ 2 + uyp; ..
Dt 10i axj [pIOuIOJ u20u10i/ 101r101_]]

an auwi
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j J
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2
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(6.26)
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Again, in addition to direct energy exchanges with the mean flow and fine-grained
turbulence, the two-dimensional subharmonic 10-mode exchanges energy with the
frequency-subharmonic, three-dimensional 11-mode via the interference of the
fundamental 21-mode. It exchanges energy with the fundamental two-dimensional
20-mode directly but with .thc fundamental three-dimensional 21-mode via interference

by the ll-mode. The frequency-subharmonic, n = 1 three dimensional 11-mode energy

equation is

a
2 = - 2 . ..
ulli/2 = - 3 [pllullj + (u20j+u22j)ull_i/2 + u21ju10iu“i + ulllrlll_]]

J

9|0

oty g, T TS Tae,
J J

Bupyj 8uzp; Buyyj Buys;
+ [U10i¥21j e VL B & ) = U11iY10j — Uity 5.,
ax_l axJ axJ ax.I
2
a2 dup 14
+ VvV —u< /2 -v . (6.27)
ax‘?‘ 11i 8xj
j

The energy exchange with other modes are given by the second group of terms on

the right side of (6.27). The _11-mode exchanges energy with the two-dimensionil
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10-mode through the interference of the 21-mode and with the 21-mode through the
interference of the 10-mode. As already noted, the 11-mode exchan_gcs energy
directly with the 20- and 22-mode. Again, the 1l-mode exchanges energy directly
with the mean flow and fine-grained turbulence as depicted, respectively, by the first
two terms in this same group.

We have, in Figure 21, depicted the mn-mode energy transfer mechanisms. The
direction of the arrow in the figure is associated only with the manner in which the
sign of the energy exchange term occur in the individual energy equation, not the
actual direction of individual cncrgy} exchange mechanism. As we have learned from
our previous considerations, the direction of energy transfer lies in the relative phase
relations between the fluctuations that make up this mechanism.

;I;hc energy exchanges between the cohgrent modes and w_ith the fine-grained
turbulence is summarized in. Table 1. The n = 0 two-dimensional mode energy
exchanges between the coherent modes and with fine-grained turbulence hav_embeen
the subject of discussions in Sections IV, V and in the present section. It is not
difficult to see that the n = 1,2 three-dimensional modes provide additional
modulated turbulent stresses and coherent rates of strain for such exchange
mechanisms. The energy exchange mechanisms wi»thI the mean flow is summarized in
Table 2. We have already shown how energy extraction by two-dimensional modes
from the mean flow causes its thiékness tb grow. The additional mechanisms due to
the three-dimensional modes would augment thxs spreading rate if wave disturbances
continue to take energy from the mean flow.
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From the special form of (6.23) - (6.27) for which the mean flow is
two-dimensional we can obtain thé spatial evolution equations for the five coherent
modes; and, in addition, those of the fine-grained turbulence energy aqd the mean
flow thickness similar to the two-dimensional coherent mode problem. The notation
used for the advection and interaction integrals are similar to .thosc previously
defined except for the subscripts mn, where m = 1,2 and n = 0,1,2 (but there is no
12-mode within the present framework). The wave-envelope equations for the five -

modes can be written in the form

2 .
. d8An, 2 ~ 2 1 2 ~
Imn = Amnlrsmn - AmnElwtmn - 52 Amnl¢mn/® +
dx Re
energy exchange energy exchange viscous
with mean flow with dissipation
turbulence
EE | (6.28)

energy exchange

with
other modes

The mode interaction mechanisms, an, is summarized in Table 3. The mean flow

“‘kinetic energy equation gives

— ds 2 ¥ +-EI| + l—I_/s (625.
Ia= A rsmn rs Re [0/ - | (629)
» energy )
mn exchange . .Vl.scou's
with turbulence  dissipation

energy exchange
with overall coherent
modes
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The fine-grained turbulence kinetic energy equation gives

— dSE 2
I' — = EI + E EE Apnlwtmn - E3/?I (6.30)
dx ¢
mn

energy exchange viscous

with mean flow dissipation
energy exchange with
overall coherent modes

Equations (6.28) - (6.30) would be subjected to the initial conditions A%nn(O) = A%nno’
8(0) = 1, E(0) = E(; supplemented by choosing the initial frequency of the wave
disturbance By (and 2Bj), the relative spanwise wave number 7/B; and the relative
phases between the coherent modes. We comment here that in the case of the round
jet the physical mechanisms, except for details with regard to curvature effects in
the downstream region, and formulation appear in the same form as (6.28) - (6.30)
with n = O identified with the axially symmetric modes and n # 0 with helical
modes. Although the numerical aspects otl this problem is uxider active pursuit -by S.
S. Lee* (Lee and Liu 1985), a number of relevant and meaningfulb iﬁterprctations
can be dire;:tly inferred from the formulation and results of a preliminary nature. It
is now well known that higher frequency wave disturbances grow, pea-k anci decay in
a region closer to the start of the shear flow than lower frequency disturbances. In

this situation, the entire m = 2. higher fundamental frequency group of 20, 21 and 22

modes accomplish such growth and decay activities early on in the streamwise

*Graduate Student, The Division of Enginecering, Brown University.

Y
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direction than the m = 1 group of 10 and 11 modes for not disparately different
initial mode-energy levels. Within the m = 2 group it is expected that”the n=20
dimensional 20-mode would persist the longest in the streamwise distance then the
21-mode; the latter, in turn prevails over the 22-mode. In this case, although the
cos2yy and cosyYy modes would initially develop at about the same level, the shorter
wavelength (2m1/27), thrcc-vdimcnsional spanwise mode disappears first, giving way to
the longer wa\iélength (2n/7) spanwise mode associated with the higher, fundamental
frequency group. Eventually in the streamwise development, the m = 2 frequency
group of modes give way to the m = 1 subharmonic frequency group of 10 and 1!
modes. The development of the 1l1-mode, of wavelength 2m/7y, then persists further
downstream (until they succumb to subsequent subharmonics or turbulence). Thus, the
pr;senf‘ multiple-mode interaction model gives the important qbservational feature
(Bernal 1981, Jimenez 1983, I;fuang 1985) that the number of streamwise, longitudinal
streaks lessens with the downstream distance. Although this important feat.u-re is
inferred from the formulation of the problem, preliminary numerical results (Lee and
Liu 1985) confirm this. Characteristically with coherent modes in developing shear
flows, the problem is one of nonequilibrium interactions and is sensitive to initial
conditions. Perhaps, when the full numerical results become available, a study based
on the variaiton of initial conditions and mode numbers might provide us with an
understanding of the spanwise-mode selection mechanisms in devlcoping shear flows.
In the recent measurements of Huang (1985), frequency-fundamental and
subharmonic mode energies were obtained but without diffe;entiating between two-
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and three-dimensional modes in the present context. Thus, the sectional energy
measured, in terms of the present interpretation, reflects the sum w_ithin each
frequency group of modes: (E;p+E; +Epj) for the fundamental and (EjgtEpp) for
the subharmonic. Further decomposition along the lines discussed here would be
helpful towards the understanding of the important modal-interaction mechanisms that
we have elucidated.

There are several temporal mixing layer studies that would be of interest to
the present point of view. We delayed discussions of these wuntil the present
nonlinear interaction problem is fully sfated. _In this case, we will be able to place
these temporal problems in proper perspective with respect to the spatial problem that
we have discussed. To this end, the mode number in the temporal problem refers to
the‘ stréamwisc wavenumber and is taken to be analogous to the frequency in the
spatial problem. This "conirﬁon" mode _ number will be denoted by m in the
n.m-notation. The spanwise mode number is idéntical in both cases and is denot.;:-;i by
n. The basic flow for Pierrechumbert and Widnall’s (1982) linear three-dimensonal
stability studies is a class of finite-amplitude, steady two-dimensional solutions to the
Liouville equation obtained by Stuart (1967, 1971b). The class of solutions is
obtained by variations of a so-called vorticity concentration parameter, €, which when
set equal to zero the hyperbolic tangent profile, which could be considered as“"the
mean flow,. is obtained. For small but finite €, an expansion in powers of € reveal

that the mean flow 1is perturbed by a steady, spatially-periodic fundgmcntal
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component at the € order, at the €2 order there is a first harmonic component and a
corrcction to the mean flow, and so on. When ¢ = 1, the flow due to a row of
point vorticies is recovered. The € = 0 range is relevant to our discussion. Because
the flow is steady, the problem is neutral in that no energy exchange exist among
the disturbance components and the mean flow. In our notation, in addition to the
mean flow, this basic flow also consists of neutrally noninteracting 20 and 10
components (where we now revert to interpreting 20 as the Ist harmonic and 10 as
the fundamental). The translative mode corresponds to a three-dimensional
perturbation at the same m. In this case, the modes consist of the basic 20- and
10-mode plus the 1l1-mode. In the linear problem only direct energy transfers are
possible. Form Figure 32 we see that there is no direct connection between the
ll-mod'é perturbation with the basic 10-mode, but that there is a direct connection
between the [1-mode with thé basic 20-mode. One concludes in this situation that
the amplification of the 11-mode comes from the basic mean flow and the 20-..1;10de,
while the 10-mode remain dormant in this process. As the parameter € is further
lowered, the present first harmonic, the 20-mode, being of order ez, becomes
unimportant so that the only energy supply to the ll-mode would be the mean flc;w.
This loss of an additional source of energy supply for € = 0 may well be the reason
why the 1l-mode amplification rate is lowered with decreasing values of € in “the
Pierrechumbert and Widnall (1982) translative-mode problem (see, also Ho and Huerre
1984). This translative mode is nqt equivﬁjént to the second-order intc;gctions
described by Benney and Lin (1960) and Benney (1961) in that they included the
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21-mode which interacts with and causes interaction between the 10- and 11-mode. To
interpret the linearized helical-mode instability of Pierrehumbert and Widnall (1982),
we now reinterpret the 20-mode as the two-dimensonal fundamental and 11-mode as
the subharmonic, three-dimensional perturbation. From TFigure 32, there is a direct
interaction between the 20- and thc> 11-mode, in addition to the direct participation
of the mean flow. Corcos and Lin (1984) considered similar three-dimensional linear
perturbations but upon a time evolving two-dimensional flow consisting of
équivalcntly, the mutually interacting mean:shear flow and the two-dimensional
mo-modes. In the equivalent translative mode interactions, they included the 20-
and 21-mode, or alternatively, the 10- and Il-mode (cases 1 through 4); in these cases
there are no direct mode interactions but that the three-dimensional mode derives its
energy .from the mean flow. In the translative-mode interaction _with presence of a
subharmonic, the 20-, 10- and. 21-mode (cases 7-10) are included; again, there are no
direct three- and two-dimensional mode interactions. Whereas, in the helical;ﬁode
interaction, modes 20, 10 and 11 were involved (cases 5, 6) where there is direct
interaction between the 20- and 1l-mode. Unfortunately, the rate of energy supply
to the three-dimensional disturbance given by Corcos and Lin (1984) is the overall
rate and thus does not elucida»t‘e these important individual mechanisms.

The resonant triad of Craik (1971, 1980), originally discussed in terms’ of
boundary layers, is essentially a two-mode interaction in thé context of spanwise
standing-wave disturbances, involving the 20- aﬁ‘d 11-mode for which there is q'd?rect
interaction (Figure 32). For:a discussion of the work on resonant intcracii'.c;ns
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between three-dimensional disturbances due to Raetz, which remain unpublished, we

refer to Stuart (1962a).
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VII. OTHER WAVE-TURBULENCE INTERACTION PROBLEMS

It seems more appropriate to conclude this article by briefly pointing out a few
examples to confirm that "..the more research in mechanics* expands, the more
interconnections of seemingly far distant. fields become apparant”. This was an
observation and a spirit infused upon this series by the founding editors, von
Karman and von Mises, in their preface to the first volume.

In the structural aspects of the turbulent boundary layer there is no dearth for
problems involving the interactions between various scales of large-scale motions and
fine-grained turbulence (Willmarth 1975). AlthAough the situation there is considerably
more complicated and involved relative to the free shear flows, many of the
interaction ideas share the same fundamental basis. The prospects of control

naturally leads to the attempt to understand various pcrturbatibns upon turbulent

boundary layers. One of such perturbations is through interaction of sound- with

wall turbulent shear layers (Howe 1986), to which some progress for its understanding

is beginning to take place (Quinn and Liu 1985).

Interaction between wave motions and turbulence has recently taken ©n
important roles in the meteorological context in mesospheric dynamics (Holton and
Matsuno 1984, Fritts 1984) and i_n the oceanographic context in the mixing mcchanrism

in the interior ocean and the microstructure pfoblcm. In fact Munk (1981)

*in the present case, research in the large-scale organized aspects in free turbulent
shear flows.
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underscores the connection between internal waves and small scale processes as "where
the key is". Recent laboratory experiments (Stillinger, et al 1983) in Va stratified
fluid points to the necessity of the separation between waves and turbulence towards
the understanding of their internal interaction processes. As an illustration of the
turbulence-modified internal wave problem, similar conditional averaging procedures

can be used to obtain the equation for linear internal waves (Quinn and Liu 1986):

. &2 V2+a2 T S L I |- RO R
_ — W W= - — | QqQ; + — 1
a2 | B g2 H Haxj Toq-‘

a2 3 ary i ary j o
— |+ = :
otoz axj ax dy

+

where W is the vertical wave velocity, V%I the horizontal Laplacian, z is tlie vertical
coordinate, x and y are horizontal coordinates, N2 the Brunt frequency taken as

constant, g the acceleration of gravity, Ty the temperature of the undisturbed

INY

(hydrostatic) fluid taken as constant as far as the wave motion is concerned, aj is
the wave-modulated turbulence heat flux vecfor; Fij has the same meaning as in the
previous discussions. Equation (7.1) would be augmented by the transport equations
for Fij’ Eij and 'for the wave-modulated, square of the turbulence temperature
flucfuation ?11 These would be a rational rcb.i_;cement of the standard cddy-yi_scosity

assumptions where, particularly in geophysical problems, the madnitude and sign of
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such viscosities are difficult to estimate. Wave-turbulence interaction problems in the
lower atmosphere in the vicinity of the atmospheric boundary layer has received
attention (Einaudi and Finnegan 1981; Finnegan and Einaudi 1981; Fua, et al 1982).
The onset of turbulence in Kelvin-Helmholtz billows is addressed by Sykes and
Lewellen (1982) and by Klaassen and Peltier (1985), similar to the temporal

homogeneous fluid problem of Gatski and Liu (1980).
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APPENDIX

The integrals for the spatially. developing plane turbulent mixing layer are
explicitly defined here for completeness. These integrals are similar in form to
certain of those that occur in the temporal problem except that there infegrals
involving the eigenfunctions depend on the lg)cal wavenumber. The dominant
_ coherent mode here is also taken as two-dimensional and the spatial eigenfunctions
are evaluated "locally" and depend on the lc;cal frequ.ency parameter. The mean
velocity profile and Reynolds stresses are taken to be of the form (5.8) and (5.9),
respectively. Specifically, we have taken ujuy ~ e and U =1 - R tank §{, where R
= (U.o"Uw)/(U.etUew), § = 2z/8(x). Generalizations to other profiles are certainly

possible. The local shear layer thickness 8(x) measured in terms of the initial shear

layer thickness (8p), and is half of the maximum slope or mean vorticity thickness

1 U-en - er
8, = iidz = ———
w ,
10 o ) 18U/3z 104
AN
where @ = -8U/8z (see Brown and Roshko 1974); &(x) is also twice the momentum

thickness (Winant and Browand 1974) for the hyperbolic tangent profile, The
appropriate initial Reynolds number is Re = SofJ/v, where U is the average velocity
(U.o+Uo)/2.  All velocities are normalized by U and lengths by 8. The integrals

involving the local eigenfunctions reflect the normalization defined by (5.4).
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(1) Kinetic energy advection 'intcgrals

Mecan flow:

0
I=- ;— (1 - R tanh D[ - R tanh £)2 - (1+R)2]d{

+| @ -R tanh O - R tanh £)? - (1-R)2]d¢

= (3 - 2 2n 2)R2,

Cohcrent mode:

I(6) =1 - R | tanh £(16"12 + 1ap12)dL.

-

In the binary mode interactions, I, is associated with cigenfunctions with subscript 2,

I, with subscript 1. In general I, and I do not change sign are very nearly

"constant" and will be replaced by their respective meanvalue over the range of & of

interest.
Finc-graincd turbulence:

«©

s

' 2
I' = — | (1 + tanh et dg = 1.

-0
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(2) Fluctuation "production" integrals

Cohcrent mode:

I(8) = 2R | 9m(«p$’) sech?dy

-

where ¢ denotes the complex conjugate of ¢ In the "damped" disturbance region

: 9m(a¢>$') changes sign and I, < 0. In binary mode interactions, I g5 will be

associatd with e,¢5,.. and I st with «p, ¢, .

Finc-grained turbulence:

) alR

I = e'Ezsech?-g = 0.7263aR.
rs v 1

-0

(3) Viscous dissipation integrals

Mecan flow:

4 R2
3

I—d> = R2 sech4§d§ =

-0

Cohcrent modc:

f¢ =2l1ei? + 2 (|¢>"|2 + 1o’ |2)d§

-0
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Finc-graincd turbulcnce:

Il N a3
¢ 32

2
e38%/2 dg = 0.3066a,.

-0

(4) Coherent mode-turbulence energy exchange integral

Ip(8) = -2 | Riry,(-icd") + 1y, (0"+e29) + r,,(iad’)]dL.

-

(5) Binary-coherent mode energy exchange integral

1 . - - -2—1 —n 22— =
Iy =Ijp=2 | $¢m e‘e[¢{2a2¢2'+a1¢1¢i(a2¢2+¢'2)+°‘1¢’1°‘2¢2] ds.

-0

The integrands of Iy¢ and I are grouped to reflect "similar" stress-rates of strain

products.
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TABLE 1. Encrgy cxchangces with finc-grained turbulence:

n=20 n=1 n=2
Oujo; uyy;
m =1 T10ij Zx, T e
J J
Buyp; Buyyj Buyg;
m =2 “T20ij ox; T21ij W 1224 a_xj—
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TABLE 2. Encrgy cxhanges with mcan flow: '

n=20 n = n=2
an au;
m = I “U10i10j Z, UYL e
j j
ay; an au;
m =2 “U20iY20j B, “U21Y21§ Foo “U22i%22j B
j j j
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TABLE 3. Modc intcraction mcchanismms &

n=0 n=1 n=2
=1 AjgAg A (10 + 110 AjgAgAq 110 + 11!
m 10421410+ 1) 10A21A11C 1+ L)
+ A2 A 110 + A2 (A T A 1l
1020 20 112020 © 722722
: 2 10 2 11 10 11 2 1
m=2 |-AT A I -A A A A A (I +1) AT AT
1072020~ 1172020 10711721721 "21 1172222
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FIGURE CAPTIONS

Figure l.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Coherent mode and turbulence measurements on the jet centerline. e:

unforced, 0,A forced at Strouhal number St = 0.18 (Favre-Marinet and

Binder 1979).

Measured streamwise development of fluctuation production mechanism
along the line most intense mean velocity gradient in a turbulent mixing
layer. x: coherent mode production mechanism; @ overall production

mechanism. (Fiedler, Dziomba, Mensing and Roésgen 1981).

Streamwise development of mixing layer thickness (Ho and Huang 1982,

"Mode II").

Streamwise development of coherent mode energy (u-component only),

corresponding to the shear layer thickness development in Figure 3 (Ho

and Hunag 1982, "Mode II").

Evolution of energy exchange mechanisms between the large-scale

structure and the mean flow (‘va) and the fine-grained turbulence (Ipy).

Evolution of large-scale coherent structure energy.
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Figure 7.

Figure 8.

" Figure 9.

Figure 10.

Figure 11.

Figure 12,

Figure 13.

Evolution of fin'c-grained turbulence energy production (II'))’ viscous
dissipation '(¢—') and energy transfer from the large-sale coherent

structure (Igy).
Evolution of fine-grained turbulence energy.

Evolution of length scales: shear layer thickness (8), fine-grained
turbulence scale (Le), large-scale coherent structure closed streamline

height (H).
Large-scale coherent structure streamlines at t = 1.50.
Large-scale coherent structure vorticity at t = 1.50.

Horizontal contribution of the phase-averaged turbulent kinetic energy
and its dominant production mechanism at t = 1.50: (a) <u'2>/2; (b)
-<u'w'>9U/0z.

Spanwise contribution of the phase-averaged turbulent kinetic energy and

its "production" mechanism at t = L.50: (a) <v'2>/2; (b) <p'du'/dy>.
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Figure 14.

Figure

Figure

Figure

Figure

13.

16.

17.

18.

Locus of vectors representing the shape distribution of modulated

turbulent stresses and coherent-mode rates of strain across the mixing

layer. « = 0.4446

(a) Streamwise normal stress and rate of strain;
(b) Shear stress and shear rates of strain;

(c) Vertical normal stress and rate of strain.

Relative contributions to the coherent mode and fine-grained turbulence

energy exchange mechanisms. « = 0.4446.

Coherent mode and fine-grained turbulence energy trajectories for the

parallel flow model. My = 1.

Evolution of coherent mode and fine-grained turbulence energy for a

given wavenumber (« = 0.4446), parallel flow model.

Illustrating that observed growth and contraction of observed shear
thickness is attributed to wave disturbance energy extraction from and

supply to the mean flow. exp: Weisbrot 1984, "theory"  present

explanation.
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Figure 19,

Figure

Figure

Figure

Figure

Figure

Figure

20.

21.

22,

23.

24.

25.

Evolution of u-contribution to the coherent mode energy, n = 2:

fundamental; n = 1: subharmonics; comparison with measurements of Ho

and Huang (1982) "Mode II" conditions.

Evolution shear layer thickness; comparison with measurements of Ho

and Huang (1982) "Mode II" conditions.

Evolution of (a) coherent mode and fine-graincd turbulence energy

densities and (b) shear layer thickness for a "standard experiment".

Shear layer development at a weak initial turbulence level Ey = 10710,

(a) Energy densities; (b) Shear layer thickness.

Shear layer development at a weak initial turbulence level Eg = 1078,

(a) Energy densities; (b) Shear layer thickness.

Shear layer development at a moderate initial turbulence level Ey =

1074, (a) Encrgy densities; (b) Shear layér thickness.

Shear layer development at a strong initial turbulence level Ej = 1072,

(a) Energy densities; (b) Shear layer thickness.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

26.

27.

28.

29.

30.

31.

32.

High Reynolds mimber effect in the shear layer development, Re = 500.

(a) Energy densities; (b) Shear layer thickness.

"Moderate" Reynolds number effect in the shear layer development, Re =

100. (a) Energy densities; (b) Shear layer thickness.

"Low" Reynolds number effect in the shear layer development, Re = 40.

(a) Energy densities; (b) Shear layer thickness.

"High" initial frequency effect on shear layer development, By = 0.25.

(a) Energy densities; (b) Shear layer thickness.

"Moderate" initial frequency effect on shear layer development, By =

0.20. (a) Energy densities; (b) Shear layer thickness.

"Low" initial frequency effect on shear layer development, By = 0.05.

(a) Energy densities; (b) Shear layer thickness.

Two- and three-dimensional coherent mn-mode energy transfer

mechanisms.
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