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L INTRODUcnON 

In his article on recent advances in the mechanics of boundary, layer flow, 

published in Volume I of this series, Dryden (1948) recalls that at the Fifth 

International Congress for Applied Mechanics von Karman (1938) pointed out the 

difficulties in reconciling a scalar mixing length with turbulence measurements done 

in a channel by Wattendorf and by Reichardt. In the discussions that followed, 

which were not precisely recorded in the 1938 Proceedings, Dryden (1948) pointed out 

that both Tollmien an'd Prandtl suggested that the measured fluctuations include both 

random and non-random elements and that the correctness of these ideas are borne 

out by later turbulence measurements in the boundary layer at the National Bureau 

of Standards discussed by Dryden (1948). It is important to note that Dryden (1948) 

emphasized that "... it is necessary to separate the random processes from the 

non-random processes", but concluded that " ... as yet there is no known procedure 

either experimental or theoretical for separating them". In the early fifties, 

Liepmann (1952) surveyed aspects of the turbulence problem and pointed out the 

importance of the presence of a secondary, large-scale structure superimposed upon 

turbulent shear flows, citing as examples measurements of Corrsin (1943) and 

Townsend (1947) in free turbulent flows, Pai (1939, 1943) and MacPhail (1941, 1946) 

in the flo'w between rotating cylinders and Roshko (1952; see also 1954, 1961) in the 

far turbulent wake behind a cylinder. Liepmann (1952) concluded that althou~h the 

details of the large-scale structure may be in doubt, but that such structures cannot 
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be ignored in many of the technological problems such as in aerodynamic sound, 

combustion and in general, mixing controlled problems. 

More Quantitative discussions of the large-scale structure in free turbulent flows 

were initiated by Townsend (1956, §6.5) in the first edition of his monograph on the 

structure of turbulent shear flows. He considered the total flow to consist of a mean 

motion and fluctuations consisting of a large-scale disturbance and the balance of the 

motion to be fine-scaled fluctuations. The scales are taken to be nonoverlapping so 

that the spatial, volume integral of the products of the disparate-sized fluctuations 

vanish. The resulting global energy balance of the large-scale structure (Townsend 

1956) gave the essence of the physical interpretation that the large-scale structure 

gains energy from the mean flow and exchanges energy with the fine-grained 

turbulence by the rate of working of the large-scale motion against the excess 

Reynolds stress owing to its presence. Townsend (1956) hypothesized certain 

kinematical details of the large-scale motion but ruled out motions -of the 

hydrodynamical instability type. The splitting of fluctuations into large-scale 

structures and fine-grained turbulence was further underscored by Liepmann (1962) in 

his discussion of free turbulent flows. He advanced the idea that the large-scale 

motion could be attributable t? the hydrodynamic instability of the prevailing mean 

flow. It was still not clear then as to how the large-scale motions could be sorted 

out, either experimentally or theoretically, from the total fluctuations. Liepmann 

(1962) emphasized, however, that the large-scale structures in turbulent shear· flows 

ought to be studies in a well-controlled manner, similar to the studies of the 

-2-



-. 

Tollmien-Schlichting waves leading to transition in a laminar flow (Schubauer & 

Sknimsted 1948). 

The well-controlled experiments suggested by Liepmann (1962) in terms of 

perturbing or enhancing the periodicity in a turbulent shear flow, when the usual 

Reynolds (1895) average is accompanied by a form of conditional averaging 

(Kovasznay et at. 1970), now widely known as the phase average geared to the 

periodicity, allows fluctuations measured at a point to be split into coherent and 

random parts. This, in principle, takes the jittering out of the phases of otherwise 

coherent fluctuations (e.g., Thomas and Brown 1977). This is similar to the 

Schubauer and Skramsted (1948) experiments that place the Tollmien-Schlichting wave 

where it is desired. The pioneering experiments leading to the recognition of 

coherent oscillations in turbulent shear flows were associated with Bradshaw (1966), 

Bradshaw, et al (1964), Davis, et al (1963) and Mollo-Christensen (1967). Experiments 

on well-controlled coherent oscillations in turbulent free flows began with Crow and 

Champagne (1971) and Binder and Favre-Marinet (1973) for the round jet, Hussain 

and Reynolds (l970a) for turbulent channel flow and with Kendall (1970) for a wavy 

wall perturbation beneath a turbulent boundary. The primary advantage of the 

phase-averaging procedure (Binder and Favre-Marinet 1973, Hussain and Reynolds 

1970a), from a theoretical point -of view, is that it allows the systematic derivation 

of the coupled fundamental equations for the mean flow, the large-scale coherent 

fluctuations with a dominant periodicity and the fine-grained turbulence. The 

presentation of these equations for a homogeneous, incompressible fluid may be found 
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in Hussain and Reynolds (1970b), Elswick (1971), Reynolds and Hussain (1972) and 

Favre-Marinet (1975). The description of the perturbed turbulent shear flow problem 

is entirely similar to the limited-time (or space) averaging procedure' for educing 

naturally occurring coherent features in turbulent shear flows (Blackwelder and 

Kaplan 1972, 1976) and the fundamental equations from this point of view are given 

at the 1970 von Karman Lecture by Mollo-Christensen (1971) who discussed many 

facets of interactions between disparate scales of motion in the turbulent boundary 

layer problem. 

Lumley (1967) developed a more formal definition of the large-scale motions and 

obtained their dynamical equations, using "conventional" (as compared to "conditional") 

a veraging methods. As in Townsend (1956), it is suggested that the effect of the 

motion of smaller scales in the dynamical equations for the large-scale motion be 

represented by a constitutive relation. In the lowest order approximation the 

large-scale motion satisfy the Orr-Sommerfeld equation for small disturbances. 

Lumley (1967) further suggested that the mean velocity profile could be neutrally 

stable corresponding to the minimum Reynolds number maintained by an 

eddy-viscosity. This is reminiscent of the marginal stability ideas for wall-bounded 

turbulent shear flows put forth by Malkus (1956) in which the turbulent velocity 

fluctuations are represented by a collection of neutral wave solutions of the 

Orr-Sommerfeld equation. This idea was extended by Landahl (1967) to the 

superposition of wave solutions satisfying a non-homogeneous Orr-Sommerfeld 

equation; . the nonlinearities are assumed weak and prescribed. However, free-wave 
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disturbances corresponding to the standard turbulent eddy viscosity in wall-bounded 

turbulent shear flows are strongly decaying. Thus the presence of these waves is 

attributed to a continuous driving mechanism arising from variations of the turbulent 

Reynolds stresses. In general, this class of theoretical problems are linear and some 

are associated with the eddy viscosity representations of the effect of the background 

turbulence. Further discussions of the role of wavelike representations in turbulent 

shear flows are given by Moffatt (1967, 1969), Lighthill (1969), Phillips (1967, 1969), 

and Kovasznay (1970). Hussain and Reynolds' (1970a) experiments on imposed 

monochromatic disturbances in turbulent channel flow indicate that such disturbances 

propagate like Tollmein-Schlichting waves but that they decay strongly downstream as 

would be expected from theoretical considerations (Reynolds and Tiederman 1967). 

As we now appreciate, the coherent large-scale motions in wall-bounded turbulent 

shear flows are much more involved than free turbulent shear flows (see, for 

instance, the review by Cantwell 1981). However, some of the theoretical ideas that 

evolved in the above discussions are more relevant to the free shear flow problem, 

which is the main subject of this article. 

For free turbulent shear flows it is not necessary to conjecture that the local 

fine-grained turbulence rearranges itself to give bursts of white noise in order to 

maintain the hydrodynamically "unstable" waves as for wall-bounded shear flows, nor 

does there appear to be experimental evidence indicating such a mechanism. It is easily 

seen that the existence of large-scale coherent motions in free turbulent shear "flows 

. " 

would be a manifestation of hydrodynamic instability associated with local inflectional 
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mean velocity profiles. This would account for the observed pronounced large-scale 

and, what appears now, wavelike structures in this class of flows (Corrsin 1943, 

Townsend 1947, Roshko 1954, 1961, Grant 1958, Bradshaw et al 1964, 

Mollo-Christensen 1967, Brown and Roshko 1974, Papailiou and Lykoudis 1974). The 

present impetus about the existence and importance of large-scale coherent structures 

in free turbulent shear flows is essentially brought about by optical observations of 

such flows (e.g.; Brown and Roshko 1971, 1972, 1974) where such structures having 

been almost obscured by previous correlation measurements. Prior to the more recent 

recognition of the role of coherent structures in turbulent free shear flows, it was 

widely thought that such flows were independent of initial and environmental 

conditions (Townsend 1956, Laufer 1975). The experiments of Crow and Champagne 

(I971) and Binder and Fa vre-Marinet (1973) pointed out the distinct possibilities of 

controlling the downstream development of the jet flow oscillations via the upstream 

forcing of the large-scale coherent structure. This has an enormous implication with 

regard to technological applications, such as jet noise supression (Bishop et al 1971, 

Liu 1974a, Mankbadi and Liu 1981, 1984), mixing and instabilities in combustion 

chambers and chemical lasers (Carrier et al 1975, Marble and Broadwell 1977, 

Broadwell and Breindenthal 1982) to mention a few. Thus the study of large-scale 

coherent structures in free turbulent shear flows is of technological interest not only 

because such structures directly and indirectly affect the local mixing but that they 

render the downstream flow controllable. 

The present. article is intended to address the physical problem of large-scale 
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coherent structures in real, developing free turbulent shear flows from point of view 

ofa broader minded interpretation of the nonlinear aspects of hydrodynamic 

stability. This, indeed, has to be the case in view of the presence of' fine-grained 

turbulence in the problem and, even in its absence, there exists the distinct lack of a 

small parameter. We shall present the discussion on the basis of conservation 

principles and thus on the dynamics of the problem. It is directed towards 

extracting the most physical information with the minimal necessary computations and 

thus must necessarily involve approximations. As such, the discussions presented 

here are seen to supplement other works using methods such as numerical simulation 

or straightforward inviscid linearized stability theory and other kinematical 

in terpreta tions. 

-7-



II. FUNDAMENTAL EQUATIONS AND THEIR INTERPRETATION 

A. GENERAL DESCRIPTION AND A VERAGING PROCEDURES 

Both visual observations and unconditioned quantitative measurements of turbulent 

flows sample the total flow quantities. Flows that occur naturally or in the laboratory do 

so without regard to the artificial separation into mean and fluctuating quantities. On 

the other hand for purposes of understanding and, particularly, for possible flow control 

the Reynolds (1895) type splitting of the flow into mean flow and fluctuations is helpful. 

This has been particularly useful in problems of hydrodynamic stability (Lin 1955). Flow 

instabilities are efficient extractors of energy from the mean motion under certain 

conditions and it is thus not overly simplistic to say that instabilities can thus be 

controlled via appropriate alterations of the mean motion. It would be most difficult to 

gain insights into the problem if viewed on an overall basis without regard to such 

Reynolds splitting. With the present widespread recognition of the important. role of 

large-scale coherent structures in turbulent shear flows, the usual Reynolds splitting has 

become inadequate in that it blends the coherent structures and the "real" fine-grained 

turbulence. While the latter is most likely to be "universal" the former definitely is 

not. Particularly if it is argued (Uu 1981) that the large-scale coherent structures in 

turbulent shear flows are a manifestation of hydrodynamical instabilities. Such 

instabilities are attributable to different specific mechanisms such as dynamical or 

inertial instabilities associated with inflexional mean flows, centrifugal instability .in the 

Taylor vortex problem, viscous instabilities in wall bounded shear flows and so on. Th"us 
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it is not at all surprising that in Reynolds stress modelling for turbulent shear flows 

that include all fluctuations as "turbulence", the closure constants are by no means 

universal but that they are dependent upon the problem concerned. Of course, one 

would generally not entertain ideas of using such closure methods for nonlinear 

hydro dynamical stability problems. This should also be the case for the coherent 

structure problem in turbulent shear flows. 

The suggestion· of Liepmann (1962) that perhaps the properties of large-scale 

structures could best be studied by well-controlled forcing, similar to the experimental 

study of Tollmien-Schlichting waves, leads us to the natural synthesis of numerous 

theoretical ideas. With the fixing of the phase of the large-scale motions, appropriate 

conservation and transport equations could be derived for the large-scale coherent 

motions, the modulated fine-grained turbulent stresses and the mean motion problem. 

The relevant description of the devleopment of the large-scale motion is inherently 

nonlinear, for which a broader interpretation of ideas from nonlinear hydrodynamic 

stability theory (Stuart 1958, 1960, 1962a, b, 1971a) will naturally follow. This would 

be coupled with the fine-grained turbulence problem through the modulated- and 

Reynolds-mean stresses for which the large-scale coherent motions have already been 

separated out. In this case Reynolds-stress closure (see, for instance Lumley 1978) 

ideas applied to the fine-grained turbulence could be judiciously drawn. This was 

somewhat anticipated by Lumley earlier (1967, 1970). The formalism leading to the 

derivation of the conservation and transport equations for the monochromatic 

perturba tion problem, originally intended for the study of imposed 
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Tollmien-Schlichting waves in a turbulent channel flow (Hussain and Reynolds 1970a; 

Reynolds and Hussain 1972) is more relevant as the starting point for the study of 

large-scale coherent motions in frec-mrbulent shear flows (Elswick 1971). In the 

subsequent exploration of the consequences of the basic equations, we shall make use 

of the richness of ideas from nonlinear hydrodynamic stability, particularly in the 

interpretation of observations. 

The study of a monochromatic large-scale disturbance in a turbulent shear flow is 

of considerable difficulty in itself, since any such study relevant to observations must 

necessarily take into account its interaction with the fine-grained turbulence as well 

as the mean motion (Liu and Merkine 1976, Alper and Liu 1978, Gatski and Liu 

1980, Mankbadi and Liu 1981, Liu 1981). We shall, however, present the derivation 

of the more general fundamental equations with multiple large-scale mode interactions 

in mind. To this end, the idea (Stuart 1962a) of splitting the coherent modes into 

odd modes and even modes is used. Originally Stuart (1962a) used this framework to 

illustrate the energy transfer mechanism between the fundamental disturbance and its 

harmonic. For the subharmonic problem one can in turn reinterpret that the previous 

first harmonic mode is now the fundamental component and that the previous 

fundamental mode as the present subharmonic component. In mixing regions and jets 

it is now well known that spatially occurring subharmonics take place (see, for 

instance, Freymuth 1966, Miksad 1972, 1973, Winant and Browand 1974, Ho and 

Huang 1982, Hussain 1983). 

Accordingly, we shall consider that any flow quantity q can be split into 
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_ A 

q=Q+(q+q)+q', (2.1) 

where Q denotes the mean flow quantity obtained by Reynolds averaging, q the odd 

A 

modes, q the even modes and q' the fine-grained turbulence. In the usual Reynolds' 

framework (q+q+q ') would be considered as turbulence. 

The form of the Reynolds averaging procedure would be attached to the type of 

_ A 

periodicity associated with (q+q). In the hydrodynamic stability sense the spatial 

problem, as is usually found in laboratory wind tunnels or water channels, is where the 

mean flow develops and spreads spatially and the amplitudes of coherent modes (or wave 

envelopes) grow and decay in the streamwise direction; the periodicities are in time. 

Consequently, the time average, denoted by an overbar, over at least the longest period T 

(of frequency 13) would be the appropriate Reynolds average 

I fT q = Q = T 0 q dt. (2.2) 

In this case we denote the special conditional average, which here is the phase average 

geared to the frequency 13, by < > 

N 

<q> =.i: 2 q(Xi,t + ~), (2.3) 

. n=O 

where xi is the spatial coordinate, t is the time. A "layman's" interpretation of this can 

best be visualized by considering that hot wire signals, taken at a given spatial location, 
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are recorded as a continuous function of time on tape. The average is performed by 

adding the signals at N number of the interval T (or 13-1) and then dividing by N. This is -, 

somewhat related to the limited-time-averaging procedure used in turbulent boundary 

layers where the phase is not fixed by forcing (see, for instance, Blackwelder & Kaplan 

1972). The average (2.3) will pick up all the coherent mode contributions from 

frequencies, mt3, where m is an integer. The phase average of linearly occurring 

fine-grained turbulence signals is zero, <q' > = 0, while <Q> = Q. Thus 

/\ 

<q> = Q + q: + q. (2.4) 

The sum of odd and even modes is obtained from 

- /\ <q> - q = q + q. (2.5) 

We denote further a similar phase average tied in with frequency 213 by « » so 

that, with «q:» = 0, the even modes are obtained from 

/\ /\ 

«q:+q» = q. (2.6) 

The 2t3-phase average picks up all the m(2t3) contributions, with m being an integer. The 

odd modes are then explicitlypbtained by subtracting (2.6) from (2.5). For linearly 

occurring flow quantities, (2.6) is equivalent to the procedure in directly performing the 

2t3-phase average upon the total signal «q» - Q = q. However, for nonlinear quantities 

this latter procedure would give rise to the introduction of the Reynolds average of 

partially-modulated fine-grained turbulence stresses which are to be necessarily 
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augmented by their corresponding transport equations, thereby unnecessarily complicating 

the issue further. To anticipate the more straightforward procedure indicated by (2.6), 

A 

the corresponding modulated turbulent stress, f ij and r ij are obtained from'the products 

of fine-grained turbulence velocity fluctuations through 

_ A 

<u 'u ') - u' u' = riJ· + riJ·' 
i j i j 

(2.7) 

and, applying the 2-/3 phase average to both sides of (2.7), we obtain 

-- A 

«( <u ' u' ) - u' U 1\ > > = r··. i j J 1J (2.8) 

In this case, only the appropriate Reynolds stresses 

<u'u') = u'u' 
i j i j 

would occur in the nonlinear equations. 
, , 

(In the undesirable procedure, «Uj Uj », 

which is not equivalent to ui uj, would be introduced). 

The temporal problem is illustrated by the tilting tube experiment, where a lighter 

liquid is placed on top of a heavier one (e.g., Thorpe 1971); a slight tilt sets up a 

mean shear layer that is homogeneous in the "horizontal" direction which then spreads 

vertically as a function of time. In this case, the coherent modes are spatially 

periodic and the amplitudes or wave envelopes develop in time. The appropriate 
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Reynolds average would be the horizontal average over the longest spatial wavelength A 

I fA q =;: 0 q dx. 

The appropriate < >-phase average in this case is 

I 
<q> =­

N 
2' q(x+nA,y,z,t). 

n=O 

The sub harmonic in this case would have wavelength 2A. The« »-phase average in 

obtaining the even modes is entirely similar to the spatial problem. 

The temporal problem is similar to the prevailing numerical simulation techniques 

in that. the Reynolds average is taken with respect to the spatial direction and the 

Reynolds mean flow grows or decays in time. In the laboratory situation, the 

Reynolds averaging procedure is with respect to time. The contrasting situations· have 

been referred to as the "temporal" and "spatial" problems, respectively, in the 

hydrodynamic stability literature. The transformations between the two cases are 

given significant discussions (Gaster 1962, 1965, 1968) for linearized problems. For 

nonlinear problems the transformation between the two situations is achievable only 

on a "mimicking" basis with the use of some convection velocity. There is, however, 

no suitable velocity available to achieve physical identicalness between the temporal 

and spatial problems, particularly for the large .scales. 

In cases where "three-dimensional" coherent modes are important, such as the 
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spanwise periodicities in the plane shear layer (Huang 1985, Corcos and Lin 1984, 

Jimenz 1983) or the helical modes in the round jet (Mankabadi and Liu 1981, 1984), 

the averages already discussed would have to be supplemented by those 'pertaining to 

the spatial periodicities of the "three dimensonality" problem. For instance, as part 

of the Reynolds average these would introduce spanwise averaging pertaining to the 

span wise periodicities in an otherwise basic two-dimensional flow or circumferential 

averaging pertaining to helical coherent modes in an otherwise round jet. 

B. EQUATIONS OF MOTION 

We begin with the continuity and Navier-Stokes equations for an incompressible 

homogeneous fluid 

au· 1 
-=0 
ax· 1 

aUi aUi ap a2Ui 
-- + U· --= - -+ v--, 
at J ax· ax· a 2 J 1 x. 

J 

(2.9) 

(2.10) 

where v is the kinematic viscosity; the density has been absorbed into the pressure p. 

If we substitute the splitting of flow quantities (2.1) into (2.9) and (2.10), the 

Reynolds average of the total flow produces the mean flow problem 

au· 1 
-=0 
ax· 1 
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....: 

DUi ap a
2
Ui a =-=- A A --

-= - -+ v --- -(u·u· + u·u· + UIU I ) 
D t ax· a 2 ax . 1 J 1 J i j , 

1 x. J 
(2.12) 

J 

where D/Dt = a/at + uja/aXj. If we deal with the spatial problem, the mean flow 

is steady then D/Dt = uja/aXj. For the temporal problem then D/Dt = a/at 

according to the discussions of Section II.A. In the subsequent section we will retain 

such usage and interpretation of D/Dt. After the < >-phase averaging of the total 

flow and subtracting out the mean flow, the overall large-scale motion is given by 

_ A 

a(ui+ui) 

ax· 1 

= o. 

a2(Ui+~i) 
+v 

ax2 
j 

(2.13) 

(2.14) 

where the modulated fine-grained turbulent stresses are already defined in (2.7). In 

obtaining (2.14) the property that the coherent motions and the turbulent fluctuations 
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are uncorrelated is used. Equations (2.13) and (2.14) for the overall large-scale 

motion (ui+~i) appear in the same form as that for a monochromatic disturbance (e.g., 

Hussain and Reynolds 1970b). 

Following the procedure indicated by (2.6) and (2.8), we perform the « »-phase 

average on (2.13) and (2.14) to obtain the conservation equations for the even modes 

a~· 1 
-=0. ax· 1 

au. A 2A -- a; .. D A A 1 ap a u· a A A A A a -- IJ 
u· + u· - = - - + v.:........::l.. - - (u·u·-u·u·) - - (U·U·-U·U·) - --

D t 1 J ax. ax. a 2 ax . 1 J 1 J ax . 1 J 1 J ax . . 
J 1 x. J J J 

J 

(2.15) 

(2.16) 

We note that the products of odd modes, such as UiUj, contribute to the even modes 

and thus «uiUj» reproduces itself, UiUj. The nonlinear effects of even-mode 

self-interaction, ~i~j' produces even modes as well. If we subtract (2.15) and (2.16) 

from (2.13) and (2.14), respectively, the conservation equations for the odd modes are 

obtained 

D au· 1 
- U· + U· ---
Dt 1 J ax· J 

-
aj) 

au· 1 

ax· 1 

-- + ax· 1 

- O. (2.17) 

a2- ar·· u· a A A 1 IJ 
v -- -- (u·U ·+u·u·) (2.18) 

ax2 ax. 1 J 1 J ax· J J j 

It is noted here that nonlinear effects formed by the products of even modes with 
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A _ /\ 

that of odd modes, UiUj and UiUj, give rise to odd mode contributions. The system 

(2.15) through (2.18) forms the starting point for studying nonlinear interactions 

between coherent modes themselves and between coherent modes and' fine-grained 

turbulence. The second term on the left of (2.16) and (2.18) is the advection of 

mean flow momentum by the coherent motion and forms the basic mechanism of 

shear flow hydrodynamic instabilities (Lin 1955). The mechanism of viscous 

diffusion of momentum is augmented by the modulated stresses of the fine-grained 

turbulence. The transport equation for these stresses will be obtained in the sections 

to follow. The nonlinear effects, which are appropriately split into even- and 

odd-mode contributions in (2.16) and (2.18), respectively, contribute to coherent-mode 

amplitude limiting mechanisms as ideas from nonlinear hydrodynamic stability would 

indicate (Stuart 1958, 1960, 1971). The momentum equation for the mean motion (2.12) 

indicates that finite-coherent mode disturbances, as would the fine-grained turbulence, 

affect the mean motion through their respective Reynolds stresses. We also note that 

the effect of the fine-grained turbulence on the mean motion and on the coherent 

motion occur in the form of stresses, through the Reynolds average and the phase 

average, respectively. The detailed, instantaneous fine-grained turbulence motions are 

thus not directly involved. Hqwever, for purposes of obtaining the Reynolds stresses 

and modulated stresses, the conservation equations for the instantaneous turbulent 

fluctions are stated here, which are obtained from the continuity and Navier-Stokes 

equations for the total flow quantity by subtraction of the contributions from the 

mean flow and coherent modes, 
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au.' 
1 

-=0. 
ax· 1 

au' a2u' 
D au i A i a A ap • i 

u' + u' -- + (U·+u·) -- + u' -- (U·+u·) = - -- + v--
Dt i j aXj J J aXj j aXj 1 1 aXi ax~ 

J 

a 
- -- (u'u' - <u ~u! ». 

aXj i j 1 J 

C. KINETIC ENERGY BALANCE 

(2.19) 

(2.20) 

The physical mechanisms underlying the coupling between different scales of 

motion indicated by the momentum equations can be better illustrated by energy 

considerations. Although the fluctuation kinetic energy equation can be obtained from 

its' Reynolds stress equation by equating indices, we prefer to deal with the Reynolds 

stresses and the modulated stresses separately in the subsequent section. Here, we 

shall obtain the kinetic energy equations directly for the various scales of motion by 

multiplying the relevant ith-component momentum equation by the corresponding 

ith.component velocity and summing. 

The mean flow energy equation is obtained by multiplying (2.12) by Ui' 

D . a t [- - -) 1 [- - -) aUi u 2 /2=---PU·+ u·u-+~·~·+u'u' U· - -u·u·-~·~·-u'u'--
Dt i ax· J 1 J 1 J i j 1 1 J 1 J i j ax. 

J J 
transport exchange 

+v (2.21) 
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A comment about the viscous terms in (2.21) is warranted. These are common to 

similar terms in the energy equations for the other components of the flow. The 

form in (2.21) is written for convenience, the first viscous term being interpretable as 

the viscous diffusion of kinetic energy. The second viscous term, though the 

negative of positive-definite quantity, is not the actual viscous dissipation rate. The 

less convenient but physically meaningful form of the viscous effects is as follows. 

The rate of viscous dissipation is of the form 

2 

!. v [au i + au j 1 
2 ax· ax· ' J 1 

and is combined with the "viscous diffusion" term in the form 

where, through the use of continuity 

a2u·u· au· au· 1 J 1 J --- - ----
ax· ax' 1 J ax· ax· J 1 

(2.22) 

(2.23) 

(see, for instance, Townsend (1976». The form appearing in (2.21) will be used 

throughout, with the physical interpretation through (2.22) and (2.23) kept in mind. 

The first group of terms on the right of (2.21) include the pressure work and the 
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transport of mean flow energy by the Reynolds stresses of the even - and 

odd -coherent modes and the fine-grained turbulence. The second group of terms is 

the energy exchange mechanism between the mean flow and the' fluctuations 

consisting of the coherent modes and the turbulence. If 

--~-- aUi 
(-iHi·-u·u·-u 'u ') - > 0 

1 J 1 J i j ax. 
J 

then there is a net energy transfer from the mean flow to the overall fluctuations; the 

opposite is true if the sign is negative. Of course, this interpretation holds for the 

individual components of the fluctuations as well. 

The energy equation for the odd modes is obtained from (2.18) by multiplying by iii 

and then performing the Reynolds average, 

- [ 1 D- a-I\----
- ii2j2 = - - pii+u.u2j2+u·r.. + 
Dt i ax· J J i 1 IJ 

J 

transport exchange 

(2.24) 

The contributions within the first group· of terms on the right represent, 

respectively, the pressure work, transport of odd-mode energy by the even modes and 

by the modulated fine-grained turbulence. The second group of terms include. the 
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mechanism of energy exchange between the odd modes and the mean flow, 

fine-grained turbulence and the even modes, respectively. If 

- aUi 
-ii·u· -- > 0 

1 J ax. ' 
J 

energy is transferred from the mean flow to the odd modes and this term has the 

opposite sign as that occurring in the mean flow energy equation (2.21). If 

aiii 
-r·· -- > 0 

1J ax. ' 
J 

energy is transferred from the odd modes to the fine-grained turbulence via the work 

done by the modulated stresses fjj against the odd-mode rates of strain BiijlBxj. If 

a~· _ _ 1 

-u·u· -- > 0 
1 J ax. ' 

J 

then energy is transferred from the odd modes to the even modes. The viscous terms 

are similar to those occurring in the mean flow equations and have the similar 

interpretations already discussed. 

The energy equation for the,even modes is similarly obtained from (2.16), 

"D A2 a 
-u /2 = --
Dt i aXj [

AA A A2 --A--;:;:-j 
pu·+u·u /2+u·ii·u·+u·r·· + J J i J 1 1 1 1J 

transport 
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[ 
- au· t a~.] [ a~ .]] + _~.~. __ 1 __ ~ •• _1_ _ -u.IT. _I_ 

I J ax. IJ ax. 1 J ax. 
J J J 

(2.25) 

exchange 

Again, the first group of terms on the right of (2.25) represent pressure work, 

transport of even-mode energy by itself, by the odd modes and by the modulated 

fine-grained turbulence. The second group represents energy exchanges between the 

even modes and the mean flow, fine-grained turbulence and the odd modes. The first 

and third of these have opposite signs to similar terms in (2.21) and (2.24), 

respectively. The viscous terms need no further comment. 

The kinetic energy equation of the fine-grained turbulence is obtained from (2.20) by 

multipl;ing by ui, first < >-phase averaging and then Reynolds averaging, 

D 
- U 12/2 
Dt i 

a [--= - -- plu! + u!u!2/2 + (u· 
ax· J J 1 J 

J 

- A A) ] E r·· + U· E r·· /2 
.11 J.11 
1 1 

transport 

+ -u IU I - + -f·· - + -r··-
[ 

- aUi [ aUi ] [A a~i]] 
i j aXj IJ aXj IJ aXj 

+V---­
ax2 

j 

exchange 

_ V [ 8uj
l 

]2 
ax· 

J 
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The first group of terms include the usual pressure work and self-transport and the 

transport of fine-grained turbulence energy by the coherent fluctuations. The first 

term in the second group of terms, commonly known as the turbulence production 

mechanism, has the sign opposite that of the similar mechanism in the mean flow 

energy equation (2.21), the second and third terms are the energy exchange 

mechanisms involving the odd and even modes, respectively. They have opposite 

signs to their counterparts in (2.24) and (2.25), respectively. The combined viscous 

effects include, again, "diffusion" and rate of viscous dissipation previously 

interpreted. 

We note here that the advective mechanism in the momentum equations provide 

in the kinetic energy equations mechanisms of transport and of energy exchanges 

among the various scales of motion. From the structure of the latter mechanism 

occurring in the same form but of opposite sign in a "binary" interaction, we have 

emphasized energy exchanges rather than "production". The latter perhaps implying 

too often the regulation of the directon of energy transfer in terms of a (positive) 

eddy-viscosity effect. For instance, from hydrodynamic stability it is well-known 

that energy could return from fluctuating motions to the mean flow (a "dampled" 

disturbance in the inviscid s_ense). In the next section we shall consider the 

consequences of vorticity considerations. One would expect vorticity-magnitude 

cx~hangcs among the different scales of motion to arise from advective effects but 

that no such exchanges would result from the vorticity-stretching and tilting effects 

in three-dimensional motions. 
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D. VORTICITY CONSIDERATIONS 

There is an extensive discussion of the role of mean and fluctuating vorticity, 

within the context of the Reynolds splitting procedure in turbulent flows, in 

Tennekes and Lumley (1972). Some aspects of the role of coherent-mode vorticity in 

turbulent shear flows and the resulting interactions between different scales is given 

attention in Mollo-Christensen (I971). The vorticity equation, which is obtained by 

taking the curl of the momentum equation (2.10), is in a way simpler in form for 

the description of fluid motion in that it is devoid of the presence of the pressure. 

Let us define the overall vorticity in the "shorthand" notation, 

where € ikm is the alternating tensor. It has the property that € ikm = 0 if any hvo of 

ikm are the same; if all ikm are different and in cyclic order then €ikm = 1, but is equal 

to -1 if the cyclic order is disrupted by the interchange of any two numbers. The overall· 

vorticity equation, obtained by taking the curl of (2.10) is 

aw· aw· au· 1 1 1 
--+ u· --=w·- + 
at J -ax . J ax· 

J J 

(2.27) 

In addition to the continuity condition aUjlaxJ = 0, we shall also make use of the 

condition aw/aXj = 0 in the splitting procedure to follow. The nonlinear advective term 
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on the left of (2.27) will anticipate the transport of vorticity and vorticity exchanges 

among the different scales of motion, similar to the interpretations of the kinetic 

energy balances. However, the vorticity stretching (i = j) and tilting (i ~ j) 

mechanism on the right of (2.27) will anticipate net intensification of vorticity: 

while the mechanism of vorticity exchanges are present even for plane (coherent) 

motions, the net intensification mechanism is necessarily a three-dimensional 

phenomenon. 

Similar to the overall velocity splitting, we let 

_ A 

w· = o. + w· + w· + w' 1 -'1 IIi' 

where ni' Wi, wi and wi are the mean vorticity, odd- and even-mode vorticity and 

turbulent vorticity, respectively. The procedure in obtaining the individual vorticity 

equations is similar to that for the momentum equations. At this stage it is helpful 

to introduce the symmetrical, rate of strain tensor 

1 au· au.] s .. = _ [_1_ + _J_ 
IJ 2 ax· ax· J 1 

specifically for use in the vorticity stretching/tilting mechanism. Thus 

au· 1 
w· --- w's" J ax. - J IJ' 

J 

to which the antisymmetrical, rotational part of aUi /aXj' make no contribution. The 
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occurrence of Sij in the present context then readily identifies the stretching/tilting 

mechanism~ whereas the occurrence of Uj identifies the advective role of the fluid 

velocity. In what follows the stretching/tilting mechanism will be referred as "stretching" 

for simplicity. The splitting of sij into appropriate flow components readily follows. 

The mean flow vorticity equation is then 

D a @M ~-) - n· = - -- u·W·+u·w·+u 'w' + Dt 1 ax. J 1 J 1 j i 
J r -] a2n. .s .. + p.s .. +W.~ .. +w's'] + V __ 1_ 

J IJ J IJ J IJ .. . 2 
J IJ ax 

j 

(2.28) 

transport stretching 

. The first group of terms on the right of (2.28) is the transport of vorticity by the 

fluctuating motions, the second group includes the net intensification of mean 

vorticity by the rates of strain of the mean flow and that of the fluctuations. 

Equation (2.28) differs from the vorticity equation in a laminar viscous flow·, which 

would have the same form as (2.27), through the fluctuation contributions to vorticity 

transport and stretching in the mean. 

The vorticity equations for the odd- and even-modes are, respectively, 

E. Gj. = _ ~ ru.n.+u.w.+~.Gj.+ffi .. ] + 
Dt 1 ax. L J 1 J 1 J 1 Jl 
. J [ 

-] a2(J. _ _ _" ,, __ . 1 

n·s··+w·S· ·+w·s· ·+w·s· ·+c· + v --J IJ J IJ J IJ J IJ 1 2 ' ax. 
J 

(2.29) 

transport stretching 
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transport 

A A A A 

+ ( u ·w·-u ·w·) J 1 J 1 + ~ .. ] J1 

f
A - -] a2

W· A __ __ AA AA A 1 
+ n·s·· + w·S·· + (w·s· ·-w·s··) + (w·s· ·-w·s··) + c· + V --J 1J J 1J J 1J J 1J J 1J J 1J 1 2 . ax. 

J 
stretching 

(2.30) 

Similar to the introduction of the modulated fine-grained turbulence stresses r ij and ; ij' 

we have defined and used the modulated fine-grained turbulence-produced transport and 

stretching effects, respectively 

<u 'w' > - u 'w' = m·· + ~ .. j i j i J1 J1' 

-- - A 

<w ' s' > - w' s' = c· + c· j ij j ij 1 1" 

The vorticity transport effects, reflected by the first group of terms on the right of 

(2.29) and (2.30), are due to interactions with the mean flow, mode interactions and 

that due to the fine-grained turbulence. The second group of terms in (2.29) and 

(2.30) are due to vorticity stretching and tilting. In the odd -mode vorticity equation 

(2.29), the effects of 
A 

(n·+w·)S· . J J 1J is due to the stretching of the mean and the 

A 

stretching even-mode vorticity by the odd-mode rates of strain, while w/Sij+s ij) is the 
.. 
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of odd-mode vorticity by the rates of strain of the mean flow and of the odd 

modes; ci is contribution from modulated-stretching effects due to the fine-grained 

A A 
turbulence. Similar interpretations hold for njs ij and WjSij found in (2.30). However, 

the nonlinear effects of odd-mode vorticity stretching by the odd-mode rates of strain 

(Gi·g· .-rr.:) give rise to even-mode contributions, similar to the nonlinear effects 1 IJ J IJ 

present in the even-mode momentum equation (2.16). The vorticity stretching due 

-AA AA 

self -straining effects of the even-mode (wis ifWjS ij) give rise to even contributions. 

Similar odd-mode and even-mode self-interactions give rise to the nonlinear transport 

effects in (2.30). These two nonlinear self-interaction effects are peculiar to the 

even-mode vorticity only, whereas similar stretching and transport effects for the 

odd- mode vorticity come from even-odd mode interactions only. 
A • 

In (2.30), ci IS 

again the even part of the modulated fine-grained turbulence vorticity stretching 

effects. Finally, the diffusion of vorticity by viscosity are the last terms (2.29) and 

(2.30). 

In the description of the evolution of the vorticies of the mean flow and of the 

odd and even modes, the fine-grained turbulence enters into the problem through 

Reynolds averaged quantities, uJ w; and w' s; j in (2.28) and through the modulated 

quantities mji,ci and mji,Ci in p.29) and (2.30), respectively. The transport equations 

for such quantities could be readily obtained~ if desired, through the instantaneous 

equation for w; in conjunction with that of u; given by (2.20). 
. , 

The equatIon for Wi 

-
will be stated here, which will subsequently be used to obtain the magnitude w? /2. 

The fine-grained turbulence vorticity equation is obtained in a similar way as that 
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I 

for ui' 

~ WI = -~ [u 1(~+W'+w.) + (ii:+~')W'+U IW I - <u.'w.' >] 
Dt i aXj j 1 1 J J i j i J 1 

transport 

a2w~ 

~ A A ] ~ + (n·+w·+w·)s I + WI (S' '+'5. '+s") + wls I - <wls I > + V --J J J .. . IJ IJ IJ .. . .. . . 
IJ J J IJ J IJ a 2 

X. 
stretching J 

(2.31) 

The transport effects are immediately obvious, that due to turbulent transport of the 

total coherent vorticity present, the transport of turbulent vorticity by the coherent 

fluctuations (transport by the mean flow is already accounted in the left side of (2.31», 

and effects of self-transport. The turbulent vorticity stretching is contributed by the 

presence of total coherent vorticity in the rate of strain field of the turbulence, and the 

presence of turbulent vorticity in the total coherent rate of strain field and the 

self -stretching effects indicated by w; sb - <w; s; j >. The viscous diffusion of turbulent 

vorticity being obvious. 

While the physical understanding of the interactions among the various scales of 

motion was provided by the energy considerations in Section II.C, similarly, 

understanding of interactions between the mean and the various scales of fluctuating 

vorticities would be provided by the "magnitude" of vorticities nr,wf,wr and w?, 

known as the enstrophy (e.g., Pedlosky 1979). ····The derivation of transport equations 

for such quantities is similar to that of the energy equations. The mean flow 
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problem is obtained from (2.28) by multiplying by ni , with some rearrangements, 

D 
- n2/2 = 
Dt i 

~ [no [u.w.+~.w.+~]] ax. 1 J 1 J 1 j i 
J 

transport 

[
=--=-~ _] ani 

+ u ·w·+u 'W'+u I w' -­
J 1 J 1 j i ax. 

J 

exchange 

+ n· w·s· ·+w·s· ·+w I S I + n·n·s·· + -- n2/2 -[ ~_ - -] ] a2 

1 J IJ J IJ .. . 1 J IJ 2' 
v[ani ]2 

aX' J J IJ ax 1 
. j 

(shared) (self) 

stretching 

(2.32) 

The transport of nt /2 by the fluctuations, indicated by the first group of terms on the 

right, is entirely analogous to that for the mean kinetic energy. The exchange of 

vorticity with the fluctuations is indicated by the second group of terms on the right and 

these are analogous to the similar exchange mechanisms for the kinetic energy. As we 

have emphasized already, the mechanisms of transport and exchange of the square of 

vorticity is affected by the advection mechanism in the momentum equation. The third 

group of terms on the right of (2.32) is the intensification of nr /2 due to the effect of 

stretching of fluctuation vorticity by the rates of strain of the fluctuations and the 

stretching of mean vorticity by the mean rates of strain. The viscosity effects, indicated 

by the sum of the fourth and fifth terms on the right include the viscous diffusion of 

nr /2 and its rate of viscous dissipation. If the mean flow is two-dimensional then the 

self -stretching mechanism n·n·s· . 
1 J 1 J vanishes. If 
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two-dimensional the intensification of nr /2 due to stretching of the coherent-mode 

vorticity ni(wiij+Wi~ij) by the coherent mode rates of strain would also vanish, 

-.-;­
leaving the only stretching mechanism due to the turbulent fluctuations niwj si j 

(where i = 3 and the motion is in the 1-2 plane, say). 

The equations for the square of the odd- and even-mode vorticities are, 

respectively 

D- a ~ --- [ 1 an· ae,. aw· 111 - w2/2 = - - u·w /2 + w·rn.. -
Dt i ax· J i 1 J1 

IT·w· -- + IT·G)· -- - m .. --
J 1 ax. J 1 ax. J1 ax. 

J J J J 

transport exchange 

+ [[ n Pf ij+w{Ci J + [Wi Wj Sij+wi<:'lij J + WiWhj 1 
(shared) (self) (other) 

stretching 

- ~- ] D =2 a" ,,2 ,,---;;-;-
- W /2 = - - u·w·/2 + w·u·G)· + w·m .. Dt i ax. J 1 1 J 1 1 J1 

J 

transport 

+ [ h~sitW iCi J + w ·w ·s· ·+w ·w ·s·· ['" '" '" '" ] 
1 J IJ 1 J 1J 

(shared) (self) 

stretching 

-] '" '" + W·W ·s .. 
1 J 1J 

(other) 
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2 ~" ]2 a - aw· 
+ v - w~ /2 _ v _1 

ax~ 1 aXj 
J 

(2.33) 

(2.34) 



In the above two equations, (2.33) and (2.34), the first group on terms in the right 

represents the transport of the mean square coherent-vorticity fluctuations by the 

coherent-mode fluctuations and by the modulated turbulent fluctuations.' The latter 

A 

is associated. with the modulated turbulent vorticity transport IDji" and mji. These 

transport effects are similar to those for the transport of coherent-mode kinetic 

energies. The second group of terms on the right side include the exchange of 

coherent-mode mean square vorticities with the square of the mean flow vorticity 

associated with 8ni/8xj. The signs of these effects in (2.33) and, (2.34) . are opposite 

to those in (2.32). Similar exchanges exist between odd-and even -mode mean square 

vorticies as indicated by the opposite signs of UPiaW/8xj in (2.33) and (2.34). The 

exchange mechanisms with the fine-grained turbulence, as will be anticipated in the 

transport equation for W?/2 to follow, are given by IDji8W/8xj and ~jiaW/8xj. 

The form of these exchange mechanisms have in common the product between the 

vorticity flux of one component of flow and the vorticity gradient of another. 

These are analogous to the kinetic energy exchange mechanisms due to the product of 

a stress and a velocity gradient or rate of strain. The third group of terms on the 

right side of (2.33) and (2.34) is the effect of intensification of wr /2 and w r /2, 

respectively, due to vorticity s!retching. The effect due to interaction between the 

mean vorticity and fluctuating rates of strain of the coherent mode, npiSij and 

njWi~ij' give rise to an overall intensification rate of wr/2 and wr/2, respectively, that 

are due to the modulated turbulent vorticity and rates of strain fluctuations. As 

-33-



will be apparent subsequently, the sum of these rates of intensification are the same 

as . that for w? /2. The stretching effects due to the mean flow rates of strain, 

A"'"A 
wiw jSij and WiWjS ij' are not "shared". Finally, the middle group' of terms in 

stretching group are due to coherent-mode rates of strain fluctuations' themselves. 

A A/\. 

Except for WiWjS ij' the other 'three self-stretching effects are due to odd-even mode 

in teractions. The sum of the last two terms in (2.33) and (2.34) are again due to 

the viscous diffusion and dissipation. 

Finally, the ev~lution equation for w{2/2 is 

D -, a 
-w. 2/2 = -­
Dt 1 aXj 

transport 

+ [[n,~ +w.c.+W.C.) + w'w' 5' 
J i ij 1 1 Iii j ij 

(shared) (self) 

+v---­
ax2 

j 

_ vfawi]2 
aX· 

J 

stretching 

rr an· 00· ~. ] 1 1 A 1 
u'w' --+ m·· --+ m··--
j i ax· Jl ax· Jl ax· 

J J J 

exchange 

-- A A 

+ w'w'S + (;-.. ; .. +r .. s .. ) " -] 
i j ij '" IJ IJ "'IJ IJ 

(other) 

(2.35) 

We have defined <wi wj > in terms of the sum of its Reynolds mean and modulated parts 
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-- - A <W I WI> = WI W I + r •• + r •.. 
i j i j "lJ "lJ 

Both terms describing the transport of W?/2 on the right side of (2.35) are analogous 

to that for the turbulent kinetic energy (2.26); they are due to the turbulent 

fluctuations and the coherent-mode fluctuations. The first term in the vorticity 

energy exchange mechanism reflects an exchange of w{ 2/2 with Or /2, with the same 

term having opposite signs in (2.35) and (2.32); the second and third terms in this 

group are the vorticity exchange mechanisms between w{ 2/2 and that of the odd and 

even modes, wr /2 and wr /2, respectively. Again, these terms have opposite signs 

terms in (2.33) and (2.34). The intensification of w{ 2/2 due to vorticity stretching is 

again grouped into three effects. The first is that the total rate of intensification 

which is shared by other components of flow and are due to fluctuations of the 

I f · I I ~/ d h turbu ent rates 0 stram OjWi si j' which is in common with that for 01 2; an to t e 

---- . AA 
modulated fluctuations of the turbulent rates of strain (wici+wici) which is in 

common with the same stretching mechanism for the overall coherent-mode vorticity 

intensities. The second effect in this group in the stretching mechanism is due .to 

self-stretching. The last effect in this group consist of the stretching mechanism 

of rates of strain of the mean- flow and of the coherent modes. The last two terms 

are the familiar viscous effects. If the coherent fluctuations are predominantly 

two-dimensional in a two-dimensional mean flow, the only coherent-mode vorticity 

intensification from stretching effects are due to the modulated-stretching effects of 
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-AA 
the turbulence, wici and wici. Such two-dimensional coherent motions, however, fully 

participates in the transport of vorticity and, particularly, in the exchanges of 

vorticity with other scales of motions as is evident in (2.33) and (2.34). 

E.. THE PRESSURE FIELD 

Mollo-Christensen (1973) emphasized that the pressure fluctuations associated with 

one scale of velocity fluctuations may in fact have scales larger than the scale of such 

velocities. The pressure depends on the entire flow field since it is given by an equation 

of Poisson's type (Townsend 1956) in terms of the double spatial derivatives of the "stress 

tensor", UiUj (a special case of Lighthill's stress tensor Tij for the sound pressure 

generat~d by fluid motions, (Lighthill 1952; 1962». The question that naturally arises is 

what is the role of the pressure field in the light of the splitting procedure for flow 

quantities that we already used. We begin with the momentum and continuity 

equations. Taking the divergence of (2.10) and using (2.9), the equation satisfied by the 

pressure is 

a2p 
--= -

a2u·u· 
1 J 

ax· ax· 
1 J 

(2.36) 

Following similar splitting and averaging procedures in obtaining the momentum 

equations, we obtain the components of the pressure corresponding to that of the 

mean flow, coherent and turbulent fluctuations. The mean flow pressure field:- is 
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given by 

a2p a2 - ;::-;:: --
- = - [U.U.+ii-ii.+U'U'+U'U'] 
a 2 ax· ax . 1 J 1 J 1 J i J' , 

X. 1 J 
(2.37) 

1 

that of the odd-coherent modes by 

(2.38) 

and that of the even modes by 

(2.39) 

The instantaneous turbulent pressure fluctuations are given by 

a2
p' a2 ~ -] -- = - u·+u.+~.)u' + (TT..:+u '+u' )U' + (u'u '-u 'u') 
2 ax· ax . 1 1 1 J' - J J l i i J' i J' • ax 1 J 
i 

(2.40) 

The above individual "Poisson's equation" could also have been obtained from their 

" 
respective original momentum equations by taking the divergence and then using the 

continuity relation. The individual Poisson's equation has solution of the form 

I 
[TiJ'] dR(c '), ax'ax' 12£'-,2£1 

i j .. ::.". 

(2.41 ) 

where p represent any of the pressures above in (2.37) - (2.40) and [Tij] is the 
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corresponding "stress tensor" on the right side of the appropriate Poisson's equation, 

the pressure takes the field coordinates at ~ whereas [Tij] takes the same coordinates 

at ~' and dR(~ ') is a volume element occupied by the "sources". This illustrates that 

the pressure, though could be consistently split into mean, coherent and turbulent 

contributions, is a field quantity that depends on the appropriate overall flow field. 

A 

In the present context one is tempted to argue that even if Ui,iii and Uj flow fields 

. A 

were absent, i5 and p will be different from zero because of, respectively, the 

_ A 

modulated fine-grained turbulence stresses r ij and rij. However, the modulated 

A 

stresses are set up by the flow fields of the coherent modes, iii and ui. The 

contributions of large-scale structures to the far pressure field, or aerodynamic sound 

(Lighthill 1952, 1962), was recently addressed by Mankbadi and Liu (1984), 

supplementing earlier works on contributions from eddies of relatively low correlation 

radius. 

F- TIlE REYNOLDS AND MODULATED STRESSES 

The importance of Reynolds stresses is illustrated in Section II.B through the 

transport of mean flow momentum by the sum of all the Reynolds stresses of the 

fluctuations, much in the same way as the modulated stresses transport the 

coherent-mode momentum. In the energy considerations of Section II.C, the Reynolds 

stresses of all the fluctuations do work against the rates of strain of the mean flow, 

thereby effecting energy exchanges between the mean flow and the fluctuations: In a 
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similar manner, the modulated stresses do work against the rates of strain of the 

coherent modes, resulting in the energy exchange between coherent motions and the 

turbulence. The interactions between the coherent modes and the mean flow and 

between the coherent modes themselves involve coherent-mode stresses and these are 

taken into account in principle by the explicit consideration of the coherent-mode 

motions. 

In this section we shall obtain and interpret the transport equations of the Reynolds 

stresses and the modulated stresses of the fine-grained turbulence. We begin with the 

momentum equation for the instantaneous turbulent fluctuations ui given by (2.20) and 

multiply by uj then add to a similar equation through exchanging indicies i and j, first 

< >-phase averaging and then Reynolds averaging, we obtain 

D a 
-u'u' = ---
Dt i j aXk [

u'u'u' 
k i j 

transport 

--aui au· 

[rjk 
J 

-u'u' --- u'u' -
j k aXk i k aXk 

"Production" from mean 

[ 
ap' ap' ] u' -- + u' -- + V 

j ax· i ax· 
1 J 

action of pressure 

gradients 

au' a~i ]_ [ au· 1 A _ J 
--+ rjk r'k -- + 
aXk aXk 1 aXk 

"Production" from coherent modes 

viscous effects 

.. -',:. 

a~j ] 1\ 

qk 
aXk . 

(2.42) 

The kinetic energy equation (2.26), which is a contraction of (2.42), yield similar 
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interpretations for (2.42)0 Thus the development of Reynolds stresses is dictated by the 

balance on the right side of (2.42) between transport, "production" from the mean flow 

and from the coherent motions, the action of pressure gradients and viscous effectso 

The transport equation of the total modulated stresses (rij+;ij) is obtained from that 

< ' '> 0 , , of ui u j by subtractmg out the Reynolds mean ui Uj 0 It has the same form as that 

obtained by Hussain and Reynolds (I970b) for their monochromatic modulated stresses, 

D A 
- (fo o+ro 0) = 
Dt IJ IJ 

(nonlinear) (linear) 
Transport 

[
-a A -a A 1 u'u' -- (uo+U o) + u'u' -- (U+Uo) 

j k aXk IIi k aXk J J 

"Production" from mean flow Work done by mean stresses 

against coherent rates of strain 

~[ A a A A a _ A ] 

(rok+rok) - (uo+uo) + rrok+rok) - (uo+u o) 
J J ax 1 1 1 1 ax J J k k 

(nonlinear) Work done by modulated stress against 
coherent rates of strain 
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" 

- -] ap , ap , ap , ap , 
-- + u'-- - u'--+u'- + ax.l < i ax· > [J. ax· i ax.) 

1 J 1 J 

Action of pressure gradients 

a2 t aU.' au! 
_ v - (r .. +~ .. ) _ 2v 1_1 _J> 

ax2 IJ IJ \ aXk aXk 
k 

Viscous effects 

au.' au '.J 1 J 
- aXk aXk . 

(2.43) 

The physical interpretation of (2.43) is similar to that of (2.42). The right side of (2.43) 

indicate that the transport of the modulated stresses is due to that by the turbulent 

fluctuations in terms of the triple correlations and that by the coherent velocity 

fluctuations comprising the nonlinear contributions. The linear contribution to transport 

is due to the advection of the mean stresses by the coherent velocity fluctuations. The 

"production" of the modulated stresses is due to the work done by the modulated stresses 

against the mean flow rates of strain and that by the mean stresses against the coherent 

rates of strain; these two mechanisms are linear effects. The third "production" 

mechanism is the nonlinear effect of work done by the modulated stresses against t,?e 

coherent rates of strain. The remainder in the balance include the action of the pressure 

gradients and viscous effects. 

A 

Upon « »-phase averaging, the transport equation for (rij+r ij) would yield that 

A 

for rij. Upon subtraction of the latter from the former the transport equation for 

rij would be obtained. Before stating the individual transport equations for rij and 
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A 

r ij' we shall define certain symbols for ease of presentation. Following similar 

" , , A 

splitting of <ui Uj) - UjUj into rij and rij' we define the simplifying symbolic 

representations for the triple correlations 

_ A 

<u'u'u')- u'u'u' = QkiJ· + QkiJ·' k i j k ij 

for the action of· the pressure gradients 

ap' 
Iu' -) 
\ j aXi 

ap' 
{ u' -) 

i ax· J 

and for the viscous "dissipation" 

ap' _ A 

- u' -- = p .. + p .. 
J. ax· Jl Jl 

1 . 

ap' _ A 

- U.' -- = p .. + p .. 
1 ax· IJ IJ 

J 

au' au' au' au' 

<
_i ---1) __ i -.l. = "¢ .. + q, .. 
aXk aXk aXk aXk IJ IJ· 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

A 

The transport equations for the odd-mode rij and the even-mode qj are, respectively 

D 
- r·· = Dt IJ 

a [-Qk .. +Uk~· ·+~kr. ·+uku' u' ] 
aXk IJ IJ IJ i j 

Transport 

[
au. au.] _ 1 _ J 

r·k -- + fjk -­
J aXk aXk 

"Production" from mean 

[

_ aUi - aUj ] 
u'u' -- + u'u' --

j k ax k . i k ax k 
.... 

Work done by mean stresses 
against coherent rates of strain 
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and 

Work done by modulated stresses against 

coherent rates of strain 

action of 

pressure gradients 

a2 
V -- r oo _ 

2 1J 
aX

k 

viscous effects 

Transport 

+ ~ku.'u.' ] 
1 J 

[ 
auo auo] A 1 A J 

rOk -- + qk -­
J aXk aXk [

A A. ] 
__ aUi __ aUj 
u'u' --- + u'u' --

j k aXk i k aXk 

"Production" from mean Work done by mean stresses 

against coherent rates of strain 

aii 0] [ au o J _ 1 

aXk - rjk aXk 

Work done by modulated stresses 

against coherent rates of strain 

Work done by modulated stresses .":' 

against coherent rates of strain 
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actions of 

pressure gradients 

viscous effects 

Their interpretations are similar to that for (2.43). 

(2.49) 

We note again that the products 

between even modes and between odd modes give rise to odd modes whereas the 

product between even and odd modes give rise to odd modes. This accounts for the 

nonlinear transport effects as well as the nonlinear production effects in (2.48) and 

(2.49). The self-interaction of odd modes produce effects upon the even modes and 

the mixed products of odd/even modes produce effects upon the odd modes. These 

mode-interaction mechanisms are already noticed in the energy considerations. 
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Ill. SOME ASPEcrS OF QUANTITATIVE OBSERVATIONS 

In order to set the stage for using certain of the conservation principles of 

Section II to describe the large-scale structures in sections following Section IV we 

shall discuss some of the features of quantitative results from experiments that would 

be susceptible to interpretation, either qualitative or quantitative, from a dynamical 

point of view. This would certainly supplement, if not preferable to, the purely 

kinetic interpretations and artistic descriptions of the observations. The present 

section is not intended to be a complete survey of experimental results. 

Complimentary to this incompleteness would be the more recent surveys of 

observations by Roshko (1976), Browand (1980), Cantwell (1981), Hussain (1983) and 

Wygnanski and Petersen (1985). 

We shall place emphasis on the development of the large-scale coherent structures 

in free turbulent flows as they evolve through interactions with the mean flow, 

among themselves and with fine-grained turbulence. The coherent-mode amplitudes 

would evolve in the streamwise direction for the spatial problem, such as In the 

mixing region established in a wind tunnel or water. channel. In this case, the 

coherent-mode periodicities are in terms of frequencies and the mean flow spreads 

-
along in the streamwise direction. This would correspond to that of most 

technological applications. Mimicking this situation is the temporal problem, such as 

the tilting-tube experiment or numerical simulations, where the periodicities are in the 

stream wise direction, the mean flow spreading rate is time dependent as is the 
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evolution of the coherent-mode amplitudes. The nonlinear temporal problem yield 

theoretical and computational conveniences but we have already emphasized that there 

is no one-to-one transformation to the spatial problem. 

The emphasis on develoment and evolution is mainly because of the strong initial 

condition dependence on part of the coherent modes in turbulent shear flows, 

recognized theoretically sometime ago (Liu 1971b, 1974a) and for which experimental 

evidence is now oinni present. In the spatial problem, the coherent-mode amplitudes 

have spectrally-dependent fixed streamwise distributions. The amplitudes (or wave 

envelopes) grow and decay, with the lower-frequency components peaking further 

downstream and higher-frequency modes peaking closer to the initiation of the free 

turbulent flow for a given initial energy level (e.g., Liu 1974a). Under the spatially 

fixed amplitude or wave envelope, the propagating coherent modes enter from its 

region of initiation and exits downstream, if at all. The nature of such modes and 

the spatial distribution of their envelope depend on a number of factors in addition 

to their own spectral content and initial amplitudes, such as the fine-grained 

turbulence level and the initial mean flow distribution and the length scale in 

forming the initial Strouhal number. As such, the description of the local structure 

of coherent motions would be meaningful only if it is placed in an overall context 

in order to fix the identity of their otherwise apparent nonuniversalities. 

In order to illustrate the coherent-mode amplitude development, we show in 

Figure 1 the results from Favre-Marinet and Binder (1979). They forced a turbulent 

jet at rather large initial coherent-mode amplitudes. The open circles indicate the 
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root mean square of measured streamwise velocity of the coherent-mode, obtained via 

phase averaging, at the Strouhal number St = fd/Uc of 0.18, where f is the forcing 

frequency, d the jet diameter and Uc the mean velocity at the nozzle exit centerline. 

The signals were measured on the jet axis. The evolution in terms of x/d, where x 

is the streamwise distance from the nozzle exit, show that the signal, which is 

indicative of the coherent mode amplitude behavior, amplifies and then decays. The 

turbulence signai, again on the jet axis, is characterized by the root mean square of 

the turbulent streamwise velocity is shown as blackend circles for the case without 

forcing, and as open triangles with forcing. There is an indication that the 

turbulence is enhanced, the jet spreading rate and centerline mean flow decay are 

also enhanced. On the basis of the theoretical discussions in Section II, the questions 

that na"turallY arise is what is the role of the coherent mode in the enhancement of 

the turbulence and mean flow spreading rate, what are the meachanisms leading to 

the amplification and decay of the coherent mode. 

To illustrate the coherent mode energy production (and destruction) mechanism 

through its interaction with the mean flow, we show in Figure 2 the measurements 

of Fiedler, et al (1981) of this mechanism along the line of most intense mean 

velocity gradient in a controlled, one-sided turbulent mixing layer. Here w is the 

vertical velocity and z the vertical coordinate, Ua> is the free stream velocity. 

However, the coherent signal was obtained by filtering at the controlled frequency 

rather than via phase averaging. One can argue that if the monchromatic coherent 

signal is as energetic as the overall broadband turbulence, then the energy content of 
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the turbulence at the coherent signal frequency could conceivably be relatively weak. 

Filtering would then produce the similar result as that from phase averaging. 

Fiedler et al (I 98 1) compared the measured coherent structure production 

mechanism, as shown in Figure 2, with that of the total fluctuation production 

mechanism along the line of maximum mean shear. While the random fluctuation 

production remained positive, that of the coherent structure increased, reflecting the 

energy extraction· process, and then decreased below the axis indicating the negative 

production or return of kinetic energy to the mean shear flow. This typifies similar 

negative production mechanism observed by Hussain and Zaman (1980), Oster and 

Wygnanski (1982), Weisbrot (1984) (see also Hussain 1983). Such observations are 

not entirely surprising from the perspective of ideas from hydrodynamic stability for 

developing shear flows. The development of this energy exchange mechanism between 

the mean flow and coherent s'tructure is very similar to that in a laminar free shear 

flow (Ko, Kubota and Lees 1970, Liu 1971b) except that the rate of this development 

is significantly modified in the more rapidly spreading turbulent shear flow. Not 

only the "negative production" mechanism itself, but the observed evolution of the 

coherent mode as in Figure 2, is entirely explected from theoretical considerations 

(e.g., Liu 1971b, Gatski and Liu 1980, Mankbadi and Liu 1981). This negative 

production mechanism is _ only partially responsible for the decay of the coherent 

mode. 

. .-.~-. 

Fiedler, et al (1981) also showed that the shear layer spreading rate is altered by 

the enhanced coherent mode. However, we shall ilustrate the similar observed effect 
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of coherent-mode development through the use of results from Ho and Huang (1982). 

Although the shear layer in Ho and Huang (1982) is one undergoing transition, it is 

used here to illustrate the role of fluctuations on the mean flow spreading rate. (A 

collection of spreading rates from various laboratories, though not exhaustive, appear 

in Ho and Huerre 1984, Figure 24). Ho and Huang's (1982) measured mean shear 

flow thickness developing as a function of the stream wise distance is shown in 

Figure 3; the c'onditions correspond to their "Mode II", in which the subharmonic 

component (2.15 Hz) is forced at a streamwise velocity (route mean square) of about 

0.10% of the averaged upper and lower free streams and at an R parameter (ratio of 

the upper and lower stream velocity difference to the sum) value of 0.31. The 

steplike structure of the mean flow thickness is fairly obvious. The thickness of 

disturbed turbulent shear layers also exhibit such steplike behaviors (Fiedler, et al 

1981, Weisbrot 1984, Fiedler and Mensing 1985; see also Wygnanski and Petersen 

1985). The coresponding coherent-mode energy measured by Ho and Huang (1982) is 

shown in Figure 4, where E(f) is the kinetic energy due to the streamwise velocity 

fluctuation associated with each of the frequencies, integrated across the shear layer. 

As we shall see later, such a Quantity, but including all the contributions to the 

coherent-mode kinetic energy integral, is related to the amplitude or wave envelope 

of each mode. Figure 4 indicates that the peak of the fundamental component (4.30 

Hz) energy is associated with the first plateau of the shear layer thickness in Figure 

3, the peak of the subharmonic energy is associated with the second plateau in the 

shear layer thickness further downstream. The linear growth far downstream is 
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attributable to turbulence dominating the rate of spread. As will be shown more 

formally in the next section, it is not difficult to show that the shear layer 

spreading rate dS/dx can be obtained from the mean flow kinetic energy equation, 

integrated across the shear layer (see, for instance, Liu and Merkine 1976, Alper and 

Liu 1978), with a change in sign and retaining only the dominant energy exchange 

mechanisms, 

ds JCO [:;::-;:: - -]BU - - -uw-iiw-u I WI - dz 
dx & 

_co 

+ v r [:~t dz. 
_co 

(3.1) 

In a purely laminar viscous flow, the shear layer will spread as long as kinetic energy is 

removed from the mean flow via viscous dissipation. In a transitional shear flow, this 

viscous' spreading rate would be augmented by the emergence of finite amplitude 

coherent disturbances. In a turbulent shear flow, a highly enhanced coherent mode 

would similarly augment the turbulent spreading rates. If we denote the fundamental 

-"" disturbance-mode Reynolds stress contribution by -uw, the magnitude of the energy 

-
exchange mechanism -~~ BU/BZ very nearly' follows the development of the wave 

envelope as appearing in Figure 4. Its value along the line of most intense mean shear, 

illustrated by Fiedler, et ai's (1981) measurement, very nearly represent the entire 

sectional integral of this quantity. Thus the first peak of d5/dx is associated with .the 

vigorous transfer of energy from the mean flow to the fundamental. The shear layer 

thickness itself, which is a running streamwise integral of the energy exchange 

mechanism, reaches a plateau after the streamwise peak of of the fundamerital 
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component. The second, distinct plateau follows similar reasoning for the 

subharmonic-mode energy transfer mechanism -uw auaz. It seems that after the 

coherent modes have subsided relative to the turbulence, the linear growth is attributable 

to -~ auaz. The development of the negative production mechanism on part of the 

coherent mode discussed earlier, which corresponds to "damped disturbances" in the 

hydrodynamic stability sense for dynamically unstable flows, would make a negative 

contribution to dS/dx, thus contributing to a decrease in s. This decrease in 5 would be 

obviously observable if the negative production rate were the dominant energy exchange 

mechanism within a streamwise region (see Weisbrot 1984, Fiedler and Mensing 1985). 

Although not decoupled from the direct interactions between coherent modes and 

fine-grained turbulence, the production of the fine-grained turbulence by the mean 

motion' appear both experimentally (e.g., Fiedler, et al 1981) and theoretically (e.g., 

Liu and Merkine 1976, Alper and Liu 1978, Mankbadi and Liu 1981) to be devoid of 

the large-scale amplification and negative production as was found for the coherent 

modes. Consequently, the turbulence energy, excluding the coherent-mode 

contributions, appears to be developing, if at all, monotonically even in the 

nonequilibrium region of coherent mode/turbulence/mean flow interactions. The 

contribution of -'ii"W' au/ az to the shear layer spreading rate eventually becomes 

very nearly constant along the streamwise direction rendering the linear spread of' the 

shear layer due to this mechanism. For the transition problem (e.g., Ho and Huang 

1982) or the forced turbulent shear layer (e.g., Weisbrot 1984, Fiedler and Mensing 

1985), the initial steep step-like development of the shear layer is thus conclusively 
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reasoned from the above discussion to be due to vigorous energy transfer to the coherent 

modes. The arrest of this steep development is due to the decay of the coherent 

disturbance in the downstream region where production becomes small or negative. The 

existence of the plateau region between steep increases of 6(x) indicate that the 

production mechanism of the first mode has subsided prior to the rise in production of 

the subsequent mode (or fine-grained turbulence). The downstream persistent linear 

growth of the shear layer, again from our present discussions, indicate that the coherent 

mode activities have subsided and that fine-grained turbulence is now responsible for the 

shear layer spreading rate. This spreading rate is not necessarily universal in that it 

has an upstream dependence on what nonlinear coherent mode interactions have taken 

place (e.g., Alper and Liu 1978, Mankbadi and Liu 1981). This lack of universality in 

the measured turbulent shear layer spreading rate, summarized, for instance, by Brown 

and Roshko (1974) and by Ho and Huerre 1984, is thus not surprising but expected. 

The basic two-dimensional free shear flow appears to support dominantly 

two-dimensional coherent modes, with its vorticity axis perpendicular to the mean 

motion. In the following sections, our theoretical discUssions will interpret the role 

of such observed dominant modes as well as the three-dimensional coherent modes in 

terms of observed spanwise standing waves (e.g., Konrad 1977, Bernal 1981, 

Breidenthal 1982, Jimenez 1983, Browand and Troutt 1980, 1984). An issue to· be 

addressed with the three-dimensional modes is that the spanwise wavelengths appear 

to increase downstream, somewhat similar to the formation of longer, streamwise 

wavelength of frequency subharmonics. 
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IV_ VARIATIONS ON THE AMSDEN AND HARLOW 
PROBLEM - THE TEMPORAL MIXING LAYER 

A. INTRODUcrORY COMMENTS 

Amsden and Harlow (1964) considered the "temporal" mixing layer formed by 

parallel opposite streams. The disturbance is two-dimensional and is periodic 

horizontally. The growth in amplitude and the spreading of the Reynolds mean 

motion is in time. However, they considered the entire flow velocity as a single 

dependent variable, encompassing the Reynolds mean and the disturbance, and solved 

the unsteady Navier Stokes equations with horizontal periodic boundary conditions. 

The study of mean flow and disturbance interactions can always be obtained from 

the numerical result by performing the Reynolds average, which is the horizontal 

average in this case. The utility of the idea in using the total flow quantity as the 

dependent-dynamical variable is particularly suitable for the simple temporal mixing 

layer problem. This has been fully exploited by Patnaik, et al (1976) in the case of 

stratified flow. The two-dimensional problem (Amsden and Harlow 1964) for a 

homogeneous fluid, including the consideration of passive scalar advection and 

diffusion, was given greater detailed consideration by Corcos and Sherman (1984). 

The secondary instabilities in the form of spanwise periodicities, solved on the basis 

of linearizing about the two-dimensional motion, was considered by Corcos and Lin 

(19.84) and Lin and Corcos (1984). These are still relatively low Reynolds number 

problems and the participation of fine-grained turbulence was not intended. 
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The dominant two-dimensional coherent mode problems in turbulent shear layers 

have been studied by Knight (1979) and Gatski and Liu (1977, 1980) using different 

closure models for the fine-grained turbulence; the coherent mode agglomeration 

problem was studied by Murrary (1980) and Knight and Murray (1981) with an 

eddy-vsicosity model. The basic aim of the present section, through Reynolds 

averaged diagnostics obtained from results recovered from the numerical solutions, is 

to motivate the subsequent approximate considerations directed towards spatially 

developing turbulent free shear flows. This will naturally lead to the discussion of 

the role of linear theory in the Section Y, bridging that of the Section VI on the 

spatially devleoping free shear flows. 

B. THE "TURBULENT'" AMSDEN-HARLOW PROBLEM 

The problem of presence of a coherent structure in a . turbulent mixing layer 

considered by Gatski and Liu (1980), in the "spirit" of Amsden and Harlow (1964), 

shall be given some attention because of the physical information that can be 

extracted out of the results. In the present context the coherent flow variable to be 

solved would be 

A 
( 4.1) 

P =. P + Ci5+p). 

Their governing equations are obtainable from the continuity and Navier .. Stokes 

equations, (2.9) and (2.10), by substituting 

-54-



u· = U· + U l 
IIi 

p = P + pi 

(4.2) 

and taking only the phase average < >; the Reynolds average is not performed at the 

outset. The resulting equation for Ui would be coupled to the phase-averaged, total 

stresses 

-- A 

R· . = <u I u I> = U I U I + (r· ·+r· .) 
IJ i j i j IJ IJ· 

(4.3) 

The system Ui' P, Rij' which involves no explicit Reynolds stresses, ut ul, is identical 

phase average here replacing the Reynolds average as was pointed out and stated 

earlier (Gatski and Liu 1980; Liu 1981). The Ui,P,Rij system thus has the large-scale 

coherent structure taken out and considered explicitly, as suggested by Dryden (1948). 

The stresses Rij = <utul> involves only the "real turbulence", thus second-order 

closure models, when suitably found, would most likely be more universal than the 

prevailing closure models for the Reynolds stresses (iii+~i+ut>(ii j+~ j+~ 1) that include 

the contributions from the lar&e-scale coherent structures. The latter are now well 

recognized as being non-universal because of the non-universality of hydrodynamic 

instability mechanisms (Liu 1981). As was shown in Section II, conservation 

.. ". A 

equations can always be obtained for Ui,iii and ui' and transport equations for 'ut ul, 
A 

rij and fij. Within the Ui,P,Rij framework, however, the study of mean flow, 
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coherent mode and fine-grained turbulence interactions can always be obtained by 

performing the Reynolds average after the results arc found. As we have 

emphasized already, this procedure is really only practicable for the simplest problem, 

that is, the time dependent, mixing layer between two opposite parallel streams. 

This problem was considered by Gatski and Liu (1980). The problem consists of the 

interaction of a monochromatic component of the large-scale coherent structure (so that 

_ A 

Ui + ui reduces only to \ii' say) with the fine-grained turbulence in a temporal mixing 

layer of horizontally homogeneous and oppositely directed streams. The coherent mode is 

horizontally periodic and develops in time. The physical significance of this class of 

problems is that it strongly resembles, but does not exactly correspond to, the spatially 

developing free shear layer in observations. The coherence enters into the periodic 

horizontal boundary conditions and the numerical problem is thus well-defined. This is 

in c.ontrast to the numerical problem for the- spatially developing mixing layer which is 

not as well-defined because of the unknown but necessary downstream boundary 

conditions. In this problem the vorticity axis of the large-scale structure lies in the 

span wise, y-direction, with the velocities U,W in the streamwise and' vertical 

directions, x,y, respectively. The spanwise velocity V is taken to be zero. (Relaxation 

of the monochroma tic two-dimensional coherent structu re to accommoda te 

subharmonics, the coherent streamwise vortical coherent structures and the resulting 

generation of V and spanwise variations of U and IV are certainly possible.) Here, all 

spanwise gradients of the phase-averaged quantities arc also zero. Because of the 

two-dimensional cohercnt motions, it is possible to define thc' stream function 
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a'f a'f 
u=az'JV= -ax· (4.4) 

The vorticity is then related to the stream function via n = _V2'f, where 

(4.5) 

is the Laplacian in the x,z plane. The nonlinear, total coherent vorticity equation 

then gives 

""2,,, '" ""2,,, '" ""2,,, _ , , " + ( ,2 ,2 ) V 't + I z V IX - r X VIZ - <u w > xx - <u w > ZZ <w > - <u > xZ' (4.6) 

where subscripts indicate the appropriate partial differentiation. If we were to 

study the transition problem, (4.6) will then be augmented by the viscous diffusion 

mechanism v4'f/Re on the right side. Here all velocities and coordinates are made 

dimensionless by the free stream velocity and the initial shear layer thickness (the 

pressure is made dimensionless by the free stream dynamic pressure). Viscosity 

effects have been neglected in the large-scale structure vorticity equation (4.6). Thus 

r· the phase-averaged stresses on the right of (4.6) take the place of viscous diffusion in 

the turbulent shear layer problem. 

The two-dimensional vorticity equation (4.6) for n = -v2'f is merely the 

A 

y-component of the total coherent vorticity (ni+wi+wi) given by equations (2.28) -

(2.30) in the absence of the vorticity stretching/tilting mechanism and wit.h the 

viscosity effects neglected. The net phase-averaged vorticity transport con tri bu tidns 
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from the turbulence on the right sides of (2.28) - (2.30) would give 

a 
- -- <u!w!>. 

aXj J 1 

Its two-dimensional form, through the use of the continuity condition, reduces to the 

form on the right side of (4.6), in terms of the phase-averaged stresses <utul >. Their 

transport equations are identical in form to the Reynolds system for ut u 1 (Gatski and 

Liu 1980; Liu 1981), 

[
a a j [au. au .] - + uk.--<u'u'> = - <u'u'> __ 1 + <u'u'> __ J 
at aXk i j j k aXk i k aXk 

a' au' 
+ <p'[ Ui + ~J> 

ax' ax· J 1 

production redistribution 

a<u,u'>] au' au' i j I j j 
- 2 - <------:> 

aXk Re aXk BXk ' 
(4.7) 

transport dissipation 

where the Reynolds number Re is based on the free stream velocity and initial shear 

layer thickness, 5ij is the usual Kronecker delta. In the present problem (4.7) is 
.~. 

" " _ A • equivalent to the sum of (2.42) and (2.43) for <ui ,Uj > = ui Uj + (r ij+r ij)' In Gatskl 

and Liu (1980),s framework the dominant large-scale coherent structure is sorted out 

distinctly from the fine-grained turbulence through phase averaging at the outset. 

This is in contrast to the prevalent numerical simulation methods where the entire 

flow is decomposed into succeeding, neighboring Fourier modes corresponding to the 
. :;-
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horizontal periodic boundary condition. For lower Reynolds numbers the simulation 

is "exact", whereas for high Reynolds numbers an eddy viscosity subgrid closure is 

invoked (Reynolds 1976; Riley, et al 1981). In order to discover coherent structures 

additional limited spatial averaging is needed, as was done for the turbulent 

boundary layer problem by Kim (1983, 1984) and Moin (1984). In the simpler, 

explicit calculation of the dominant coherent structure in the mixing region (Gatski 

and Liu 1980) the phase-averaged, fine-grained turbulent stresses appear in the 

coherent structure vorticity equation as would be the Reynolds-averaged stresses in 

the Reynolds (1895) system. In this case, some form of the Reynolds stress closure 

arguments (e.g., Lumley 1978) could conceivably be adapted to the closure problem 

for (4.7). The eddy viscosity models were purposely avoided primarily because the 

consequences of such a model implies the a priori regulation of the direction of 

energy transfer to the smaller scales. Gatski and Liu (1980) used the formalism of 

Launder, et al (1975). This enabled them to obtain of the energy transfer mechanism 

between the coherent mode and turbulence, fij(Buj/Bxj + BujlBxi), on the basis that 

, 
the coherent mode dynamics are obtained from conservation equations, coupled to the 

turbulenct stresses via their transport equations. The functional forms of the 

Reynolds stress closure should}pply, though the .detailed closure constants might not. 

However, the behavior of the fine-grained turbulence, with the non-universal coherent 

structure subtracted out, would be much more universal than the treatment of all 

oscillations, including the coherent structures, as "turbulence". In Gatski and Liu 

(1980), the transport equations for phase-averaged stresses include those for the single 
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shear stress <u 1 Wi>, three normal stresses <u 12>, <u 12> and <w 12> and a modeled 

transport equation for the rate of viscous dissipation <€>. The fine-grained 

turbulence is three-dimensional, but the spanwise derivatives 8<ufuJ>/8y, vanish. 

The vertical boundary conditions require all flow quantities vanish far away 

from the shear layer. Horizontal periodic boundary conditions are applied to all 

phase-averaged quantities, with the periodicity dictated by the wavelength of the 

initial coherent" mode chosen. The initial conditions are arrived at through an 

initialization process described in Gatski and Liu (1980). In the absence of the 

coherent structure, the Reynolds-mean problem, consisting of the hyperbolic type mean 

shear flow and the Reynolds-averaged stresses and dissipation rate, is solved from Itt 

= _colt to t = to when self-preservation is very nearly achieved. This is to ensure 

self-consistency among the Reynolds-mean flow quantities when the initial conditions 

are to be imposed. The coherent disturbance imposed initially is obtained from the 

Rayleigh (ltinviscidlt) equation corresponding to the initialized mean velocity profile 

and at an initial wave number corresponding to the most amplified mode for this 

profile (ex ~ 0.275); the initial kinetic energy content of the turbulence used in the 

computations was Et(O) = 1.2 x 10-2 obtained from the initialization process and that 

of the coherent mode E,Q(O) = !0-4, where Et and E,Q are defined by (4.8) and (4.9), 

respectfully. The disturbance is considered to be suddenly imposed, with-the 

corresponding phase-averaged stresses and dissipation rate, which require finite time 

to respond, set equal to zero. The interaction between the Reynolds mean motion U, 

coherent structure iii and the structure Reynolds-averaged fine-grained turbulence 
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ui Uj can be studied after the numerical results are obtained as already emphasized. 

The "strength" of the fluctuations and the mean flow are characterized by their 

kinetic energy content. 

C. DIAGNOSTICS OF NUMERICAL RESULTS VIA REYNOLDS AVERAGING 

The two-dimensional large-scale structure energy content is 

(4.8) 

where the overbar is the Reynolds-average and is here the horizontal average over one 

wa ve length. Similarly, the fine-grained turbulence energy content is 

(4.9) 

The mean flow kinetic energy defect is defined as 

(4.10) 

where the dimensionless outerstream velocities are U±Q) = ±l in the present notation. 

The development of E ,Q,E t and Em with time provides the insight into the 

nonequilibrium interactions among the three "components" of the energy. To this end, 

the diagnostics of the exact energy integral"- equations and the energy exchange 

mechanisms are obtained from the computational results via Reynolds averaging. The 
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energy integral equations, which follows from (2.21), (2.24) + (2.25) and (2.26), 

are: 

dEm ---
dt 

dE.l! _ 
-- = Ip - I.l!t, 
dt 

dE t 
--=1' +1' -cP'. 
dt P .l!t 

(4.1 1) 

(4.12) 

(4.13) 

We note that (4.11) - (4.13) were the starting point for an approximate consideration of 

the problem discussed in Liu and Merkine (1976). The energy exchanges between the 

mean flow and the fluctuations are given by the integrals 

- lco 

- au I = -iiw - dz 
p _co az (4.14) 

J
co - au 

I' = -u'w' - dz' 
p _co az' ( 4.15) 

the energy exchange between the large-scale coherent structure and fine-grained 

turbulence is given by the integral 

(4.16) 

The integrands in (4.14) - (4.16) have in common the product of stresses with -the 
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appropriate rates of strain. The rate of viscous dissipation of the fine-grained 

turbulence is 

ell I = 1<0 E dz. _<0 (4.17) 

Consistent with (4.6), viscosity effects on the large-scales are not included. The sum 

of (4.11) - (4.13) gives 

(4.18) 

that the overall kinetic energy decays according to the rate of viscous dissipation of the 

fine-grained turbulence. 

In spite of the local regions where energy is transferred from the fine-grained 

turbulence to the large-scale coherent structures indicated by structural results (see 

Figures 9 and 11-13 in Gatski and Liu 1980), the integral IU > 0 indicates that the global 

energy transfer is from the large to the fine scales of fluctuations. The time 

development of this integral is shown in Figure 5, which indicates that I Rt peaks in the 

vicinity when the global energy transfer from the mean motion to the coherent mode 

changes sign. This latter mec.hanism, which is the integral of the energy exchange 

mechanism between the mean flow and the large-scale coherent structure is also shown in 

Figure 5; i p first increases, with energy feeding from the mean flow into the coherent 

mode, and then dcreases to below the axis as time increases, indicating an energy 
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transfer back to the mean flow. The evolution of such features is a familiar one in 

hydrodynamic stability problems of developing shear flows whether fine-grained 

turbulence is present or not. In laminar flows the development of positive and then 

negative disturbance production mechanism was first uncovered by Ko, Kubota and Lees 

(1970) in their approximate consideration of spatial, finite-disturbances in the laminar 

wake problem. Similar features were also recovered in the extensions of the Amdsen 

and Harlow (1964) computational problem by Patnaik et al (1976). It was also 

anticipated and shown that the devleopment of the positive and then negative coherent 

structure production mechanism would also exist in free turbulent shear flows (Liu 1971, 

Mankbadi and Liu 1981). This is essentially an "inviscid" or "dynamical" instability 

phenomenon in the hydrodynamic stability sense and can be anticipated when the 

kinematics of the growth rates from linear hydrodynamic stability theory are applied to 

the developing free shear flow through scaling by the local shear flow thickness. In the 

temporal problem for a fixed wave number disturbance, as the shear grows in time the 

rescaled local wave number increases, rendering the growth rates to eventually become 

negative. Similar interpretations also hold for the spatial problem where the local 

rescaled frequency increases with the downstream distance, the disturbance is eventually 

advected into the damped region: Experimentally, these features are not surprising either. 

As an example, the results of Fiedler, et al (1981) reproduced in Figure 2, taken along 

"" the line of most intense mean shear, very nearly approximates the integral I p (see also 

Weisbrot 1984). The theoretical results from the dynamics of the problem (see als·o Liu 

1971, Mankbadi and Liu 1981) and experimental observed evolution of this energy 
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exchange mechanism is strikingly similar. There is no mistake that this "damped 

disturbance" phenomenon is one derived from ideas in hydrodynamic stability theory. 

The kinematical interpretation in terms of possible eddy orientations (Browand 1980) are 

summarized in Hussain (1983). 

,.... 
The time evolution of the coherent-mode energy dE Rldt is thus the difference I p -

I Rt according to (4.12) and is also shown in Figure 5. It is clear from this numerical 

example that the fine-grained turbulence produces a global "turbulent dissipation" and 

augments the "damped disturbance" mechanism in causing the demise of coherent energy 

with time shown in Figure 6. The earlier vigorous amplification is due to extraction of 

energy from the Reynolds mean motion. The peak in the coherent-mode energy ERIE.20 

#OJ 

correspond to the vicinity when I p changes sign and I Rt is maximum. 

The fine-grained turbulence production rate I~ starts out slightly larger than the 

dissipation rate q, I as shown in Figure 7. This accounts for the initial small rate of 

growth of the turbulent kinetic energy Et/EtO shown in Figure 8. The production of 

turbulence from the mean flow is made more efficient by the presence of the coherent 

mode in the initial development stage although the direct energy transfer to the 

turbulence from the coherent mode is relatively small. But the net difference between 

production and destruction give ~ise to the evolution of a nonequilibrium development of 

the turbulence energy that evolves from an initial self-similar behavior to a new, higher - --
level of self-similar behavior as shown in Figure 8. In terms of time development, the 

"burst" of fine-grained turbulence has taken place at the expense of the coherent "mode. 
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The physical pictures derived here strongly suggest similar physical mechanisms, except 

for details, hold for the turbulent jet experiments of Favre-Marinet and Binder (1979) 

depicted in Figure 1, where the observed coherent mode grows and decays while the 

turbulence is enhanced. 

As far as the coherent mode is concerned, the production and "dissipation" are in 

general not in balance during the time evolution in free shear flow problems. Thus 

marginal stability ideas would not be as useful here as would be for confined flow 

problems (e.g., Barcilon, et al 1979). 

D. EVOLUTION OF LENGTH SCALES 

The following definition of the shear layer thickness (which is not unique) is used 

1/2 

6(') = ~ z2au/Sz dz/ I au/az dZ] 

It is normalized by its initial value and is shown in Figure 9. Initially, the growth is 

self-similar in that 6 - t. Its subsequent modification is due to the nonlinear, 

nonequiIibrium interactions that the Reynolds mean flow engages directly with the 

coherent mode and the fine-grained turbulence. Eventually, after subsidence of the 

coherent mode, the spreading is self-similar again 6 - t. From the structural results, the 

he.lght of the closed streamline H, normalized by its initial value HO' is also shown in 

Figure 9; it reaches a maximum at about t ~ 2 and subsequently decreases and is similar 
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to the development of the coherent-mode energy with time. 

There is another "detail" of observations that can be qualitatively understood from 

Gatski and Liu (1980). That is, in the optical observations of Brown and Roshko (1974) 

the graininess of the fine-grained turbulence appears to enlarge as the shear layer 

spreads downstream. The size LE of the fine-grained turbulence from Gatski and Liu 

(1980) can be estimated by using a local equilibrium argument such that the eddy energy 

transfer rate down to the size LE just balances the viscous dissipation rate. This leads 

to LE :::: E€/2 /¢'. Shown in Figure 9 is LE normalizing by its initial value LEO as it 

evolves in time. Although LE rapidly decreases initially, as the coherent mode energy 

E,Q passes its maximum at about t :::: 2 (Figure 6), the scale of the fine-grained turbulence 

begins to increase with time at a rate similar to that for the shear layer thickness S. In 

fact, LEIS remains very nearly constant after t ;:;: 1.50. The coarsing of the graininess of 

the fine-grained turbulence derived here accompanies the spreading of the shear layer 

(Gatski and Liu 1980). This appears to be entirely consistent with observations of Brown 

and Roshko (1974) that as the observed "strength" of the coherent mode weakens the 

spreading of the shear layer is maintained via the coarsing of the graininess of the 

fine-grained turbulence. 

--

E. SOMffiSTRUCTURALDETAITS 

""We shall refer to Gatski and Liu (1980) for the details of the time evolution of 

structural results in terms of the phase-averaged stream function and vorticity 
:;-
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contours. We will illustrate here the instantaneous'!' and n contours in Figures 10 and 11, 

respectively, for t = 1.50 when the coherent-mode energy is at its maximum and dE R/dt 

= O. There are strong vorticity nonuniformities within the "cat's eye" as would be 

expected for the t = 0(1) nonequilibrium stages of development. A similar nonlinear 

critical-layer theory (Benny and Bergeron 1969) for the present class of problems would 

require the vorticity within the cat's eye region to be uniform. This might be achieved 

as t ... CD for the" idealized single event of the monochromatic problem as the fine-grained 

turbulence smooths out the inner coherent vorticity distribution. The coherent structure 

at the t ... CD neutral stage would have been significantly weakened that its participation 

in the shear layer dynamics would be of questionable interest. 

Other structural details of the phase-averaged quantities that are of interest are 

those pertaining to the energy conversion mechanisms, the consequences of their 

Reynolds' average have already been discussed. At the phase-averaged level, the 

conversion of overall coherent mode energy to the horizontal fine-grained turbulence 

energy <u 12>/2 is achieved primarily through the work done by the modulated 

turbulen t shear stress against the coherent rate of strain, -<u 1 w' >8U / Bz. The 

contours of both of these quantities are shown in Figure 12a,b for the instant t = 

1.50. The conversion mechanism due to the normal stress -<u 1 2> BU/Bx is 

significantly weaker in this case and is not shown (see Gatski and Liu 1980). The 

rate of energy transfer in Figure 12a shows that there are local regions where 

turbulence energy is converted back to the coherent mode. The contributions to the 

vertical part of the turbulence energy <w 12>/2 come from the dominant normal stress 
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conversion mechanism -<w' 2>aw/ax, These are similar to the patterns for <u '2>/2 and 

we refer, again, to Gatski and Liu (1980) for details. These are the direct energy 

transfer mechanisms between the fine-grained turbulence and the two-dimensional overall 

coherent mode. The three-dimensional turbulence include also the span wise contribution 

to its energy <v' 2>/2. This is produced and maintained via the isotropizing mechanism 

of the pressure-velocity strain correlation <p' av' lay>. The contours of these Quantities 

are shown in Figure 13 for t = 1.50. The quantity <p' av' lay>, however, was not an 

explicitly calculated quantity but was approximated via closure arguments, including the 

effects attributable to local rapid distortion due to the large-scale coherent structure 

(Gatski and Liu 1980; Launder et al 1975)_ Although this mechanism converts energy to 

<v' 2> /2 on an overall basis, there are nevertheless local regions in which this energy 

conversion mechanism reverses sign. 
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v. THE ROLE OF LINEAR THEORY IN NONLINEAR PROBLEMS 

A. INTRODUcrORY COMMENTS 

The role of linearized theory in finite-amplitude, weakly nonlinear hydrodynamic 

stability problems is well known (Stuart 1958, 1960, 1962a,b, 1967, 1971a, 1972); 

particularly the parallel flow problem there serves as a valuable guide to the class of 

problems of interest here. In order to gain the necessary perspective as to how the 

linear hydrodynamic stability problems fit into and be made use of in nonlinear 

problems involving in developing flows, we purposely preceded this section by the 

discussion of a simple nonlinear problem in Section IV. The temporal mixing layer 

discussed in that section contains a vast richness in physical processes which could 

still be explored further. However, numerical extensions of the problem, though 

readily possible, are nevertheless tedious and it would be most worthwhile in 

exploring certain ideas and concepts derivable from the problem of Gatski and Liu 

(1980) in order to make progress, via simplification, towards the ambitious 

possibilities of describing the class of problems involving real, spatially developing 

flows found in the laboratory and in practical devices involving mixing-controlled 

situations. For purposes of introducing ideas, we shall mingle in our discussions ideas 

derived from the temporal problem with observable quantities in the laboratory 

without further qualifications. 

The energy content of the coherent mode E R introduced in Section IV, equation 

(4.8), is a quantity measurable in the laboratory (Ho and Huang 1982) for different 
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modes. For a given initial energy level and shear layer thickness it is a quantity that 

depends on the mode content in its nonequilibrium evolution. Thus in the laboratory, 

high frequency modes' energy content peak further upstream then lower frequency 

modes (or the longer wavelength disturbances peak later in time). As such, ER is 

essentially related to an amplitude of the disturbance. It is the "slowly varying" 

wave envelope bounding the "fast" oscillations of the wave motion. There is strong 

observational evidence that for nonlinear problems while the wave envelope has to be 

obtained from a nonlinear theory with the physics of the problem participating fully, 

the wave characteristics are obtainable from the kinematics of a locally linearized 

theory (Michalke 1971). However, considerable confusion concerning the role of the 

linear theory would still result from the nonuniqueness of the "amplitude" associated 

with linear solution, the lack of distinguishability of the "wave envelope" from the 

"wave function" and the relative sensitivity of the wave-envelope to the real physical 

mechanisms in the shear flow evolution. Thus an extended discussion along these 

lines might help unravel some of the possible confusion that might result from 

reading the current literature (Wygnanski and Petersen 1985). 

R NORMALIZATION OF THE WAVE AMPLITUDE 

In order to bring in the role of the linear theory it is thus essential that we 

provide the distinguishable roles of the wave envelope or amplitude, the 

hydrodynamical instability wave functions and the physically sensible manner in 
.. 

-71-



which such functions are to be normalized. If we introduce a coherent-mode energy 

density as E R/S = IA 12, where IA 12 would be a function of the mode number and 

mean motion evolutionary variable (wave number and time for the temporal problem, 

frequency and the streamwise distance for the spatial problem). Thus, according to 

our definition, (4.8) gives 

(5.1) ,. 

We are using the two-dimensional coherent mode for simplified illustration, these 

ideas are easily extendable to include three-dimensional coherent modes. If we 

further assume that the velocities u,w are representable by the linear hydrodynamic 

stability theory, then the linear eigenfunctions are represented by the disturbance 

" stream function r/> in terms of local variables ~ = xiS, ~ = z/S with the local wave 

number ex referred to S. Then, in terms of the temporal mixing layer notation, for 

instance, 

[ 
u 1 [ r/>' (~;ex) 1 ' _ = A(t). exp(iexO + c.c., 
w -lexr/>(~; ex) 

(5.2) 

,. 
where r/>' is the t-derivative of r/>, the local ~-derivative of r/> is given by -iar/>, C.c. 

denotes the complex conjugate. In this case, the physical wavenumber is fixed but 

the local wavenumber changes as the shear layer thickness, S, grows. 
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If we substitute (5.2) into (5.1), then 

(5.3) 

Thus, in order that we consistently attribute IA 12 = E,Q/S indeed as the energy 

density, the local eige.nfunctions must be normalized locally by the condition 

(5.4) 

This addresses an appropriate normalization for the wave functions of the local 

linear -theory for which the wave envelope would be given consistent physical 

meaning; this would not be the case with the "equal area" normalization (e.g., 

Wygnanski and Petersen 1985). 

C. GLOBAL ENERGY EVOLUTION EQUATIONS 

The above discussions follow those ideas put forth by Ko, Kubota and Lees 

(I970) in their generalizaiton of the shape assumption ideas of Stuart (I958) to real, 

developing free laminar shear flows with strongly amplified disturbances. While the 

cross.stream shape of the coherent mode would be given by the (properly normalized) 

linear theory, the overall evolution via the wave envelope, IA(t) 12, must be solv~d by 
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the nonlinear theory with the proper physics involved. In Ko, Kubota and Lees 

(I970), the evolution of 1 A 12 follows naturally from the disturbance energy integral 

equation. This is solved jointly with 5 which follows from the mean flow kinetic 

energy equation following a similar shape assumption for the mean velocity profile. 

The problem is relatively much simpler in the absence of the participation of 

fine-grained turbulence in the dynamics. 

From the diagnosis of the numerical results of Gatski and Liu (1980) for the 

turbulent shear layer, we see that if we were to obtain the evolution of 1 A 12 = E 11/5, 

then the "exact" envelope equations (4.11) - (4.13 ) tell us that 

dEm _ , 
-- = -I - 1 
dt P P 

d 2-
- 5 1 A 1 = Ip - 1.IIt 
dt 

dE t , 
-- = Ip + Il1 t - <P' • dt . 

(5.5) 

(5.6) 

(5.7) 

From the diagnosed numerical results (Gatski and Liu 1980) discussed in Section IV, 

.--
any approximate calculation for the wave envelope IA 12 must necessarily involve the 

participation of the turbulenct kinetic energy content Et and the mean flow kinetic 

energy defect Em. Thus, strong nonlinear interactions occur among the "envelopes" 

IA 12, Et and Em independently of whatever version of the linear hydrodynamical 
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stability equations that might have been used to generate the eigenfunctions 4> in a 

possible assumption such as (5.2). We emphasize here that for nonlinear problems, the 

wave envelope must necessarily be obtained with the simultaneous nonlinear 

interactions between the mean motion, fine-grained turbulence and large-scale coherent 

structure properly (though approximately) taken into account. 

D_ SUBSIDIARY PROBLEMS_ THE ROLE OF THE LINEARIZED THEORY 

To further interpret (5.5) - (5.7) in terms of approximate considerations and in order 

to make practical the modelling of the "envelope" evolution problem we further postulate 

that, again using the temporal mixing layer as illustration (Liu and Merkine 1976), the 

mean flow behaves like 

u 
= F(~) (5.8) 

1 
- (U -U ) 2 co _co 

where F(~) could conveniently be tanh ~ or other function of ~. From observations, the 

similarity behavior is almost established with the establishment of the mixing region 

profile. We introduce a similar energy density for the fine-grained turbulence as E = 

Et/S, where Et was defined by (4.9). Similar to the shape assumption for the 

coherent mode, we postulate (Liu and Merkine 1976) that the Reynolds stresses of the 

fine-grained turbulence be represented by 

-75-



u.'u.' = E(t)RiJ·(t) 
1 J 

(5.9) 

such that the energy density E(t), like 1 A(t) 12, bears the burden of the history of the 

nonequilibrium interactions, while the local shape functions Rij(t) behaves according 

to observations Cij exp( -t2). The constants cij would reflect the proper ratio between 

the turbulent kinetic energy and Reynolds shear stress as well as the necessary· 

normalization to render indeed that E = Et/S is the turbulence energy density. 

The rate of energy transfer between the large-scale coherent structure and 

fine-grained turbulence is provided by the integral I Rt in (5.6), which is defined by 

( 4.l6). As the numerical results of Gatski and Liu (1980) illustrate, IRt contributes 

significantly towards the energy balances determining the evolution of the wave 

envelope IA 12 or SIA 12 in competition with the "inviscid" mechanism of energy 

..... 
exchanges between the coherent mode and the mean flow, Ip. Thus the participation 

of modulated fine-grained stresses, f ij' which occur in the integrand of I Rt, must be 

taken into account. accounted. 

From the general considerations discussed in Section II, illustrated by (2.14), the 

problem of iii and f ij are coupled through the action of the modulated stresses on 

the momentum problem of the large-scale coherent structure. Concurrently, fij is 

given by its own transport equations, illustrated by (2.43). Thus, following the 

manner in which the coherent mode velocities were represented by the .. shape 

assumption such as (5.2), with ,the cross-stream shape given by the linear theory, ·f ij 

-76-



would necessarily take the following form (Liu and Merkine 1976): 

rij = A(t)E(t)rii~,a)exp(ia~) + c.c., (5.10) 

with qj(~,a) given by the local linear theory, jointly with ct>(~,a). 

Prior to discussing the nonlinear "envelope" problem, we shall briefly discuss the 

subsidiary, appropriate linear problem for ct> and rij that has to be solved. The 

nonlinear problem that we have discussed thus far places the auxiliary linear problem 

in the proper perspective. The linear problem for a monochromatic large-scale 

disturbance follows directly from the linearized form of (2.13), (2.14) and (2.43). It 

was considered by Elswick (1971), Reynolds and Hussain (1972), and Legner and 

Finson (1980) in various forms. Liu and Merkine (1976), Alper and' Liu (1978), 

Mankbadi and Liu (1981) considered the linear theory as an implement in nonlinear 

problems involving coherent mode-turbulence interactions. The local linear theory is 

obtained through the substitution of (5.2), (5.9) and (5.10) into the linearized vorticity 

and transport equations for r ij as already discussed. In terms of local variables, we 

obtain 

(5.11) 
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rxx R' 2rxz -R 2icxCP' - R 2CP" 
xx xx xz 

ryy R' 0 0 
icx(U-c) = -( -icxCP) yy U' + 

r zz R 0 R zz 2icxCP' - Rxz2~CP 
zz 

rxz R' rxz -R CP" - Rxx~CP xz zz 

Advection by Transport "Production" Work done by mean stresses 
mean flow (vertical advection (rom against wave rates of strain 

o( mean stresses mean 
by wave) 

2 
(p .. +p .. ) - - cp •• 

Jl IJ Re IJ' (5.12) 

where . c is the wave speed, Re is a local Reynolds number, primes denote 

differentiation with respect to the local vertical variable ~, the local ~-differentiation 

is replaced by icx. The subscripts x,y,z are associated with the streamwise, spariwise 

and vertical coordinates, respectively. The effect of viscous diffusion, which could 

be included, has been omitted from (5.11) and (5.12). The form of linear problem 

given by (5.11) and (5.12) holds for either the temporal problem (c complex, ex real) 

or the spatial problem (cxc = frequency, real) or for the "wave packet" problem 

(Gaster 1981). The linearized vorticity equation in terms of the stream funct~on, 

(5.11), immediately bear resemblence to the nonlinear vorticity equation (4.6). If we 

subtract the Reynolds average of (4.6) from (4.6) itself and linearize, the res~lting 

linear equation then forms the basis for (5.11). The right side of (5.11) in terms :of 
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differentiation with respect to local variables, has the same interpretation as the right 

side of (4.6). 

The linearized version of the transport equations for the modulated stresses (5.12) 

are written in a form with the right side resembling that of (2.43), (see also (2.44) 

and (2.45». Comparing the forms of (2.43) and (5.12), the linearization circumvented 

the triple correlations as well as the transport of rij by the fluctuations uk in the 

transport mechanisms, so that for local parallel flow the sole surviving transport 

effect is the advection of the mean stresses by the coherent vertical velocity. In the 

mechanism of "production" from the mean the only effect comes from the shear rate 

of strain of the mean flow, U'. The third group of terms on the right of (5.12) is 

the work done by the mean stresses against the coherent (wave) rates of strain. 

Absent in (5.12) is the work done by the modulated stresses against the coherent rates 

of strain in (2.43) which is a nonlinear effect. No empiricisms were present in these 

first three groups of effects. The action of the pressure gradients is represented by 

(Pji+Pij), defined (prior to the wave amplitude/wave function assumption) by (2.45) 

and (2.46). Similarly, the viscous dissipation rate cPij in (5.12) is related to the 

definition in (2.47). These two mechanisms, if included, would require closure 

arguments. Even without the effects of the action of pressure gradients and viscous 

dissipation, it is obvious from only the first three mechanisms on the right of (5.12) 

(a form of "rapid distortion" theory, free from empiricisms (Hunt 1973) that r" IJ 

would not necessarily be in phase with rates of strain of the coherent mode ... Thus 

any eddy-viscosity assumption in relating rij to the rates of strain of the coherent 
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mode might, according to (5.12), render such eddy viscosities to be complex with 

magnitudes changing sign depending on the location across the shear layer and the 

local coherent-mode number. The implications of the relative phases between the 

coherent mode velocity gradients and the modulated stresses in energy transfer will 

be discussed subsequently. 

In order to make practical usage of the system (5.11) and (5.12), statements about 

the viscous dissipaton rate and pressure-gradient action must be made. Since the 

linear theory here is thought of as a valuable implement in the approximate 

consideration of the nonlinear "wave envelope" problem, the simplest form of such 

closure statements would suffice. We have, however, for good reasons already 

discussed, precluded an overall eddy viscosity treatment of r·· as was done by IJ 

Reynolds (1972) and Reynolds and Hussain (1972) for the linear problem. Elswick 

(1971) considered the wave modulated stresses as a perturbation upon the mean stress. 

In so doing, Elswick (1971) also considered the closure of the linear problem as a 

perturbation of the closure statements upon the mean motion problem. However, 

Elswick (1971) neglected Viscous effects altogether in (5.12), including viscous 

dissipation. He also neglected the "transport" effect that constitute partially the 

sources or sinks for the wave modulated stresses. The perturbed form for the 

common assumption (e.g., Lumley 1970, 1978) about (Pji+Pij) appear for (5.12) in the 

form 
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rxx E r·· 11 
i 

I ryy I E r·· 11 - - - i 
T r zz 

3 E r·· 11 
1 

rxz 0 

where E denotes the sum of the three normal stresses, T- I = sU' is the time scale 
i . 

for return to isotropy where the constant of proportionality is of order unity (s ~ 

1.445). Elswick (1971) also partially perturbed this time scale. In the linearized form 

of the transport equations for rij presented by Reynolds and Hussain (1972), prior to 

their eddy viscosity assumption, the pressure-gradient action and the viscous 

dissipation were neglected; but the viscous diffusion, (Re-l)a2q/ax~, was retained for 

the wall-bounded shear flow problem. The perturbed form of the viscous dissipation 

rate in (5.12) would be of the form 

d 

T 

Erii 
i 
Er·· 
• 11 
1 

Er·· 
• 11 
1 

o 

where the constant is of the order d ~ 0.1 (see, for instance Li"u and Merkine (1976), 

Alper and Lin (1978». 

For turbulent free shear flows, the presence of a mean inflectional profile strongly 
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suggests the consideration of the coherent oscillations iii in terms of "dynamical" or 

"inertial" instabilities (Liepmann 1962; Liu 1971 b, 1974a). That is, arguments in this 

respect (Liu and Merkine 1976) leads to the "inviscid" or Rayleigh equation in place 

of (5.11). To this end, Elswick (1971) discussed an expansion procedure in inverse 

powers of an appropriately defined turbulent Reynolds number, which comes from 

"proper" scaling. The scale in our case here is set from the normalizations. In (5.11) 

all quantities were made dimensionless by the velocities associated with the free 

stream and the initial shear layer thickness. That the modulated stresses, fij, scale 

according to ,A ,2E comes from an examination of the "sources" or "sinks" for fij' 

For instance, this is naturally suggested by the transport mechanism in terms of the 

vertical advection of the mean stresses (-E) by the coherent motion (-A). The 

presence of the local value of the mean turbulence energy density E = Et/6, defined 

by (4.9), on the right side of (5.11) suggests a similar scaling discussed by Elswick 

(1971). The energy density E is essentially estimated by the ratio of sum of the 

mean normal stresses to a mean velocity squared. This, therefore, has the 

interpretation of an inverse (local) turbulent Reynolds number, E - Ri) From the 

numerical example of Gatski and Liu (1980), RT - 30 when E is maximum and RT 

- 100 at the "initialized" initial condition. However, these are not necessarily 

representative of the actual turbulent Reynolds numbers. Nevertheless, if we expand 
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.... 

(5.14) 

then ~(O) satisfies the Rayleigh equation and immediately becomes uncoupled from qj. 

The first approximation for the shape of the modulated stresses r~~) satisfies (5.12) but 

with the coherent wave streamfunction there replaced by ~(O). 

In this approximation, the outer boundary conditions for ~(O) follows those of 

the Rayleigh equation and one seeks the outgoing wave solution. However, because 

of the presence of turbulent-non turbulent interface associated with the outer 

"boundary", Reynolds (1972) formulated the necessary interfacial conditions for the 

more general problem. However, because the mean velocity is essentially continuous 

across· the turbulent-nonturbulent flow interface according to measurements, this 

continuity is to order Rj.l. The interface is actually "transparent" as far as the ¢(O) 

eigenvalue problem is concerned and the coherent mode velocities and pressure are 

continuous to order Rj). The "instability" properties are primarily attributed to 

dynamical instabilities associated with the inflectional mean velocity profile that 

occur well within the turbulent fluid, and thus the outer boundary conditions are 

indeed those for the Rayleigh problem of decaying outgoing waves. The interface, if 

of interest, would be the subject of study at the higher order, ¢(I) and r(J) level of IJ' .. 

description. This is expected from a physical view point also since the interface 

region is of much less importance energetically-· because of (I) the absence of sharpe 

gradients in the mean veloci.!'y in that region and (2) the fluctuations are much less 
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energetic there than in the vicinity of the mean velocity inflection point in the 

interior of the shear layer. 

The role of the linear theory, (5.11) and (5.12) or its approximate, "dynamical 

instability" form, is now clear. The local eigenfunction t/) I generate the local shape 

of the large-scale coherent velocity distributions across the shear layer. Michalke 

(1971) was the first to find that the local linear theory was able to generate the 

coherent velocity fluctuations that compare favorably with observations. However, in 

using the linear theory as a "curve fit", the local mean flow characteristic velocity 

and length scale are considered given (from measurements, say). As such, it does not, 

nor could it, address the wave envelope or amplitude evolution problem. Recent 

improvements on the linear theory to account for slight flow divergence (Crighton 

and Gaster 1976) has been applied, in the same spirit as that of Michalke (1971), to 

the turbulent mixing layer problem (Weisbrot 1984, Gaster, Kit and Wygnanski 1985, 

Wygnanski and Petersen 1985): Similar good fits were found between the 

eigenfunctions and experiments with those generated by the Rayleigh equation. 

However, in their normalization of such eigenfunctions the local "area" under the root 

mean square of the streamwise fluctuation velocity was set equal to that from 

measurements. This precludes the possibility of giving the wave envelope the 

physical interpretation discussed earlier. The wave amplitude problem follows' a 

higher order correction due to slight flow divergence but excluded the essential 

,".-'-'. 
physics of the turbulent shear flow problem that we have discussed. In regions 

where the coherent mode has grown to significant amplitudes so as to change the 
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mean flow spreading rate, such a "weak disturbance" procedure would not suffice. We 

shall soon see role of the linear theory, particularly the physical implications of 

the role of the modulated stresses, in the nonlinear problem . 

E. NONLINEAR WAVE-ENVELOPE DYNAMICS 

We continue to use the temporal mixing layer as a simple example. The 

nonlinear problem concerns the "wave envelope" development. From the coupled 

system (5.5) - (5.7), with the substitution of (5.2) and (5.8) - (5.10), we obtain 

d 
- (-5) 
dt 

(5.15) 

(5.16) 

d 5E = IAI2E Iwt(ex) + E I~S - q,'. (5.17) 
dt 

We will discuss the form of the dissipation integral q,' subsequently. The initial 

conditions are 5(0) = 1, IA(O) 12 = IA 15 and E(O) = EO. The mean flow kinetic 

energy defect integral (4.10) became simply (-5). The energy exchange mechanism 

between the mean flow and the coherent mode 'given by the integral defined in. (4.14) 

has now become ip = IAI2 Irs(ex), where the integral Irs(ex) involves integration 
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over the eigenfunctions of the linear theory and the mean velocity gradient (Liu and 

Merkine 1976) and thus depends on the local wavenumber (in spatial problems, it 

would be the local frequency). See the Appendix for definitions of such integrals. 

1 1 
The turbulence energy production integral, defined by (4.15), now becomes Ip = E Irs' 

1 
where Ir s involves the integral over the shape distribution of the Reynolds shear 

stress Rxz and the mean velocity gradient and is a constant (Liu and Merkine 1976). 

The fine-grained" turbulence, viscous dissipation integral was defined in (4.17). If we 

follow the standard local equilibrium argument for large Reynolds numbers 

(Townsend 1956), then rpl = E3/2I¢, were I¢ is a constant. For simplicity, Liu and 

Merkine (I976) argued about the Reynolds-average shape function (5.9) on the basis 

of a locally homogeneous-shear problem (Champagne, Harris and Corrsin 1970) so that 

-+.1.... 1 1 .... 1 
'¥ = EIrp and that Irs = Iep- In this case, the nonlinear interaction problem is 

somewhat simplified in that the only mechanism causing the change of BE would be 

its interaction with the coherent structure through IA 12E Iwt(a:). In the context of 

the numerical work of Gatski and Liu (1980), only at the later stages of development 

1 I 
would Irp :0 Ip. In the present discussion of the approximate considerations of the 

wave-envelop evolution, the simplified version of Liu and Merkine (1976) I~ :0 I~ will 

be continued for purposes of illustrating ideas, leaving to subsequent discussions of 

I I 
application to real, spatially devetoping flows for a fuller account of Ip "I- Iep- The 

"", 1 integrals I rs,Irs' and Irp as well as Iwt introduced subsequently are defined in the 

Appendix and discussed in detail in Liu and Merkine (I 976). 
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F_ THE MECHANISMS OF ENERGY EXCHANGE BETWEEN COHERENT 
MODE AND FINE-GRAINED TURBULENCE 

The energy exchange between the large-scale coherent structure and fine-grained 

turbulence is given by the integral IU defined in (4.16), which now becomes IU = 

IA 12E Iwt(cx), where the integral Iwt (Liu and Merkine 1976) involves the shape 

functions of the modulated stresses and those of the rate of strain of the coherent 

mode. The importance of the relative phases between the modulated stresses and the 

coherent mode rates of strain comes from the energy exchange mechanism discussed 

in Section III and IV, 

au· 1 
r·· 1J ax. ' 

J 

which comprise the integrand of I u. In the present context of using linearized 

theory to study the nonlinear "wave envelope" development, the integrand of Iwt 

consists of (Liu and Merkine 1976) 

(5.1 Sa) 

'. 
(5.1 Sb) 

(5.1Sc) 
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a-
-'!!. / rA r2E = 2exrrzz r reP'rsin(S,/,,-Sr ). 
az ~ zz 

(5.18d) 

The form above implies that we have represented complex shape functions of the 

modulated stresses, fjj and the coherent mode eigenfunctions from the linear theory 

in the vector form in terms of magnitude and direction. Here S, with the 

appropriate subscript, is the phase angle. In this representation the energy transfer 

then consists of the scalar products between m.odulated stresses and the appropriate 

coherent mode rates of strain. It is clear that the relative phases determine the 

directions of energy transfer. To illustrate this, the vector representation of the 

modulated stresses and coherent rates of strain is presented in Figure 14 for a wave 

number· ex = 0.4446 which correspond to the most amplified mode for the hyperbolic 

tangent mean velocity profile.· The qualitative behavior is similar for other values of 

ex. The appropriate scalar products of the vectors in Figure 14, given by (S.1Sa) -

(5.18d), are shown in Figure 15. In Figure 14 the curves represent the locus of 

vectors at different vertical positions across the shear layer. For instance, shown in 

Figure 14a are the vectors 2rxx and exeP'. At ~ = 0, Srxx = 0 and SeP' = n/2, thus 

giving a negative r xxaii/ax, indicating a local transfer of energy from the coherent 

mode to the fine-grained turbulence. At ~ :oc 0.23, Srxx and SeP' are out of phase 

by n so that rxx aii/ax .... O. For ~ > 0.23, SeP' lags behind Srxx so that locally 

energy is tranferred from the fined-grained turbulence to the coherent mode with a 

maximum at bout ~ :.. 1. Shown in Figure 14b are the vectors 2r xz' eP" and ~eP. 
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Because U"(O) = 0, then <p" = c:l<p at ~ = 0 according to the Rayleigh equation. Thus 

c xz8wl8x are equal there (as shown in Figure 15). While the former of these remain 

positive, the latter becomes negative after ~ '" 0.15. The vectors 2rzz and a<p' are 

shown in Figure 14c. Their scalar product, czzawlaz, sh'own in Figure 15, this being 

very nearly equal and opposite in sign to f xzaw lax. In Figure 15, it is shown that 

the mechanism of horizontal modulated normal stress - normal rate of strain 

dominates the energy transfer near the center of the shear layer (~ = 0), while the 

mechanism of modulated shear stress - shear rate of strain dominates the energy 

transfer away from the center of the shear layer. The net result of these four 

contributions is shown by the dot-dash line in Figure 15, which is positive over most 

of the shear layer indicating that for this case energy transfer is from the coherent 

mode to the fine-grained turbulence. The dot-dash line would fall slightly below the 

axis in the outer regions of the shear layer but the magnitude is not distinguishable 

within the width of the curve itself. We emphasize that from this consideration, 

there is significant energy transfer, within local vertical regions of the shear layer, 

from the turbulence to the coherent motion contributed by the individual mechanisms. 

The integral Iwt is then twice the area under the dot-dash curve, the ~ distribution 

being symmetrical about ~ = O. In principle, Iwt(a) depends on the local wave 

number, which, in turn, is scaled· by the local developing shear layer thickness s. 

It is clear that, in general, the wave envelope development (5.16) is coupled to 

the spreading of the mean flow and the development of the fine-grained turbulence 

energy as indicated by (5.15) and (5.17), respectively. These approximate form of the 
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nonlinear interaction could be said to have been motivated by and bear strong 

resemblence to the diagnostics of the numerical problem (Gatski and Liu 1980) given 

by (4.11) - (4.13) .. The mean flow energy defect evolution (4.11) now reduces to the 

statement (5.15) that as long as energy is transferred to the fluctuating motions, dS/dt 

> o. ,., . 
When I rs(cx) becomes negatIve, such as in the "damped disturbance" regime 

.,." 

discussed in Section 4 (I p < 0), the contribution to dS/dt would be to arrest the 

growth of the 'shear layer or even decrease its growth (Weisbroth 1984, Fiedler and 

Mensing 1985) depending on the relative magnitude between the coherent mode and 

turbulence contributions. The steplike behavior of S would come from peaking of 

2/10/ 
IA I I rs' as has been anticipated in Section III. These would account for the 

observed steplike shear layer thickness development discussed in Ho and Huang 

(1982), . Fiedler and Mensing (1985) and Wygnanski and Petersen (1985). The observed 

momentary depression (Weisbrot 1984, Fiedler and Mensing 1985) in the shear layer 

thickness is attributed to the dominance of the "damped disturbance" mechanism 

relative to others (such as turbulence and viscosity) affecting the spreading rate. Some 

of these aspects will be quantitively addressed in the next section. 

G. WAVE ENVELOPE AND TURBULENCE ENERGY TRAJECTORIES. 
A SIMPLE ILLUSTRATION 

Another feather of the wave-envelope problem exhibited by the observations 

depicted in Figure I, could be qualitatively deduced from the much simplified 
....... 

framework here. If we assume that the right side of (5.15) is in some sense "small" 
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so that the shear layer growth rate is correspondingly small d5/dt -+ 0, the change in 

5 is then ignored entirely. Thus 5 remains at the initial value 5 = I and the 

'V 

interaction integrals I rs,I wt are fixed by the initial wave number IX. 

(5.15 - 5.17) reduce to 

d 

dt 

dE 

dt 

In this case, 

(5.19) 

(5.20) 

I 
We have retained the approximation (Liu and Merkine 1976) that locally E Irs = <p'. 

The simple essentials here state that the energy transfer from the coherent structure 

to the fine-grained turbulence is the only mechanism causing E to change from its 

original value. The evolution of the coherent structure amplitude is determined by 

the local balances between energy extraction from the mean flow and energy transfer 

to the fine-grained turbulence. In the I A 12 - E plane the system (5.19), (5.20) admits 

the solution 

-- - 1 + in 
E 

EO 
(5.21) 

where LO = EOIwt/I:s and MO = IA la/EO' The dimensonless time t is obtained from 
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t 

J
x dXI 

(I+MO) + XllLo - exp Xl 

o 

(5.22) 

where X = Rn E/Eo. In this special example the equilibrium values, denoted by the 

subscript e, for IA 12,E are such that IA I~ = 0 deduced from setting the right sides 

of (5.19) and (5.20) to zero and that for Ee directly from (5.21) 

'" where Le = EeIwt/I rs' We expect that Le > LO because we found Iwt > 0 and the 

fine-graIned turbulence energy would be increased, Ee > EO' due to the presence of 

the coherent structure. For a fixed ratio of initial amplitudes MO' as LO = EO 

.-
IwtlI rs increases the turbulence equilibrium aplitude ratio Ee/EO decrease. This can 

be interpreted as follows. If we fix the wave number thus IwtiI rs is fixed, so that 

as EO is increased more energy is transferred to the turbulence from the coherent 

motion, thereby limiting the coherent mode amplitude. This in turn decreases the 

the efficiency of the coherent mode as an intermediary in taking energy from the 

mean flow and transferring it to the turbulence. On the other hand, if EO is fixed 

"" and IwtlIrs is increased then the energy transfer from the coherent mode to the 

turbulence becomes more efficient than that from the mean motion to the coherent 

mode. This again gives 'a lower Ee' If LO and EO are fixed and MO is increased 
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through increasing IA 15, Ee is increased because the coherent mode is made more 

efficient in drawing energy from the mean flow and transferring it to the 

turbulence. In this special consideration, the equilibrium amplitude of the coherent 

mode I A 15 ... 0 as long as EO > 0, and is independent of initial conditions. From the 

physical considerations discussed, Ee is not independent of initial conditions. From 

(5.21) it is seen that LO and MO fix the trajectory in the IA 12/ IA 15, E/EO plane. 

The wave envelope or amplitude IA 12/ IA 15 reaches a maximum when E/EO = l/LO 

for LO < 1 whereas IA 12/ IA 15 decays at the outset for LO > 1. The latter situation 

is because energy transfer to the turbulence overwhelms that extracted from the mean 

flow. The trajectories in the IA 12/ IA 15 - E/EO plane are shown in Figure 16 for 

MO = 1 and various values of LO < 1. The time development begins at (1,1), and 

follows the trajectory. Not shown are the decaying I A 12/ I A 15 trajectories starting at 

(1,1) for the strong initial turbulence (LO > 1) situation. The interesting physical 

picture that emerges from this consideration is that under conditions where the 

coherent mode amplitifes, its amplitude first grows "exponentially" due to extraction 

of energy from the mean motion and subsequently decays due to energy transfer to 

the fine-grained turbulence. The fine-grained turbulence energy relaxes from an 

original equilibrium level to a final, higher level due to energy supplied by the 

coherent mode. This recovers some of the physical mechanisms derived more 

laborously from the numerical work of by Gatski and Liu (1980) and could, in part, 

explain the observations depciting large-scale coherent structures interacting with 

turbulence reported, for instance, by Favre-Marinet and Binder (1979) and shown in 
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Figure 1. Other, semi-analytical models of this equilibration picture are given in Liu 

and Merkine (1976) for the temporal mixing layer. 

We have already appreciated the shortcomings of the temporal mixing layer 

relative to the real, laboratory situations of the spatially developing free turbulent 

shear flows. The expected lack of a legitimate one-to-one transformation (rather than 

mimicking) coincide with the similar situation in hydrodynamic stability theory 

(Gaster 1962, 1965, 1968). However, the physical similarities between the relatively 

simple approximate considerations of "wave envelopes" and the numerical 

computational results thus strongly encourage the further development of the former, 

principally directed at the realistic spatially. developing free shear flows. 
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VL SPATIALLY DEVELOPING FREE SHEAR FLOWS 

A. GENERAL COMMENTS 

Some aspects of the quantitative observations of turbulent free shear flows 

discussed in Section III pertain to laboratory, spatially developing flows. Although 

certain qualitative explanations of physical features are possible from the 

considerations of Sections IV and V, we shall address directly the spatial problem in 

this section. No attempt will be made here for a complete survey of the literature, 

but that aspects of the literature will again be drawn to put forth a consistent "point 

of view" for the problem of large-scale coherent structures in free turbulent shear 

flows. Because many of the symptoms of such structures in turbulent flows share 

those of hydrodynamically unstable disturbances in an otherwise laminar flow, many 

of the physical features of the former can be inferred from the latter. In the 

context of Sections IV and V, such inferences must necessarily be made with 

considerable care rather than with unaffected simplicity. For instance, one must 

differentiate carefully between (I) the dynamical instability mechanism for the "fast 

oscillations" that could generate local coherent mode velocity profiles from linear 

wave functions and (2) the slowly varying wave envelope or amplitude distribution 

that necessarily require the participation of the real physics of the problem, including 

turbulence, nonlinearities and mean flow development. 

In the case of finite amplitude disturbances, J. T. Stuart (1958) advanced the 

idea that the kinematics and shape of the disturbances in shear flow instability could 
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be approximated by the linear theory but that the amplitude or wave envelope is to 

be obtained by the nonlinear theory. Its observational basis and application to the 

turbulent free shear layer problem has been discussed in Section V in connection 

with the work of Liu and Merkine (1976). The generalization of Stuart (1958) to the 

finite disturbance problem in a spatially developing free (wake) laminar shear flow 

was given by Ko, Kubota and Lees (1970). Some of their results are worth 

emphasizing since they anticipated many of the obvious aspects of the coherent 

structure problem in turbulent shear layers. Although only a single (fundamental) 

physical frequency was considered, they have shown how the nonlinear disturbance 

and the coupled mean flow would respond to several parameters. A simplified 

version of the wave envelope problem of Ko, et al (1970) (in the absence of 

fine-grained turbulence), in the context of the mixing region problem appears in the 

form 

do 
I 

dx 
(6.1) 

(6.2) 

- '" where x is the dimensionless streamwise distance; I ,Q,I,Q(5) are the mean flow and 

,.. 
fluctuation advection integrals; 14> and Irp(o) are the mean flow and fluctuation 

viscous dissipation integrals. Integrals involving instability modes are dependent on 

the shear layer thickness o(x) through the dependence of local instability properties:-
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on the local frequency parameter e, whereas mean flow integrals I and I rP are 

,... 
constant for the similar mean flow shape distribution. Since 1(6) > 0 and is slowly 

varying, it is replaced by a mean value indicated in (6.2). We refer to the Appendix 

for further details regarding the integrals. Here, the Reynolds number is Re = 

U60/V' where U is the average over the upper and lower free stream velocities. In 

the incipient instability region IA 12 .... 0 so that the second term on the right of (6.1) 

initially dominates and provides the basic viscous shear layer spreading 6 - IX . The 

deviation from this parabolic spreading would indicate the onset of finite disturbance 

levels as the first term on the right of (6.1) competes with the second. This is indeed 

the case found theoretically by Ko, et al (1970) and experimentally by Sato and 

K uriki (1961 ) for the wake problem. Thus a dominating peak in the energy 

extraction from the mean flow would bring about a steplike development of 6(x). 

The observed steplike growth of transitional shear layers (e.g., Ho and Huang 1982), 

and forced turbulent shear layers (Fiedler, et al 1981; see also Wynganski and 

Petersen 1985) is attributed to this mechanism. However, in the turbulent shear layer 

problem the basic spreading of the shear layer is due to the fine-grained turbulence 

with the mechanism depicted by E I;s discussed in Section IV which tends to give a 

linear growth in the absence of other "nonequilibrium" energy loss from the mean 

flow. 

Ko, et al (1970) found that for a fixed Reynolds number and initial· wake 

thickness, the peak in the fl uctua tion energy d~nsi ty, 1 A 12, moves closer to the start 

of the wake as the initial fluctuation level is increased. For the same initial 
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fluctuation energy level, the growth, peak and decay process is hastened in the 

streamwise direction as the Reynolds number is increased. Accompanying these 

properties of • A. 2 would be the moving upstream of the steplike growth of the shear 

layer. 

B. THE SINGLE COHERENT MODE IN FREE 
TURBULENT SHEAR FLOWS 

The observed growth and decay of a single dominant coherent mode in turbulent 

free flows, the coherent mode "negative" production mechanism and the eventual 

increase in the fine-grained turbulence level, illustrated in Figures I and 2, were 

explanable by the single mode considerations of Sections V. There are several more 

detailedO features of experimental observations that could be explained within the 

considerations of this section. Following the forced plane turbulent mixing layer 

experiments of Oster and Wygnanski (1982), Weisbrot (1984) continued with 

Quantitative measurements of the coherent mode energy exchange with the mean 

motion in addition to the mean flow spreading rate, at high amplitudes of forcing. 

Subsequent sub harmonic formation was however, not detected further downstream. 

Although higher homonics of the forcing frequency were present, these decayed 

rapidly with distance downstream. A significant rise in the level of the background 

broadband turbulence occurred with increasing downstream distance. The coherent 

mode at the forcing frequency appeared t%obe functioning as a monochromatic 

disturbance in the turbulent mixing layer. As anticipated in the discussions in 
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Section V, even if the comparison of measured disturbance velocity distributions 

across the shear layer with those obtained from a local inviscid linear stability 

theory appeared good, the same "theory" is not capable in describing the amplitude or 

wave-envelope evolution in the streamwise direction. 

The nonlinear wave-envelope problem for a single coherent mode in a spatially 

developing turbulent shear layer, in the spirit of Section V, is in the form (Alper 

and Liu 1978) . 

- d5 
1(5) 

dx 

dSE 
I I 

dx 

(6.3) 

(6.4) 

(6.5) 

where 1,1 I and It/) I are the mean flow energy advection and turbulence energy 

advection and dissipation integrals, respectively and are constants for a nominally 

similar mean velocity and Reynolds stress profiles; the local shear-layer thickness 

dependent, coherent mode integ~als were previously defined. We again refer to the 

Appendix for details of the iritegrals. Mean motion and coherent mode viscous 

dissipation have not been included for the turbulent shear layer problem. 

The observed (Weisbrot 1984) behavior of the spreading rate of the "highly 

excited" turbulent mixing layer can be diagnosed directly by (6.3), which is obtained 
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from kinetic energy considerations. The sum (IA 12 ·~s+E I;s) is the integral of the 

total energy exchange mechanism between the mean flow and the coherent plus 

turbulent fluctuaitons, across the shear layer. It has been evaluated from 

measurements by Weisbrot (1984) as a function of the streamwise distance. In terms 

of his notation 

[J 
co .u I V I 

.co 

(6.6) 

where U co ... U2, U. co ... U l' Z ... y, w ... v. We have assumed, for simplicity, that 

the mean flow develops similarly so that I = constant = 2R 2(3/2 • Rn 2) for a 

hyperbolic tangent profile, where for U. co > Uco, R 

shear layer thickness obtained from (6.3) becomes 

1 - I 
Irs + E Irs]dx. (6.7) ~. 

I 

If nonsimilarities of the mean velocity profile were to be included, then I (x) would 

appear in (6.3) within the differential d{l6)/dx. In the experiments, the mean 

velocity profiles were indeed n~t entirely similar. In order to make use of the idea 

developed from energy considerations that the mean flow will spread as long· as 

energy is taken away and would contract if energy were supplied to it by "damped" 

disturbances, we integrate the "raw" experimental data (Weisbrot 1984, Figure 5.3.1) to 

obtain the features of shear layer growth (and contraction) via 
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(6.8) 

The multiplication of the velocity ratio factor is to make (6.8) consistent with the 

way in which I was originally made dimensionless. The subscript exp denotes the 

experimental data mentioned. Here both a and x are considered dimensional. We 

show the integral (6.8) in Figure 18. It amazingly resembles that of the measured 

shear layer momentum thickness given in Figure 5.1.1 of Weisbrot (1984). We have 

deliberately avoided "matching constants" leading to direct comparisons. Weisbrot 

(1984) also obtained the "phase locked" contribution to the shear stress "production" 

mechanism. From this consideration it is thus shown conclusively that the excited 

coherent fluctuation causes the shear layer to spread rapidly and that even in the 

"damped" region it dominated the overall energy extraction/supply rate to the mean 

motion and causes the shear layer to contract. The eventual linear spreading rate is 

due to the broad-band turbulence. The features of the evolution of coherent mode. 

energy "production" mechanism is similar to that of Fiedler, et al (1982) shown in 

Figure 2 and anticipated by -the calculations of Gatski and Liu (1980) shown in 

Figure 5. In the formulation (6.3) - (6.5) only the dominant energy exchange 

mechanism between the mean flow and the fluctuations were retained. Because the 

mean flow is rapidly expanding and changing in the streamwise direciton in the 
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experiments, the remaining energy exchange mechanisms for a two-dimensional mean 

flow (in the present notation) 

au -aw 
(u2_~) - + uw-ax ax 

would need to be assesed in the diagnosis of the observed spreading rate in Figure 

18. The dominant energy exchange mechanism included in (6.3) - (6.5), as well as 

that having been measured (Weisbrot 1984), was sufficient to uncover the basic effect 

but not intended for an "accurate prediction". Of the mechanisms responsible for the 

coherent mode wave-envelope evolution depicted in (6.4), only .A. 2 Irs is relatively 

easily measured. The measurement of the wave-turbulence energy transfer mechanism, 

depicted by .A .2E Iwt in (6.4) or Iu in (4.12) and (4.16), is difficult (see, for 

instance, Hussain 1983). It would involve taking spatial derivatives of 

phase-averaged quantities and the subtraction between large numbers. Nevertheless, it 

is an important mechanism in the turbulent shear flow problem. In this situation we 

must rely on the insights developed from theoretical considerations, such as in 

Sections IV and V, to help towards the understanding of the coherent mode 

wave-envelope evolution problem (Alper and Liu 1978). 

The shear layer growth, which is explained here from dynamical considerations, 

is the result of the overall energy drain or resupply to the mean kinetic energy. The 

spectrum of Weisbrot's (1984) observation indicate that several higher frequency 

harmonics undergo growth and decay process earlier in the streamwise distance tlian 
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the component at the forced frequency. A "phase-locked" subharmonic was not 

observed over the length of the streamwise distance measured. We shall delay to the 

following section to discuss the theoretical aspect of multiple-coherent mode 

interactions. The growth and decay of higher frequency coherent modes occurring in 

regions closer to the start of the mixing layer and lower frequency components 

further downstream from such observations have been borne out by theoretical 

considerations (e.g., Liu 1974a, Merkine and Liu 1975, Alper and Liu 1978, Mankbadi 

and Liu 1981, 1984) on the basis of single, independent modes interacting with 

fine-grained turbulence. 

The effect of initial conditions on single, independent coherent mode 

development in terms of the initial Strouhal frequency, coherent mode amplitude and 

turbulence level were discussed by Alper and Liu (1978). For the same initial energy 

levels, the higher frequency coherent components which have shorter streamwise 

lifetimes and attain higher wave-envelope peaks than lower frequency components. 

However, the higher frequency modes may not necessarily enhanc.e the fine-grained 

turbulence energy as vigorously as the lower .frequency modes. This is because the 

mode-turbulence energy transfer depends not only on the magnitude of IA 12 but also 

on the lifetime of the coherent mode as well. For the same frequency, increasing the 

coherent mode amplitude moves· the peak of IA ,2 upstream. Aside from controlling 

the large-scale coherent structure and the fine-grained turbulence through direct 

perturbation at definite frequencies and coherent mode amplitudes, the u·se of 

fine-graine.d turbulence to control its development can also be achieved (Alper and 
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Liu 1978). For the same coherent mode frequency but different initial turbulence 

energy levels, the higher turbulence level case supresses the coherent mode 

downstream devleopment. Consequently, the fine-grained turbulence would achieve a 

relative lower enhancement downstream. The very-large initial coherent mode 

amplitude forcing would effect a subsequent decay of the coherent mode. This 

limiting-forcing amplitude threshold effect has been found experimentally by Fiedler 

and Mensing (1985). Although the calculations were performed for coherent modes in 

a round turbulent jet, Mankbadi and Liu (1981) theoretically found that such an 

initial-amplitude threshold effect does indeed exist. We shall refer to Mankbadi and 

Liu (1981) for the elucidation of initial condition effects and the possible control of 

the free turbulent shear flow. 

C. COHERENT MODE INTERACTIONS 

To begin the discussion of mode interactions it would be most helpful to first 

recall the streakline patterns obtained calculationally by Williams and Hama (1980) 

from the superposition of kinematically obtained wavy disturbances of the 

fundamental mode and its subharmonic upon a hyperbolic tangent mean velocity 

profile. Such streaklines are also obtained from the local eignefunctions of inviscid 

linear theory by Weisbrot (1984) (see also Wygnanski and Petersen 1985), resolving in 

sonie sense the usefulness of the local linear theory in mimicking flow visualization 

(the quantitative wave-envelope problem was not resolvable from this consideration, 
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however). We shall discuss Williams and Hama (1980) for illustrative purposes. They 

obtained streakline patterns from the superposition of sub harmonic to fundamental 

with certain constant-amplitude ratios. These patterns bear striking resemblance to 

the visual observation of dye streak behavior in a mixing layer (e.g., Freymuth 1966; 

Winant and Browand 1974; Ho and Huang 1982). However, the streakline calculations 

of William and Hama (1980) come from a linear superposition of two constant 

amplitude wave disturbances, the pairing and roll up are the consequence of wave 

interference. The simulated wave amplitudes of the fundamental and subharmonic 

are both constant and the abrupt switching of modal structure, as the visual 

appearance of streaklines would suggest, is entirely absent. We are thus cautioned by 

this illustration, that dye streak behavior are not necessarily indicative of unique 

physical circumstances without the guidance from simultaneous quantitative 

measurements. Quantitative measurements suggesting mode-mode interactions between 

the fundamental disturbance wave and its subharmonic in a shear layer are reported 

by Ho and Huang (1982). Their shear layer is essentially one undergoing transition 

and the presence of such distinct modes is brought about by forcing at the 

subharmonic frequency. The significance of Ho and Huang's (1982) work lies in the 

identification of the visually observed location of "pairing", indicated by the 

accumula tion of dye streaks, with the occurrence of the measured cross-sectional 

energy maximum of the subharmonic (actually, they measured the kinetic energy 

associated with the streamwise velocity fluctuation, integrated across the shear layer). 

There was no abrupt switching from the fundamental frequency and wavelength to 
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those of the subharmonic. Reproduced in Figure 4, corresponding to Mode II of Ho 

and Huang (1982), is the evolution of the measured secitonal-energy associated with 

the streamwise velocity fluctuation. The 2.15 Hz curve corresponds to the forced, 

subharmonic component, the 4.30 Hz curve is the fundamental. Although the peak 

amplitudes of the two modes are distinct, the fading in of the subharmonic occurs in 

regions of active fundamental devleopment and, in turn, the fading out of the 

fundamental takes place in regions where the subharmonic is active. The 

measurements suggest a natural occurrence of the switch-on and switch-off processes, 

in contrast to the suggestive, abrupt switch in the modal content from visual 

observations of dye streaks alone. 

The theoretical formulation of mode-mode interactions in a spatially de vie oping 

shear layer was undertaken for a laminar viscous shear flow, without the involvement 

of the fine-grained turbulence at the outset, by Nikitopoulos (1982), Liu and 

Nikitopoulos (1982). The measureable sectional energy content of each mode is 

essentially S 1 A 12, related to the square of the amplitude of the coherent structure. 

The cross-sectional energy content (Ho and Huang 1982) thus reconciles measurements 

with the theoretical ideas about wave-envelope evolution. For each frequency and the 

same initial conditions, the amplitude is a fixed streamwise envelope under which the 

propagating wavy disturbance enters from its initiation upstream and exits 

downstream. The aim here is to understand the direction of energy transfer between 

the modes, its effect on establishing the spatial distribution of wave envelopes and 

the consequential rate of spread of the shear flow. 
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In order to bring out the role of coherent-mode interactions in a dveloping 

shear flow, we shall delay considering the simultaneous presence of fine-grained 

turbulence. In this case, the rate of viscous dissipation is included for the "low" 

Reynolds number incipient transitional problem. Following the general discussions of 

Section II, we first consider that an essemble of disturbances exist in a shear flow 

and split the modes into "odd" (denoted by q) and "even" (denoted by q), then the 

rate of energy· transfer from the even to the odd modes is given by (Stuart 1962a; 

see also Section II.C) 

n·u· I J 

where. the average is taken over the largest periodicity of the disturbances. The 

mechanism is the work done (by the stresses of the odd modes) against the 

a·ppropriate rate of strain (of the even modes). It is clear that the phase relation 

between the stresses and the rate of strain determines the direction of energy transfer 

and that the amplitudes determine the strength of this transfer (the "Kelly 
• 

mechanism-, Kelly 1967; Liu 1981). 

For a spatially developing shear layer, Liu and Nikitopoulos (1982) considered 

the interaction between the subharmonic mode (a single "odd" mode) and. its 

fundamental (a single "even" mode), If the energy content of the fundamental mode 

across the shear layer is denoted by E2 = 6tA2 12 and that of the subharmoQic by 

E 1 = 6 1 Al 12, then the overall energy transfer mechanism between the modes·· is 
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In contrast, the respective fluctuation energy production 

rate from the mean flow is proportional to 1Al12 and to IA212. The rate of 

viscous dissipation scales like 1 A 12/6. The dimensionless energy density 1 A 12 is 

much less than unity according to observations. In this case, the estimate here shows 

that the individual energy production from the mean motion would seem to dominate 

over that of the mode-mode energy transfer except in regions where the former 

changes sign at a later stage of development. In the early stages of development, the 

mode interactions are· dominated by implicit nonlinear interactions via the mean 

motion rather than by the more explicit direct energy transfer mechanism. At the 

later stages mode interactions are most certainly important towards affecting the 

details of the amplitude distribution in the streamwise direction. In the experiments 

of Ho and Huang (1982) there are modes other than the fundamental and the 

sub harmonic present, including initially weak fine-grained turbulence disturbances and 

these are not included in this initial analysis. 

To begin, use is made of the kinetic energy equations (2.21), (2.24) and (2.25) in 

Section H.C with the fine-grained turbulence omitted (Nikitopoulos 1982, Liu and 

Nikitopoulos 1982), with the spatial interpretaiton of the advective derivative O/Ot. 

We again address the wave-envelope problem and specialize the odd modes to a 

single-plane subharmonic mode and the even modes to the plane fundamental. The 

appropriate kinetic energy equaitons integrated· across the plane shear layer then take 

the form 
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mean flow: 

I d 
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subharmonic: 
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dz - qs, 

A 
dz - 41, 

- 4>, 

all quantities are made dimensionless in the manner previously discussed. 

(6.9) 

(6.10) 

(6.11) 

We recall 

that. x is the stream wise coordinate measured from the start of the mixing layer, z is 

the vertical coordinate measured from the center of the mixing layer, u,w are the X,Z 
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fluctuation velocities, U is the mean velocity with ±Q) denoting the upper and lower 

streams, respectively. Here 4> is integral of mean flow viscous dissipation rate, the 

lower case ~ represents the corresponding integral of the fluctuation dissipation rates. 

Equations (6.9) - (6.11) are stated here for completeness and also form the basis for 

subsequent discussions of the mode interaciton problem in the presence of 

fine-grained turbulence. Here, they form the basis for obtaining the evolution 

equations for the cross-sectional energies or energy densities of the disturbances. 

Following earlier work (see, for instance, Liu 1981 and Section V), the disturbances 

are assumed to take the. separable form of the product of an unknown amplitude 

Ai(x) with a vertical distribution function given by the local linear stability theory 

(which has found experimental justification, e.g. Michalke 1971, Weisbrot 1984) as was 

done for the single mode in (5.2), 

IT ~'e-il3t c.c. ~ 

1 
= Al (x) + (6.12) 

W -icxl ~l e-i13t c.c. 

A ~'e-2il3t-ie c.c. u 
2 

= A2(x) + (6.13) 
A . ~ -2il3t-i e """' w -1cx2 2e c.c. 

We again recall the definition that ~i denotes the eigenfunction of the local linear 
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theory and is a function of the rescaled vertical variable ~ = z/5(x), where 5(X) is a 

length scale of the mean flow, to be identified as the half-vorticity thickness, ( ) I 

denotes differentiation with respect to ~; 13 = 2nf5(x)/U is the dimensionless local 

frequency, f is the physical frequency and we again recall that U = (Uco+U_ co)/2, the 

local wavenumbers ex are also scaled by 5(x); a is the relative phase between the 

fundamental component (213) and its subharmonic (13) and c.c. denotes the complex 

conjugate. We are again reminded that the velocities and lengths are considered to 

be made dimensionless by U and 50 (so that 5(0) = 1), and time by 50/U. The mean 

velocity profile is taken to be the hyperbolic tangent profile U = I - R tanh~. The 

sectional-energy content is defined similarly as in (5.1) 

(6.14) 

(6.15) 

This is similar to E(f) measured by Ho and Huang (1982), except that their sectional 

energy refers to the contributon by u alone. The normalization of the local 

eigenfunctions according to (5.4) is implied, which allow us to relate the energy 

content to the amplitude or wave envelope. Alternatively, the square of the 

amplitude is an "energy density". Equations (6.9) - (6.11) then yield three first:.order 

nonlinear differential equations describing the streamwise evolution of 6, 1 A 112 ~·~d 
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IA212 or in the alternative form S,EI and E2: 

mean flow: 

-dS 
1-= 

dx 

subharmonic: 

fundamental: 

production 

production 

vise. dissip. 

Sub.-Fund. energy 

exchange 

I - 2 
- I~I (S)EI/S , 
Re '+' 

vise. dissip. 

vise. dissip. 

(6.16) 

(6.17) 

(6.18) 

The relevant integrals in (6.16) - (6.18) are again defined in the Appendix. The 

"slowly varying" advection integrals I I (S) and I2(S) are approximated by their "mean" 

values. Not previously introduced are the mode-energy exchange integral I~i(S) and 

the viscous dissipaton integrals I~i(S), The Reynolds number is again Re = USo/v. 

The subscripts I and 2 denote the subharmonic and fundamental, respectively. 

Following arguments of inertial or dynamical instability reasoning (Section V), it is 

sufficient to use the Rayleigh equation in obtaining the characteristics of such 

integrals (see, for instance, Liu & Merkine 1976) and thus they are not functions::of 
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the Reynolds number. Equations (6.16) - (6.18) are subject to the initial conditons 

E1 (0) = ElO' E2(0) = E20 and 5(0) = 1; with 13(0) = 130 choosen to correspond to the 

physical frequency of the subharmonic (or any other mode), the specified U and the 

initial physical length scale of the mean flow 50' This length scale has been 

identified with the initial half-maximum slope thickness. 

There are many other less dominant disturbance modes present in the 

experiments of Ho & Huang (1982), including weak fine-grained turbulence, to which 

the shear layer is sensitive. The relative phase between the fundamental and 

su~harmonic is left arbitrary in the experiments. Thus, the details of the real shear 

layer is not expected to be described by the idealized two-mode problem in the 

absence of weak fine-grained turbulence and other (not necessarily weak) modes. 

However, the problem solved by Nikitopoulos (1982) and Liu and Nikitopoulos (1982) 

brings out the dominant physical mechanisms in the growth and decay and the effect 

of the relative phases of the overlapping fundamental and subharmonic disturbances 

in the absence of other complications. Some of these earlier qualitative results were 

discussed by Ho and Huerre (1984). Subsequent calculations and quantitative 

comparisons with experiments (Nikitopoulos and Liu 1986) are discussed here. The 

initial subharmonic frequency parameter is taken to be 130 = 0.26, giving a 

fundamental of 2130 = 0.52 which is very nearly at the maximum amplification rate 

according to the linear theory. In the experiments (Ho and Huang 1982), only the 

u-contribution to the cross-secitonal energy were measured. The calcul"ations 

(Nikitopoulos and Liu 1986) were obtained for the overall energy E but subsequently 
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partitioned to obtain Eu via the local linear theory. The initial conditions were 

applied at the streamwise station corresponding to where the mixing layer profile has 

been established from a previous wake-like region behind the splitter plate. The 

initial values used, in the notation corresponding to the theoretical formulation, 

correspond to those of Ho and Huang (1982) and are Eul(O) = 0.16 x 10-4, Eu2(0) = 

0.48 x 10-3, Re = 81 and R = 0.31. Three relative phase angles were used (9 = 0°, 

80 0, 180 0) in' the calculations. The development of the cross-sectional energy, 

Eun(x)/Eun(O), where n = (subharmonic) and n = 2 (fundamental), is shown in 

Figure 19 as a function of x/sO, where x = 0 correspond to where the initial 

condition was applied as already discussed. Because the fundamental component is 

(by definition) the most amplified disturbance at the outset, the extraction of energy 

from the mean flow is its dominant energy supply and is responsible for the first 

peak in Eu2. In the strong nonlinear region the subharmonic feeds energy into the 

fundamental component for 9 = 0°. Thus, the second peak in Eu2 for e = 0 ° ~ccurs 

in the vicinity of the peak in Eul . This mechanism is responsible for the relatively 

weaker Eul shown in Figure 19. For 9 = 180°, the fundamental feeds energy into 

the sub harmonic and this is responsible for the much earlier decay of the 

fundamental energy Eu2. In this case, the mode-interaction mechanism augments the 

direct energy supply from the mean motion to the subharmonic energy and causes 

Eu I to peak earlier. In the intermediate case is 9 = 80 ° the subharmonic energy 

° transfer to the fundamental is not as vigorous as in the 9 = 0 case and compares 
-'. 

favorably with the measurements of Ho and Huang (1982). The resulting growth of 
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the shear layer thickness is shown in Figure 20. The first plateau is due to the 

peak in the fundamental, the second due to the peaking of the subharmonic 

according to (6.16). Because the interaction between the mean flow and the 

amplified disturbances is strong, the rapid spreading rate is a part of the nonlinear 

interaction process and thus ought not be presumed as a known input for the 

nonlinear amplitude problem. This significant interaction feature, which is lacking 

in the "small divergence theory" (Gaster, Kit and Wygnanski 1985, Wygnanski and 

Petersen 1985, Weisbrot 1984), is an essential feature in for the wave function rather 

than be used for the description of the wave-envelope problem. We note that the 

shear layer spreading due to the subharmonic very nearly doubles that due to the 

fundamental in Figure 20. That is, the ratio of the two plateaus is nearly two. 

However, this is dependent upon the initial conditions and mode numbers and should 

not be a general "rule of thumb". The plateaus are clearly attributed to the net 

energy loss from the mean flow directly to the disturbances according to (6.16). The 

interaction between the coherent modes has but an indirect effect. The continued 

subsequent spreading of the mean flow (Figure 20) in the experiments are attributable 

to other fluctuations which are not accounted here. These simple ideas are extended 

to include the presence of fine-grained turbulence subsequently. In the absence of 

any fluctuations, or course, the shear flow spreads because of viscosity alone as is 

evident from (6.16). In Liu (1981), the 'Kelly mechanism was discussed in a much 

broader context than the weakly nonlinear theory from which it was obtained"" as is 

illustrated here. In order to show consistency with the pioneering work of Keily 
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(1967) for parallel flows, Nikitopoulos and Liu (1986) discussed the properties of the 

mode interaction integral 112 in detail. We shall summarize here that 112 < 0 for 

small a and a, covering the range of a when the fundamental is most amplified and 

when e = 0
0 

(Kelly 1967), indicating that the fundamental energy is transferred to 

the sub harmonic. As a increases this energy transfer mechanism changes sign for the 

same 9, a feature attributable to the developing, spatial problem. For large 9 and 

small a, energy· is transferred from the subharmonic to the fundamental and again, 

this transfer mechanism changes sign as a increases. In the context of strongly 

amplified disturbances in a developing mean shear flow, however, the original Kelly 

mechanism for parallel flows is largely academic as the integral 112 changes sign as 

the flow evolves. However, in the broader sense the Kelly mechanism is intepreted 

as having pointed out the importance of both the relative phase and amplitudes in 

the subharmonic - fundamental mode interactions. Nikitopoulos and Liu (1984) have 

also sutdied the three-mode interaction problem. This, and the two-mode .problem 

briefly discussed here, shall appear elsewhere in greater detail (Nikitopoulos and Liu 

1986). 

We have already emphasized that the spreading rate of the mean flow is 

proportional to the rate at which energy is removed from the mean flow. For a 

purely laminar viscous flow only viscous dissipation contributes to the spreading rate 

I¢>/(I Re 5) as indicated by (6.16), thus 5 :... ";i as expected. For a laminar flow 

undergoing transition, the rate of energy transfer to originally small disturbances, 

reflected by the -IT w Reynolds stress conversion mechanism (including, for simplicity 
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in notation, an "essemhle" of coherent modes), now competes with the viscous 

dissipation. When the disturbances have become sufficiently finite, a marked 

deviation from the purely viscous spreading rate would be noticed (see, for instance, 

Sa to & Kuriki 1961; Ko, Kubota & Lees 1970). In the presence of both a 

fundamental disturbance and its subharmonic, such as the case discussed here (Ho 

and Huang 1982), where the peak in the finite amplitudes are distinctively separated 

in space, the growth of the shear layer undergoes successive plateaus; the vigorous 

shear layer growth regions are associated with active energy extraction from the 

mean flow for the disturbance amplification and the plateau regions associated with 

decaying disturbance amplitudes. In Ho and Huang's (1982) experiments, the shear 

layer continues to spread after the plateau regions (see Figures 3 and 20), it is most 

likely that transition to fine-grained turbulence has taken place in that the existing 

fine-grained turbulence having been sufficiently strained by the coherent structures is 

now contributing towards the mean flow spreading rate via their Reynolds stress 

fine-grained turbulence -u' w '. For large-scale coherent structures in a turbulent shear 

flow both -uw and -u' w " but depending on their relative strength, contribute to the 

growth of the mean shear flow. In the downstream region where a particular mode 

of choherent structure has rearranged its velocity distribution such that -uw is 

opposite the sign of au/az, then energy is returned to the mean motion from this 

particular mode and this contributes to the decrease of the spreading rate. We have 

already seen this using Weisbrot's (1984) observation as example. 
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Kaptanoglu (1984) and Liu and Kaptanoglu (1984) studied the dominant 

two-dimensional coherent-mode interactions in a two-dimensional turbulent mixing 

layer by extension of the corresponding problem in a laminar, viscous layer 

(Nikitopoulos 1982, Liu and Nikitopoulos 1982, Nikitopoulos and Liu 1986) through 

the specialization of the basic equations in Section II. The individual 

mode-turbulence interations are entirely similar to the single coherent mode problem 

discussed in Section V and Section VI.B. Of particular interest is the application of 

these ideas to the transition problem (e.g., Ho and Huang 1982) in which the initial 

fine-grained turbulence is sufficiently weak so as to render coherent mode-interactions 

to develop initially unhindered by the fine-grained turbulence. Depending on the 

initial level of the turbulence and the relative strengths of the initial coherent mode 

energy levels and the initial mode content, the fine-grained turbulence would 

eventually be amplified to a fully participating role in the dynamics of the shear 

layer through energy transfer from the mean flow and the coherent modes. We 

return to the eventual linear spreading of the shear layer in the transition problem 

(Ho and Huang 1982) discussed earlier (see, Figures 3 and 20). We emphasize here 

that Kaptanoglu's model still retains the simple two-dimensional coherent modes as 

dominant without considering the spanwise standing waves found to exist 

observationally as streamwise "streaks". As such, the comparison with observations 

(e.g. Huang 1985) is not likely to be meaningful as the three-dimensional wave 

disturbances are starting to play a significant role in the dynamics of the' shear 

layer. We shall address this problem in Section VI.D. Nevertheless, we shall be 

-118-



contented here to illustrate the transition problem via the simple two-dimensional 

coherent mode-interaciton model in the presence of fine-grained turbulence. 

Kaptanoglu (1984) and Liu and Kaptanoglu (1984) first consider an "experiment" 

in which the "fundamental" mode is initiated at a relatively higher energy level A~O 

= 17 x 10-5 at the initial frequency 2130, whereas its "subharmonic" at the initial 

frequency 130 is initiated at a lower level Alo = 3 x 10-5; with other parameters set 

at R = 0.31, Reo = 62, e = 0
0

, EO = 10-6. The initial Strouhal frequency was chosen 

to be 130 = 0.149 so that 2130 = 0.298. The latter is slightly less than the Strouhal 

frequency of 0.4426 for the maximum initial amplification rate according to the 

linear theory. We shall continue to refer to the initial 2t30-mode as the fundamental 

and the initial t30-mode as the subharmonic even if 2130 ~ 0.4426 and 130 ~ 0.2213. 

The numerical values of the above parameters are fixed and each variation from 

fixed values will be explicitly stated. The results from the above fixed set of 

parameters are shown in Figure 21. The energy densities in Figure 21a are denoted 

by "2" for A~ (the initial 2t30-mode), "1" for At (the initial t30-mode) and "0" for E. 

The shear layer thickness (normalized by the initial shear layer thickness) is shown 

in Figure 21 b. For this set of parameters, the maximum magnitudes of A~ and AT 

reaches the same level approximately; in terms of maximum "amplificaiton", 

(A~/A~O)max ~ 206 and (AVArO) ~ 1200. The respective coherent mode amplitudes 

grow by extraction of energy from the mean flow and decay by return of energy to 

the mean flow ("negative production"), viscous dissipation net energy transfer to the 

fine-grained turbulence. The relative phase was e = 0
0 

so that initially energy is 
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is transferred from the 2S0-mode to the SO-mode and this reverses sign with 

increasing streamwise distance. The mode interaction effect, which is proportional to 

amplitude cubed, is relatively effective in the vicinity where the mean flow 

production of wave-disturbance, proportional to amplitude squared, is nearly zero and 

about to reverse in sign. The production of fine-grained turbulence is slightly larger 

than its viscous dissipation; the turbulence growth is augmented by the energy 

transfer from tIiecoherent modes giving rise to the mild but noticable maximum in 

the turbulence energy density in Figure 21a. The noticable two bumps in the shear 

layer thickness in Figure 21 b is due to the peaking of the energy drain from the 

two coherent modes. The eventual linear growth is due to the fine-grained 

turbulence. In the far downstream region, the balance between the fine-grained 

turbulence production, dissipation and the effect of shear layer spreading give an 

equilibrium fine-grained turbulence energy density Ee ~ 0.18 R2 and an equilibrium 

. spreading rate d6/dx ~ 0.025 R due to the fine-grained turbulence. The effect of 

mean flow dissipation not being important an~ was neglected. These are estimated 

from the appropriate equation for d6/dx and d6E/dx with the coherent modes having 

equilibrated to zero in this case. We see that the equilibrium behavior of E and 

d6/dx in Figure 21 very nearly follow from the estimates given. 

We consider next the effect of initial turbulence levels, EO' on the subsequent 

shear layer development. When the turbulence energy level is exceedingly weak, EO = 

10-10, we see in Figure 22 that the coherent modes and the initial shear layer 

development are essentially unaffected by the turbulence. The subsequent linear 
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spreading rate far downstream is caused by the rising turbulence energy level. As 

the initial turbulence level is increased to EO = 10-8 in Figure 23, the linear 

spreading rate and steep rise in turbulence energy level moves upstream; with the 

coherent modes stilI somewhat unaffected. These are to be comapred to the "standard 

experiment" for EO = 10-6 in Figure 21 where the coherent modes are already 

modified by the fine-grained turbulence. As the turbulence energy level is increased 

to EO = 10-4 in Figure 24, the SO-mode maximum-AT level is significantly modified 

and its occurrence is moved upstream; the A~ maximum level and location is slightly 

modified. As the initial turbulence level is increased to EO = 10-2 in Figure 25, 

corresponding to r.m.s. velocity ratios of about 7% of the averaged mean velocity, the 

coherent modes' energy levels are significantly reduced. The steplike growth of the 

shear iayer thickness is very nearly obliterated by the strong turbulence levels. The 

qualitative effects are consistent with observations of Browand and Latigo (1979). In 

the experiments, however, it is difficult to preserve the same So while changing the 

initial turbulence levels. In general, as the turbulence level is increased, the coherent 

mode peaks tend to move upstream. 

With all other parameters fixed as in the "standard experiment" of Figure 21, 

the Reynolds number is changed increased Re = 500 in Figure 26. Results for Re > 

500 shows only very modest differences. In this case, the viscous dissipation of "the 

coherent modes and of the mean flow are not important. This results in a 

significant development of the 2S0-mode and,"'~onsequently, because 9 = 0°, there is 

significant energy transfer from the SO-mode resulting in the supression of the latter. 
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The "nonequilibrium" peak in the turbulence energy level (Figure 26a) is due to 

energy transferred from the coherent modes. The pronounced first step in the shear 

layer thickness (Figure 26b) is due to the pronounced peak in the 2S0-mode. The 

second step, merging immediately into the linear growth region, is attributed to the 

combined peaks of the SO-mode and' turbulence. As the Reynolds number is lowered 

to Re = 100 in Figure 27, the A~ level is lowered due to viscous dissipation and the 

supression of the A r level from mode-interaction is thus to a lesser extent; the 

turbulence level development is milder as shown in Figure 27a. In this case, the 

pronounced steplike growth (Figure 26b) has become milder (Figure 27b). These are 

to be compared, again; to the "standard experiment" of Re = 62 shown in Figure 21. 

As the Reynolds number is lowered to Re = 40, the 2S0-mode is significantly 

surpressed at the outset due to viscous dissipation and the SO-mode, in the presence 

of weak intermode energy drain, is allowed to develop as shown in Figure 28a. The 

pronounced step in the shear layer thickness is due to the peak in AT- We note that 

as the Reynolds number is increased, the location of the peak of the 2S0-mode moves 

upstream, whereas that of the SO-mode remains more or less unchanged. 

The "standard experiment" (Figure 21) was initiated at the initial dimensionless 

frequencies So = 0.149 and 2S0 = 0.298; both modes are on the lower frequency side 

of the most amplified freuqency' of 0.4426. Shown in Figure 29 is the case when" So 

= 0.25 and 2S0 = 0.50, the latter falling to the higher' frequency side of 0.4426. 

Consequently, the 2S0 has little to travel downstream before it is advected into the 

"negative production" region and is thus unable to develop to any significant extent 
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as shown in Figure 29a, the second mild peak is due to the energy transfer from the 

130-mode. In this case, the 130-mode develop almost independently of the 2130-mode 

and it gives rise to the single pronounced step like shear layer thickness in Figure 29b 

prior to the linear growth region. As the initial frequencies are lowered to /30 = 0.2 

and 2130 = 0.4, the A~ is able to develop further before being advected into the 

"damped" region shown in Figure 30a; but still the steplike structure in the shear 

layer thickness IS due to the strong levels of A I (Figure 30b). In the "low frequency" 

initiation at 130 = 0.05 and 2S0 = 0.10, the 2S0-mode is able to develop significantly 

and consequently supressing the SO-mode via mode interaction (Figure 31a). The 

pronounced step in the shear layer thickness (Figure 31 b) and the peak in the 

turbulence level (Figure 31a) is attributed to the 2S0-mode. The initially lower 

frequency modes are stretched out in their streamwise evolution compared to the 

higher frequency modes as was expected (Liu 1974, Mankbadi and Liu 1981, 1984) 

from single-mode considerations . 
. '"' 

Although not shown, imposing very large initial amplitudes upon one of the 

modes causes the maximum of that mode to be precisely the initial amplitude; 

whereas the maximum amplification is achieved by imposing very small initial 

amplitudes. The amplification of the remaining other mode is only moderately 

affected. Such resulting properties of mode-forcing upon single, independent modes 

were already obtained by Mankbadi and Liu (1981) in connection with the round 

turbulent jet problem. The recent experiments of Fiedler and Mensing (1985) indicate 
I'""' .. 

also such interesting properties' of possible control. Similar mode interactions in a 
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round turbulent jet between two-frequency, axially symmetric (n = 0) modes were 

recently considered by Mankbadi (1985). The interactions between axially symmetric 

and helical modes (n ~ 0) in a round jet are very much similar to mode interactions 

involving two-dimensional and spanwise periodic three-dimensional modes in an 

otherwise two-dimensional shear layer. The issues with regard to such 

three-dimensional effects is addressed in the next section. 

D. THREE-DIMENSIONAL NONLINEAR EFFECfS IN LARGE-SCALE 
COHERENT MODE INTERAcrIONS 

In the previous sections we have discussed the mechanisms of interaction 

between plane, large-scale coherent modes with the three-dimensional fine-grained 

turbulerice. Although the two~dimensional coherent structures are still the dominant 

coheren t modes in two-dimensional shear flows, there is increasing 0 bserva tiona 1 

evidence that three-dimensional coherent modes, in the form of spanwise periodicities 

or standing waves, persit (Miksad 1972; Bernal, et al 1980; Bernal 1981; Breidenthal 

1981: Browand and Trouttt 1980, 1984; Roshko 1981, Konrad 1977; Jimenez 1983; 

Alvarez and Martinez-Val 1984; Huang 1985). The experiments dealt primarily with 

transitional shear layers and it is clear that coherent three-dimensionality is most 

-
likely to provide additional sites for the straining and amplification of preexisting 

fine-grained turbulence, however initially weak (Huang 1985). This would augument 

the direct production of fine-grained turbulence from the mean flow and fro.m the 

two-dimensional coherent motions. The three-dimensional coherent motions persist 
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well into the region where fine-grained turbulence has become active (Bernal 1981, 

..... Roshko 1981). On the basis of the discussions in the previous sections, it is entirely 

conceivable that such span wise periodicities, again appearing as a manifestation of 

hydrodynamic instability, would also develop in an initially turbulent shear layer, 

depending on the balances between mechanisms of energy supply and "dissipation". 

From this discussion, we are lead carefully to distinguish the two very distinct 

three-dimensional motions. One is the fine-grained turbulence and the other is the 

large-scale coherent motion in the form of spanwise standing waves in a 

two-dimensional mean shear flow or helical modes in the round jet (e.g., Mankbadi 

and Liu 1981, 1984). It is an experimental fact that the spanwise wavelength of the 

three-dimensional coherent modes increases further downstream (Barnel 1981, Jimenez 

1983, Huang 1985), as if evolving through the emergence of a spanwise subharmonic 

formaiton, much in the same spirit as the sub harmonic formation in terms of 

frequency and streamwise wavelength for two-dimensional coherent modes (Freymuth 

1966, Winant and Browand 1974). Quantitative observations (e.g., Jimenez 1983, 

Huang 1985) indicate that the combined spanwise, three-dimensional modes develop 

downstream in a nonequilibrium fashion resembling, though not in detail, that of the 

two-dimensional modes. The wave-envelope amplifies and eventually decays. Jimenez 

(1983) showed that the three-dimensional disturbances are imposed by upstream 

disturbance such as the inherent waviness of the trailing edge" of the plate separating 

the two streams or the screens placed upstream of the trailing edge. As such the 

upstream initial conditions on-' the span wise modes are uncontrolled. Unlike the 
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situation with the wavenu~ber or frequency selection mechanism for the 

two-dimensional coherent modes, the spanwise wavenumber selection mechanism is still 

unsettled in spite of recent works on the temporal mixing layer from the point of 

view of computational-hydrodynamic stability (Pierrehumbert and Widnall 1982, Corcos 

and Lin 1984) and numerical simulation (Riley and Metcalfe 1980, Cain, et al 1981, 

Couet and Leonard 1980, Metcalfe, et al 1985). Corcos and Lin (1984) suggest that 

perhaps the nonlinear interactions between span wise modes and the role of initial 

conditions might uncover the mechanism of the spanwise wavenumber selection. To 

this end, we shall return to a brief discussion of the classical nonlinear analyses of 

three-dimensional disturbances in shear flows. This would form the basis that 

naturally leads to the discussion from our point of view in focusing attention on 

real, spatially developing shear flows. 

Three-dimensional disturbance effects in temporal, parallel shear flows have 

been studied by Benney and Lin (1960) and Benney (1961). This body of work is a 

second-order theory rather than one of finite amplitude in that the amplitudes are 

taken as exponentials. They considered the temporal problem consisting of two 

interacting fundamentals, a two-dimensional wave disturbance of the form 

exp(icx(x-c1 t» and a three-dimensional disturbance of the form exp(io:(x-c2t»cos)'y, 

where )' is the span wise wavenumber, cl and c2 are the complex phase velocities and 

cc is the streamwise wavenumber associated with the fundamental two-dimensional 

disturbance. For simpliticity, Benney and Lin (1960) assumed that c1 = c2 for a 

given Reynolds number and this leads to harmonics that are stationary rather than 
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periodic in time. Other second-order effects include the formation of harmonics of 

the two fundamentals and the distortion of the mean flow. The combination of 

nonlinear effects on amplitude and three-dimensional wave disturbance effects were 

studied by Stuart (1962b) and presented at the 1960 Second International Congress in 

Aeronautical Science in Zurich. Stuart (1962b) found that there are at least eight 

physically distinct "modes". This can best be characterized by attaching the subscipts 

m and n to the relevant flow quantities, say, the velocity umni (where i is retained 

to indicate the components of the velocity). The first subscript m indicates the 

streamwise wavenumber for the temporal problem, whereas n would indicate the 

span wise wavenumber. For instance, m = 1 denotes the fundamental streamwise 

wavenumber ex, m = 2 its first harmonic 2ex; n = 1 denotes the cos-yy mode and n = 2 

denotes the cos2-yy mode. The three streamwise non periodic modes consist of the 00, 

Oland 02 modes. The first refers to the modification of the temporal mean motion 

which is here the combined streamwise- and spanwise-averaged flow. The 01 and 02 

modes are the streamwise-independent but spanwise-periodic harmonics generated by 

the three-dimensional wave disturbance. The 10 and 20 modes are the 

two-dimensional fundamental and harmonic components respectively. The 11 mode is 

the three-dimensional fundamental and the 22 and 21 modes are the associated 

harmonics. Following earlier work on finite-amplitude effects for two-dimensio"nal 

disturbances (Stuart 1960), Stuart (1962b) obtained amplitude equations for the two 

complex two-amplitude functions A(t) and B(t) for the temporal two~ and 

three-dimensional disturbances respectively, in a parallel flow, 
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dA 

dt 

dB 

dt 

+ ... 

(1) 2 (2) 2 (3)- 2 
B(bO+bl IAI +b l IBI + ... ) + b l BA + ... 

(6.19) 

(6.20) 

In (6.19) and (6.20), the constants aO = -iacl and bO = -iac2 come from the linear 

theory and the remaining constants from the nonlinear theory. Stuart (1962b) showed 

how these constants could be evaluated. He -argued that for finite values of the 

spanwise wavenumber 1, the constants a\ 3) and b\ 3) may be choosen to be zero. In 

this case, the "wave envelope" equations then appear in the form 

2 (1) 2 (2) 2 
2 I A I (cxc li+a I r I A I +a I riB I + ... ) (6.21) 

dt 
. (6.22) 

where the subscripts i and r denote imaginary and real parts, respectively. The 

amplitude equations from weakly nonlinear theory are stated here for later reference 

for purposes of showing tIle contrast with the wave-envelope equations of 

three-dimensional disturbances in spatially developing shear. flows for strongly 

amplified disturbances. 

We have seen in Section VI.C how ideas from weakly nonlinear theory could 
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be used as a valuable guide for mode interactions in a developing shear flow. There 

the single, odd- and even-mode were given their individual amplitudes, as would be 

motivated by observations (e.g., Ho and Huang 1982), rather than in terms of an 

expansion in terms of ascending powers of a single amplitude function of the weak, 

nonlinear theory. The nonlinear effects being of amplitude to the fourth power 

reflects such an expansion procedure. This will be contrasted to the anticipated third 

power in amplitude for the present class of problems. In order to study the 

interaction between an initial fundamental component and its subharmonic in the 

spatial problem, the mode interaction is in terms of frequency and calls for the 

reinterpretation of the the single even-mode as the fundamental component and the 

single-odd mode as its subharmonic at half the fundamental frequency. The same 

interpretation is used to denote three-dimensional wave disturbance interactions. The 

even and odd modes here refer to the frequency only and the basic equations 

devleoped in Section II applies. The Reynolds mean motion is, by definition, 

obtained via averaging over all periodicities. In this case, the average is taken with 

respect to time and over the spanwise distance for two-dimensional shear flows. For 

round jets, the latter average is replaced by the circumferential average. The 

conditional average used to separate the coherent modes and the fine-grained 

turbulence is still the phase-averaging procedure geared to the coherent frequencies· or 

periods for the spatial problem. 

In order to study subharmonic/fundamental interactions (in the frequency 

sense) and the downstream evolution of at least two spanwise periodic scales for the 
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spatially developing shear flow, it is not difficult to confirm that the minimum 

number of frequency-periodic modes required is five. Using similar notation as that 

of Stuart (l962b) we denote the coherent dynamical quantities as qmn (with umni as 

the velocity, i is the component indicator), m refers to the frequency and n the 

span wise periodicity. The even frequency mode is denoted by m = 2 (reinterpreted as 

the fundamental mode in frequency) and odd frequency mode by m = 1 (the 

reinterpreted subharmonic mode in frequency). The two-dimensional modes are 

denoted by n = o. It is not essential to take the spanwise periodicity indication n "# 

o literally as long as we identify modes with n = to have spanwise wavelengths 

twice that of the modes with n = 2. For instance, n = 2 and I could be taken to 

indicate cos2)'y and cos),y, respectively or cos)'y and cos(),/2)y, respectively. In both 

cases, the span wise wavelength (>'n) is such that >'1 = 2 >'2. In observations (e.g., 

Jimenez 1983, Huang 1985), >'1 eventually prevails over ).2 downstream. The five 

minimum frequency periodic (m 'I- 0) modes consistant with Stuart (1962b), would be: 

three modes belonging to the fundamental frequency (even, m = 2) 20, 21, 22 and 

two modes belonging to the subharmonic frequency (odd, m = 1) 10, 11. These 

modes stiII belong to the family of binary-frequency interactions (Liu and 

Nikitopoulos 1982, Nikitopoulos 1982). Inclusion of other m "# 0 modes would 

necessitate tertiary-frequency interactions but which could still be formulated from 

the basic equations of Section II as was done for triple-frequency mode interactions 

for two-dimensional wave disturbances (Nikitopoulos and Liu 1984). The remaining 

frequency-independent modes (00,01 and 02) are modifications to the time-averaged 
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mean flow; the 01 and 02 are modifications prior to spanwise averaging. 

modifications prior to spanwise averaging. Before we continue with the 

three-dimensional wave disturbance problem, we shall insert a brief comment about 

accounting only for binary-frequency interactions which shows that it could be more 

general than would be anticipated. 

The basis for our implicit hypothesis that only binary-frequency mode 

interactions suffice for the spatially developing shear flow lies in the earlier 

theoretical confirmation (Liu 1974a) of observations that progressively lower 

frequency modes develop and peak further downstream relative to higher frequency 

modes. For mode-interactions of the sub- and super-harmonic type to take place, 

modes of only integral multiples of the' frequency participate. As demonstrated by 

Ho and Huang (1982), the peaks of the fundamental and subharmonic do not overlap. 

The first subharmonic, peaking further downstream than the fundamental, would 

eventually serve as the fundamental to the second subharmonic but in a region where 

the original fundamental has significantly weakened. In this case interactions between 

neighboring frequency modes would dominate. Situations where binary-frequency 

interactions would not suffice are elucidated by Nikitopoulos and Liu (1984). 

The spanwise periodicities are considered to be standing waves. To help 

understand the physical mechanisms of mode interactions within the limited 

framework described, we obtain and state the energy equations for the five coherent 

modes. The energy equations of the even-frequency modes are obtained from '(2.25). 

These modes are considered to be the fundamental-frequency modes and are given 
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D --
- u2 /2 = 
Dt 20i 

a2u2 /2 
20i 

+ v ----
ax~ 

J 

_ v[ aU20i ]2 
ax· J 

(6.23) 

The averaging, as already discussed, is with respect to both time and span wise 

distance. 
1\ • 

The symbol ( ) denotIng even modes in Section II is identified here with 

the first subscript m =:' 2 denoting the fundamental frequency whereas C) denoting 

the odd modes is identified here with m = 1 as the frequency-subharmonic. In the 

second group of terms on the right side of (6.23), there is direct energy exchanges 

between the 20-mode with the mean flow and the fine-grained turbulence as well as 

direct energy exchanges with - the two-dimensional and three-dimensional (n = 1) 

subharmonic modes, 10 and 11, respectively.. The fundamental frequency, n = 1 

three-dimensional 21-mode energy equation is 
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D --
- u2 /2 = 
Dt 2li 

+ -u21" u21. _1 _ r21 .. __ 1 _ (-uI0. u ll.-u ll. u I0.) __ I_ 
[ 

au· ~ aU21· ) aU2l" ] 
I J ax. IJ ax; 1 J 1 J ax. 

J J J 

(6.24) 

Again, direct energy exchanges of the 21-mode energy with the mean flow and 

fine-grained turbulence are obvious in the second group of terms on the right of 

(6.24). The last item in this group refelects, as will be confirmed subsequently, the 

energy exchange between the 21-mode with the 10-mode through interference of the 

ll-mode - uI0i Ullj aU21i / aXj' and with the ll-mode through interference of the 

IO-mode - u 11 i u 1 OJ aU21 i / aXj; the net rate of these energy exchanges are the same. 

The fundamental-frequency, n = 2 three-dimensional 22-mode energy equation is 

6-
- u2 /2 = 
Dt 22i 
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2 

a
2 

---- [au22.] + v - u2 ./2 _ v __ 1 • 

ax~ 221 aXj 
J 

(6.25) 

Again, in addition to energy exchanges with the mean flow and fine-grained 

turbulence, the last term in the second group of energy exchange mechanisms on the 

right of (6.25) reflects a direct energy exchange between the 22-mode and the 

II-mode. We note that there are no direct energy exchanges between the three 

fundamen tals 20, 21 and 22. 

The energy equation for the two-dimensional subharmonic 10 mode is 

n-
- u 2 /2 = 
Dt 10i 

+ -uI0. u I0. _1 _ -rIO .. __ 1 
[

au. [ au lO·] 
1 J ax. IJ ax. 

J J 

v[ au 10i ]2 
ax· 

J 
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Again, in addition to direct energy exchanges with the mean flow and fine-grained 

turbulence, the two-dimensional subharmonic IO-mode exchanges energy with the 

frequency-subharmonic. three-dimensional II-mode via the interference of the 

fundamental 21-mode. It exchanges energy with the fundamental two-dimensional 

20-mode directly but with the fundamental three-dimensional 21-mode via interference 

by the II-mode. The frequency-subharmonic. n = I three dimensional II-mode energy 

equation is 

j)-
- u2 /2 = 
Dt Iii 

+ 
[ 

au· [ au 11 .J -Ull.Ull. __ 1 _ -rll .. __ 1 
1 J ax. IJ ax. 

J J 

2 

a
2 

- ta~lli J + v - u2 ./2 - v ----
ax~ III aXj 

J 

aU22i ] 
ax· 

J 

(6.27) 

The energy exchange with other modes are given by the second group of terms on 

the right side of (6.27). The _, II-mode exchanges energy with the two-dimensiOri°iil 
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10-mode through the interference of the 21-mode and with the 21-mode through the 

interference of the 10-mode. As already noted, the II-mode exchanges energy 

directly with the 20- and 22-mode. Again, the ll-mode exchanges energy directly 

with the mean flow and fine-grained turbulence as depicted, respectively, by the first 

two terms in this same group. 

We have, in Figure 21, depicted the mn-mode energy transfer mechanisms. The 

direction of the arrow in the figure is associated only with the manner in which the 

sign of the energy exchange term occur in the individual energy equation, not the 

actual direction of individual energy exchange mechanism. As we have learned from 

our previous considerations, the direction of energy transfer lies in the relative phase 

relations between the fluctuations that make up this mechanism. 

The energy exchanges between the coherent modes and with the fine-grained 

turbulence is summarized in Table 1. The n = 0 two-dimensional mode energy 

exchanges between the coherent modes and with fine-grained turbulence have been 

the subject of discussions in Sections IV, V and in the present section. It is not 

difficult to see that the n = 1,2 three-dimensional modes provide additional 

modulated turbulent stresses and coherent rates of strain for such exchange 

mechanisms. The energy exchange mechanisms with the mean flow is summarized in 

Table 2. We have already shown how energy extraction by two-dimensional modes 

from the mean flow causes its thickness to grow. The additional mechanisms due to 

the three-dimensional modes would augment this spreading rate if wave disturbances 

continue to take· energy from the mean flow. 
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From the special form of (6.23) - (6.27) for which the mean flow is 

two-dimensional we can obtain the spatial evolution equations for the five coherent 

modes; and, in addition, those of the fine-grained turbulence energy and the mean 

flow thickness similar to the two-dimensional coherent mode problem. The notation 

used for the advection and interaction integrals are similar to those previously 

defined except for the subscripts mn, where m = 1,2 and n = 0,1,2 (but there is no 

12-mode within . the present framework). The wave-envelope equations for the five' 

modes can be written in the form 

2 ,v 2 
= Amn1rsmn - AmnE1wtmn -

energy exchange 

with mean flow 

+ 

energy exchange 

with 

other modes 

energy exchange 

with 

turbulence 

I 2 ,.../ 

- AmJtPmn/ 6 
Re 

+ 

viscous 
dissipation 

(6.28) 

The mode interaction mechanisms, ~mn' is summarized in Table 3. The mean flow 

. kinetic energy equation gives 

- d6 '\ '\ 
I dx = L L 

mn 

2 "" I Amn rsmn 

energy exchange 

with overall coherent 

modes 

+ + 
energy 

exchange 

with turbulence 

1 
- I~/6 
Re 

viscous 

dissipation 
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The fine-grained turbulence kinetic energy equation gives 

- d6E 
EIts ELL A~nIwtmn E3/ 2I' I' -- = + (6.30) 

dx ~ 
energy exchange mn viscous 
with mean flow 

energy exchange with 
dissipation 

overall coherent modes 

Equations (6.28). - (6.30) would be subjected to the initial conditions A~n(O) = A~no' 

6(0) = I. E(O) = EO; supplemented by choosing the initial frequency of the wave 

disturbance 130 (and 2130)' the relative spanwise wave number 1/130 and the relative 

phases between the coherent modes. We comment here that in the case of the round 

jet the physical mechanisms, except for details with regard to curvature effects in 

the downstream region. and formulation appear in the same form as (6.28) - (6.30) 

with n = 0 identified with the axially symmetric modes and n ~ 0 with helical 

modes. Although the numerical aspects of this problem is under active pursuit by S. 

S. Lee* (Lee and Liu 1985), a number of relevant and meaningful interpretations 

can be directly inferred from the formulation and results of a preliminary nature. It 

is now well known that higher frequency wave disturbances grow. peak and decay In .---. 

a region closer to the start of the shear flow than lower frequency disturbances. In 

this situation. the entire m = 2 higher fundamental frequency group of 20. 21 and 22 

modes accomplish such growth and decay activities early on in the streamwise 

* Graduate Student, The Division of Engineering, Brown University. 
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direction than the m = I group of 10 and II modes for not disparately different 

initial mode-energy levels. Within the m = 2 group it is expected that the n = 0 

dimensional 20-mode would persist the longest in the streamwise distance then the 

21-mode; the latter, in turn prevails over the 22-mode. In this case, although the 

cos2'YY and cos'YY modes would initially develop at about the same level, the shorter 

wavelength (2n/21), three-dimensional spanwise mode disappears first, giving way to 

the longer wavelength (2nlJ) spanwise mode associated with the higher, fundamental 

frequency group. Eventually in the streamwise development, the m = 2 frequency 

group of modes give way to the m = I subharmonic frequency group of 10 and II 

modes. The development of the II-mode, of wavelength 2n/'Y, then persists further 

downstream (until they succumb to subsequent subharmonics or turbulence). Thus, the 

present multiple-mode interaction model gives the important observational feature 

(Bernal 1981, Jimenez 1983, Huang 1985) that the number of streamwise, longitudinal 

streaks lessens with the downstream distance. Although this important feature is 

inferred from the formulation of the problem, preliminary numerical results (Lee and 

Liu 1985) confirm this. Characteristically with coherent modes in developing shear 

flows, the problem is one of nonequilibrium interactions and is sensitive to initial 

conditions. Perhaps, when the full numerical results become available, a study based 

on the variaiton of initial conditions and mode numbers might provide us with"" an 

understanding of the span wise-mode selection mechanisms in dcvlcoping shear flows . 

. -~ .. 

In the recent measurements of Huang (1985), frequency-fundamental and 

subharmonic mode energies were obtained but without differentiating between two-
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and three-dimensional modes in the present context. Thus, the sectional energy 

measured, in terms of the present interpretation, reflects the sum within each 

frequency group of modes: (E20+E21+E22) for the fundamental and (EIO+E11) for 

the subharmonic. Further decomposition along the lines discussed here would be 

helpful towards the understanding of the important modal-interaction mechanisms that 

we have elucidated. 

There are several temporal mixing layer studies that would be of interest to 

the present point of view. We delayed discussions of these until the present 

nonlinear interaction problem is fully stated. In this case, we will be able to place 

these temporal problems in proper perspective with respect to the spatial problem that 

we have discussed. To this end, the mode number in the temporal problem refers to 

the streamwise wavenumber and is taken to be analogous to the frequency in the 

spatial problem. This "common" mode _ number will be denoted by m in the 

mn-notation. The span wise mode number is identical in both cases and is denoted by 

n. The basic flow for Pierrehumbert and Widnall's (1982) linear three-dimensonal 

stability studies is a class of finite-amplitude, steady two-dimensional solutions to the 

Liouville equation obtained by Stuart (1967, 1971 b). The class of solutions is 

obtained by variations of a so-called vorticity concentration parameter, E, which when 

set equal to zero the hyperboli"c tangent profile, which could be considered as··the 

mean flow, is obtained. For small but finite E, an expansion in powers of E reveal 

that the mean flow is perturbed by a steady, spatially-periodic fundamental 
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component at the E order, at the E2 order there is a first harmonic component and a 

corrcction to the mean flow, and so on. When E ... 1, the flow due to a row of 

point vorticies is recovered. The E ... 0 range is relevant to our discussion. Because 

the flow is steady, the problem is neutral in that no energy exchange exist among 

the disturbance components and the mean flow. In our notation, in addition to the 

mean flow, this basic flow also consists of neutrally noninteracting 20 and 10 

components (where we now revert to interpreting 20 as the 1st harmonic and 10 as 

the fundamental). The translative mode corresponds to a three-dimensional 

perturbation at the same m. In this case, the modes consist of the basic 20- and 

10-mode plus the II-mode. In the linear problem only direct energy transfers are 

possible. Form Figure 32 we see that there is no direct connection between the 

II-mode pcrturbation with the basic IO-mode, but that there is a direct connection 

between the II-mode with the basic 20-mode. One concludes in this situation that 

the amplification of the II-mode comes from the basic mean flow and the 20-mode, 

while the IO-mode remain dormant in this process. As the parameter E is further 

lowered, the present first harmonic, the 20-mode, being of order E2, becomes 

unimportant so that the only energy supply to the ll-mode would be the mean flow. 

This loss of an additional source of energy supply for E ... 0 may well be the reason 

why the II-mode amplification ""rate is lowered with decreasing values of E in "the 

Pierrehumbert and Widnall (1982) translative-mode problem (see, also Ho and Huerre 

... :.~'" 

1984). This translative mode is not equivalent to the second-order interactions 

described by Benney and Lin (1960) and Benney (1961) in that they included the 
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2I-mode which interacts with and causes interaction between the 10- and II-mode. To 

interpret the linearized helical-mode instability of Pierrehumbert and Widnall (1982), 

we now reinterpret the 20-mode as the two-dimensonal fundamental and II-mode as 

the subharmonic, three-dimensional perturbation. From Figure 32, there is a direct 

interaction between the 20- and the II-mode, in addition to the direct participation 

of the mean flow. Core os and Lin (1984) considered similar three-dimensional linear 

perturbations but upon a time evolving two-dimensional flow consisting of 

equivalently, the mutually interacting mean' shear flow and the two-dimensional 

mo-modes. In the equivalent translative mode interactions, they included the 20-

and 2I-mode, or alternatively, the 10- and II-mode (cases I through 4); in these cases 

there are no direct mode interactions but that the three-dimensional mode derives its 

energy from the mean flow. In the translative-mode interaction with presence of a 

subharmonic, the 20-, 10- and 2I-mode (cases 7-10) are included; again, there are no 

direct three- and two-dimensional mode interactions. Whereas, in the helical-mode 

interaction, modes 20, 10 and 11 were involved (cases 5, 6) where there is direct 

interaction between the 20- and II-mode. Unfortunately, the rate of energy supply 

to the three-dimensional disturbance given by Corcos and Lin (1984) is the overall 

rate and thus does not elucidate these important individual mechanisms. 

The resonant triad of Craik (1971, 1980), originally discussed in terms' of 

boundary layers, is essentially a two-mode interaction in the context of spanwise 

standing-wave disturbances, involving the 20- and II-mode for which there is a' direct 

interaction (Figure 32). For ., a discussion of the work on resonant interactions 
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between three-dimensional disturbances due to Raetz, which remain unpublished, we 

refer to Stuart (1962a). 
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VIL OTHER WAVE-TIJRBULENCE INTERACfION PROBLEMS 

It seems more appropriate to conclude this article by briefly pointing out a few 

examples to confirm that " ... the more research in mechanics* expands, the more 

interconnections of seemingly far distant fields become apparant". This was an 

observation and a spirit infused upon this series by the founding editors, von 

Karman and von Mises, in their preface to the first volume. 

In the structural aspects of the turbulent boundary layer there is no dearth for 

problems involving the interactions between various scales of large-scale motions and 

fine-grained turbulence (Willmarth 1975). Although the situation there is considerably 

more complicated and involved relative to the free shear flows, many of the 

interaction ideas share the same fundamental basis. The prospects of control 

naturally leads to the attempt to understand various perturbations upon turbulent 

boundary layers. One of such perturbations is through interaction of sound· with 

wall turbulent shear layers (Howe 1986), to which some progress for its understanding 

is beginning to take place (Quinn and Liu 1985). 

Interaction between wave motions and turbulence has recently taken on 

important roles in the meteorological context in mesospheric dynamics (Holton and 

Matsuno 1984, Fritts 1984) and in the oceanographic context in the mixing mechanism 

in the interior ocean and the microstructure problem. In fact Munk (1981) 

*in the present case, research in the large-scale organized aspects in free turbulent 
shear flows. 
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underscores the connection between internal waves and small scale processes as "where 

the key is". Recent laboratory experiments (Stillinger, et al 1983) in a stratified 

fluid points to the necessity of the separation between waves and turbulence towards 

the understanding of their internal interaction processes. As an illustration of the 

turbulence-modified internal wave problem, similar conditiona,l averaging procedures 

can be used to obtain the equation for linear internal waves (Quinn and Liu 1986): 

a2 a 
+---

ataz aXj [
arXj aryj 1 --+-
ax ay 

(7.1) 

where w is the vertical wave velocity, V'fI the horizontal Laplacian, z is tHe vertical 

coordinate, x and yare horizontal coordinates, N2 the Brunt frequency taken as 

constant, g the acceleration of gravity, TO the temperature of the undisturbed 

(hydrostatic) fluid taken as constant as far as the wave motion is concerned, Qj is 

the wave-modulated turbulence heat flux vector; rij has the same meaning as in the 

previous discussions. Equation '(7.1) would be augmented by the transport equations 

for rij' Qj and for the wave-modulated, square of the turbulence temperature 

N 
-.-~ ". 

fluctuation h. These would be a rational replacement of the standard eddy-viscosity 

assumptions where, particularly in geophysical problems, the madnitude and sign of 
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such viscosities are difficult to estimate. Wave-turbulence interaction problems in the 

lower atmosphere in the vicinity of the atmospheric boundary layer has received 

attention (Einaudi and Finnegan 1981; Finnegan and Einaudi 1981; Fua. et al 1982). 

The onset of turbulence in Kelvin-Helmholtz billows is addressed by Sykes and 

Lewellen (1982) and by Klaassen and Peltier (1985). similar to the temporal 

homogeneous fluid problem of Gatski and Liu (1980) . 

.. :.~ 
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APPENDIX 

The integrals for the spatially developing plane turbulent mixing layer are 

explicitly defined here for completeness. These integrals are similar in form to 

certain of those that occur in the temporal problem except that there integrals 

involving the eigenfunctions depend on the local wavenumber. The dominant 

coherent mode here is also taken as two·dimensional and the spatial eigenfunctions 

are evaluated "locally" and depend on the local frequency parameter. The mean 

velocity profile and Reynolds stresses are taken to be of the form (5.8) and (5.9), 

respectively. Specifically, we have taken UiUj - e·~ and U = 1 • R tank ~, where R 

= (U.co·Uco)/(U.o>+Uo», ~ = z/S(x). Generalizations to other profiles are certainly 

possible. The local shear layer thickness Sex) measured in terms of the initial shear 

layer thickness (SO), and is half of the maximum slope or mean vorticity thickness 

1 

f
O> lfildz = 

.0> 

Sw = 
lfil max IBU/Bz Imax 

where fi = ·BU/Bz (see Brown and Roshko 1974); S(x) is also twice the momentum 

thickness (Winant and Browand 1974) for the hyperbolic tangent profile. The 

appropriate initial Reynolds number is Re = SOU/v, where U is the average velocity 

(U.0>+Uo»/2 .. All velocities are normalized by U and lengths by SO, The integrals 

in vol ving the local eigenfunctions reflect the normalization defined by (5.4). 
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(l) Kinetic energy advection integrals 

Mean flow: 

= (3 - 2 Rn 2)R2. 

Coherent mode: 

ii5) ~ I - R r tanh ,(,~, ,2 + 'a4>,2)d,. 

_0> 

In the binary mode interactions, 12 is associated with eigenfunctions with subscript 2, 

I 1 with subscript 1. In general 12 and lIdo not change sign are very nearly 

"constant" and will be replaced by their respective mean value over the range of S of 

interest. 

Fine-grained turbulence: 

I I 
2 

+ tanh ~)e-~ d~ = 1. 
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(2) Fluctuation "production" integrals 

Coherent mode: 

CD 

Irs(6) = 2R I em(a~~) sech2,d, 

_CD 

where 4> denotes the complex conjugate of 4>. In the "damped" disturbance region 

~m(cx4>4>') changes sign and Irs < O. In binary mode interactions, I rs2 will be 

Fine-grained turbulence: 

, 
Irs = 

-In 
O.7263a l R. 

(3) Viscous dissipation integrals 

Mean flow: 

CD 

I ~ ~ R2 J sech4,d, = 
_CD 

Coherent mode: 
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Fine-grained turbulence: 

O.3066a2· 

(4) Coherent mode-turbulence energy exchange integral 

co 

'wt(6) = -2 I.~ :Rl[rxx(-ia~') + rxz(4i"+?~) + rzz(i;;VJld,. 

(5) Binary-coherent mode energy exchange integral 

The integrands of Iwt and 121 are grouped to reflect "similar" stress-rates of strain 

products. 
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TABLE L Energy exchanges with fine-grained turbulence: 

m 1 

m=2 

n 0 

-r20iJ· 
aU20i 

ax· J 

n = 1 

aU2li 
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TABLE 2. Energy exhanges with mean flow: 

n = 0 n = n = 2 

au· 1 au· 1 
m = -uIOiUIOj ax. -UI IiUllj ax· J J 

au· 1 au· 1 au· 1 
m 2 -u20iU20j ax. -U2IiU2Ij ax· -u22iU22j ax· J J J 
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TABLE 3. Modc intcraction mechanisms Smn: 

m = 1 

m=2 

n = 0 

+ A2 A 1 10 
10 20 20 

2 10 2 11 
-A A 1 -A A 1 

10 20 20 11 20 20 

n = 1 

10 11 
-A A A (I + 1 ) 

10 11 21 21 21 

-177-
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2 11 
-A A I 

11 22 22 



FIGURE CAPTIONS 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Coherent mode and turbulence measurements on the jet centerline. e: 

unforced, O,llforced at Strouhalnumber St = 0.18 (Favre-Marinet and 

Binder 1979). 

Measured streamwise development of fluctuation production mechanism 

along the line most intense mean velocity gradient in a turbulent mixing 

layer. x: coherent mode production mechanism; e: overall production 

mechanism. (Fiedler, Dziomba, Mensing and Rosgen 1981). 

Streamwise development of mixing layer thickness (Ho and Huang 1982, 

"Mode II"). 

Streamwise development of coherent mode energy (u-component only), 

corresponding to the shear layer thickness development in Figure 3 (Ho 

and Hunag 1982, "Mode II"). 

Evolution of energy exchange mechanisms between the large-scale 

structure and the mean flow d'p) and the fine-grained turbulence (Io2t). 

Evolution of large-scale coherent structure energy. 
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Figure 7. 

Figure 8. 

Figure 9. 

Figure 10. 

Figure 11. 

Figure 12. 

Figure 13. 

Evolution of fine-grained turbulence energy production (Ip)' viscous 

dissipation (4)') and energy transfer from the large-sale coherent 

structure (I U), 

Evolution of fine-grained turbulence energy. 

Evolution of length scales: shear layer thickness (5), fine-grained 

turbulence scale (L€), large-scale coherent structure closed streamline 

height (H). 

Large-scale coherent structure streamlines at t = 1.50. 

Large-scale coherent structure vorticity at t = 1.50. 

Horizontal contribution of the phase-averaged turbulent kinetic energy 

and its dominant production mechanism at t = 1.50: (a) <u' 2>/2; (b) 

-<u 'w '>au/az. 

Span wise contribution of the phase-averaged turbulent kinetic energy and 

its "production" mechanism at t = 1.50: (a) <v,2>/2; (b) <p' au' lay>. 
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Figure 14. 

Figure 15. 

Figure 16. 

Figure 17. 

Figure 18. 

Locus of vectors representing· the shape distribution of modulated 

turbulent stresses and coherent-mode rates of strain across the mixing 

layer. ex = 0.4446 

(a) Streamwise normal stress and rate of strain; 

(b) Shear stress and shear rates of strain; 

(c) Vertical normal stress and rate of strain. 

Relative contributions to the coherent mode and fine-grained turbulence 

energy exchange mechanisms. ex = 0.4446. 

Coherent mode and fine-grained turbulence energy trajectories for the 

parallel flow model. MO = 1. 

Evolution of coherent mode and fine-grained turbulence energy for a 

given wavenumber (ex = 0.4446), parallel flow model. 

Illustrating that observed growth and contraction of observed shear 

thickness is attributed to wave disturbance energy extraction from and 

supply to the mean flow. exp: Weisbrot 1984, "theory": present 

explana tion. 
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Figure 19. 

Figure 20. 

Figure 2l. 

Figure 22. 

Figure 23. 

Figure 24. 

Figure 25. 

Evolution of u-contribution to the coherent mode energy, n = 2: 

fundamental; n = 1: subharmonics; comparison with measurements of Ho 

and Huang (1982) "Mode II" conditions. 

Evolution shear layer thickness; comparison with measurements of Ho 

and Huang (1982) "Mode II" conditions. 

Evolution of (a) coherent mode and fine-grained turbulence energy 

densities and (b) shear layer thickness for a "standard experiment". 

Shear layer development at a weak initial turbulence level EO 

(a) Energy densities; (b) Shear layer thickness. 

Shear layer development at a weak initial turbulence level EO·= 10-8. 

(a) Energy densities; (b) Shear layer thickness. 

Shear layer development at a moderate initial turbulence level EO = 

10-4. (a) Energy densities; (b) Shear layer thickness. 

Shear layer development at a strong initial turbulence level EO = 10-2. 

(a) Energy densities; (b) Shear layer thickness. 
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Figure 26. 

...... 

Figure 27. 

Figure 28. 

Figure 29. 

Figure 30. 

Figure 31. 

Figure 32. 

High Reynolds number effect in the shear layer development, Re = 500. 

(a) Energy densities; (b) Shear layer thickness . 

"Moderate" Reynolds number effect in the shear layer development, Re = 

100. (a) Energy densities; (b) Shear layer thickness. 

"Low" Reynolds number effect in the shear lay.er development, Re = 40. 

(a) Energy densities; (b) Shear layer thickness. 

"High" initial frequency effect on shear layer development, 130 

(a) Energy densities; (b) Shear layer thickness. 

0.25. 

"Moderate" initial frequency effect on shear layer development, 130 

0.20. (a) Energy densities; (b) Shear layer thickness. 

"Low" initial frequency effect on shear layer development, 130 

(a) Energy densities; (b) Shear layer thickness. 

0.05. 

Two- and three-dimensional coherent mn-mode energy transfer 

mechanisms. 
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